
Customizable Service-oriented Petri Net Controllers

J. Marco Mendes
1
, Francisco Restivo

1
, Paulo Leitão

2
, Armando W. Colombo

3

1
Faculty of Engineering - University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal

2
Polytechnic Institute of Bragança, Quinta S

ta
 Apolónia, Apartado 134, 5301-857 Bragança, Portugal

3
Schneider Electric Automation GmbH, Steinheimer Str. 117, D-63500 Seligenstadt, Germany

E-mails: {marco.mendes,fjr}@fe.up.pt, pleitao@ipb.pt, armando.colombo@de.schneider-electric.com

Abstract – In industrial automation, service-orientation is a
relatively new and ascending concept and thus, concrete

integrated methodologies are missing to accomplish the required
development tasks. A suitable approach is to use the powerful
set of features that Petri nets formalism provides for such

dynamic systems. This paper presents a token game template
that is part of the open methodology for the development of
customized Petri nets controllers, targeting the engineering of

service-oriented industrial automation. This template is based
on a state machine specification for the life-cycle of transitions
that leaves several options open for extending it with features

depending on the application. The practical use and
implementation should bring, among others, featured-full and
integrated modeling, analysis and control capabilities, which is

required by service-oriented ecosystems. This core structure was
used and validated in the development of control applications
for an industrial automation system.

I. INTRODUCTION

Today, there are several solutions which take advantage of

the newest mechatronics, information and communication

technologies, to increase the modularity, flexibility and re-

configurability of distributed automation systems. One of the

most recently adopted and with promising applicability are

the Service-oriented Architectures (SoA). The root of many

production and automation companies is made of electronic

devices and this represents a major task for SoA.

Nevertheless, several efforts are being done in integrating and

managing Service-Oriented Industrial Automation systems,

such as the as the SOCRADES project (see

http://www.socrades.eu). The other question is related to the

industrial adoption of SoA principles, since most of the

factories are heavily based on the centralized IEC 61131

standard for Programmable Logic Controllers (PLC). Even

the relatively recent standard of IEC 61499 (to modernizing

some aspects in the sense of distributed control and

automation) has seen a slow to nonexistent application by the

major control system equipment vendors [1].

In service-oriented industrial automation, the control

method is partially open. Instead of incorporating all the

flexibility once at the beginning, it should incorporate basic

process models – both hardware and software – that can be

rearranged or replaced quickly and reliably [2]. For this

reason, the missing key aspects are related to more complex

engineering, coordination and aggregation methods,

especially tailored for the system’s requirements. One option

is to use the already applied standards in the business and e-

commerce fields; other one being the adaptation of the IEC

61131 and IEC 61499 to the emergent requirements. The

authors suggest the use of Petri nets to provide a balance

between the typical SoA methodologies and the programming

languages of the IEC 61131 standard. However, practical

usage of Petri nets is limited by the lack of computer tools

which would allow handling large and complex nets in a

comfortable way [3]. From the other hand and considering

also the use of Petri nets in the runtime of SoA, methods are

missing for the development of customized Petri nets libraries

for software applications and devices of multi-tasked usage.

Based on this motivation, efforts were done in terms of

creating a basis for the missing aspects.

The main contribution of this work is the specification of a

token game template for the development of customized Petri

nets controllers, suitable for diverse tasks of service-oriented

automation. Due to the complex nature, these systems require

several engineering aspects, and the choice of Petri nets

covers a wide set of the requirements based on their well

known foundation. The outline of the paper is the following:

after the introduction, the domain of application of Petri nets

is discussed. The open methodology for applied Petri nets is

presented in section 3 and the template solution for Petri nets

is given in section 4. A concrete application of Petri nets

based on the previous methodology is shown in section 5.

Finally, the paper resumes the conclusions and future work.

II. PETRI NETS IN SERVICE-ORIENTED INDUSTRIAL
AUTOMATION: BACKGROUND AND DISCUSSION

Petri nets have a wide applicability associated to their

modeling and analysis capabilities, but also the ability to

represent system dynamics, especially concerning distributed,

parallel and shared resources. Automation systems are a

common target for the application of Petri nets and their

higher-level deviated structures (e.g. colored Petri nets). In

service-oriented systems, the use of visual modeling

techniques such as Petri nets in the design of complex (Web)

services is justified by many reasons. For example, visual

representations provide a high-level yet precise language

which allows expressing and reasoning about concepts at

their natural level of abstraction. From the application point

of view, a (Web) service behavior is basically a partially

ordered set of operations. Therefore, it is straight-forward to

map it into a Petri net and vice-versa. Operations are modeled

by transitions and the state of the service is modeled by

places. The arrows between places and transitions are used to

specify causal relations [4].

978-1-4244-4649-0/09/$25.00 ©2009 IEEE 4341

The traditional major application of Petri nets in SoA

environments seems to be orchestration and choreography.

For short, an orchestration defines the sequence and

conditions in which one Web service invokes other Web

services in order to realize some useful function, and

choreography is a model of the sequence of operations, states,

and conditions that control the interactions involved in the

participating services [5]. There are several protocols dealing

with both concepts, and the most prominent is the Web

Services Business Process Execution Language (WS-BPEL)

[6], providing a powerful technology to aggregate

encapsulated functionality and to define high-value Web

services – backed by various development and runtime

environments of major software companies [7]. Petri nets and

high-level Petri nets are used in orchestration and

choreography for modeling processes/composition [4],

analysis purposes [7] and negotiation [8].

The application of BPEL directly in automation

environment can be discussed. From one side, it has already a

well defined syntax in eXtensible Markup Language (XML),

development tools and can be used directly with Web

services, providing a way of orchestration. From the other

side, BPEL is a specification mainly targeting business

requirements for both intra-corporate and business-to-

business spaces. Therefore, it is unknown to automation

system engineers that are used to the 61131 languages. Petri

nets are here much more known and studied, as well as

comparable to the sequential function charts of the IEC

61131. Other aspects are that the application of BPEL is

probably too complex and descriptive to be interpreted by

resource constrained devices (typically used in automation)

and that it is not suitable for internal service process

description based on device/software capabilities. BPEL

depends on Web services and therefore it is technology

dependent that is affordable to adapt to non-Web services

based SoA. Last but not least, BPEL is missing analysis and

validation support that is in fact an active research topic in the

SoA business community. However, some efforts have been

done in terms of the application of BPEL and orchestration

for industrial automation with results (see [9] and [10]).

The kind of automation and production systems addressed

in this work is characterized by having a flexible material

flow with possibly many different flow specifications that can

be offered by a defined layout. Therefore, high-degree of

concurrency, competency relationships among components

and non-deterministic sequences are present. In addition, the

introduction of service-orientation makes possible to

represent needs and conditions of the system's components in

form of services that can be accessed by others. The formal

specification and modeling of physical systems that have the

characteristics addressed above can only be performed by

using a mathematical tool able to represent all the

characteristics without exceptions. The Petri nets theory

offers all the required characteristics, being a bi-partite graph

that can represent states and changes of states and

representing a graphical and mathematical tool with a well-

founded and proved theory. Besides this, it also has the

necessary flexibility to develop higher-level structures based

on the foundation, such as colored Petri nets. Since services,

modeling, analysis, synthesis, integration and flexibility are

used as the synonym of SoA, Petri nets based structures are

strong candidates to fulfill the requirements.

Petri nets for

Service-oriented

Industrial

Automation

Benefits/Features
● User-friendly : powerful modeling technique

● Description: relations for production, equipment and automation processes

● Simulation : in virtual environment and easy transition to real-systems

● Conflicts and decision : detection of conflicts/ exceptions and interaction to decision systems

● Integration : devices, software components, services, IT-enterprise

● Openness: application of diverse control strategies (e.g. centralized, distributed)

● Support: flexibility, reconfiguration, production planning, behavior, life-cycle and diagnostic

Software Applications
● Graphical editors with
modeling and analysis
capabilities

● Logic/service

controllers for

devices

Requirements
● SoA infrastructure

● Device access

● Petri nets:

Open methodology

Execution

Modeling

A
na
ly
si
s

Fig. 1. Modeling, Analysis and Execution of Petri nets in Service-oriented

Industrial Automation.

The use of Petri nets can be presented in the life-cycle of

processes as modeling, analysis (simulation) and execution

(control). Fig. 1 refers to this life-cycle approach that is also

compliant to the development of traditional automation and

production systems. For the development of the required

software applications, there are some basic needs, namely a

SoA infrastructure, device access (for software that runs on

devices) and particularly for this work an open Petri net

framework (see next section).

III. OPEN METHODOLOGY FOR APPLIED PETRI NETS

Numerous extensions of this basic model of Petri nets have

been introduced over the years [11]. The definition of high-

level Petri nets is here used to describe any extension or

addition that can be used over the formal definition of Petri

nets. Several kinds of high-level Petri nets exist, however

colored Petri nets are the widest used [12], and commonly

associated as an analogy for high-level Petri nets. Colored

Petri nets were considered, but the basis for the work was to

permit user customization over the core Petri net formalism,

so that requirements and objectives could be considered. An

approach was specified for a concrete Petri nets methodology

that is feasible and customized for the studied needs. Fig. 2

represents a requirement graph with the topics (or packages)

that were found to be necessary for a full featured basis. The

dashed arrows indicate that the input is optional and depends

on the application.

For the ongoing description in this section and the

following ones, the reader should be familiar with the basic

concepts of Petri nets. The core for the Petri nets used in this

work is based on the formal definition of Petri nets, extracted

from the work of T. Murata (1989) [13]. The packages of

Petri nets analysis and conflicts are mainly used for validation

purposes and detection and resolution of conflicts that may be

introduced in the Petri nets models. The Property system

permits the enrichment of the Petri net and its elements (e.g.

978-1-4244-4649-0/09/$25.00 ©2009 IEEE 4342

transitions, places and arcs) with user-defined information

that is not present in the formal definition of Petri nets, such

as labels, priorities, actions, etc. Timed Petri nets provide the

rules for delaying the step-wise behavior of Petri nets and

thus permits relating them with real-time systems (see [14] as

an example).

Petri nets formalism

Petri nets analysis
Timed Petri nets

Conflicts

Property systemToken game

(template)

Petri nets rules
and structures

User-developed Petri nets,

token game and routines

information about
Petri nets analysis

conflict structures
and reporting

information of
Petri nets elements

token game routines
and events about
Petri net behavior

“timed” rules

External features

and requirements

Fig. 2. Approach for the open methodology for applied Petri nets.

As said before, the main kernel of this work is the token

game template, which is explained later on the next section.

Including external features and requirements, and using

specially the token game template, the final application can

be tailored using the rules introduced in the methodology. An

example is given in section 5 that defines a Petri nets

controller for service applications.

IV. A TEMPLATE FOR TOKEN GAMES

The goal of this template is to provide a basis for Petri nets

token games (an “engine” that runs a Petri net), based on the

standard Petri nets formalism and extensible to permit the

inclusion customized features. In its core and to maintain an

asynchronous (independent) operation of the transitions, the

template is a state machine specification for each transition

and consequently responsible for managing the transition's

state and evolution. The template itself is not a fully

functional token game because it only defines a set of basic

operations for analyzing and evolving transitions of the Petri

net. Concrete token games can then be customized from this

template.

The state machine is formally given in the following

definition and Table I presents its state table: The Petri nets

transition state machine for a transition Tt∈ (where T

represents a finite set of transitions of a Petri net) is defined

by a 5-tuple ()0,,,, σΓΩΦΣ=tTSM , where

{ }1621 ,...,, σσσ=Σ is a set of 16 states, { }1621 ,...,,: φφφ→ΣΦ

is a set of flags for each state, { }nωωω ,...,, 21=Ω defines a

finite set of input/output symbols, Σ→Ω×ΣΓ : defines

edges between two states as caused by the input/output and

Σ∈0σ defines the initial state (110 ==σσ). Note:

transitions in the state machine are referred as edges, not to be

confused with the transitions of the Petri net.

The state machine related to each transition is made of

several states representing the different combination of flags

and the change between states is made by occurrence of

events and execution of operations. Besides the enabled and

firing flags that indicate if a transition is enabled or firing,

sleeping and jump parameters were added to permit a more

flexible management for the external time consuming

functions (see definition below). In summa, there are four

flags, and their combination result in 16 different states for

the transition. The state of a transition is evolved by two main

situations: Implicitly, by calling the evolve function over the

transition. This function analyzes the actual state of the

transition and proceeds according to the state machine in

Table I (it corresponds to the white background rows);

Explicitly, by 1) the enabling/disabling of the transition

during previous processing of other transitions and their

evolution and also 2) by calling the wake-up function over a

transition due to occurrence of events (it disables then the

sleeping flag). These situations are marked in darker

background rows in Table I.

TABLE I

STATE TABLE OF A PETRI NETS TRANSITION

Note that the flags (φ) and the results of the flag testing function (ωf)

marked with underscored/bold are true, else false.

Actual state Edge γ and ω(γ)
Next

state

σ Flags φ ωh ωu ω f σ

– – – (1)
(1) E F J S

– – E (2)

– – E (1)

ωhe = U ωui E (4)
ωhe = U ωui E (3)

ωhe = I – – (2)

ωhe = J – – (14)

(2) E F J S

ωhe = S – – (10)

– – E (4)

ωhf = U ωuo E (2)

ωhf = U ωuo E (1)

ωhf = I – – (3)

ωhf = J – – (15)

(3) E F J S

ωhf = S – – (11)

– – E (3)

ωhf = U ωuo E (2)

ωhf = U ωuo E (1)

ωhf = I – – (4)

ωhf = J – – (16)

(4) E F J S

ωhf = S – – (12)
– – – (5)

(5) E F J S
– – E (6)

– – E (5)

– ωui E (4) (6) E F J S

– ωui E (3)

– – E (8)

– ωuo E (2) (7) E F J S

– ωuo E (1)

– – E (7)

– ωuo E (2) (8) E F J S

– ωuo E (1)

Actual state Edge γ and ω(γ)
Next

state

σ Flags φ ωh ωe ωx σ

– – E (10)

– – S (1)

– – E S (2)

ωhx= W – – (1)

(9) E F J S

ωhx = I – – (9)

– – – (10)

– – E (9)

– – S (2)
(10) E F J S

– – E S (1)

– – – (11)

– – E (12)

– – S (3)
(11) E F J S

– – E S (4)

– – – (12)

– – E (11)

– – S (4)
(12) E F J S

– – E S (3)

– – E (14)

– – S (5)

– – E S (6)
ωhx= W – – (1)

(13) E F J S

ωhx = I – – (13)

– – – (14)

– – E (13)

– – S (6)
(14) E F J S

– – E S (5)

– – – (15)

– – E (16)

– – S (7)
(15) E F J S

– – E S (8)

– – – (16)

– – E (15)

– – S (8)
(16) E F J S

– – S E (7)

The previous definition of TSMt has several remarks that

are discussed. The flags for a state Σ∈σ are defined by

()SJFE φφφφφσ ,,,= . The meaning of a flag when it is true is:

– Enabled (φE): the transition is automatically enabled

depending on the actual marking of the Petri net;

– Firing (φF): the transition is on firing process. A particular

note considered here is that if a transition is during firing

process and enabled again, the enabling is ignored until the

firing process is concluded;

– Jump (φJ): the handler functions (see below) are not called

in the next analyzing iteration of the transition;

978-1-4244-4649-0/09/$25.00 ©2009 IEEE 4343

– Sleeping (φS): the transition is waiting for external signal

and consequently is blocked.

An input/output symbol Ω∈ω has three types of functions

that are analyzed/executed in a sequential way,

{ }fuh ωωωω ,,= . The functions have mixed input/output.

Handler functions { }hxhfheh ωωωω ,,∈ (generate both input

and output) are used for the external communication (and

thus must be defined). Their return values contribute to the

definition of the next steps in the state machine. In practice,

the main distinction between enabled and firing functions is

that the first one does not guarantee the number of tokens, not

even if the transition will effectively enter the firing process

(e.g. it may disable again):

– Enabled function (ωhe): called when a transition is enabled

and thus permitting it to enter the firing process (and

consuming tokens). It may return {U, S, I, J} (for testing

as input), meaning update (if still enabled, the transition

then enters effectively the firing process by calling

consequently one of the update functions), sleep (puts the

transition in sleeping, awaiting an call of the wake-up

function), ignore (does nothing and does not change the

status of the transition) and jump (does the same as

returning S, but next time, the enabled function is not

called);

– Firing function (ωhf): called when a transition is on firing

and thus permitting it to leave this process (and expel

tokens). The return status is similar to the enabled

function, but for leaving the firing process;

– Exception function (ωhx): called on exceptions when a

transition is disabled during sleeping (see state 9 and 13 of

Table I). Returning W (wake-up), the sleeping mode (and

jump mode if active) is disabled. Returning I (ignore) the

actual state is not changed.

Update functions { }uouiu ωωω ,∈ , (only generate output)

are responsible for evolving the transition according to the

actual state of flags, i.e. they are used to effectively consume

and expel tokens. The update input ωui updates the input of a

transition, i.e. consuming tokens and the update output ωuo is

responsible for updating the output of a transition (expelling

tokens). Last, the flag testing function ωf (only input) tests the

status of a state, namely its flags (φE, φF, φJ, φS) if they are

true or false.

The previous defined template provides the basis for Petri

net token games, in sense of affecting the life-cycle of

transitions. For the whole Petri net, it is left open several

aspects that permit its customization (e.g. in which order to

analyze the transitions, conflict management, external

functions call, etc.). More details are given in the next

section.

V. USING THE TOKEN GAME TEMPLATE IN INDUSTRIAL
SERVICE ENVIRONMENTS: HANDS-ON EXPERIENCES

The open methodology and the token game template do not

define a concrete Petri nets application and leaves to the

engineer and/or developers the possibility to customize their

Petri nets application. Therefore, when defining a concrete

application based on the previous methodology (especially a

token game), several aspects must be considered:

– Create the necessary Petri nets structures based on the

methodology;

– Define the handler functions of the token game and the

call of the wake-up function;

– Consider a specification of properties and their association

to the elements of the Petri net and the evolution of the net;

– Decide about how conflicts are managed and reported;

– Define the life-cycle of the whole Petri net based on the

ones from the transitions. A special attention must be taken

in the order of analyzing transitions, when to begin/finish

the token game and also deadlock detection.

In service-oriented automation, the resulting Petri nets

applications must also consider their environment and what

features should be handled. Additionally the necessary

service infra-structure must be available and also, when

targeting devices, hardware access must be considered. From

the Petri net side, one obvious conclusion is that services

should somehow be related to Petri nets, whatever it should

represent the logic of a service, work-flow between services

or other situations. Other thoughts have to be done if the final

structure should help in the modeling, analysis and/or be used

in the control of a service environment. The next subsection

exemplifies a concrete Petri nets structure and token game

that can be used in service applications.

A. A Petri Nets Controller for Service Applications

The following application library defines a Petri nets

controller that can be used for the modeling, analysis and

execution, embedded into software applications and/or

devices. In terms of services, needs and requests are used in

the description of predicted device behavior and also in the

definition of service-workflows (as in traditional

orchestration). The purpose of the library is to provide Petri

nets definition capabilities, properties extraction from

analysis and also to be used in simulation and real time

service-based systems.

First, some background information for the used service

approach. For this work, a service is not considered as an

implementation or as a specification by a Petri net model

(such as in most Petri net based orchestration publications),

instead service elements (e.g. ports and operations) are

viewed as associations to Petri nets elements. Moreover, the

concept of service interface is referenced instead of the

service itself, because the interface provides the description

of services to be used by providers (for its realization) and

requesters (for its use). For sake of simplification, a service

interface can be defined by its name, description

(requirements to use the service), location, provider and set of

ports. Each port is a realization of a port type. A port type is

an abstract collection of operations that describe actions and

related message exchange patterns.

Fig. 3 represents the specified Petri nets controller (library)

and additional modules. The modules have dedicated tasks

that complement the work of the Petri nets engine. For short,

978-1-4244-4649-0/09/$25.00 ©2009 IEEE 4344

Service Infrastructure has the necessary functions to provide

service capabilities; Device Interface permits to access the

hosting device (if the application runs on one), mainly for

reading and setting I/O signals; Graphical User Interface

(GUI) can be used for visual representations and also

communication to the user; Decision Support System (DSS) is

used for conflict resolution and exception handling. For more

info about this modular architecture see [15].

Device

Interface

Petri Nets Controller

Petri nets formalism

Petri nets analysis Property system

Conflicts

GUI

Service

Infrastructure

Decision

Support
System

(DSS)

modeled Petri net

user commands

status/analysis/

monitoring

information

status device commands

provide decision

report conflicts/

exceptions

Hosting software/hardware

TSM
(Transition

State Machine)

t=1

t=2

t=m

P
etri N

et M
o
d
el

request services

provide services
service lookup

receive service

calls info.
about services

while(continue)
 for_each t

 evolve(t)

Token game (template)

Timed Petri nets

Π(t) = {label, service.in_op , service.out_op ,

device.in_sig , device.out_sig}

ω
he
(t) if t is in conflict then report to DSS

else read status of service.in_op (t)
and device.in_sig (t)

ω
hf
(t) call service.out_op (t) and

device.out_sig (t)

ω
hx
(t) report to DSS

wake-up(t) (for asynch. handling)

Fig. 3. Developed Petri nets controller/library using the open methodology.

Besides the formal structures/rules and analysis capabilities

provided by Petri nets, the real “juice” of the controller is the

ability to interpret Petri nets models and their association to

services and device signals. First of all, properties must be

defined and associated to Petri nets elements. For the sake of

simplicity, only transitions were characterized, because they

represent the interaction to the “outside world”. Transitions

have a label and also several action properties, e.g. label,

service.in_op, service.out_op, device.in_sig, device.out_sig.

The service action properties are used to describe input and

output operations of a service port, i.e. messages to be

waiting for (in) and messages to send (out). For the device,

the action properties define signals to be tested (in) and

signals to be written (out). The action properties can be used

by the Petri nets engine by accessing the corresponding

module, in this case the Service Infrastructure and the Device

Interface. The handler functions of the token game template

for each transition operate over these properties. The enabled

function ωhe tests first if the transition is in conflict and if this

is true, it reports the information to the DSS module and

awaits its instruction. If no conflict is present, ωhe considers

the service.in_op and device.in_sig. Only if both are true (i.e.

service message is available and valid signal from the

device), the transition enters the firing mode (corresponding

to returning (U)pdate by the enabled function or

(S)leep/(J)ump for asynchronous handling). If some of the

action properties are not defined, they are not considered (in

this case meaning true). Similar, the firing function ωhf

considers the service.out_op and device.out_sig, sending a

message and writing a signal (if defined). The exception

function ωhx is only used on transitions that were disabled

(e.g. in case of conflict resolution) and this event is

transmitted to the DSS. The wake-up function is called in

asynchronous handling from the modules to signalize that

events are finished and that the token game can consequently

enter or leave the firing process of a transition. Each

transition has its own state machine defined in the token game

template TSM(t). In a whole, the evolution of the transitions is

done in a sequential loop (as seen in Fig. 3) until a stop

command is received or a dead-end was detected. Commands

can be received for example via the GUI and from the other

hand, it may send monitoring/status information back to the

GUI (for visualization purposes).

B. Application in Industrial Scenarios and Software

Implementations

The experimental case-studies that were realized used a

production cell as basis, which is built by autonomous smart

devices, representing conveyors, cross-tables and work

stations. There are several decision points for work-pieces

(pallets that transport products along the conveyor system),

which indicate alternative paths and stops at the work

stations. Petri nets were used to model, analyze and execute

the whole scenario based on several sub-models representing

the predicted behavior of the system's components.

Fig. 4. Demonstration of the service-enabled scenario. (a) real equipment,

(b) virtual representation and (c) Petri nets model used for the control.

A software project is being developed that basically

integrates the several software pieces build before under the

same umbrella. The Continuum Project is constituted by

several packages, including Continuum Petri Nets Kernel –

implementation of the methodology explained in this paper,

Continuum Petri Nets Module – the library engine

conceptually described in the previous subsection and that is

used by several applications inside this project, Continuum

Development Studio – a visual tool for several tasks in

automation, including the development of Petri nets models,

and Continuum Bot Framework – basic shell for developing

automation software components, besides others.

First successful experimentations were done with “virtual”

services that were hosted by DELMIA Automation

engineering tool, having a full representation of the case-

study scenario (see Fig. 4). A demonstration video of this

experimentation (“IP SOCRADES Demonstration of Service-

Oriented Architecture integrating Real and Virtual Devices in

the Electronic Assembly Scenario”) can be seen at

http://www.youtube.com/watch?v=0aRRvqEln2I. Petri nets

models were developed, analyzed and executed from the

editor to access the services of the virtual cell and controlling

978-1-4244-4649-0/09/$25.00 ©2009 IEEE 4345

its behavior. The connection of the models is done through

specific interfaces (ports), which, when connected, drive the

correct collaboration between the two connected components.

When executing a Petri net inside the editor, its status is made

visible, giving information about the actual marking, the

enabling and the firing of transitions of the executed Petri net.

Some aspects in flexibility where demonstrated.

Mechatronic components expose its functionality as services

and have the plug-in/-out capability which allows performing

dynamic reconfiguration of the layout. Since the pallet

modeled by tokens of the Petri net are able to carry any part

and the flow is not pre-fixed by a scheduler system, the

system presents a high flexibility in the quantity of different

products to be processed at the same time. The token-game

manages the dynamic execution and the Petri net is inherently

exposing conflicts situation that appears e.g. in the material

flow control. These open points (the conflicts) can be used for

calling decision making systems via the invocation of specific

services that will give an answer to decide over the conflict.

One example is the material flow that can be represented in

the Petri nets, but requires decision when there are several

possibilities represented.

VI. CONCLUSIONS AND FUTURE WORK

This research and development work was started from the

missing aspects of Petri nets applications in service-oriented

industrial automation environment, especially a methodology

for the development of custom based Petri nets software. The

main contribution can be highlighted, representing a novel

approach for defining customizable Petri nets controllers

based on the defined template for token games which basis is

a formal defined state machine for transitions. Other

contributions are included in the open methodology but are

not subject of the work described in this paper; they comprise

a property system for Petri nets, active conflict management,

and the effected studies and software developments, targeting

the flexible engineering of service-oriented ecosystems. The

methodology and the token game template permit the

specification of custom Petri nets applications, but also

maintaining the formal Petri nets foundation. These aspects

were demonstrated by the specified and developed Petri nets

controller for service environment and supported by the

creation of a development project for the engineering of these

systems. The result was used in the modeling, analysis and

execution of a virtual representation of the service-enabled

factory cell, specified and controlled by Petri nets models.

The experimentation with the real devices of the scenario is

on early stage and not presented as a result, representing the

major input for the future work to be done in this field.

Efforts are being done in integrating the Petri nets controller

(the same as used in the Continuum Development Studio)

into service-enabled automation devices that are known for

being resource constrained. This makes possible in the near

future having both service-oriented virtual representation and

real cell developed with all the features that Petri nets

provide. One challenge is also the maintenance of the same

Petri nets models for both virtual and real scenario,

decreasing transitional efforts. Last, but not least, the

Continuum project is in continuation to be enhanced and

extended, particularly the framework for automation

components, the visual editor and also some aspects in the

Petri nets controller.

ACKNOWLEDGMENT

The authors would like to thank the European Commission

and the partners of the EU IST FP6 project “Service-Oriented

Cross-layer infrastructure for Distributed smart Embedded

devices” (SOCRADES), the EU FP6 “Network of Excellence

for Innovative Production Machines and Systems”

(I*PROMS), and the European ICT FP7 project “Cooperating

Objects Network of Excellence” (CONET) for their support.

REFERENCES

[1] K.H. Hall, R.J. Staron and A. Zoitl, “Challenges to Industry Adoption
of the IEC 61499 Standard on Event-based Function Blocks”,
Proceedings of the 5th IEEE International Conference on Industrial
Informatics, vol. 2, pp. 823-828, 2007.

[2] M.G. Mehrabi, A.G. Ulsoy and Y. Koren, “Reconfigurable
Manufacturing Systems and their Enabling Technologies”,
International Jornal of Manufacturing Technology and Management,
vol. 1, n. 1, pp. 113-130, 2000.

[3] Z. Suraj, B. Fryc, Z. Matusiewicz and K. Pancerz, “A Petri Net System
- an Overview”, In Fundam. Inf., vol 71, n. 1, pp. 101-120, 2006.

[4] R. Hamadi and B. Benatallah, “A Petri net-based model for web service
composition”, Proceedings of the 14th Australasian Database
Conference, pp. 191-200, 2003.

[5] Web Services Architecture. W3C Working Group (available at
http://www.w3.org/TR/ws-arch/), 2004.

[6] Web Services Business Process Execution Language. OASIS Standard.
(available at http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-
OS.html), 2007.

[7] A, Martens, S. Moser, A. Gerhardt and K. Funk, “Analyzing
Compatibility of BPEL Processes.”, Proceedings of the International
Conference on Internet and Web Applications and Services/Advanced
International Conference on Telecommunications, pp. 147, 2006.

[8] H. Jiang, J. Gu and Q. Yu, “Modeling of Web-based collaborative
negotiation systems using colored Petri net.”, Proceedings of the 12th
International Multi-Media Modelling Conference, pp. 8, 2006.

[9] F. Jammes, H. Smit, J.L.M. Lastra and I.M. Delamer, “Orchestration of
service-oriented manufacturing processes”, Proceedings of the 10th
IEEE Conference on Emerging Technologies and Factory Automation,
vol. 1, pp. 8, 2005.

[10] J. Puttonen, A. Lobov and J. Lastra, “An application of BPEL for
service orchestration in an industrial environment”, Proceedings of the
IEEE International Conference on Emerging Technologies and Factory
Automation, pp. 530-537, 2008.

[11] E. Badouel, J. Chenou and G. Guillou, “Petri Algebras”. In: Automata,
Languages and Programming, Lecture Notes in Computer Science, vol.
3580, pp. 742-754, 2005.

[12] K. Jensen, “Coloured Petri Nets”, Slides about Coloured Petri nets,
Department of Computer Science University of Aarhus, Denmark
(available at http://www.daimi.au.dk/~kjensen), 2000.

[13] T. Murata, “Petri nets: Properties, analysis and applications” In:
Proceedings of the IEEE, vol. 77, pp. 541-580, 1989.

[14] C. Ghezzi, D. Mandrioli, S. Morasca and M. Pezze, “A general way to
put time in Petri nets”, Proceedings of the 5th international workshop on
Software specification and design, pp. 60-67, ACM Press, New York,
NY, USA, 1989.

[15] J.M. Mendes, P. Leitão, A.W. Colombo and F. Restivo, “Service-
oriented control architecture for reconfigurable production systems,
Proceedings of the 6th IEEE International Conference on Industrial
Informatics, pp. 744-749, 2008.

978-1-4244-4649-0/09/$25.00 ©2009 IEEE 4346

