


2

Model Driven Development and
Maintenance of Business Logic for

Information Systems

Von der Fakultät für Mathematik und Informatik
der Universität Leipzig

angenommene

D I S S E R T A T I O N

zur Erlangung des akademischen Grades

DOCTOR RERUM NATURALIUM
(Dr. rer. nat.)

im Fachgebiet
Informatik

vorgelegt von

Dipl.-Medieninf. Tobias Brückmann

geboren am 2. Januar 1980 in Berlin

Die Annahme der Dissertation wurde empfohlen von:

1. Professor Dr. Volker Gruhn (Universität Duisburg-Essen)

2. Professor Dr. Wilhelm Hasselbring (Universität Kiel)

Die Verleihung des akademischen Grades erfolgt mit Bestehen
der Verteidigung am 17.12.2010 mit dem Gesamtprädikat magna cum laude.



3



Abstract

Since information systems become more and more important in today’s society, busi-
ness firms, organizations, and individuals rely on these systems to manage their daily
business and social activities. The dependency of possibly critical business processes on
complex IT systems requires a strategy that supports IT departments in reducing the
time needed to implement changed or new domain requirements of functional depart-
ments. In this context, software models help to manage system’s complexity and provide
a tool for communication and documentation purposes. Moreover, software engineers
tend to use automated software model processing such as code generation to improve
development and maintenance processes. Particularly in the context of web-based in-
formation systems, a number of model driven approaches were developed. However, we
believe that compared to the user interface layer and the persistency layer, there could
be a better support of consistent approaches providing a suitable architecture for the
consistent model driven development of business logic.

To ameliorate this situation, we developed an architectural blueprint consisting of
meta models, tools, and a method support for model driven development and mainte-
nance of business logic from analysis until system maintenance. This blueprint, which
we call Amabulo infrastructure, consists of five layers and provides concepts and tools to
set up and apply concrete infrastructures for model driven development projects. Mod-
eling languages can be applied as needed. In this thesis we focus on business logic layers
of J2EE applications. However, concrete code generation rules can be adapted easily for
different target platforms.

After providing a high-level overview of our Amabulo infrastructure, we describe its
layers in detail: The Visual Model Layer is responsible for all visual modeling tasks.
For this purpose, we discuss requirements for visual software models for business logic,
analyze several visual modeling languages concerning their usefulness, and provide an
UML profile for business logic models.

1



2

The Abstract Model Layer provides an abstract view on the business logic model
in the form of a domain specific model, which we call Amabulo model. An Amabulo
model is reduced to pure logical information concerning business logic aspects. It focuses
on information that is relevant for the code generation. For this purpose, an Amabulo
model integrates model elements for process modeling, state modeling, and structural
modeling. It is used as a common interface between visual modeling languages and code
generators. Visual models of the Visual Model Layer are automatically transformed into
an Amabulo model.

The Abstract System Layer provides a formal view onto the system in the form of a
Coloured Petri Net (CPN). A Coloured Petri Net representation of the modeled business
logic is a formal structure and independent of the actual business logic implementation.
After an Amabulo model is automatically transformed into a CPN, it can be analyzed
and simulated before any line of code is generated.

The Code Generation Layer is responsible for code generation. To support the design
and implementation of project-specific code generators, we discuss several aspects of code
integration issues and provide object-oriented design approaches to tackle the issues.
Then, we provide a conceptual mapping of Amabulo model elements into architectural
elements of a J2EE infrastructure. This mapping explicitly considers robustness features,
which support a later manual integration of generated critical code artifacts and external
systems.
The Application Layer is the target layer of an Amabulo infrastructure and comprises
generated code artifacts. These artifacts are instances of a specific target platform
specification, and they can be modified for integration purposes with development tools.

Through the contributions in this thesis, we aim to provide an integrated set of so-
lutions to support an efficient model driven development and maintenance process for
the business logic of information systems. Therefore, we provide a consistent infrastruc-
ture blueprint that considers modeling tasks, model analysis tasks, and code generation
tasks. As a result, we see potential for reducing the development and maintenance ef-
forts for changed domain requirements and simultaneously guaranteeing robustness and
maintainability even after several changes.



Acknowledgements

Over the past years, I was fortunate to collaborate with numerous people who provided
valuable input and context for several aspects of this thesis. First, I would like to thank
my adviser Volker Gruhn for his support of my ideas, and for providing prompt and
focused advice whenever I needed it. Many thanks also go to my colleagues at the
University of Leipzig’s Applied Telematics/e-Business Group for creating an enjoyable
and inspiring work environment and, in particular, for listening to any of my (sometimes
surely weird) Waldseminar presentations and later adventures while discovering the most
shabby bars in and around Saxony.

Many thanks also go to Frank Nowak, who worked on the Amabulo infrastructure
as part of his diploma thesis that I supervised, contributing ATL model transformation
implementations and providing valuable feedback on the infrastructure internals. Fur-
thermore, I am grateful for the good suggestions Katharina König provided on matters
of English orthography, grammar, and style. I particularly appreciate Ulrich Norbisrath
and the Distributed Systems Group of the University of Tartu/Estonia for their warm
welcome and their support during my inspiring visit in Tartu. Moreover, I would like to
thank the interdisciplinary research team of the Promotionszelle, whose bodies consist
of always happy cells.

Finally and most importantly, I would like to thank Karin Brückmann for her believe
in me and Anica Klingler-Mandig for her continuous support and her patience in face of
all the stolen weekends and holidays.

Honfleur, June 2010

3



4



Contents

1 Introduction 11

2 Motivation 15
2.1 Information Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Changing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Software Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Maintenance Efforts . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 Issues in Software Maintenance and Development . . . . . . . . . 17

2.4 Abstraction and Automation with Software Models . . . . . . . . . . . . 22
2.4.1 Structured Abstraction by Software Models . . . . . . . . . . . . 24
2.4.2 Automation by Model Processing . . . . . . . . . . . . . . . . . . 26

2.5 Model Driven Software Engineering . . . . . . . . . . . . . . . . . . . . . 28
2.5.1 Model-to-Model Transformation . . . . . . . . . . . . . . . . . . . 29
2.5.2 Model-to-Code Transformation . . . . . . . . . . . . . . . . . . . 29
2.5.3 Model Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6 Automation Approaches for Information Systems . . . . . . . . . . . . . 30
2.6.1 Three-Tier Architecture . . . . . . . . . . . . . . . . . . . . . . . 31
2.6.2 Automation Approaches for Presentation Layer . . . . . . . . . . 32
2.6.3 Automation Approaches for Persistency Layer . . . . . . . . . . . 33
2.6.4 Automation Approaches for Business Logic . . . . . . . . . . . . 34

2.7 Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Architectural Overview 41
3.1 Amabulo Infrastructure Blueprint . . . . . . . . . . . . . . . . . . . . . . 41

3.1.1 Visual Model Layer . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.1.2 Abstract Model Layer . . . . . . . . . . . . . . . . . . . . . . . . 43

5



CONTENTS 6

3.1.3 Abstract System Layer . . . . . . . . . . . . . . . . . . . . . . . . 45
3.1.4 Code Generation Layer . . . . . . . . . . . . . . . . . . . . . . . 45
3.1.5 Application Layer . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Amabulo Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.1 Setup and Integration Phase . . . . . . . . . . . . . . . . . . . . 47
3.2.2 Development and Maintenance Phase . . . . . . . . . . . . . . . . 48

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Visual Model Layer 55
4.1 Visual Modeling Languages for System’s Behavior . . . . . . . . . . . . . 56

4.1.1 Requirements for Visual Modeling Languages . . . . . . . . . . . 56
4.1.2 Overview and Evaluation of Visual Modeling Languages . . . . . 58
4.1.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Amabulo UML-Profile - A Meta Model for Modeling Business Logic . . 66
4.2.1 UML Language Architecture and Customization . . . . . . . . . 67
4.2.2 Amabulo Process View: UML Activity Diagram . . . . . . . . . . 69
4.2.3 Amabulo Structural View: UML Class Diagram . . . . . . . . . . 72
4.2.4 Amabulo State View: UML State Diagram . . . . . . . . . . . . 72
4.2.5 Example Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3 Mapping from Visual Model into Abstract Model . . . . . . . . . . . . . 76
4.3.1 Requirements for Model Transformation Languages . . . . . . . . 77
4.3.2 Evaluation of Transformation Languages . . . . . . . . . . . . . . 79
4.3.3 UML Profile Mapping into Abstract Model Layer . . . . . . . . . 80

4.4 Requirements for Visual Modeling Tools . . . . . . . . . . . . . . . . . . 83
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 Abstract Model Layer 87
5.1 A Domain Specific Model as Model in the Middle . . . . . . . . . . . . . 88
5.2 Requirements for a Meta Model for Business Logic . . . . . . . . . . . . 90

5.2.1 Major Modeling Concepts in Visual Behavior Models . . . . . . . 91
5.2.2 Major Control Structures in Business Logic Code . . . . . . . . . 95
5.2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3 Amabulo Meta Model Definition . . . . . . . . . . . . . . . . . . . . . . 100
5.3.1 Elements for Structural Modeling . . . . . . . . . . . . . . . . . . 104
5.3.2 Elements for State Modeling . . . . . . . . . . . . . . . . . . . . 106
5.3.3 Elements for Process Modeling . . . . . . . . . . . . . . . . . . . 109



CONTENTS 7

5.3.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.4 Amabulo Model Comparison Tool . . . . . . . . . . . . . . . . . . . . . . 119

5.4.1 Semantic vs. Syntactic Differences . . . . . . . . . . . . . . . . . 121
5.4.2 Comparison Function for Amabulo Models . . . . . . . . . . . . . 122
5.4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6 Abstract System Layer 139
6.1 Purpose of an Abstract System Representation . . . . . . . . . . . . . . 140

6.1.1 Setup and Integration Phase . . . . . . . . . . . . . . . . . . . . 140
6.1.2 Maintenance and Development Phase . . . . . . . . . . . . . . . 141

6.2 What Robustness Means . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.2.1 Assumptions for the Need of Robustness . . . . . . . . . . . . . . 143
6.2.2 Assurance of Local Conditions . . . . . . . . . . . . . . . . . . . 144
6.2.3 Assurance of Global Domain States . . . . . . . . . . . . . . . . . 145

6.3 Coloured Petri Nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.4 Transformation from Amabulo Model into Coloured Petri Nets . . . . . 148

6.4.1 Mapping of Business Objects and State Charts . . . . . . . . . . 149
6.4.2 Mapping of Processes . . . . . . . . . . . . . . . . . . . . . . . . 150
6.4.3 Mapping of Functions with Output Parameter . . . . . . . . . . . 159
6.4.4 Example CPN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.5 CPN Analysis and Simulation Tool . . . . . . . . . . . . . . . . . . . . . 165
6.5.1 Analysis Opportunities . . . . . . . . . . . . . . . . . . . . . . . . 167

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

7 Code Generation Layer 171
7.1 Aspects of Code Integration . . . . . . . . . . . . . . . . . . . . . . . . . 172

7.1.1 Integration Issues and Approaches . . . . . . . . . . . . . . . . . 174
7.2 J2EE-Code Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

7.2.1 Architectural Overview of a Generated J2EE-Application . . . . 177
7.2.2 Business Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
7.2.3 Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
7.2.4 User Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
7.2.5 System Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

7.3 Code Comparison Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188



CONTENTS 8

8 Validation 189
8.1 Industrial Example Scenario . . . . . . . . . . . . . . . . . . . . . . . . . 190

8.1.1 Example Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
8.1.2 Sample Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . 195
8.1.3 Changed Requirements . . . . . . . . . . . . . . . . . . . . . . . . 198

8.2 Improvements Considering Software Modeling . . . . . . . . . . . . . . 199
8.2.1 Semantic Abstraction through Domain State Modeling . . . . . . 199
8.2.2 Tool Supported Impact Analysis . . . . . . . . . . . . . . . . . . 200
8.2.3 Reuse of Matured Modeling Languages . . . . . . . . . . . . . . . 202
8.2.4 Systems Simulation before Code Generation . . . . . . . . . . . 202

8.3 Improvements Considering Program Implementation . . . . . . . . . . . 203
8.3.1 Reliable Assertions on System’s Robustness . . . . . . . . . . . . 203
8.3.2 Support Program Understanding . . . . . . . . . . . . . . . . . . 209
8.3.3 Prevent Loss of Handwritten Code . . . . . . . . . . . . . . . . . 212
8.3.4 Complete Implementation of Systems’ Requirements . . . . . . . 213
8.3.5 Extensive Testing Process . . . . . . . . . . . . . . . . . . . . . . 213
8.3.6 Maintainability - Prevent Loss of Structure . . . . . . . . . . . . 215
8.3.7 Maintainability - Inconsistent Documentation . . . . . . . . . . . 215

8.4 Improvements During Setup and Integration Phase . . . . . . . . . . . . 216
8.4.1 Clear Separation of Visual Models and Code Generators . . . . . 216
8.4.2 Reduced Complexity of Meta Models . . . . . . . . . . . . . . . . 216
8.4.3 Precisely Defined Semantics . . . . . . . . . . . . . . . . . . . . . 217
8.4.4 Reuse of Existing Analysis and Simulation Concepts and Tools . 217

8.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

9 Related Work 219
9.1 Criteria Indicating Related Work . . . . . . . . . . . . . . . . . . . . . . 219
9.2 Discussion of Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 221

10 Discussion 235
10.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
10.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
10.3 Further Research Opportunities . . . . . . . . . . . . . . . . . . . . . . . 240

A Amabulo UML Profile Definition 245
A.1 Activity Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245



CONTENTS 9

B UML to Amabulo Transformation 253

C Amabulo Model Elements 261

D Example Model - in Amabulo Terms 265

E Amabulo Model Definition - Ecore Model 269

F Example Model - XMI 273

G Changed Contract Negotiation Model Example 277
G.1 Changed Visual UML Model . . . . . . . . . . . . . . . . . . . . . . . . 277
G.2 Results of Automated Model Comparison . . . . . . . . . . . . . . . . . 281

Bibliography 285



CONTENTS 10



Chapter 1

Introduction

Since information systems become more and more important in our today’s society,
business firms, organizations, and individuals rely on these systems to manage their
daily business and social activities. Hence, it becomes more and more important not
only to support the efficient development of such systems but the modification and
adaption of once deployed information systems need to be supported, too.

Since complex requirements and the technical progress of computer systems lead
to a high complexity of computer systems, the use of software models helps to manage
system’s complexity and provides a tool for communication and documentation purposes.
Moreover, software engineers tend to use automated software model processing such as
code generation to improve development and maintenance processes. The paradigm of
model driven software development matured and models, modeling tools, and automated
model processing are widely used in systems engineering. In particular for web-based
information systems, a number of model driven approaches were developed. However, we
believe that compared to the user interface layer and the persistency layer, there could
be a better support of consistent approaches providing a suitable architecture for the
consistent model driven development of business logic from early analysis until system
maintenance.

This thesis provides an architectural blueprint, which we call Amabulo infrastructure,
that supports a model driven development and maintenance process of the business logic
for information systems. The proposed architectural blueprint consists of different layers
with defined dependencies. Each layer contains a set of elements such as meta models,
models, model transformation rules, code generation rules, and specific tools. In concrete
software development and maintenance projects, instances of the provided architectural

11



CHAPTER 1. INTRODUCTION 12

blueprint are used to provide a technical project infrastructure. The layers of such an
instance can be tailored or omitted for project specific needs.

Our proposed architectural blueprint supports visual software modeling tasks as
needed in early phases, when domain requirements are worked out. As result of these
tasks, probably huge visual models have to be handled, which may consist of hundreds
of model elements in dozens of different views. For this reason, we support automated
quality assurance of such models and provide a suitable interface to industrial model
analysis tools. Due to the important role of a business logic layer through (1) connecting
user interfaces and storage subsystems, (2) implementing the supported business process
including its business rules, and (3) integrating external systems such as web services
or other reused external implemented functions, we support robustness features such as
domain state assurance and local conditions through all layers consistently, from model
level until implementation level.

By this thesis, the design of a technical project infrastructure together with a sample
implementation and a methodology for the use of such an Amabulo infrastructure is
proposed. Content and structure of this thesis follow Gregor and Jones, who provided
and discussed an “anatomy of design theories in the discipline of information systems”
in [GJ07]. Chapter 2 discuss purpose and scope of our approach and provides detailed
motivation of our work. Then, in Chapter 3, we provide a high-level introduction into the
proposed Amabulo infrastructure supporting model driven software processes focusing
on the business logic of information systems. All relevant constructs are introduced,
dependencies between them are specified, and a methodology for their utilization is
provided. Subsequently, the formal and functional of each layer of our infrastructure
blueprint are described in detail. This contains artifact mutability with regard to actual
implementations in specific software projects: The Visual Model Layer in Chapter 4
contains a meta model and a tool supporting visual software modeling; the Abstract

Model Layer of Chapter 5 introduces a domain specific language (Amabulo model) for
the business logic of information systems; the Abstract System Layer, as introduced in
Chapter 6, provides a formal representation of modeled systems in form of Coloured
Petri Nets; and the Code Generation Layer in Chapter 7 describes the architecture and
design of generated business logic code artifacts, which have to be considered for the
design and implementation of concrete code generators. With regard to the “anatomy
of design theories” of Gregor and Jones, these Chapters 4-7 argue the “justificatory
knowledge” of our architectural blueprint and provide “principles of implementation” for
their usage in concrete project scenarios. Chapter 8 provides an expository instantiation



CHAPTER 1. INTRODUCTION 13

in form of a sample implementation of an Amabulo infrastructure and discusses a set
of testable propositions made for the use of an Amabulo infrastructure in the context
of an industrial scenario. After a discussion of related approaches in Chapter 9, this
thesis is concluded by a discussion of its contribution and further research opportunities
in Chapter 10.



CHAPTER 1. INTRODUCTION 14



Chapter 2

Motivation

2.1 Information Systems

A very general, but therefore broad definition of the term “information system” is given
in Encyclopædia Britannica [Def09] as “an integrated set of components for collecting,
storing, processing, and communicating information. Business firms, other organiza-
tions, and individuals in contemporary society rely on information systems to manage
their operations, compete in the marketplace, supply services, and augment personal
lives. For instance, modern corporations rely on computerized information systems to
process financial accounts and manage human resources; municipal governments rely
on information systems to provide basic services to its citizens; and individuals use
information systems to study, shop, bank, and invest.”

Furthermore, the Encyclopædia Britannica states “As information systems have en-
abled more diverse human activities, they have exerted a profound influence over society.
These systems have quickened the pace of daily activities, affected the structure and
mix of organizations, changed the type of products bought, and influenced the nature
of work. Information and knowledge have become vital economic resources.” This also
includes enterprise information systems. Nowadays a lot of industrial business processes
are supported by IT systems or even dependent on IT systems.

2.2 Changing Requirements

Large business companies with offices in several locations all over the world have to man-
age complex and distributed application landscapes that continuously grow for many

15



CHAPTER 2. MOTIVATION 16

years. The dependency of (possibly critical) business processes on IT systems requires
an IT strategy that supports quick reactions of the IT department on changed needs
of functional departments. Therefore, it is important to reduce the time needed to
implement changed or new domain requirements and to integrate them into existing
application landscapes. We use the term “application landscape” for the set of all ap-
plications that are relevant for a companies business, their interconnections, and their
relationships to the environment. The following scenarios provide possible reasons for
changed domain requirements:

• The introduction of laws or change of laws concerning a business area results in
changes of IT supported business processes.

• Original and maybe unclear requirements changes during software development
process or after having first experiences in live environment.

• Business processes changes because of economic reasons, such as reducing the
processing time or the processing costs.

• New business areas are developed and new business processes have to be defined
and supported by the IT infrastructure. Comparable to that, if existing business
areas are closed, some business processes need no longer to be supported by IT
systems.

• New business partners are included or excluded into a business process and they
have to be technically included or excluded, too.

• As consequence of a corporate merger, business processes and their technical sup-
port have to be consolidated and merged. Whereas in case of a corporate split,
business processes and the supporting IT systems have to be separated systemat-
ically.

In addition to changed domain requirements, changes on technical requirements demand
either modifications on existing IT systems or having the same logic running on several
platforms in parallel. Examples for such requirements are:

• Strategical technical decisions, such as migration into a new hardware environment
(mainframe, server virtualization, cloud computing) or migration into a new soft-
ware environment (operating system, enterprise services bus, application server)
have to be implemented.



CHAPTER 2. MOTIVATION 17

• Business applications and their hardware and software environments have to be
maintained, such as updating to a new version or apply security patches.

• An application logic has to be migrated from one programming language, software
component model or middleware into another.

• A business application has to support an additional user channel, such as a rich-
client, web-client, or desktop-client for a specific hardware or software platform.

2.3 Software Maintenance

Changed requirements of running software systems lead to software maintenance tasks.
The term “software maintenance” can be defined “as the modification of a software
product after delivery to correct faults, to improve performance or other attributes, or
to adapt the product to a modified environment.” as stated by the IEEE Standard
for Software Maintenance [IEE98]. Following [IEE00], “software maintenance tasks”
comprise tasks aiming at the "modification to code and associated documentation due
to a problem or the need for improvement. The objective is to modify the existing
software product while preserving its integrity."

2.3.1 Maintenance Efforts

Software maintenance is an expensive process and comes with several issues. In general,
“maintenance consumes a major share of software life cycle financial resources.”[AM04].
Concrete shares are published by Balzert in [Bal01], where the author states that “Main-
tenance costs are usually 2-4 times higher than development costs”. Canfora et al. con-
clude in [CCT95] that “Although figures vary, several surveys [...] indicate that software
maintenance consumes 60% to 80% of the total life cycle costs; these surveys also report
that maintenance costs are largely due to enhancements (often 75–80%), rather than
corrections.”

2.3.2 Issues in Software Maintenance and Development

The high costs of maintaining software are caused by several issues that are typical for
development and maintenance tasks. This section provides a selection of issues caused
by technical or organizational aspects addressed by this thesis, where the majority of
these issues is taken from the Software Engineering Body of Knowledge [AM04].



CHAPTER 2. MOTIVATION 18

A B

Webservice X, Version 1.0

Defined Return Values:

System Y, Version 1.0

A B

Expected Results:

System Y calls 
Webservice X

Result of X

A B

Webservice X, Version 2.0

Defined Return Values:

System Y, Version 1.0

A B

Expected Results:

System Y calls
changed 

Webservice X

Result of XC

Figure 2.3.1: Illustration of Improper Input Validation

Reliable Assertions on System Robustness

Runtime errors caused by defective implementation or integration cannot be excluded,
but their consequences must be predictable. Large systems with many functional depen-
dencies from and to external systems are hard to maintain. Whenever a system reuses
implemented functionality of other systems (such as web services), it has to be assured
that external results do not violate internal domain constraints. This class of errors
(Improper Input Validation) is listed as “number one killer of healthy software” in the
SANS List of the Top 25 Most Dangerous Programming Errors [PMBC09]. Figure 2.3.1
provides a simple example: A web service named X has two possible results specified
(A or B). If system Y reuses web service X, the expected result is either A or B. After
running some time in a live environment, the result set of X is enhanced with C without
updating system Y. Now, if system Y is calling web service X and the delivered result
is C, in the scope of Y the return value C is not valid. The business logic of system Y
has to start an exception handling routine to prevent unexpected behavior and avoid
an inconsistent data model. This seems to be a trivial use case, but if systems run sev-
eral years and type or format of results of integrated external functions changes due to
maintenance tasks, it is important to guarantee that reused external functionality never
causes internal errors.

Reliable Implementation of System Requirements

It is important to get reliable statements on whether the implemented logic corresponds
to the specified requirements or not. Hence, system operators (and developers) must be



CHAPTER 2. MOTIVATION 19

able to provide reliable information about the actual state of the system relating to the
specified requirements: Either they have to be sure that each requirement is implemented
as specified or not. If the current implementation differs from the specification, it is
important to get detailed information about the differences. It is essential to know the
implemented behavior exactly, in particular, for maintenance and support purposes with
regard to the need of future changes.

Free of Side Effects

In case of changed requirements, it has to be guaranteed that only those parts of the
system are affected by maintenance activities, which are related actually to changed
requirements; for example: When a manual executed function “A” requires additionally
values of an object “B”, only the corresponding user interface implementing “A” and a
connection to a data object with type “B” has to be changed. Neither a function “C” nor
a user object “D” is related to this change; only code artifacts implementing function
“A” and object “B” have to be modified during the maintenance activities. If it can
be guaranteed that each change is free of “side effects”, test efforts (which are usually
needed when bringing the changed system back into a live environment) can be reduced
only to affected parts.

Impact Analysis

Following the Software Engineering Body of Knowledge [AM04], “Impact analysis de-
scribes how to conduct, cost effectively, a complete analysis of the impact of a change
in existing software. Maintainers must possess an intimate knowledge of the software’s
structure and content. They use that knowledge to perform impact analysis, which
identifies all systems and software products affected by a software change request and
develops an estimate of the resources needed to accomplish the change. Additionally,
the risk of making the change is determined.”

A lack of “intimate knowledge” is a problem that usually occurs when software needs
to be maintained after having run for some time without changes. Either the original
software architects or the developers or both are not available or, if they are, there
is no intimate knowledge anymore. As a consequence, a manual in-depth analysis is
mandatory to figure out the parts of the system that are affected by the changes.



CHAPTER 2. MOTIVATION 20

Program Understanding

Again, following the Software Engineering Body of Knowledge [AM04], “Limited un-
derstanding refers to how quickly a software engineer can understand where to make a
change or a correction in a software which this individual did not develop. Research in-
dicates that some 40% to 60% of the maintenance effort is devoted to understanding the
software to be modified. Thus, the topic of software comprehension is of great interest
to software engineers. Comprehension is more difficult in text-oriented representation,
in source code, for example, where it is often difficult to trace the evolution of software
through its releases/versions if changes are not documented and when the developers
are not available to explain it, which is often the case.”

After relevant software components are discovered and prepared for maintenance,
the developer has to find out the lines of code that have to be edited. Furthermore, it
has to be found out if there are any unexpected side effects in case of changing parts
of a running system. These are time consuming and expensive manual tasks with no
direct outcome, which we call in this thesis “program understanding”. Providing any
automated support for these actions could help to reduce the maintenance efforts.

Maintainability

As a technical maintenance issue, the Software Engineering Body of Knowledge [AM04]
states that to reduce maintenance costs of software systems, maintainability characteris-
tics can be specified, reviewed, and controlled during the software development activities.
And if this is done successfully, the maintainability of the software will improve. But
in industrial software projects “this is often difficult to achieve because the maintain-
ability sub-characteristics are not an important focus during the software development
process. The developers are preoccupied with many other things and often disregard
the maintainer’s requirements.” The following two important issues regarding maintain-
ability aspects are most relevant for our work: inconsistency between documentation and

system and loss of structure.

Inconsistency between Documentation (Model) and System: If the documen-
tation is not up-to-date with the system or comes with lacks or in an inadequate level of
detail, the impact analysis and inspection phase as done during maintenance tasks, be-
come complicated [AM04]. Therefore, it is important to keep all related documentation
artifacts, such as source code comments, software models, and API documentation, up



CHAPTER 2. MOTIVATION 21

to date. The problem in this context is that maintaining documentation artifacts is a
task that brings no new functionality. And due to further development projects or the
force rather to extend the functionality of a system than updating its documentation,
maintaining documentation is often neglected. However, it is obvious that inconsisten-
cies between documentation and system lead to higher efforts regarding future changes
affecting the time needed for impact analysis and program understanding.

Loss of Structure: The loss of the structure of a system increases with the number of
operated maintenance tasks. Each additional change on an existing system decreases its
original structure slightly. In particular, if, over the years, more and more new features
have to be implemented, the original system’s architecture will change step by step. If
maintainers do not manage to keep a clear architecture (either the original or a rebuild
one), impact analysis and understanding the source code for each following task becomes
more complicated.

Semantic Errors in Domain Requirements

Defective requirements lead to defective systems. If software models that specify sys-
tem’s requirements contain (semantic) domain errors, a system that implements faulty
requirements will not meet the needs of its costumers. For large business information
systems, error detection in analysis and design models would help to prevent defective
systems. If (semantic) modeling errors could be detected automatically before imple-
mentation, the development and maintenance process could be improved.

Extensive Testing Process

Maintaining software means to implement program code. Therefore an application has
usually to pass the complete quality assurance process, before its changes can be put
into live environment. Even little changes of domain requirements which lead only to
only little code changes can easily result in a complex testing and release process. It
can take several weeks or months until domain changes are deployed actually. This is
a challenge for IT departments, because a fast time-to-market is a goal that competes
against an extensive quality assurance process.



CHAPTER 2. MOTIVATION 22

2.4 Abstraction and Automation with Software Models

Modern software engineering approaches apply automated processing of structured re-
quirements and specifications to address an efficient development process. Approaches as
Model Driven Software Development (MDSD) [BCT05], Service Oriented Architecture
(SOA) [Erl05] and Software Product Lines (SPL) [CN01] use software models to describe
software-related concepts in an abstract and structured manner and apply automated
transformations from a higher level of abstraction to a lower level.

Need for Abstraction

Over the time, computer systems and their interconnections became more and more
complex. The continuously increasing power of hardware as well as the increasing ca-
pabilities of communication infrastructures enable a likewise increasing complexity and
higher degree of the distribution of computer systems. At the same time, pervasion and
dependency of the working and the private life of computer systems comes hand in hand
with more and more complex needs and requirements that have to be supported by these
systems. This leads to systems and requirements that are too complex to be understood
only by examining hardware instructions or written text. Hence, abstraction provides a
useful and needed technique to rule complex systems.

Figure 2.4.1 provides an outline of the use of abstraction and automation in context
of software engineering. By a close look on the utilization of abstraction, two ends of one
scale can be identified. Hardware instructions, which means machine code that is used
to control physical processing units directly, are on one end and the real world, which

 Absolute Abstraction Distance
Hardware 
Instruction

Real WorldAutomated 
Abstraction

Manual 
Abstraction

Effort Needed to Build 
Transformation Statements Into 
Hardware Instructions and to 

Maintain Them

Effort Needed for 
Manual Abstraction 

from the Real World

X

Figure 2.4.1: Absolute Abstraction Distance



CHAPTER 2. MOTIVATION 23

means the non-discrete world whose concepts have to been mapped onto the discrete
world of computer systems, is the other end. Programming languages and software
models are structured concepts that are used for abstraction purposes typically. The
sum of all activities in a software process can be conceptually paraphrased as a walk
on the abstraction scale from the real world to the hardware instructions, which means
from on end of the scale to the other.

A core concept for the use of abstraction with automation is to provide a structured
description of requirements on an abstract level together with an automated transi-
tion into the low-level environment. To provide some examples: assembler code is an
abstraction of binary code and can automatically be translated into binary code, Java
programming language abstracts from platform specific instructions sets, and Structured
Query Language (SQL) focuses only on a specific technical domain (database queries)
and provides an abstraction from platforms and programming languages. The closer a
concept used for abstraction comes to the real world, the more it is an abstraction from
hardware instructions.

As Figure 2.4.1 illustrates, if we state, for example, a programming language to be
at point X on the abstraction scale, the distance from X to hardware instructions is
the degree of automated abstraction. Automated abstraction means that all needed
transformation steps into hardware instructions are processed automatically (such as a
compiler process or code generation). On the other side, the distance from X to the real
world marks the degree of manual abstraction, where manual abstraction means that
the transformation steps from real world into abstraction level X are processed manually
(for example, programming or modeling). When point X is shifted more to hardware
instructions at the abstraction scale, the proportion of required manual abstraction
rises as the proportion of automated abstraction falls. This actually happens if a Java
programmer is forced to write his programs in assembler code.

In case of the X being shifted more to the real world, the proportion of automated
abstraction rises as the proportion of manual abstraction falls. This thesis addresses
above listed issues of a software development process by supporting a higher proportion
of automation. Nevertheless, as the efforts needed for manual abstraction from the
real world fall, the efforts needed to build automated transformation statements into
hardware instructions and maintain them raise. Hence, these usually high efforts are
only reasonable if the expensive automation is used more often than manual processing.



CHAPTER 2. MOTIVATION 24

2.4.1 Structured Abstraction by Software Models

Software models are well-known concepts used in academia and industry since the early
years of software engineering to manage the complexity of systems and their requirements
by providing a suitable instrument for abstraction. Together with adequate modeling
tools, software models are often the only known way to handle complex software projects.
They are applied for the specification, simulation, and documentation of systems to be
build as well as of existing systems. Software models provide a structured either formal or
semi-formal description of reality or system concepts and provide a visual representation
of domain or technical concepts.

Definition of “Software Model”

Many definitions of the term “model” (in the context of software) are related to a system.
As defined by Bezivin at al. in [BG01]: “A model is a simplification of a system built
with an intended goal in mind. The model should be able to answer questions in place
of the actual system.” Another definition is given by Seidewitz in [Sei03]: „A model
is a set of statements about some system under study [SUS]. Here, statement means
expression about the SUS.“ A definition focusing on aspects of reality rather than systems
is provided by Pohl in [Poh07]: “A model is an abstracting image of an existing or
fictitious reality”. This definition considers “abstracting images” of aspects of an even
fictitious reality and not only of systems, and therefore is more suitable during the early
phases of a software process, when models are used for requirements engineering. In this
thesis, we combine both perspectives and define the term “software model” as follows:

A model is an abstraction of a technical or abstract system or a fictitious or
existing reality or both in terms at a level of expression between system and
reality.

A model is technically an instance of its meta model. Meta models provide abstract
schemas of their instances and define allowed model elements. If the set of meta model
elements is finite and each element comes with a defined semantics, a model is denoted as
structured. A structured modeling language provides an instrument that helps to manage
the complexity of systems and requirements. To prevent any ambiguity in statements
expressed by a model, each model element type has to be described as clearly as possible.



CHAPTER 2. MOTIVATION 25

Informal
Model

Semi-Formal Model Formal Model

Visual
Model

Informal
Sketches

Nassi-Shneiderman
Diagram [NS73], Unified

Modeling
Language[Obj07b],

Decision Trees, EPC
[KNS92], BPMN

[Obj09]

State Machine [Har87], Petri
Nets [Pet62], Data Flow

Diagram [SMC74], Message
Sequence Charts [Int04],

Entity-Relationship
Diagram [Che76],
YAWL[vdAtH05]

Non-
Visual
Model

Text,
Numbered

Requirements

Pseudocode, Rules,
XML-based languages,

(Programming
Languages)

Data Dictionary, [EM85],
Object-Z, [Smi99],

Relational Algebra [Cod90]

Table 2.1: Categories of Software Models

Overview of Software Models

Table 2.1 extends an overview of software modeling concepts as provided by Balzert
in [Bal01]: The rows indicate if a modeling concept provides visual model elements
or not. A non-visual software model has no graphical representation of its modeling
elements and consists of continuous text, structured text, or formulas. In opposition
to non-visual models, visual software models consist of different geometric shapes (such
as lines, circles, triangles, and rectangles), and each shape represents a specific model
element. Moreover, the columns of Table 2.1 distinguish modeling concepts by the
degree of formality of the definition of their notation elements. Models with no defined
semantics (such as written text or sketched figures) are named informal models. Their
elements have no defined meaning and only the modeler knows what they are modeled
for. We classify a software model as semi-formal if each element of its meta model
elements is described by written text and parts of the meta model are defined formally
or mapped into a formal structure. In case of each element and each relation between
elements of a meta model being defined using a formal structure, the software model is
a formal model.

Providing a conceptual abstraction means to transform elements of the real-world
into elements of a discrete model (or vice versa) using concepts of a modeling language.
The resulting software model is an intermediate model. It provides the source for further
abstraction tasks, such as writing program code. Furthermore, if programming languages
are taken into account as modeling languages, providing a conceptual abstraction from



CHAPTER 2. MOTIVATION 26

the real world includes programming tasks. If the used modeling language is a formal
model, the resulting abstract representation can be used for automated validation tasks.

Not all modeling languages come with specific visual representations of their mod-
eling elements: an instance of a non-visual model (such as program code) is operated
usually as a structured text file. Providing a visual representation of abstract modeling
concepts supports the communication between human modelers and the understanding
of complex interrelations of systems or requirements or both. In the last years, vi-
sual modeling languages became more and more important. Today, modeling languages
as Entity-Relationship Diagrams (E/R) [Che76] or Unified Modeling Language (UML)
[Obj07b] are standard modeling languages in industry and academia. Using a visual
representation helps all involved roles to manage the complexity of today’s systems by
providing specific views for different aspects to be modeled (for example, structural mod-
els vs. behavior models) on different levels of abstraction. A visual appearance of model
elements allows a more intuitive cognition: Adapting the saying “A picture is worth a
thousand words,“ experiences with visual models show that in many cases a visual model
is worth a thousand words. For example, when requirements are discussed with func-
tional departments, visual abstractions can help a lot. Moreover, approaches as visual
languages [Zha07] or end-user development [Lie01] address explicitly non-programmers
as participants of a software development process by using visual abstraction extensively.

2.4.2 Automation by Model Processing

Automated model transformations from an abstract level into a level closer to hardware
instructions exist since automated compilers for programming languages exist. Today,
no industrial software developer would translate a Java program consisting of hundreds
of thousands lines of code manually into executable binary files. In contrast to program
code, huge visual software models are often transformed manually into program code by
developers. As a difference to programming languages, which were designed to instruct
machines, visual modeling languages were designed originally to support person-to-
person communication without any need for automated transformations. However, since
model-driven development became more and more popular in industry and academia,
visual models are used as input for automated transformation processes that generate
code artifacts. The use of visual model changes from human-to-human communication
into artifacts that have to be understood by humans and computers. Automated model
processing demands all information that specifies relevant features of the target system
to be expressed in a structured form. Therefore, a structured representation of formerly



CHAPTER 2. MOTIVATION 27

unstructured information (such as written text or visual sketches) is required, which
often leads to very huge models that are hard to maintain.

The motivation for automated model processing varies depending on project specific
requirements. Possible purposes are

• transformation of a model into another level of abstraction such as program code
or a domain specific model;

• simulation and analysis of complex system behaviors before the system is actually
build;

• analyzing model properties such as consistency and soundness for quality assur-
ance;

• interpretation of a model for the use as runtime model in a specific execution
environment.

Transforming Models

In general, a model transformation T can be described as a function

T : Min × P →Mout,

where Min is the input model (source model), P is a set of transformation parameters,
and Mout is the output model (target model). The parameter set P (which can be an
empty set) is used to control specific aspects of T , such as special purpose switches to
fine tune the transformation process with information from the input model. The main
idea behind novel software engineering approaches is to provide more automation by au-
tomated processing of T (noted as Tauto). Therefore, several transformation approaches
are developed. A general overview and classification of transformation approaches de-
pending on their underlying theoretical concepts, such as graph-transformation based
approaches, relational approaches, template-based approaches, direct-manipulation ap-
proaches, and hybrid approaches, are given by Czarnecki et al. in [CH03] and Mens et
al. in [MVG06].

Simulation and Automated Analysis with Models

Besides automatic transformation, simulation and analysis are further purposes for au-
tomated model processing in a software development process. If formal software mod-



CHAPTER 2. MOTIVATION 28

els are used, several structural or behavioral aspects can be automatically processed
with proper simulation and analysis environments. For simulation of behavioral models
and systems, Petri-net-based approaches are a standard in industry and academia. An
overview of available simulation scenarios and simulation tools is provided by Petri Net
World Online Service [Pet]. Model Checking is a further approach for automated analy-
sis, where a system description (usually program code) is verified against a specification
that is given by a detailed formal model. In [BBF+01], theoretical foundations as well
as applicable model checking systems are discussed.

2.5 Model Driven Software Engineering

Following France and Rumpe, “growing complexity of software is the motivation behind
work on industrializing software development” [FR07]. The model driven development
approach proposes the extensive use of models, which means structural abstraction (see
Section 2.4.1) and automated model processing, which means automation by model
transformation (see Section 2.4.2). Thereby, the focus is shifted to the model as the
most important artifact in the software process. Furthermore, “model driven engineering
is primarily concerned with reducing the gap between problem and software implemen-
tation domains through the use of technologies that support systematic transformation
of problem-level abstractions to software implementations” [FR07]. Comparing software
engineering without automated model transformations with consistent model driven
software engineering with regard to Figure 2.4.1, the point “X” on the abstraction scale
is shifted more to the real world end. This means that the proportion of automated
abstraction rises compared software engineering without model transformations.

By the vision of model driven software engineering, the use of models for each purpose
that allows suitable automation, such as code generation or analysis and simulation, is
proposed. In the context of model driven development a model is not necessarily a visual
model. Many projects use domain specific languages for the specification of technical
aspects without using a visual modeling notation. These projects often address a very
specific and also often very technical problem with special purpose models and model
transformations. However, if domain experts should be included in modeling tasks
because their knowledge is needed to guarantee that all important domain requirements
are satisfied, visual models play an important role.

From an abstract point of view, there is no notable difference between model-to-
model transformation and model-to-code transformation. The language specification of



CHAPTER 2. MOTIVATION 29

a programming language is also a structured abstraction from hardware instructions as,
for example, an UML class diagram is. But when setting up an infrastructure for a model
driven development project, model-to-model transformations come with differences to
model-to-code transformations, as explained in following subsections.

2.5.1 Model-to-Model Transformation

During a model driven development process, automated model-to-model transformations
are needed to convert an instance of a meta model A into an instance of a meta model
B. Giving a scenario: A is a visual modeling language such as UML and B is a domain
specific language. Both meta models specify a non-executable modeling language. They
do not affect a running system in a live environment.

The motivation behind model-to-model transformations is either to switch between
different levels of abstraction (provide a more abstract or a more concrete view onto a
system) or to switch between meta models without changing the level of abstraction. The
former motivation plays a role if, for example, an instance of a general purpose modeling
language (such as UML) is transformed into a very specific model that specifies selected
parts of a system and has model elements with a very specific and detailed defined
semantics (such as Petri Nets [Pet62]). The latter motivation is important when, for
example, project conventions or the technical project infrastructure require a specific
modeling language, because only this language can be processed automatically, but
earlier steps of the modeling process used a different modeling language Y. In such
a case, the automated transformation only switches the representation of the model,
but does not modify its content. For example, a detailed business process model in
form of Event driven process chains (EPC) [KNS92], as created in early phases of a
project, is transformed into an UML model to allow software architects to add technical
information.

2.5.2 Model-to-Code Transformation

Automated code generation is one of the main ideas in the context of model driven
software development. A main difference between model-to-model and model-to-code
transformation is that the target model of the latter directly affects a running system
because it is the system’s code. Usually, the result of a code generation process does
not comprise the whole system, but rather code fragments. There are handcrafted parts
or parts that are generated by different generators, which require manual integration



CHAPTER 2. MOTIVATION 30

activities at code level. Moreover, quality assurance as well as testing and debugging
activities are usually done at code level. These required manual post-generation integra-
tion tasks are more typical for model-to-code transformation than for model-to-model
transformation and have to be considered when implementing the code generator. Typi-
cal problems caused by those integration tasks are prevention of deletion of handwritten
code during generation action and prevention of any incompatibility of generated and
handwritten code, in particular during maintenance tasks.

2.5.3 Model Interpretation

A further purpose to apply automated model processing is model interpretation: A
software model will be deployed into a live environment directly so that no additional
manual integration or code compilation needs to be executed. Such models are called
“runtime models”. In the context of software models there are two different types of
runtime models: models as used by the reflection community and “models@run.time”.
Following Blair et al. in [BBB09], the “reflection community is concerned with defining
representations of an underlying system that are both self-representations and causally
connected. That is, the models should represent the system and should be linked in such
a way that they constantly mirror the system and its current state and behavior; if the
system changes, the representations of the system - the models - should also change, and
vice versa.” Moreover, Blair et al. states that “in models@run.time, we seek models at a
much higher level of abstraction and, in particular, causally connected models related to
the problem space. Another key distinction [to reflection] is that such models should be
intrinsically tied to the models produced as artifacts from the MDE process and hence
linked to the software engineering methodologies employed.” Considering a model driven
development process, “a runtime model can be seen as a live development model that
enables dynamic evolution and the realization of software designs” [BBB09].

2.6 Automation Approaches for Information Systems

In the field of information systems, several software development and maintenance ap-
proaches were developed and published that utilize modeling and automated model
processing with regard to reduce high efforts for enhancing and maintaining software
systems. During the analysis of existing automation approaches for information systems,
we categorized approaches with regard to their addressed architectural layer. Hence, at
first we give a short introduction of the architectural three-tier pattern, which is de facto



CHAPTER 2. MOTIVATION 31

a standard pattern for information systems. Then, we analyse the existing support of
modeling and automation for each architectural layer separately.

2.6.1 Three-Tier Architecture

In this thesis we use the term software architecture as defined by Bass et al. in [BCK03]:
“The software architecture of a program or computing system is the structure of struc-
tures of the system, which comprise software elements, the externally visible properties
of those elements, and the relationships among them”. Following Bass et al., software
architecture (1) “provides a vehicle for communication among stakeholders”, (2) “is a
manifestation of the earliest design decisions”, and (3) “is a reusable, transferable ab-
straction of a system”. Moreover, a “software architecture constitutes a relatively small
[...] model for how a system is structured and how its components work together”
[CKK02]. In our work, we focus on web-based information systems, which are informa-
tion systems that use internet technologies to provide distributed client-server systems.
Different subsystems of web-based information systems are separated logically and can
be deployed on physical different machines. They are logically connected by a computer
network and communicate via internet technologies and protocols.

Three-Tier Architecture 

Presentation Layer

Business Logic Layer

Persistency Layer

Figure 2.6.1: Three-Tier Architecture

The software architecture of web-based information systems is typically structured
as an N-tier (N-layer) architecture [Gor06] in which each layer is responsible for a spe-
cific part of the system. In most of the web-based applications three main layers can be
identified: presentation layer, business logic layer, and persistency layer. The three-tier



CHAPTER 2. MOTIVATION 32

architecture (as depicted in Figure 2.6.1) is a de facto standard architecture pattern
for information systems. These layers are equipped with defined interfaces and can be
deployed and executed on separated execution environments. By separating different
concerns of presentation (view), business logic (controller) and data (model) into en-
capsulated parts of a system, the Model-View-Controller (MVC) pattern is supported
basically by the system’s architectural design.

The presentation layer renders and executes the user interface (UI) independently
from its actual implementation as a web client, a rich client, or a desktop interface. The
complete human computer interaction in the context of this application is done via the
presentation layer. A presentation layer provides information from the system to the
user and from the user back to the system.

The persistency layer manages the storage and accessibility of all required business
objects. Usually, in large enterprise data bases, business objects are used by several
applications concurrently. Moreover, the persistency layer has to prevent an inconsistent
data model caused by concurrent data access.

The business logic layer (or application layer) implements processing instructions
for business data. Nowadays, the business logic of industrial information systems often
depends on external functions or systems such as internal and external web services or
public APIs or further systems of the enterprise application landscape. As a consequence,
a business logic layer does not implement only business functions, it also integrates
external functions.

In this thesis, we consider page flow and navigation logic as part of the presentation
layer and not as part of the business logic layer. They are responsible for intra-action
user dialogs, which is the controller logic needed to execute one action of the business
process manually. For example, if one user action requires a complex UI dialog consist-
ing of several maybe nested pages, the required page flow controller is associated with
the presentation layer: it does not affect the business process, as implemented by busi-
ness logic layer, and can be modified without side-effects to the implemented business
logic. Hence, the business logic layer is completely encapsulated from the user interface
implementation and does not comprise any UI controller implementation.

2.6.2 Automation Approaches for Presentation Layer

User interfaces are often the only way providing interaction possibilities between users
and the system - and often also the only view of customers to a company. Hence, user
interfaces have to support high (visual) quality and good usability characteristics. If



CHAPTER 2. MOTIVATION 33

changed requirements having to be reflected by the user interface, enhancement and
maintenance issues also affect this architectural layer. A typical guarantor for high de-
velopment and maintenance efforts are complex user interfaces with many input fields
and a complex underlying data model. The single actions to be worked for such a
presentation layer are trivial, but they are typically interdependent and cause an ex-
tensive manual work, if summed up. This problem is addressed by several academic
and industrial approaches, which target on enabling automated code generation of user
interfaces.

Approaches like Iceberg [Fra], Oracle APEX [Orae] or Cepheus [BBB+08] support
complex dialog and page design. The programmer, or in several approaches the domain
expert, can create a visual model of the dialog flow and configure single user interfaces
pages with help of a WYSIWYG (What-You-See-Is-What-You-Get) editor. An end-
to-end automation from a visual modeling tool until a deployed presentation layer is
already supported by the existing approaches. Simple parts of the application logic,
such as simple validation rules or the decision logic for complex page flows, are directly
integrated in the presentation layer. However, the implementations of automated inter-
nal or external functions (services), complex workflows, or connections to the persistency
layer are usually part of the business logic layer and not well supported by UI modeling
and configuration tools.

Moreover, model driven approaches from the web-engineering community were devel-
oped focusing a special purpose model representation of web applications that does not
consider WYSIWYG directly, but abstract navigation models and device independent
view models. The Web Modeling Language (WebML) [CFB00], the Object-Oriented Hy-
permedia Model (OO-H) [GCP01] and the UML-based Web Engineering Method (UWE)
[KK02] define a number of different model views that describe aspects of the presen-
tation, dialog flow and data structure. These approaches aim to generate the source
code for a complete web application based on a model. However, with the exception of
WebRatio[Web], these tools are mostly prominent in the academic domain.

2.6.3 Automation Approaches for Persistency Layer

With its responsibility to store and provide access to business data sets, the persistency
layer manages and contains critical business information, which is typically structured
in very large and interrelated data structures. Therefore, large data sets have to be
organized and efficient operations (create, read, update, delete) have to be supported.
If changed domain requirements affect the persistency layer, not only the data schema,



CHAPTER 2. MOTIVATION 34

the existing data set, and their interconnections have to be modified. Also the interfaces
to the application logic layer and their implementation, such as data transfer objects, as
well as existing stored procedures and implemented batch processes need to be updated.

Fortunately, many of the changes concerning the persistency layer can be directly
derived from structural software models. Modeling tool vendors provide tools that en-
able the generation and maintenance of persistency schemas. Database schemas together
with its access providing data objects can be derived directly from structural software
models, such as UML class diagrams or E/R diagrams. It is a standard procedure
and supported by most of the modeling and development tools such as Magic Draw
[NoM], Enterprise Architect [Spa], IBM Rational Software Architect[Int], or MID inno-
vator [MID]. Furthermore, database vendors, such as Oracle with its Oracle Designer
[Oraf], deliver visual modeling tools to support the development and maintenance of all
aspects concerning the persistency layer. Even open source frameworks and APIs, such
as Hibernate [Reda] or Apache Cayenne [Apaa], are available and widely used for this
purpose.

2.6.4 Automation Approaches for Business Logic

The business logic layer supports interfaces and their implementations to the presen-
tation layer as well as to the persistency layer. Moreover, automated functions, which
do not depend on any user input, have to be implemented, and external functions have
to be integrated. With regard to the support of an overall software development and
maintenance process of business logic for information systems from early analysis phases
until software maintenance, we believe that following requirements have to be taken into
account:

• A visual modeling language that supports (1) all required elements of business logic
models in different levels of abstraction and (2) that supports early analysis models
as well as detailed design models as used by software architects for communication
with domain experts and software developers;

• Proper (industrial) tool support for visual modeling and model quality assurance
tasks;

• Tools and concepts that enable automated processing of visual modeling results
for automated quality assurance tasks;



CHAPTER 2. MOTIVATION 35

• Tools and concepts to support manual maintenance tasks considering huge visuals
software models motivated as explained in Section 2.3.2; and

• Code generators supporting software maintenance issues as introduced in Section
2.3.2 and considering integration purposes to both, presentation layer and persis-
tency layer.

Existing approaches for automation of the business logic layer development usually do
not consider all needed requirements to support a proper level of automation with regard
to all phases of a software process from analysis until maintenance. As discussed in more
detail in Chapter 9, only a subset of requirements is covered.

• They either do not support process modeling elements as required for large business
logic models, for example considering state charts or scenarios only ([EKHG01],
[MCS02], [KGC07], [SM04], [FBB+07], [SMG06])1; and/or

• do not consider model quality analysis tasks ([KHK+08], [SM04], [FBB+07])1;
and/or

• support code generation only for proprietary platforms ([MCS02], [KHK+08],
[SM04])1 or do not support code generation ([EKHG01], [JLMT08])1; and/or

• focus only on reactive (embedded) system’s domain and not on information systems
([EKHG01], [KGC07], [SMG06])1.

2.7 Thesis

Compared to the user interface layer and the persistency layer, we believe there could
be a better support of consistent approaches providing a suitable architecture for the
consistent model driven development of business logic.

This doctoral thesis provides an architectural blueprint that supports a model driven
development and maintenance process of business logic for information systems. An
architectural blueprint provides the design of a model driven development environment.
It defines and specifies interrelated elements of a technical project infrastructure that
are needed to support modeling, model analysis, and code generation tasks. A technical

project infrastructure is an instance of an architectural blueprint. It provides modeling
1All cited approaches are discussed in detail in Chapter 9.



CHAPTER 2. MOTIVATION 36

tools and model analysis tools and implements model transformation rules and code
generation rules that are tailored and adapted for project specific needs.

The proposed architectural blueprint, which we call Amabulo, is structured in differ-
ent layers with defined dependencies. Each layer contains a set of concepts such as meta
models, models, model transformation rules, code generation rules, and specific tools.
Most layers can be tailored for application in specific software development and main-
tenance projects. Therefore, we considered visual software modeling tasks as needed in
early phases, when domain requirements are worked out. As result of these tasks, prob-
able huge visual models have to be handled, which may consist of hundreds of model
elements in dozens of different views. For this reason, we also consider the need for
automated quality assurance of such models and provide suitable interfaces to industrial
model analysis tools. Due to the important role of a business logic layer, we consider ro-
bustness features at model level as well as at implementation level. Hence, our proposed
architectural blueprint considers domain states assurance and local conditions through
all of its layers consistently.

As contribution of this thesis, we propose a design of a technical project infrastruc-
ture together with a sample implementation and a methodology for the use of such
an infrastructure. Our proposed architectural blueprint does not focus on one specific
project setting. Its design is independent of modeling languages and independent of
programming languages. The sample implementation uses UML as visual modeling lan-
guage, Coloured Petri Nets for analysis and simulation purposes, and generates J2EE
applications, which can directly be deployed on an industrial enterprise application server
(JBoss). These specific layer implementations can be reused, tailored and extended for
use in further industrial and research projects.

Information Systems Design Theory

The content and structure of this thesis comply with the “anatomy of design theories in
the discipline of information systems” as provided and discussed by Gregor and Jones
in [GJ07]. Following Gregor and Jones, “an IS [information system] design theory shows
the principles inherent in the design of an IS artifact that accomplishes some end”.
The information system design theory (ISDT) “allows the prescription of guidelines for
further artifacts of the same type. Design theories can be about artifacts that are either
products (for example, a database) or methods (for example, a prototyping methodology
or an IS management strategy). As the word “design” is both a noun and a verb, a theory
can be about both the principles underlying the form of the design and also about the



CHAPTER 2. MOTIVATION 37

act of implementing the design in the real world (an intervention)”. Gregor and Jones
identified eight separate components that are needed to describe an IS design theory
[GJ07]: (1) Purpose and scope, (2) Constructs, (3) Principle of form and function, (4)
Artifact mutability, (5) Justificatory knowledge, (6) Principles of implementation, (7)
Expository instantiation, and (8) Testable propositions. In the following, each of the
eight components are explained concisely and related to our approach and the structure
of this thesis).

Purpose and Scope (The Causa Finalis) “What the system is for, the set of meta-
requirements or goals that specifies the type of artifact to which the theory applies and
in conjunction also defines the scope, or boundaries, of the theory.”[GJ07] Considering
this thesis, the overall motivation was presented previously in this chapter. Nevertheless,
a detailed motivation for specific parts of the approach proposed in this thesis is given
later in Chapters 4-7.

Constructs (The Causa Materialis) “Representations of the entities of interest in
the theory. [...] The representations of the entities of interest in the theory are at the
most basic level in any theory. These entities could be physical phenomena or abstract
theoretical terms.”[GJ07] In the context of this thesis, an overview of our proposed
architectural blueprint including all entities of interest and their relations is given in
Chapter 3, before detailed descriptions for each layer follow in Chapters 4.

Principle of Form and Function (The Causa Formalis) “The abstract blueprint
or architecture that describes an IS artifact, either product or method/intervention.
[...] This component refers to the principles that define the structure, organization, and
functioning of the design product or design method. The shape of a design product
is seen in the properties, functions, features, or attributes that the product possesses
when constructed.”[GJ07] In this thesis, principles of form and function are described
in detail for each infrastructural layer. The Visual Model Layer in Chapter 4 contains a
meta model and a tool supporting visual software modeling, the Abstract Model Layer
of Chapter 5 introduces a domain specific language (Amabulo model) for the business
logic of information systems, the Abstract System Layer as introduced in Chapter 6
provides a formal representation of Amabulo models in form of Coloured Petri Nets,
and the Code Generation Layer in Chapter 7 describes architecture and design of the
generated business logic code, which have to be considered for design and implementation



CHAPTER 2. MOTIVATION 38

of concrete code generators.

Artifact Mutability “The changes in state of the artifact anticipated in the theory,
that is, what degree of artifact change is encompassed by the theory.“[GJ07] In this
work, we provide for each layer as well as for each item of a layer statements about the
mutability in concrete implementations of our design theory. With regard to artifact
mutability of part of layers, or layers as a whole, we discuss for several scenarios how
specific properties vary or which parts can be omitted in instances of our infrastructure.

Justificatory Knowledge “The underlying knowledge or theory from the natural
or social or design sciences that gives a basis and explanation for the design (kernel
theories).“[GJ07] Our proposed infrastructure blueprint relies on several underlying the-
ories and reuses commonly known techniques as described for each architectural layer
in detail. Summarized, this thesis is constructed based on a body of knowledge about
visual modeling languages for the behavior of software systems, the theory of Coloured
Petri Nets, software architecture description languages, object oriented design principles,
software modeling, meta modeling, and automated model processing.

Principles of Implementation (The Causa Efficiens) “A description of processes
for implementing the theory (either product or method) in specific contexts.”[GJ07] An
overview of the construction (or instantiation) process of our infrastructure blueprint
is given in Section 3.2.1. Moreover, for each item of each layer, we discuss at least
its requirements, or provide an architectural overview or a detailed design or a sample
instance.

Expository Instantiation “A physical implementation of the artifact that can assist
in representing the theory both as an expository device and for purposes of testing. [...]
A realistic implementation contributes to the identification of potential problems in a
theorized design and in demonstrating that the design is worth considering.”[GJ07] For
this reason, a sample implementation of all parts of our infrastructure is given in Section
8.1.2. However, parts of it are provided and discussed exemplarily specific to a layer in
Chapters 4-7, where specific layers are introduced in detail.

Testable Propositions “Truth statements about the design theory. [...] We con-
cur [...] that design theory propositions can vary in their degree of generality-from
claims that a design works all the time and in many contexts (as with an algorithm) to



CHAPTER 2. MOTIVATION 39

claim that a design proposition is only an approximation to what will work in different
contexts.”[GJ07] We formulate such propositions in Chapter 8. Moreover, we discuss
with an industrial scenario and a sample implementation how issues identified above in
Section 2.3.2 can be improved using an Amabulo infrastructure .

The remainder of this thesis is structured as follows: At first, in Chapter 3 we provide
an overview of all layers of the architectural blueprint together with a methodology of
how to tailor and how to apply an Amabulo infrastructure. Then, the following Chapters
4-7 provide details of each layer: The Visual Model Layer as introduced in Chapter 4 is
responsible for visual modeling; the Abstract Model Layer detailed in Chapter 5 intro-
duces a domain specific language (Amabulo model) for the business logic of information
systems; the Abstract System Layer in Chapter 6 provides a formal representation of
modeled systems in form of Coloured Petri Nets; and the Code Generation Layer in
Chapter 7 describes architecture and design of generated business logic code artifacts
that have to be considered for design and implementation of concrete code generators.
Subsequently, Chapter 8 discusses improvements produced by our infrastructure based
on a sample implementation of our Amabulo architectural blueprint that was applied in
an industrial scenario. After a discussion of related approaches in Chapter 9, we con-
clude this thesis with a discussion, its contribution and further research opportunities
in Chapter 10.



CHAPTER 2. MOTIVATION 40



Chapter 3

Architectural Overview

This chapter contains a high-level introduction to the Amabulo infrastructure blueprint
supporting model driven software processes with focus on the business logic for informa-
tion systems. An Amabulo infrastructure consists of five different layers and each layer
contains several specific architectural concepts, such as meta models, model transforma-
tions, or tools. Section 3.1 provides an architectural overview of all relevant concepts
of an Amabulo infrastructure and their relations. Conceptional details as well as im-
plementation details are not part of this chapter, they are discussed separately for each
layer in subsequent chapters. Beside an architectural overview, Section 3.2 describes a
methodology for the use the Amabulo infrastructure blueprint.

3.1 Amabulo Infrastructure Blueprint
1

It is obvious that there will not be the one modeling language and not the one code
generator that fits all possible project requirements for developing an information system.
Each project usually comes with its own requirements so that already existing visual
models and code generators are not directly reusable in other projects. Hence, models
and code generators have to be typically customized for specific projects. Nevertheless,
the challenges as discussed in Chapter 2 are independent of concrete project settings
and have to be tackled for each project. With the Amabulo infrastructure blueprint
(consisting of meta models, model transformations, tools, and a code generator), we
address the above introduced problems of development and maintenance of business
logic for information systems. Our architectural blueprint was designed to help project

1A preliminary version of the discussion in this section is accepted for publication in [BG10].

41



CHAPTER 3. ARCHITECTURAL OVERVIEW 42

Visual 
Model 

1.2

Amabulo-
Model

2.2

Model Transformation

Meta Model
1.1

instance of

Amabulo-
Meta Model

2.1

instance of

Coloured 
Petri Net 3.2

Specific-Code 
Generator 4.1

Code 
Comparison

Tool 4.2

Model 
Comparison 

Tool 2.3

Generated-
Application 

5.2

Formal Specification Output

Input Model

use

use

uses

uses

provides input

compare

analyse 
and 

simulate

Modeling 
Tool
1.3

exports

Coloured Petri 
Net

 Definiton 3.1

instance of

use

use

Code Generation

Target Platform 
Specification 5.3

instance of

CPN 
Analysis 
Tool 3.3

Development 
Tool 5.1

edit

 Tool/
Concept

Modeler

QA-
Manager

Software
Developer

Visual 
Model 
Layer

Abstract 
Model
Layer

Abstract 
System
Layer

Code 
Generation

Layer

Application
Layer

controls

Dependency

Purpose:
Visual 

Modeling

Purpose:
Domain 
Specific 
Model

Purpose:
Simulation 
and Model 
Validation

Purpose:
Code 

Generation

Purpose:
Integration of 
Generated 

Code 

Figure 3.1.1: Overview of Amabulo Infrastructure Blueprint

managers and software architects setting up a technical project infrastructure that helps
to keep development and maintenance efforts for business logic low.

Our infrastructure blueprint consists of five different layers: Visual Model Layer,
Abstract Model Layer, Abstract System Layer, Code Generation Layer, and Application
Layer. Figure 3.1.1 provides an overview of all layers and their relations. Involved user
roles and their relations to tools of specific layers are symbolized on the left side of this
overview figure. Most of the layers consists of three parts: a tool, which is proposed to
be the user interface of a layer, a meta model, which defines the set of available modeling
concepts and their semantics, and an instance of the layers meta model. The following
subsections introduce each layer, its content, as well as its relations to other layers.

3.1.1 Visual Model Layer

The Visual Model Layer is responsible for all visual modeling tasks of a development
process. Every visual software model considering business logic aspects of a system is
created and modified with the help of elements of this layer. A Visual Model Layer is
used as a visual interface to human modelers. For this purpose, the visual modeling



CHAPTER 3. ARCHITECTURAL OVERVIEW 43

language and the modeling tool are specified. They are used by human modelers to
specify domain and technical requirements. Depending on actual requirements, existing
modeling languages and tools can be reused. In a concrete project setting, multiple
Visual Model Layers can be applied, and modelers can switch between them. To illus-
trate this point, at the very beginning of a project, when talking to domain experts, a
business process modeling language (such as EPC [KNS92]) can be the best choice for
visual modeling. Afterwards, when functional requirements are complete and a technical
modeling language is needed, the visual model layer can be switched to Unified Modeling
Language (UML)[Obj07b].

The meta model (Figure 3.1.1-1.1) defines semantics and the shape of all elements of
the visual modeling language. A meta model also defines how a visual modeling language
can be extended or tailored for project specific purposes. A visual model (Figure 3.1.1-
1.2) is an instance of the meta model and the essential deliverable of the visual modeling
process. It comprises all domain and technical requirements at a level of detail that is
suitable to be used as input model for the code generation process. As a result of
manual modeling activities, the visual model will be transformed into an abstract model
automatically. A set of model transformation rules from elements of the Visual
Model Layer into elements of the Abstract Model Layer provides the connection between
both layers. Our example implementation of the Visual Model Layer (as introduced in
Chapter 4) reuses the existing and world-wide well-known modeling language UML. It
supports different modeling concepts such as process, structure, and states as needed for
modeling business logic. However, every other visual software modeling language can
be used in this layer if the transformation from visual model into abstract model can be
defined and executed automatically.

The visual modeling tool (Figure 3.1.1-1.3) has to support the meta model of
the applied modeling language. Since the actual choice depends on specific projects
requirements, the modeling tool can be different from project to project. Nevertheless,
the tool has to support a model export feature, which allows an output format that can
be processed by a model transformation process automatically.

Details of elements of the Visual Model Layer as well as a concrete instance are
discussed in Chapter 4 of this thesis.

3.1.2 Abstract Model Layer

The Abstract Model Layer provides an abstract (non-visual) view onto the business logic
model in form of a domain specific modeling language. It is reduced only to pure logical



CHAPTER 3. ARCHITECTURAL OVERVIEW 44

information concerning business logic aspects and focused on information that is relevant
for code generation. An Amabulo model is used as a model in the middle between visual
modeling languages and code generators. This layer also provides a model comparison
tool that is used to assist users in comparing different versions of the same model and
exploring semantic changes between them.

The Amabulo meta model (Figure 3.1.1-2.1) defines a domain specific modeling
language comprising all relevant concepts that are needed for code generation purposes
for the business logic of information systems. Elements for process, state, and structural
modeling are considered, as well as relations between them are defined. The Amabulo
meta model specifies the meta model of those model instances that are source models
for code generators, source models for transformations into Abstract System Layer and
target models for model transformations from Visual Model Layer into Abstract Model
Layer.

An Amabulo model (Figure 3.1.1-2.2) is an instance of the Amabulo meta model.
It provides the logical essence of a visual model of business logic and offers an abstract
view onto the visual model without any specific visual representation. This special pur-
pose view focuses only on modeling concepts that are relevant for the generation of
business logic: It provides a domain specific model, which is automatically transformed
from a concrete visual model (see Section 3.1.1). An Amabulo model is used to generate
an abstract system representation of the model (see Section 3.1.3), and it is used as input
model for code generation purposes (in Code Generation Layer, see 3.1.4). With bidi-
rectional transformation rules between Visual Model Layer and Abstract Model Layer,
an abstract model can be used to generate a corresponding visual model. However, the
abstract model does not contain any visual information. Hence, only logical informa-
tion of the visual model can be considered and the resulting model has to be layouted
manually.

The model comparison tool (Figure 3.1.1-2.3) is used by modelers to inspect
semantic differences between two Amabulo models, usually two versions of the same
model. A model comparison tool provides a pure functional view onto model changes,
neither visual nor logical differences on elements that are specific to the visual model
are considered. One main goal of the model comparison tool is to support modelers and
software developers during impact analysis of changed requirements, as specified in a
changed version of the visual model. With the help of such a tool, changes on domain
requirements that probably affect the program code can easily be identified.

Details of concepts of the Abstract Model Layer are discussed in Chapter 5 of this



CHAPTER 3. ARCHITECTURAL OVERVIEW 45

thesis. As a difference to the Visual Model Layer, this layer is not tailored for project
specific purposes and can be reused directly.

3.1.3 Abstract System Layer

The Abstract System Layer provides a formal view onto the system in the form of a
Coloured Petri Net. A Coloured Petri Net representation of the modeled business logic
is a formal structure that is independent of the actual business logic implementation.
It can be analyzed and simulated by quality assurance managers with an analysis and
simulation tool. The Abstract System Layer is an optional layer. It is not necessarily
needed if automated quality assurance functions are not relevant for a project.

The use of the Coloured Petri Nets definition (Figure 3.1.1-3.1) as given by
Jensen in[Jen92] provides a well-founded structure with elements having a well-defined
behavior and well-defined semantics. A Coloured Petri Net (CPN) (Figure 3.1.1-
3.2) is an instance of the CPN definition and provides a formal specification of the
expected behavior of the modeled business logic. In this thesis, we call such a CPN
an abstract system. It is a formal specification of the generated business logic and
completely independent of the actual programming language supported by the code
generator. Moreover, the abstract system provides an abstract implementation of the
expected systems behavior based on a formal calculus: it can be executed in simulation
environments and allows behavioral analysis of the specified system before any line of
code is generated. The set of model transformation rules from an Amabulo model
into a Coloured Petri Net is also part of this layer.

The CPN analysis tool (Figure 3.1.1-3.3) is used for the automated execution of
model quality assurance processes. The current example implementation of our Amabulo
infrastructure integrates CPNTools [JKW07], which is the de facto standard tool for
simulation and analysis of Coloured Petri Nets.

Details of the Abstract System Layer are discussed in Chapter 6 of this thesis. Com-
parable to the Abstract Model Layer, the elements of this layer can be reused without
any project specific tailoring.

3.1.4 Code Generation Layer

The Code Generation Layer is responsible for code generation, which means transforming
an abstract model automatically into program code. It is obvious that there cannot be
one code generator applied to the business logic of all information systems. Requirements



CHAPTER 3. ARCHITECTURAL OVERVIEW 46

of code generators are very specific and differ from project to project. Hence, concrete
implementations of the code generation layer will be different for each project. To meet
the specification of an Amabulo infrastructure, this layer consists of two concepts:

A specific code generator (Figure 3.1.1-4.1) creates specific code artifacts based
on an abstract model as input parameter for the generation process. The concrete
generator implementation varies from project to project, and, if needed, more than
one code generator can be deployed in one project. Nevertheless, to improve issues as
discussed in Section 2.3.2, a concrete implementation of a code generator has to consider
several aspects as detailed in Chapter 7.

The generator specific code comparison tool (Figure 3.1.1-4.2) is an application
that supports software developers during impact analysis and program understanding
tasks. It helps finding the parts of the existing program code to be edited manually and
also helps identify code artifacts that will be created, deleted, or edited automatically.
Therefore, the code comparison tool depends on the result of the model comparison tool
of Abstract Model Layer (see Section 3.1.2).

The elements of this layer depend strongly on specific project requirements. Hence,
details of the Code Generation Layer are provided in form of a discussion about the
architecture and design of the generated code artifacts in Chapter 7.

3.1.5 Application Layer

The Application Layer is the target layer of an Amabulo infrastructure and comprises
generated code artifacts. These artifacts are instances of a specific target platform
specification, and they can be modified with development tools. After reaching this
layer, there is no further automation supported by our Amabulo infrastructure left.

The target platform specification (Figure 3.1.1-5.1) depends on the project’s
requirements and the used code generator. A target platform specification can be a
programming language specification, a specific component model, a specific platform
(such as J2EE, J2ME, etc.), an XML based language, or a project specific environment.
The resulting generated application (Figure 3.1.1-5.1) of the code generation process
consists of code fragments that are parts of the target application. Depending on project
specific requirements and settings, software developers may have to provide some glue
code or some manual integration work to get a deployable information system. If manual
integration tasks have to be done, the generated code artifacts can be modified using a
suitable development tool (Figure 3.1.1-5.1) that supports conventional programming
and deployment tasks.



CHAPTER 3. ARCHITECTURAL OVERVIEW 47

Considering the Application Layer, there are no further conceptional details left to
be discussed in this thesis, because its elements depend directly on the code generation
layer.

3.2 Amabulo Methodology

In general, applying an Amabulo infrastructure comprises two different phases: First,
in the so-called “Setup and Integration Phase”, a proper technical infrastructure based
on our proposed blueprint is provided satisfying the project specific needs. And sec-
ond, during the so-called “Development and Maintenance Phase”, which is, tools and
transformations of the technical project infrastructure are applied for modeling, model
analysis, and code generation purposes for business logic.

3.2.1 Setup and Integration Phase

As a difference to development projects without automated model processing, a proper
infrastructure needs to be set up depending on project specific needs. In this context,
setting up means tailoring the infrastructure blueprint as actual needed and provid-
ing technical as well as organizational integration into the whole project environment.
Technical integration focuses on aspects such as setting up configuration management
systems and providing a suitable code generator, including integration into otherwise
generated parts and legacy systems. Organizational integration considers the adoption
of the current software process for supporting an Amabulo infrastructure. The UML
activity diagram in Figure 3.2.1 illustrates all tasks of the setup and integration phase,
resulting in a tailored Amabulo infrastructure as needed for modeling, model analysis,
and code generation.

1. Provide Visual Model and Modeling Tool: Depending on project needs, the visual
meta model has to be prepared. Therefore, an existing modeling language can
be reused or tailored, or a new visual modeling language can be defined. For our
sample implementation we defined an UML profile that supports process modeling,
state modeling and structural modeling (see Section 4.2).

2. Provide Transformation Rules from and to Abstract Model: Each implementation
of the Visual Model Layer requires model transformation rules that transform a
visual model, as part of the Visual Model Layer, automatically into an Amabulo
model, as part of the Abstract Model Layer. Furthermore, if an Amabulo model



CHAPTER 3. ARCHITECTURAL OVERVIEW 48

has to be transformed into a visual model, for example, if different Visual Model
Layers are used, proper transformation rules from the Abstract Model Layer into
the Visual Model Layer are required, too. We defined and implemented bidirec-
tional model transformation rules for the UML profile (see Section 4.3.3) as part
of the sample infrastructure.

3. Provide Code Generator: Probably the most complex task is the definition and
implementation of transformation rules from the Abstract Model Layer into the
Application Layer, which actual means providing a code generator. Depending
on the targeted complexity of the generated code, building a code generator often
means programming on a more abstract level. Our experiences show that the
more domain specific the types of considered future changes are, the higher the
complexity of the code generator must be. Our default code generator (see Chapter
7) generates business logic for a J2EE platform, including extensible artifacts of
user interfaces as well as the persistency layer, which can be directly deployed at
a JBoss application server.

4. Provide Code Comparison Tool: To support developers concerning impact analysis
tasks, our infrastructure contains a code comparison tool, which processes code
modifications depending on model modifications automatically (see Section 7.3).
It is obvious that modifications on generated code depend directly on the applied
code generator, which is in turn a project specific implementation, as mentioned
above. Hence, together with a specific code generator, a specific code comparison
tool has to be provided, too.

5. Provide Model Analysis Functions for CPN Analysis and Simulation (optional):
Depending on the project’s needs for automated quality assurance or behavioral
simulation of the modeled system, automated static and dynamic analysis func-
tions can be integrated into the Amabulo infrastructure. Therefore, existing in-
dustrial Petri net simulation and analysis tools can be reused. Even if the model
analysis could not be completely automated, semi-automated quality assurance
processes can be used.

3.2.2 Development and Maintenance Phase

The efforts to set up a model driven project infrastructure following our proposed
blueprint, as described in the subsequent Section 3.2.1, are usefully invested only if



CHAPTER 3. ARCHITECTURAL OVERVIEW 49

1. Provide Visual Model and 
Modeling Tool

3. Provide Code Generator

5. Provide Model Analysis 
Functions for CPN Analysis and 

Simulation

2. Provide Transformation Rules 
from and to Abstract Model

4. Provide Code 
Comparison Tool

Figure 3.2.1: Amabulo Setup and Integration Process



CHAPTER 3. ARCHITECTURAL OVERVIEW 50

the costs for automation are less than the costs of manual processing. Hence, the de-
velopment and maintenance phase, which is the working phase, addresses reoccurring
tasks that are needed for the iterative development and maintenance. Beside modeling,
model analysis, and code generation actions, we also support comparison actions. Figure
3.2.2 contains an UML activity diagram giving an overview of all supported tasks, their
related user roles, and their suggested order.

1. Edit Visual Model: The visual software model is created and edited in the first
step of the process. Domain and technical requirements are specified using a visual
modeling language, such as UML. It is also possible to start modeling domain
requirements with a business process modeling language (as BPMN [Obj09]) and
then switch to a further Visual Model Layer by applying a model transformation to
support a visual software modeling language (as UML). Manual modeling activities
should be supported by matured industrial modeling tools (such as MagicDraw
[NoM] or EnterpriseArchitect [Spa]), which are available for purchase.

2. Transform into Abstract Model: An automated model transformation translates a
visual software model into an Amabulo model, which is a domain specific model
and independent of any visual modeling language. An Amabulo model considers
only aspects of a system that are related to the business logic layer. Moreover,
the model transformation rules are executed automatically, no user interaction is
needed during this action.

3. Inspect Model Differences: Once a model is transformed into its abstract represen-
tation, semantic differences related to the business logic can be explored supported
by a model comparison tool (see Section 5.4). Modelers and quality assurance
(QA) managers can browse through an automatically processed overview of dif-
ferences between two versions of the same model and explore semantic changes of
two versions.

4. Transform into Abstract System (optional): An automated model transformation
translates an Amabulo model into an abstract system (a Coloured Petri Net)
automatically. No user interaction is needed during this action, which provides
an abstract implementation of the specified business logic in the form of a formal-
founded structure. This abstract representation of the modeled business logic
allows analysis functions based on Peri Net theory. Furthermore, such a generated
CPN provides a platform-independent formal specification of the business logic,



CHAPTER 3. ARCHITECTURAL OVERVIEW 51

1. Edit Visual Model

3. Inspect Model 
Differences

 5. Analysis and 
Simulation 

6. Explore Code
Differences 

8. Manual 
Extensions

2. Transform into
Abstract Model

4. Transform into
Abstract System

7. Transform into
Programm Code

Modeller

Modeller, 
QA Manager

QA Manager

QA Manager, 
Software Developer

Software 
Developer

Figure 3.2.2: Amabulo Process



CHAPTER 3. ARCHITECTURAL OVERVIEW 52

which has to be implemented by concrete code generators.

5. Analysis and Simulation (optional): After an abstract model is translated into a
CPN, QA managers can apply static and dynamic analysis functions as well as
simulation runs. Proper tools for Coloured Petri Nets, such as CPNTools [CPN],
support a set of built-in analysis functions and a graphical user interface so that at
least a set of standard analysis functions, such as the determination of the degree
of transitions’ liveness or the connected component of a net, can be processed
without the need for further work.

6. Explore Code Differences: Supported by a code comparison tool (see Section 7.3),
developers and QA managers are able to explore scheduled code changes. De-
pending on the semantic differences between two versions of the same model, as
calculated in step 3, the code comparison tool provides an overview of code arti-
facts that are scheduled to be edited, added, or removed automatically and code
artifacts that may have to been edited manually.

7. Transform into Program Code: An automated code generation process transforms
an abstract model into code fragments of the targeted platform. If needed and
depending on the actual implementation of the code generator, additional code
generation parameters can be used to fine tune the code generation process. Our
sample infrastructure contains a code generator that produces a deployable J2EE
application consisting of EJB components, a simple user interface implementation,
and a connection to the persistency layer.

8. Manual Extensions: If generated code fragments have either to be modified or
added manually, developers are free to do this in their preferred development
platform, for example eclipse IDE [Ecla]. Manual extensions are required typically
if the generated code has to be integrated with external systems or otherwise
generated subsystems.

3.3 Summary

In this chapter we have introduced the main concepts of an Amabulo infrastructure
blueprint, which targets the support of the modeling and generation of business logic
for information systems. Therefore, we have developed five different infrastructure lay-
ers. Each layer addresses specific tasks or abstraction levels during the development



CHAPTER 3. ARCHITECTURAL OVERVIEW 53

and maintenance process: The Visual Model Layer is responsible for visual modeling;
the Abstract Model Layer provides a domain specific view that is independent of visual
modeling languages and focuses only on business logic aspects; the Abstract System
Layer contains the business logic model in the form of a Coloured Petri Net, which is
a formal-founded structure, as needed for automated quality assurance purposes. The
Code Generation Layer is responsible for automated code generation, based on the ab-
stract model. And finally, the Application Layer contains the generated code artifacts
that may be edited manually. Furthermore, we have introduced a methodology that
consists of two different phases: The first phase addresses the setup of an Amabulo
infrastructure and its integration into the project environment. The second phase speci-
fies iteratively applied development and maintenance tasks, which results in an, at least
partly, generated system implementing new, changed and unchanged domain require-
ments.



CHAPTER 3. ARCHITECTURAL OVERVIEW 54



Chapter 4

Visual Model Layer

This chapter introduces the Visual Model Layer of the Amabulo infrastructure blueprint
in detail and provides an instance in form of an UML profile. A Visual Model Layer
is responsible for providing an infrastructure for visual modeling tasks, which are used
to specify domain and technical requirements with software models. For this purposes,
concrete implementations of this layer contain a visual modeling language definition that
specifies all supported model elements and their semantics and a modeling tool that is
used by modelers to create and modify instances of the meta model. Moreover, a set of
model transformation rules is also defined in this layer, which translates visual models
into abstract models of the Abstract Model Layer. Figure 4.0.1 gives an overview of the
elements of a Visual Model Layer and its relations as introduced in this chapter. At
first, a discussion of requirements for visual software models for business logic is pro-
vided. These requirements have to be considered if a concrete Visual Model Layer has
to be supplied when setting up an Amabulo infrastructure during setup and integration
phase (as described in Section 3.2.1). Thereafter, several visual modeling languages are
evaluated against these requirements. Subsequent to a short overview of concepts for
customizing the Unified Modeling Language (UML), an Amabulo UML profile (compris-
ing UML activity diagrams, state diagrams and class diagrams) is defined for the use as
meta model of this Visual Model Layer. Moreover, this chapter provides an automated
mapping from Visual Model Layer into Abstract Model Layer. For this reason, re-
quirements on model transformation languages are discussed and several transformation
languages are evaluated against these requirements. Implementation details of model
transformation rules are given in extracts. Finally, the most important requirements for
visual modeling tools are discussed.

55



CHAPTER 4. VISUAL MODEL LAYER 56

Visual Model:
UML Model (Activities, 

States, Classes)

Meta Model:
UML Superstructure / 
Amabulo UML Profile

instance ofuses Modeling Tool:
Magic Draw

exports

Modeler

Visual Model 
Layer

Abstract Model Layer

Model Transformation (ATL)

Model Transformation Code Generation  Tool/
Concept

Dependency

Figure 4.0.1: Detailed View on the Visual Model Layer

4.1 Visual Modeling Languages for System’s Behavior

After introducing a list of requirements that have to be met by a visual modeling lan-
guage, this section provides an overview and evaluation of a set of tool-supported visual
modeling languages with regard to the use in the Visual Model Layer.

4.1.1 Requirements for Visual Modeling Languages

In order to select a visual modeling language to be applied in the context of the Visual
Model Layer of an Amabulo infrastructure, several requirements have to be considered:

Support of Domain and Technical Aspects Depending on the current phase of
a development process, which comprises analysis, design, implementation, and mainte-
nance, different stakeholders get in touch with models and need to work with models,
even if they have to understand them only. While in early phases a model rather reflects
domain concepts than technical aspects, usually it becomes more and more technical
in later phases of the development process. Nevertheless, domain concepts have to be
identified and discussed together with functional departments also in matured models.
This is important at least if change requests have to be implemented, for example in the
case of changed domain requirements. Hence, a visual modeling language should be as
easy as possible to understand, and it should provide all notation elements needed to
express all required technical aspects necessary for the code generation of business logic.

Integration of Structural and Behavioral Views Aspects of a system that are
typically characterized by their structural information (such as data objects, user inter-
faces, physical deployment, subsystems, components, and messages) have to be consid-



CHAPTER 4. VISUAL MODEL LAYER 57

ered as well as aspects of a system that are typically characterized by their behavior at
runtime (such as business logic, protocols, consequences of user interaction, method call
cascades, and exception handling). As stated in Section 2.6.1, business logic depends on
business objects, which stem from the persistency layer, and user input, which is derived
from the presentation layer. Moreover, business logic also modifies business objects and
controls manual and automatic functions of the system. Hence, a technical model of
business logic should comprise behavioral as well as structural views.

Several Views on Several Levels of Abstraction If visual software models are
used for code generation, they have to be complete, consistent, and correct in relation
to the software requirements. As a consequence, the complexity of software models
increase, and modelers have to create and maintain large software models with hundreds
or thousands of elements. At the same time, models are critical artifacts, because
modeling errors result in code errors directly. Despite that, creation and maintenance of
large models are still a rather manual processes. Because of the complexity of software
models, modelers have to be supported in selecting the preferred view for their modeling
and model maintenance tasks [WL06].

Industrial Tool Support Providing a usable modeling environment requires more
than providing just the needed visual notation elements. Depending on project’s needs,
specific functions such as multi-user support, shared repositories, support of large mod-
els, support of different modeling languages, support of different versions of a specific
modeling language, export and import of models, automatic generation of documenta-
tion or program code, tailoring of a modeling language and support of domain specific
languages, automatic layout, syntax check and interactive modeling support for choosing
current notation elements have to be supported. We consider a modeling language as
well supported if at least one modeling tool that meets these requirements is available.

Well-defined Semantics A main purpose for the use of visual modeling languages is
the opportunity to provide a more precise notation compared to written text or sketches.
For a majority of person-to-person communication situations, a structured definition of
model semantics is sufficient, even if there is no underlying formal definition provided.
However, if automatic model simulation and analysis are needed or if any other formal
verification or semantic analysis of a model is needed, the applied modeling language
requires a formal-founded meta model. Besides, a formal definition supports the devel-



CHAPTER 4. VISUAL MODEL LAYER 58

opment of automatic processing routines, such as model transformations, by preventing
any ambiguity.

4.1.2 Overview and Evaluation of Visual Modeling Languages

This section introduces a set of relevant visual modeling languages, which are used
particularly in the context of modeling system’s behavior for the business logic of in-
formation systems. The basic set of visual modeling languages can be derived directly
from the first row (visual models) of Table 2.1. The following languages are analyzed
subsequently in detail: EPC, BPMN, Petri Nets, State Charts, MSC, YAWL, and UML.

We do not consider informal sketches, E/R diagrams, Nassi-Shneiderman diagrams,
Decision Trees, and Data Flow diagrams for detailed analysis. Due to their lack of
semantics, informal sketches are not applicable for the use as a modeling language.
Entity-Relationship diagrams are used to model relations between data entities and do
not focus on behavioral aspects of a system. A Decision Tree is a tree-like model sup-
porting decisions as well as their possible consequences and does not support modeling
concepts for systems behavior. Nassi-Shneiderman diagrams focus on behavioral as-
pects, but only on very low visual level. They are suitable for detailed descriptions of
algorithms, but do not support the complex interrelation of different parts of a system.
Data Flow diagrams contain an abstract graphical depiction of the data flow through a
system. However, model details such as order of processes, or control flows aspects are
missing.

Event Driven Process Chains

Event driven process chains (EPC) [KNS92] are used as graphical business process mod-
eling language mainly by business modelers to describe processes on an abstract level
(for an example see Figure 4.1.1). In the EPC context, processes are chains of events
and functions that are linked by logical connectors. Three different types of connec-
tors, namely AND, OR, and XOR, are available to determine if control flow paths are
processed alternatively or simultaneously. In general, an EPC model may consider orga-
nizational responsibilities of functions and processes as well as dependencies to systems
or specific artifacts. Nevertheless, event driven process chains never leave the business
analysis view nor do they provide modeling concepts for more technical information
as needed for software modeling purposes. Hence, EPCs are not suitable for modeling
technical aspects of an application’s business logic.



CHAPTER 4. VISUAL MODEL LAYER 59

first decision

X

second 
decision

send 
declinature 
message

first decider 
accepted

declined

X

accepted

send 
acceptance 
message

X

acceptance 
message

sent

declinature 
message

sent

User

User

System System

Figure 4.1.1: EPC Model Example



CHAPTER 4. VISUAL MODEL LAYER 60

first 
decision

Offer

second 
decision

send 
acceptance 
message

send 
declinature 
message

Offer

Offer Offer

Figure 4.1.2: BPMN Model Example

Business Process Modeling Notation

Comparable to EPCs, the Business Process Modeling Notation (BPMN) [Obj09] (see
Figure 4.1.2 for an example) is a visual modeling language designed to model and manage
business processes at business level. A process consists of several connected activities,
where the control flow is determined by gateways and events. BPMN addresses business
users as well as business analysts and could provide a structured analysis model for
software architects. Furthermore, BPMN was designed to support process execution
environments (such as workflow management systems) or web service orchestrations.
Nevertheless, beyond process modeling BPMN do not support seamless integration with
further modeling concepts (such as structural modeling or state modeling). However,
supporting multiple views onto a system is an essential requirement for modeling and
generating program code for business logic.

Petri Nets / Coloured Petri Nets

Petri nets [Pet62] and extended Petri nets such as Coloured Petri Nets [Jen92] are formal
modeling languages for system’s behavior. As shown in Figure 4.1.3, their basic modeling



CHAPTER 4. VISUAL MODEL LAYER 61

second decision

first decision made

first decision

second decision made

send message

before first decision

message sent

Figure 4.1.3: CPN Example

elements are places (circle shaped) and transitions (rectangle shaped) connected through
edges (directed arcs). A place is a storage for so-called tokens. A transition stands for an
executable action or function and consumes tokens from preceding places and puts tokens
into subsequent places. With these simple modeling elements, complex processes or
behavioral aspects of systems in general can be modeled mathematically. Petri nets are
a common used formalism for system’s modeling, and analysis and simulation purposes.
Since they are formal-founded, Petri nets support the automated execution of static
and dynamic analysis functions. However, due to the simple structure of Petri nets, a
model of a real world problem or system usually became large and complex. It is hard
to understand and to maintain and requires a huge level of abstraction capabilities. As
a difference, for example, to EPC or BPMN, Petri nets are not designed for business
users or analysts but for advanced technical or scientific staff. Furthermore, pure Petri
nets only focus on behavioral aspects of a system and do not provide a link to structural
modeling concepts. Only with Coloured Petri Nets, types of (coloured) tokens can be
distinguished, and instances of tokens can be identified by their internal state. However,
even with the use of Coloured Petri Nets, the resulting models remain complex and very
difficult to understand; and the link to structural modeling languages is still missing.



CHAPTER 4. VISUAL MODEL LAYER 62

State Charts

As presented in [Har87], state charts became an important and commonly used modeling
paradigm for behavioral software models. They basically consist of states and transitions
between states (see Figure 4.1.4). A state in a state chart is an abstraction of a discrete
state of a structural entity (such as a system or an object). A transition, usually modeled
as a directed arc, defines possible switches between states: If two states are connected
through a transition, a structural entity can change its state following the transition.
Triggers of transitions and executed functions, which actually perform the transition,
are specified as inscription of a transition. In the context of embedded systems and
automated verification of models and systems, state based approaches are dominant.
However, if applied for process modeling purposes, pure state based approaches come
with some disadvantages: If complex systems, such as industrial information systems,
are modeled only considering states of objects or the system as a whole, the resulting
state charts would easily reach an unmanageable high amount of states. Moreover,
activities and functions that do not change the state of any object but affect the control
flow, lead typically to anonymous (empty) states in the state chart. Besides, domain
experts are usually not familiar with the state modeling concept. This hinders huge and
complex state charts to ease communication between developers and domain experts.

Message Sequence Charts

Message Sequence Charts (MSC) [Int04] are behavioral models supporting interaction or
scenario modeling. They are often used in real-time and distributed systems (see Figure
4.1.5 for an example). MSC focus on messages between systems and components. A
typical domain for message sequence charts are communication protocols. Compared to
the process modeling paradigm, scenario models, like MSC, comprise one possible flow
through a process, as defined telecommunication protocols require. However, business
processes support usually several control flow paths, which all have to be implemented
as defined. Hence, using MSC as visual modeling language each possible flow has to be
modeled in an extra view. This leads to model maintenance problems, because to keep
the whole model in an consistent state if one part of the control flow path changes, all
corresponding MSC diagrams have to be changed, too.



CHAPTER 4. VISUAL MODEL LAYER 63

before first 
decision 

declined

declinature 
message 

sent

acceptance 
message 

sent

first decider 
accepted

 accepted

first decision

first decision

second decision

second 
decision

send acceptance 
message

send acceptance 
message

Figure 4.1.4: State Chart Model Example

User 2 User 1 Main 
System

show user interface

make first decision

show user interface

make second decision

Message 
System 

provide message data

message sent

Figure 4.1.5: MSC Model Example



CHAPTER 4. VISUAL MODEL LAYER 64

first 
decision

second 
decision

send 
declinature 
message

send 
acceptance 
message

Figure 4.1.6: YAWL Model Example

Yet Another Workflow Language

The modeling language Yet Another Workflow Language (YAWL) [vdAtH05] defines a
formal-founded workflow language and supports typical workflow patterns (for an ex-
ample see Figure 4.1.6). Initially inspired by Petri nets, YAWL supports additional
constructs such as multiple instances, merges, or joins. Due to these extensions, YAWL
could not be mapped back into Petri nets, and it is described formally by labeled tran-
sition systems. YAWL can be directly used for workflow management purposes with an
(open source) execution engine. Since the original intention of the authors of YAWL
was to create a workflow language, YAWL does not provide any support for integration
with further modeling concepts, such as structural modeling.

Unified Modeling Language

As a difference to the above described visual modeling languages, the Unified Modeling
Language (UML) [Obj07b] integrates several modeling concepts into one modeling lan-
guage definition, as the example in Figure 4.1.7 illustrates. Beside structural modeling
concepts, such as class diagram or component diagram, UML supports use-case mod-
eling (use-case diagram), state modeling (state diagram), scenario modeling (sequence
diagram), and process modeling (activity diagram). The UML predominantly addresses
software architects and developers. However, in early phases, for example, during re-
quirements engineering, domain experts can be involved in modeling tasks or just (man-
ual) model quality assurance. Most of the UML diagrams support several levels of detail
so that a more abstract but easy to understand analysis model can be refined toward
a technical design or implementation model without switching the modeling languages.
As a difference to other modeling language, the Unified Modeling Language comes with
a huge and complex underlying meta model. Despite of a partly-formal foundation by
mapping subsets of UML elements onto well-defined modeling languages, such as Petri



CHAPTER 4. VISUAL MODEL LAYER 65

State Diagram - Offer:decision

Class Diagram - Offer

firstDecider
secondDecider
decision

Offer

declined 

firstDeciderAccepted

undecided

accepted

Activity Diagram - Four Eyes Decision

first 
decision

second 
decision

send 
declinature 
message

send 
acceptence 
message

[firstDeciderAccepted]

[declined]

[accepted]

[declined]

Offer

Offer

Offer

Offer

Offer

Offer

Figure 4.1.7: UML Model Example

nets, the original semantics of UML modeling elements is described in written text and
contains declared semantic variation points, which allow project specific and possibly
ambiguous semantics.

Nowadays, a lot of industrial modeling tools for different visual modeling languages,
for example, MagicDraw [NoM], Enterprise Architect [Spa], or Rational Software Ar-
chitect [Int], are available. Therefore, in most situations it is not necessary to design
and implement yet another UML modeling tool. In spite of the success story of UML as
world-wide used modeling language, it is not usual that standard modeling tools support
the complete UML meta model [EES09].

4.1.3 Conclusion

Table 4.1 provides an overview of visual modeling languages analyzed regarding the re-
quirements introduced in 4.1.1. A “-” means the requirement is not supported, an “o”
stands for partly supported requirements, and a “+” indicates well supported require-



CHAPTER 4. VISUAL MODEL LAYER 66

EPC BPMN Petri
Nets

State
Charts MSC YAWL UML

Domain and
Technical Aspects - - - o o - +

Structural and
Behavioral Views - - o o o o +

Several Views and
Levels of Abstraction - - - - - - +

Industrial Tool
Support + + + + + + +

Well-defined
Semantics o + + + + + o

Table 4.1: Evaluation of Behavioral Modeling Languages

ments. Compared to other modeling languages the UML comprises modeling concepts
for both, domain and technical aspects. Moreover, the UML contains several structural
and behavioral diagram types, which allow modelers to provide different views to a
model in different levels of abstraction. Industrial tool support is given for all evaluated
modeling languages. However, compared to other behavior models, the UML does not
provide a complete well-defined semantics. The analysis of visual modeling languages
for system’s behavior lead us to the conclusion that the Unified Modeling Language is
the most suitable language with regard to the relevant requirements. More precisely, we
decided to provide an UML profile as concrete instance of the Visual Model Layer, which
can be reused easily in further projects. With an UML profile we can express statements
at the visual model level that are in particular required to support robustness features,
such as domain states and local conditions. Nevertheless, an implementation of further
modeling languages as instances of the Visual Model Layer of an Amabulo infrastructure
is not excluded.

4.2 Amabulo UML-Profile - A Meta Model for Modeling

Business Logic
1

After the evaluation of several visual modeling languages for the use as Visual Model
Layer in an Amabulo infrastructure in the previous section, this section provides a
definition of an UML profile for visual business logic models.

1A preliminary version of the discussion in this section was published in [BG08].



CHAPTER 4. VISUAL MODEL LAYER 67

In an Amabulo infrastructure, a visual model is used for both, manual modeling
and automated processing. As shown in Figure 4.0.1 the visual model is created and
modified by a human modeler using a visual modeling tool and afterwards translated
automatically into an instance of the abstract model. Hence, the definition of the visual
model needs to be understood and processed by humans as well as by computers. Unfor-
tunately the Unified Modeling Language comes with a huge and complex meta model.
It consists of 350+ elements described in more than 700 pages so that automated trans-
formation rules considering all UML meta model elements would be very complex and
would cause enormous development and maintenance efforts. Moreover, training efforts
for modelers would also be enormous, in particular if all UML diagrams and all model
elements can be used. If UML models have to be processed automatically, they have
to be restricted to a subset of meta model elements and modelers have to consider spe-
cific modeling conventions. Contrariwise, there is often a need to extend the default
set of modeling elements as well as their default semantics with special domain specific
concepts. For both purposes, extension and restriction, the UML provides a powerful
concept for customization: so-called “profiles”.

As part of this thesis, we defined an UML profile containing a subset of UML model-
ing elements, which includes only the elements that are necessary for a later generation
of business logic code. Therefore, our profile supports three different diagram types, each
providing a conceptually different view onto a model: At analysis level process views,
which are depicted in activity diagrams, become more and more refined and enhanced
with technical information, until a level of modeled details is reached that is suitable
for code generation. A structural view onto the model is provided by class diagrams
that contain domain entities modeled as business objects. The state view, illustrated by
state machine diagrams, is used to specify system-wide domain specific constraints that
never must be violated.

In the following, Section 4.2.1 gives a short overview of the Unified Modeling Lan-
guage architecture and their customization concepts. Thereafter, our UML profile is
introduced in detail view by view: Section 4.2.2 provides the process view, Section 4.2.3
provides the structural view, and Section 4.2.4 provides the state view.

4.2.1 UML Language Architecture and Customization

A survey of the UML language architecture considering profiles for language customiza-
tion is shown in Figure 4.2.1: The UML Infrastructure provides a meta model that is
used to define all UML diagram types and language elements. The UML Superstructure



CHAPTER 4. VISUAL MODEL LAYER 68

UML Infrastructure

UML Superstructure

UML Profile

UML Model

is Instance of

tailoring = extending + restricting

is Instance of

UML Infrastructure

UML Superstructure

UML Model

is Instance of

is Instance of

Figure 4.2.1: UML Language Extension

document specifies the common-known UML with its 13 different diagram types. With-
out any customization, an UML model is a direct instance of the UML Superstructure
(see Figure 4.2.1, left).

If UML customization is required, the easiest way to tailor standard UML for specific
needs is to define a so-called “Profile”. As the UML standard [Obj07b] defines: “The
Profiles package contains mechanisms that allow meta classes from existing meta models
to be extended to adapt them for different purposes. This includes the ability to tailor
the UML meta model for different platforms (such as J2EE or .NET) or domains (such
as real-time or business process modeling). The profiles mechanism is consistent with
the OMG Meta Object Facility (MOF).” An UML model following an UML profile is
an instance of this profile (see Figure 4.2.1, right).

Tailoring the UML

Technically, an UML profile consists of a set of semantic and visual extensions of stan-
dard modeling elements called “stereotypes”. An extension of an element is usually
(domain) specific semantics provided at least in form of written text together with the
profile definition. Each stereotype comes with a unique name that is used in diagrams
to identify an extended element. Besides, the visual representation can also be adopted
by providing a new shape for an extended element.

Figure 4.2.2 shows an example for the definition and use of a stereotype extending



CHAPTER 4. VISUAL MODEL LAYER 69

UML architecture

- 4 -

UML Infrastructure

UML Superstructure

UML Profile

UML Model

is Instance of

tailoring = extending + restricting

is Instance of

UML Infrastructure

UML Superstructure

UML Model

is Instance of

is Instance of

«Database»
Repository Repository

«stereotype»
Database

Class

Defintion Use

Figure 4.2.2: Example Stereotype

a simple UML class. A new stereotype is defined using an extension association from
the target element, which has to be extended, to the new stereotype. In our example,
the new stereotype is called “database” to indicate that this model item stands for a
technical database. For providing a more visual support for modelers a new shape is
defined, as shown on the right. A modeler decides either to use the new database shape
or a stereotyped rectangle. In both cases the modeled information is equivalent.

Compared to UML profiles as extension-mechanism, the UML introduces no con-
cept for explicit restrictions, such as prohibition of elements or forcing modelers to use
elements only in a specific pattern. The only possible way to apply restrictions are
modeling conventions. A modeling convention provides a guideline for modelers con-
taining instructions that determines a valid model. If a visual model especially has to
be processed automatically, a set of modeling conventions assures that a model can be
understood and processed in the correct way. Beside conventions for the use of diagram
elements to support automatic model transformations, conventions considering the lay-
out of diagrams can be used to support model understanding. Layout conventions for
process models could contain instructions such as “the modeling orientation is usually
from top to bottom” or “exceptional control flows have to be aligned always on the right
side”. Applying layout conventions may reduce the time needed for model understanding
by new project members or during the implementation of changed requirements, as well
as it may reduce the risk of misunderstandings.

4.2.2 Amabulo Process View: UML Activity Diagram

Activity diagrams provide the process view onto a model. In general, our UML profile re-
stricts allowed elements in UML activity diagrams to a basic set of elements as described
in the following. While this subsection introduces main concepts and ideas behind the
Amabulo profile, a detailed and technical definition of all profile elements for process



CHAPTER 4. VISUAL MODEL LAYER 70

modeling is given in Appendix A.1. For the sake of simplicity we excluded modeling
elements that only provide so-called “syntactic sugar”. This includes all elements that
can be replaced by a set of elements that carries logical equivalent information. Figure
4.2.3 provides an overview of all allowed model elements that can be used for process
modeling in the context of the Amabulo UML profile:

We use Actions to represent single functions and Activities to represent a structured
process containing actions and further activities as well as control flow edges and control
flow decisions. Activities are used to group actions and their interrelations by encapsu-
lation, which is important for the refinement of purposes during the modeling process.
Actions are stereotyped either UserAction or SystemAction, which indicates that they
are processed manually or automatically. With regard to the generated information sys-
tem, a UserAction requires a user interface providing all information as modeled with
input pins that is needed by human users the process this action. Additionally, this user
interface has to provide input elements to collect all required information (as modeled
with output pins). In contrast to user actions, a system action does not provide any
user interface. A system action requires a technical application interface for integration
purposes that provides access to all needed information as modeled with input pins and
which collects all required information as modeled with output pins.

The sequence of functions and processes is modeled using a set of control flow nodes:
MergeNodes are used merge multiple control flows, DecisionNodes are used to model
XOR decisions, ForkNodes are used to specify control flows that are processed in parallel,
and JoinNodes are applied to join parallel control flows. Only control flow edges are used;
object flow edges are not considered. Moreover, control flow edges can be constrained by
Guards. Only if the guard can be evaluated to true at runtime, the refined control flow
element is activated. Initial actions of a process are connected to the InitialNode. Final
actions of a process are connected to the ActivityFinalNode. If a final action of a process
was executed, all other active control flows or actions of the process are stopped, if there
are any. In contrast to final actions, actions that are connected to the FlowFinalNode

are used to indicate the end of a control flow without interrupting further actions that
are processed currently.

If any action requires business objects during their execution, InputPins and Out-

putPins are used as part of our profile. If an action has an InputPin of object type
“Y” and there is no OutputPin of type “Y” modeled, an instance of object type “Y” is
used read-only. Its internal state will not be modified. If an action has an OutputPin of
object type “Y” and there is no InputPin of type “Y” modeled, a new instance of object



CHAPTER 4. VISUAL MODEL LAYER 71

action

action

«precondition»
BusinessObject.attribute == property

«postcondition»
BusinessObject.attribute == property

«UserAction»
action

process

actionObject

«SystemAction»
action

action Object

actionObject Object

[Guard]

[Guard]

[Guard]

[Guard]

[Guard]

[Guard]

action

action

action

Action, 
stereotyped "SystemAction"

Action, 
stereotyped "UserAction"

Activity

Initial Node,
connected to a Action

Activity Final Node,
connected to a Action

Flow Final Node,
connected to a Action

Decision Node

Merge Node

Fork Node

Join Node

Action with 
Input-Only Parameter

Action with 
Output-Only Parameter

Action with 
Input-Output Parameter

Action with 
Precondition

Action with 
Postcondition

Name, Description Shape Name, Description Shape

Figure 4.2.3: Amabulo UML Profile: Overview of Model Elements of Activity Diagrams

type “Y” is created. Finally, if an InputPin and an OutputPin of object type “Y” is
modeled to an action, an instance of object type “Y” is used, and its internal state will
possibly be modified.

Furthermore, local preconditions and local postconditions can be specified and re-
lated to actions and processes. If a local precondition is modeled, it has to be assured
before the execution of the action or process starts. Otherwise, if a local postcondition
is modeled, this condition has to be assured before the current action or process finishes.



CHAPTER 4. VISUAL MODEL LAYER 72

Simple Class, 
specifies a BusinessObject

Class with Attributes, 
specifies a BusinessObject 

with Attributes
Business Object

AttributeA
AttributeB

Business Object

Name, Description Shape Name, Description Shape

Figure 4.2.4: Amabulo UML Profile: Overview of Model Elements of Class Diagrams

4.2.3 Amabulo Structural View: UML Class Diagram

From the viewpoint of business logic the view required onto structural aspects of a system
is significantly less complex compared to the view onto structural aspects from the
viewpoint of the persistency logic. Only business objects that are relevant for decisions
during the control flow or objects that are required by actions or manipulated by actions
or both are considered by the business logic. Hence, as Figure 4.2.4 shows, we support
only business objects and their attributes in our UML profile for business logic. They
are created, read and modified by actions of the process. A business object, which
is modeled as class, comprises usually one or more domain properties, which are its
attributes. These attributes store properties of business objects and, in particular, they
control flow decisions during the runtime execution of the modeled business logic. A
detailed definition of the structural modeling elements is given in Appendix A.1.

At modeling time further modeling elements for class diagrams can be used as well.
However, only the elements which are valid elements of our profile are considered by
further automated processing tasks. Nevertheless, a later integration of further modeling
elements is not excluded.

4.2.4 Amabulo State View: UML State Diagram

In our Amabulo UML profile, state machines, which are modeled in state machine di-
agrams, are used to express domain states of business objects. Domain states indicate
that business objects are in a specific state of a set of states that was determined by
domain experts. Such a domain state may affect control flow decisions as well as the
further treatment of the object by actions of the process. For example, the live cycle of
business objects can be specified in our profile by a state machine diagram.

In contrast to the common use of states and also in contrast to the original UML



CHAPTER 4. VISUAL MODEL LAYER 73

specification, we use state machines to refine attributes of business objects: A state
chart is related to a single attribute and specifies its allowed values and transitions.

If a state in a state machine represents the state of an object as a whole, we call it
object scope. With object scope a state stands for one possible combination of values
of all attributes of one object. Otherwise, if a state machine represents the state of a
system as a whole, we call it system scope. With system scope, a state stands for one

possible combination of values of all attributes of all objects. In contrast to these both
types of states, in our approach a state represents one possible value of one attribute of
one object, which we call property scope.

The advantages of this different use of state charts are:

• The complexity of state machines remains manageable, because they are restricted
to the domain states of one attribute.

• In contrast to commonly used approaches, we are now able to differentiate changed
attributes and focus only on the relevant ones. The importance of attribute changes
in an object is not necessarily equal: the information that an insurance police
expired is probably much more important considering business process aspects
than the information that the phone number of an insured has changed.

• Not each executed function leads to changed domain states. For example, the
action “change phone number” can be executed as much as needed without affecting
the current domain state of an insurance police. Hence, with separating domain
states from object scopes and putting them into attributes, attribute values can
be changed without affecting the domain state of the whole object.

Specified domain constraints have to be assured independently of the current action of a
business process. Any action of a process that modifies business objects with attributes
that are refined by state charts must not violate defined transitions. Even if an action
comes with its own local preconditions or postconditions. If the business logic model
consists of dozens of process views with hundreds of model elements, domain state
charts provide a more abstract view onto the business logic: They focus only on the
most important states and transitions and define that the business logic has to process
them, but they hide details of where these transitions are executed. Moreover, functions
that do no affect any domain state as well as the control flow decision are completely
transparent in the state view, which also helps to reduce the visual complexity of state
diagrams.



CHAPTER 4. VISUAL MODEL LAYER 74

State state

Initial State state

Transition,
from stateA to stateB stateA

stateB

Name, Description Shape Name, Description Shape

Figure 4.2.5: Amabulo UML Profile: Overview of Model Elements of State Machine
Diagrams

As we did for the process view and the structural view, we restricted the types of
modeling elements to be used in state machines to a subset of the original specified state
modeling elements of the UML standard. Figure 4.2.5 gives an overview of the used state
modeling elements, which are described in detail in Appendix A.1. Technically, a state
machine is a refinement of attributes of business objects where each state represents
a valid value of the attribute. In one business object several attributes can be refined
with state machines at the same time. The set of transitions determines initial values
and possible changes of values that are processed during the runtime of the system by
actions, which is modeled in the process view. In our approach, only actions affect
attribute values of business objects, processes do not. Moreover, actions can change
more than one attribute in more than one business object during their execution.

4.2.5 Example Model

An example model following our UML profile definition is shown in Figure 4.2.6. It
specifies a detailed part of an industrial business process: a four eyes decision process.
In a four eyes decision process two different persons have to agree on a domain specific
fact or question to finally get a result. Otherwise, if one of the deciders declines, a
second decision is no longer needed. A four eyes decision is for example applied in
online news portals, where an article only becomes published if both, the author and
the editor give their OK. A further use case is given by offer negotiation processes in
the insurance business: an insurance offer only enters into force if two different experts
decide to accept it.

The four eyes example model in Figure 4.2.6 comprises three different diagrams:
A process view, a structural view and a state view. The model contains one type of
business object Offer, which has three attributes. One of these attributes, namely,



CHAPTER 4. VISUAL MODEL LAYER 75

decision is refined by the state view. The state view defines four different states: The
state undecided is an initial state. An undecided offer can turn into the state declined

or firstDeciderAccepted, whereas an offer in the state firstDeciderAccepted can turn into
accepted or declined. No more transitions or states are allowed.

Activity Diagram - Four Eyes Decision

«UserAction»
first decision

«UserAction»
second 
decision

«SystemAction»
send 

declinature 
message

«SystemAction»
send 

acceptance 
message

[Offer.decision == firstDeciderAccepted]

[Offer.decision == declined]

[Offer.decision == accepted]

[Offer.decision == declined]

Offer

Offer

Offer

Offer

Offer

Offer

«precondition»
Offer.decision == undecided

«postcondition»
Offer.decision == (declined || 
firstDeciderAccepted)

«precondition»
Offer.decision == firstDeciderAccepted

«postcondition»
Offer.decision == (declined || accepted)

«precondition»
Offer.decision == accepted

«precondition»
Offer.decision == declinded

State Diagram - Offer.decisionClass Diagram - Offer

firstDecider : String
secondDecider : String
decision : String

Offer

declined 

firstDeciderAccepted

undecided

accepted

Figure 4.2.6: Four Eyes Decision Process, UML Model

Using the structural view together with the state view only, a human modeler gets
an overview of the relevant steps of the live cycle of an Offer, which actually comprise
four state transitions. The process view provides a complementary view. It specifies



CHAPTER 4. VISUAL MODEL LAYER 76

highly detailed the actual process, its actions, and its decisions. As modeled in the
activity diagram, two UserActions have to be supported. This means two actions have
to be supported with a suitable user interface: A first decision action needs to be imple-
mented, which requires an instance of Offer to be executed, because Offer is modeled
as InputPin. The first decision action also modifies an offer, because Offer is also mod-
eled as OutputPin. Additionally, a precondition forces the incoming offer to be in the
state undecided and a postcondition requires the outgoing offer to be either in the state
declined or in the state firstDeciderAccepted. During the first decision action a first
decision has to be made.

Afterwards, if the offer is yet declined, the action send declinature message is called.
This action is executed automatically and stereotyped SystemAction; it requires an offer
to be started, which is modeled as InputPin. In contrast to the first decision action
the send declinature message action does not modify an offer; Offer is modeled only as
InputPin. During the execution of this system action, an internal implemented function
or an external integrated function is called and no user input is necessary.

Otherwise, if the first decider accepts, a user action second decision is called. Com-
pared to the action first decision an instance of Offer is read and modified and a precon-
dition as well as a postcondition have to be assured. After finishing the second decision,
a further control flow decision has to be made depending on the current state of the
offer. If the offer was declined, the above mentioned send declinature message is called.
Otherwise, if the offer was accepted, the send acceptance message action is executed
automatically. Similar to send declinature message, this action requires an offer to be
processed but does not modify any attribute of an offer. This four eyes decision process
stops orderly after one of both system actions has been finished successfully.

4.3 Mapping from Visual Model into Abstract Model

As described in Section 2.4.2, the availability of structured software models and struc-
tured processing rules for software models are prerequisites for automatic model pro-
cessing. The mapping from the Visual Model Layer into the Abstract Model Layer
is accomplished by automated model transformation. During this transformation all
needed information from a visual model becomes extracted and translated into an ab-
stract model, the Amabulo model. This model contains a purely logical view onto the
system without any visual information and considers business logic purposes only. It is
used as source model to further model automated model processing tasks, such as the



CHAPTER 4. VISUAL MODEL LAYER 77

generation of Coloured Petri Nets or code generation. Due to automated model trans-
formation, modelers and developers do not need to be familiar with each transformation
detail.

During the setup and integration time of a technical project infrastructure already
existing Visual Model Layers and their mapping rules into the Abstract Model Layer
can be reused. However, if a new and not yet supported visual model is required, new
transformation rules from the visual model into the abstract model have to be developed.
For this purpose a suitable model transformation language has to be applied.

The remainder of this section discusses requirements on model transformation lan-
guages, evaluates model transformation languages for the use to translate the above
introduced UML profile into an abstract model representation and introduces a concrete
implementation of a set of such mapping rules.

4.3.1 Requirements for Model Transformation Languages

To determine if a model transformation language is suitable to be used in an Amabulo
infrastructure model, the language has to be evaluated against a set of criteria. For
this reason, we suggest an evaluation process based on criteria that help identify the
practical usefulness of transformation languages. The set of evaluated criteria contains
seven aspects based on [Now08] and is introduced as follows:

Tool Support For an extensive use of a model transformation language, the support
of development, execution and debugging tools is essential. It has to be evaluated if
supporting tools exists and if they are usable. In this context, the coverage of most
important development, execution, and debugging functions has to be assured as well as
quality, documentation, and maturation of available tools. Furthermore, for integration
purposes into existing project infrastructures it has to be analyzed whether a stand-alone
tool is supported, special platforms are required, or plugins for standard environments
are available and under which license a tool is published.

Supported Meta Models A model transformation language has to support all rele-
vant meta model elements. Usually, meta models are instances of a further meta model
called meta meta model, which defines meta concepts to be reused in meta model def-
initions. A model transformation language has to support each model element of such
a meta meta model to allow the transformation rules from one meta model into an-
other. If an UML model is source or target of a model transformation process, the



CHAPTER 4. VISUAL MODEL LAYER 78

transformation language has to support the Meta Object Facility (MOF) [Obj06], be-
cause UML is defined using of MOF. However, the Meta Object Facility provides only a
conceptual basis for meta modeling so that the type of the actual used implementation
has also to be considered. The Amabulo meta model (as introduced in Chapter 5), for
example, is implemented using the Ecore meta model of the Eclipse Modeling Frame-
work (EMF)[Ecl09]. As a consequence, a model transformation language from UML to
Amabulo needs to support Ecore.

Maturation Maturation can be evaluated as a further indicator of the usability of
a transformation languages. Version numbers of last releases, development activity in
open source projects, community support, and published references can be useful hints
to decide whether a transformation language fits the project’s needs. Furthermore,
the number of supported language elements, the number and complexity of published
transformation examples, and their documentation can be indicators to determine its
maturation.

The following criteria are not as important as the above given, but in some cases it
could help to take them into account.

Traceability A model transformation language supports traceability if it is observable
which source elements are generated from which target elements [Mar05]. Traceability
often is supported in declarative transformation approaches, because they define directly
which source elements result in which target elements.

Bidirectionality A model transformation language that enables model transforma-
tions in both directions - from source model into target model and vice versa - using
the same transformation rules supports bidirectional. Applying such a transformation
language, only one set of transformation rules is needed to process bi-directional model
transformations automatically. For example, if a bidirectional transformation language
is used to transform an UML model into an Amabulo model, a transformation from
Amabulo into UML is automatically available. This is an advantage compared to uni-
directional transformation as, for example, for maintenance tasks only one set of trans-
formation rules has to be updated. That reduces the complexity of maintenance tasks
an is a result of the evolution of a meta model.



CHAPTER 4. VISUAL MODEL LAYER 79

Code Reuse Concepts for code reuse through generalization, code libraries, and ser-
vices are commonly used in traditional programming languages to reduce the code com-
plexity. Often used and standardized functions can be encapsulated and prepared for
reuse. The extensive utilization of model transformation rules and complex meta mod-
els leads to a huge number of lines of written code in model transformation languages.
Hence, concepts for code reuse as native part of transformation languages can help to
support development and maintenance of model transformations. Therefore, we suggest
to include this criterion during the evaluation of model transformation languages.

Visual Syntax The more elements of source and target meta models have to be
considered and the higher the degree of structural differences of both meta models is, the
more difficult is it to understand typically complex transformation rules. Hence, a visual
syntax of a transformation language can help to provide a more intuitive instrument than
only text-based transformation rules.

4.3.2 Evaluation of Transformation Languages

A detailed evaluation and comparison of model transformation languages was accom-
plished in [Now08]. Considering tool support as the most important evaluation criteria,
available transformation languages without usable tool support were dropped early and
were not evaluated in detail. Examples for such modeling languages are the Kent Mod-
eling Transformation Language [AK02], MT Model Transformation Language [Tra06],
Mola [KBC05], ATOM [LV02], BOTL [Mar05] and UMLX [Wil03]. Following model
transformation languages providing usable tool support were selected for further eval-
uation: AtlasTransformationLanguage (ATL) [BVJ], Kermeta [DFF+], Tefkat [LS06],
Viatra [Eclb], and OMG’sQuery/View/Transformation (QVT) [Obj07a].

The results of the detailed evaluation of these transformation language considering
the introduced requirements are shown in Table 4.2, where the symbol “+” stands for
good support, “-” for bad or no support, and “o” marks intermediate support which
means that they are not really unusable but not yet suitable. As Table 4.2 shows, only
three of five languages come with suitable tool support. One of them supports the
required meta model (MOF) only via plug-in import and not natively. Comparing the
maturation of the evaluated languages, ATL can be identified as the most interesting
language, because its resources contain a lot of example transformations and complete,
complex use cases, whereas other languages usually provide not more than two to four
examples.



CHAPTER 4. VISUAL MODEL LAYER 80

ATL Kermeta Tefkat Viatra QVT
Tool Support + o + + o

Supported Meta Models + + + o +
Maturation + o o o o
Traceability + - + - o

Bi-Directionality - - - - +
Code Reuse + + + + +

Visual Syntax o o o o +

Table 4.2: Comparison of Model Transformation Languages

In contrast to concepts for code reuse, bidirectionality is supported only by QVT,
which is furthermore the only language supporting visual syntax. Traceability is sup-
ported by ATL and Tefkat and also, rudimentarily, by QVT. Based on the analysis
results as summarized in Table 4.2, we selected the Atlas Transformation Language
as preferred model transformation language for automated model transformation from
UML into Amabulo. The main reasons for this decision were its good tool support as
well as its maturation compared to other transformation languages.

4.3.3 UML Profile Mapping into Abstract Model Layer

In [Now08] an abstract mapping from the Amabulo UML profile into the Amabulo model
(as introduced in Chapter 5) is detailed. This subsection contains only selected examples
to give an introduction into automated model transformation as applied for the above
introduced UML profile. This mapping implements an automated abstraction from
concrete and view dependent UML elements into abstract model elements containing all
information that is relevant for analyzing and generating business logic.

Transformation Example

For illustration purposes, this subsection introduces a simple model transformation ex-
ample taken from the implementation of our UML to Amabulo transformation code (see
Appendix B), which implements the transformation of control flow edges of UML Ac-
tivity Diagrams (see Section 4.2.2) into the succession concept of Amabulo, introduced
in Section 5.3.3.

Figure 4.3.1 illustrates the mapping of simple UML control flows into Amabulo. The
left hand side contains the pattern of the source model, which in this case is a part
of the UML process view. The right hand side contains the resulting pattern of the



CHAPTER 4. VISUAL MODEL LAYER 81

<<SystemAction>>
A

<<UserAction>>
B

[x]

A : SystemFunction B : UserFunction

AB : Succession

AB : Guard
AB : Constraint

predecessor successor

guard

isParallel = false

UML Amabulo

Figure 4.3.1: Abstract Example Transformation

target model as instances of the Amabulo meta model. A simple control flow between
two Actions (SystemAction A, UserAction B) with a specified Constraint (x) have to
be translated. The resulting SystemFunction and UserFunction are named as their
source elements in UML, and both are associated with the same Succession instance
representing their logical connection. The control flow constraint x is transformed into
an instance of Guard, whose Constraint value is set to x.

It is obvious that in many cases different actions and activities are connected to more
than only one flow edge. Figure 4.3.2 illustrates six examples for control paths that
have to be taken into account at transformation time. Our model transformation solves
complete control flow paths including different control nodes (such as decision node,
merge node, fork node, or join node), initial nodes, and final nodes without dropping
any logical information concerning the control flow, its guards, or its control nodes.

Extracted parts of the model transformation rules that translate control flow paths
are shown in Figure 4.3.3: They contain an ATL rule that creates a succession element
from an ordered set of control flow edges. The source node of the first control flow edges
becomes the predecessor of the resulting succession. The target node of the last control
flow edge becomes the successor. If the first source is an InitialNode (see Figure 4.3.2 on
the bottom right), the predecessor remains empty. Comparable to that if the last target
is a FinalNode (see Figure 4.3.2 on the bottom left and middle), the successor remains
empty. If the last target is an ActivityFinalNode (see Figure 4.3.2 on the bottom left),
the resulting succession is labeled final succession of the current activity. Furthermore
(but not part of Figure 4.3.3), all guards that are specified to a path are linked to the



CHAPTER 4. VISUAL MODEL LAYER 82

<<SystemAction>>
A

<<SystemAction>>
B

[x]

<<SystemAction>>
A

<<SystemAction>>
B

[x]

<<SystemAction>>
A

<<SystemAction>>
B

[x]

[y] [y]

<<SystemAction>>
A

[x]

<<SystemAction>>
A

[x]

<<SystemAction>>
B

Simple Connection
Connection with 
DecisionNode

Connection with 
ForkNode

Connection to
ActivityFinalNode

Connection to
FlowFinalNode

Connection to
InitialNode

Figure 4.3.2: Control Flow Variations



CHAPTER 4. VISUAL MODEL LAYER 83

1  rule CreateSuccession (controlflows : OrderedSet(Uml!ControlFlow)) 
2  {  
3    to succession:Amabulo!Succession (  
4      predecessor <- if(controlflows->first().source.oclIsKindOf(Uml!InitialNode)) 
5                       then OclUndefined else controlflows->first().source 
6                     endif, 
7      successor <- if (controlflows->last().target.oclIsKindOf(Uml!FinalNode)) 
8                     then OclUndefined 
9                     else controlflows->last().target 
10                 endif, 
11     finalSuccOf <-  if (controlflows>last().target.oclIsKindOf(Uml!ActivityFinalNode)) 
12                       then  if (controlflows->last().activity.isCalledActivity()) 
13                              then controlflows->last().activity.getCallBehaviorAction() 
14                               else controlflows->last().activity 
15                             endif 
16                       else OclUndefined 
17                     endif, 
18      guard <- controlflows ) 
19 } 

Figure 4.3.3: Example Transformation Rule

new succession elements, and each guard has a property indicating whether it was taken
from a parallel executed control flow having a ForkNode as source (see Figure 4.3.2 on
the top right) or not.

A complete and detailed description of all abstract transformation rules and their
implementation are given in [Now08].

4.4 Requirements for Visual Modeling Tools

After the introduction of an UML profile as meta model for a Visual Model Layer using
UML as visual modeling language and the discussion of automated model transformation
purposes in the previous sections, this section focus on the remaining element of the
Visual Model Layer: the visual modeling tool. Visual software modeling tasks strongly
depend on proper tool support, in particular if complex models have to be created
and maintained by different modelers. Nowadays, several - commercial as well as open
source - modeling tools are available, which can easily be deployed and used for visual
modeling tasks. Hence, when setting up the technical project infrastructure at setup and
integration phase, it has to be decided which of the available modeling tools should be
used. To support this decision process, this section gives a short overview of important
features a modeling tool has to provide for being used in an Amabulo infrastructure:

Visual Modeling of All Required Modeling Elements Supporting visual mod-
eling is the most relevant criterion from the user’s perspective. The term “modeling
tool” does not always mean a visual modeling tool, and not all modeling tools provide



CHAPTER 4. VISUAL MODEL LAYER 84

a comfortable and intuitive user interface. In the case of UML as modeling language,
structural modeling is usually supported by all required model elements. However, pro-
cess views and the integration of different views are not so well supported. For UML as
Visual Model Layer, the modeling tool has to support class diagrams, state machine dia-
grams, and activity diagrams in UML version 2.1.2 as well as the Amabulo UML profile
with all its extensions and restrictions. A seamless integration of several UML modeling
tools using standardized import and export formats is not supported practically, and a
later change of the visual modeling tool requires enormous efforts. For this reason, we
strongly recommend to evaluate a modeling tool using a real world model to figure out
whether a tool fits the needs or not.

Model Export The Visual Model Layer is the topmost layer of an Amabulo project
infrastructure, and all other layers depend directly or indirectly on the visual model.
Hence, a modeling tool has to provide model export functions that support common
known or standardized file formats, such as XMI [Obj07c] or Ecore [Ecl09]. Additionally,
for some reasons, such as providing visual feedback for changes or model analysis results,
it is useful to export not only the logical model, but also the visual information about
the layout and arrangement of the visual model elements.

Model Import For at least two use cases it is important to (re-)import a visual
model into a visual modeling tool: The first use case is the change of the visual layer
during development time, when switching from a pure business process model, which
is the result of the analysis phase, to UML, for technical refinement. Therefore, an
import function for visual and logical information is needed. As second use case, model
comparison or analysis results have to be shown to the visual modeler without forcing
him to leave his known model, for example, a UML model. In this case, a modified
version of the exported model with colored, shifted, and added elements has to be
imported into the modeling tool.

Beside those features, organisational features, such as a central model repository or
multi user support, have to be evaluated depending on project specific requirements.

4.5 Summary

In this chapter we have provided an instance of a Visual Model Layer of the Amabulo
infrastructure blueprint in detail, which is used as visual interface to human modelers



CHAPTER 4. VISUAL MODEL LAYER 85

for the specification of domain and technical requirements. At first, we have discussed
concrete requirements for visual software models for business logic that have to be met
in the context of an Amabulo infrastructure. Thereafter, we have evaluated several vi-
sual modeling languages against these requirements, which have led us to the Unified
Modeling Language (UML) as a suitable modeling language for our purposes. Unfortu-
nately the Unified Modeling Language comes with a huge and complex meta model so
that automated transformation rules considering all UML meta model elements would
be very complex and cause enormous development and maintenance efforts. Hence, we
have argued why and how the UML can be customized using so-called “profiles”. As a
concrete meta model of this Visual Model Layer, we have introduced an Amabulo UML
profile comprising UML activity diagrams, state diagrams and class diagrams to be used
as modeling language for the business logic of information systems. Furthermore, in
this chapter, we have developed an automated mapping from the Amabulo UML profile
(Visual Model Layer) into the Amabulo model (Abstract Model Layer). Therefore, we
have discussed requirements on model transformation languages, and we have evalu-
ated several transformation languages against those requirements, which have resulted
in the selection of the Atlas Transformation Language (ATL). For providing a short
insight regarding implementation details of ATL transformation rules for transforming
an instance of the Amabulo UML profile into an Amabulo model, in this chapter, we
have presented translation rules in extracts, which are responsible for translating control
flows. Moreover, we have discussed shortly the most important requirements on visual
modeling tools that have to be met by any modeling tool used in the Visual Model
Layer.



CHAPTER 4. VISUAL MODEL LAYER 86



Chapter 5

Abstract Model Layer

This chapter introduces the Abstract Model Layer of an Amabulo infrastructure blueprint
as shown in Figure 5.0.1. This layer separates concrete visual modeling languages from
code generator implementations with the help of a domain specific modeling model,
which we call Amabulo model. An Amabulo model provides an abstract, non-visual
view onto the business logic model and is reduced to pure logical information. It con-
tains only model elements that concern business logic and focuses only on information
that is relevant for code generation. Such an additional model layer reduces the com-
plexity of model transformation and code generation rules. Furthermore, it reduces the
number of different transformations in a model driven development project: Code gen-
erator developers only need to consider the small set of elements of an Amabulo model,
and they do not need to know details of the complex meta models of the visual model-
ing languages. And if a new visual model has to be integrated, only the transformation
rules into the Amabulo model have to be developed, even if several code generators are
deployed. Moreover, for model analysis and quality assurance tasks, an Amabulo model
can be automatically transformed into an abstract system.

After providing a general discussion about using an additional abstract model in a
model driven project environment, several visual modeling languages from industry and
academia as well as implemented business logic layers of industrial information systems
are analyzed. As the result, modeling concepts are identified that are necessarily needed
to support modeling and generating the business logic of information systems. Then,
considering the analysis results as requirements for an abstract model between visual
models and code generators, the Amabulo meta model is precisely defined. It integrates
elements for process modeling, state modeling, and structural modeling. Finally, this

87



CHAPTER 5. ABSTRACT MODEL LAYER 88

Meta Model:
Amabulo Model 

Defitnion

instance ofuses Model 
Comparison 

Tool

comparesModeler
Abstract 
Model 
Layer

Visual Model Layer

2

Abstract System Layer

Model Transformation (Java)

Abstract Model:
Amabulo-Model

Model Transformation (ATL)

 Input Model
QA Manager

uses

1..*

Code Generation Layer
1..*

Model Transformation Code Generation  Tool/
Concept

Dependency

Comparison Results

Figure 5.0.1: Detailed View on Abstract Model Layer

chapter introduces a model comparison tool, which computes semantic changes between
two different Amabulo models. In particular, when software models are used for code
generation, a convenient model comparison tool helps to reduce efforts needed for manual
impact analysis tasks. Hence, in this chapter, a model comparison function is defined.
This function provides an aggregated overview of all important model changes concerning
business logic and its technical integration into an Amabulo infrastructure.

5.1 A Domain Specific Model as Model in the Middle

The Abstract Model Layer contains a domain specific model as a model in the middle be-
tween different modeling languages, model transformation engines, and code generators,
to encapsulate concrete visual modeling languages from automated model processing
rules. For this purpose, the domain specific model was designed to support the technical
domain of modeling and generating business logic for information systems. It is used
as technical model and not constrained to a specific business domain, such as finance,
insurance, or logistics.

Such an additional abstract model reduces development and maintenance efforts of
the project infrastructure through (1) minimized complexity of technical interfaces and
(2) a decreased number of required model transformations. As stated in Section 3.2.2,
project specific needs have to be considered when setting up an Amabulo infrastructure
that is going to be used in a model driven development project. Such a customization
leads to tailored architectural layers, as supported by the Visual Model Layer and the
Code Generation Layer. As illustrated in Figure 5.0.1, the Abstract Model Layer encap-



CHAPTER 5. ABSTRACT MODEL LAYER 89

sulates visual models from the Abstract System Layer and code generators and keeps
them independent.

Minimize the Complexity of Technical Interfaces Visual software models (as
discussed in Section 4.1) support different modeling concepts, and each modeling lan-
guage comes with unique model elements. Moreover, different modeling concepts are
supported in different levels of detail; the number of defined model elements varies from
less than 10 (Petri Nets) up to more than 200 (UML), and semantics definition ranges
from written text to formal definitions. As a consequence, a deep knowledge about the
definition of each visual modeling language, which is actually the technical interface
between visual models and code generator, is required by code generator developers as
well as deep knowledge about applied modeling conventions.

Using a middleware as “higher-level interfaces, which mask the complexity of net-
works and protocols and thereby allow developers to focus on application-specific issues,
where they are most qualified to add value.”, as Bernstein stated in [Ber96], became
a standard paradigm in software engineering for distributed systems. We believe that
a model in the middle as corresponding concept in model driven development would
help to provide a higher-level interface that masks the complexity of visual models and
thereby allow transformation developers to focus on project-specific issues, where they
are most qualified to add value. Therefore, using the Abstract Model Layer, code gen-
erator developers only need to know the definition of our Amabulo model (as given in
Section 5.3), which consists merely of 13 model elements and their relations. Each spe-
cific code generator for business logic only needs to consider an Amabulo model instance
and does not need to take care of the definition of the visual model as used in the Visual
Model Layer. This helps us to reduce the complexity of the interface between visual
models and code generation rules.

Decrease the number of model transformations Figure 5.1.1 illustrates a scenario
consisting of three different visual models and three different code generators. If it has
to be guaranteed that each visual model can be used as parameter for code generation
tasks, nine different sets of code generation rules have to be developed and maintained.
If one visual model layer changes, for example, in the case that new version of a modeling
language was released, or if a new visual model layer has to be supported, at least three
artifacts have to be modified or added: one for each deployed code generator. Moreover,
if changed technical requirements lead to changes of the code generation rules, three



CHAPTER 5. ABSTRACT MODEL LAYER 90

Visual Model Layer 2
e.g. BPMN

Visual Model Layer 1
e.g. UML

Visual Model Layer 3
e.g. YAWL

Code Generator Layer 1
e.g. Java

Code Generator Layer 2
e.g. .Net

Code Generator Layer 3
e.g. BPEL

Figure 5.1.1: Without Abstract Model Layer

Visual Model Layer 2
e.g. BPMN

Visual Model Layer 1
e.g. UML

Visual Model Layer 3
e.g. YAWL

Code Generator Layer 1
e.g. Java

Abstract 
Model Layer

Code Generator Layer 2
e.g. .Net

Code Generator Layer 3
e.g. BPEL

Figure 5.1.2: With Abstract Model Layer

different sets of code generation rules have to be maintained for one target platform.
Figure 5.1.2 shows the above described scenario having an Abstract Model Layer

applied: Each Visual Model Layer and each Code Generation Layer is connected only
to the Abstract Model Layer. They do not have direct dependencies. If any of them is
changed or a new visual model or a code generator is added, only the model elements
of the Abstract Model Layer have to be considered. Hence, an Abstract Model Layer
reduces the number of model transformations, which have to be kept runnable. Further-
more, if bidirectional model transformation rules between Visual Model Layers and the
Abstract Model Layer are established, an instance of a meta model A (e.g., an BPMN
model) can be transformed into an instance of a meta model B (e.g., an UML model)
via the Abstract Model Layer without the need for specific transformation rules from
visual model A to visual model B.

5.2 Requirements for a Meta Model for Business Logic

As described in the previous section, our domain specific model for business logic of in-
formation systems is used as an intermediate model between visual modeling languages



CHAPTER 5. ABSTRACT MODEL LAYER 91

and program code generators. For this purpose its meta model has to consider impor-
tant modeling concepts from visual modeling languages as well as important aspects of
the program code structure of business logic implementations. This section analyses vi-
sual modeling languages from industry and academia that support the process modeling
paradigm with the aim to obtain a set of common used modeling elements regarding
business logic. Additionally, the source code of two industrial information systems is
analyzed with regard to the actual implementation of business logic. The code anal-
ysis targets on the identification of repeated code patterns, which could be generated
automatically and therefore have to be considered by our Amabulo model definition.

5.2.1 Major Modeling Concepts in Visual Behavior Models

The Amabulo model provides an abstraction of concrete visual modeling languages.
Therefore, it has to support major modeling concepts required for business logic that
are typically used in visual process models. In the remainder of this section the most im-
portant behavior modeling languages supporting process modeling concepts are analyzed
in detail.

Considering the set of seven behavioral modeling languages as introduced in Section
4.1, we dropped MSC, because they focus only on scenarios, as well as pure state charts,
because they merely focus on the state modeling paradigm. This led us to a set of
EPC (eEPC), BPMN, YAWL, UML, and Petri Nets (CPN) as modeling languages to
be analyzed. Figure 5.2.1 provides an tabular overview of modeling aspects and their
support by visual modeling languages. As detailed subsequently, our analysis focuses
on six aspects: process modeling, structural modeling, state modeling, integration of
process and structure, integration of state and structure, and integration of state and
process.

Process Modeling Each analyzed modeling language supports an atomic element,
which we call executable. An executable is a basic element that contains functions,
actions, or tasks that are executed during the runtime of a process. The first row in
Figure 5.2.1 shows exectuables of visual modeling languages. They is named function in
EPC, task in BPMN and YAWL, action in UML, and transition in Petri Nets. Moreover,
nesting can be identified as a common modeling element, too. Nesting provides an
opportunity for a more usable visual and logical structure that allows the reuse of parts
of the model. To provide an abstract overview about a visual model, the modeler can
hide nested parts of a model and substitute them with a single model element. This



CHAPTER 5. ABSTRACT MODEL LAYER 92

Process Modeling
Executables

Structural Modeling

State Modeling

EPC / eEPC  

Function

Event

Data

Role

BPMN

Task

Data

Integration of 
Process and Structure Function

Data

Task

Data

n/a

YAWL

Task

n/a

n/a

UML

Action

Attribute
Class

State

Transition

(only an excerpt)

(only an excerpt)

n/a Action
Class Class

Action

«precondition»
Class.attribute==value

«postcondition»
Class.attribute==value

Petri Nets / CPN

Transition

Color := INTxINTxSTRING
Color := INT

Place

Token

B

[x==true]

(a:=true)

B B

Nesting 
Process 

Connector
Sub-

Process
Composite Task

Activity
Coarsening and 

Refinement

Integration of 
State and Structure n/a n/a n/a

Token a := (1,2,no)

Token b := (3,4,yes)

State Y att1=yes
att2=10

:Class A
≙

State Z att1=no
att2=20

:Class A
≙

Integration of 
State and Process Event

Function

Event

Task

Task
n/a n/a

[Class.att1==yes]

[Class.att1==no]

A B

1

2

3

4

5

6

Flow Control X V

V

XOR ORAND XOR

OR

AND XOR ORAND

Condition

XOR

AND/OR

[Guard]
[x==true]

[x==true]

Initialisation Function

Arc Function

(a:=true)
Transition FunctionEvents: Action

«precondition» 
x==true

Pool
Lane

Figure 5.2.1: Process Modeling Concepts Supported by Visual Modeling Languages



CHAPTER 5. ABSTRACT MODEL LAYER 93

element is linked to the visually hidden but logical existing part of the model. In eEPC
such elements are called process connector, in BPMN sub-process, in YAWL composite

task, and in UML activity. In Petri Nets, net transformations such as coarsening and
refinement can be defined to support nesting.

Flow control elements are used to specify in which order and under which conditions
executable items as well as nested parts of a model are processed at runtime. Flow control
elements have usually either one incoming and several outgoing connections (split), or
they have one several incoming and one outgoing connection (merge). The type of a flow
control node determines how the node behaves. Typically, XOR, AND, and OR nodes
are used to merge or split different control flows. Such flow control nodes are supported
by the high-level modeling languages EPC, BPMN, YAWL, and UML. Petri nets as well
as CPN do not support flow control nodes. A further modeling element to specify flow
control are constraints that are associated to control flow edges. Coloured Petri Nets
use so-called “arc functions” as an important flow control element, because CPN do not
support merge or split nodes. The process view of UML use so-called guards being the
label for control flow constraints in activity diagrams. EPC, BPMN, and YAWL do
not include guards of control flow edges. However, YAWL introduces conditions, which
can be compared to places in Petri nets and which are used to specify patterns such
as mutual exclusion. BPMN supports different types of events that are used to model
conditions for task or sub-process execution. Constraints of exectuables are a further
model element for flow control. They are used to specify conditions that have to be
assured during process execution. In CPN constraints are named initialization functions

and in UML they are defined by preconditions and postconditions.

Structural Modeling As motivated in Section 4.1.1, structural modeling elements
have to be considered by software models that are used for the code generation of busi-
ness logic program code. Hence, the second aspect of our analysis of visual modeling
languages for process modeling focuses on structural modeling. As shown in Figure 5.2.1
EPC and BPMN supports structural modeling only on a very high level of abstraction:
In EPC roles and data items can be specified. Whereas role determines a user role
or an organizational unit that is responsible for a function, and a data item describes
information that is used or provided by a function. BPMN supports the data element
comparable to EPC. However, a pool is used to identify an organization, and a lane,
which is comparable to role of EPC, defines organizational units or roles. YAWL, which
is defined as a workflow modeling language, does not support structural modeling con-



CHAPTER 5. ABSTRACT MODEL LAYER 94

cepts. CPN allows to specify different types of tokens, which are called colours. Each
token can comprise different properties including composite properties so that the set of
current attribute values describes the internal state of tokens in CPN. The most complex
structural modeling concepts are supported by UML in class diagrams. For illustration
purposes, Figure 5.2.1 contains only a very basic set of structural model elements as
supported by UML: classes specify entities and attributes specify properties of classes.

State Modeling The elements supporting state modeling are outlined under point
three in Figure 5.2.1. As discussed in Section 4.2.4, states can be used in three different
scopes: A single state can indicate (1) the actual internal state of system as a whole,
called system scope; a single state can indicate (2) the internal state of an object, called
object scope; and a single state can be used to indicate (3) the internal state of a property
of an entity, called property scope. State modeling in EPC is applied on system scope,
each function leads to an event, which actually describes a unique state of the process.
In Petri Nets places are the modeling elements that are used to describe the current state
of a system. The state of a net is described by its marking considering the number of
tokens in all places and allows to determine a state at system scope. Using CPN, single
tokens can be distinguished by their types and attribute values so that state modeling at
object level is also supported by CPN. UML provides a separate view for state modeling,
the state machine diagram. State machine diagrams only focus on state modeling and
provide a set of convenience elements, such as history states, that reduces the visual
complexity of large state diagrams. In UML, state modeling can be done at system
scope and object scope. The modeling languages BPMN and YAWL do no support
state modeling.

Integration of Process and Structure The fourth analyzed aspect of visual mod-
eling languages considers the integration of process and structural model elements. In
EPC and BPMN structural entities, which are data items, can be linked to exectuables,
as function or task. The link is established by a directed edge enabling a bidirectional
connection. In eEPC as well as in BPMN the connection between exectuables and data
item is used to specify whether a data item is used or modified or both. Such a de-
pendency can also be expressed with UML, but in UML, input and output parameters
are modeled in relation to an action, which can also be done with an explicit modeled
data flow. In contrast to EPC and BPMN, UML data items (classes and attributes) can
be directly linked to flow control elements, such as guards or preconditions, as well as



CHAPTER 5. ABSTRACT MODEL LAYER 95

to local constraints, such as postconditions. The integration of structural and process
modeling in CPN is realized by initialization functions and transition functions, which
can be specified for each transition. Moreover, comparable to UML, guards arc functions
in CPN are also directly linked to tokens, considering type and internal state of tokens.
Due to the lack of structural modeling elements, the language YAWL does not provide
any integration between structural and process modeling concepts.

Integration of State and Structure The integration between the state and struc-
tural aspects of a model is only considered by UML and Coloured Petri Nets: In UML,
states of a state diagram can be linked to an internal state of either an object or an
internal state of a whole system. In CPN places are typed and contain only tokens of
their defined type. Hence, the marking of a CPN depends on the type of tokens, which is
related to the internal state of a token. Furthermore, arc functions can be used to spec-
ify dependencies between the internal state of a token and its routing to a place. EPC,
BPMN, and YAWL do not support the integration of structural and state modeling.

Integration of State and Process State modeling and process modeling concepts
in EPC are realized through the alternating sequence of events and functions: a function
follows an event, which actually is a system state, and results in an event, which is a
further system state. Hence, states and processes are directly linked. The same concept
of alternation between executables and system states is realized by Petri Nets, where
transitions and functions alternate. A further way to link states and processes is used in
BPMN: events trigger the processing of executables. UML and YAWL do not provide
explicit integration elements for states and process.

5.2.2 Major Control Structures in Business Logic Code

With the aim to identify major control structures in the business logic of information
systems, we analyzed the source code of two industrial information systems. Both sys-
tems are deployed and operated by one of the world biggest reinsurance company, and
both systems support the same type of domain specific business process. The domain ar-
chitecture as well as the technical architecture of both systems are comparable: They are
web information systems supporting eight different user roles built on a J2EE platform
using an Oracle database as persistency layer and Struts [Apab] for user interface inte-
gration and dialog flow control. Their initial development budget was 250,000-300,000
EUR for each project. The analysis focused on business logic issues, such as control



CHAPTER 5. ABSTRACT MODEL LAYER 96

flow processing, connections to manually executed functions via user interfaces, connec-
tions to the persistency layer, and the integration of automatically executed functions
including the integration of external systems. The analysis results are provided in the
following two subsections: after explaining how control flow aspects were implemented,
an overview of the observed structural pattern as used in implemented business functions
is given.

Controlling the Control Flow Controlling the control flow comprises (1) the inte-
gration of user interfaces to support manual tasks, (2) the integration of automatically
executed business actions and transitions including the integration of external systems,
and (3) the calculation of the actual sequence of actions during process execution at
runtime depending on business objects.

In both analyzed systems, code artifacts implementing control flow management
tasks are separated from concrete business actions and transitions. The connection be-
tween business logic and user interface is implemented in large XML files (>1.000 LOC),
which describe all possible user decisions and the resulting calls of business functions de-
pending on the user input. Furthermore, domain states of business objects are declared
in a further XML-file used to specify which business function has to be called depending
on the user input and the current state of the business data entities.

Business Functions Business functions are implemented as Java EJB Session Beans.
They are invoked by transitions of domain states if either a user function or a system
function decides to switch the domain state of a business object. As an analysis result of
the internal control structure of business functions, a repeating pattern of seven different
major elements was identified in most business functions as presented in Figure 5.2.2.
With the exception of part 4 (Execution of domain functions or transitions) and part 7
(Exception handling), all parts are optional and only implemented if they are actually
needed:

1. Assurance of all input parameters: The first statements of a function assure
the existence and type of input parameters, which are handed over from the system
to the business function and which are needed to process the business function.
Hence, if any parameter is not in the expected state (e.g., a null-pointer reference),
exceptions are raised, and the function is not processed.

2. Assurance of local preconditions: After the assurance of all input parameters,
local domain constraints have to be guaranteed. These constraints follow domain



CHAPTER 5. ABSTRACT MODEL LAYER 97

Observed Structure of Methods that 
implement Business Functions

 Assurance of all 
Input Parameters [0..*]

Assurance of 
Local Preconditions  [0..*]

 Initialization of 
Local Parameters  [0..*]

 Execution of Domain Functions 
or Transactions  [1..*]

Assurance of 
Local Postconditions  [0..*]

Assurance of all
Output Parameters [0..*]

1

2

3

4

5

6

Exception Handling [1..*]7

Figure 5.2.2: Observed Structure of Business Functions



CHAPTER 5. ABSTRACT MODEL LAYER 98

requirements, which are used to assure that the later execution of domain functions
as well as transitions will not fail due to unexpected parameters.

3. Initialization of local variables: Local variables that are used for internal func-
tions and control structures are initialized. Their values are typically derived from
input parameters, constants, and initial values as demanded by domain require-
ments or simple counters.

4. Execution of domain functions or transitions: The execution of domain
functions and transitions provides the functional core of a business function: In-
ternal or external functions that perform a business action are executed. They are
characterized by their relevance to the supported business process, which means
their execution affects internal states of business objects or the current state of a
business process or both.

5. Assurance of local postconditions: After the execution of all business ac-
tions and transitions of a function local postconditions have to be assured as far
as they exist. Comparable to preconditions, see part 2., postconditions are do-
main constraints used to guarantee domain requirements. Postconditions are used
particularly to check whether reused external functions deliver proper results. If
postconditions are violated, exceptions are raised.

6. Assurance of all output parameters: Before handing results back to the invok-
ing system, all output parameters have to be prepared. They have to be casted into
expected data types, and it must be assured that their values are in an expected
range.

7. Exception handling: If the processing of a business function failed for any rea-
sons, structured and automated exception handling is invoked. The main purpose
of structured exception handling is prevention of inconsistent domain data by stop-
ping the current business process and providing detailed information where and
why an exception was raised.

5.2.3 Conclusion

For the definition of a domain specific model for the business logic of information sys-
tems, important modeling elements from visual models as well as structural patterns
of business logic code have to be considered. Hence, the Amabulo meta model has to



CHAPTER 5. ABSTRACT MODEL LAYER 99

provide model elements that can express all relevant information as delivered by visual
models in a suitable form. For this reason, the most commonly used modeling elements
of visual models that have to be supported by the Amabulo model definition are:

For Process Modeling

• Exectuables: An atomic executable is a basic element that is executed during the
runtime of a process. Considering different implementations of manually and auto-
matically processed functions, two types of executables have to be distinguished.
Their counterpart at code level are business functions and user interface imple-
mentations.

• Nesting: Nesting allows to encapsulate several executables and their connections
into one element. This element enables the reuse of encapsulated model elements
in different parts of the model.

• Flow control: Flow control elements define the sequence of actually processed
executables. Depending on the actual visual modeling language, several types of
merge and join nodes as well as constraints and preconditions defines the control
flow. However, their essence specifies which executables have to be called after an
executable was processed considering the current state of domain objects. At code
level, control flow artifacts evaluate such dependencies at runtime and manage
the relevant invocations of business functions. Such succession relations between
exectuables have to be considered by the Amabulo meta model.

• Preconditions: Preconditions at code level assure domain constraints before im-
plemented business functions are invoked. At visual model level, some languages
also support local preconditions of exectuables to support control flow definitions.

• Postconditions: At code level, postconditions assure domain constraints after in-
voked business functions returned their results. At visual model level, some lan-
guages also support local postconditions of exectuables for the definition of local
postconditions, which have to be satisfied before the control flow continues.

For Structural Modeling

• Entities: Entities defines data items that are relevant for business logic purposes.
Moreover, dependencies between entities and exectuables can be modeled in visual



CHAPTER 5. ABSTRACT MODEL LAYER 100

software models. They specify the set of required and modified business objects
for each executable item. Such dependencies can be mapped to input and output
parameters of functions at code level.

• Properties: Properties of entities define their of internal states. They enable the
definition of conditions and constraints, and they affect control flow decisions as
well as domain constraints.

For State Modeling

• States and Transitions: If state modeling is supported in visual modeling lan-
guages, single states characterize either the internal state of system as a whole or
the internal state of an object. Transitions between states are executed by business
functions. The usage of states at code level is comparable to the usage of states
in visual modeling: domain states as well as their transitions are implemented to
support defined object live cycles.

5.3 Amabulo Meta Model Definition

Based on the list of modeling elements that was obtained as result of the analysis of
visual modeling languages and industrial business logic implementations in the previous
section, this section provides the definition of the Amabulo meta model. Considering the
above introduced modeling elements that are relevant for code generation purposes, the
Amabulo meta model defines all elements and relations of our domain specific language,
the Amabulo model. A precise and complete definition of such a domain specific language
as given in this section is required for:

• design and implementation of model transformation rules from and to the Visual
Model Layers that use the Amabulo model definition as target meta model,

• design and implementation of code generators that process instances of the Am-
abulo meta model into business logic code artifacts, and

• providing a complete mapping into the Abstract System Layer, which allows au-
tomated model analysis and simulation and which brings a formal semantics defi-
nition (see Section 6.4) for Amabulo models.



CHAPTER 5. ABSTRACT MODEL LAYER 101

The Amabulo meta model is specified to provide a modeling language for automated
processing. For this reason, visual modeling tasks are not considered; they are accom-
plished with tools of the Visual Model Layer as introduced in Chapter 4. Hence, there
are no visual model elements defined for an Amabulo model.

A general overview of all supported meta model elements is given by the class di-
agram in Figure 5.3.1. The dashed lines group elements of three supported modeling
concepts. Elements for process modeling describes the business logic in the form
of structured sequences (nesting) of executables and their dependencies. They include
control flow elements, required parameters, and conditions. In an Amabulo model user

functions specify atomic process elements (executables) that are executed by users. Sys-

tem functions are atomic process elements (executables) that are executed automatically
by a system. As modeled in Figure 5.3.1, both types of executables can be generalized
to function. Processes are used for nesting functions. Processes and functions are gen-
eralized to activity concepts. An activity concept can have specified input and output
parameters. Moreover, constraints define preconditions and postconditions for an activ-
ity concept. Succession elements determine the sequence of activity concepts depending
on control flow constraints. All these process modeling elements and their relations are
detailed in Section 5.3.3.

Elements for structural modeling define business objects and their properties as
used by control flow constraints to determine the actual flow through a process. More-
over, objects are used by functions to get information about the current business data
set or to modify business data or both. As Figure 5.3.1 shows, business objects in an
Amabulo model are specialized parameters. They can have attributes and each attribute
has a defined type. These elements are introduced in Section 5.3.1.

Elements for state modeling refines attributes of business objects by specifying
object live cycles with domain states. Therefore, state charts are elements of an Amabulo
model that use states for domain state modeling, as described precisely in Section 5.3.2.

For illustration purposes Figure 5.3.1 comprises sets and relations noted in brackets
as used by the following Amabulo model definition. An Amabulo model A is denoted as
3-tuple A = (MA, RA, SRA) and consists of three different sets: MA the set of sets of
different modeling concepts, which contains a set of user functions UF , a set of system
functions SF , a set of all functions F , with F = UF ∪SF , a set of processes P , a set of
all activity concepts AC, with AC = F ∪P , a set of parameters PA, a set of constraints
C, a set of business objects BO, a set of attributes AT, a set of types T, a set of state



CHAPTER 5. ABSTRACT MODEL LAYER 102

Process modeling

Structure modelingState modeling

Succession (succ) Constraint  (C)

ActivityConcept  (AC)

Process  (P)Function (F)

UserFunction (UF) SystemFunction (SF)

Parameter  (PA)

BusinessObject (BO)Attribute (AT)StateChart (SC)

State (S) 
Type (T)

0..*
guard

0..1
successor

0..1predecessor

0..*

precondition
(prec)

postcondition
(postc)

0..*

1..*

final node
(final)

1..*

contains
(cont)

outparameter
(outpa)

inparameter
(inpa)

0..*

0..*

attribute
(att)0..*0..1

initial state
(init)
1..*

contains
(state)

1..*

0..*successor
(succ)

uses

1

1..*

type
(type)

domain
(dom)

Figure 5.3.1: Amabulo Meta Model



CHAPTER 5. ABSTRACT MODEL LAYER 103

charts SC, and a set of states S.
The symbol RA of an Amabulo model indicates a set of relations between elements

of elements of MA, such as relations between attributes and business objects or relations
between functions and processes. As shown in Figure 5.3.1, RA contains a relation type

that specifies the data type of an attribute, a relation value that defines the actual value
of an attribute, a relation att that relates attributes and business objects, a relation dom

that relates attributes and state charts, a relation succS that defines state transitions,
a relation init that defines initial states of a state chart, a relation cont that relates
processes to its contained activity concepts, a relation final that defines final activity
concepts of a process, a relation succAC that defines an order between activity concepts,
a relation prec defining preconditions of activity concepts, a relation postc defining post-
conditions of activity concepts, a relation inpa that relates input parameters and activity
concepts, and a relation outpa that relates output parameters to activity concepts.

Moreover, the set SRA of an Amabulo model is a set of convenience functions and
contains a function attP that returns all attributes of a given business object, a function
stateP that returns all states of a given state chart, a function initP that returns all
initial states of a given state chart, a function contP that returns all activity concepts
nested into a given process, a function finalP that returns all final activity concepts of a
given process, a function succACP that provides all successors of a given activity concept,
a function precP that returns all preconditions of a given activity concept, a function
postcP that returns all postconditions of a given activity concepts, a function inpaP that
provides all input parameters of a given activity concepts, and a function outpaP that
returns the set of output parameters of a given activity concept. In general, elements of
SRA provide access to a set of all model elements Ui = {u|(i, u) ∈ r : r ∈ RA} that are
related to one concrete model item i ∈ m : m ∈ MA in a specific relation r ∈ RA, as for
example all attributes of a business object or all functions of a process or all states of a
state chart.

Concluding the above introduced list of the elements of an Amabulo model A, all
elements of the 3-tuple (MA, RA, SRA) are



CHAPTER 5. ABSTRACT MODEL LAYER 104

MA = {T, AT, BO, SC, S, UF, SF, F, P, AC,C, PA}

RA = {type, value, att, dom, state, succS , init, cont,

final, succAC , prec, postc, inpa, outpa}

SRA = {attP , stateP , succSP , initP , contP , finalP ,

succACP , precP , postcP , inpaP , outpaP}

The remainder of this section is structured following the supported modeling concepts
structural modeling, state modeling, and process modeling; and it provides syntactic def-
initions of all model elements in MA, all relations in RA, and all convenience functions
in SRA as well as a description of their semantics. An overview of all introduced sets,
relations, and functions is given in the form of tables of notation in Appendix C. Fur-
thermore, all example snippets used in the following are taken from a complete Amabulo
model as given in Appendix D, which refers to the example model introduced in Section
4.2.5.

5.3.1 Elements for Structural Modeling

For structural modeling purposes an Amabulo model focuses on business objects and
their attributes. Even if further structural details, such as composition or generalization
are part of the visual model, they are not necessarily needed by the business logic code
for process execution. Hence, they are hidden and not part of the Amabulo model. In
Figure 5.3.1 the structural modeling elements are part of the right box at the bottom
and defined as follows:

In an Amabulo model A the set of business objects BO is a finite set. Each element of
BO is identified by its name and provides a conceptual abstraction of the domain object
that is required during control flow decisions or during process execution or both. For a
more detailed specification, attributes can be associated to business objects. Regarding
the example model, its corresponding set of business objects is BO = {Offer}. The set of
attributes AT of an Amabulo model A is a finite set. Each attribute a ∈ AT represents
a specific property of a business object. In our example model the set of attributes is
AT = {firstDecider, secondDecider,decision}.

A relation att and a function attP are used to provide the connection between busi-
ness objects and attributes as defined subsequently. Additionally, the type of an attribute



CHAPTER 5. ABSTRACT MODEL LAYER 105

is defined with a relation type, and the concrete value of an attribute can be specified
with a relation value.

Hence, the set of elements for structural modeling SMA is a subset of A and can be
noted as

MSMA = {T, AT, BO} ⊂ MA,

RSMA = {type, value, att} ⊂ RA,

SRSMA = {attP} ⊂ SRA.

The precise definition of all relations in RSMA and the function in SRSMA is given
in Definitions 1 - 4:

Definition 1. In an Amabulo model att ⊆ BO×AT specifies a relation between business
objects and attributes.

An attribute a ∈ AT is a property of business object b ∈ BO only if (b, a) ∈ att.
The number of attributes is not restricted and can be zero. Considering the example
model, the relation att is noted:

att = {(Offer, firstDecider), (Offer, secondDecider), (Offer, decision)}.

Definition 2. In an Amabulo model attP : BO → P(AT ) is a function from business
objects into the powerset of attributes with ∀bo ∈ BO : attP(bo) = {a | (bo, a) ∈ att}.

A function attP(bo) returns a set of attributes aP ∈ P(AT ) containing all attributes
that are properties of a given business object bo ∈ BO. In the example model attP is
defined as:

attP = {(Offer, {firstDecider, secondDecider,decision})}.

Furthermore, each attribute has a specified data type T that determines the data type
of its values. Therefore, in an Amabulo model A the set T is a finite set of types. T

provides a set of all available data types of the model. Each data type is specified by its
name (e.g., String, Boolean, Float or Integer). The list of available data types depends
on project specific requirements and can be adjusted, if necessary. The example model
contains only one type, so that T = {String}. A concrete data type is related to an
attribute by a relation type.



CHAPTER 5. ABSTRACT MODEL LAYER 106

Definition 3. In an Amabulo model, type ⊆ AT × T is a relation that specifies a data
type t ∈ T of an attribute a ∈ AT .

In the example model, type refines three attributes and defines String as their data
type:

type = {(firstDecider, String), (secondDecider, String), (decision, String)}.

Besides the type of attribute, a concrete value of an attribute is associated by the relation
value.

Definition 4. In an Amabulo model, value ⊆ AT × String is used to relate an actual
value to attributes.

The value s ∈ String of the attribute a ∈ AT is the current value if (a, s) ∈ value.
For the sake of simplicity, we defined String to be the range of value, because each value
of other data types can be expressed as a String and be casted automatically to the
actual specified data type in type. Moreover, the term value(a) can also be used to
access the current value s of an attribute. Taking the example model, if an instance of
Offer was just created, the value relation defines the initial set of values with

value = {(firstDecider, ""), (secondDecider, ""), (decision, "")}.

5.3.2 Elements for State Modeling

As part of an Amabulo model, the state modeling paradigm is supported through the
specification of domain states and their relations. To keep the model definition as
simple as possible, only basic modeling concepts for state modeling are considered. If
more advanced modeling concepts are needed in the Visual Model Layer, for example,
such as history states, orthogonal states, or composite states, the transformation into
the Abstract Model Layer has to provide a mapping into simple state modeling elements
of an Amabulo model. In Figure 5.3.1 the state modeling elements are part of the left
box at the bottom. All of these elements and relations are defined and described in this
subsection.

In an Amabulo model the set of state charts SC is a finite set. Each state chart is
identified by its name. Following the state modeling approach as introduced in Section
4.2.4, a state chart refines attributes of business objects and is used as a container for
defined attribute values of a ∈ AT and their relations. With regard to the detailed



CHAPTER 5. ABSTRACT MODEL LAYER 107

model example, the corresponding set SC of state charts is SC = {Offer.decision}. The
set of states S is a finite set and contains all states of an Amabulo model. A state is
defined by its name and specifies one possible value of the attributes that are refined by
state charts. The example comprises four different states with

S = {undecided, firstDeciderAccepted, accepted, declined}.

Besides states and state charts an Amabulo model also contains a relation dom that
is used to relate attributes of business objects to a state chart, a relation state that
defines all states of a state chart, a relation succS that specifies transitions between
states of a state chart, and a relation init indicating initial states. Moreover, a function
stateP maps a given state chart to the set of all of its containing states, a function
succSP mapping a given state to the set of all of its successors, and a function initP

that returns the set of initial states to a given state chart. Hence, the set of elements
for structural modeling STA is a subset of A and can be noted as

MSTA = {SC, S} ⊂ MA,

RSTA = {dom, state, succS , init} ⊂ RA,

SRSTA = {stateP , succSP , initP} ⊂ SRA.

The precise definition of all relations in RSTA and all functions in SRSTA is given in
the Definitions 5 - 11:

Definition 5. In an Amabulo model dom ⊆ AT × SC is a relation that associates a
state chart sc ∈ SC with an attribute a ∈ AT .

An attribute can only be assigned to one or zero state charts, and a state chart can
be associated to one or more attributes. As part of the above introduced example model,
one state chart was used to refine the attribute decision of the business object Offer, so
that dom = {(decision, Offer.decision)}.

Definition 6. In an Amabulo model state ⊆ SC×S is a relation that associates a state
chart sc ∈ SC to its containing states of S.

The four states of the example model of Figure 4.2.6 are part of one state chart, so



CHAPTER 5. ABSTRACT MODEL LAYER 108

that relation state can be noted as

state = {(Offer.decision, undecided), (Offer.decision, firstDeciderAccepted),

(Offer.decision, accepted), (Offer.decision, declined)}.

Definition 7. In an Amabulo model stateP : SC → P(S) is a function from state
charts into the powerset of states with ∀sc ∈ SC : stateP(sc) = {s|(sc, s) ∈ state}.

A function stateP returns the set of states sP ∈ P(S) that contains all states of a
given state chart sc ∈ SC. If an attribute is refined by a state chart, the set of all valid
attribute values is restricted to the set of the states of the state charts:

∀a ∈ A : ∃sc ∈ SC : (a, sc) ∈ dom ⇒ ∀(a, x) ∈ value : x ∈ statesP(sc).

For illustration purposes, derived from our example model relation stateP is noted

stateP = {(Offer.decision, {undecided, firstDeciderAccepted, accepted, declined})}.

Transitions in state charts are used to specify dependencies between states.

Definition 8. In an Amabulo model succS ⊆ S × S is a succession relation that links
a state s1 ∈ S to a possible successor state s2 ∈ S.

If (s1, s2) ∈ succS , the state chart comes with a transition from s1 ∈ S to s2 ∈ S.
The number of possible successors of a state is not restricted. If a state has more
than one specified successor state, the business logic has to determine which one is the
actual successor. Regarding the example model, the following successor relations can be
identified:

succS = {(undecided, firstDeciderAccepted), (undecided, declined),

(firstDeciderAccepted, declined), (firstDeciderAccepted, accepted)}.

Definition 9. In an Amabulo model succSP : S → P(S) is a function from states into
the powerset of states with ∀s ∈ S : succSP (s) = {su|(s, su) ∈ succS}.

The function succSP delivers a set of states sP ∈ P(S) containing all possible suc-
cessor states of a given state s ∈ S. The example model leads to the following function



CHAPTER 5. ABSTRACT MODEL LAYER 109

succSP :

succSP = {(undecided, {firstDeciderAccepted,declined}),

(firstDeciderAccepted, {accepted, declined})}.

Definition 10. In an Amabulo model init ⊆ SC × S is a relation that specifies a state
s ∈ S as an initial state of a state chart sc ∈ SC.

A state chart has one or more initial states. Initial states of state charts are initial
values for the attribute associated with a state chart. The set of initial states of the
example model is init = {(Offer.decision,undecided)}.

Definition 11. In an Amabulo model initP : SC → P(S) is a function from state
charts into the powerset of states with ∀sc ∈ SC : initP(sc) = {s|(sc, s) ∈ init}.

The function initP identifies a set of states sP ∈ P(S) that contains all possible
initial states of a given state chart sc ∈ S. Considering our example model, which has
only one state chart and only one initial state, the function initP is noted initP =
{(Offer.decision, {undecided})}.

5.3.3 Elements for Process Modeling

Process modeling is supported by elements that cover manually executed and automat-
ically processed actions, which can be nested in structured processes. The control flow
is specified as a sequence of actions and processes with control flow guards defining the
control flow decisions. Business objects that are required by actions are modeled as their
parameters: input parameters define objects that are required by actions and output
parameters define objects that are modified by actions. In Figure 5.3.1 the process mod-
eling elements are part of the upper box. All these elements and relations are defined
and described in this subsection.

In an Amabulo model A the set of user functions UF is a finite set. A user function
is an executable item (in terms of Section 5.2.3), and it specifies an atomic function that
has to be executed manually by human users. Hence, a specified user function requires
a user interface that provides all needed information as delivered by input parameters.
Moreover, the UI has to provide all needed controls that enable a user to execute this
action, and it has to collect all data input that needs to be stored at persistency layer
as modeled by output parameters. The set of user functions of the above introduced
example model is UF = {first decision,second decision}.



CHAPTER 5. ABSTRACT MODEL LAYER 110

The finite set of system functions SF contains all system functions. A system func-
tion is an executable item (in terms of Section 5.2.3), and specifies an atomic function.
It has to be executed automatically by a system and does not require any user in-
put. A system function provides access to external or internal functions or services that
are used to support business processes. Comparable to user functions, system func-
tions may require business objects to be executed or modify business objects or both.
The set of system functions of the example model is SF = {send acceptance message,
send declinature message}.

The set of system functions and the set of user functions of an Amabulo model can
be subsumed to a finite set of functions F = {UF ∪ SF}. A function is an abstract
generalization of user functions and system functions. From an abstract point of view,
properties and behavior of user and system functions are equivalent. They differ only in
their semantics: Code generators have to generate code artifacts either for UI integration
or for the integration of external functions. Considering the example model, the set of
functions is noted as F = {first decision, second decision, send acceptance message,
send declinature message}.

Besides atomic functions, an Amabulo model contains a finite set of processes P .
A process supports nesting (in terms of Section 5.2.3) and encapsulates parts of the
modeled business logic into one single model item. With using processes, a hierarchi-
cally structured view on a business logic model can be provided. The root element
of process models is a process item. All further functions and processes are nested
into this one root process. The referred example model contains one process so that
P = {Four Eyes Decision}.

In an Amabulo model processes and functions as well as user functions and system
functions are disjoint sets, so that P ∩ F = SF ∩ UF = Ø.

Nevertheless, processes and functions can be combined into a finite set of activity

concepts AC with AC = {F∪P∪{�}}. An activity concept is a conceptional abstraction
item and used as a common generalization of functions and processes. The set AC

includes � as a symbol for no element, which is comparable to /O for empty sets or null

for a null pointer reference in Java programming language. In our example model the set
of activity concepts is AC = {first decision, second decision, send acceptance message,
send declinature message, Four Eyes Decision, �}

Additionally to the above introduced processes and functions, a set of constraints
and a set of parameters are also part of an Amabulo model. Constraints are logical
restrictions that specify control flow decisions as well as preconditions and postconditions



CHAPTER 5. ABSTRACT MODEL LAYER 111

for activity concepts. Hence, an Amabulo model contains a finite set of constraints C.
Constraints are evaluated either to boolean true or boolean false. The grammar of
the actually applied constraint language can vary from project to project depending
on the applied models, tools, and code generators. For this reason, constraints are
simple Strings. This allows project specific adaption without changing the Amabulo
model definition. To support modelers in keeping their model as simple as possible, a
constraint specified as an empty String (“”) is evaluated to true by default.

The model example contains several constraints, so that

C = {Offer.decision==declined, Offer.decision==firstDeciderAccepted,

Offer.decision==accepted,Offer.decision==undecided,

Offer.decision==(declined||firstDeciderAccepted),

Offer.decision==(declined||accepted)}.

A parameter specifies relations between entities, such as business objects, and activity
concepts. The set of all available parameters of an Amabulo model is noted PA. The
current version of the Amabulo model definition supports only business objects as valid
parameters so that PA ⊇ BO. Nevertheless, considering future extensions of the Am-
abulo model definition, the set of parameters can be easily extended. Depending on the
type of relation between parameters and activity concepts, a parameter is needed by an
activity concept to start its execution or a parameter has to be stored after the execution
of an activity concept or both. The example model contains one business object that is
also used as parameter. In our example P = BO = {Offer}.

Besides the above introduced different modeling concepts for process modeling, an
Amabulo model also contains relations and functions: A relation cont defines a contain-
ment relation between activity concepts and a process, a relation final identifies final
activity concepts of processes, a relation succAC is used to define a sequence of activity
concepts, a relation prec defines constraints as preconditions to activity concepts, a rela-
tion postc determines constraints that are postconditions of activity concepts, a relation
inpa indicates input parameters of activity concepts, and a relation outpa defines output
parameters to activity concepts. Moreover, a function contP maps processes into a set
of contained activity concepts, a function finalP maps processes into a set of their final
activity concepts, a function succACP maps activity concepts into the set of all succes-
sors, a function precP maps activity concepts into a set of their preconditions, a function
postcP maps activity concepts into a set of their postconditions, a function inpaP maps



CHAPTER 5. ABSTRACT MODEL LAYER 112

an activity concept into the set of its input parameters, and a function outpaP maps an
activity concept into the set of its output parameters.

Concluding, all these elements, relations and functions, a subset PA of elements
of an Amabulo model A that is used for process modeling can be noted as PA =
(MPA , RPA , SRPA) ⊂ A with

MPA = {UF, SF, F, P,AC, C, PA} ⊂ MA,

RPA = {cont, final, succAC , prec, postc, inpa, outpa} ⊂ RA,

SRPA = {contP , finalP , succACP , precP , postcP ,

inpaP , outpaP} ⊂ SRA.

The remainder of this subsection precisely defines all relations in RPA and all func-
tions in SRPA in Definitions 12 - 25:

Executables and Nesting

Definition 12. In an Amabulo model cont ⊆ P × AC is a relation that specifies a
containment association between a process p ∈ P and a contained activity concept
ac ∈ AC.

An activity concept ac ∈ AC is nested in a process p ∈ P if (p, ac) ∈ cont. The
relation cont is an irreflexive and asymmetric relation:

∀ac ∈ AC : (ac, ac) /∈ cont and

∀ac1, ac2 ∈ AC : (ac1, ac2) ∈ cont ⇒ (ac2, ac1) /∈ cont

A function is always part of a process: ∀f ∈ F : ∃p ∈ P : (p, f) ∈ cont. If the model
contains process elements, there is at least one root process that is not part of another
process: ∃p ∈ P : ∀x ∈ P : (x, p) /∈ cont.



CHAPTER 5. ABSTRACT MODEL LAYER 113

The containment relation of the example model in Figure 4.2.6 is defined as:

cont = {(Four Eyes Decision,first decision),

(Four Eyes Decision,second decision),

(Four Eyes Decision,send acceptance message),

(Four Eyes Decision,send declinature message)}.

Definition 13. In an Amabulo model contP : P → P(AC) is a function from processes
into the powerset of activity concepts with ∀p ∈ P : contP(p) = {ac|(p, ac) ∈ cont}.

A function contP returns a set of all contained activity concepts acP ∈ P(AC) of a
given process p ∈ P . In our example model contP is noted:

contP = {(Four Eyes Decision, {first decision,second decision,

send acceptance message, send declinature message})}.

For generation purposes as well as for analysis and simulation, it is important that
final activity concepts can be identified. In this context, final means that a process
stops after the execution of a final activity concept, even if other activity concepts can
be executed. If a final activity concept was executed, the control path of its containing
parent continues, or if the final activity concept is part of the root process, the whole
process stops finally.

Definition 14. In an Amabulo model final ⊆ P × AC is a relation that specifies an
activity concept a ∈ AC as a final activity concept of a process p ∈ P .

As a prerequisite of final, an containment relation between ac ∈ AC and p ∈ P has
to be established:

∀p ∈ P,∀ac ∈ AC : (p, ac) ∈ final ⇒ (p, ac) ∈ cont.

The set of the final relation for activity concepts in the above introduced example
model is noted:

final = {(Four Eyes Decision,send acceptance message),

(Four Eyes Decision,send declinature message)}.



CHAPTER 5. ABSTRACT MODEL LAYER 114

Definition 15. In an Amabulo model finalP : P → P(AC) is a function from processes
into the powerset of activity concepts with ∀p ∈ P : finalP(p) = {ac|(p, ac) ∈ final}.

The function finalP provides the set of all final activity concepts acP ∈ P(AC) of
a process p ∈ P . Regarding our example model:

finalP = {(Four Eyes Decision, {send acceptance message,

send declinature message})}.

Flow Control and Conditions Relations between activity concepts are necessary
to establish control flow connections between them. These connections determine the
order of executed activity concepts. They are used to decide at runtime which activity
concepts are to be processed next.

Definition 16. In an Amabulo model succAC ⊆ AC×(AC×C) is a succession relation
between an activity concept ac1 ∈ AC and a tuple (ac2, c) of an activity concept ac2 ∈
AC and a constraint c ∈ C.

An activity concept ac2 ∈ AC is a direct successor of the activity concept ac1 ∈ AC

under condition c ∈ C iff (ac1, (ac2, c)) ∈ succAC and provided that c is evaluated to
the boolean value true at runtime. An activity concept can be modeled as a successor of
itself so that ∀ac ∈ AC : (ac, (ac, c)) ∈ succAC is a valid relation. Moreover, the symbol
for an empty activity concept � is used in succession relations to indicate that an activity
concept is either an initial activity concept, which means it has no predecessor in its
containing process, or an activity concept is a final activity concept, which means it
has no direct successor in its containing process. The set of succession relations of our
example model is noted as:

succAC = {(first decision, (second decision,Offer.decision==firstDeciderAccepted))

(first decision, (send declinature message,Offer.decision==declined)),

(�, (first decision,"")),

(second decision, (send acceptance message,Offer.decision==accepted)),

(second decision, (send declinature message,Offer.decision==declined)),

(send acceptance message, (�, ””)),

(send declinature message, (�, ””))}.



CHAPTER 5. ABSTRACT MODEL LAYER 115

Definition 17. In an Amabulo model succACP : AC → P((AC, C)) is a function from
activity concepts into the powerset of (AC×C)-tuples with ∀ac1 ∈ AC : succACP (ac1) =
{(ac2, c)|(ac1, (ac2, c)) ∈ succAC}.

The function succACP returns a set of tuples (ac2, c) ∈ P((AC × C)) that contains
all direct successors of an activity concept ac1 ∈ AC and its control flow conditions.

In the example model, this set is:

succACP = {(first decision, {(second decision,Offer.decision==firstDeciderAccepted),

(send declinature message,Offer.decision==declined)}),

(�, {(first decision, ””)}),

(second decision, {(send acceptance message,Offer.decision==accepted),

(send declinature message,Offer.decision==declined)}),

(send acceptance message, {(�, ””)}),

(send declinature message, {(�, ””)})}.

As part of an Amabulo model, constraints define preconditions and postconditions
for activity concepts. They allow the specification of domain and technical conditions
that have to be assured before and after an executable was processed actually.

Definition 18. In an Amabulo model prec ⊆ AC×C is a precondition relation between
an activity concept ac ∈ AC and a constraint c ∈ C.

At runtime, the activity concept can be executed only if its precondition is evaluated
to “true”. Otherwise an exception handling routine has to be started. In the example
model each function has a precondition:

prec = {(first decision,Offer.decision==undecided),

(second decision,Offer.decision==firstDeciderAccepted),

(send acceptance message,Offer.decision==accepted),

(send declinature message,Offer.decision==declined)}.

Definition 19. In an Amabulo model precP : AC → P(C) is a function from activity
concepts into the powerset of constraints with ∀ac ∈ AC : precP(ac) = {c|(ac, c) ∈
prec}.



CHAPTER 5. ABSTRACT MODEL LAYER 116

The function precP provides a set of constraints cP ∈ P(C) containing all speci-
fied preconditions of an activity concept ac ∈ AC. Complementary to preconditions,
postconditions can be modeled to each activity concept.

Definition 20. In an Amabulo model postc ⊆ AC × C is a postcondition relation
between an activity concept ac ∈ AC and a constraint c ∈ C.

At runtime, after the activity has been executed, all its postconditions must be
evaluated to true. Otherwise an exception handling routine has to be started. Our
example model contains two defined postconditions:

postc = {(first decision,Offer.decision==(declined||firstDeciderAccepted)),

(second decision,Offer.decision==(accepted||declined))}.

Definition 21. In an Amabulo model postcP : AC → P(C) is a function from activity
concepts into the powerset of constraints with ∀ac ∈ AC : postcP(ac) = {c|(ac, c) ∈
postc}.

The relation postcP defines a set of constraints cP ∈ P(C) containing all specified
postconditions of an activity concept ac ∈ AC.

Parameters

A parameter is a modeling concept that is used to specify relations between entities
(such as business objects) and activity concepts. Depending on the type of relation, a
parameter is needed by an activity concept to start its execution, or a parameter has
to be stored after the execution of an activity concept, or both. Two types of different
relations between parameters and activity concepts can be identified in an Amabulo
model: input parameters and output parameters.

Definition 22. In an Amabulo model inpa ⊆ AC × PA is an input parameter relation
between an activity concept ac ∈ AC and a parameter pa ∈ PA.

As illustrated in Figure 5.3.2, if a parameter is the input parameter of an activity
concept, it is required during execution of the activity concept. Access to all values of
an input parameter has to be guaranteed by the execution runtime. The set of relations
of input parameters of our example model is:

inpa = {(first decision,Offer), (second decision,Offer),

(send acceptence message,Offer), (send declinature message,Offer)}.



CHAPTER 5. ABSTRACT MODEL LAYER 117

Definition 23. In an Amabulo model inpaP : AC → PA is a function from activity
concept into the powerset of parameters with ∀ac ∈ AC : inpaP(ac) = {pa|(ac, pa) ∈
inpa}.

The function inpaP returns a set of all input parameters paP ∈ P(PA) related to
an activity concept ac ∈ AC. An Amabulo model also contains output parameters that
are defined comparably to input parameters.

Definition 24. In an Amabulo model outpa ⊆ AC×PA is an output parameter relation
between an activity concept ac ∈ AC and a parameter pa ∈ PA.

An output parameter is an entity which is delivered after the execution of an activity
concept to the execution environment. In this context delivered means that attributes
of the parameter were changed and have to be stored or that a new instance of the
parameter type was created. In our example model, both decision actions have an
output parameter:

outpa = {(first decision,Offer), (second decision,Offer)}.

Definition 25. In an Amabulo model outpaP : AC → PA is a function from activity
concepts into the powerset of parameters with ∀ac ∈ AC : outpaP(ac) = {pa|(ac, pa) ∈
outpa}.

The function outpaP provides a set of all output parameters paP ∈ P(PA) related to
an activity concept ac ∈ AC. As Figure 5.3.2 shows, a single parameter can be modeled
as input parameter or output parameter or both. If a parameter pa ∈ PA is related to
an activity concept ac ∈ AC only as input parameter (ac, pa) ∈ inpa∧ (ac, pa) /∈ outpa,
the parameter is used read-only: all attributes can be read, but no attribute must be
changed. If a parameter pa ∈ PA is related to an activity concept ac ∈ AC only as
output parameter (ac, pa) ∈ outpa ∧ (ac, pa) /∈ inpa, a new instance of this parameter
type is created and needs to be stored. If a parameter pa ∈ PA is related to an activity
concept ac ∈ AC as input and as output parameter (ac, pa) ∈ inpa ∧ (ac, pa) ∈ outpa,
the activity concepts requires access to any attribute during execution and may changes
some attributes. After the execution of the activity concept, all output parameters
are stored. If an activity concept requires deletion, the corresponding parameter is
modeled as input and output parameter, because the object has to be provided before
the execution starts and changes concerning the deletion have to be triggered to the
storage.



CHAPTER 5. ABSTRACT MODEL LAYER 118

Input Output

Input ⋃ Output
(Read and Modified)

Output \ Input
(Created Entity)

Input ⋃ Output
(Read Only)

Figure 5.3.2: Parameters

5.3.4 Implementation

The Amabulo meta model is implemented in Ecore, a MOF-based core meta model that
is part of the Eclipse Modeling Framework (EMF) [SBPM08]. The use of Ecore enables
easy integration into an eclipse based modeling and programming environment. EMF
provides several modeling tools (such as simple model editors), model transformation
languages (such as ATL), code generator platforms and model processing tools. Hence,
an Amabulo model can automatically be checked for conformity with the Amabulo meta
model, and Ecore-based editors can easily be reused for textual modeling purposes.
Moreover, instances of Ecore models (such as instances of the Amabulo meta model) are
stored using a common known model interchange format based on the XML Metadata
Interchange Standard (XMI)[Obj07c]. The XMI standard specifies, how instances of
a meta model are serialized as structured text in an XML-based language. For this
reason, the Amabulo model interchange format can directly be derived from the Ecore
model and provides an easy to understand interface for further model processing tasks:
a serialized Amabulo model can either be processed at XML level by transformation
rules (such as XSLT [W3C99]), or it can be parsed into a suitable data structure of a
programming language (such as a Java object model), as required for automated model
transformations and code generation.

With regard to our Amabulo infrastructure, the XML-based model interchange for-
mat establishes connections between Visual Model Layer and Abstract Model Layer,
Abstract Model Layer and Code Generation Layer, and Abstract Model Layer and Ab-
stract System Layer. Each Visual Model Layer has to provide automated model trans-
formation rules that result in the Ecore-defined interchange format. Furthermore, design
and implementation of Code Generation Layer has to consider this XML file format for
source models.



CHAPTER 5. ABSTRACT MODEL LAYER 119

For illustration purposes Listing 5.1 contains an excerpt of an XML file that was
obtained by the transformation of the above introduced example UML model (see Figure
4.2.6) into an Amabulo model. The complete Amabulo model can be obtained from
Appendix F.

5.4 Amabulo Model Comparison Tool

The previous parts of this chapter introduced the core element of the Abstract Model
Layer: the Amabulo model definition as domain specific modeling language for the
business logic of information systems. Besides the meta model definition, the Abstract
Model Layer also contains a model comparison tool as introduced in this section. This
tool provides a user interface to the Abstract Model Layer and can be used by modelers
and quality assurance (QA) managers (see Figure 5.0.1) to inspect differences between
two Amabulo models. During the refinement or maintenance of complex visual models,
the following use cases require to compare two versions of the same model:

• When a complex modeling task is done and modelers or QA managers need a
summary of all changes

• During the impact analysis phase of a maintenance task, when software architects
or developers need to understand which parts of the system are affected by model
changes

• For change tracking purposes, if the history of model changes is needed and the
applied changes have to be documented

We believe that a convenient model comparison tool helps to reduce the impact analysis
time in finding out which parts of the abstract model was changed. Furthermore, when
a software model is used as parameter for code generation and model changes result
directly in changed program code the automated processing of code modifications can
be easily derived from summary of changes between two different model versions.

In this section, after having explained the differences between semantic and syntactic
model changes and their impacts on code generation, a comparison function for Amabulo
models is defined. This function specifies detailed criteria that are used to decide which
model elements were changed and which types of changes were applied. Finally, several
technical aspects regarding the implementation and integration of a model comparison
tool into a project infrastructure are discussed.



CHAPTER 5. ABSTRACT MODEL LAYER 120

Listing 5.1: XML Version of the Example Amabulo Model (Excerpt)

<?xml version=" 1 .0 " encoding="ISO−8859−1"?>
<xmi:XMI>
<StateChart xmi : id="a1" name=" O f f e r : d e c i s i o n " i n i t i a l S t a t e s="a2">
<s t a t e s x s i : t y p e=" State " xmi : id="a2" name="undecided " su c c e s s o r="a5

�a3"/>
. . .

</StateChart>
<Bus inessObject xmi : id="a6" name=" Of f e r ">
<a t t r i b u t e s x s i : t y p e=" Attr ibute " xmi : id="a7" name=" de c i s i o n "

stateChart="a1"/>
. . .

</ Bus inessObject>
<Process xmi : id="a10" name="FourEyesPrincipleDiagram" conta in s="a11�

a18�a23�a26" f i n a l S u c c e s s i o n="a55�a56"/>
<UserFunction xmi : id="a11" name=" f i r s t D e c i s i o n " i np r o c e s s="a10">
<inparameter x s i : t y p e="Parameter" xmi : id="a12" name=" Of f e r "/>

. . .
<outparameter x s i : t y p e="Parameter" xmi : id="a15" name=" Of f e r "/>

. . .
<pre cond i t i on x s i : t y p e=" Constra int " xmi : id="a16" value=" o f f e r .

d e c i s i o n==’undecided ’ "/>
<pos t cond i t i on x s i : t y p e=" Constra int " xmi : id="a17" value=" o f f e r .

d e c i s i o n==’dec l ined ’ � | | � o f f e r . d e c i s i o n==’decider1Accepted ’ "/>
</UserFunction>
. . .

<SystemFunction xmi : id="a23" name="SendAcceptedMessage" i np r o c e s s="
a10">

<inparameter x s i : t y p e="Parameter" xmi : id="a24" name=" Of f e r "/>
<precond i t i on x s i : t y p e=" Constra int " xmi : id="a25" value=""/>

</SystemFunction>
. . .

<Guard xmi : id="a29" name="N65897" inSucc e s s i on="a57">
<con s t r a i n t x s i : t y p e=" Constra int " xmi : id="a30" value=" true "/>

</Guard>
. . .

<Succe s s i on xmi : id="a51" predec e s s o r="a11" su c c e s s o r="a26" guard="
a31�a37�a39"/>

. . .
</xmi:XMI>



CHAPTER 5. ABSTRACT MODEL LAYER 121

A

B

A

B

A

B

Figure 5.4.1: Different Versions of a Logical Equivalent Visual Model

5.4.1 Semantic vs. Syntactic Differences

A modification of a visual model does not necessarily lead to actual semantic changes.
There is no semantic difference when the modeler decides to move a visual model element
ten points to the left. Furthermore, a semantic change in a visual model does not
necessarily lead to a semantic changes in the abstract model. Figure 5.4.1 shows three
different versions of the same UML model. At the scope of the Visual Model Layer
each model version differs from the others regarding syntax and semantics. If each
UML model example is exported as an interchange file format, the content of these
files would be different. However, from a more abstract viewpoint in each version of
this model an action “A” is the initial action, followed by action “B”, which is the final
action. Business logic code generated from each of these three model variations would
behave equivalently: the semantic changes at the Visual Model Layer do not effect the
generated code. Compared to changes of an UML model, changes in an Amabulo model
will definitely affect the business logic. An Amabulo model is reduced to a minimum of
model elements, and each of them carries information that directly affects the systems
behavior.

Focusing on the development and maintenance of program code, only those changes
of the model are interesting that affect the system’s behavior. For this reason, we believe
that a model comparison tool on the Abstract Model Layer providing an aggregated
overview of all important changes, which means code affecting changes, supports impact
analysis and program understanding tasks during development and maintenance actions.



CHAPTER 5. ABSTRACT MODEL LAYER 122

For illustration purposes Figure 5.4.2 contains a modified version of the above introduced
example model (see Figure 4.2.6). From the business logic perspective, both versions are
semantically equivalent, which is not obvious and which would take a lot of inspection
time to proof manually. The comparison function, as described subsequently, precisely
defines semantic differences between two Amabulo models. An instance of this function
is implemented by the model comparison tool as part of our sample infrastructure.

5.4.2 Comparison Function for Amabulo Models

The comparison function that compares two Amabulo models anew and aold is structured
as follows: All model elements are compared element-wise. A separate comparison
function is defined for each type of element and for each relation between elements. Each
comparison function results in a so-called change state of the analyzed item, which can
be added, deleted, unchanged, or modified. A model element was added if it is part of
anew and not part of aold, a model element was deleted if it is part of aold and not part of
anew, a model element was unchanged if all its characterizing properties are unchanged

in anew compared to aold, and, finally, a model element was modifed if its change state
is neither added, nor deleted, nor unchanged. Because elements of an Amabulo model
are identified by their names, the comparison function detects a deleted model item and
a new created model item if the modeler renames model elements. After processing the
compare function compare(aold, anew) for a modified model version anew based on the
previous model version aold, a change state was computed for each model element. As
a consequence compare(aold, anew) results not only to the information if a model was
modified or not: having the change state processed for each model element, the modeler
can easily obtain detailed information about actually changed model elements and the
type of changes.

The subsequent definitions are grouped following the supported modeling paradigms
structural modeling, state modeling, and process modeling. After the introduction of
the different comparison functions for each groups, a comparison example is provided.

Definition 26. A function compare : A × A → {unchanged,modifed} compares two
instances of the Amabulo meta model aold, anew ∈ A element-wise. It indicates whether
there is no difference between them, then the result is unchanged, or the new model
version anew contains changes compared to the model aold, then the result is modified:



CHAPTER 5. ABSTRACT MODEL LAYER 123

«postcondition»
Offer.decision == (declined || 
firstDeciderAccepted)

«precondition»
Offer.decision == undecided

Activity Diagram - Four Eyes Decision

«UserAction»
first decision

«UserAction»
second 
decision

«SystemAction»
send 

declinature 
message

«SystemAction»
send 

acceptance 
message

[Offer.decision == 
firstDeciderAccepted]

[Offer.decision == declined]

[Offer.decision == accepted]

[Offer.decision == declined]

Offer

Offer

Offer

Offer

Offer

Offer

«precondition»
Offer.decision == 
firstDeciderAccepted

«postcondition»
Offer.decision == 
(declined || accepted)

«precondition»
Offer.decision == accepted

«precondition»
Offer.decision == 
declinded

State Diagram - Offer.decision

Class Diagram - Offer

firstDecider : String
secondDecider : String
decision : String

Offer

declined 

firstDeciderAccepted

undecided

accepted

Figure 5.4.2: Example Model, Visually Modified Only



CHAPTER 5. ABSTRACT MODEL LAYER 124

compare(aold, anew) =






unchanged ∀bo ∈ BOold ∪BOnew :

compare(bo) = unchanged∧

∀sc ∈ SCold ∪ SCnew :

compare(sc) = unchanged∧

∀p ∈ Pold ∪ Pnew :

compare(p) = unchanged

modifed else

In the following we assume that all defined comparison functions are processed in
a context of the previous model version aold and the new model version, where all
elements of aold, anew ∈ A are available. For illustration purposes Figure 5.4.3 contains
a snapshot of a modified UML model anew, based on the introduced example aold in
Figure 4.2.6. The modifications from aold to anew are used as examples when explaining
the comparison functions in detail.

Compare Business Objects

A business object bo ∈ BOnew∪BOold remains unchanged if two conditions are satisfied:
First, it is part of both, the set of business objects BOnew ∈ anew and the set of business
objects BOold ∈ aold. And second, all attributes of bo are evaluated to unchanged. If
the change state evaluation results in added or deleted, the business object was either
added to the model or removed. During comparison of a business object in the context
of anew and aold, three functions are applied:

• compare : BO → {added, deleted, unchanged,modified}: the main function to
analyze the change state of business objects,

• compare : (AT ×BO) → {added, modified, deleted, unchanged}: a function that
analyzes the change state of attributes related to business objects, and

• compare(SC × AT ) → {added, deleted, unchanged,modified}: a function that
determines the change state of attributes that are related to state charts

These functions are defined in detail as follows:



CHAPTER 5. ABSTRACT MODEL LAYER 125

State Diagram - Offer.decision

Activity Diagram - Four Eyes Decision

«UserAction»
first decision

«UserAction»
second 
decision

«SystemAction»
send 

acceptance 
message

[Offer.decision == firstDeciderAccepted]

[Offer.decision == declined]

[Offer.decision == accepted]

[Offer.decision == declined]

Offer

Offer

Offer

Offer

Offer

«precondition»
Offer.decision == undecided

«postcondition»
Offer.decision == (declined || 
firstDeciderAccepted)

«precondition»
Offer.decision == firstDeciderAccepted

«postcondition»
Offer.decision == (declined || accepted)

«precondition»
Offer.decision == accepted

Class Diagram - Offer

firstDecider : Person
secondDecider : String
decision : String
reason : String

Offer

declined 

firstDeciderAccepted

undecided

accepted

name : String

Person
expired 

«SystemAction»
period 
expires

Offer Offer

[Offer.decision == firstDeciderAccepted]

[Offer.decision == undecided]

Offer

Figure 5.4.3: Changed Four Eyes Decision Process, UML Model



CHAPTER 5. ABSTRACT MODEL LAYER 126

Definition 27. The function compare : BO → {added, deleted, unchanged,modified}
evaluates the change state of a given business object as explained in the context of
aold, anew ∈ A:

compare(bo) =






added bo ∈ BOnew \BOold

deleted bo ∈ BOold \BOnew

unchanged bo ∈ BOold ∩BOnew∧

∀at ∈ attPold(bo) ∪ attPnew(bo) :

compare(at, bo) = unchanged

modified else

Definition 28. The function compare : (AT × BO) → {added, modified, deleted,

unchanged} evaluates the change state of an attribute related to a specific business
object in the context of aold, anew ∈ A:

compare(at, bo) =






added (at, bo) ∈ attnew ∧ (at, bo) /∈ attold

deleted (at, bo) ∈ attold ∧ (at, bo) /∈ attnew

unchanged (at, bo) ∈ attold ∧ (at, bo) ∈ attnew∧

typeold(at) = typenew(at)∧

domold(at) = domnew(at)∧

∀sc ∈ dom(at)new :

compare(sc, at) = unchanged

modified else

An attribute at ∈ attPold(bo) ∪ attPnew(bo) is evaluated to unchanged if it is part
of aold and part of anew and if the type of the attribute in anew and aold is the same.
Moreover, if there was a state chart related to attribute at in aold, this relation must
be evaluated to unchanged, too. Otherwise, if the attribute at was neither added, nor
deleted, nor unchanged, the evaluated change state is modfied.

Definition 29. The function compare(SC×AT ) → {added,unchanged,modified,deleted}
evaluates the change state of the relation of a state chart sc ∈ SC to an attribute a ∈ AT



CHAPTER 5. ABSTRACT MODEL LAYER 127

in the context of aold, anew ∈ A:

compare(sc, at) =






added (sc, at) ∈ domnew ∧ (sc, at) /∈ domold

deleted (sc, at) ∈ domold ∧ (sc, at) /∈ domnew

unchanged (sc, at) ∈ domold ∧ (sc, at) ∈ domnew∧

compare(sc) = unchanged

modified else

Example With regard to the above introduced example model (Figure 4.2.6) and its
modifications (Figure 5.4.3), the function compare applied to Offer leads to the change
state modifed, because:

1. the attribute reason is new in Offer, so that compare(reason,Offer) = added,

2. the type of firstDecider was changed,
so that compare(firstDecider ,Offer) = modifed,

3. the addition of expired state in the state chart Offer.decision

leads to compare(Offer.decision,decision) = modifed.

Moreover, a business object of the type Person was added, which is the reason for
compare(Person) = added.

Compare State Charts

A state chart sc ∈ SC is unchanged if all containing states, transitions between states
and initial states are unchanged. A state chart was added to anew if it is not part of
aold, it was deleted in anew if it is part of aold, but not part of anew, and it was modifed

if the state chart was not added, deleted, or unchanged. During the comparison of a
state chart in the context of anew and aold, three functions are applied:

• compare : SC → {added, deleted, unchanged,modified}: the main function to
analyse the change state of state charts,

• comparestate : (SC × S) → {added, deleted, unchanged}: a function that deter-
mines the change state of states that are part of a state chart,



CHAPTER 5. ABSTRACT MODEL LAYER 128

• compareinit : (SC × S) → {added, deleted, unchanged}: a function that deter-
mines the change state of initial states of a state chart, and

• comparesuccS : (S×S) → {added, deleted, unchanged}: a function that determines
the change state of transitions that are modeled in a state chart.

These functions are defined in detail as follows:

Definition 30. The function compare : SC → {added, modified, deleted, unchanged}
determines the change state of a state chart in the context of aold, anew ∈ A:

compare(sc) =






added sc ∈ SCnew \ SCold

deleted sc ∈ SCold \ SCnew

unchanged sc ∈ SCold ∩ SCnew∧

∀s ∈ statePnew(sc) ∪ statePold(sc) :

comparestate(sc, s) = unchanged∧

∀s ∈ initPnew(sc) ∪ initPold(sc) :

compareinit(sc, s) = unchanged∧

∀(s1, s2) ∈ succSPold
∪ succSPnew

:

comparesuccS (s1, s2) = unchanged

modified else

Definition 31. The function comparestate : (SC × S) → {added, deleted, unchanged}
computes the change state of a state related to a state chart in the context of aold, anew ∈
A:

comparestate(sc, s) =






added (sc, s) ∈ statenew ∧ (sc, s) /∈ stateold

deleted (sc, s) ∈ stateold ∧ (sc, s) /∈ statenew

unchanged (sc, s) ∈ stateold ∧ (sc, s) ∈ statenew

Valid change states are added, deleted, and unchanged. The change state modified

is no valid result of comparestate, because a state has, besides his name, no further
attributes that can be modified. If the name of a state was changed, technically one
state carrying the old name is deleted and a new state carrying the new name is added.



CHAPTER 5. ABSTRACT MODEL LAYER 129

Definition 32. The function compareinit : (SC × S) → {added, deleted, unchanged}
computes changed states in the set of initial states of a state chart in the context of
aold, anew ∈ A:

compareinit(sc, s) =






added (sc, s) ∈ initnew ∧ (sc, s) /∈ initold

deleted (sc, s) ∈ initold ∧ (sc, s) /∈ initnew

unchanged (sc, s) ∈ initold ∧ (sc, s) ∈ initnew

Modifications of the set of initial states leads to a changed state chart. Therefore,
the function compareinit determines whether any initial relation between a state s and
a state chart sc was added or deleted.

Definition 33. The function comparesuccS : (S × S) → {added, deleted, unchanged}
computes change states of transitions between states of a state chart in the context of
aold, anew ∈ A:

comparesuccS (s1, s2) =






added (s1, s2) ∈ succSnew ∧ (s1, s2) /∈ succSold

deleted (s1, s2) ∈ succSold ∧ (s1, s2) /∈ succSnew

unchanged (s1, s2) ∈ succSold ∧ (s1, s2) ∈ succSnew

Transitions could be added, deleted, and unchanged, but not modified. A tran-
sition between states, which is modeled as relation succS between two states, is only
characterized by two properties: source and target. If one of them changes, the old
transition was deleted, and a new one was added.

Example With regard to the above introduced example model (see Figure 4.2.6) and
its modifications considering the state chart (see Figure 5.4.3), the function
compare(Offer.decision) results in modified because

1. the state expired was added, so that comparestate(Offer.decision,expired) = added,

2. the state firstDeciderAccepted became an additional initial state,
so that compareinit(Offer.decision,firstDeciderAccepted) = added, and

3. the set of transition changed, so that comparesuccS (accepted,expired) = added.



CHAPTER 5. ABSTRACT MODEL LAYER 130

Compare Processes

In general, the change state of a process is evaluated to unchanged iff a process was
not added, deleted, or modified. The subsequent definitions introduce the comparison
functions for processes in detail. The function compare(P ) in Definition 34 evaluates
the change state of a process to unchanged iff each of the following conditions is satisfied:

• each contained process p ∈ P is unchanged, which is processed by the function
compare : (P ) → {added, modified, deleted, unchanged} (see Definition 34);

• each contained function f ∈ F is unchanged, which is processed by the function
compare : F → {added, deleted, unchanged,modified} (see Definition 35);

• the set of preconditions precond is unchanged, which is processed by the function
compareprec : AC × C → {added, deleted, unchanged} (see Definition 36);

• the set of postconditions postcont is unchanged, which is processed by the function
comparepostc : AC × C → {added, deleted, unchanged} (see Definition 37);

• the set of input parameters inpa is unchanged, which is processed by the function
compareinpa : AC × PA → {added, deleted, unchanged} (see Definition 38);

• the set of output parameters outpa is unchanged, which is processed by the function
compareoutpa : AC × PA → {added, deleted, unchanged} (see Definition 39);

• the set of final activity concepts final is unchanged, which is processed by the
function comparefinal : P × AC → {added, deleted, unchanged} (see Definition
40); and

• the set of succession relations succAC is unchanged, which is processed by the func-
tion comparesuccAC : AC × (AC × C) → {added, deleted, unchanged,modified}
(see Definition 41).

Otherwise a process is either added if it is in the new version only, deleted if it is in the
old model version only, or modified if neither added, nor deleted, nor unchanged. The
function compare(P ) results not only to the information if a process was modified or
not: having the change state processed for each element of the process, the modeler can
easily obtain detailed information about which contained elements and properties were
actually modified. All these functions are defined in detail as follows:



CHAPTER 5. ABSTRACT MODEL LAYER 131

Definition 34. The function compare : (P ) → {added, modified, deleted, unchanged}
determines the change state of a process in the context of aold, anew ∈ A:

compare(p) =






added p ∈ Pnew \ P old

deleted p ∈ P old \ Pnew

unchanged p ∈ P old ∩ Pnew∧

∀f ∈ (contPnew(p) ∪ contPold(p)) \ (Pnew ∪ Pold) :

compare(f) = unchanged∧

∀cp ∈ (contPnew(p) ∪ contPold(p)) \ (Fnew ∪ Fold) :

compare(cp) = unchanged∧

∀ac ∈ finalPnew(p) ∪ finalPold(p) :

comparefinal(p, ac) = unchanged∧

∀(ac1, (ac2, c)) ∈ succACPold
∪ succACPnew

:

comparesuccAC (ac1, (ac2, c)) = unchanged

∀c ∈ precPold(p) ∪ precPnew(p) :

compareprec(c) = unchanged∧

∀c ∈ postcPold(p) ∪ postcPnew(p) :

comparepostc(c) = unchanged∧

∀pa ∈ inpaPold(p) ∪ inpaPnew(p) :

compareinpa(p, pa) = unchanged∧

∀pa ∈ outpaPold(p) ∪ outpaPnew(p) :

compareoutpa(p, pa) = unchanged

modified else

Definition 35. The function compare : F → {added, deleted, unchanged,modified}
evaluates the change state of a function f ∈ F in the context of aold, anew ∈ A:



CHAPTER 5. ABSTRACT MODEL LAYER 132

compare(f) =






added f ∈ Fnew \ F old

deleted f ∈ F old \ Fnew

unchanged f ∈ F old ∩ Fnew∧

((f ∈ UFold ∩ UFnew) ∨ (f ∈ SFold ∩ SFnew))∧

∀c ∈ prec(f)Pold ∪ precPnew :

compareprec(f, c) = unchanged

∀c ∈ postc(f)Pold ∪ postcPnew :

comparepostc(f, c) = unchanged

∀pa ∈ inpa(f)Pold ∪ inpaPnew :

compareinpa(f, pa) = unchanged

∀pa ∈ outpa(f)Pold ∪ outpaPnew :

compareoutpa(f, pa) = unchanged

modified else

The change state of a function f ∈ F is evaluated to unchanged if following condi-
tions are satisfied:

• the type of the function was not changed, which means if f ∈ UFold ∩ UFnew or
f ∈ SFold ∩ SFnew,

• the set of preconditions precond is unchanged,

• the set of postconditions postcont is unchanged,

• the set of input parameters inpa is unchanged, and

• the set of output parameters outpa is unchanged.

Definition 36. The function compareprec : AC × C → {added, deleted, unchanged}
determines the change state of a precondition relation between an activity concept ac ∈
AC and a constraint c ∈ C in the context of aold, anew ∈ A:



CHAPTER 5. ABSTRACT MODEL LAYER 133

compareprec(ac, c) =






added (ac, c) ∈ precnew ∧ (ac, pa) /∈ precold

deleted (ac, c) ∈ precold ∧ (ac, pa) /∈ precnew

unchanged (ac, c) ∈ precnew ∧ (ac, pa) ∈ precold

Valid results of compareprec are added, deleted and unchanged. The change state
modified is no valid result of compareprec, because a precondition relation has no fur-
ther attributes. Looked at a technical viewpoint, it means if a precondition was changed,
the old constraint is deleted and a new constraint is added.

Definition 37. The function comparepostc : AC × C → {added, deleted, unchanged}
determines the change state of a postcondition relation between an activity concept
ac ∈ AC and a constraint c ∈ C in the context of aold, anew ∈ A:

comparepostc(ac, c) =






added (ac, c) ∈ postcnew ∧ (ac, pa) /∈ postcold

deleted (ac, c) ∈ postcold ∧ (ac, pa) /∈ postcnew

unchanged (ac, c) ∈ postcnew ∧ (ac, pa) ∈ postcold

Comparable to preconditions, valid results of comparepostc are added, deleted, and
unchanged. The change state modified is no valid result of comparepostc, because a
postcondition relation has no further attributes. If a postcondition was changed, the old
constraint is deleted and a new constraint is added.

Definition 38. The function compareinpa : AC × PA → {added, deleted, unchanged}
determines the change state of an input parameter pa ∈ P related to an activity concept
ac ∈ AC in the context of aold, anew ∈ A:

compareinpa(ac, pa) =






added (ac, pa) ∈ inpanew ∧ (ac, pa) /∈ inpaold

deleted (ac, pa) ∈ inpaold ∧ (ac, pa) /∈ inpanew

unchanged (ac, pa) ∈ inpanew ∧ (ac, pa) ∈ inpaold

An input parameter related to an activity concept is unchanged if the input param-
eter relation is part of the old and the new model. An added input parameter is part of
anew but not part of aold. An input parameter that does not exist in anew but in aold is



CHAPTER 5. ABSTRACT MODEL LAYER 134

evaluated to deleted.

Definition 39. The function compareoutpa : AC × PA → {added, deleted, unchanged}
determines the change state of an output parameter pa ∈ P related to an activity concept
ac ∈ AC in the context of aold, anew ∈ A:

compareoutpa(ac, pa) =






added (ac, pa) ∈ outpanew ∧ (ac, pa) /∈ outpaold

deleted (ac, pa) ∈ outpaold ∧ (ac, pa) /∈ outpanew

unchanged (ac, pa) ∈ outpanew ∧ (ac, pa) ∈ outpaold

Corresponding to compareinpa, an output parameter related to an activity concept
is unchanged if the output parameter relation is part of the old model aold and the new
model anew. An added output parameter is part of anew but not part of aold. An output
parameter that does not exist in anew but in aold is evaluated to deleted.

Definition 40. The function comparefinal : P × AC → {added, deleted, unchanged}
determines the change state of a final node relation between a process p ∈ P and an
activity concept ac ∈ AC in the context of aold, anew ∈ A:

comparefinal(p, ac) =






added (p, ac) ∈ finalPnew ∧ (p, ac) /∈ finalPold

deleted (p, ac) ∈ finalpold ∧ (p, ac) /∈ finalPnew

unchanged (p, ac) ∈ finalPnew ∧ (p, ac) ∈ finalPold

A final node relation between a process and an activity concept can be evaluated
to added, deleted, or unchanged in the new model compared to a previous version of a
model: an added final node relation indicates that a new activity concept is modeled as
a possible final node, and a deleted final node indicates that a final node of a previous
model is either removed or no longer a final node.

Definition 41. A function

comparesuccAC : AC × (AC × C) → {added, deleted, unchanged,modified}

evaluates the change state of a succession relation between an activity concept ac1 ∈ AC

as predecessor and a tuple (ac2, c) with ac2 ∈ AC as the successor and c1 ∈ C as the
succession constraint in the context of aold, anew ∈ A:



CHAPTER 5. ABSTRACT MODEL LAYER 135

comparesuccAC (ac1, (ac2, c1)) =






added ∃cx ∈ C :

(ac1, (ac2, c1)) ∈ succACnew∧

(ac1, (ac2, cx)) /∈ succACold

deleted ∃cx ∈ C :

(ac1, (ac2, c1)) ∈ succACold∧

(ac1, (ac2, cx)) /∈ succACnew

unchanged (ac1, (ac2, c1)) ∈ succACold∧

(ac1, (ac2, c1)) ∈ succACnew

modified else

A succession relation between two activity concepts ac1, ac2 ∈ AC is unchanged, if
the connection between ac1 and ac2 exists in both, the previous and the new version of
the model and if the constraint of the succession relation c ∈ C is the same in the new
and the old model. A succession relation was modifed, only if the succession constraint
was modified. In the case of a modification of the successor ac2 or predecessor ac1, the
succession relation is deleted and a new one is added.

Example Considering the modifications (see Figure 5.4.3) of the above introduced ex-
ample model (Figure 4.2.6), the function compare(ForEyesDecision) results in modified,
because

1. the contained system function send declinature message was removed:
compare(senddeclinaturemessage) = deleted, a system function period expires was
added: compare(periodexpires) = added, and the system function send acceptance

message now comes with an additional output parameter:
compare(sendaccaptancemessage) = modifed;

2. due to deletion of send declinature message, the set of final activity concepts was
modified: comparefinal(ForEyesDecision,senddeclinaturemessage) = deleted; and



CHAPTER 5. ABSTRACT MODEL LAYER 136

3. the set of succession relations was modified through the addition of

(�, (second decision,Offer.decision==firstDeciderAccepted)),

(period expires, (�, true)),

(first decision, (period expires,Offer.decision==declined),

(second decision, (period expires,Offer.decision == declined),

(send acceptancemessage, (period expires, true),

and modification of (�, (first decision,Offer.decision == undecided)) as well as
deletion of succession relations from and to the deleted function send declinature

message.

5.4.3 Implementation

As part of an Amabulo infrastructure blueprint, a concrete implementation of a model
comparison tool has to provide the comparison result as structured data model via a
defined interface. Figure 5.4.4 shows an architectural overview of the model compar-
ison component and its interfaces. The model comparison tool requires two Amabulo
model instances to process their differences. Therefore, it accesses the Amabulo model
component via the IFModel interface, which provides model instances in form of Amab-
ulo object models. The interface IFMCResult provides access to the model comparison
result, which is needed by a UI component and by the code comparison tool. The
UI component provides a suitable GUI and is used by modelers and quality assurance
managers to explore differences between two versions of a model. Furthermore, a code
comparison tool requires the results to compute scheduled changes of the program code
in case of a code generation process.

5.5 Summary

In this chapter we have introduced and described the Abstract Model Layer of our
Amabulo infrastructure blueprint as well as its elements. It is used to encapsulate
visual modeling languages and code generators. At first, we have analyzed several visual
modeling languages from industry and academia to identify the most important model
elements for process modeling. We also have analyzed actually implemented business
logic layers of two deployed industrial information systems with the aim to identify



CHAPTER 5. ABSTRACT MODEL LAYER 137

Model 
Comparison 

Tool

IFMCResult

IFModel

Code 
Comparison 

Tool

UI

Amabulo 
Model

Code Generator

IFCCResult

Figure 5.4.4: Model Comparison Tool

recurring structures that need to be considered in models used for code generation. We
have used both analysis results to extract the most relevant modeling concepts of which
we believe that they must necessarily be provided by a domain specific model for the
business logic of information systems.

Afterwards, based on the analysis results, we have developed a domain specific mod-
eling language which provides an abstract, non-visual representation focused only on
business logic concerns. This abstract representation called Amabulo model is a central
artifact of an Amabulo infrastructure: It acts as interface between visual models, which
are transformed automatically into an abstract model, and code generators, which use
Amabulo models as source model for code generation purposes. Moreover, an Amabulo
model reduces the complexity of rules for automated model processing, such as model
transformation and code generation, and it furthermore reduces the number of trans-
formations to be developed and maintained in a model driven development setup. An
Amabulo model contains model elements and relations that support the integration of
all modeling concepts that are needed for modeling business logic: elements for process
modeling, state modeling, and structural modeling.

Finally, we have introduced a model comparison tool which is used to compute
semantic changes between two different Amabulo models. In particular, when a software
model is used as parameter for code generation and model changes result directly in
changed program code, we believe that a convenient model comparison tool helps reduce
impact analysis time by finding out which parts of the abstract model were changed.
We have described a model comparison function that provides an aggregated overview



CHAPTER 5. ABSTRACT MODEL LAYER 138

of all important model changes concerning business logic and its technical integration
into an Amabulo infrastructure. Since we focused on semantic modifications only, the
model comparison tool helps to save time needed for manual inspection tasks in visual
models.



Chapter 6

Abstract System Layer

This chapter introduces the Abstract System Layer of our Amabulo infrastructure blue-
print and its comprising concepts as shown in Figure 6.0.1. An abstract system repre-
sents the modeled business logic in the form of a formal structure and independent of
the actual business logic implementation. As underlying calculus, the Abstract System
Layer uses Coloured Petri Nets (CPN) as specified by Jensen in [Jen92]. Moreover,
with a complete mapping of all of Amabulo meta model elements and their relations
into Coloured Petri Nets, the semantics of the Amabulo meta model is equipped with
a formal foundation. A CPN that is generated automatically from an Amabulo model
can be analyzed and simulated by quality assurance managers with applying CPNTools,
which is a matured tool providing the user interface to the Abstract System Layer. Nev-
ertheless, the Abstract System Layer is an optional layer. It is not necessarily needed, in
particular, if automated quality assurance functions are not relevant for specific projects.

This chapter starts with a motivation of an additional abstract system representa-

Meta Model:
Coloured Petri 
Net Defitnion

instance ofCPN Analysis 
Tool

analyse and 
simulate

Abstract 
System 
Layer

Abstract Model Layer

Abstract System:
Coloured Petri Net

QA Manager

uses

1..*

Model Transformation Code Generation  Tool/
Concept

Dependency

Model Transformation (Java)

Figure 6.0.1: Detailed View on Abstract System Layer

139



CHAPTER 6. ABSTRACT SYSTEM LAYER 140

tion of the modeled business logic in the context of a model driven development project.
Then, after a description of the underlying assumptions, two robustness criteria are in-
troduced in detail, namely, assurance of local conditions and assurance of domain states.
Subsequent to an overview of basic elements of Coloured Petri Nets, the complete and
detailed mapping from Amabulo model elements into Coloured Petri Net elements is
defined in three parts: At first, business objects are translated into CPN, followed by
the translation of processes. Then functions that modify state chart refined business
objects are translated into CPN. These mapping rules consider particularly the intro-
duced robustness criteria. For illustration purposes, this chapter shows an example CPN
that is derived directly from the four eyes decision process example model as introduced
previously in Section 4.2.6. Finally, the analysis tool CPNTools is introduced, which
provides sufficient tool support for further analysis and simulation actions.

6.1 Purpose of an Abstract System Representation

Although the Abstract System Layer is an optional infrastructure layer and not needed
necessarily in every project setup, it provides several advantages as described in this sec-
tion. The key feature of this layer is an abstract representation of the modeled business
logic in the form of a formal structure, a Coloured Petri Net, which can automatically
be derived from an Amabulo model. Both the abstract mapping rules from the Abstract
Model Layer into the Abstract System Layer as well as the actual generated CPN brings
several advantages for both phases of the development and maintenance process, for the
setup and integration phase as well as for the maintenance and development phase. If
the actual implementation of the automated mapping rules from Amabulo into CPN
follow defined naming conventions, each element of the CPN can be related to a specific
element of its Amabulo model. This supports quality managers when CPN analysis
results have to be evaluated for statements about at the Amabulo model.

6.1.1 Setup and Integration Phase

In the setup and integration phase (see Section 3.2.1) an implementation of an Amabulo
infrastructure blueprint is going to be prepared for the needs of a specific project: Visual
modeling languages have to be chosen and possibly tailored, modeling tools have to be
installed, the model transformation into an abstract model has to be implemented or
customized, and code generators have to be implemented and tested.



CHAPTER 6. ABSTRACT SYSTEM LAYER 141

Avoid Ambiguity A meta model, which is well-founded by a formal structure comes
with clear semantics that avoids ambiguity. In particular, when model transformations
or code generators have to be adapted or completely new developed, developers have to
know and not to suppose what elements and relations between them in target or source
models mean. An underlying formal structure prevents misunderstandings and provides
a precise definition of the semantics of meta model elements. Besides, if the semantics
of all model elements is defined without any ambiguity, instances of those models can be
processed automatically, which is an important prerequisite for automated structural and
behavioral model analysis. In the context of an Amabulo infrastructure, the existence
of a complete and precise mapping from all elements and relations of the Amabulo meta
model into Coloured Petri Nets provides such a formal semantic definition of Amabulo
elements.

Specification of Code Generator As stated above, the requirements of code gener-
ators usually differ from project to project. This leads to the need of the project specific
customization and implementation of code generation rules by developers. A mapping
from Amabulo model elements into elements of Coloured Petri Nets provides an ab-
stract specification of code generators for business logic: Each single mapping rule from
an abstract model into an abstract system defines a transformation from model space
into system space, even if the resulting Petri net is independent of concrete program-
ming languages. A concrete code generator implementation has to implement all the
abstract mapping rules from abstract model into abstract system. For testing purposes,
an abstract specification provides a formal specification of concrete code generator im-
plementations. It can be used to check which functions are implemented and which are
not.

6.1.2 Maintenance and Development Phase

After the setup and integration phase, a proper and possibly tailored Amabulo infras-
tructure is ready to be used for development and maintenance purposes (see Section
3.2.2).

Automatically Generated Formal Specification A Coloured Petri Net (CPN)
generated from an abstract model instance is also a formal specification of the business
logic implementation that has to be generated by a code generator based on the same
abstract model instance. Based on the semantics of Coloured Petri Nets, the gener-



CHAPTER 6. ABSTRACT SYSTEM LAYER 142

ated formal specification defines the expected behavior of a system and can be used
for code verification purposes and further code and model quality assurance tasks. A
formal specification that is generated automatically also implements on its abstract level
requirements on system’s robustness as defined in Section 6.2.

Run Before Implementation If an abstract model was transformed automatically
into a Coloured Petri Net, such a Petri net can be loaded and executed in a convenient
analysis and implementation tool. The possibility to run automatic simulations of Petri
nets provides a major advantage for development and maintenance tasks: The modeled
business logic can be executed before a line of code was generated, integrated, and
deployed. First tests of maintained systems can be done by only simulating them at an
abstract level without touching the code. This supports in particular quality assurance
tasks of large and complex systems.

Compute Semantic Errors The underlying formalism allows the implementation
and execution of automated quality assurance algorithms based on the theory of bipartite
graphs and Coloured Petri Nets. Algorithms for the static analysis of CPN can be used
to find parts of the net which are never reachable or to prove that all parts are connected.
Furthermore, the dynamic analysis of generated CPNs is appropriate to find modeling
inconsistencies, such as control flow constraints, that can never be satisfied by modeled
states of business objects, or modeled constraints for functions and processes.

As argued in this section, an abstract system representation holds several advantages
for a model driven development process. In particular, if requirements have to be defined
at a level that provides an abstraction from concrete programming languages and that
is specific enough to support concrete statements about the implemented business logic.
The following Section 6.2 introduces two different robustness criteria that are specified
in detail using an abstract implementation later in Section 6.4 applying CPN.

6.2 What Robustness Means

As motivated in Section 2.3.2, the robustness of complex business information systems is
an important issue, in particular, for business logic implementations, which technically
implement interfaces to external functions and subsystems. This led us to two different
robustness criteria as introduced subsequently after having provided a more detailed
description of our assumptions. As stated above in Section 6.1, the mapping of Amabulo



CHAPTER 6. ABSTRACT SYSTEM LAYER 143

model elements into CPN provides an abstract implementation of the expected business
logic behavior. Hence, we use mapping rules to provide a detailed specification of our
robustness criteria later in Section 6.4.

6.2.1 Assumptions for the Need of Robustness

Large systems with many dependencies from and to other systems are hard and risky to
maintain. Runtime errors caused by a defective implementation or integration occur in
live environment and cannot be avoided entirely. However, their consequences have to be
predictable. In large application landscapes, inconsistent or damaged domain data sets
can lead to expensive errors and system failures. In particular, if several applications
depend on the same database, corrupt business data can cause large financial damages.
Hence, avoiding faulty data in live environment databases is the main objective of our
concepts to assure robustness. Our robustness criteria are based on two assumptions
regarding the generated program code: 1) the generated code it is connected to exter-
nal systems and manually implemented code and 2) the code is deployed in long-term
operated and complex systems.

Connections to External Systems and Manual Implemented Code We assume
that generated parts of the business logic have to be connected manually with other parts
of the system; and a connection to an external system causes integration tasks. In this
context external means not generated by the same generator that produces the business
logic. Possibly unsafe program code has to be connected to potentially critical parts
of a system. Hence, dependent on the actual code generator, the business logic has to
support interfaces with regard to following components:

• External systems or internal service components that are specified as system func-

tions in an Amabulo model, which indicate automatically processed functions that
are operated externally (such as web services)

• User interface artifacts that are required by user functions in Amabulo models.
Parts of the user interface could be generated optionally (as the example J2EE
code generator does, see Section 7.2). However, more complex and specific user
interfaces are either implemented manually or generated with a special convenient
user interface generator.

• Persistency components such as data bases that store business objects which are



CHAPTER 6. ABSTRACT SYSTEM LAYER 144

created, modified, and inspected by business logic. A proper technical connection
provides access to all required data items and stores modified items.

• Legacy components, which have to be integrated into new applications or which
are not yet replaced by new (maybe generated) components.

Long-Term Operation of Complex Systems As our second assumption, a complex
system supporting complex and probably critical business processes has to be developed
and maintained over several years. Parts of the original system are reworked, added, or
removed due to changed domain requirements. Moreover, documentation artifacts are
often missing and are not up to date. Under such conditions code maintenance becomes
a complex and risky task. It can easily happen that during work on a minor change
request important domain constraints become accidentally violated. In such a case, the
consequences are not easily comprehensible and may lead to inconsistencies in the data
base or unexpected behavior in business critical systems.

With regard to the both above described assumptions, the following subsections in-
troduces two different robustness-providing concepts that are supported by our Amabulo
infrastructure and that have to be considered particularly during design and implemen-
tation of business logic code.

6.2.2 Assurance of Local Conditions

Whenever a system reuses implemented functionality of other systems, it has to be
assured that external data input does not violate internal domain constraints. This
class of errors, which is called improper input validation, is listed as “one killer of healthy
software” in the SANS List of Top 25 Most Dangerous Programming Errors [PMBC09].
For example: A function X is called by function Y and expects either value A or B as
result of function X. Now, if function X returns a value C, an exception handling routine
has to be started in Y. This seems to be a trivial use case, but considering that systems
run several years and result types of integrated external functions may change due to
maintenance tasks after running several months, it is important to guarantee that reused
external functionality never causes internal errors.

Therefore, the specification of local conditions for each activity concept is a modeling
concept to prevent faulty behavior of single processes or functions. Using preconditions
and postconditions as provided in Amabulo models (see Section 5.3.3), the modeler can



CHAPTER 6. ABSTRACT SYSTEM LAYER 145

specify domain conditions, which have to be asserted automatically by the generated
system.

Considering the detailed model example as introduced in Figure 4.2.6, the user func-
tion second decision comes with a precondition and a postcondition. Precondition is
that the function requires an business object Offer, having firstDeciderAccepted as value
of attribute decision. Postcondition is that after execution of second decision, the at-
tribute decision of business object Offer is either declined or accepted. If a precondition
is not satisfied, an exception handling routine has to be started and the corresponding
action or process must not be executed. If a postcondition is not satisfied, an exception
handling routine has to be executed, and the control flow has to be stopped. Moreover,
it has to be prevented that probably inconsistent data sets are stored in the persistency
layer.

6.2.3 Assurance of Global Domain States

Besides local conditions, which are modeled as preconditions and postconditions, global,
meaning system-wide domain states of business objects can often be identified. Such
domain states can be interpreted as domain constraints that must not be violated by the
supporting system. They overrule even modeled local conditions. In an Amabulo model
those domain states are modeled to refine attributes of business objects (see Section
5.3.2). If an attribute is related to a state chart, it has to be assured that the generated
logic abides by specified (global) domain state charts as follows:

• The value of the attribute is restricted to elements of the set of defined states. If
any function assigns a value, which is not a state in the attribute’s state chart, an
exception has automatically been raised and the control flow has to be stopped
immediately.

• If a new instance of a business object is created, the value of all attributes that
are refined by a state chart is restricted to one of the possible initial states of the
corresponding state chart. Otherwise, an exception has automatically been raised,
and the control flow has to be stopped immediately to prevent data entries that
are inconsistent with defined domain requirements.

• If an object is going to be modified, it has to be assured that the values of all
attributes which are refined by a state chart follow the modeled transitions of
the corresponding state chart. Attributes may remain unchanged. However, if



CHAPTER 6. ABSTRACT SYSTEM LAYER 146

an attribute value is changed, it has to be assured that the new value is a valid
successor of the previous value of the attribute.

When during a maintenance task a developer implements a function or a process that
executes a domain state transition that is not specified, this violation is detected and
handled automatically. For example, with regard to the example model in Figure 4.2.6,
the business object Offer has four domain states and four transitions defined in the state
chart Offer.decision that have to be assured during process execution automatically.
Now, if the user function first decision tries to change the value of the attribute decision

to accepted, which is not allowed when following the state chart, a domain state violation
handling routing has to be invoked and the process has to be stopped.

If the above introduced types of assertions are considered by the code generator,
the generated program code satisfies our robustness criteria. These robustness feature
is also considered by transformation rules from the Abstract Model Layer into the Ab-
stract System Layer: A generated Coloured Petri Net implements robustness features,
too. Modeled conditions and global domain states are considered so that with the auto-
mated simulation and analysis of those Petri nets modeling errors based on misleading
constraints can be detected.

After a short overview about basic elements of Coloured Petri Nets in the subsequent
Section 6.3, the concrete mapping rules from the Abstract Model Layer into the Abstract
System Layer are detailed in Section 6.4.

6.3 Coloured Petri Nets

In general, the formal structure used in an Abstract System Layer has to meet the
following two requirements: First, all required modeling elements for business logic have
to be supported, and, second, the mapping rules from the Amabulo model into the
formal structure can be processed automatically. Since the primary focus is on models
of business logic, structure modeling concepts supporting internal states of structural
entities are needed as well as process modeling concepts. Moreover, at least one matured
modeling tool for analysis and simulation purposes has to be available. Such a tool has
to provide a set of standard analysis functions and has to support the development of
additional project specific analysis functions.

Coloured Petri Nets (CPN) as introduced by Jensen in [Jen92] support both: The
extension of the Petri Net definition, as presented by Petri in [Pet62], provides native



CHAPTER 6. ABSTRACT SYSTEM LAYER 147

support of structural modeling through colored tokes. With CPNTools [JKW07] a ma-
tured freeware tool for academic and industrial use is provided and maintained by the
CPN Group, University of Aarhus, Denmark [CPN]. Using CPNTools, Coloured Petri
Nets can be designed, loaded, simulated, and analyzed. If required, additional execution
and analysis functions can be implemented and integrated into CPNTools.

Coloured Petri Nets Definition The following definition was taken and extended
from [Jen92] pages 65 ff in which each set of element types is introduced in detail,
including a precise semantics definition. For this reason, we provide only a list of all
sets of elements that are part of the CPN definition. For pragmatic reasons and with
regard to the automated analysis and simulation of CPNs, we extended the original
CPN definition with an additional set of transition functions F . Transition functions
are applied in CPNTools to specify aspects of the internal logic of transitions. With the
help of transition functions, outgoing colored tokens can be created depending on the
number and internal states of incoming colored tokens. These transition functions are
considered in mapping rules from Amabulo to CPN as provided in Section 6.4.

Figure 6.3.1 provides an overview of the visual elements of a CPN: Every place
(p1, p2 ∈ P ) is typed with a color (color ∈ Σ), and only tokens of the specified color can
be stored into a place. Places are connected with directed arcs (arc1, arc2 ∈ A) to tran-
sitions (transition ∈ T ) and transitions to places. If an arc function (arc function ∈ E)
is created, it determines if and how many tokens are routed through this arc. A tran-
sition can be refined by guard functions (guard function ∈ G) and transition functions
(transition function ∈ F ): Guard functions are evaluated to a boolean value. Only if
a guard function is evaluated to true, a transition can be executed. The internal pro-
cessing of a transition is specified with transition functions, such a function determines
the number, type, and internal state of all outgoing colored tokens.

arc function ∈ E
(Arc Functions )p1∈ P 

(Places)
transition ∈ T 
(Transitions)

[guard function] ∈ G 
(Guard Functions)

transition function ∈ F 
(Transition Functions)

arc function ∈ E
(Arc Functions ) p2 ∈ P 

(Places)

color ∈ ∑
(Colors)

color ∈ ∑
(Colors)

arc1  ∈ A
(Arcs )

arc2  ∈ A
(Arcs )

Figure 6.3.1: Colored Petri Nets, Overview

Definition 42. The original definition by Jensen [Jen92] with an added set T is: A



CHAPTER 6. ABSTRACT SYSTEM LAYER 148

Coloured Petri Net is a 10-tuple CPN = (Σ, P, T, A, N, C,G, E, I, F ) consisting of:

• a finite set of non-empty types Σ, called colour sets,

• a finite set of places P ,

• a finite set of transitions T such that P ∩ T = ∅,

• a finite set of arcs A such that P ∩A = T ∩A = ∅,

• a node function N that is defined from A into (P × T ) ∪ (T × P ),

• a color function C that is defined from P into Σ,

• a guard function G that is defined from T into an expressions such that
∀ t ∈ T : [Type(G(t)) = Bool ∧ Type(V ar(G(t))) ⊆ Σ],

• an arc expression function E that is defined from A into expressions such that
∀ a ∈ A : [Type(E(a)) = C(p(a))MS ∧ Type(V ar(E(a))) ⊆ Σ] where p(a) is the
place of N(a),

• an initialization function I that is defined from P into closed expressions such that
∀ p ∈ P : [Type(I(p)) = C(p)MS ], and

• a transition function F that is defined from T into expressions such that
∀ t ∈ T : [Type(F (t)) ⊆ Σ].

6.4 Transformation from Amabulo Model into Coloured Petri

Nets
1

After describing the motivation of an abstract system representation (see Section 6.1)
and introduction of robustness properties (see Section 6.2), this section provides the
complete and precise set of abstract mapping rules from Amabulo model elements (as
introduced in Section 5.3) into Coloured Petri Nets (as introduced in Section 6.3). After
introducing conventions of naming and notation in mapping rules, at first business ob-
jects are mapped into CPN (in Section 6.4.1). Then, transformation rules for modeled
processes as well as their content and control flow elements are specified in the second
part (in Section 6.4.2). Finally, the third part (in Section 6.4.3) specifies mapping rules
for functions and focuses on the abstract implementation of condition assurances, as
introduced previously in Section 6.2.

1A preliminary version of the ideas of this section in [BG09].



CHAPTER 6. ABSTRACT SYSTEM LAYER 149

High-Level View onto Mapping Rules From a high-level point of view, the map-
ping concepts are outlined as follows: Each Amabulo model is mapped to a single CPN.
Each process and each function as well as the elements related to them are mapped to
parts of the CPN. Nested processes become flattened. Even if a process is not yet refined
or several functions do not have constraints, the resulting CPN will always be a valid
CPN. Each modeled business object and each attribute that is refined with a state chart
is mapped to a color of the CPN. The tokens of colors that represent business objects
are stored in so-called database places (labeled “DB<name of business object>”). The
current state of the control flow is represented by a specific control flow color γΣ ∈ Σ.
Succession elements are mapped to connections between transitions and places of the
CPN.

Conventions and Notations Used in the Mapping Rules In general, all transfor-
mation rules are mappings from elements of an Amabulo Model A (as defined in Section
5.3) into elements of Coloured Petri Nets (as defined in Section 6.3). The mapping
rules are phrased as a set of logical constraints with the “�” symbol. The left-hand
side of “�” selects elements of an Amabulo Model, and the right-hand side specifies the
required elements in a CPN. To prevent misunderstandings, elements in the Amabulo
meta model are marked with an index A and elements of Coloured Petri Nets are marked
using an index CPN . The type of color used for control flow purposes is indicated as
γΣ, with γΣ ∈ Σ. An overview of all elements, relations, and functions of an Amabulo
in the form of tables of notation can be obtained from Appendix C.

6.4.1 Mapping of Business Objects and State Charts

Each business object of an Amabulo model is mapped into one color s of the resulting
CPN. If an attribute of a business object is not related to a state chart, the attribute
is mapped into a simple property of s in CPN and can have any value assigned. Hence,
if a color s ∈ ΣCPN relates to a business object b ∈ BOA, the items of s represent all
attributes of b (Rule 6.4.1).

∀ b ∈ BOA �
∃s ∈ ΣCPN : {a1, a2, ..., an | ai ∈ attP(b) ∧ n = |attP(b)|} (6.4.1)



CHAPTER 6. ABSTRACT SYSTEM LAYER 150

In contrast to simple attributes, if an attribute a ∈ ATA is related to a state chart
sc ∈ SCA, an attribute color s ∈ ΣCPN is created instead of a simple property, and all
states of sc become simple properties of this attribute color (Rule 6.4.2). The items of
the new attribute color are defined by the set of states in the state chart.

∀a ∈ ATA : ∃sc ∈ SCA : (a, sc) ∈ dom �
∃s ∈ ΣCPN : {st|st ∈ stateP(sc)} (6.4.2)

6.4.2 Mapping of Processes

This subsection introduces the mapping details of processes, their content and their
contained control flow elements. Each of the following steps have to be applied for each
process p ∈ PA that is part of the Amabulo model:

Initial Setup The initial setup of an Amabulo process is applied to all processes
p ∈ PA of the Amabulo model and consists of following rules: For each process of an
Amabulo model a start place sstart, an initial transition tinitial, and a final place sfinal

is created (Rule 6.4.3). Start place and initial transition are connected with an arc e

(Rule 6.4.4), and the existence of the control flow color type γΣ has to be assured (Rule
6.4.5). The color of both created places is set to control flow color γΣ (Rule 6.4.6), and
an arc expression is used to specify the created arc as control flow arc (Rule 6.4.7). All
these created CPN elements provide the initial and final elements of a process so that all
initial activity concepts of a process are connected to the initial transition tinitial and all
final activity concepts to the final place sfinal. The labels of the transitions and places
in the CPN carry the name of the process as prefix followed by the purpose of the CPN
element.

∀p ∈ PA �
∃sstart ∈ PCPN , ∃tinitial ∈ TCPN , ∃sfinal ∈ PCPN (6.4.3)

and ∃e ∈ ACPN : N(e)CPN = (sstart, tinitial) (6.4.4)

and ∃γΣ ∈ ΣCPN with γΣ = {ok} (6.4.5)

and C(sstart)CPN = C(sfinal)CPN = γΣ (6.4.6)

and E(e)CPN = f with f ∈ γΣ (6.4.7)



CHAPTER 6. ABSTRACT SYSTEM LAYER 151

Basic Mapping of All Activity Concepts Figure 6.4.1-(1) illustrates the following
mapping rules that create all basic and mandatory elements for every activity concept of
a process. At this level of basic CPN elements, there is no difference between processes
and functions. Every activity concept a ∈ contP(p) of a process p ∈ PA is translated
into a couple of a place sa and a transition ta (Rule 6.4.8) that are connected with a
control flow arc ea from place sa to transition ta (Rules 6.4.9 and 6.4.10). The color
type of place sa is defined as control flow color γΣ (Rule 6.4.11).

∀ a ∈ contP(p) �
∃ta ∈ TCPN ,∃sa ∈ PCPN (6.4.8)

and ∃ea ∈ ACPN : N(ea)CPN = (sa, ta) (6.4.9)

and E(ea)CPN = f with f ∈ γΣ (6.4.10)

and C(sa)CPN = γΣ (6.4.11)

Parameters That Are Input Parameters Only For each parameter pa ∈ PAA

that is related to an activity concept a ∈ contP(p) as input parameter but not as output
parameter, the corresponding transition ta consumes one token from the arc from the
business object’s database place sDB pa and places one token on the arc back to the
database place. Because input only parameters require read-only behavior, it has to be
assured that the internal state of the token that is sent back to the database place is
equivalent to the token consumed from the database place. Figure 6.4.1-(2) visualize
following the mapping rules: The database place sDB pa of the current business object
type (Rule 6.4.12) is bi-directionally connected with the transition (Rules 6.4.13 and
6.4.14), where the incoming arc ea pa in routes an instance of the parameter pa (Rule
6.4.15) and the outgoing arc ea pa out routes only tokens that have an internal state
equivalent to the internal state of the incoming token (Rule 6.4.16). In Figure 6.4.1-(2)
the incoming and outcoming arc are inscripted with the same variable x1, which is a
pattern to specify the consistency of incoming and outgoing tokens in CPNTools.



CHAPTER 6. ABSTRACT SYSTEM LAYER 152

a aa

a

aa

DB
X

Activity Concept
(Process/Function)

Function
with

Input Only Parameter

UML View Corresponding 
Elements in CPN

Elements in 
Amabulo Meta Model

ϒ∑
(1)

(2)

f

X ϒ∑
f

x1 x1

a

aa

DB
X

Function
with

Input and Ouput 
Parameter

(3)
X ϒ∑

f

x1 x2

Function
with 

Output Only 
Parameter

(4)

X

a
X aa

DB
X

ϒ∑
f

x1

aa

DB
<<precondition>>
X.y == true 

[X.y = 
true]

Function
with 

Precondition

X

S
(5)

a
X X

x1 x2

X

aa

DB

X.y = false

Function
with 

Postcondition
S

(6)

Behavior in CPN

Simple Function 
without conditions or 
parameters

Function 
with read-only 
arguments

Function with 
arguments, which can 
manipulate attribute 
values

Function that 
creates objects

Function with local 
preconditions

Function with local 
postconditions

<<postcondition>>
X.y == false

a
X X

x1 x2

Figure 6.4.1: CPN Mapping Collection, Part 1



CHAPTER 6. ABSTRACT SYSTEM LAYER 153

∀ pa ∈ PAA : ∃(a, pa) ∈ inpa ∧ ¬∃(a, pa) ∈ outpa �
∃sDB pa ∈ PCPN ∧ C(sDB pa)CPN = pa (6.4.12)

and ∃ea pa in ∈ ACPN : N(ea pa in)CPN = (sDB pa, ta) (6.4.13)

and ∃ea pa out ∈ ACPN : N(ea pa out)CPN = (ta, sDB pa) (6.4.14)

and E(ea pa in)CPN = pain (6.4.15)

and E(ea pa out)CPN = paout with ∀atin ∈ attP(pain) :

value(atin) == value(atout) (6.4.16)

Parameters That Are Input and Output Parameters For each parameter pa ∈
PAA that is related to an activity concept a ∈ contP(p) as input parameter and as
output parameter, the corresponding transition consumes one token from the business
object’s database place and places one token on the arc back to the database place.
The corresponding mapping rules are illustrated in Figure 6.4.1-(3): The database place
sDB pa of the current business object type (Rule 6.4.17) is bidirectionally connected with
the transition ta (Rules 6.4.19 and 6.4.18). The incoming arc ea pa in and the outgoing
arc ea pa out are both instances of the parameter pa (Rule 6.4.20). There is no constraint
relating the internal states of incoming and outcoming tokens (thus, the arc inscriptions
are x1 and x2 ).

∀ pa ∈ PAA : (a, pa) ∈ inpa ∧ (a, pa) ∈ outpa �
∃sDB pa ∈ PCPN ∧ C(sDB pa) = pa (6.4.17)

and ∃ea pa in ∈ ACPN : N(ea pa in)CPN = (sDB pa, ta) (6.4.18)

and ∃ea pa out ∈ ACPN : N(ea pa out)CPN = (ta, sDB pa) (6.4.19)

and E(ea pa in)CPN = E(ea pa out)CPN = pa (6.4.20)

Parameters That Are Output Parameters Only For each parameter pa ∈ PAA

that is related to an activity concept a ∈ contP(p) as output parameter but not as input
parameter, the corresponding transition places only one token on the arc to the database
place. Figure 6.4.1-(4) illustrates the relevant mapping rules: The database place sDB pa

of the current business object type pa (Rule 6.4.21) is unidirectionally connected with



CHAPTER 6. ABSTRACT SYSTEM LAYER 154

the transition ta (Rule 6.4.22). Because a created new business object leads to a new
token in the CPN, there is only an outgoing arc epa out for output-only parameters.

∀ pa ∈ PAA : (a, pa) ∈ outpa ∧ ¬∃(a, pa) ∈ inpa �
∃sDB pa ∈ PCPN ∧ C(sDB pa)CPN = pa (6.4.21)

and ∃ea pa out ∈ ACPN : N(ea pa out)CPN = (ta, sDB pa) (6.4.22)

and E(ea pa out)CPN = pa (6.4.23)

Precondition If at least one precondition c ∈ CA is related to an activity concept
a ∈ contP(p), the set of preconditions precP(a) is mapped to a guard function G(ta)
of transition ta in CPN (Rule 6.4.24). The transition fires only if the guard function is
evaluated to true. Figure 6.4.1-(5) illustrates a function with a specified precondition and
an input and an output parameter. If all required tokens for transition a are available,
the guard function will be evaluated.

∃c ∈ CA : c ∈ precP(a) �
G(ta)CPN = (c1 AND c2 AND ... AND cn) with ci ∈ precP(a) (6.4.24)

Postcondition Figure 6.4.1-(6) shows a function with a specified postcondition and
an input as well as an output parameter. The generated transition function assures
that all specified postconditions are evaluated to true. And only if all postconditions
can be validated to true, the transition puts tokens on all outgoing arcs. If at least
one postcondition c ∈ CA is related to an activity concept a ∈ contP(p), the set of
postconditions postcP(a) is mapped to a transition function F (ta) of transition ta in
CPN (Rule 6.4.25). This transition function guarantees that all tokens that are put to
outgoing arcs satisfy all modeled postconditions.

∃c ∈ CA : c ∈ postcP(a) �
F (ta)CPN =(c1 AND c2 AND ... AND cn) with ci ∈ postcP(a) (6.4.25)

Succession Relations between Activity Concepts Figure 6.4.2 illustrates two
scenarios for succession between functions. The scenario in Figure 6.4.2-(7) is the most



CHAPTER 6. ABSTRACT SYSTEM LAYER 155

simple one: Two functions have to be connected with a control flow arc. Guards related
to control flows will be transformed into guard functions of CPN. As introduced in
Section 5.3.3 an empty constraint is by default evaluated to true. Hence, if no guard
was specified in the visual model, the generated transitions of CPN put control flow
tokens on outgoing control flow edges automatically. Otherwise, the modeled guard
becomes part of the guard function. This function routes a token to the next place only
if the guard constraint can be evaluated to true. A more complex example is provided
in Figure 6.4.2-(8): A function b comes with two possible successors and a modeled
decision node. The node determines the actual successor depending on the current state
of business object X. Decision functions are mapped to arc inscriptions of CPN.

Described in detail, each succession relation between activity concepts a, x ∈ ACA :
(a, c) ∈ succACP (x), c ∈ CA is mapped into an arc ex a that connects two place-transition
couples: The predecessor’s transition tx is connected with the successor’s place sa (Rule
6.4.26). Modeled guards for a succession, as used for decisions, are mapped into an arc
function E(ex a) into the CPN (6.4.27). Only if the arc function is evaluated to true,
the control flow token will be routed to the successors place.

∀(x, (a, c)) ∈ succAC : x �= � ∧ a �= � ∧ c ∈ CA �
ex a ∈ ACPN : N(ea x)CPN = (tx, sa) (6.4.26)

and E(ex a)CPN = ”if c then f ∈ γΣ” (6.4.27)

Initial Nodes and Final Nodes Examples for initial nodes and final nodes are given
in Figure 6.4.2: (9) shows an initial node in UML and its resulting CPN construct, (10)
and (11) contain a final node and its related CPN elements. In terms of the Amabulo
model, an activity concept a is an initial node if the model contains a succession relation
with a as successor and the symbol �, which means no element, as predecessor. If an
activity concept a ∈ contP(p) is modeled as an initial node, the initial transition tinitial

of the containing process p ∈ PA is connected as incoming arc ea (Rule 6.4.28) to the
place sa that corresponds to activity concept a. Any constraint of this succession relation
is mapped into the arc inscription (Rule 6.4.29).



CHAPTER 6. ABSTRACT SYSTEM LAYER 156

UML View
Corresponding 

Elements in CPN
Elements in 

Amabulo Meta Model  / Behavior in CPN

a aab bSuccession b
S S

Successions
with Guards 
and Decision

a
b

c[X.y = 
true]

[X.y = 
false] aa

bb
S

S

cc
S

(7)

(8)

Sequence of Activity Concepts

Sequence of Activity Concepts with decisions 
depdending on object values

(if "true"
then 
{ok})

(if 
"X.y = true"

then 
{ok})

(if 
"X.y = false"

then 
{ok})

a aap-
init

Succession with 
no predecessor

p-
init S S

(9)

Initial Activity  Concepts of a Process

(if "true"
then 
{ok})

a a
Succession with 

no successor 
and Action a is 
an Activity Final 

a
S S

(10)

Final Activity Concepts of a Process

(if "true"
then 
{ok}) p-

final

a a
Succession with 

no successor
and Action a is 

a Flow Final 

a
S S

(11)

Flow Final Activity Concepts of a Process

p-
final

Figure 6.4.2: CPN Mapping Collection, Part 2



CHAPTER 6. ABSTRACT SYSTEM LAYER 157

∀(x, (a, c)) ∈ succAC : x = � ∧ a �= � ∧ c ∈ CA) �
∃ea ∈ ACPN : N(ea)CPN = (tinitial, sa) (6.4.28)

and E(ea)CPN = ”if c then f ∈ γΣ” (6.4.29)

Otherwise, if an activity concept a ∈ contP(p) is modeled without any successor
- in Amabulo model terms the succession has a predecessor a and a successor � - a

is a final activity concept. However, only if a is defined as activity final element - in
Amabulo model terms a ∈ finalP(p) - the corresponding transition ta is connected
with an outcoming control flow arc ea final (Rule 6.4.30) to the final state sfinal of
the containing process p ∈ PA as illustrated in Figure 6.4.2-(10). Any constraint of this
succession relation is mapped into the arc inscription (Rule 6.4.31). If an activity concept
a is only a flow final - in Amabulo model terms a has no successor and a /∈ finalP(p) -
the corresponding transition ta has no outcoming control flow arc (see Figure 6.4.2-(11)).

∀(a, (x, c)) ∈ succAC : x = � ∧ a �= � ∧ c ∈ CA ∧ a ∈ finalP(p) �
∃ea final ∈ ACPN : N(ea final)CPN = (ta, sfinal) (6.4.30)

and E(ea final)CPN = ”if c then f ∈ γΣ” (6.4.31)

Flatten Nested Processes If the Amabulo model contains nested processes, which
means that ∃par, p ∈ PA : (par, p) ∈ cont, they become flattened. As illustrated in
Figure 6.4.3, control flow arcs from parent processes are reassigned directly to CPN
elements that specify the internals of their contained sub processes. The state of the
CPN before connecting nested processes is shown in Figure 6.4.3-(1).

If the current process p ∈ PA is nested in a parent process par ∈ PA, an additional
final transition tp final is added (Rule 6.4.32), which is needed to connect possible suc-
cessors of p in par (if ∃ac ∈ ACA : (p, (ac, c)) ∈ succ ∧ (par, ac) ∈ cont) or to connect
p to the final state of the parent process (in case of ∃ac ∈ ACA : (p, (�, c)) ∈ succ). A
control flow arc ep final connects the added transition tp final to the final state sp final

(Rules 6.4.33 and 6.4.34). These modifications are shown in Figure 6.4.3-(2).



CHAPTER 6. ABSTRACT SYSTEM LAYER 158

∃par ∈ PA : cont(par, p) �
∃tp final ∈ TCPN ∧ (6.4.32)

and ∃ep final ∈ ACPN : N(ep final)CPN = (sp final, tp final) ∧ (6.4.33)

and E(ep final)CPN = f ∈ γΣ (6.4.34)

The next rules are reflected in Figure 6.4.3-(3): All the succession relations in the
parent process par ∈ PA that have the current process p ∈ PA as target element need to
be reassigned. All connections are now routed from the current process state sp, as part
of the introduced state-transition pair that is used preliminarily for all activity concepts
in a process, see Rules 6.4.8-6.4.11, to the initial state sp initial of the now extended
process p (Rule 6.4.35):

∀ e ∈ ACPN : N(e)CPN = (y, sp) ∧ y ∈ TCPN ∧ E(e)CPN = f �
N(e)CPN = (y, sp initial) (6.4.35)

Following the reassignment of predecessors, the connections to all possible successors
of tp have also to be reassigned (Rule 6.4.36):

∀ e ∈ ACPN : N(e) = (tp, y) ∧ y ∈ PCPN ∧ E(e) = f �
N(e) = (tp final, y) (6.4.36)

Finally, the preliminarily used state-transition pair (sp, tp) as well as remaining arcs
connected to them, such as arcs from and to database places, have to be removed (Rules
6.4.37, 6.4.38 and 6.4.39). The state of the CPN after connecting nested processes is
shown in Figure 6.4.3-(4).



CHAPTER 6. ABSTRACT SYSTEM LAYER 159

init
a

init 
a aa

init
x

init
x axax

S S

S S

S
(1)

init
a

init 
a aa

init
x

init
x axax

S S

S S S

x-
final

S

x-
final

S

a-
final

a-
final

a-
final

init
a

init 
a aa

init
x

init
x axax

S S

S S

S
x-

final

a-
final

a-
final

init
a

init 
a aa

init
x

init
x S

S S S

S

x-
final

a-
final

a-
final

S

(2)

(3)

(4)

Before flattening: parent 
and child process are not 
connected at CPN level

Additional final transition 
added to child process

Parent and child 
processes are connected

Client stub place-transition-
pair as part of the parent 
process are deleted

Figure 6.4.3: Nested Processes

TCPN = TCPN \ tp (6.4.37)

and PCPN = PCPN \ sp (6.4.38)

and ACPN = ACPN \ ({e|e ∈ ACPN : N(e)CPN = (sp, tP )} ∪

{e|e ∈ ACPN : N(e)CPN = (tp, y), y ∈ PCPN , E(e)CPN �= f} ∪

{e|e ∈ ACPN : N(e)CPN = (y, tp), y ∈ PCPN , E(e)CPN �= f}) (6.4.39)

6.4.3 Mapping of Functions with Output Parameter

If a function has at least one business object as output parameter, in other words: if a
function is modeled to change attribute values, and if at least one attribute of this busi-



CHAPTER 6. ABSTRACT SYSTEM LAYER 160

ness object is refined using a state chart, a more advanced mapping into CPN elements
has to be applied. A key feature of this advanced mapping is the assurance of global
defined domain state transitions in each function where corresponding business objects
are modified. Hence, the following mapping rules provide an abstract implementation
of our robustness criteria (as introduced in Section 6.2.3).

The main idea behind the global state assurance at CPN level is to keep a copy of the
internal state of any output parameter before the execution of a function starts. Then,
after the execution is finished, it has to be determined if the new state of the possibly
modified object could be achieved by the application of defined state transitions of
the state chart. Figure 6.4.4 illustrates the mapping rules of functions with input and
output parameters as follows: The leftmost column shows concerned parts of an UML
view. A function requires a business object X and may change its attribute y. The
domain of y is specified in a state machine diagram containing states 1, 2, 3. The initial
state is 1; transitions are only allowed from 1 to 2 and from 2 to 3. The column in
the middle contains corresponding CPN elements after finishing the first transformation
step, which is the mapping of processes, as introduced previously in Section 6.4.2. The
rightmost column illustrates the refinement of CPN elements of the second column. In
general, the added elements implement relations between functions and modeled states
of business objects: The Coloured Petri Net guarantees that a function can only perform
state transitions which are part of the model. Generated CPN elements determine valid
outgoing values of y depending on its incoming value. A modeled function realizes a
valid behavior either if only state transitions that are part of the state machine diagram
are processed or if attribute states of incoming objects were not changed. In each other
case, the final transition becomes a dead transition and will never fire.

The following mapping rules provide a detailed abstract specification of mapping
input and output parameters from the Amabulo model into the Coloured Petri Nets.
They have to be applied for all functions f ∈ FA that have at least one output parameter
(∀pa ∈ BOA : ∃(f, pa) ∈ outpa). The transition generated originally for a function f is
identified tf ∈ TCPN and will be refined by the subsequent mapping rules.

Create a Final Transition As a prerequisite for domain state assuring parts of the
CPN, an additional transition has to be created (Rule 6.4.40):

∃tf final ∈ TCPN (6.4.40)



CHAPTER 6. ABSTRACT SYSTEM LAYER 161

aa

DB

a-
finalaa

DB
X

S S

UML View Elements in CPN 
- Processes are mapped -

Elements in CPN 
- Details for functions are mapped -

(1)

a
X X

Class Diagram: X

y

X

1 2 3

State Machine Diagram: y

aa

DB
X

a-
final

X-
post

X

X-
post-
test

X

X’

S
(2) aa

DB
X

a-
final

y-
test

X.y

X-
post

X

1

X-
post-
test

X1

[if X’.y=1||2]

X’

X.yS
(3)

x1

x1

aa

DB
X

a-
final

y-
test

X.y

X-
post

X

1

2
X-

post-
test

X

2

1

[if X’.y=1||2]

[if X’.y=2||3]

X’

X.yS
(4)

x1

x1

x1x1

aa

DB
X

a-
final

y-
test

X.y

X-
post

X

1

2
X-

post-
test

X

2

1

[if X’.y=1||2]

[if X’.y=2||3]

X’

X.yS

3
3

[if X’.y = 3]x1

x1

x1

x1

x1x1

aa

DB
X

a-
final

y-
test

X.y

X-
post

X

1

2
X-

post-
test

X

2

1

[if X’.y=1||2]

[if X’.y=2||3]

X’

X.yS
(6)

3
3

[if X’.y = 3]

(if 
"1 X"
then 
X)

x1

x1

x1

x1

x1x1

(5)

Create an additional final transition and 
reassign outgoing arcs 

Add additional places for each 
output parameter

Add CPN elements implementing 
domain state assurance for state 1

Add CPN elements implementing 
domain state assurance for state 2

Add CPN elements implementing 
domain state assurance for state 3

Connect the additional post-test 
place to the final transition of a

Figure 6.4.4: Mapping of Input and Output Parameter



CHAPTER 6. ABSTRACT SYSTEM LAYER 162

This new transition tf final will be used as counterpart of the original transition tf .
All outgoing arcs from tf (control flow and database arcs) have to be reassigned to
tf final (Rule 6.4.41):

∀e ∈ ACPN : N(e)CPN = (tf , p) : p ∈ PCPN �
N(e)CPN = (tf final, p) (6.4.41)

Figure 6.4.4-(1) illustrates the effect of both mapping rules.

Places for Each Output Parameter For each output parameter pa ∈ PAA :
(f, pa) ∈ outpa several auxiliary places have to be created as shown in Figure 6.4.4-
(2): A post place spa post and a post-test spa post−test place are created (Rule 6.4.43): A
post place gets the resulting object, as it comes as output of the function, and a post-

test place collects all tokens from successfully passed tests, one token from each state
chart refined attribute. Both places can only store tokens whose types are related to
the current output parameter (Rule 6.4.43). The post place is connected to the function
transition tf with an arc ea1 (Rules 6.4.45 and 6.4.46).

∀pa ∈ PAA : (f, pa) ∈ outpa � (6.4.42)

∃spa post ∈ PCPN ∧ ∃spa post−test ∈ PCPN (6.4.43)

and C(spa post)CPN = C(spa post−test)CPN = pa (6.4.44)

and ∃ea1 ∈ ACPN : N(ea1)CPN = (tf , spa post) (6.4.45)

and E(ea1)CPN = pa (6.4.46)

Assertions for Input and Output Parameter Each output parameter pa ∈ PAA :
(f, pa) ∈ outpa that is also modeled as input parameter and that has at least one
attribute refined by a state chart has to be considered by domain state assertions. The
following mapping rules that have to be applied for each state of such a state chart are
illustrated in Figure 6.4.4-(3-6): For each attribute at ∈ AA that is associated with a
state chart sc ∈ SC, a test init place sat test−init is created (Rule 6.4.47) and connected
by an arc ea2 to transition tf of the current function (Rule 6.4.48). Furthermore, for
each defined state of this attribute, a transition tst is added to the CPN (Rule 6.4.49).
This state transition becomes connected to the test init place of the attribute with an



CHAPTER 6. ABSTRACT SYSTEM LAYER 163

arc est1 (Rule 6.4.50) that routes only tokens of the current state (Rule 6.4.51). An
additional arc est2 connects the post place of the current business object to the state
transition tst (Rule 6.4.52).

Then, a transition function is added to state transition tst (Rule 6.4.53). This func-
tion is evaluated to true either if the value of the attribute was not changed or the state
chart contains a transition from the old value to the new value.

A connection from state transition tst to the post-test place spa post−test of the business
object is established by an arc est3 (Rule 6.4.54 and 6.4.55). Finally, the post-test place
of the parameter is connected to the final transition tf final of the function with an arc
est4 (Rule 6.4.56). The number of tokens required by the arc expression is equivalent to
the numbers of attributes that are refined by the state chart (Rule 6.4.57). Hence, only
if one state transition tst can be activated for each attribute and puts a token into the
post-test place, the arc est4 routes one token to transition tf final.

∀ st ∈ SA : (sc, st) ∈ states ∧ (at, sc) ∈ dom ∧ (at, pa) ∈ att ∧

(f, pa) ∈ inpa ∧ (f, pa) ∈ outpa �
∃sat test−init ∈ PCPN ∧ C(sat test−init)CPN = at (6.4.47)

and ∃ea2 ∈ ACPN : N(ea2)CPN = (tf , sat test−init) ∧ E(ea2)CPN = at (6.4.48)

and ∃tst ∈ TCPN (6.4.49)

and ∃est1 ∈ ACPN : N(est1)CPN = (sat test−init, tst) (6.4.50)

and E(est1)CPN = st (6.4.51)

and ∃est2 ∈ ACPN : N(est2)CPN = (sat post, tst) ∧ ECPN (est1) = pa (6.4.52)

and ∃F (tst)CPN = ((value(atpa) == st) OR (value(atpa) == y1)

OR (value(atpa) == y2) OR ...

OR (value(atpa) == yn)) with yi ∈ SA ∧ (st, yi) ∈ succS (6.4.53)

and ∃est 3 ∈ ACPN : N(est 3)CPN = (tst, spa post−test) (6.4.54)

and E(est 3)CPN = pa (6.4.55)

and ∃est 4 ∈ ACPN : N(est 4)CPN = (spa post−test, tf final) (6.4.56)

and E(est 4)CPN = n‘pa with n = |{at|at ∈ attP(pa) ∧ (at, sc) ∈ dom}| (6.4.57)

Assertions for Output Only Parameter In contrast to an input and output pa-
rameter, which means that an object is possibly modified, an output only parameter



CHAPTER 6. ABSTRACT SYSTEM LAYER 164

specifies a new created instance of a business object. Therefore, it has to be assured
that each state chart refined attribute comes with a modeled initial state. Comparable
to Figure 6.4.4, Figure 6.4.5 provides a function a having an output only parameter X.
In this case, the generated CPN elements assure that the value of attribute y is 1, the
defined initial state.

1 2 3

aa

DB
X

a-
final

X-
post

X
to 1

X-
post-
test

X

[if X’.y = 1]

X’aa

DB
X

S S

UML View Elements in CPN 
- Processes are mapped -

Elements in CPN 
- Details for functions are mapped -

a
X

Class Diagram: X

y

X

State Machine Diagram: y

(if 
"1 X"
then 
X)x1 x1

Figure 6.4.5: Mapping of Output Only Parameter

Therefore, the following rules have to be applied for each output only parameter
of functions: For each attribute at ∈ AA that is refined by a state chart sc ∈ SCA in
any output only parameter pa ∈ BOA of the current function, a state chart transition
tsc ∈ TCPN is created (Rule 6.4.59). An arc est1 connects the above introduced “post”
place spa post with the “state chart” transition tsc (Rule 6.4.60). This arc routes only
tokens having the current attribute at as color (Rule 6.4.61). A transition function of
the state chart transition tsc evaluates to true, only if the value of the current attribute
comes in an specified initial state (Rule 6.4.62).

The state chart transition tst is connected to a post test place spa post−test (as created
in Rule 6.4.43) with an arc est2 (Rule 6.4.63) that routes the current parameter pa (Rule
6.4.65).

If all state chart refined attributes are evaluated, for each successful evaluation one
token is routed to the post test place spa post−test. The arc est3 that connects the post

test place with the final transition tf final (as created in Rule 6.4.40) routes only one
token to the final transition tf final, if the number of tokens in post test place spost test

equals to the number of refined attributes (Rule 6.4.66).



CHAPTER 6. ABSTRACT SYSTEM LAYER 165

∀ sc ∈ SCA : (at, sc) ∈ dom ∧ (at, pa) ∈ att ∧

(f, pa) /∈ inpa ∧ (f, pa) ∈ outpa � (6.4.58)

∃tsc ∈ TCPN (6.4.59)

and ∃est1 ∈ ACPN : N(est1)CPN = (spa post, tsc) (6.4.60)

and E(est1)CPN = at ∧ (6.4.61)

and ∃F (tsc)CPN = ((value(at) == y1) OR (value(at) == y2) OR ....

OR (value(at) == yn)) with yi ∈ SA ∧ (sc, yi) ∈ init ∧ (6.4.62)

and ∃est2 ∈ ACPN : NCPN (est2) = (tsc, spa post−test) (6.4.63)

and E(est2)CPN = pa (6.4.64)

and ∃est3 ∈: N(est3)CPN = (spa post−test, tf final) (6.4.65)

and E(est3)CPN = n‘pa with n = |{at|at ∈ attP(pa) ∧ (at, sc) ∈ dom}| (6.4.66)

6.4.4 Example CPN

Figure 6.4.6 provides a CPN that was derived completely and automatically from an
Amabulo model (see Appendix F). Only its visual appearance was adjusted manually.
The Amabulo model was automatically derived from the above introduced UML example
model (see Figure 4.2.6) that specifies a four eyes decision process.

The left hand side of the CPN in Figure 6.4.6 (drawn with black lines) models the
main process features as result of the applied mapping rules of Section 6.4.1 (mapping
of business objects) and Section 6.4.2 (mapping of processes). The CPN elements at
the right hand side of Figure 6.4.6 (drawn with light grey lines) are the outcome of the
rules of Section 6.4.3 (mapping for functions with output parameter). These elements
implement the domain state assurance logic that is forced by the state chart refining the
attribute decision of the business object Offer.

6.5 CPN Analysis and Simulation Tool
2

A matured analysis and simulation tool for Coloured Petri Nets is provided by CPNTools
[CPN], a freeware tool for academic and industrial use provided and maintained by CPN
Group, University of Aarhus, Denmark. With CPNTools, Coloured Petri Nets can be

2A preliminary version of the discussion in this section was published in [BG09].



CHAPTER 6. ABSTRACT SYSTEM LAYER 166

!"
#$
#$
#$
%
&
#'
""
()
*
+
,-
+
,.
#/
#0
11
(-
,(
2
..
#

#,
3
(4
#&
5
"#

#(
67
(#
8
5
"

!"
#$
#$
#$
%
&
#'
""
()
*
+
,-
+
,.
#

/
#2
(1
6!4
(2
..
#

#,
3
(4
#&
5
"#

#(
67
(#
8
5
"

!"
#$
#$
#$
%
&
#'
""
()
*
+
,-
+
,.
#

/
#2
(1
6!4
(2
..
#

#,
3
(4
#&
5
"#

#(
67
(#
8
5
"

'"
"(
)*
+
,-
+
,

'"
"(
)9
4
-
+
,

"

'"
"(
)*
+
,-
+
,

'"
"(
)9
4
-
+
,

"

!"
#$
,)
+
(.
#

#,
3
(4
#&
5
"#

#(
67
(#
8
5
"

!"
#$
,)
+
(.
#

#,
3
(4
#&
5
"#

#(
67
(#
8
5
"

!"
#$
,)
+
(.
#

#,
3
(4
#&
5
"#

#(
67
(#
8
5
"

""

'"
"(
)*
+
,-
+
,

'"
"(
)9
4
-
+
,

&
5
'"
"(
)*
+
,-
+
,

$%
&
#'
""
()
94
-
+
,.

" '"
"(
)*
+
,-
+
,

'"
"(
)9
4
-
+
,

"

"!
)7
,:
(1
!7
!'
4
;
7(
)<
+
4
1,
!'
4

$#
$%
&
#'
""
()
94
-
+
,.
#/
#+
4
2
(1
!2
(2
.

"!
)7
,:
(1
!7
!'
4
=
<!
4
06

>
?7
,(
@
:
(1
6!4
(2
A
(7
70
B
(>
?7
,(
@
<+
4
1,
!'
4

!4
-
+
,#
$"
C'
""
()
94
-
+
,.
D

'+
,-
+
,#
$'
""
()
*
+
,-
+
,.
D

01
,!
'4
#

#$
'"
"(
)9
4
-
+
,.
D

<'
+
)E
?(
7F
)!
4
1!
-
6(
:
!0
B
)0
@
94
!,
!0
6

<'
+
)E
?(
7F
)!
4
1!
-
6(
:
!0
B
)0
@
<!
4
06

$$
%
&
#'
""
()
*
+
,-
+
,.
#/
#0
11
(-
,(
2
.

7(
1'
4
2
:
(1
!7
!'
4
;
7(
)<
+
4
1,
!'
4

$#
$%
&
#'
""
()
94
-
+
,.
#/
#"
!)
7,
:
(1
!2
()
G
11
(-
,(
2
.

!4
-
+
,#
$"
C'
""
()
94
-
+
,.
D

'+
,-
+
,#
$'
""
()
*
+
,-
+
,.
D

01
,!
'4
#

#$
$)
04
2
'@
H2
(1
6!4
(2
C0
11
(-
,(
2
IC
#

JK
+
7,
L
)(
0,
(2
JC
#J
K+
7,
L
)(
0,
(2
JC
#J
J.
.D

>
(4
2
G
11
(-
,(
2
A
(7
70
B
(>
?7
,(
@
<+
4
1,
!'
4

!4
-
+
,#
$"
C'
""
()
94
-
+
,.
D

'+
,-
+
,#
$'
""
()
*
+
,-
+
,.
D

01
,!
'4
#

#$
'"
"(
)9
4
-
+
,.
D

*
""
()

"!
)7
,:
(1
!7
!'
4
;
7(
)<
+
4
1,
!'
4

<

>
?7
,(
@
:
(1
6!4
(2
A
(7
70
B
(>
?7
,(
@
<+
4
1,
!'
4

<

<'
+
)E
?(
7F
)!
4
1!
-
6(
:
!0
B
)0
@
F)
'1
(7
7

<

<'
+
)E
?(
7F
)!
4
1!
-
6(
:
!0
B
)0
@
<!
4
06

<

*
""
()

<

<

:
M
*
""
()

*
""
()

!4
-
+
,#
$"
C'
""
()
94
-
+
,.
D

'+
,-
+
,#
$'
""
()
*
+
,-
+
,.
D

01
,!
'4
#

#$
$)
04
2
'@
H2
(1
6!4
(2
C"
!)
7,
:
(1
!2
()
G
11
(-
,(
2
IC
#

JK
+
7,
L
)(
0,
(2
JC
#J
K+
7,
L
)(
0,
(2
JC
#J
J.
.D

&
5
'"
"(
)*
+
,-
+
,

*
""
()

*
""
()
=
2
(1
!7
!'
4
=
>
,0
,(
L
3
0)
,

$%
&
#'
""
()
94
-
+
,.

"!
)7
,:
(1
!2
()
G
11
(-
,(
2 $$
%
&
#'
""
()
*
+
,-
+
,.
#/
#2
(1
6!4
(2
.

'"
"(
)*
+
,-
+
,

'"
"(
)*
+
,-
+
,

'"
"(
)*
+
,-
+
,

&
5
'"
"(
)*
+
,-
+
,

NN
"!
)7
,:
(1
!7
!'
4
=
*
""
()
=
2
(1
!7
!'
4
=
01
1(
-
,(
2

$$
%
&
#'
""
()
*
+
,-
+
,.
#/
#0
11
(-
,(
2
.

NN
"!
)7
,:
(1
!7
!'
4
=
*
""
()
=
2
(1
!7
!'
4
=
"!
)7
,:
(1
!2
()
G
11
(-
,(
2

$$
%
&
#'
""
()
*
+
,-
+
,.
#/
#"
!)
7,
:
(1
!2
()
G
11
(-
,(
2
.#

')
(6
7(
#$
$%
&
#'
""
()
*
+
,-
+
,.
#/
#0
11
(-
,(
2
.#

')
(6
7(
#$
$%
&
#'
""
()
*
+
,-
+
,.
#/
#2
(1
6!4
(2
.

"!
)7
,:
(1
!7
!'
4
N(
7,
=
*
""
()
=
2
(1
!7
!'
4

2
(1
6!4
(2

+
4
2
(1
!2
(2

01
1(
-
,(
2

"!
)7
,:
(1
!7
!'
4
=
*
""
()
=
F'
7,
N(
7,

$$
%
&
#'
""
()
*
+
,-
+
,.
#/
#+
4
2
(1
!2
(2
.#

')
(6
7(
#$
$%
&
#'
""
()
*
+
,-
+
,.
#/
#2
(1
6!4
(2
.#

')
(6
7(
#$
$%
&
#'
""
()
*
+
,-
+
,.
#/
#"
!)
7,
:
(1
!2
()
G
11
(-
,(
2
.

'"
"(
)*
+
,-
+
,

NN
7(
1'
4
2
:
(1
!7
!'
4
=
*
""
()
=
2
(1
!7
!'
4
=
01
1(
-
,(
2

*
""
()

'"
"(
)*
+
,-
+
,

$$
%
&
#'
""
()
*
+
,-
+
,.
#/
#+
4
2
(1
!2
(2
.#

')
(6
7(
#$
$%
&
#'
""
()
*
+
,-
+
,.
#/
#2
(1
6!4
(2
.#

')
(6
7(
#$
$%
&
#'
""
()
*
+
,-
+
,.
#/
#"
!)
7,
:
(1
!2
()
G
11
(-
,(
2
.

7(
1'
4
2
:
(1
!7
!'
4
N(
7,
=
*
""
()
=
2
(1
!7
!'
4

$$
%
&
#'
""
()
*
+
,-
+
,.
#/
#"
!)
7,
:
(1
!2
()
G
11
(-
,(
2
.#

')
(6
7(
#$
$%
&
#'
""
()
*
+
,-
+
,.
#/
#0
11
(-
,(
2
.#

')
(6
7(
#$
$%
&
#'
""
()
*
+
,-
+
,.
#/
#2
(1
6!4
(2
.

01
1(
-
,(
2

*
""
()
=
2
(1
!7
!'
4
=
>
,0
,(
L
3
0)
,

'"
"(
)*
+
,-
+
,

'"
"(
)*
+
,-
+
,

+
4
2
(1
!2
(2

'"
"(
)*
+
,-
+
,

'"
"(
)*
+
,-
+
,

&
5
'"
"(
)*
+
,-
+
,

NN
7(
1'
4
2
:
(1
!7
!'
4
=
*
""
()
=
2
(1
!7
!'
4
=
2
(1
6!4
(2

7(
1'
4
2
:
(1
!7
!'
4
=
*
""
()
=
F'
7,
N(
7,

'"
"(
)*
+
,-
+
,

2
(1
6!4
(2

"!
)7
,:
(1
!2
()
G
11
(-
,(
2

7(
1'
4
2
:
(1
!7
!'
4
=
*
""
()
=
F'
7,

"!
)7
,:
(1
!7
!'
4
=
*
""
()
=
F'
7,

'"
"(
)*
+
,-
+
,

NN
"!
)7
,:
(1
!7
!'
4
=
*
""
()
=
2
(1
!7
!'
4
=
+
4
2
(1
!2
(2

'"
"(
)*
+
,-
+
,

'"
"(
)*
+
,-
+
,

'"
"(
)*
+
,-
+
,

NN
7(
1'
4
2
:
(1
!7
!'
4
=
*
""
()
=
2
(1
!7
!'
4
=
"!
)7
,:
(1
!2
()
G
11
(-
,(
2

NN
7(
1'
4
2
:
(1
!7
!'
4
=
*
""
()
=
2
(1
!7
!'
4
=
+
4
2
(1
!2
(2

7(
1'
4
2
:
(1
!7
!'
4
=
<!
4
06

>
(4
2
G
11
(-
,(
2
A
(7
70
B
(>
?7
,(
@
<+
4
1,
!'
4

7(
1'
4
2
:
(1
!7
!'
4
;
7(
)<
+
4
1,
!'
4

!"
#$
#$
#$
%
&
#'
""
()
*
+
,-
+
,.
#/
#"
!)
7,
:
(1
!2
()
G
11
(-
,(
2
..
#

#,
3
(4
#&
5
"#

#(
67
(#
8
5
"

$$
%
&
#'
""
()
*
+
,-
+
,.
#/
#2
(1
6!4
(2
.

'"
"(
)*
+
,-
+
,

'"
"(
)*
+
,-
+
,

NN
"!
)7
,:
(1
!7
!'
4
=
*
""
()
=
2
(1
!7
!'
4
=
2
(1
6!4
(2

Figure 6.4.6: Four Eyes Decision Process Example in CPN



CHAPTER 6. ABSTRACT SYSTEM LAYER 167

designed, loaded, simulated, and analyzed. Moreover, if required, additional execution
and analysis functions can be implemented and integrated into CPNTools.

CPNTools provide a structured exchange format consisting of an XML-based lan-
guage containing logical and visual information of a Coloured Petri Net. Our example
implementation of the transformation from Abstract Model Layer (Amabulo model) into
Abstract System Layer (CPN) results in a valid instance of CPNTools exchange format.
Hence, a generated CPN can be directly loaded into the analysis and simulation environ-
ment. Figure 6.5.1 shows a screenshot taken of CPNTools after importing a generated
CPN and starting manual layout adjustments. The example CPN of Figure 6.4.6 was
also exported by CPNTools.

For automated processing of analysis functions, CPNTools provides a simple text-
based output format, where analysis and simulation results are stored. These text-files
can easily be parsed by human users as well as by project specific implemented auto-
matic analysis tools. Besides implementation of standard analysis functions, CPNTools
supports a simple programming language and a documented API, which provides the
opportunity to add specific analysis functions depending on a project’s needs.

6.5.1 Analysis Opportunities

Algorithms for the static analysis of CPN can be used to find parts of the net that are
never reachable or to prove that all parts are connected. Furthermore, dynamic analysis
of generated CPNs is reasonable to find modeling inconsistencies such as control flow
constraints that can never be satisfied by modeled states of a business object or modeled
constraints for functions and processes. The examination of visual models concerning
syntactical errors as well as preventing these errors during the modeling process is more
and more supported by mature visual modeling tools such as Magic Draw [NoM]. Hence,
model analysis at CPN level focuses on semantic modeling errors in syntactical correct
models. Even if a large model containing different views is well-formed, it probably
contains semantic errors. To avoid semantic errors, the modeler has to be supported in
answering questions such as:

Are all process views onto the model connected?

Since large models consist of several diagrams in different levels of detail, a modeler has
to be sure that all parts of the model are interconnected. This can be supported by
analyzing the generated CPN for its connected components. If there are missing links



CHAPTER 6. ABSTRACT SYSTEM LAYER 168

between diagrams, the resulting coloured Petri net consists of more than one connected
component.

Is there any defective combination of constraints?

The use of different types of constraints, such as local preconditions and postconditions
on functions, control flow constraints as needed for decision nodes, and defined attribute
states and their transitions, can easily lead to unexpected system behavior. In particular
if inexperienced modelers have to maintain large models, they need assistance in detect-
ing probable modeling errors. A function that can never be called due to the combination
of those different constraints leads to dead transitions in the generated CPN. This can
be automatically calculated with the analysis functions of CPNTools. Furthermore, a
function’s behavior that violates defined state transitions leads also to dead transitions.

Does the process stop at unexpected places?

During the modeling process of the business logic, modelers have to check whether the
model meets the requirements or behaves unexpected. With the simulation tool for
CPN several runs through the generated Coloured Petri Net can be processed and the
sequence of called functions can be monitored. After the simulation run, the sequence
of processed transitions can be analyzed if there is any unexpected pattern.

In this thesis we aim to provide an architectural blueprint with clear interfaces to
external tools which can be deployed as required by project specific needs. Hence, the
implementation of concrete analysis functions is considered as further research opportu-
nity (see Section 10.3) and not part of this thesis.

6.6 Summary

In this chapter we have introduced the Abstract System Layer of an Amabulo infrastruc-
ture in detail. We have started this chapter by describing the motivation for additionally
representing business logic in the form of an abstract system. For this reason, we outlined
several advantages for both phases of model driven development projects. Then, we have
discussed the two robustness features domain state assurance and local conditions assur-
ance. We believe that these features keep complex information systems maintainable,
and, thus, they have to be supported by code generators in an Amabulo infrastructure.
Subsequent to a short overview about modeling concepts of Coloured Petri Nets, we have



CHAPTER 6. ABSTRACT SYSTEM LAYER 169

Figure 6.5.1: CPNTools, Screenshot



CHAPTER 6. ABSTRACT SYSTEM LAYER 170

introduced a complete set of mapping rules that are needed to translate an Amabulo
model into CPN. We divided these mapping rules into three parts: business objects,
processes and their contained elements, and mapping functions with state chart refined
business objects. Due to the existence of such a mapping, the semantics and the behav-
ior of the modeled processes are described formally without any ambiguity. With regard
to the robustness criteria, the mapping rules particularly provide a detailed specification
for concrete code generators.

Applying these mapping rules leads to a CPN that provides an abstract implemen-
tation of the modeled business logic. This implementation is independent of concrete
code generators and can be executed in CPN analysis and simulation tools. Hence,
automated analysis and simulation functions can be applied to an abstract system in
the form of a CPN before any code artifact is generated, integrated, and deployed. As
an example, we have showed the transformation result of the four eyes decision pro-
cess UML model as introduced in Figure 4.2.6. We have concluded this chapter with
a short introduction of a concrete CPN analysis and implementation tool (CPNTools),
which allows seamless integration into an Amabulo infrastructure through direct input
opportunities of generated CPN instances.



Chapter 7

Code Generation Layer
1

This chapter introduces the Code Generation Layer of our infrastructure blueprint as
illustrated in Figure 7.0.1. It comprises two important concepts: a code generator and
a code comparison tool, as well as their connections to the Abstract Model Layer and
Application Layer of our infrastructure blueprint. A code generator takes an Amabulo
model as input and produces specific code artifacts depending on the result of the code
comparison tool. If needed, multiple code generators can be used in a project. A code
comparison tool helps software architects and developers explore parts of the code that
will be created, modified, or deleted by the code generation. Moreover, it helps identify
items which may require manual edition before deployment.

Requirements for code generators may differ from project to project so that we can-
not state one code generator as the one generator for the business logic of all information
systems. Hence, the implementation of both comparison tool and code generator de-
pends on specific project requirements and typically has to be adapted for each project.
However, independent from its actual implementation, a business logic layer is always
situated in the middle between persistency layer and presentation layer. For this reason,
connections to both architectural layers have to be supported considering integration
issues with regard to later maintenance tasks.

To support the design and implementation of project-specific Code Generator Layers
in the setup and integration phase of a model driven project infrastructure (see Section
3.2.1), this chapter first discusses several aspects of code integration, outlines integration
issues, and provides object-oriented design approaches to tackle the issues. Afterwards,
an architectural overview of a generated J2EE business logic layer is provided based on

1A preliminary version of the discussion in this section is accepted for publication in [BG10].

171



CHAPTER 7. CODE GENERATION LAYER 172

Code 
Comparison

Tool

controls Code 
Generation 

Layer

Abstract Model Layer

Code Generator

Amabulo Model

SW Developer

uses

1..*

Model Transformation Code Generation  Tool/
Concept

Dependency

Model Comparison Result

Application Layer

Generated Code

Figure 7.0.1: Overview of Code Generation Layer

an example J2EE code generator. Then, the conceptual mapping of Amabulo model
elements into architectural elements of a J2EE infrastructure is introduced. Further-
more, behavioral dependencies of the resulting code artifacts are described considering
the robustness criteria discussed above (see Section 6.2). Finally, the code comparison
tool is introduced, which supports manual impact analysis and code understanding tasks
depending on the actual code generator implementation.

7.1 Aspects of Code Integration

Generated code artifacts usually have to be integrated with further code artifacts, such as
handcrafted code, otherwise generated code, or legacy code. Due to its logical embedding
between presentation layer and persistency layer, a business logic layer is an important
architectural layer that connects user interfaces with storage systems, as described above
in Section 2.6.1. Hence, during the implementation of project specific code generators,
several aspects regarding later integration issues have to be considered. On the one hand,
there should be no artificial hurdles for developers performing integration tasks, and, on
the other hand, a reliable and robust implementation of modeled domain requirements
have to be guaranteed by the code generator: manual additions to generated parts of an
application are not allowed everywhere. Critical code fragments, such as the assurance
of modeled conditions or domain constraints, must not be modified. Otherwise, external
systems, such as web services, have to be integrated manually. Besides, if there is any
handwritten code artifact needed for integration purposes, any later generation process
must not automatically overwrite manual additions.



CHAPTER 7. CODE GENERATION LAYER 173

The code generation result of any modeled aspect of business logic that is part of
an Amabulo model can be classified into one of the following types: generated as stub,
generated as simple implementation, or generated complete. To enable and support
integration tasks for all subsequently introduced types of generated artifacts, the ar-
chitecture of the generated system has to consider these integration tasks. Therefore,
object-oriented concepts such as inheritance and interfaces are suitable and help to sup-
port future code modifications without affecting generated critical parts of the system.

Stubs If a part of the model is generated as a stub, generated code may simulate the
expected behavior through providing valid results if a function is invoked. However, it
does not implement real system behavior. A generated stub can be deployed and used
together with all other parts of the code. In an Amabulo code generator system functions
are usually generated as a stub, because technical connections to external systems are
not part of the model and have to be added manually by developers. These files need to
be modified to achieve a runnable implementation of a system that realizes the specified
behavior. As a difference to other types of code artifacts, such modification required files
should contain annotations and comments to support a developer in finding the lines of
code, where modification is needed.

Simple Implementation A parts of a system that is generated as simple implemen-
tation provides a valid and usable implementation of parts the business logic model. A
simple implementation can be deployed and executed. Compared with stubs, a simple
implementation provides a rudimental implementation and can be used without any
further modification and does not only simulate behavior, as stubs do. Typical parts
of a system generated as a simple implementation are user interface elements as well as
elements of the persistency layer. Both are connected to the business logic layer, and
both are required by business logic layer elements, even for testing purposes.

A rudimental implementation leads to generated files, whose modification is optional.
The generated and not yet modified system can be compiled and executed without
any errors, and it implements all modeled requirements. For individual customization
or integration purposes with more specific code than provided by the code generator,
those files can be modified. For example, the generator may generate a simple default
connection to a simple persistency layer as needed for initial test purposes. Later, for
integration into an existing application landscape, the simple persistency connection has
to be replaced by a connection to a production database.



CHAPTER 7. CODE GENERATION LAYER 174

Generated in Full Aspects of business logic that are generated in full do not require
any further modification. Considering the need of a guaranteed reliable and robust
implementation of the business logic layer, completely generated aspects must not be
modified by developers after code generation. Model elements such as control flow
decisions, conditions, and domain constraints are critical parts of the model, and any
later modification may lead to inconsistencies between model and code. Moreover, the
manual modification of critical and complex code artifacts holds the risk of unexpected
system’s behavior, including violations of domain constraints in business objects and
unknown states of stored application data.

As a consequence, the generated business logic layer contains files, whose modification
is permitted. It is obvious that with the help of a text editor each generated code
artifact can be modified. But generated in full parts of the system do not provide
any special annotation or comment supporting any modification. Furthermore, the
generation process should overwrite all generated only files automatically by default
to prevent faulty modifications.

7.1.1 Integration Issues and Approaches

Independent of a concrete implementation of the code generator, technical problems
at code integration level that have to be addressed are: How can the developer be
supported in adding required functions and replace stubs without modifying critical
code fragments? How can the deletion of manually added code be prevented? And
how can be guaranteed that newer versions of generated code work together with old
handwritten code? In the following, a guideline is provided addressing these issues by
object-oriented concepts.

Clear Separation For integration as well as for tracking and versioning purposes it
is essential to provide a clear separation of code fragments that must not be modified
and fragments that can be modified. Therefore, separation at file level helps developers
and quality assurance managers keep the code consistent: Neither can parts of a file
accidentally be changed nor will manual changes be overwritten automatically. Hence,
we suggest to generate a single file for each part of the system, which has to be edited
by developers and integrate the handwritten code using object-oriented design concepts
and patterns such as delegation and interfaces.



CHAPTER 7. CODE GENERATION LAYER 175

Delegation The design principle delegation can be reused to prevent manual modifi-
cation of critical artifacts, like the generated control flow logic. Figure 7.1.1 provides an
usage example, where the actual implementation of a function (functionA) is separated
from the control flow (ControlFlow) by generating an extra class (FunctionAImpl). This
class provides an implementation of functionA as needed by ControlFlow.

ControlFlow

functionA(Parameter p) {
return FunctionAImpl.functionA(p);

}

FunctionAImpl

functionA(Parameter p) {
// TO BE IMPLEMENTED

}

Generated Control Flow, 
Modification Permitted

Generated Function Stub, 
Modification Required

Figure 7.1.1: Delegation Example

If a developer implements the method functionA, the delegation principle assures
that the file containing the critical control flow has not to be modified. The file needed
for manual modification is isolated from critical parts. If the set of parameters required
by functionA was changed by the modeler and a new version of the control flow is
generated, a compile error will be provided by the development environment. Hence,
if structural changes are generated, an automatically updated code basis could not be
deployed until the manually modified artifacts are updated, too.

Interfaces Generated simple implementations are code fragments that are possibly
modified before deployment. Hence, it has to be assured that each manually modified
code artifact implements all required features. Figure 7.1.2 shows an example of an con-
trol flow (ControlFlow) that requires an business object (BusinessObjectInterface). The
concrete business object (BusinessObjectImpl) is generated as a simple implementation
of a persistent object and may be modified depending on special needs of the persistency
layer. The integration of the business object using a generated interface, which must
not be modified, allows the developer to edit the implementation and assures that all
methods are implemented with the required signature. Otherwise, compile errors will
occur. Furthermore, if the code generator was started with a new model version having
some attributes of the business object changed, the interface will be updated automati-
cally. If then the implementation of the business object does not implement all required
functions, a compiler error will occur, too.



CHAPTER 7. CODE GENERATION LAYER 176

ControlFlow

functionA(Parameter p) {
bo.setP(p);

}

BusinessObjectInterface

setP(Parameter p)
getP()

Generated Control Flow Generated Interface

BusinessObjectImpl

setP(Parameter p){ 
// TO BE IMPLEMENTED

}
getP(){  

// TO BE IMPLEMENTED
 }

Generated Simple Implementation

Modification Permitted

Modification Optional

Figure 7.1.2: Interface Integration Example

Support Code Understanding To support manual integration tasks, generated
comments and annotations support developers in finding the parts to be changed and
the modeled aspect (system function or business object) that has to be implemented or
modified. Furthermore, semantic links between code artifacts and elements of the ab-
stract model support code understanding tasks; and, as needed at setup and integration
phase, they support the development and maintenance process of the code generator,
because it is transparent to developers which part of the model results in which part
of the generated code. Beside comments and annotation, the introduction and usage
of project specific defined naming and style conventions could help developers in code
understanding tasks. In particular, if interfaces and delegations are generated to sup-
port integration, consistent naming is a proper instrument for supporting manual code
modification.

Manual Confirmation of Changes If a modified model version is processed by a
code generator and the code repository is going to be updated, manual written code
should only be modified after an explicit confirmation of the developers. Automatic
deletion of hand-written code has to be avoided. For this purpose, code generators have
to be delivered with an adequate user interface that allows a customized generation
process.



CHAPTER 7. CODE GENERATION LAYER 177

Considering the above mentioned object-oriented approaches to support manual in-
tegration, the different types of generated code artifacts (stub, simple implementation,
generated in full) can be well supported with regard to development and maintenance
issues. In the following section, an example code generator is introduced and described
in detail taking these concepts into account.

7.2 J2EE-Code Generator

We use the term Code Generation for an automated task, which executes a specified
transition from a software model into program code artifacts considering additional code
generation parameters. A more general discussion of the context of code generation in
model driven development processes is given in Section 2.5. The code generator in an
Amabulo infrastructure takes an instance of the Amabulo meta model as input and
generates code artifacts related to the business logic layer. In general, an Amabulo code
generator has to support all elements of the Amabulo meta model. As part of this thesis,
we implemented a J2EE code generator considering the above discussed approaches for
supporting manual integration tasks. The generator produces the business logic layer of
a J2EE application together with a simple implementation of the persistency layer and
the presentation layer. The result of the generation process is a J2EE application that
can be deployed directly on a JBoss [Redb] application server.

This section starts by providing an architectural overview of the generated J2EE
application, followed by details of how Amabulo model elements are transformed into
executable program code: After design and implementation details of modeled business
objects and processes, this section describes also how user functions and system functions
are realized, and, in particular, how they are connected to critical business logic code
artifacts.

7.2.1 Architectural Overview of a Generated J2EE-Application

Following the definition of Sun, an J2EE application is “any deployable unit of J2EE
functionality. This can be a single J2EE module or a group of modules packaged into an
EAR file along with a J2EE application deployment descriptor. J2EE applications are
typically engineered to be distributed across multiple computing tiers,” [Orac]. Further-
more, a J2EE module is “a software unit that consists of one or more J2EE components
of the same container type and one deployment descriptor of that type. There are four
types of modules: EJB, Web, application client, and resource adapter. Modules can



CHAPTER 7. CODE GENERATION LAYER 178

Persistency Layer

Business Logic Layer

Presentation Layer

«Java Bean»
Business Object

«Entity EJB»
Business Object

«Session EJB»
Process

«Java Server 
Faces»

UserFunction

«Session EJB»
SystemFunction

calls

calls

calls

calls

calls

creates

Figure 7.2.1: Application Tier Overview

be deployed as stand-alone units or can be assembled into a J2EE application,” [Orac].
Our example generator is conform to the J2EE standard, and its generation results im-
plement standards such as Java Beans [Orad], Enterprise Java Beans (EJB) [Orab], and
Java Server Faces (JSF) [Ora08] reusing the Seam Framework [Redc] and applying J2EE
design patterns such as Transfer Object [Oraa].

Figure 7.2.1 provides an architectural overview of a generated J2EE application:
The business logic layer contains Session EJBs for processes and system functions of an
Amabulo model, which implements the modeled control flow including all decisions and
constraints. Business objects required during process execution are accessible as Java
Beans, which also implement domain state assurance logic. The presentation layer is
implemented by JavaServerFaces and supports all modeled user functions. Entity EJBs
that are accessed only by process implementations are used for the persistency layer
implementation.



CHAPTER 7. CODE GENERATION LAYER 179

«Interface»
ObjectInterface

«Entity EJB»
Object

«Java Bean»
ObjectPojo

Figure 7.2.2: Generated Business Object Triple

7.2.2 Business Objects

For each business object that is part of an Amabulo model, a corresponding triple
is generated: an unique interface, a Java Bean, and an Entity Enterprise Java Bean
(see Figure 7.2.2). The interface and the Java Bean are generated in full, and they
encapsulate business logic internals from persistency code, which is provided by the
Entity EJB. The Entity EJB is a generated simple implementation and may be modified
for integration purposes.

Interface The generated interface provides all required functions of a business object,
namely, getter and setter functions for each modeled attribute, as well as administrative
attributes such as object identifier and process identifier. The interface is implemented
by both the Entity Bean and the Java Bean.

Entity Enterprise Java Bean (Entity EJB) The Entity Enterprise Java Bean
(Entity EJB) acts as connection from business logic to persistency layer and directly
contains information about object-relational data mapping in the form of standardized
annotations. These annotations determine information such as name of the table in the
database and constraints of data fields. Using annotations, the seam framework com-
pletes missing information regarding the database connection so that there is no need for
any further interface definition or any further configuration in any deployment descrip-
tor. A deployed generated Entity EJB is container managed and provides an abstraction
from the actual database implementation. If special project specific requirements have
to be met, the Entity EJB can be completely rewritten, for example, to support bean-
managed persistence. However, to keep the modified Entity EJB integrated with the
generated code artifacts, the Entity EJB has to keep its name and has to provide a valid



CHAPTER 7. CODE GENERATION LAYER 180

implementation of the generated interface.

Java Bean (Transfer Object) Besides the Entity EJB, a data transfer object is gen-
erated for each modeled business object in the form of a Java Bean. This transfer object
is completely independent of the actual EJB implementation and encapsulates business
logic from Entity Beans: Implemented system as well as user actions access business
objects only through transfer objects that are managed by the process implementation.
If a business object is required by any function, the Entity EJB is loaded, a transfer
object is created, the internal state of the Entity EJB is copied to the transfer object,
and, finally, the transfer object is handed over to the function. If a business object is
modified by a function, the internal state of the resulting transfer object is copied to the
Entity EJB, and the store method of the EJB is invoked.

Furthermore, the generated transfer objects are responsible for domain-state asser-
tions (as introduced in Section 6.2.3): If attributes are modeled with a refining state
chart, the transfer object assures that only defined state transitions are processed when
the value of an attribute is changed. Otherwise, a specific exception handling routine is
started. By supporting the domain-state assertion logic, no invalid state transition can
be executed or passed to any persistent object. This prevents inconsistent application
data, even if the business logic depends on several external systems that modify business
objects.

7.2.3 Processes

For each modeled process a Session EJB and its Local Session EJB Interface is generated
(see Figure 7.2.3).

Local Session EJB Interface A local interface of a Session EJB is needed by its
application container, which is the instance management and execution environment,
and provides an additional abstraction from the actual implementation of the Session
EJB. If a function of a Session EJB is called by another Session EJB, only the interface
is referred and never a concrete instance of the EJB. The application container, which is
responsible for instance management, is also responsible to assign concrete Session EJB
instances. Depending on the current demand, the application container holds several
Session EJB instances and manages instance assignments.



CHAPTER 7. CODE GENERATION LAYER 181

«Local Interface»
Process

«Session EJB»
ProcessAction

«Local Interface»
SystemFunction

«Session EJB»
SystemFunctionAction

calls

calls

«Java Server Faces»
UserFunction

calls

Figure 7.2.3: Generated Processes and Actions

Session EJB The implementation of the modeled process is generated as a Session
EJB. It contains the whole control flow logic of the process, which determines initial and
final functions, sub-processes, and succession relations. The actual order of called func-
tions or sub-processes is processed depending on modeled succession relations between
model elements and the current state of the data model. Moreover, the process imple-
mentation provides a connection to the persistency layer: it loads all needed business
objects that are needed during process execution from the persistency layer into transfer
objects and stores the modified objects back in the persistency layer.

Session EJBs generated for processes are the most critical and most complex gener-
ated artifacts: they are generated in full and must not be edited manually. Beside control
flow decisions, they are responsible for condition evaluation. Each modeled precondition
and postcondition have to be assured by the process implementation. If a condition is
violated, a defined exception handling starts and interrupts the current executed process
to prevent that an inconsistent data model is generated.

7.2.4 User Functions

For each user function one java server faces file (*.jspx) is generated as a simple imple-
mentation (see Figure 7.2.3). The internal state of all required business objects, which
are modeled as input parameters, is rendered in a read-only view so that all attributes
and their current values can be seen by the user. Moreover, the internal state of all



CHAPTER 7. CODE GENERATION LAYER 182

created or modified business objects, which are modeled as output parameters, can be
changed by the user. For this purpose, the value of each attribute can be edited in
the user interface. After the user decides to finish the current action, the control flow
is passed back to the business logic layer. Depending on project specific needs, the
generated JSPX-file can be modified or replaced, for example, by otherwise generated
UIs.

Connection with Business Logic The hand-over of the business logic to the user
interface implementation and the hand-over back to business logic is implemented by
special connection routines called “UserFunctionStart” and “UserFunctionEnd” as part
of the process Session EJB. The Start routine is responsible for the availability of all
required business objects and for the assurance of all modeled preconditions that are
related to this user function. Furthermore, the Start routine calls the user interface
implementation. The user interface passes all possibly modified objects back to the
End routine, which is responsible for postcondition assurance and passing the changed
objects back into the persistency layer.

Figure 7.2.4 illustrates a scenario of a successful call and return of a user function:
in this process implementation Process.findNext() decides to invoke a user function, the
initialization function UserFunctionStart() is called. This function prepares all required
input parameters and is responsible for the assurance of preconditions. Then, the actual
user interface implementations is presented to the user. After collecting all required data,
the closing function UserFunctionEnd() is invoked. This function is responsible for the
assurance of postconditions and stores modified business objects in the persistency layer.
Finally, the control flow is handed-over to the process implementation.

As mentioned above, one important feature of the Amabulo infrastructure is the
guaranteed robustness as described in Section 2.3.2. A detailed description of what
robustness means in the context of Amabulo is given in Section 6.2. An abstract imple-
mentation is provided by mapping rules from the Amabulo model into Coloured Petri
Nets (see Section 6.4.2). If any condition is violated, an automated exception handling
prevents faulty database entries.

7.2.5 System Functions

For each system function, a Session EJB stub including its local interface is generated
(see Figure 7.2.3). In contrast to user functions, system functions do not have a corre-
sponding user interface. The generated code for a system function provides a connection



CHAPTER 7. CODE GENERATION LAYER 183

Pr
oc

es
s.

fin
dN

ex
t()

Us
er

Fu
nc

tio
nS

ta
rt(

)
Us

er
Fu

nc
tio

nE
nd

()

ca
ll U

se
rF

un
ct

io
n

As
su

re
 

Pr
ec

on
di

tio
ns

Us
er

Fu
nc

tio
n.

jsp
x

Ca
ll U

I I
m

pl
em

en
ta

tio
n

Re
tu

rn
As

su
re

 
Po

st
co

nd
itio

ns

Co
lle

ct
 

Us
er

 In
pu

t

St
or

e 
O

ut
pu

t P
ar

am
et

er

sd
 C

al
l o

f a
 U

se
r F

un
ct

io
n

Pe
rs

ist
en

cy
M

an
ag

er

Q
ue

ry
 In

pu
t P

ar
am

et
er

Re
tu

rn
 B

us
in

es
s 

O
bj

ec
ts

Ac
kn

ow
le

dg
e

Re
tu

rn

Figure 7.2.4: UML Sequence Diagram: Call of a User Function



CHAPTER 7. CODE GENERATION LAYER 184

to handwritten program code and enables the integration of external functions, applica-
tions, and legacy systems. Therefore, the generated Session Bean consists of one method
with an empty body. It can be compiled and executed, but it does not implement any
behavior and has to be extended for integration purposes by handwritten code. All
required parameters are accessible through class attributes, which are provided by the
injection mechanisms of the Seam Framework. Additionally, all changed parameters are
passed back by outjection features of Seam.

Connection with Business Logic Comparable to user functions, the hand-over to
manual written code and back to the generated business logic is realized by special
connection routines in the process implementation. The only difference is that Start and
End routines are aggregated into one connection method. This method is responsible
for the availability of all required business objects, which are the input parameters, and
for the assurance of all modeled preconditions that are related to this user function. It
calls the possibly manually modified implementation function of the modeled system
function and is responsible for postcondition assurance. Furthermore, it also passes
changed objects back into the persistency layer.

Figure 7.2.5 illustrates a scenario of a successful call and return of a System Function:
If the process implementation Process.findNext() decides to invoke a system function, the
system function implementation SystemFunctionCall() is called. This function prepares
all required input parameters and is responsible for the assurance of preconditions. Then,
the actual system function implementation SystemFunction.java is processed. After the
collected data was returned to the SystemFunctionCall() method, specified postcondi-
tions are assured, and output parameters are stored in the persistency layer. Finally,
the control flow is handed-over to the process implementation.

If the design as introduced in this section is considered during the design and imple-
mentation of a code generator, the generator output, which is based on a valid Amabulo
model, will satisfy our robustness requirements and support later integration and main-
tenance tasks. The further support of costly impact analyses and limited understanding
issues can be provided by a code comparison tool as introduced subsequently.

7.3 Code Comparison Tool

As described in Section 2.3.2, impact analysis and limited understanding are effort gen-
erating issues considering actions that are needed to prepare developers before any line of



CHAPTER 7. CODE GENERATION LAYER 185

sd
 C

al
l o

f a
 S

ys
te

m
 F

un
ct

io
n

Pr
oc

es
s.

fin
dN

ex
t()

Sy
st

em
Fu

nc
tio

nC
al

l()

ca
ll U

se
rF

un
ct

io
n

As
su

re
 

Pr
ec

on
di

tio
ns

Sy
st

em
Fu

nc
tio

n.
ja

va

Ca
ll S

ys
te

m
 A

ct
io

n 
Im

pl
em

en
ta

tio
n

Re
tu

rn
As

su
re

 
Po

st
co

nd
itio

ns

Co
lle

ct
 

Sy
st

em
s 

In
pu

t

St
or

e 
O

ut
pu

t P
ar

am
et

erPe
rs

ist
en

cy
M

an
ag

er

Q
ue

ry
 In

pu
t P

ar
am

et
er

Re
tu

rn
 B

us
in

es
s 

O
bj

ec
ts

Ac
kn

ow
le

dg
e

Re
tu

rn

Figure 7.2.5: UML Sequence Diagram: Call of a User Function



CHAPTER 7. CODE GENERATION LAYER 186

code is modified actually. Hence, an Amabulo infrastructure contains two tools address-
ing these issues at model level and at code level. As described in Section 5.4, a model
comparison tool computes changes between two different model versions and provides
a user interface to explore the results. This section introduces a code comparison tool,
that determines scheduled modifications at code level depending on the result of the
model comparison tool. Such a code comparison tool helps software developers finding
the parts of the code repository that have to be edited manually as well as the parts
that will be created, deleted, or edited automatically by the generator. Hence, a code
comparison tool strongly depends on the current used code generator.

In order to integrate handcrafted program code, it is important for developers to
see what kind of changes according to what kinds of model elements are scheduled for
the code generation process. For this purpose and as a difference to conventional file
comparison tools, the code comparison tool provides information about which model
element causes which change on which part of the generated program code. Due to the
dependency of code generator and code comparison tool, we suggest to use the results of
the code comparison tool to control the code generation process. A proper user interface
should support the exploration of, at least, the following scheduled code modifications
and code generation controls:

• Each modification (creation, modification, deletion) of any item has to be listed in
a structured overview together with the information about corresponding model
artifacts. For example, if a file A.java is scheduled to be created, a code comparison
tool lists all responsible model elements.

• Modifications of a file are not automatically applied if a file was modified manually.
The developer has to confirm explicitly if such a file should be overwritten or not.

• No file has to be deleted automatically without any feedback to the developer, even
if a file was generated and not modified. The developer should have the choice to
prevent the deletion of files.

• Each file that must not be modified manually is automatically overwritten so that
manual added changes are discarded. The user cannot prevent its modification.

Technical Specification and Dependencies The architectural integration of the
code comparison tool is illustrated in Figure 5.4.4: The computed model changes are
provided via the IFMCResult interface and the result of the code comparison process



CHAPTER 7. CODE GENERATION LAYER 187

Figure 7.3.1: Screenshot of Code Comparison Tool

have to be exported via IFCCResult to a proper user interface, which can be implemented
by the same component as the UI needed for model comparison purposes. Moreover,
the code generator depends also on the IFCCResult interface, because the result of the
code comparison process is used as parameter for code generation.

Sample Implementation Figure 7.3.1 shows a screenshot of a project specific gen-
eration tool containing the UI of a code comparison tool. Considering the needs of
business logic layer, all changes that affect the connection from and to the user interface
as well as to the persistency layer are listed. As the screenshot shows, three files are
scheduled to be added: one file that implements connections to the user interface, one
file that implements connections to external functions, and one file that implements con-
nections to the persistency layer. Furthermore, one file containing data objects, which is
implemented as an Entity Bean, is scheduled to be modified during the automated code
generation process, but requires the manual confirmation by the user to be updated.



CHAPTER 7. CODE GENERATION LAYER 188

7.4 Summary

In this chapter we have introduced the Code Generator Layer of our Amabulo infrastruc-
ture blueprint, which consists of a code generator and a code comparison tool. A Code
Generator Layer has to be implemented or at least adapted for each model driven project
to satisfy project specific needs. We have started this chapter with a discussion of several
aspects of code integration, and we have distinguished three different types of generated
code artifacts: stubs, simple implementation, and generated in full. Depending on the
type of artifact, we have described several approaches, namely, clear separation, del-
egation, interfaces, support code understanding, and manual confirmation of changes,
that address integration issues of generated code and handwritten code. Considering
these approaches, we have presented an example implementation of the code generator
that generates deployable J2EE applications. All modeled aspects of the business logic,
as provided by an Amabulo model, are integrated in full, including extendable, simple
implementations of user interfaces as well as of persistency layers. We have used this
implementation to discuss the internal architecture of a generated business logic layer
and to provide a conceptual mapping from Amabulo model elements into J2EE compo-
nents. Furthermore, we have described how the behavioral dependencies of the resulting
code artifacts have to be designed to guarantee our robustness criteria assurance of do-

main state and assurance of local conditions as introduced above in Section 6.2. Finally,
we have introduced a code comparison tool that supports manual impact analysis and
code understanding tasks by calculating differences between the current code repository
and scheduled code changes depending on the actual code generator implementation.
Summed up, following the architecture and design as described in this chapter, Code
Generation Layers for different target platforms can be implemented, which consider the
specific need of a business logic layer regarding software development and maintenance
issues.



Chapter 8

Validation

In the previous chapters, we have introduced all layers of our infrastructure blueprint
for the development and maintenance of business logic for information systems. In this
chapter, we will examine the improvements brought by the usage of an implementation
of an Amabulo infrastructure considering the issues identified in Section 2.3.2. Referred
to the parts of a design theory [GJ07], this chapter provides the expository instantiation.

As contribution of this thesis, the Amabulo infrastructure blueprint targets on the
support of development and maintenance tasks for long-term operated business infor-
mation systems. Therefore, a proper empirical validation of our targeted improvements
would require a setup of at least two comparable industrial software projects, one per-
formed with an implementation of an Amabulo infrastructure and one without. Ad-
ditionally, only a continuous observation of quality and duration of maintenance and
enhancement tasks of both projects in an industrial live environment could provide a
suitable data set for an empirical validation of our approach. Hence, the validation in
this chapter bases on experiences we made with applying an industrial scenario in the
context of an example Amabulo infrastructure implementation. With the help to of this
case study, we endeavored to provide a qualitative evaluation of the improvements using
an Amabulo infrastructure.

The first part of this chapter introduces an industrial example scenario consisting
of a visual model, a sample implementation of our Amabulo infrastructure blueprint,
and scheduled changes of domain requirements to be implemented. Then we examine
the improvements for the development and maintenance phase of model driven software
projects considering both modeling tasks and program implementation. Afterwards we
discuss improvements concerning the setup and integration phase of a model driven

189



CHAPTER 8. VALIDATION 190

project infrastructure enabled by the reuse of our Amabulo infrastructure.

8.1 Industrial Example Scenario

This section introduces an example scenario that is used to validate improvements
brought by our Amabulo infrastructure blueprint. The context and the assets of our
validation are derived directly from industrial cooperation projects. In several projects,
we assisted our partners from reinsurance and insurance business in realizing their e-
business strategy technically. The focus was put on supporting contract negotiation
processes. After the initial creation of a contract, a three-step negotiation process (pro-
vide an offer, specify conditions, accept conditions) has to be passed until a final decision
is made on whether a contract enters into force or not. In this process up to seven dif-
ferent roles in up to four different organizations can be involved. Over a period of four
years, four applications were developed and deployed with a budget of 250.000 EUR to
800.000 EUR for each application. In this context, we conducted analyses and spec-
ification tasks including domain and system architecture, and we were responsible for
prototyping application user interfaces as well as for developing technical prototypes of
business critical parts of systems. All systems were implemented and are maintained by
a software company. After implementation and before deployment into the live environ-
ment, we controlled and executed domain tests based on the specification documents.

In all these projects a conventional software engineering approach was applied: vi-
sual software models were used for analysis and specification as well as for design and
documentation purposes. However, the program code was implemented manually. For
the discussion of improvements of an Amabulo infrastructure in this chapter, we ap-
plied this real-world offer negotiation scenario in a model driven development process
supported by an instance of an Amabulo infrastructure.

8.1.1 Example Model

The UML model of the offer negotiation process consists of seven different views: five
activity diagrams with summed up 39 actions, 14 control flow decision nodes and sub-
processes with maximum depth of nesting of two, one state diagram containing eight
domain states and their transitions, and one class diagram with four different business
objects. The resulting model is strongly based on the original used models of our in-
dustrial cooperation projects, there is no action added or removed. Only the level of
detail is shifted from the original state charts and written text into activity diagrams or



CHAPTER 8. VALIDATION 191

example model.

Activity Diagrams Figure 8.1.1 shows the main process containing the negotiation
process from start to finish. The four additional activity diagrams are sub-processes
of the main process. At first, either an existing contract has to be chosen or a new
contract has to be created. Then, specific contract data have to be typed in or edited as
modeled in Figure 8.1.2 as refinement of the ViewAndEdit-Action of the main process.
Subsequently, the user can choose between saving the offer as a draft, forwarding it to
a colleague, or deciding about the offer. If the user decides to accept the offer and a
review is needed, it has to go through a four eyes decision process.

If the offer has passed the first decision successfully, the condition specification sub-
process starts as modeled in Figure 8.1.3: contract specific conditions have to be de-
termined under which the proposed offer can be reasonably accepted. If needed, the
current user, who has to determine the conditions, can pose questions to an expert by
an internal chat system. The expert’s opinion may help specify proper conditions for
the current contract. The chat is modeled in Figure 8.1.4 as a sub-process of the process
depicted in Figure 8.1.3. If proper conditions can be specified, these conditions have to
pass a mandatory four eyes decision process so that at least two persons agreed with the
conditions.

Subsequently, the conditions have to be confirmed by the submitting organization.
This sub-process is modeled in Figure 8.1.5 and requires also a four eyes decision. Finally,
if a contract passes all decision cycles successfully, it becomes legally valid.



CHAPTER 8. VALIDATION 192

ContractDiagramm ContractDiagrammactivity [   ]

ConditionConfirmation : 
ConditionConfirmation

ConditionSpecification : 
ConditionSpecification

<<UserAction>>
BrokerReviewerDecides

Contract

Contract

<<SystemAction>>
AssignBroker

Contract

Contract

ViewAndEdit : 
ViewAndEdit

<<SystemAction>>
SendBoundMessageContract

<<SystemAction>>
AssignUnderwriter

Contract Contract

<<UserAction>>
ClientCreatesOffer

Contract

<<UserAction>>
ForwardToCollege

Contract

Contract

<<UserAction>>
BrokerSubmits ContractContract

<<SystemAction>>
SendBackToClient

Contract

Contract

<<UserAction>>
ChooseNextBroker

Action

BrokerAction

<<UserAction>>
ModifyOfferState

Contract

Contract

<<SystemAction>>
CreateNewOffer

Contract
<<SystemAction>>

LoadContract

Contract

ContractRequest

<<SystemAction>>
SaveAsDraft

Contract

Contract

<<SystemAction>>
BindContract

Contract Contract

<<UserAction>>
ShowContract

Contract

<<UserAction>>
CancelOffer

Contract

Contract

<<UserAction>>
BrokerDecides

Contract
Contract

<<UserAction>>
InputContractID

ContractRequest

Local Postcondition = 
contract.state=='pending'

Local Precondition = 
contract.state=='accepted' 
Local Postcondition = 
contract.state=='bound'

Local Postcondition = 
contract.state=='canceled' 
Local Precondition = 
contract.state=='bound'

Local Precondition = 
contract.state=='bound'

 [contract.state=='withdrawn']

 [contract.state=='declined'] [contract.state=='undecided']

 [contract.exists==false]

 [contract.state=='rejected']

 [brokerAction.action=='saveAsDraft']

 [brokerAction.action=='sendBack']

 [contractRequest.contractId!='0']

 [contract.state=='rejected']

 [contract.exists=='true' && contract.state=='undecided']

 [contract.brokerDecision=='accepted']

 [brokerAction.action=='forward']

 [contract.needReview=='false']

 [contract.needReview=='true']

 [contractRequest.contractId=='0' && contractRequest.user=='Client']

 [ contract.exists=='true' && 
contract.state=='bound']

 [contract.state=='undecided']

 [contract.state=='accepted']

brokerAction=='decide'

 [contractRequest.contractId=='0' && contractRequest.user=='Broker']

 [contract.state=='accepted']

Figure 8.1.1: Contract Negotiation Process, Overview



CHAPTER 8. VALIDATION 193

ViewAndEdit ViewAndEditactivity [   ]

<<UserAction>>
EnterSpecificContractData

Contract Contract

<<UserAction>>
EditMasterData

ContractContract

<<SystemAction>>
SendValidationMessage

Contract

<<SystemAction>>
ValidateMasterData

Contract Contract

 [contract.masterDataIsValid=='false']

 [contract.masterDataIsValid=='true']

Figure 8.1.2: Edit Data Sub-Process

ConditionSpecification ConditionSpecificationactivity [   ]

<<UserAction>>
UnderwriterReviewsContract

Contract

<<SystemAction>>
SentAcceptanceMessage

Contract

<<UserAction>>
UWReviewerDecides

Contract Contract

<<SystemAction>>
SentDeclinatureMessage

Contract

<<UserAction>>
ShowFinalContract

<<UserAction>>
UWSpecifiesConditions

Contract
Contract

<<SystemAction>>
SendBackToBroker

Contract Contract

<<UserAction>>
NextUWAction

UwAction

ExpertChat : 
ExpertChat

Local Postcondition = 
contract.state=='undecided'

Local Postcondition = 
contract.state=='accepted'

Local Precondition = 
contract.state=='pending'

 [uwAction.action=='sendBack']

 [contract.uwDecision=='declined']

 [contract.uwDecision=='declined'] [contract.uwDecision=='accepted']

 [uwAction.action=='expertChat']

 [uwAction.action=='decide']

 [contract.state=='pending']

Figure 8.1.3: Condition Specification Sub-Process



CHAPTER 8. VALIDATION 194

ExpertChat ExpertChatactivity [   ]

<<UserAction>>
AnswerQuestion

Contract Contract

<<UserAction>>
AskQuestion

Contract Contract

<<UserAction>>
ReadAnswer

Contract

Figure 8.1.4: Expert Chat Sub-Process

ConditionConfirmation ConditionConfirmationactivity [   ]

<<UserAction>>
BrokerDecideConditions

ContractContract

<<SystemAction>>
SendWithdrawnMessage

Contract

<<UserAction>>
BrokerReviewDecides

Conditions
Contract Contract

Local Precondition = 
contract.state=='withdrawn'

Local Precondition = 
contract.state=='accepted'

 [contract.state=='accepted']

 [contract.state=='withdrawn']

 [contract.state=='accepted']

 [contract.state=='withdrawn']

Figure 8.1.5: Condition Confirmation Sub-Process

Class Diagram The class diagram as modeled in Figure 8.1.6 contains all business
objects needed during a contract negotiation process. The most important class is
Contract. It represents the contract as the main business object of the process. Besides,
three more classes are needed for control flow decisions: ContractRequest is used in early
phases of the process to identify whether an existing contract has to be modified or a



CHAPTER 8. VALIDATION 195

package ClassesData [   ]

-contractId : long
-broker : String
-brokerDecision : String
-needReview : Boolean
-valid : Boolean
-reviewerDecision : String
-masterDataIsValid : String
-uwDecision
-state : String

Contract

-contractId : long
-user : String

ContractRequest

-action : String

BrokerAction

-action : String

UwAction

Figure 8.1.6: Class Diagram

new contract has to be created and whether a client or a broker initially submits a new
created contract. The classes BrokerAction and UwAction carry control flow decisions
made by users during process execution.

State Diagram The state diagram as modeled in Figure 8.1.7 contains a domain state
diagram for contracts and refines the state attribute in the business object Contract. The
live cycle of a contract is modeled by eight domain states: A contract is undecided if it is
just typed in and no live cycle relevant decision was made so far. If a broker decides to
accept a contract, it becomes pending, otherwise it is rejected. If an offer is pending, its
conditions were currently specified. If reasonable conditions could be made and the offer
passed a four-eyes decision, the contract is accepted. Otherwise it is declined. Moreover,
the contract can be send back, so that its state turns into undecided again. As third and
last decision, if the conditions were accepted, a contract is in the domain state accepted.
If not, the state of the contract is withdrawn. Only an accepted offer can be become
bound, which means legally valid. If an involved organization cancels a bound contract,
the domain state of contract turns into cancelled.

8.1.2 Sample Infrastructure

Having introduced the example model in the previous subsection, this subsection pro-
vides an overview of the sample implementation of our proposed Amabulo infrastructure
blueprint.

This implementation provides a complete Amabulo infrastructure and can be reused
partly or completely by further model driven development projects. Table 8.1 provides
an overview of the actual implemented infrastructure. Reused existing tools and meta



CHAPTER 8. VALIDATION 196

state machine Contract:state Contract:state[   ]

bound

declined

undecided

canceled

pending accepted

withdrawnrejected

Figure 8.1.7: Contract Domain States and their Transitions

models are marked with an asterisk. Summed up, the example Amabulo infrastructure
implementation as used for validation purposes contains about 8.400 lines of code (LOC)
plus 32.000 LOC of reused generated code and about 380 additional files used to complete
a deployable J2EE application as generation result.

Infrastructure
Layer Tool Meta Model Transformations

Visual Model Magic Draw* Amabulo UML
Profile

UML →
Amabulo

Abstract Model HTML-Model-
Change-Browser

Amabulo Meta
Model n/a

Abstract System CPNTools* Coloured Petri
Nets*

Amabulo →
CPN

Code Generator

Simple Code-Change
Browser,

J2EE-Code
Generator

n/a Amabulo →
J2EE

Application Eclipse IDE* J2EE*,
JBoss-Seam* n/a

Table 8.1: Sample Infrastructure

Visual Model Layer In general, we recommend the reuse and tailoring of well-known
visual modeling languages and existing industrial modeling tools for visual modeling
tasks. Nowadays modeling languages as UML are supported by matured industrial tools
that can be deployed easily into the technical project infrastructure. For project specific
purposes, modeling languages may have to be customized to assure automatic model
processing. Therefore, we tailored the UML language definition and provide a reusable



CHAPTER 8. VALIDATION 197

UML-Profile as introduced in Section 4.2. The complete and detailed definition can be
obtained from Appendix A. The mapping from UML into the Abstract Model Layer
was also introduced in Section 4.3. Its implementation, as provided by Appendix B,
consists of about 1.000 LOC of ATL [BVJ] and XSLT [W3C99] transformation rules.
As visual modeling tool, our sample infrastructure integrates the industrial tool Magic
Draw [NoM], which satisfies all requirements as discussed in Section 4.4.

Abstract Model Layer The Abstract Model Layer provides our domain specific
model as described precisely in Section 5.3. Its implementation as Ecore meta model can
be obtained from Appendix E. It contains all modeling concepts needed for the genera-
tion of business logic code. Additionally, this layer implements a model comparison tool
as specified in Section 5.4. The tool is implemented in the Scala programming language
[OSV08]. It comprises about 2.500 LOC and provides a simple HTML user interface to
support a fast exploration of model changes by modelers.

Abstract System Layer As meta model for the Abstract System Layer we reused
and extended the Coloured Petri Nets definition provided by Jensen in [Jen92], as intro-
duced in Section 6.3. The use of CPNs enables the application of the industrial analysis
and simulation environment CPNTools [CPN]. CPNTools provides easy adoption op-
portunities for project specific needs (see Section 6.5) so that the implementation of
specific analysis functions is possible without further transformations. Concrete analy-
sis functions based on CPNTools are not part of this thesis. Our sample infrastructure
implements mapping rules from the Amabulo model into CPN, as specified in Section
6.4. They enable an automated transformation from the abstract model into the ab-
stract system. The resulting CPN can be loaded directly into CPNTools. The source
code used for this transformation comprises about 34.000 lines of Java code of which the
predominant part (about 32.000 LOC) is generated code that is required to access and
build instances of Amabulo and CPN in form of an object model. About 2.000 LOC
contain manually implemented mapping rules.

Code Generator Layer As part of our sample infrastructure we implemented a J2EE
code generator (see Section 7.2) as part of the Code Generator Layer. This generator
transforms an Amabulo model automatically into an executable J2EE application that
can be deployed directly into a JBoss application server. Implemented in Scala, our
example code generator consists of about 2.800 LOC. However, the resulting J2EE ap-



CHAPTER 8. VALIDATION 198

plication is a composition of generated code and code that was copied. Hence, our
example code generator consists of a set of about 380 additional files that have to be
copied. This set includes all libraries, descriptor files, configuration files, and build files
that are needed to compile, assemble, and deploy a JBoss Seam enterprise application
on a JBoss application server without any additional manual deploy task.

Besides, a simple code change browser was created as code comparison tool, following
the design presented in Section 7.3. It reuses the results of the model comparison tool of
the Abstract System Layer and provides a simple user interface that shows the developer
which generated code artifact is scheduled to be changed if a code generation process
occurs. The code comparison tool is implemented in about 130 LOC of Scala code.

Application Layer Finally, the generated program code bases on J2EE [Orac] and
JBoss-Seam [Redc] definition and can be deployed onto a JBoss application server as
a runnable web application without any further modification. If manual modifications
are required, for example, for integration purposes, we used the Eclipse IDE [Ecla] as
programming tool.

By using the Amabulo infrastructure as presented in this subsection, the visual con-
tract negotiation model as introduced in Section 8.1.1 was created. Then, this model was
transformed into an Amabulo model. Based on this Amabulo model, a J2EE application
was generated and deployed on a JBoss application server.

8.1.3 Changed Requirements

Following the introduced validation scenario, domain requirements of the above modeled
and generated contract negotiation process have changed. Hence, the following changes
of domain requirements need to be implemented:

• An additional domain state for the business object Contract is required to indicate
that a former bound contract is no longer in force.

• After the initial submission of a contract by a broker, an automatically generated
notification has to be sent.

• An underwriter should be enabled to chat as long as necessary with an expert so
that multiple questions and answers are supported by the chat function.

• An automatically sent notification is no longer needed in initial contract modifi-
cation actions after the successful validation of master data.



CHAPTER 8. VALIDATION 199

• Specified conditions have to be stored directly related to the business object Con-

tract.

8.2 Improvements Considering Software Modeling

This section discusses improvements of an Amabulo infrastructure for modeling and
model maintenance tasks during the development and maintenance phase of a model
driven software project. For this purpose, we applied the example scenario as intro-
duced in the previous section. Compared to further business logic modeling infrastruc-
tures domain state modeling, tool supported impact analysis, reuse of matured modeling
languages, and system simulation before code generation are concrete advantages of an
Amabulo infrastructure.

8.2.1 Semantic Abstraction through Domain State Modeling

Since industrial business processes are complex and automated code generation requires
a high level of detail concerning software models, detailed business logic models usually
consists of several diagrams to cover all details as needed. In our example scenario, five
different activity diagrams provide the process view onto the model. However, if a model
comprises multiple activity diagrams, it is very complicated to get a fast overview of the
detailed modeled domain concepts. It is a challenge for each modeler to figure out the
supported basic concepts from a set of highly detailed activity diagrams.

By the use of domain state charts as semantic braces between fine-granular mod-
eled functions and sub-processes, the Amabulo UML profile provides a tool that helps
modelers understand abstract domain concepts and support the communication between
modelers and domain experts. Independent of the actual number of elements in the pro-
cess view and the actual level of refinement of the business logic model, domain state
diagrams (as introduced in Section 4.2.4) provide a semantic abstraction of the whole
process at the level of domain states. Regarding the example model as introduced in
Section 8.1, the domain states of a contract are modeled in a separate state chart. If a
modeler has to analyze the content of the model, a view onto the state charts provides
an abstract semantic overview of the live cycle of a contract. In our example model, the
state chart (Figure 8.1.7) clearly points out that Contract has to pass three different
decision states, namely, undecided, pending, and accepted, before it enters into force,
i.e., bound. Furthermore, four different declination states can be identified, one for each
decision state including the bound state so that it is always clear at which level the nego-



CHAPTER 8. VALIDATION 200

Elements in Domain
State Charts

Elements in Activity
Diagrams

Ratio

Model 1
(Section 8.1.1)

9 Elements + 9 Edges
= 18

83 Elements + 94 Edges
= 177

1 : 9.83

Model 2
(Section 4.2.5)

5 Elements + 5 Edges
= 10

8 Elements + 12 Edges
= 20

1:2

Table 8.2: Elements in Domain Chart Compared to Elements in Activity Diagrams

tiation process was finished. A deep understanding of all process views is not necessarily
needed to get an overview of the model. Table 8.2 compares the number of elements
in the example models of this thesis and shows the ratio between the number of model
elements used in domain state charts and the number of model elements used in all pro-
cess views of a model. In the industrial model of Section 8.1.1 a modeler needs to read
and understand 177 visual items, which is the sum of all process views, to comprehend
the modeled business process. The smaller example model introduced in Section 4.2.5
requires to read and understand 20 visual items in process views.

We conducted a user study with eight participants. Each of them had to analyze the
process views of the industrial example model of Section 8.1.1 and to sketch a domain
state diagram. Table 8.3 shows an overview of the needed time, the reliability of the
resulting state chart estimated by participants, and the actual reliability of each try.
The average time needed for this task was about 33 min and only two out of eight (25%)
participants established a complete and correct domain state chart.

Again, referring to Table 8.4, the ratio of the numbers of model elements in state
charts compared to the number of elements in process views is 1:9.83 in the industrial
model and 1:2 in the smaller model. In our industrial scenario, the number of visual
model items that have to be understood by modelers to get an abstract overview of the
supported domain requirements was reduced to about 10% of the elements of process
views. Using domain state charts, the initial time needed for model comprehension can
be reduced, and errors in model analysis can be avoided.

8.2.2 Tool Supported Impact Analysis

If changed domain requirements have to be implemented, the maintenance process starts
with the modification of the visual software model. During such a modeling process,
model elements are created, deleted, modified, and re-created, as well as visually rear-
ranged or moved from one view into another. New views are created and existing views



CHAPTER 8. VALIDATION 201

Time
Needed
(min)

Estimated
Reliability

(%)

Actual Reliability

P1 34 40 4 states missing
P2 33 50 5 transitions to much (3 of them marked as unsure)
P3 51 75 1 transition to much
P4 34 80 100% correct
P5 25 80 100% correct
P6 22 100 1 transition to much
P7 31 35 2 transitions to much
P8 31 80 1 state missing, 1 transition missing
Ø ≈33 ≈68

Table 8.3: Duration and Error Rates for Manual Domain State Chart Identification

are modified or deleted. As a consequence, the modeler is forced to inspect even very
large models very carefully for each modification to get an idea about the impact of the
model changes.

As part of our case study, we modified the above introduced example model of
Section 8.1.1 considering the changed domain requirements as listed in Section 8.1.3.
The resulting model can be obtained completely from Appendix G. At first glance, the
models seem to be completely different, but only few elements of the model were changed
actually. Without additional tool support, a careful manual investigation has to be done.

However, using an Amabulo infrastructure, such impact analysis tasks are supported
by a model comparison tool. This tool processes model changes that are relevant for
business logic automatically. Our sample implementation provides a simple HTML-
based GUI, where relevant differences can be browsed in different levels of detail, as
needed for the current task. In Appendix G the Figures G.2.1, G.2.2, and G.2.3 contain
screenshots of the model comparison tool user interface after comparing the initial ex-
ample model and the modified example model, supporting the above specified changed
domain requirements. By the help of such a tool, modelers or quality managers easily
gain an overview of which elements were modified, added, or deleted and which remain
unchanged:

• In the process ContractDiagram, the SystemFunction SendNotification was added,
including all its connections to other functions. Furthermore, the control flow edge
from ChooseNextBrokerAction to SaveAsDraft was modified.

• In the process ExpertChat, the connection from the action ReadAnswer to AskQues-



CHAPTER 8. VALIDATION 202

tion was added.

• In the process ViewAndEdit, the system function SendValidationMessage and all
related control flow edge were deleted.

• The state expired was added in the state chart Contract:state, as well as the
transition from the state bound to the state expired.

• In the business object Contract the attribute conditions was added.

Further model elements were not modified or their modification was at least not relevant
considering business logic aspects.

Besides, the overview of the model modifications can be printed and stored in the
project documentation archive, where all model modifications can be reconstructed if
unexpected behavior of the system and conflict situations between IT department and
functional departments occur.

8.2.3 Reuse of Matured Modeling Languages

The Amabulo infrastructure allows reusing existing and matured visual modeling lan-
guages. If a project manager decides to reuse our infrastructure blueprint, the intro-
duction of a new modeling language is not necessarily needed, and our approach does
not include an extra newly developed visual modeling language. Existing modeling lan-
guages can be reused and integrated as Visual Model Layer. If an automated model
transformation exists that transforms an instance of the visual modeling language into
an instance of the Amabulo model, each visual modeling language can be reused. As
part of our sample infrastructure, we reused UML, as detailed in Chapter 4. For a later
integration of further visual modeling languages, only the transformation rules from the
Visual Model Layer into the Abstract Model Layer have to be implemented and applied.

8.2.4 Systems Simulation before Code Generation

The automated transformation from the Abstract Model Layer into the Abstract System
Layer transforms an Amabulo model into a Coloured Petri Net. Hence, this transforma-
tion produces an abstract implementation at the Petri net level of the currently modeled
business logic. The resulting abstract system can be executed in any CPN simulation
environment (such as CPNTools). As a consequence, the behavior of a system can be
evaluated even before any generator is built or any program code is written or any



CHAPTER 8. VALIDATION 203

model modification is integrated into the running system. If needed, the system can be
executed as CPN, and quality managers can monitor the behavior - of the later imple-
mented - system. If the simulation results lead to model modifications or corrections,
they can be integrated into the visual model, and an updated CPN can be generated
immediately. For large and complex systems, in particular where modifications on the
code repository tasks demand a huge manual efforts, which are possibly caused by orga-
nizational regulations, simulation tasks can help to speed up the modeling and quality
assurance process.

8.3 Improvements Considering Program Implementation

After the discussion of improvements considering modeling actions in the previous sec-
tions, this section discusses improvements of an Amabulo infrastructure considering
program implementation and testing tasks during the development and maintenance
phase. Again, for this purpose we applied the example scenario as introduced in Section
8.1.1. Compared to further code generating approaches, we explicitly consider robust-
ness features of the generated business logic with regard to later code modification tasks.
Supporting program understanding tasks and preventing loss of handwritten code are
further advantages of an Amabulo infrastructure. Compared to manual written code,
our model driven development approach always guarantees a complete implementation
of modeled requirements, prevents extensive testing processes, and support maintain-
ability through preventing the loss of structure and preventing inconsistencies between
the documentation and the system.

8.3.1 Reliable Assertions on System’s Robustness

As motivated in Section 2.3.2, the robustness of complex business information systems
is an important concern in particular for business logic implementations. The business
logic code implements interfaces to external functions and subsystems and manages the
collaboration of different subsystems and integrated external systems. It is important
for users as well as for system operators and that reliable statements about the robust-
ness of a systems can be guaranteed. For this reason, a consistent use of an Amabulo
infrastructure for the development and maintenance of business logic as introduced in
this thesis supports such assertions. The main concepts of our infrastructure regarding
the robustness of the generated program code are:



CHAPTER 8. VALIDATION 204

1. Considering domain states as system-wide asserted global constraints and local
conditions related to specific functions at the level of visual software models,

2. providing a foundation for static and dynamic analysis with a formal representation
of the modeled system, and

3. providing a detailed specification of the architecture of generated business logic
artifacts, in particular with regard to the modeled domain states and conditions.

1) Robustness at Software Model Level

In order to support reliable statements about the robustness of generated business logic
artifacts, an Amabulo infrastructure supports visual modeling of global domain con-
straints and local conditions, as introduced in Section 4.2. Our sample infrastructure
uses an Amabulo UML profile as visual modeling language (see Appendix A). Domain
states are modeled as states of a state chart, and their allowed transitions are modeled
as transitions between states of a state chart. A state chart is related to an attribute of
a business object of a class diagram. Considering the example model in Section 8.1.1,
the state diagram in Figure 8.1.7 contains a domain state model of the business object
Contract through refining its attribute state. With such a state diagram, the modelers
specified a set of complex global constraints: Only eight different domain states and
eight transitions are allowed during process execution, independent of actual processed
functions. Additionally, the activity diagrams in Figure 8.1.1, Figure 8.1.3, and Figure
8.1.5 contain specified preconditions and postconditions that are associated with func-
tions only. Compared to domain states, these conditions focus on related functions.
They are not valid globally as domain states are.

Despite of the proposed usage of modeling concepts for business logic, including the
use of state charts and conditions, their application is not necessarily reflected in the
semantics of the applied visual modeling language. None of the analyzed visual software
models in Section 4.1 support the refinement of attributes through associated state
charts. For this reason an Amabulo infrastructure contains a domain specific model
(Amabulo model) that integrates different modeling paradigms (structural modeling,
state modeling, and process modeling) and considers particularly domain states and
conditions as required by our robustness features.



CHAPTER 8. VALIDATION 205

ContractDiagramm ContractDiagrammactivity [   ]

ConditionConfirmation : 
ConditionConfirmation

ConditionSpecification : 
ConditionSpecification

<<UserAction>>
InputContractID

ContractRequest

<<UserAction>>
BrokerReviewerDecides

Contract

Contract

<<SystemAction>>
AssignBroker

Contract

Contract

<<SystemAction>>
SendBoundMessageContract

<<SystemAction>>
AssignUnderwriter

Contract Contract

<<UserAction>>
ClientCreatesOffer

Contract

ViewAndEdit : 
ViewAndEdit

<<UserAction>>
ForwardToCollege

Contract

Contract

<<UserAction>>
BrokerSubmits ContractContract

<<UserAction>>
ChooseNextBroker

Action

BrokerAction

<<SystemAction>>
SendBackToClient

Contract

Contract

<<UserAction>>
ModifyOfferState

Contract

Contract

<<SystemAction>>
CreateNewOffer

Contract

<<SystemAction>>
LoadContract

Contract

ContractRequest

<<SystemAction>>
SaveAsDraft

Contract

Contract

<<SystemAction>>
BindContract

Contract Contract

<<UserAction>>
BrokerDecides

Contract
Contract

<<UserAction>>
CancelOffer

Contract Contract

<<UserAction>>
ShowContract

Contract

Local Postcondition = 
contract.state=='pending'

Local Precondition = 
contract.state=='accepted' 
Local Postcondition = 
contract.state=='bound'

Local Postcondition = 
contract.state=='canceled' 
Local Precondition = 
contract.state=='bound'

Local Precondition = 
contract.state=='bound'

 [contract.state=='withdrawn']

 [contract.state=='declined'] [contract.state=='undecided']

 [contract.state=='rejected']

 [contract.exists==false]

 [brokerAction.action=='soveAsDraft']

 [brokerAction.action=='sendBack']

 [contract.state=='rejected']

 [contract.brokerDecision=='accepted']

 [contractRequest.contractId!='0']

 [contract.needReview=='false']

 [brokerAction.action=='forward']

 [contract.needReview=='true']

 [contractRequest.contractId=='0' && contractRequest.user=='Client']

 [contract.state=='undecided']

 [contract.exists=='true' && contract.state=='undecided']

 [contract.state=='accepted']

 [contractRequest.contractId=='0' && contractRequest.user=='Broker']

brokerAction=='decide'

 [contract.state=='accepted']

Figure 8.3.1: Excerpt of Process “Contract Diagram”

2) Formal Representation

If required for project specific needs, the Amabulo model that was derived automatically
from the UML model can be translated automatically into a Coloured Petri Net. The
generated CPN provides an abstract specification of the modeled behavior. It imple-
ments in particular the assurance of global domain states as well as the assurance of
modeled conditions. Due to the underlying formal structure, automatic, dynamic and
static analysis functions can be applied. For this purpose, the generated CPN can be
loaded directly into the industrial CPN analysis and simulation tool CPNTools without
any further effort. In CPNTools either yet existing analysis functions can be processed
our new functions can be defined.

3) Robustness at Code Level

If a concrete code generator implements all underlying concepts of the mapping rules
specified from Amabulo model into CPN as mapping rules from an Amabulo model
into a specific platform, such as J2EE, all robustness criteria as defined in Section 6.2
are implemented implicitly for each generated system. With the help of two model
examples the asserted robustness features at code level are illustrated as follows: Figure
8.3.1 contains an excerpt of the Contract Diagram view of the introduced example
model. Two system actions have to be executed sequentially: After BindContract the
function SendBoundMessage has to be processed. Because both functions are modeled as
SystemActions, the generated code artifacts contains stubs, which have to be manually
implemented (as described in Section 7.2).

Listing 8.1 shows the generated function bindContract() related to system action



CHAPTER 8. VALIDATION 206

Listing 8.1: Generated Integration Code of “Bind Contract” Action
1 private String bindContract() throws

SystemFunctionExcecutionException, ViolatedConditionException {

2
3 // get all required business objects

4 em.find(Contract.class, contract.getId());

5 contract.merge(contractEJB, contract);

6
7 // assure precondition

8 if (!(evaluateExpression("contract.state==’accepted’"))) {

9 throw new ViolatedConditionException("Violated precondition(

contract.state==’accepted’) in function bindContract");}

10
11 // EXECUTING SYSTEM FUNCTION: bindContract

12 bindContract.bindContract();

13
14 // assure postconditions

15 if (!(evaluateExpression("contract.state==’bound’"))) {

16 throw new ViolatedConditionException("Violated postcondition(

contract.state==’bound’) in function bindContract");}

17
18 // store all modified business objects

19 contract.merge(contract, contractEJB);

20 em.flush();

21 return findNextFunction("bindContract");

22 }

BindContract. This function is part of the generated control flow logic and must not
be modified manually after generation. The actual implementation of the system func-
tion is provided by a session bean referred as bindContract object that implements the
generated session bean interface, as described in Section 7.2.

The action BindContract requires a contract object from the persistency layer (LOC
4+5). At first, the modeled preconditions have to be assured. The state attribute of
contract has to be accepted. Otherwise a constraint violation is detected and a proper
exception has to be raised (LOC 8+9). Then an accepted offer will be handed over to
the manual implementation or integrated functionality in the session bean bindContract,
which modifies the contract state (LOC 12). Therefore, the data transfer object con-

tract is accessible through the session context of the application. After finishing the
implementation of the BindContract action, the business logic has to assure the mod-
eled postcondition. The contract state has now to be in the state bound. If it is not,
an exception will be raised (LOC 15+16). If the external implementation of the action



CHAPTER 8. VALIDATION 207

BindContract does not provide a bound contract as result, the control flow stops and
an exception will be raised. Moreover, to prevent inconsistencies in the set of business
objects, if violated conditions occur, the changes made on the Contract object are not
saved in the persistency layer. Only if the postcondition was kept, changes on the con-

tract object are propagated to the persistency layer because the contract was modeled
as input and output parameter (LOC 19+20).

As mentioned above, the actual modification of the contract object is done in a
data transfer object contract. Following the design of Section 7.2, this contract object
implements the domain state assurance logic for its attribute state as specified in the
state diagram (see Figure 4.2.6). The generated implementation of this domain state
assurance logic is shown in Listing 8.2, which implements the setState() method of Con-

tract : Depending on the current value of state, the new value of state is checked against
the modeled transitions. During the processing of BindContract, the state has to be
switched from accepted into bound. The domain state assurance for state accepted starts
in LOC 13. In LOC 15 the generated business logic determines bound as a valid successor
state of accepted. Only if the state chart contains a transition from the current state to
the requested new state, the assurance logic will not raise an exception. Otherwise the
control flow processing stops immediately and the raised exception provides information
about the reason of the stop.

In contrast to BindContract action, the second system function of Figure 8.3.1 Send-

BoundMessage uses a Contract object read-only, because it is modeled as input param-
eter only. Additionally, the SendBoundMessage can only be processed if the required
object is in state bound. The generated program code is shown in Listing 8.3. It as-
sures the specified precondition (LOC 6) and guarantees that the contract will never be
changed during this action. Even if the SendBoundMessage modifies the contract data
object, this modification will not be propagated to the persistency layer.

A further example is given in Figure 8.3.2. It consists of an excerpt of a process
view (at the top) and an excerpt of a domain state chart (at the bottom): The system
function ExpirationCheck is started with a Contract in state bound and should imple-
ment a logic that determines if a contract is yet expired or not. If a contract already
expired, the ExpirationCheck actions change the Contract data object and the changes
are propagated to the persistency layer. Now, if a developer implements a function or
reuses an external implementation that changes the state of the Contract into expired, an
exception will be raised at the time when any function tries to call the setState() method
(see Listing 8.2) of the contract’s data transfer object. The state attribute was refined



CHAPTER 8. VALIDATION 208

Listing 8.2: Generated Domain State Assurance Logic for Attribute “Contract.state”
1 public void setState(String state) throws IllegalArgumentException {

2 boolean isValid = false;
3 if (state.equals(this.state)) isValid = true;
4 else if (this.state.equals("")) {

5 }

6 else if ("canceled".equals(this.state)) {

7 }

8 else if ("bound".equals(this.state)) {

9 if ("canceled".equals(state)) isValid = true;
10 }

11 else if ("withdrawn".equals(this.state)) {

12 }

13 else if ("accepted".equals(this.state)) {

14 if ("withdrawn".equals(state)) isValid = true;
15 if ("bound".equals(state)) isValid = true;
16 }

17 else if ("pending".equals(this.state)) {

18 if ("undecided".equals(state)) isValid = true;
19 if ("accepted".equals(state)) isValid = true;
20 if ("declined".equals(state)) isValid = true;
21 }

22 else if ("rejected".equals(this.state)) {

23 }

24 else if ("declined".equals(this.state)) {

25 }

26 else if ("undecided".equals(this.state)) {

27 if ("rejected".equals(state)) isValid = true;
28 if ("pending".equals(state)) isValid = true;
29 }

30
31 if (isValid) this.state = state;

32 else throw new IllegalArgumentException("No valid value for

Contract.state. Current state: "+this.state+", Proposed new

state: "+state + ".");

33 }



CHAPTER 8. VALIDATION 209

Listing 8.3: Generated Integration Code of “Send Bound Message” Action
1 private String sendBoundMessage() throws

SystemFunctionExcecutionException, ViolatedConditionException {

2 em.find(Contract.class, contract.getId());

3 contract.merge(contractEJB, contract);

4
5 // assure precondition

6 if (!(evaluateExpression("contract.state==’bound’"))) { throw new
ViolatedConditionException("Violated precondition(contract.

state==’bound’) in function sendBoundMessage ");}

7
8 // EXECUTING SYSTEM FUNCTION: sendBoundMessage

9 sendBoundMessage.sendBoundMessage();

10
11 return findNextFunction("sendBoundMessage");

12 }

with a domain state chart, and this state chart allows only a transition from the state
bound into state canceled. A transition from bound into expired is not specified. If the
current state is bound and the new requested state is expired, the generated assurance
code discovers a domain state violation and stops the control flow.

As demonstrated above in this section, by the consistent use of an Amabulo in-
frastructure, reliable assertions on a system’s robustness are supported. Despite of the
integration of manually implemented functions and external functions into generated
business logic code, modeled global domain states and local conditions of functions are
always guaranteed automatically.

8.3.2 Support Program Understanding

If an updated model has to be transformed into an updated code repository, developers
need to know the concrete code artifacts that have to be integrated manually and in
which lines of code the manual additions have to be inserted. Assuming a huge model,
which results in a huge number of different program code files, it is a tedious task
to find out all relevant code fragments manually. As described in Section 7.1, not all
automatically updated code files need to be edited manually: some generated files require
modification, some files can be modified, but are not needed to be modified, and some
files must not be modified manually.

Without any tool support, a developer has to know details of code generator internals
and model changes that are relevant for business logic code generation. The set of



CHAPTER 8. VALIDATION 210

CHAPTER 8. VALIDATION 118

package ClassesData [   ]

-contractId : long
-broker : String
-brokerDecision : String
-needReview : Boolean
-valid : Boolean
-reviewerDecision : String
-masterDataIsValid : String
-uwDecision
-state : String

Contract

-contractId : long
-user : String

ContractRequest

-action : String

BrokerAction

-action : String

UwAction

Figure 8.6: Class Diagram

state machine Contract:state Contract:state[   ]

bound

declined

undecided

canceled

pending accepted

withdrawnrejected

Figure 8.7: Contract Domain States and their Transitions

Diagram Statistics Sumed up, the example model contains eight domain
states in one state diagram, four classes in one class diagram, 39 actions in four
activity diagrams including 14 decision nodes (where control flow decision have
to be made). The process is strucutred into sub-processes with maximum depth
= 2.

8.1.2 Sample Infrastructure
A sample infrastructure was set up as part of this thesis, which provides a
complete Amabulo infrastructure and could be (partial or full) reused in further
model-driven development projects. Table 8.1 provides an overview of the actual
implemented infrastructure, where reused existing tools and meta models are
marked with an asterisk (*).

ContractDiagramm ContractDiagrammactivity [   ]

ConditionConfirmation : 
ConditionConfirmation

ConditionSpecification : 
ConditionSpecification

<<UserAction>>
InputContractID

ContractRequest

<<UserAction>>
BrokerReviewerDecides

Contract

Contract

<<SystemAction>>
AssignBroker

Contract

Contract

<<SystemAction>>
ExpirationCheckContract

Contract

<<SystemAction>>
AssignUnderwriter

Contract Contract

<<UserAction>>
ClientCreatesOffer

Contract

ViewAndEdit : 
ViewAndEdit

<<UserAction>>
ForwardToCollege

Contract

Contract

<<UserAction>>
BrokerSubmits ContractContract

<<SystemAction>>
SendBackToClient

Contract

Contract

<<UserAction>>
ChooseNextBroker

Action

BrokerAction

<<UserAction>>
ModifyOfferState

Contract

Contract

<<SystemAction>>
CreateNewOffer

Contract

<<SystemAction>>
LoadContract

Contract

ContractRequest

<<SystemAction>>
BindContract

Contract Contract

<<SystemAction>>
SaveAsDraft

Contract

Contract

<<UserAction>>
ShowContract

Contract

<<UserAction>>
CancelOffer

Contract Contract

<<UserAction>>
BrokerDecides

Contract
Contract

Local Postcondition = 
contract.state=='pending'

Local Precondition = 
contract.state=='accepted' 
Local Postcondition = 
contract.state=='bound'

Local Precondition = 
contract.state=='bound'

Local Postcondition = 
offer.state=='canceled' 
Local Precondition = 
offer.state=='bound'

 [contract.state=='withdrawn']

 [contract.state=='declined'] [contract.state=='undecided']

 [contract.state=='rejected']

 [contract.exists==false]

 [brokerAction.action=='soveAsDraft']

 [brokerAction.action=='sendBack']

 [contract.state=='rejected']

 [contract.brokerDecision=='accepted']

 [contractRequest.contractId!='0']

 [contract.needReview=='false']

 [brokerAction.action=='forward']

 [contract.needReview=='true']

 [contractRequest.contractId=='0' && contractRequest.user=='Client']

 [contract.state=='undecided']

 [contract.exists=='true' && contract.state=='undecided']

 [contract.state=='accepted']

 [contractRequest.contractId=='0' && contractRequest.user=='Broker']

brokerAction=='decide'

 [contract.state=='accepted']

Figure 8.3.2: Example for Violated Domain States (Top: Excerpt of a Process View,
Bottom: Excerpt of a Domain State Chart)

Business
Logic (Java)

User Interface
(JSF)

Persistency
(Java)

Σ

Generated in Full 22 0 8 30
Simple Implementation 0 25 4 29

Stub 16 0 0 16
Σ 38 25 12 75

Table 8.4: Generated Artifacts from Contract Negotiation Model

generated code artifacts implementing the example model of Section 8.1.1 (Contract
Negotiation Process) contains 75 different files: 50 of them are Java source code files
and 25 files implement parts of the UI. In the worst case, developers have to inspect 75
different source code files manually. Table 8.4 shows an overview of different types of
generated artifacts: 30 files are generated in full, which must not be modified, 29 files
are simple implementations, which can be modified, and 16 files are stubs, which also
have to be modified. Even if the developer knows the super set of code artifacts that
may have to be modified, without any tool support 45 generated source code artifacts
have to be analyzed manually for possible modifications.

As part of our Amabulo infrastructure, a combination of a code comparison tool and
a specific code generator as introduced in Chapter 7 supports program understanding
tasks during the software maintenance process: The user interface of the code comparison
tool provides a detailed overview of code changes that are scheduled for automated code
generation. With the help of this tool, the developer can easily figure out all code



CHAPTER 8. VALIDATION 211

Files to Analyse % of Generated Files
No Knowledge about Code Generation Rules 75 100%
Knowledge about Code Generation Rules 45 60%
Using a Code Comparison Tool 3 4%

Table 8.5: Comparison of Manually Analyzed Code Artifacts

fragments that may have to be edited. Figure 8.3.3 shows a screenshot of the code
comparison tool, which provides code changes that are relevant for manual integration
tasks depending on the above discussed model modification (see Section 8.2): From the
set of generated files that are allowed to be edited by developers, one file is going to be
added (the implementation of system function “SendNotification”), one file is going to be
deleted (the implementation of the system function “SendValidationMessage”) and one
file is going to be changed (the persistency connection of the business object “Contract”).
These three files are definitely affected by the changed domain requirements and the
developers have to focus on these three files.

Table 8.5 provides an overview of the number of files that have to be analyzed
manually, depending on the developers knowledge on code generation rules. If there is
no knowledge about the applied code generation rules, 100 % of generated source code
files have to be considered. If a developer knows the code generation rules, the inspection
tasks can be reduced to 60 % of the generated files. However, in the applied scenario
the usage of a code comparison tool helps reduce the number of analyzed files to 4 % of
the set of generated code artifacts.

Furthermore, the set of actual added, deleted, or modified files is not constrained
to the files pointed out by the code comparison tool. As described in Section 7.1, sev-
eral files that contain critical parts of the code, for example, the implementation of the
control flow, are transparent to manual modification tasks. Considering object oriented
programming concepts at design time of the code generator (as discussed in Section
7.1.1), manually modified code fragments are separated clearly from parts that are gen-
erated in full. Moreover, each single possibly manually modified aspect is isolated in a
separate file. This isolation keeps manually modified files simple and avoids accidental
modification of critical parts of the system as well as complex code investigation actions.
The LOCs for manual integration are marked by the generator with //TODO directives,
so that they are easy to find. Hence, using a code comparison tool the time needed for
manual program understanding and analysis where to add modifications can be reduced,
because a complete list of all relating code artifacts is automatically processed.



CHAPTER 8. VALIDATION 212

Figure 8.3.3: Code Comparison Tool, Screenshot

8.3.3 Prevent Loss of Handwritten Code

Code artifacts that are generated as a simple implementation, for example, for user
interfaces or persistency connections, probably contain manual additions. Moreover,
code artifacts generated as stubs, such as the generator produce for system functions,
are usually complete rewritten for integration purposes. Hence, if the code generator
simply takes the input model as parameter and starts its generation process, manually
modified code artifacts are overwritten and get lost.

To prevent the loss of manually written program code, our sample code generator
does not delete or overwrite any manually modified code artifacts automatically. The
code comparison tool detects each file which is relevant for manual modification and
which has to be updated or to be deleted. Then, the developer has to select for each file
whether the generator should perform this update or not. The screenshot in Figure 8.3.3
contains two check-boxes: If the user checks the first one, a no longer needed implemen-
tation of a system function SentValidationMessage is deleted. If the second check-box
is checked, the generator overwrites the persistency connection for the business object
Contract due to the addition of the attribute conditions. As Table 8.4 shows, for the



CHAPTER 8. VALIDATION 213

implementation of the contract negotiation process 75 code artifacts are generated and
45 of them are protected by the code comparison tool against automatic modification.
These files would not be protected if the generator would render each code artifact as
modeled without any confirmation by a developer.

With the help of such a selective generator controller, the unwanted loss of manually
written code can be avoided and developers get sufficient control of the generation pro-
cess. If the developer chooses not to overwrite existing sources and the scheduled changes
affect structural aspects, such as the addition of attributes, compiler errors provide a
help to identify and fix updates manually.

8.3.4 Complete Implementation of Systems’ Requirements

For systems running as part of a complex application landscape it is essential to as-
sure that all specified domain requirements are implemented as specified. Even if the
requirements specification contains hundreds of pages and several large visual software
models, it has to be guaranteed that all of them are implemented. If some defined re-
quirements are not supported, it has to be clearly described which are concerned. The
automatic generation of program code for business logic connects a visual system spec-
ification based on the visual model with a domain specific model, which is the abstract
model. This abstract model is used to generate a system which automatically assures
that all specified domain requirements (meaning all elements of the visual model and
their relations) are implemented completely.

With our example infrastructure we provided a technical environment assuring that
all requirements as specified in visual business logic models are implemented. Since the
model is processed automatically, no feature or aspect of the business logic can be for-
gotten or misunderstood during the transformation from the visual model into program
code. At any time of the development process, the currently specified requirements are
supported completely.

8.3.5 Extensive Testing Process

After changed domain requirements are implemented, a test process has to be set up
and applied. On the one hand, by regression tests it has to be assured that the modi-
fied system supports all not-modified functions as part of the application landscape as
implemented before modification. On the other hand, modified and new parts have to
be tested if all domain requirements are implemented and if the new parts supports



CHAPTER 8. VALIDATION 214

non-functional requirements, such as robustness. Even on small changes, such as the
addition of a simple user function to a process, the complete system has to be tested.
Depending on the size of the maintained system and the number of connections to exter-
nal systems, the required test efforts may exceed the implementation effort concerning
in time and budget, which avoids a fast time-to-market even if only little changes were
made.

By using an Amabulo infrastructure, the quality manager is supported in identifying
the effects of changed requirements relating to yet existing and implemented require-
ments. Furthermore, due to the application of defined and automated transformation
rules from the business logic model into code artifacts, it can be guaranteed that gen-
erated parts implement the specified requirements. Besides, if the code generator was
implemented following the abstract specification (as provided in Section 6.4), also ro-
bustness requirements were implemented and need not to be tested.

If an Amabulo infrastructure for maintaining business logic is used, extensive testing
processes can be reduced significantly: The effects of changed requirements relating to
existing requirements can be inspected applying the model comparison tool (see Section
5.4). How these changes affect the underlying implementation is automatically processed
by the code comparison tool (see Section 7.3), which provides an detailed overview of
scheduled code changes to the quality manager. By the use of both tools, those parts of
the modified code artifacts that are relevant for a testing action can easily be identified.
Again, referring to Table 8.4 and Table 8.5, only three of 75 modified source code files
are actually modified if deploying the scheduled model changes are deployed. For this
reason, during system tests the focus can be put on the actual changed part of the
system.

Furthermore, the application of (yet tested) code generation rules produces code
artifacts, which implement specific parts of the business logic as previously specified.
Hence, testing actions do not need to cover all generated code artifacts and can be
reduced to manually integrated parts, such as connections to external systems. If the
implementation changed the domain requirements introduced in Section 8.1.3, only the
persistency integration of the business object Contract needs to be tested as well as the
newly added SendNotificationAction. All other changes apply to code that is generated
in full and do require an extensive testing process, assuming the code generator passed
its tests successfully in setup and integration phase. For this reason, a faster reaction
time for changed domain requirements can be supported by IT departments.



CHAPTER 8. VALIDATION 215

8.3.6 Maintainability - Prevent Loss of Structure

During reoccurring maintenance processes, there is a high risk that the original struc-
tural design of the system, which means the originally designed architecture, gets more
and more lost. Since maintenance tasks are typically focused on enhancements or bug
fixing actions, there is usually no time or knowledge left to maintain a clear architecture.
As a consequence, with each maintenance task, the system loses a bit more of its clear
structure and its maintainability, respectively. With each maintenance task, the main-
tenance efforts rise, because tasks such as impact analysis and program understanding
demands more an more efforts.

Using automated code generation as supported by an Amabulo infrastructure, the
business logic of information systems can be maintained as often as required, without any
side effect to its original structural design. Hence, the loss of structure can be avoided.
Each generated version of the system is based on the same generation rules, which
produces the same structure independently of the number of their application. Only
the contained artifacts are changing but not the rules of their composition. As long as
changed domain requirements can be expressed by the supported model, the mapping
rules (from model into program code) do not need to be changed. Furthermore, the
program understanding process is extensively supported by an Amabulo infrastructure
as described above so that if manual modification is needed, no complicated code analysis
tasks are required.

8.3.7 Maintainability - Inconsistent Documentation

Compared to the loss of structure, with each maintenance cycle the actual implemented
system and its documentation including the visual software model of the system diverge
continuously. There are usually more urgent tasks than updating the documentation of
a maintained system. Hence, after several maintenance processes, there is a substan-
tial lack of documentation of the current state of the system. This makes each further
maintenance task more complex. The time needed for impact analysis and code under-
standing increases, because the developer has to comprehend code details to determine
what the system actual does.

By using an Amabulo infrastructure, business logic code can be deducted directly
from the model, which reduces the risk of continuously growing inconsistency. The
software model and the corresponding business logic code are always kept consistent.
Compared to projects without applying a code generator for business logic, there is no



CHAPTER 8. VALIDATION 216

need for any manual maintenance of the system’s documentation. Hence, inconsistency
can be avoided by the use of models as input for code generation.

8.4 Improvements During Setup and Integration Phase

This section focus on improvements of an Amabulo infrastructure during setup and
integration phase. In contrast to development projects without automated model trans-
formation or code generation, a proper infrastructure needs to be set up depending on
actual project requirements for each model driven project. Such an infrastructure is
used to increase the degree of automation of a software project and consists of meta
models and rules for automated model processing. We called this initialization process
setup and integration phase as introduced in Section 3.2.1. Compared to further code
generating approaches we consider a clear separation of visual models and code gener-
ators, a reduced complexity of relevant meta models, a precisely defined semantics of
the Amabulo meta model, and the integration of existing model analysis tools, which
support developers when setting up the technical project infrastructure.

8.4.1 Clear Separation of Visual Models and Code Generators

After choosing the set of proper visual models that satisfies the project specific require-
ments on visual modeling, automated code generation rules have to be provided. Due
to the use of a domain specific model (Amabulo model) as an abstract model between
visual modeling languages and code generators, the mapping rules required for the inte-
gration of a visual model into an Amabulo infrastructure are only implemented against
the abstract model. Detailed knowledge about the target platform and the code gener-
ation rules is not needed. The additional Abstract Model Layer keeps the Visual Model
Layer completely independent from code generators: If the visual model or the code
generator changed or an additional visual model or code generator has to be integrated,
the code generator or the visual model layer will never be affected. There is no need to
implement complex code generation rules again, which keeps maintenance efforts of the
project infrastructure low.

8.4.2 Reduced Complexity of Meta Models

Meta models of complex multi-purpose modeling languages, such as UML, are difficult
to understand in detail, because each model element and each relation between model



CHAPTER 8. VALIDATION 217

elements carries its own semantics. With regard to the UML, more than 250 meta model
elements plus relations between them have to be understood. If a code generator has to
be implemented, developers have to investigate modeling language details considering
the business logic layer of the generated program code. Usually not all visual model
elements are relevant, and typically the actual set of model elements supported by the
code generator differs from the set of visual modeling elements. Hence, for each code
generator it has to be documented precisely which elements and relations are supported
and which modeling conventions are assumed.

With the definition of a simple meta model for business logic, our Amabulo infras-
tructure blueprint provides a clear interface between software model and code generator:
The developer only needs to understand the Amabulo meta model that contains logi-
cal information and provides a reduced view onto the visual model. Compared to the
250+ elements defined in UML Superstructure, only thirteen elements of the Amabulo
model definition and their relations have to be considered by the code generator, which
significantly reduces the complexity of the programming interface of the code genera-
tor. Besides, all model elements are relevant for code generation purposes for business
logic and no (undocumented) modeling conventions have to be taken into account if the
Amabulo model is applied.

8.4.3 Precisely Defined Semantics

Besides a significant reduced number of meta model elements of the abstract model, the
elements and their relations are precisely described (see Section 5.3), and their semantics
is clearly defined by a complete mapping into Coloured Petri Nets (see Section 6.4). If
a developer needs to know what elements of the meta model are defined and used for,
a precise description of structural dependencies between elements is completed by a
precise definition of their semantics in terms of CPN. Hence, there is no ambiguous
definition in the Amabulo meta model such as semantic variation points, which can be
found in the UML semantics definition. Furthermore, the mapping rules clearly describe
the robustness features of business logic at an abstract level, which helps developers
implementing a project specific code generator.

8.4.4 Reuse of Existing Analysis and Simulation Concepts and Tools

If project specific needs require automated model analysis functions or model simula-
tions, a proper formal modeling concept has to be chosen that is based on a well-known



CHAPTER 8. VALIDATION 218

theory and provides a proper set of evaluation functions. Therefore, an Amabulo in-
frastructure reuses Petri Nets theory and implements a transformation that transforms
each visual model via Abstract Model layer into an instance of CPN. The resulting CPN
contains only elements that are relevant for business logic. Due to this built-in transfor-
mation into CPN, which is actually a built-in mapping into a formal structure, at setup
and integration time developers need only to focus on the implementation of pure analy-
sis functions. The concrete target format is the interchange format of CPNTools, which
is a matured CPN analysis and simulation tool (see Section 6.5). Hence, automatically
generated CPNs can directly be imported without any further effort.

8.5 Summary

In this chapter, we have examined the improvements brought by an implementation
of an Amabulo infrastructure. With the experiences we have made with applying an
industrial scenario in the context of an example Amabulo infrastructure implementa-
tion, we have provided a qualitative evaluation of the improvements using an Amabulo
infrastructure. At first, we have introduced the industrial example scenario and a sam-
ple implementation of our Amabulo infrastructure blueprint. Then, we have examined
the improvements for the development and maintenance phase of model driven software
projects considering modeling tasks. Compared to further business logic modeling infras-
tructures concrete advantages of an Amabulo infrastructure are: the support of domain
state modeling, the explicit consideration of robustness features in the generated business
logic with regard to later code modification tasks, the tool supported impact analysis,
the reuse of matured modeling languages, and the opportunity to simulation a system
before code generation. A more detailed discussion of improvements and limitations of
our approach is given in Chapter 10.



Chapter 9

Related Work

In this chapter we discuss approaches related to this thesis. To determine if an approach
has to be considered as related, at first we introduce a set of criteria that is used to
identify projects similar to our work. Then we provide an overview of all actually
considered approaches in form of a table that comparing eight different criteria. Finally,
each of the considered related approaches is discussed in detail and similarities and
differences to our Amabulo infrastructure blueprint are pointed out.

9.1 Criteria Indicating Related Work

Since the focus of this work is to provide an infrastructure blueprint for model driven
development and maintenance purposes, relevant related works have to be considered
with regard to: visual modeling, model analysis, formal models, and model transforma-
tion including code generation and maintenance. To identify actually related approaches
from these fields, a set of subsequently described criteria is defined, which helps identify
relevant approaches related to this work.

Type of System Most published approaches concerning modeling and code genera-
tion either focus on information systems or reactive systems, such as automotive and
embedded systems. Information systems support complex industrial business processes.
Business entities, such as objects, files, activities, have to pass a specific process consist-
ing of several actions that are either processed automatically or manually. In contrast to
information systems that are supported by our approach, reactive or embedded systems
are used to control physical machines, such as water pumps, air conditioners, washing
machines or cars. They often address time-critical or live-critical or both domains, and

219



CHAPTER 9. RELATED WORK 220

their behavior heavily depends on technical sensors rather than on manual user input
via mouse and keyboard.

Context The context of an approach determines its abstract focus, which can be on
modeling, development, or maintenance. We use the term modeling to describe early
phases of a software process comprising requirement analysis and design. By software
development, we mean initial development processes, from analysis, design, and im-
plementation onto an initially deployed system. Software maintenance subsumes all
processed actions that are needed if a deployed and running system has to be main-
tained, for example, to support changed domain requirements. Our Amabulo approach
is designed to support modeling, development, and maintenance tasks.

Activities Activities are tasks that have to be performed during a software processes.
This criteria is used to classify approaches with regard to the supported activities. Vi-
sual modeling of analysis and design models are typical tasks in the early phases of
software development. Model analysis, verification, as well as simulation are activities
to assure quality parameters of a model, which is in particular relevant if the model is
automatically processed into program code and deployed into a live environment. Re-
engineering actions of deployed program code are part of maintenance activities. They
have to be supported if a running system has to be adapted due to changed domain
or technical requirements. With our approach we facilitate visual modeling tasks for
analysis and design, model verification and simulation through supporting an abstract
system representation, and code generation.

Application Tier A typical web-based information system implements a three-tier
architecture consisting of a persistency layer, application layer, and presentation layer.
Hence, different approaches can be compared with regard to the supported architectural
layers. An Amabulo infrastructure focuses on the application layer, which contains the
business logic implementation. User interface and persistency layers are also considered,
because the business logic has to support connections from and to other application
tiers.

Modeling Paradigms Modeling paradigms describe the underlying modeling con-
cepts that are used to express relevant aspects of systems: Structural modeling is used
to model static aspects, such as data item or structure of a system. State modeling is
a type of behavioral modeling specifying states and transitions of systems, objects, and



CHAPTER 9. RELATED WORK 221

attributes. Process models define actions to be performed during process execution and
relations between actions under consideration of required structural concepts that are
subsumed with the term control flow. Scenarios (or sequences) describe concrete paths
through a process, considering all related objects, concrete parameters, and decisions.
Comparing processes with scenarios, a process model specifies all possible paths, and a
scenario describes usually one single path in detail. With our Amabulo infrastructure
we support structural, state, and process modeling.

Visual Model A model driven development approach does not necessarily support
visual modeling tasks. Each structured description, even programming languages, can
be stated as a software model. For this reason, this criterion marks if an approach
supports a visual software model and, if it does, which modeling language is used. The
sample implementation of an Amabulo infrastructure supports visual modeling with
UML and provides the possibility to extend further visual modeling languages.

Domain Specific Model This criterion indicates whether an approach uses a special
purpose model or language or not. The domain specific model introduced in this work
is the Amabulo model at the Abstract Model Layer. Comparable to our approach,
applying a special purpose model is common, in particular if specific concepts should
be expressed visually by common known modeling languages. Nevertheless, a domain
specific model can provide its own visual notation or even only its abstract concepts.
If the semantics of the introduced elements and their relations are based on a formal
calculus, the special purpose model comes with a formal definition.

Target Platform The target platform determine the addressed technical environment
of a model driven approach if code generation is supported. Typical target platforms for
information systems are Java J2EE applications, BPEL, or special component models.
With our sample code generator, we also aim at J2EE applications. However, additional
Amabulo code generators are not restricted to a specific target platform.

9.2 Discussion of Related Work

The criteria introduced previously, in Section 9.1, are used to compare our Amabulo ap-
proach with related approaches. For this reason, Figure 9.2.1 provides an overview of the
related work discussed subsequently in this section. Each row of the table contains one of



CHAPTER 9. RELATED WORK 222

the above mentioned criteria, and each column contains a different approach. Compared
row by row, there is no further approach being consistent with this thesis in every aspect.
As derived from Figure 9.2.1, in each column only a subset of the introduced criteria
matches our approach. Hence, none of the related approaches discussed in the following
addresses a complete model driven development and maintenance process of business
logic for information systems. However, if all discussed related approaches are summed
up, the resulting set contains every aspect addressed by our Amabulo infrastructure.

Each approach listed in Figure 9.2.1 is examined following the same schema: after
pointing out the addressed problem and giving a short description of its context and
application, the main contribution is discussed, and similarities and differences related
to our approach are exposed.

In [EHK03], [EHK01], and [EKHG01], Engels et al. address consistency problems
in behavioral UML models consisting of different views. Therefore, a methodology and
a tool for semantic consistency analysis were introduced and applied within concurrent
object-oriented models in UML-RT. This approach addresses models of embedded sys-
tems and considers state charts as visual modeling paradigm. It is applied in the design
phase, where detailed models of a system exist, and its focus is on model analysis.
Further code generation is not considered explicitly.

In [EKHG01], a methodology is presented for detecting semantic inconsistencies of
UML models consisting of four different steps: During the first step (Identification of

Model Elements) those model elements are identified that may lead to semantic inconsis-
tencies. Engels et al. state that if the used modeling language is not formally described
and based on “intuitive overlap identification of submodels” [EKHG01] it obviously leads
to different outcomes. During the second step (Choice of a Semantic Domain), a seman-
tic domain has to be chosen that describes the modeled domain concepts precisely. UML
is a general purpose language and provides modeling concepts for domain-independent
aspects. A concrete semantic domain, such as traffic light control systems, “must sup-
port the description of those aspects of the model that lead to the identified consistency
problem and the description of consistency conditions” [EKHG01]. Furthermore, (au-
tomated) analysis techniques have to be supported by the semantic domain. In the
third step (Definition of Partial Mapping), all aspects of the UML model that may lead
to consistency problems have to be mapped into the semantic domain. This mapping
is crucial, because, if an important aspect is not part of the mapping, the consistency
analysis neglect possible problems. Otherwise, if irrelevant concepts are part of the
semantic domain, the analysis may get too complex. The detailed mapping is pre-



CHAPTER 9. RELATED WORK 223

!
"
"
#$
%&
'
(

!
)
%*
+
,$
(

-
.
/0
,1
(0
2(
%,
3(

4
$'
%.
(0
23
(%
,3(

5
$.
#%
6
(0
2(
%,
3(

7
$#
6
*
%#
(0
2(
%,
3(

5
$0
'
,0
#(
02
(%
,3(

8&
'
%2
29
$:

19
;(

%.
6
(4
<
,,
0#
(

=,
0+
#0
;(
02
(

%,
3(

80
;*
$,
6
(0
2(
%,
3(

>
'
?2
0(
02
(%
,3(

@+
#%
&9
(0
2(
%,
3(

5
0#
0.
(0
2(
%,
3(

(
!

!
!

!
!

!
!

!
!

!
!

!
A
;"
0(
$B
(

8;
12
0)

(
"#
$%
&'
()
*%
#!

+,
-)
.'

-!
/
.(
0)
*1
.!
!

+,
-)
.'

-!
23
4)
%'

%)
*1
.5
!

6
'
7.
88
.8
9!

"#
$%
&'
()
*%
#!

+,
-)
.'

-!
/
.(
0)
*1
.!

+,
-)
.'

-!
26
'
7.
88
.8
9!

"#
$%
&'
()
*%
#!

+,
-)
.'

-!
"#
$%
&'
()
*%
#!

+,
-)
.'

-!
/
.(
0)
*1
.!

+,
-)
.'

-!
23
4)
%'

%)
*1
.5
!

6
'
7.
88
.8
9!

"#
$%
&'
()
*%
#!

+,
-)
.'

-!
/
.(
0)
*1
.!

+,
-)
.'

-!
23
4)
%'

%)
*1
.5
!

6
'
7.
88
.8
9!

"#
$%
&'
()
*%
#!

+,
-)
.'

!::
;!

3
4)
%#
%'

*0
!

+,
-)
.'

-!

"#
$%
&'
()
*%
#!

+,
-)
.'

-!
"#
$%
&'
()
*%
#!

+,
-)
.'

-!

C$
.
20
D2
(

+<
:

=
.1
.>
%?
'
.#
)5!
!

+<
:

@
(*
#)
.#
(#
0.
!

+<
:

=
.1
.>
%?
'
.#
)!

+<
:

=
.1
.>
%?
'
.#
)!

+<
:@
%8
.>
*#
A!

+<
:@
*A
&(
)*
%#
!

+<
:

=
.1
.>
%?
'
.#
)!

+<
:

=
.1
.>
%?
'
.#
)!B
!

+<
:@
*A
&(
)*
%#
!B!

+<
:

@
(*
#)
.#
(#
0.
!

+<
:

@
*A
&(
)*
%#
!

+<
:

=
.1
.>
%?
'
.#
)!

+<
:

=
.1
.>
%?
'
.#
)!B
!

+<
:

@
(*
#)
.#
(#
0.
!

+<
:

=
.1
.>
%?
'
.#
)!

+<
:

=
.1
.>
%?
'
.#
)5!
!

+<
:

@
(*
#)
.#
(#
0.
!

!
&2
?E
?2
?0
1(

3
#(
>,
-*
-5
!!

=
.-
*A
#5
!

C
.&
*$
*0
()
*%
#D
!

+*
'
4>
()
*%
#5
!

E
%8
.:

F
.#
.&
()
*%
#
!

=
.-
*A
#5
!

C
.&
*$
*0
()
*%
#D
!

+*
'
4>
()
*%
#5
!

!

=
.-
*A
#5
!

/
4#
)*
'
.!

@
%8
.>
5!

+*
'
4>
()
*%
#!

3
#(
>,
-*
-!
B!

=
.-
*A
#!
B!

C
.&
*$
*0
()
*%
#G
!

C
(>
*8
()
*%
#!

E
%8
.:

F
.#
.&
()
*%
#!
B!

/
.:
6
#A
*#
..
&*
#A
!

3
#(
>,
-*
-!
B!

=
.-
*A
#!
B!E
%8
.:

F
.#
.&
()
*%
#
!

=
.-
*A
#!
B!

6
H.
04
)*
%#
!B!

E
%8
.:

F
.#
.&
()
*%
#!
B!

/
.:
6
#A
*#
..
&*
#A
!

C
.&
*$
*0
()
*%
#G
!

+*
'
4>
()
*%
#!

=
.-
*A
#!
B!E
%8
.:

F
.#
.&
()
*%
#!
B!

C
.&
*$
*0
()
*%
#G
!

C
(>
*8
()
*%
#!
B!

/
.:
6
#A
*#
..
&*
#A
!

3
#(
>,
-*
-!
B!

C
.&
*$
*0
()
*%
#G
!

C
(>
*8
()
*%
#!

3
#(
>,
-*
-5
!

=
.-
*A
#5
!

C
.&
*$
*0
()
*%
#D
!

+*
'
4>
()
*%
#5
!

E
%8
.:

F
.#
.&
()
*%
#
!

!
"
"
,?
&%
2?
$.
(

A
?0
#(

3
??
>*0
()
*%
#!

I%
A*
05
!

J
4-
*#
.-
-!
I%
A*
0!

3
??
>*0
()
*%
#!

I%
A*
0!

K
"!B
!

3
??
>*0
()
*%
#!

I%
A*
0!

3
??
>*0
()
*%
#!

I%
A*
0!

L
.&
-*
-)
.#
0,
!

3
??
>*0
()
*%
#!

I%
A*
0!

3
??
>*0
()
*%
#!

I%
A*
0!

K
"!B
!

3
??
>*0
()
*%
#!

I%
A*
0!
B!

L
.&
-*
-)
.#
0,
!

K
"!B
!

3
??
>*0
()
*%
#!

I%
A*
0!

@
*8
8>
.M
(&
.!
B!

3
??
>*0
()
*%
#!

+)
&4
0)
4&
.!

!

3
??
>*0
()
*%
#!

I%
A*
0!

K
-.
&!
"#
).
&$
(0
.!

2*
#0
>!E
%#
)&
%>
!

N>
%M

95
!!

L
.&
-*
-)
.#
0,
!

4
$6
0,
?.
/(

F
%#
%6
?/
)
1(

+)
()
.5
!!

L
&%
0.
--
5!!

+)
&4
0)
4&
(>
5!

!2
L
.)
&*
O
.)
9!

+)
()
.!
B!

+)
&4
0)
4&
(>
!

+)
()
.!

+)
()
.!
B!

+0
.#
(&
*%
G+
.P
4

.#
0.
-!
B!

+)
&4
0)
4&
(>
!

+)
&4
0)
4&
(>
!

L
&%
0.
--
!

2E
%#
)&
%>
!

N>
%M

9!
B!

+)
&4
0)
4&
(>
!

2=
()
(!
N>
%M

9!

+)
()
.!
B!+
0.
#(
&*
%!
!

B!+
)&
40
)4
&(
>!

+)
&4
0)
4&
(>
!

+)
()
.!
B!

+0
.#
(&
*%
!

+)
&4
0)
4&
(>
!

L
&%
0.
--
!B!

+)
&4
0)
4&
(>
!

L
&%
0.
--
5!!

+)
&4
0)
4&
(>
!

G
?1
+
%,
(4
$6
0,
(

K
@
I!
!

2E
L
O
9!

K
@
I!

K
@
I!

2(
8(
?)
.8
9!

K
@
I!

K
@
I!

"J
@
!

<
.7
-?
Q.
&.
!

J
4-
*#
.-
!

@
%8
.>
.&
!

K
@
I!

K
@
I!

@
+E
!B!

+)
()
.0
Q(
&)
-!

"#
8*
1*
84
(>
!=
+I
!
K
@
I!
23
E
=
-!

(#
8!
R
7S
.0
)!

=
*(
A&
('

-!
$%
&!

E
%#
8*
)*
%#
-9
!

K
@
I!

H
$)

%?
.
(

8"
0&
?B
?&
(

4
$6
0,
(

T
.-
!!

23
'
(7
4>
%!

'
%8
.>
9!

T
.-
!2
E
+L
!

2L
&%
0.
--
!

3
>A
.7
&(
5!

#.
.8
.8
!$%
&!

N%
&'
(>
*U
()
*%
#

9!

T
.-
!!

2N
>.
H!
L
&%
0.
--
!

@
%8
.>
9!

T
.-
!!

2F
%(
>!'

%8
.>
9!

O
%!

T
.-
!

T
.-
!!

23
7-
)&
(0
)!@

.)
(!

@
%8
.>
9!

T
.-
!!

2L
*1
%)
!@
%8
.>
5!

I.
A(
0,
!3
??
!

@
%8
.>
9!

T
.-
!2
3
8%
&(
9!

T
.-
!2
VW
6
6
@
I9
!

O
%!

T
.-
!

A
%#
/0
2(

F
,%
2B
$#
)
(

VW
6
6
!!

2D
!%
)Q
.&
-9
!

#%
#.
!2
%#
>,
!

'
%8
.>
*#
A9
!

N>
.H
N>
%M

:!
6
#A
*#
.!

6
'
7.
88
.8
!

R
&(
0>
.X
*!

J
L
6
IG
<
=
+I
5!

K
@
I!
C
*&
)4
(>
!

@
(0
Q*
#.
!2
K
C
@
9!

VW
6
6
!B!

@
(*
#$
&(
'
.!

6
'
7.
88
.8
!

VW
6
6
!B!

"#
8*
1*
84
(>
!

@
*8
8>
.M
(&
.!

$%
&!
3
4)
%#
%'

*0
!

E
%'

?4
)*
#A
!

*#
0>
Y!Z
%+
!

/
.P
4*
&.
'
.#
)-
!

#%
#.
!2
%#
>,
!

'
%8
.>
>*#
A9
!

V(
1(
!<
.7
!

3
??
>*0
()
*%
#-
!

! ! ! ! !
"
"
$#
%&
'
(

!
)
%*
+
,$
(

5
0#
0.
IJ
K
K
L
:

M
(

N
K
O
J
O
N
(

P-
.
/0
,1
Q(

4
$'
%.
IJ
K
K
J

9
&(

80
?B
0#
2I
J
K
K
N

9
D(

9
$.
#%
6
J
K
K
R

J
)
%"
(

7
$#
6
*
%#
IJ
K
K

N
B/
(

8&
'
%2
29
$:

19
;J
K
K
S
%(

=,
0+
#0
;I
J
K
K
R

6
"
(

8"
?0
1I
J
K
K
T
,U
(

4
0?
0#
IJ
K
K
L
"

S
N
O
(

>
'
?2
0I
J
K
K
T

)
0(

@+
#%
&9
IJ
K
K
T
D

2(
5
$0
'
,0
#I
J
K
K

L
"
S
N
N
(

(
!

!
!

!
!

!
!

!
!

!
!

!
!

!
A
;"
0(
$B
(

8;
12
0)

(
"#
$%
&'
()
*%
#!

+,
-)
.'

-!
"#
$%
&'
()
*%
#!

+,
-)
.'

-!
/
.(
0)
*1
.!

23
4)
%'

%)
*1
.5
!

6
'
7.
88
.8
9!

"#
$%
&'
()
*%
#!

+,
-)
.'

!
"#
$%
&'
()
*%
#!

+,
-)
.'

!
/
.(
0)
*1
.!

26
'
7.
88
.8
9!

"#
$%
&'
()
*%
#!

+,
-)
.'

!
/
.(
0)
*1
.!

23
4)
%'

%)
*1
.5
!

6
'
7.
88
.8
9!

"#
$%
&'
()
*%
#!

+,
-)
.'

!
"#
$%
&'
()
*%
#!

+,
-)
.'

!B!
/
.(
0)
*1
.!

23
4)
%'

%)
*1
.5
!

6
'
7.
88
.8
9!

/
.(
0)
*1
.!

23
4)
%'

%)
*1
.5
!

6
'
7.
88
.8
9!

"#
$%
&'
()
*%
#!

+,
-)
.'

!::
;!

3
4)
%#
%'

*0
!

+,
-)
.'

-!

"#
$%
&'
()
*%
#!

+,
-)
.'

!
"#
$%
&'
()
*%
#!

+,
-)
.'

!

!
&2
?E
?2
?0
1(

3
#(
>,
-*
-5
!!

=
.-
*A
#5
!

3
#(
>,
-*
-5
!

=
.-
*A
#5
!

=
.-
*A
#5
!

C
.&
*$
*0
()
*%
#D
+

=
.-
*A
#5
!

/
4#
)*
'
.!

=
.-
*A
#!
B!E
%8
.:

F
.#
.&
()
*%
#
!

3
#(
>,
-*
-!
B!

=
.-
*A
#!
B!

E
%8
.:

F
.#
.&
()
*%
#!
B!

=
.-
*A
#!
B!

6
H.
04
)*
%#
!B!

E
%8
.:

F
.#
.&
()
*%
#!
B!

=
.-
*A
#!
B!E
%8
.:

F
.#
.&
()
*%
#!
B!

C
.&
*$
*0
()
*%
#G
!

+*
'
4>
()
*%
#!

=
.-
*A
#!
B!E
%8
.:

F
.#
.&
()
*%
#!
B!

3
#(
>,
-*
-!
B!

C
.&
*$
*0
()
*%
#G
C

3
#(
>,
-*
-!
B!

=
.-
*A
#!
B!E
%8
.:

Figure 9.2.1: Related Work Overview



CHAPTER 9. RELATED WORK 224

sented in [EHK01] and technical details of the required tool chain called “Workbench”
are published in [EHK03]. As fourth step (Specification of Consistency Conditions),
the consistency conditions have to be formulated in terms of the semantic domain lan-
guage. This is followed by step five (Analysis of Consistency Conditions) in which UML
models that were previously mapped into the semantic domain are now analyzed using
techniques of the semantic domain.

Although this methodology was originally presented for embedded systems, we partly
followed Engels et al. in supporting model analysis for information system models. We
also provide a non-formal UML view (see Chapter 4) as visual model. In contrast
to Engels et al., we consider not only state modeling but also process modeling and
structural modeling as relevant modeling concepts with regard to model analysis.

As a further difference, our semantic domain, the abstract model of Chapter 5, is
a model whose elements are not originally formally described. The formal description
is realized as a mapping into an abstract system (see Chapter 6) which actually is
a Coloured Petri Net. This abstract system fulfils all criteria of a semantic domain
as proposed by Engels et.al. Hence, our semantic domain is technically based on two
models. The mapping from UML view into the abstract model is a partial mapping, and
the mapping from the abstract model into the abstract system is a complete mapping
into a formal calculus. The specification of consistency conditions as well as the analysis
are done in the abstract system layer, using standard analysis and simulation tools.
This holds the advantage that not only semantic inconsistencies can be detected but
also semantic modeling errors.

Summed up, considering model analysis purposes we reused the main concepts as
proposed by Engels et al. and applied the methodology in the context of behavioral
models for information systems. By contrast, we support different modeling paradigms
in our visual model and use Coloured Petri Nets as underlying formalism, which supports
the integration of structural and behavioral aspects. Furthermore, the mapping into our
semantic domain is done in two steps: abstract model and abstract system. Moreover,
we focus on supporting a complete model driven development process from analysis until
code generation, whereas model analysis is only one part of the whole process.

In [MCS02], Mohan et al. presents “a state machine based work flow system (FlexFlow)
which formally describes internet applications using statecharts” implementing an engine
that uses these descriptions to control the execution of web applications. The authors
state that their approach supports different versions of business processes in the same
e-business (information) system for several industries and organizations. This approach



CHAPTER 9. RELATED WORK 225

addresses application logic of information systems considering the logical connection to
the user interface layer and using state charts as visual modeling paradigm. The whole
live cycle from design until maintenance of what they call business processes is sup-
ported, which includes an adapted UML as visual model and an engine for automatic
execution of defined business processes as well as a simulation component.

The contribution of Mohan et al. comprises a complete project infrastructure (tool
chain), from initial modeling until execution. A visual modeling tool is used for mod-
eling purposes, where business processes are specified in state diagrams reflecting user
navigation paths at a high level of abstraction. An export function of the modeling
tool provides an XML representation of the business process containing all information
needed by the FlexFlow engine to deploy and run the processes. Furthermore, the vi-
sual modeling tool is used to maintain existing process definitions and manage different
versions of them. Being supported by a simulation component, modelers and users can
explore the effects of changed models.

Comparable to Mohan et al., our approach reuses existing modeling tools and com-
mon known modeling concepts, and we also intend to support the whole live cycle from
analysis until maintenance. However, Mohan et al. only support the state modeling
paradigm for business process modeling. As a further difference, we do not only focus
on navigation paths for user interfaces, which actually is the “business process model”
of Mohan et al. Besides, the focus of Mohen et.al. is not on supporting a model driven
development process in general. Their tool chain addresses a proprietary execution
engine which cannot easily be replaced by another implementation. Furthermore, the
integration of external services and automatically processed functions is not supported.

Summed up, our approach shares the objective as Mohen et al. does: Enable fast sup-
port of changed domain requirements considering the application logic (business logic)
and provide a project infrastructure supporting visual modeling, simulation, and exe-
cution of industrial business processes. But as a difference to Mohen et al., our visual
model is used to cover all required concepts as needed to generate business logic artifacts
including user and system functions and not only abstract navigation paths through user
interface artifacts. A further difference is that Mohen et al. only support a proprietary
execution engine, where our approach supports code generators in general and provides
an example code generator for enterprise J2EE applications.

Konrad et al. introduced i²MAP [KGC07], an iterative modeling and analysis pro-
cess for embedded systems, where high-level requirements are captured by a goal model,
and structural as well as behavioral information is modeled using UML. After every



CHAPTER 9. RELATED WORK 226

iteration step, both models are analyzed formally for behavioral consistency. With this
approach, Konrad et al. aim to prevent the transition of modeling errors into embed-
ded systems code that is possibly generated automatically. This approach addresses
behavior modeling and model verification at analysis and design level in the context of
embedded systems. Supported behavioral modeling concepts are UML models for state
and scenario modeling, which are completed by a so-called goal model. Code generation
tasks are not considered. This approach focuses on models only.

Konrad et al. support an iterative modeling process that consists of three steps
per iteration: 1) augment the goal model with high-level requirements, and 2) augment
the corresponding UML model with structural aspects in class diagrams and behavioral
aspects in state diagrams and sequence diagrams so that all aspects the new goal of step
1 are covered. In step 3) the goal model is formalized, and the UML model is validated
for satisfying the goals.

Even if Konrad et al. address a different domain than our approach does (embedded
systems vs. information systems), they implement an abstract concept that is com-
parable to our approach: A high level model, as the goal model is, is used to capture
requirements on the analysis level without modeling or implementation details. From an
abstract point of view this approach is comparable to our approach: We propose the use
of domain-state diagrams to capture domain states and their transitions without consid-
ering details. Implementation details are modeled in the process view. Then, an analysis
at an abstract system level is used to assure that all domain state transitions are imple-
mented as specified. Furthermore, the code generator as presented in this thesis assures
that any state transition violation is detected and caught automatically. In contrast to
our approach, Konrad et al. specify functional and non-functional requirements in their
goal model, and they support modeling patterns for specific scenarios used in embedded
systems environments. They focus only on modeling and model analysis tasks. Further
actions, such as code generation or maintenance, are not considered.

Summed up, comparable to our approach, the i²MAP approach supports modeling
and model analysis with abstract models, which are more closer to real world, and
detailed models implementing the abstract modeled requirements. Both models are
checked for consistency. Comparable to our approach, i²MAP provides also a suitable
transformation and analysis infrastructure. By contrast to i²MAP, we also consider
code generation as integral task of a model driven development process. Konrad et at.
support model analysis for embedded systems models only. Nevertheless, they enable
the usage of advanced modeling techniques, such as non-functional requirements or a



CHAPTER 9. RELATED WORK 227

pattern catalogue for embedded systems patterns.

In [BDH+05], Bordbar et al. addressed robust system maintenance for data-centric
applications. They focused on maintenance issues such as the reorganization of database
schemes considering already stored data sets. This approach addresses software devel-
opment and maintenance processes for information systems. Bordbar et al. focus only
on the persistency layer. Integration into or aspects of business logic are not considered.
Hence, the supported modeling concepts only contain structural modeling concepts, such
as annotated UML class diagram. A domain specific model is not used explicitly. The
targeted platform where model changes have to be propagated is the Oracle9i database
system.

The contribution of Bordbar et al. is a model-driven project infrastructure, which
uses annotated UML models exported by the industrial modeling tool Together [Bor] and
performs automatically all required database updates. Therefore, the modeling tool was
extended to generate serialized Java objects containing the required model information,
which can be understood by the provided infrastructure components upgrader generator
and generic database adaptor. The database adaptor inspects the model information
and generates necessary SQL queries. The upgrader generator takes the old model,
the new model, and auxiliary properties and generates program code, which can be
executed to perform the physical upgrade process. The upgrade process comprises three
steps: (1) database cloning, where a clone of the old database is produced; (2) schema
evolution, the clone is changed so that it implements the new model schema; and (3) data
migration, the contained data has to be migrated into the new schema. This approach
was successfully deployed in an countrywide radiation measurement project in Germany.

Summed up, Bordbar et al. present a model-driven approach for supporting mainte-
nance tasks of the persistency layer for information systems. They provided a technical
infrastructure consisting of an extended industrial modeling tool, a specific export format
and software components that automatically generates program code for maintenance
and migration purposes of database schemes and contained data sets. Comparable to
our approach, Bordbar et al. explicitly consider maintenance issues by providing a
project infrastructure consisting of a visual software model and its automated process-
ing. As an important difference to Amabulo, only aspects of the persistency layer are
focused, without any consideration of business logic or integration purposes of the per-
sistency layer and business logic. Furthermore, only structural modeling concepts are
supported, whereas our approach supports process and state modeling concepts together
with structural modeling. Additionally, even if existing productive database schemes and



CHAPTER 9. RELATED WORK 228

data sets are changed, impact analysis of those changes and model analysis tasks are
not supported.

Koehler et al. introduce their work in [KHK+08], which addresses generally all phases
of a software process, from analysis until a running system. They call their approach
Business-Driven Development (BDD) and target information systems as part of a service
oriented architecture (SOA).

The Business-Driven Development approach considers all phases of a development
process of information systems, from analysis and design until code generation. Being
focused on application logic, process modeling and structural modeling concepts are
supported. The actual visual model is provided by the IBM Websphere Business Modeler
tool and the target platform for generated code artifacts is BPEL/WDSL.

The main objective of Koehler et al. is to improve software development in a way
that business goals can be realized directly through well-designed business processes.
Therefore, business process models are transformed and refined until they can be sup-
ported by executable services as part of a consistent service oriented architecture. At
visual modeling level, the processes are linked by domain states and business objects.
The developed methodology proposes to take input of domain experts as well as of
software architects into account.

Summed up, the main motivation and ideas from Koehler et al. are relatively close
to our work. Both focus on a close IT support of business processes in the context of
information systems and consider the whole development process, from early analysis
phases until running computer systems. However, the main differences are the sup-
ported underlying technical assumptions and the provided tools. Koehler et al. focus
on business processes and apply visual business process models, which are transformed
into executable business process languages as part of a consistent service-oriented envi-
ronment. By contrast we support modeling and generating business logic that does not
necessarily depend on a service-oriented application landscape. Even if Koehler et al.
do not support UML integration, the applied modeling concepts (processes, states, and
structure) are the same modeling concepts we support in our Amabulo model.

In [SM04] and [SM05], Schattkowsky and Müller presented a model-driven develop-
ment process for embedded systems. They developed a virtual machine for UML (UVM)
that executes UML models directly. Their approach addresses the design and execution
of UML models for embedded systems in the context of development and maintenance.
With the use of structural diagrams (UML class diagrams) and behavioral diagrams
(UML state and sequence diagrams), a behavioral model of an embedded system can be



CHAPTER 9. RELATED WORK 229

executed directly by a virtual machine without extra code generation.
Schattkowsky and Müller tailored the UML 2.0 specification to their specific needs

for modeling the application logic of embedded systems. They reuse a small subset of
elements of class diagrams, state machines and sequence diagrams. All three modeling
concepts are part of their abstract meta model, which defines specific relations and
semantics as needed to execute UML models directly. The Virtual Machine for UML
(UVM) provides a virtual computing environment for UML models that are based on an
abstract meta model and executes UML models directly without extra code generation.
For this purpose, the UML model is mapped into executable state-oriented binary models
and embedded byte code. State diagrams are translated on equivalent binary encoding
and sequence diagrams are mapped to equivalent executable UVM byte code.

Comparable to our approach, the UML 2.0 was tailored to relevant notation ele-
ments as used for modeling executable application logic only. Schattkowsky and Müller
also support structural and behavioral modeling concepts, but as a difference to our
approach, they support sequence and state diagrams as behavioral diagrams, which are
the commonly supported types of diagrams in context of embedded systems. Process
modeling and distinctions between manually executed and automated actions are not
considered. As an additional difference to our approach, no special tool or concept for
supporting maintenance tasks are supported by Schattkowsky and Müller. Furthermore,
they aim at the targeted direct execution of the model and do not consider code genera-
tion. On the one hand, this prevents manual integration tasks with legacy or otherwise
generated code. The other hand, the software model must contain all information that
is required for its execution.

In [FBB+07], Fleurey et al. developed a model-driven approach for the moderniza-
tion and migration of information systems. Therefore, this approach supports the whole
process from processing the old code bases into an abstract model until the generation
of the code of the target (migrated) platform. Fleurey et al. support code re-engineering
and code generation in the context of software migration projects for information sys-
tems, such as migrating from CORBA into J2EE platform. A specific Model-In-Action
tool suite (MIA) was developed, which provides a technical infrastructure for model
transformation and code generation tasks as needed. By a tool chain consisting of
models and transformations, program code of the old platform is read and transformed
through several steps using several (abstract and visual) models into program code of
the target platform. Visual modeling at analysis and design level is not supported. This
approach was successfully applied in several industrial projects.



CHAPTER 9. RELATED WORK 230

A process as well as a tool suite (MIA) were presented by Fleurey et al. in [FBB+07].
The presented model-driven migration process consists of four steps: In step (1) the code
of the legacy application is parsed into an abstract syntax tree. Then, it is processed by
an automated transformation process into a model conforming to the legacy language
meta model. In step (2), the code model is transformed into a platform independent
model, which provides an abstract view (ANT model) onto the legacy systems. It
comprises static data structures, actions and algorithms, graphical user interfaces, and
the application navigation model. Step (3) transforms the ANT model into an UML
model describing platform specific information of the target application. Finally, in step
(4) program code of the new target platform is generated. Beside the migration process,
Fleurey et al. also provide a tool suite (MIA), consisting of tools and concepts for project
specific adaptions. An important requirement of MIA was the easy adaptability, because
model transformators and code generators usually have to be modified for each project.
Therefore, the tool suite was composed of two main products, a tool for model-to-model
transformations and a tool for code generation. Both consist of three components: a
core engine, a development environment, as used to design the transformations and
generators, and a user environment to apply transformations and code generations that
can be used as plug-in in IDEs.

Comparable to our approach, in [FBB+07] Fleurey et al. presented a project infras-
tructure in form of a tool suite and a process to support a model-driven software process
in the context of information systems. However, Fleurey et al. strongly focus on code
migration projects, where running systems have to be migrated into another platform,
for example, from CORBA into J2EE. Therefore, several different models and model
processing tasks are defined as part of the process. Our proposed project infrastructure
also comprises different models and model processing tasks, but instead of code migra-
tion, we aim at (changed) domain requirements related the business logic. Similar to
our approach, the tool suite of Fleurey et al. provides concepts and techniques to help
developers during the setup and integration phase of a migration project. Furthermore,
we follow the argumentation of Fleurey et al. that an important requirement of the
proposed infrastructure is its easy adaptability to project specific needs, as program
conventions, platform specifications, software architecture, because each project usually
comes with its specific demands.

In [SMG06], Seybold et al. presented an approach for a simulation-based, iterative
process for the modeling and refinement of requirement models of embedded systems.
This approach is situated in the context of the analysis phase of a software development



CHAPTER 9. RELATED WORK 231

process for embedded systems. Supported modeling paradigms used to gather the set
of requirements are state charts and scenarios. After mapping the model into a domain
specific model (Adora), an interactive simulation environment can execute the model.

By using an interactive simulation interface, Seybold et al. enable the simulation
of incomplete system models by requesting user input when the simulation environ-
ment reaches a state where no further behavior was defined, yet. Compared to our
approach, Seybold et al. address iterative early phases in software development pro-
cesses in which system requirements can be modeled using different types of behavioral
modeling concepts for application logic, which were integrated into a domain specific
language (Adora). Furthermore, they provide a simulation environment, which can exe-
cute not yet finished models. In contrast to our work, Seybold et al. focus on embedded
systems and consider only requirement engineering phases. Process modeling concepts,
as usually needed for information systems development are not supported as well as
further tasks, such as code generation or maintenance.

In [WSG08], White et al. provide an approach for the modeling, the simulation, and
the generation of parts of autonomic J2EE applications. In the context of the design and
code generation of information systems, White et al. provide a tool suite for modeling
structural aspects of a J2EE application including quality of service parameters, using
the domain specific modeling language J2EEML. Beside automatic code generation of an
individual middleware for autonomic computing, White et al. also provide a simulation
environment.

The approach of White et al. introduces a tool suite (J3) that supports modeling,
simulating and generating code that enables EJB applications to self-manage and main-
tain their quality of service (QoS) assertions. The J3 tool suite contains (1) J2EEML, a
modeling language for modeling structural aspects of J2EE applications, such as EJBs
and their interfaces and relations, together with specific QoS requirements and asser-
tions. J3 further contains (2) Jadapts, a code generator producing J2EE code artifacts
that meet the modeled requirements, and it contains (3) JFense, an autonomic com-
puting framework providing components implementing logic for monitoring, analysis,
planning, and execution which are needed to execute the generated components. Fi-
nally, (4) a simulation environment is also part of the tool suite and used to reduce the
complexity of validating assumptions about autonomic behavior.

From an abstract view, in [WSG08] White et al. address the same problem as
our approach does: Providing a technical infrastructure to support the modeling and
code generation of parts of information systems as well as supporting quality assurance



CHAPTER 9. RELATED WORK 232

through a simulation environment. This includes the support of manual implementation
tasks that are needed for integration purposes after code generation. Nevertheless, White
et al. focus only on structural aspects in combination with QoS requirements. Aspects
of business logic are not considered. Furthermore, with our Amabulo infrastructure, we
support visual modeling reusing and tailoring existing modeling languages. But we hide
our domain specific model in an Abstract Model Layer, whereas White et al. developed
a domain specific visual model and a modeling tool for their needs.

In [JLMT08], Jurack et al. developed an approach for consistency checking of UML
activity diagrams. Their approach addresses the design and analysis phases of a devel-
opment process for information systems. Beside modeling and consistency checking, no
further generation process is considered.

Jurack et al. provide a modeling approach in which actions of UML activity diagrams
are refined with preconditions and postconditions in the form of UML object diagrams.
These object diagrams are valid instances of the modeled domain model that is specified
as UML class diagram. Then, the UML activity is transformed into sequences of graph
transformation rules. These rules determine the modeled behavior of the activity dia-
gram formally. Now, if an analysis of the set of graph transformation rules leads to rules
that are not applicable, an indicator is found for inconsistencies in the activity diagram.

Compared to our approach, Jurack et al. shares the same idea that activity diagrams
can be usefully refined by modeling conditions in relation to actions. Furthermore, also a
robustness criterion of our approach is based on condition checking of actions. But unlike
Jurack et al., we prefer simple constraint statements, which can directly be annotated in
the activity diagram instead of an extra view containing only object models. As a further
difference to Jurack, we consider domain states as an important modeling concepts to
assure a consistent system behavior, too.

As an advantage of our approach compared to Jurack et al., an Amabulo model
can even be analyzed as Coloured Petri Net even if no condition was modeled, which is
usual in early requirement engineering phases. Besides, Jurack et al. do not consider a
whole development process including code generation or maintenance, they only focus
on modeling and consistency checking.

In [KKRT06], Keren et al. introduced a sample approach supporting the maintenance
process of an information system by the use of software models and their automated
processing. Their approach addresses explicitly maintenance tasks for web-based infor-
mation systems by providing an UML profile consisting of class and activity diagrams
supporting behavioral and structural modeling. Furthermore, Keren et al. developed



CHAPTER 9. RELATED WORK 233

a model transformation and code generator that are used to generated code artifacts
automatically.

Keren et al. provide a concrete infrastructure for modeling domain objects with class
diagrams and control flow aspects with activity diagrams. The resulting UML model is
transformed into a so-called design model, which contains information about tables and
columns regarding the mapping into a relational database schema. The code generator
generates a code frame as needed for simple web applications. As maintenance scenario,
Keren et al. remove and add attributes to existing domain objects.

Keren et al. focus on maintenance aspects for information systems and uses soft-
ware models and automated model processing, which is the same idea we follow in our
approach. Compared to our approach, Keren et al. also include behavioral aspects
into their project infrastructure. Nevertheless, they do not really address business logic
issues, as we do: Activity diagrams are used for manual tests of business logic in test
phases, and not to generate business processes. Furthermore, integration issues concern-
ing handwritten code are not discussed.



CHAPTER 9. RELATED WORK 234



Chapter 10

Discussion

This chapter points out the contribution of this thesis and provides a general discussion
considering improvements and limitations of our introduced infrastructure blueprint for
automated processing of software models for the business logic of information systems.
Thereafter, the conclusion is drawn by highlighting further research opportunities.

10.1 Contribution

In the following this thesis’ contributions to supporting an efficient model driven de-
velopment and maintenance process for the business logic of information systems are
listed:

1. A design theory in the form of an infrastructure blueprint for model driven devel-
opment and maintenance projects is designed, providing conceptual and technical
artifacts (Section 3.1) as well as a methodology (Section 3.2) for the technical and
organizational setup of projects and project execution, respectively. This infras-
tructure blueprint comprises several interconnected layers:

2. a Visual Model Layer (Chapter 4) providing the interface to visual software mod-
eling languages and consisting of a detailed UML profile definition for modeling
business logic for information systems considering process, state, and structural
modeling concepts (Section 4.2) as well as automated bidirectional mapping rules
from UML into Amabulo (Section 4.3), connecting Visual Model Layer and Ab-
stract Model Layer;

3. an Abstract Model Layer (Chapter 5) that consists of a formal definition of a

235



CHAPTER 10. DISCUSSION 236

domain specific model of the business logic for information systems (Section 5.3)
providing an abstract view reduced to business logic aspects and the design of
a model comparison tool (Section 5.4) supporting the exploration of semantic
differences between two instances of the domain specific abstract model through
automated model comparison;

4. an Abstract System Layer (Chapter 6) comprising the complete and precisely
defined mapping of abstract model instances into Coloured Petri Nets (Section
6.4), which provides simultaneously a formal semantics definition of the abstract
model;

5. a Code Generator Layer (Chapter 7) providing the design and implementation
of a J2EE code generator, which generates deployable and executable J2EE ap-
plications (Section 7.2), as well as an implementation of a code comparison tool
(Section 7.3) to be used to investigate scheduled code modifications if an existing
code repository has to be updated;

6. a Sample Implementation (Section 8.1.2) of the infrastructure, which provides 1)
the integration of reused external tools, for example the modeling tool, develop-
ment tool and CPN simulation and analysis tool, 2) implementation and automa-
tion of all model transformations from visual into abstract model, from abstract
model into abstract system and from abstract model into J2EE application, and 3)
implementation of specific tools, as model comparison tool and code comparison
tool; and

7. an evaluation of the impact of these contributions on the development and main-
tenance phase (Section8.2 and Section 8.3), as well as on the setup and integration
phase of the technical infrastructure of a model driven development and mainte-
nance project for business logic of information systems (Section 8.4).

Referring to “the anatomy of design theories in the discipline of information systems”
as provided and discussed by Gregor and Jones in [GJ07], the eight components of our
developed design theory are outlined, as shown in Table 10.1.

10.2 Conclusion

The infrastructure blueprint introduced in this thesis supports an overall approach con-
sidering all phases of a model driven development and maintenance process: From mod-



CHAPTER 10. DISCUSSION 237

Amabulo - An Architectural Blueprint for Model Driven Development and
Maintenance of Business Logic for Information Systems

Component Description
Purpose and

scope
The aim is to provide an technical project infrastructure to
support development and maintenance of business logic for
information systems through visual modeling and automated
model processing (including code generation).

Constructs Visual models for systems behavior, Meta models, Tools,
Model transformation, Code generation, Coloured Petri Nets

Principles of
form and
function

The infrastructure uses several layers: (1) a Visual Model
Layer containing all constructs for visual modeling tasks, (2)
an Abstract Model Layer providing a domain specific model
for business logic, (3) an Abstract System Layer providing a
formal representation of the modeled business logic, (4) a
Code Generator Layer containing the code generation rules
and a generation process managing code comparison tool,
and (5) an Application Layer comprising the generated code
artifacts.

Artifact
mutability

Depending on project specific needs, concrete models,
transformation rules, code generation rules and tool can be
adapted as required. Moreover, an infrastructure layer is
only required if its implemented functions is needed in a
project.

Justificatory
knowledge

The proposed approach bases on and reuses visual modeling
languages for behavior of software systems, theory of
Coloured Petri Nets, software architecture description
languages, object oriented design principles, software
modeling, meta modeling, and automated model processing.

Principles of
implementation

For each item of each layer we discuss at least its
requirements, or provide an architectural overview, or
provide a detailed design, or provide a sample instance that
can be reused or adopted for project specific needs.

Expository
implementation

A sample implementation of an Amabulo infrastructure is
provided. It comprises instances of each introduced model,
transformation or tool and can be used for modeling and
generation of deployable J2EE applications.

Testable
propositions

A discussion of improvements of several aspects of
development and maintenance of business logic considering
modeling as well as program implementation were given in
context of an industrial scenario.

Table 10.1: Amabulo Design Theory Components (following Gregor and Jones [GJ07])



CHAPTER 10. DISCUSSION 238

eling in different levels of detail, which is needed for analysis and design phase and model
analysis until code generation, including impact analysis (at model and code level) all
actions are considered and supported by proper tools. As a main difference in relation
to the discussed related work (see Chapter 9), our approach takes the whole process into
account and does not only support isolated model analysis or code generation tasks.
Moreover, we provide an extendable set of tools and concepts to be tailored to project
specific needs.

Focussing on the business logic layer, our infrastructure blueprint covers only parts
the delivered application. User interfaces and persistency layer have to be provided
additionally. An Amabulo implementation can be used as part of a model driven envi-
ronment, which also covers advanced user interface and persistency modeling and code
generation.

Improvements Based on the experiences of a re-implemented industrial scenario, we
believe that a consistent use of software models and their automated processing could
improve the development and maintenance process of the business logic of information
systems in several ways:

1. Defined robustness criteria of the resulting program code can be assured auto-
matically: Each modeled local preconditions and postcondition is guaranteed. If
violations are detected, exception handling routines are started and inconsisten-
cies in the data set are prevented. Additionally, it is guaranteed that the gener-
ated system behaves conform to all specified domain states and their transitions.
Comparable to conditions, if a function violates defined domain state transitions,
exceptions are raised and a faulty data set is prevented.

2. It can be guaranteed that all modeled requirements related to the business logic
are implemented: Due to automated model processing, no requirement can be
misunderstood or forgotten during the transformation into code artifacts.

3. Prevention of inconsistencies between the visual software model and the actual
program code: The code generation process is automated and produces code ar-
tifacts depending directly on visual software models. Hence, the software model
always contains the actual implemented features.

4. Prevention of loss of structure caused by multiple maintenance tasks: Each gen-
erated version of the system is based on the same generation rules that produce



CHAPTER 10. DISCUSSION 239

the same structure independently of the number of their application. Only the
contained artifacts are changing but not the rules of their composition.

5. Involved users are supported by tools that help reduce the time needed for impact
analysis and code understanding: The effects of changed requirements can be
inspected by using the model comparison tool. How model changes affect the code
repository is processed automatically by the code comparison tool. Hence, the
duration of time-consuming manual inspection and understanding tasks can be
reduced significantly.

6. Extensive test processes as required even after even little changes can be reduced
significantly: Using both tools (model comparison tool and code comparison tool)
parts of the modified code artifacts that are relevant for a testing action can easily
be identified. Hence, testing actions can be focused on parts that are modified and
integrated manually, such as connections to external systems.

7. Prevention of side effects during manual integration and completion by develop-
ers after code generation: Through the combination of using a generator specific
code comparison tool for calculating changed code artifacts and object-oriented
encapsulation of critical parts of the systems from manual modified artifacts, de-
velopers are guided to those code fragments, which are related to deployed model
changes. Hence, the risk of accidentally modifying program code is decreased,
which minimizes the risk of unwanted side effects during maintenance tasks.

8. Prevention of loss of handcrafted code during code re-generation tasks in case of
a model update: Instead of an automated deletion or overwriting of manually
modified code artifacts, our code generator provides a user interface where devel-
opers have to select for each file if the generator should perform this update or
not. Therefore, no modified artifact gets lost without explicit confirmation of a
developer.

Limitations The introduced infrastructure blueprint provides an extendable set of
tools and concepts that have to be adopted for every specific project setting. Because
every project typically has its own requirements, the reuse of these individual adjust-
ments is constrained and possibly huge efforts for the initial setup and integration phase
have to be considered. For example, if .NET [Mic] is the target platform, elements of
the Code Generator Layer have to be reimplemented.



CHAPTER 10. DISCUSSION 240

Furthermore, while supporting automated model processing and automated code
generation features, additional dependencies considering maintenance aspects of the un-
derlying technical project infrastructure are introduced simultaneously. Following Seifert
and Beneken [SB05], every model, tool, and model processing has its own live cycle and
every change of one of them may affect the whole tool chain. Hence, these additional
dependencies have to be considered carefully to keep the complex infrastructure working.

From an economic point of view, the introduction of a model driven development
and maintenance process is only reasonable if the initial setup and maintenance of the
project infrastructure demand less efforts than the n-times manually executed develop-
ment process. Moreover, only if future changes of domain requirements can be classified
and expressed using a software model and corresponding code generation rules can be
implemented, a model driven approach possibly provides an alternative compared to
conventional software development without automated model processing.

Finally, as mentioned above, our results are constrained to the development and
maintenance of the business logic for information systems. Further application layers,
such as persistency or presentation layer, are supported only very rudimentary. The
application of our approach in the context of reactive systems, such as automotive or
embedded systems, is not considered.

Summary The above discussed improvements and limitations as well as our project
experience lead us to the conclusion that a consistent usage of software models and
automated model processing can help to reduce the development and maintenance ef-
forts for changed domain requirements and simultaneously guarantees robustness and
maintainability even after several changes. Nevertheless, the application of our infras-
tructure is only rational if reasonable assumptions on future changes can be made and if
maintenance efforts, which are needed to implement the domain changes, are expected
to be higher as the additional efforts that are required for the setup and maintenance of
a model driven infrastructure.

10.3 Further Research Opportunities

Integration of UI and Persistency Generation The approach presented in this
thesis focuses on modeling business logic. User interface layer and persistency layer are
considered only rudimentary. If more advanced UI models or data models are needed,
a set of different and isolated models has to be managed and maintained. As part



CHAPTER 10. DISCUSSION 241

of future work it has to be worked out how business logic models can be extended or
integrated with more advanced models containing further aspects of the system, such
as detailed user interface definition or a detailed data model. Moreover, assuming that
for the persistency and UI layer further code generation rules are applied, it has to be
analyzed how these code generation rules could be connected to code generation rules
for business logic, or even how the results of different code generators can be integrated
in a structured way.

Automated Analysis As part of this thesis, we provide a clear interface to simulation
and analysis tools at the level of Coloured Petri Nets and transform a business logic
model into its corresponding CPN automatically. In further research activities, model
analysis functions have to be designed and implemented to extend the infrastructure
blueprint with a set of standardized and automated functions to help modelers detect
semantic errors: Algorithms for the static analysis of CPN can be used to find parts of
the net which are never reachable or to prove that all parts are connected. Moreover,
the dynamic analysis of generated CPNs is appropriate to find modeling inconsistencies,
such as control flow constraints that can never be satisfied by modeled domain states or
local conditions of functions and processes.

Runtime Models Runtime models are software models that can be used by a corre-
sponding interpreter to be executed directly after parsing. There are no further explicit
manual integration tasks needed to deploy model changes into a production environment.
Currently, our infrastructure blueprint considers only code generation and manual im-
plementation. As part of our future work, we analyze if and how business logic models
can be used as runtime models so that all required manual tasks have to be accomplished
at visual model level. In particular, integration tasks with external systems as well as
debugging provide conceptual and technical challenges that have to be tackled.

Test Automation Applying our infrastructure blueprint, we can reduce test efforts
after the deployment of model changes through automated code generation and a clear
identification of model elements and manually modified code artifacts that have to be
considered during the test phase. As a further research opportunity, we believe that test
automation could provide proper help to developers and quality managers. It is obvious
that generated code which is not allowed to be modified has not to be tested by test
classes produced by the same generator. However every code artifact that includes or



CHAPTER 10. DISCUSSION 242

reuses external or manually modified code has to be tested, and developers have to assure
that it passes all tests successfully. Based on the business logic model as parameter of
the code generation task, it has to be analyzed how test artifacts, such as test data and
code artifacts for test purposes can be generated to support quality assurance tasks for
manual modified code and interfaces to external systems.

Application on Reactive Systems This thesis focuses only on the business logic
of information systems. However, reactive systems, such as automotive or embedded
systems, are a further, large domain for model driven development approaches. In
contrast to information systems, reactive systems are modeled either in specific, formal
modeling languages or, in case of UML as modeling languages, as a combination of
state charts and sequence diagrams. Hence, it has to be analyzed whether requirements
on models for reactive systems can be satisfied with a combination of process, state,
and structural modeling and whether a development and maintenance process can be
supported with an implementation of our infrastructure blueprint, too.



CHAPTER 10. DISCUSSION 243



CHAPTER 10. DISCUSSION 244



Appendix A

Amabulo UML Profile Definition

A.1 Activity Diagram

Introduced Stereotypes

The Amabulo UML profile defines two stereotyped actions, which are the only UML
actions that are allowed in the visual model: UserAction and SytemAction. In the
following, the term Action is used to subsume UserAction and SystemAction. Both
extend the OpaqueAction (Section 11.3.26 of UML Superstructure Specification v2.1.2)
and derive its attributes. This includes local preconditions (localPrecondition) and local
postconditions (localPostcondition), which are technically modeled as Constraints (see
A.1). ParameterSets as properties for actions are not allowed.

UserAction

ExtendedUML-Element: OpaqueAction (Section 11.3.26 of UML Superstructure Spec-
ification v2.1.2)

Semantics: A UserAction is a simple action or function, which is executed manually.
This implies that for this action a convenient user interface is needed. This user
interface has to provide all necessary information modeled with input pins and
has to provide input elements to collect all required information modeled with
output pins. Figure A.1.1 provides four examples, each having different modeled
pins. Following the original specification of OpaqueAction, a UserAction can have
multiple input and output pins.

245



APPENDIX A. AMABULO UML PROFILE DEFINITION 246

«UserAction»
CreateOffer

«UserAction»
CreateOffer

Offer

«UserAction»
CreateOffer

Offer

«UserAction»
CreateOffer

Offer Offer

Figure A.1.1: Examples for UserActions

«SystemAction»
SendMessage

«SystemAction»
SendMessage

Offer

«SystemAction»
SendMessage

Offer

«SystemAction»
SendMessage

Offer Offer

Figure A.1.2: Examples for SystemActions

System Action

Extended UML-Element: OpaqueAction (Section 11.3.26 of UML Superstructure
Specification v2.1.2)

Semantics: A SystemAction is an simple action or function, which is executed auto-
matically by a system. This implies that for this action a technical interface has to
be provided at program code level. Via the interface, all needed information, which
is modeled using input pins, is accessible for external functions and all required
information, which is modeled using output pins, has to be provided through this
interface. As Figure A.1.2 illustrates, except for the different stereotype, the usage
as visual model element is comparable to UserActions (see A.1).

Used Elements Without Extension

Beside the above introduced stereotypes, several model elements defined in UML Super-
structure Specification v2.1.2 are reused as described in this subsection. Furthermore,
we introduce each required modeling convention and restriction required due to the
simplification of automated model transformation.



APPENDIX A. AMABULO UML PROFILE DEFINITION 247

Activity

Defined Section 12.3.4 of UML Superstructure Specification v2.1.2

Description An activity is one single activity diagram. Its behavior is either the root

behavior, which means that its initial node is the starting point of the business process
as a whole, and its final node terminates the process. Otherwise, an activity is a struc-
tured sub-process, called from a parent activity using an instance of CallBehaviorAction.
ActivityGroups and StructuredActivites are not allowed in this profile.

InitialNode

Defined Section 12.3.31 of UML Superstructure Specification v2.1.2

Description As specified, an initial node is a control node at which flow starts when
the activity is invoked. Each action associated with an initial node is a possible initial
action of this activity. As a restriction, we allow only one initial node in each activity
with only one out-coming control flow.

ActivityFinalNode

Defined Section 12.3.6 of UML Superstructure Specification v2.1.2

Description If one control flow of an activity reaches a ActivityFinalNode, all actions
and sub-activities of the current activity stop. Comparable to InitialNodes, our profile
allows only one ActivityFinalNode in an Activity with only one incoming control flow.

FlowFinalNode

Defined Section 12.3.39 of UML Superstructure Specification v2.1.2

Description A FlowFinalNode is used to terminate a single flow without terminating
its containing activity. In contrast to initial nodes or other final nodes, in one Activity
multiple FlowFinalNodes are allowed.

DecisionNode

Defined Section 12.3.22 of UML Superstructure Specification v2.1.2



APPENDIX A. AMABULO UML PROFILE DEFINITION 248

Description A decision node is a control node that allows to choose (exclusive choice,
XOR) between several outgoing flows.

MergeNode

Defined Section 12.3.36 of UML Superstructure Specification v2.1.2

Description A merge node is a control node that allows bringing together multiple
alternate control flows. It is the opposite of DecisionNode. To satisfy our convention,
each MergeNode needs at least two different incoming flows.

ForkNode

Defined Section 12.3.30 of UML Superstructure Specification v2.1.2

Description A fork node is a control node that branches a flow into multiple concur-
rent flows. From a technical point of view, this node realizes an AND decision, which
can be turned into an OR decision by the use of Guards.

JoinNode

Defined Section 12.3.34 of UML Superstructure Specification v2.1.2

Description Comparable to a MergeNode, JoinNode is the opposite of a ForkNode,
its can be used to synchronize multiple flows. Similar to MergeNode, our profile requires
at least two incoming flows to each JoinNode. Furthermore, a JoinNode requires a so-
called “joinSpecification” providing a condition under which the join node will join the
incoming flow.

InputPin

Defined Section 11.3.19 of UML Superstructure Specification v2.1.2

Description An InputPin can be directly associated with an Action and determines
types of objects that are needed to execute the action.

OutputPin

Defined Section 11.3.27 of UML Superstructure Specification v2.1.2



APPENDIX A. AMABULO UML PROFILE DEFINITION 249

Description An OutputPin can be directly associated with an Action and determines
types of objects that are modified or created by the action.

Constraint

Defined Section 7.3.10 of UML Superstructure Specification v2.1.2

Description Each constraint which is needed to specify pre- and postconditions is
modeled as LiteralString (Section 7.3.30 of UML Superstructure Specification v2.1.2).
Depending on specific project needs, a proper constraint/condition language can be used
as a more specific specification as LiteralString.

ControlFlow

Defined Section 12.3.19 of UML Superstructure Specification v2.1.2

Description A control flow is an edge connecting nodes of an activity and determines
succession relations between nodes. A so-called “Guard” can be specified to each Con-
trolFlow element where a Guard is a specification evaluated at runtime determining if
the edge can be traversed or not. Comparable to Constraints (see A.1), a Guard is
modeled as LiteralString and should be specified with the same constraint/condition
language as used for Constraints.

Restrictions Beside the elements introduced in A.1 and A.1, no further elements are
currently supported by our profile. Nevertheless, more elements can be used in the
visual model, but they may possibly not be supported by the model transformation into
Abstract Model Layer. If for documentation or other purposes, such as the generation
of presentation or persistency layer, more elements are required, they are not explicitly
forbidden. This allows seamless integration with corporate modeling conventions or
other automated model processing environments.

Class Diagram

Class

Defined Section 7.3.7 of UML Superstructure Specification v2.1.2



APPENDIX A. AMABULO UML PROFILE DEFINITION 250

Description Business objects are modeled as simple classes in which the name of the
class identifies the type of the business object. Beside a (obligatory) name, a set of
attributes can be specified as properties.

Property

Defined Section 7.3.44 of UML Superstructure Specification v2.1.2

Description A property related to a business object represents an attribute, which
relates an instance of the class to a specific value or collection of values of the domain
or type of the property.

State Diagram

StateMachine

Defined Section 15.3.12 of UML Superstructure Specification v2.1.2

Description State machines are used to express system wide domain constraints of
properties of business objects. For our purposes their content is restricted to States,
Transition, and initial PseudoState.

Beside the restrictions for selected modeling elements, a special naming convention
for state machines is required. In UML, the association between State Machines and
Classifiers is modeled via the context attribute of state machines, whose required type is
BehavioredClassifier. But in the UML specification, only the elements UseCase (Section
16.3.6 of UML Superstructure Specification v2.1.2), Collaboration (Section 9.3.3 of UML
Superstructure Specification v2.1.2), and Class (from Communications) (12.3.8 of UML
Superstructure Specification v2.1.2) are specializations of BehavioredClassifier. For our
purposes, we need to link Property, which is not derived from BehavioredClassifier, to
zero or one StateMachine. So there is no possibility to establish a logical link between
them using native UML constructs as specified in UML Superstructure Specification
v2.1.2. For this reason, we introduced a naming convention for state machines: The
name of each state machine has to identify the attribute, it is linked to. Therefore, we
follow the naming schema as used in the UML definition <object>:<attribute>. For
example, Offer:decision addresses the attribute decision as part of an object Offer.



APPENDIX A. AMABULO UML PROFILE DEFINITION 251

State

Defined Section 15.3.11 of UML Superstructure Specification v2.1.2

Description A State defines a valid attribute value by its name.

Transition

Defined Section 15.3.14 of UML Superstructure Specification v2.1.2

Description Transitions connect States with States and Pseudostates with States.
Beside source and target vertex no further attributes, such as guard, effect, or trigger
are needed.

Initial Pseudostate

Defined Section 15.3.8 of UML Superstructure Specification v2.1.2

Description We allow only Pseudostates whose attribute kind is initial, which means
all states that are connected to an initial Pseudostate are possible initial states and
therefore initial values of an attribute.



APPENDIX A. AMABULO UML PROFILE DEFINITION 252



Appendix B

UML to Amabulo Transformation

−−name Uml2Amabulo
−−a t l v e r s i o n 2 .0
−−d e s c r i p t i o n This t rans fo rmat ion i s used to trans form Uml−Models in

AMABULO−Models .

module Uml2Amabulo ; −− Module Template
c r e a t e OUT : Amabulo from IN : Uml ;

−−−Helpers−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

he lpe r context Uml ! Ac t i v i ty de f : i sCa l l e dAc t i v i t y ( ) : Boolean =
−−Al l Cal lBehav iorAct ions
l e t a l lCa l lBehav i o rAc t i on s : Set (Uml ! Cal lBehaviorAct ion ) = Uml !

Cal lBehaviorAct ion . a l l I n s t a n c e s ( ) in
a l lCa l lBehav io rAct i ons−>e x i s t s ( ca l lBehav io rAct i on | ca l lBehav io rAct i on .

behavior = s e l f ) ;

h e lpe r context Uml ! Ac t i v i ty de f : getCal lBehav iorAct ion ( ) : Uml !
Cal lBehaviorAct ion =

l e t a l lCa l lBehav io rAct i on : Set (Uml ! Cal lBehaviorAct ion ) = Uml !
Cal lBehaviorAct ion . a l l I n s t a n c e s ( ) in
a l lCa l lBehav io rAct ion−>any ( ca l lBehav io rAct i on | ca l lBehav io rAct i on .

behavior = s e l f ) ;

h e lpe r context Uml ! State de f : ge tSuccState s ( ) : Set (Uml ! State ) =
l e t outTrans i t i on s : Set (Uml ! Trans i t i on ) = Uml ! Trans i t ion−>a l l I n s t a n c e s ( )

−>s e l e c t ( t r a n s i t i o n |
t r a n s i t i o n . source = s e l f and t r a n s i t i o n . t a r g e t . ocl IsTypeOf (Uml ! State ) )

in

253



APPENDIX B. UML TO AMABULO TRANSFORMATION 254

outTrans i t i ons−>i t e r a t e ( outTran ; s u c c e s s o r s : Set (Uml ! State ) = Set {} |
suc c e s s o r s−>inc lud ing ( outTran . t a r g e t ) ) ;

he lpe r context Uml ! StateMachine de f : g e t I n i t i a l S t a t e s ( ) : Set (Uml ! State )
=

l e t S t a r tTran s i t i on s : Set (Uml ! Trans i t i on ) = Uml ! Trans i t ion−>
a l l I n s t a n c e s ( )−>s e l e c t ( t r a n s i t i o n |
t r a n s i t i o n . conta ine r . stateMachine = s e l f and t r a n s i t i o n . source .

oc l IsTypeOf (Uml ! Pseudostate ) )
s e l e c t ( t r a n s i t i o n | t r a n s i t i o n . source . kind = #i n i t i a l ) in

S ta r tTrans i t i on s−>i t e r a t e ( t r a n s i t i o n ; s u c c e s s o r s : Set (Uml ! State ) = Set
{} | suc c e s s o r s−>inc lud ing ( t r a n s i t i o n . t a r g e t ) ) ;

he lpe r de f : getAl lOutgoingFlows ( al lOutFlows : OrderedSet ( OrderedSet (Uml !
ControlFlow ) ) ) : OrderedSet ( OrderedSet (Uml ! ControlFlow ) ) =

i f ( al lOutFlows−>isEmpty ( ) or thisModule . AllOutgoingFlowsComplete (
al lOutFlows ) )

then al lOutFlows
e l s e thisModule−>getAl lOutgoingFlows (

al lOutFlows−>i t e r a t e ( f l owSet ; allOutFlowsNEW : OrderedSet ( OrderedSet (
Uml ! ControlFlow ) ) = OrderedSet {} |

i f ( f lowSet−>l a s t ( ) . t a r g e t . oc l I sKindOf (Uml ! Action ) or f lowSet−>l a s t ( )
. t a r g e t . oc l I sKindOf (Uml ! FinalNode ) )

then allOutFlowsNEW−>append ( f l owSet )
e l s e l e t out f l ows : OrderedSet (Uml ! ControlFlow ) = f lowSet−>l a s t ( ) .

t a r g e t . outgoing in
allOutFlowsNEW−>union (

out f lows−>i t e r a t e ( anOutflow ; allOutFlowsTemp : OrderedSet (
OrderedSet (Uml ! ControlFlow ) ) = OrderedSet {} |

l e t newFlowSet : OrderedSet (Uml ! ControlFlow ) = f lowSet in
allOutFlowsTemp−>append ( newFlowSet−>append ( anOutflow ) ) ) )

end i f )
)

end i f ;

h e lpe r de f : AllOutgoingFlowsComplete ( al lOutFlows : OrderedSet ( OrderedSet
(Uml ! ControlFlow ) ) ) : Boolean =

l e t setsNotComplete : I n t eg e r = allOutFlows−>i t e r a t e ( f l owSet ;
notComplete : I n t eg e r = 0 |

i f ( f l owSet . l a s t ( ) . t a r g e t . oc l I sKindOf (Uml ! Action ) or f l owSet . l a s t
( ) . t a r g e t . oc l I sKindOf (Uml ! FinalNode ) )

then notComplete + 0
e l s e notComplete + 1



APPENDIX B. UML TO AMABULO TRANSFORMATION 255

end i f )
in i f ( setsNotComplete > 0)

then f a l s e
e l s e t rue

end i f ;

−−−−RULES−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−Cal ledRules−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

r u l e S ta r tCrea t eSucce s s i on s ( a c t i v i t y : Uml ! Ac t i v i ty ) {
us ing {
nodes : Set (Uml ! ActivityNode ) = (Uml ! Action−>a l l I n s t a n c e s ( )−>s e l e c t (p | p .

a c t i v i t y = a c t i v i t y ) )
−>union (Uml ! In i t i a lNode−>a l l I n s t a n c e s ( )−>s e l e c t (p | p . a c t i v i t y

= a c t i v i t y ) ) ;
outFlows : OrderedSet (Uml ! ControlFlow )= OrderedSet {} ;

al lOutFlows : OrderedSet ( OrderedSet (Uml ! ControlFLow ) )= OrderedSet {} ;
setWithFlow : OrderedSet (Uml ! ControlFlow ) = OrderedSet {} ;

}

do {
f o r ( node in nodes ) {

outFlows <− node . outgoing ;
al lOutFlows <− OrderedSet {} ;

f o r ( f low in outFlows ) {
setWithFlow <− OrderedSet { f low } ;

al lOutFlows <− allOutFlows−>append ( setWithFlow ) ;
}
al lOutFlows <− thisModule . getAl lOutgoingFlows ( al lOutFlows ) ;

f o r ( setWithFlows in al lOutFlows ) {
thisModule . CreateSucces s i on ( setWithFlows ) ;

}
}

}
}

ru l e CreateSucces s ion ( c on t r o l f l ow s : OrderedSet (Uml ! ControlFlow ) ) {
to
su c c e s s i on : Amabulo ! Succe s s i on (

p r edec e s s o r <− i f ( c on t ro l f l ows−>f i r s t ( ) . source . oc l I sKindOf (Uml !
I n i t i a lNode ) )

then OclUndefined
e l s e con t r o l f l ows−>f i r s t ( ) . source



APPENDIX B. UML TO AMABULO TRANSFORMATION 256

end i f ,
s u c c e s s o r <− i f ( c on t ro l f l ows−>l a s t ( ) . t a r g e t . oc l I sKindOf (Uml ! FinalNode

) )
then OclUndefined

e l s e con t r o l f l ows−>l a s t ( ) . t a r g e t
end i f ,

f i na lSuccOf <− i f ( c on t ro l f l ows−>l a s t ( ) . t a r g e t . oc l I sKindOf (Uml !
Act iv i tyFina lNode ) )

then i f ( c on t ro l f l ows−>l a s t ( ) . a c t i v i t y . i sCa l l e dAc t i v i t y ( ) )
then con t r o l f l ows−>l a s t ( ) . a c t i v i t y . getCa l lBehav iorAct ion ( )
e l s e con t r o l f l ows−>l a s t ( ) . a c t i v i t y

end i f
e l s e OclUndefined

end i f ,
guard <− c on t r o l f l ow s

)
}

−−−−MatchedRules−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r u l e StateMachine2StateChart {
from
stateMachine : Uml ! StateMachine

to
stateChart : Amabulo ! StateChart (

name <− stateMachine . name ,
i n i t i a l S t a t e s <− stateMachine . g e t I n i t i a l S t a t e s ( )

)
}

ru l e State2State {
from
umlState : Uml ! State

to
amabuloState : Amabulo ! State (

name <− umlState . name ,
inStateChart <− umlState . con ta ine r . stateMachine ,
s u c c e s s o r <− umlState . ge tSuccState s ( )

)
}

ru l e Class2Bus inessObject {
from

c l a s s : Uml ! Class ( c l a s s . oc l IsTypeOf (Uml ! Class ) )



APPENDIX B. UML TO AMABULO TRANSFORMATION 257

to
ob j e c t : Amabulo ! Bus inessObject (

name <− c l a s s . name ,
a t t r i b u t e s <− c l a s s . ownedAttribute

)
}

ru l e Property2Attr ibute {
from
property : Uml ! Property

us ing {
c l a s s : Uml ! Class = Uml ! Class . a l l I n s t a n c e s ( )−>any ( c | c . ocl IsTypeOf (Uml !

Class ) and c . ownedAttribute−>inc l ud e s ( property ) ) ;
stateMachineName : S t r ing = c l a s s . name + ’ : ’ + property . name ;
stateMachine : Uml ! StateMachine = Uml ! StateMachine . a l l I n s t a n c e s ( )−>any (

sm | sm . name = stateMachineName ) ;
}
to
a t t r i b u t e : Amabulo ! Att r ibute (

name <− property . name ,
s tateChart <− stateMachine

)
}

ru l e Act iv i ty2Proce s s {
from
oute rAc t i v i t y : Uml ! Ac t i v i ty ( not ou t e rAc t i v i t y . i sCa l l e dAc t i v i t y ( ) )

to
p roce s s : Amabulo ! Process (

name <− ou t e rAc t i v i t y . name ,
p r e cond i t i on <− ou t e rAc t i v i t y . precond i t i on ,
po s t cond i t i on <− ou t e rAc t i v i t y . pos tcond i t i on ,
inparameter <− Uml ! ActivityParameterNode−>a l l I n s t a n c e s ( )

−>s e l e c t ( i | i . a c t i v i t y = oute rAc t i v i t y and i . parameter . d i r e c t i o n =
#inout ) ,

outparameter <− Uml ! ActivityParameterNode−>a l l I n s t a n c e s ( )
−>s e l e c t ( i | i . a c t i v i t y = oute rAc t i v i t y and i . parameter . d i r e c t i o n =

#out )
)

do {
thisModule . S ta r tCrea t eSucce s s i on s ( ou t e rAc t i v i t y ) ;

}
}



APPENDIX B. UML TO AMABULO TRANSFORMATION 258

r u l e Cal lBehav iorAct ion2Process {
from
cbAction : Uml ! Cal lBehaviorAct ion

to
f : Amabulo ! Process (

name <− cbAction . name ,
inparameter <− cbAction . argument ,
outparameter <− cbAction . r e s u l t ,
p r e cond i t i on <− cbAction . l o ca lP r e cond i t i on ,
po s t cond i t i on <− cbAction . l o ca lPo s t cond i t i on ,
i np r o c e s s <− i f ( cbAction . a c t i v i t y . i sCa l l e dAc t i v i t y ( ) )

then cbAction . a c t i v i t y . getCal lBehav iorAct ion ( )
e l s e cbAction . a c t i v i t y
end i f

)
do {
thisModule . S ta r tCrea t eSucce s s i on s ( cbAction . behavior ) ;

}
}

ru l e OpaqueUserAction2UserFunction {
from
userAct ion : Uml ! OpaqueAction ( not userAct ion . getAppl i edStereotype ( ’

Act ions : : UserAction ’ ) . o c l I sUnde f ined ( ) )
to
userFunct ion : Amabulo ! UserFunction (

name <− userAct ion . name ,
inparameter <− userAct ion . inputValue ,
outparameter <− userAct ion . outputValue ,
p r e cond i t i on <− userAct ion . l o ca lP r e cond i t i on ,
po s t cond i t i on <− userAct ion . l o ca lPo s t cond i t i on ,
i np r o c e s s <− i f ( userAct ion . a c t i v i t y . i sCa l l e dAc t i v i t y ( ) )

then userAct ion . a c t i v i t y . getCal lBehav iorAct ion ( )
e l s e userAct ion . a c t i v i t y
end i f

)
}

r u l e OpaqueSystemAction2SystemFunction {
from
systemAction : Uml ! OpaqueAction ( not systemAction . getAppl i edStereotype ( ’

Act ions : : SystemAction ’ ) . o c l I sUnde f ined ( ) )



APPENDIX B. UML TO AMABULO TRANSFORMATION 259

to
systemFunction : Amabulo ! SystemFunction (

name <− systemAction . name ,
inparameter <− systemAction . inputValue ,
outparameter <− systemAction . outputValue ,
p r e cond i t i on <− systemAction . l o ca lP r e cond i t i on ,
po s t cond i t i on <− systemAction . l o ca lPo s t cond i t i on ,
i np r o c e s s <− i f ( systemAction . a c t i v i t y . i sCa l l e dAc t i v i t y ( ) )

then systemAction . a c t i v i t y . getCal lBehav iorAct ion ( )
e l s e systemAction . a c t i v i t y
end i f

)
}

r u l e ControlFlow2Guard_Constraint {
from
contro lFlow : Uml ! ControlFlow

us ing {
numberOfGuards : Set ( In t eg e r )= i f ( contro lFlow . source . oc l IsTypeOf (Uml !

JoinNode ) )
then Set {1 ,2}
e l s e Set {1}
end i f ;

}
to
guard : d i s t i n c t Amabulo ! Guard fo r each ( e in numberOfGuards ) (

name <−
i f ( numberOfGuards−>s i z e ( ) = 2 and e = 1)
then ’ JoinSpec : ’+ contro lFlow . name
e l s e contro lFlow . name

endi f ,
c on s t r a i n t <− amabuloConstraint ,
i s P a r a l l e l <−

i f ( contro lFlow . source . ocl IsTypeOf (Uml ! ForkNode ) or
contro lFlow . t a r g e t . ocl IsTypeOf (Uml ! JoinNode ) or
( numberOfGuards−>s i z e ( ) = 2 and e = 1) )
then true
e l s e f a l s e

end i f
) ,
amabuloConstraint : d i s t i n c t Amabulo ! Constra int f o r each ( e in

numberOfGuards ) (
va lue <−



APPENDIX B. UML TO AMABULO TRANSFORMATION 260

i f ( numberOfGuards−>s i z e ( )=1 or e = 2)
then i f ( contro lFlow . guard . va lue . o c l I sUnde f ined ( ) )

then ’ true ’
e l s e contro lFlow . guard . va lue
end i f

e l s e i f ( contro lFlow . source . j o inSpec . va lue . oc l I sUnde f ined ( ) )
then ’ and ’
e l s e contro lFlow . source . j o inSpec . va lue
end i f

end i f
)

}

r u l e Pin2Parameter {
from
pin : Uml ! Pin

to
parameter : Amabulo ! Parameter (

name <− pin . name
)

}

ru l e ParameterNodeOuterActivity2Parameter {
from
parameterNode : Uml ! ActivityParameterNode ( not parameterNode . a c t i v i t y .

i sCa l l e dAc t i v i t y ( ) )
to
parameter : Amabulo ! Parameter (

name <− parameterNode . name
)

}

ru l e Const ra int2Const ra int {
from
umlConstraint : Uml ! Constra int

to
amabuloConstraint : Amabulo ! Constra int (

va lue <− umlConstraint . s p e c i f i c a t i o n . value ,
name <− umlConstraint . name

)
}



Appendix C

Amabulo Model Elements

Symbol Description
BO = Set of Business Objects
AT = Set of Attributes

T = Set of Types
SC = Set of State Charts

S = Set of States
UF = Set of User Functions
SF = Set of System Functions

F = Set of Functions with F = SF ∪ UF

P = Set of Processes
AC = Set of Activity Concepts with AC = P ∪ F

C = Set of Constraints
PA = Set of Parameters

Table C.1: Table of Notation: Sets

261



APPENDIX C. AMABULO MODEL ELEMENTS 262

Symbol Description
type ⊆ AT × String, a relation defining the data type of an

attribute
value ⊆ AT × String, a relation defining the actual value of

an attribute
att ⊆ BO ×AT , a relation between business objects and

contained attributes
dom ⊆ AT × SC, a relation between an attribute and its

refining state chart
state ⊆ SC × S, a relation between a state chart and its

states
succS ⊆ S × S, a succession relation between states

init ⊆ SC × S, a relation between a state chart and its
initial states

cont ⊆ P ×AC, a relation between a process and its
contained activity concepts

final ⊆ P ×AC, a relation between a process and its final
activity concepts

succAC ⊆ AC × (AC × C), a succession relation between
activity concepts including control flow decisions in
form of guards

prec ⊆ AC × C, a relation between an activity concept and
its preconditions

postc ⊆ AC × C, a relation between an activity concept and
its postconditions

inpa ⊆ AC × PA, a relation between an activity concept
and its input parameters

outpa ⊆ AC × PA, a relation between an activity concept
and its output parameters

Table C.2: Table of Notation: Relations



APPENDIX C. AMABULO MODEL ELEMENTS 263

Symbol Description
attP : BO → P(AT ), a function that maps business

objects into the set of its containing attributes
stateP : SC → P(S), a function that maps state charts into

the set of its containing states
succSP : S → P(S), a function that maps states into the set

of its successors
initP : SC → P(S), a function that maps state charts into

the set of its initial states
contP : P → P(AC), a function that maps processes into

the set of its containing activity concepts
finalP : P → P(AC), a function that maps processes into

the set of its final activity concepts
succACP : AC → P((AC × C)), a function that maps activity

concepts into the set of tuples of its successors and
its constraints

precP : AC → P(C), a function that maps activity concepts
into the set tuples of its preconditions

postcP : AC → P(C), a function that maps activity concepts
into the set tuples of its postconditions

inpaP : AC → P(PA), a function that maps activity
concepts into the set tuples of its input parameters

outpaP : AC → P(PA), a function that maps activity
concepts into the set tuples of its output parameters

Table C.3: Table of Notation: Convenience Functions



APPENDIX C. AMABULO MODEL ELEMENTS 264



Appendix D

Example Model - in Amabulo Terms

With regard to the detailed model example as shown in Figure 4.2.6, the corresponding
set SMA ∈ A of structural modeling elements is:

BO = {Offer}

A = {firstDecider, secondDecider, decision}

T = {String}

type = {(firstDecider, String), (secondDecider, String), (decision, String)}

value = {(firstDecider, ””), (secondDecider, ””), (decision, ””)}

att = {(Offer, firstDecider), (Offer, secondDecider), (Offer, decision)}

attP = {(Offer, {firstDecider, secondDecider, decision})}

265



APPENDIX D. EXAMPLE MODEL - IN AMABULO TERMS 266

With regard to the detailed model example as shown in Figure 4.2.6, the correspond-
ing set STA ∈ A of structural modeling elements is:

SC = {Offer.decision}

S = {undecided, firstDeciderAccepted, accepted, declined}

dom = {(decision,Offer.decision)}

state = {(Offer.decision, undecided), (Offer.decision, firstDeciderAccepted),

(Offer.decision, accepted), (Offer.decision, declined)}

succS = {(undecided, firstDeciderAccepted), (undecided, declined),

(firstDeciderAccepted, declined), (firstDeciderAccepted, accepted)}

initS = {(Offer.decision, undecided)}

stateP = {(Offer.decision, {undecided, firstDeciderAccepted, accepted, declined})}

succSP = {(undecided, {firstDeciderAccepted, declined}),

(firstDeciderAccepted, {accepted, declined})}

initSP = {(Offer.decision, {undecided})}



APPENDIX D. EXAMPLE MODEL - IN AMABULO TERMS 267

With regard to the detailed model example as shown in Figure 4.2.6, the correspond-
ing set PA ∈ A of process modeling elements is:

UF = {first decision,second decision},

SF = {send acceptance message,send declinature message},

F = {first decision, second decision, send acceptance message, send declinature message}

P = {Four Eyes Decision}

AC = {first decision, second decision, send acceptance message,

send declinature message, Four Eyes Decision, �}

C = {Offer.decision==declined, Offer.decision==firstDeciderAccepted,

Offer.decision==accepted,Offer.decision==undecided,

Offer.decision==(declined||firstDeciderAccepted),

Offer.decision==(declined||accepted)},

cont = {(Four Eyes Decision,first decision),

(Four Eyes Decision,second decision),

(Four Eyes Decision,send acceptance message),

(Four Eyes Decision,send declinature message)},

contP = {(Four Eyes Decision, {first decision,second decision,

send acceptance message, send declinature message})},

final = {(Four Eyes Decision,send acceptance message),

(Four Eyes Decision,send declinature message)},

finalP = {(Four Eyes Decision, {send acceptance message,send declinature message})},

succAC = {(first decision, (second decision,Offer.decision==firstDeciderAccepted))

(first decision, (send declinature message,Offer.decision==declined)),

(�, (first decision,"")),

(second decision, (send acceptance message,Offer.decision==accepted)),

(second decision, (send declinature message,Offer.decision==declined)),

(send acceptance message, (�, ””)), (send declinature message, (�, ””))},



APPENDIX D. EXAMPLE MODEL - IN AMABULO TERMS 268

succACP = {(first decision, {(second decision,Offer.decision==firstDeciderAccepted),

(send declinature message,Offer.decision==declined)}),

(�, {(first decision, ””)}),

(second decision, {(send acceptance message,Offer.decision==accepted),

(send declinature message,Offer.decision==declined)}),

(send acceptance message, {(�, ””)}),

(send declinature message, {(�, ””)})},

prec = {(first decision,Offer.decision==undecided),

(second decision,Offer.decision==firstDeciderAccepted),

(send acceptance message,Offer.decision==accepted),

(send declinature message,Offer.decision==declined)},

precP = {(first decision, {Offer.decision==undecided}),

(second decision, {Offer.decision==firstDeciderAccepted}),

(send acceptance message,{Offer.decision==accepted}),

(send declinature message,{Offer.decision==declined})},

postc = {(first decision,Offer.decision==(declined||firstDeciderAccepted)),

(second decision,Offer.decision==(accepted||declined))},

postcP = {(first decision, {Offer.decision==(declined||firstDeciderAccepted)}),

(second decision,{Offer.decision==(accepted||declined)})},

inpa = {(first decision,Offer), (second decision,Offer),

(send acceptence message,Offer), (send declinature message,Offer)},

inpaP = {(first decision, {Offer}), (second decision, {Offer}),

(send acceptence message,{Offer}), (send declinature message,{Offer})},

outpa = {(first decision,Offer), (second decision,Offer)},

outpaP = {(first decision,{Offer}), (second decision,{Offer})}



Appendix E

Amabulo Model Definition - Ecore

Model

<?xml version="1.0" encoding="ISO-8859-1"?>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" xmlns:

xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:ecore="http

://www.eclipse.org/emf/2002/Ecore">

<ecore:EPackage name="Amabulo">

<eClassifiers xsi:type="ecore:EClass" name="ActivityConcept"

abstract="true">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="name"

ordered="false" unique="false" lowerBound="1" eType="/1/String

"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="inprocess"

ordered="false" lowerBound="1" eType="/0/Process" eOpposite

="/0/Process/contains"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="inparameter

" ordered="false" upperBound="-1" eType="/0/Parameter"

containment="true" eOpposite="/0/Parameter/inparameterOf"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="

outparameter" ordered="false" upperBound="-1" eType="/0/

Parameter" containment="true" eOpposite="/0/Parameter/

outparameterOf"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="

precondition" ordered="false" upperBound="-1" eType="/0/

Constraint" containment="true" eOpposite="/0/Constraint/

preconditionOf"/>

269



APPENDIX E. AMABULO MODEL DEFINITION - ECORE MODEL 270

<eStructuralFeatures xsi:type="ecore:EReference" name="

postcondition" ordered="false" upperBound="-1" eType="/0/

Constraint" containment="true" eOpposite="/0/Constraint/

postconditionOf"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="Process" eSuperTypes

="/0/ActivityConcept">

<eStructuralFeatures xsi:type="ecore:EReference" name="contains"

ordered="false" lowerBound="1" upperBound="-1" eType="/0/

ActivityConcept" eOpposite="/0/ActivityConcept/inprocess"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="

finalSuccession" ordered="false" lowerBound="1" upperBound

="-1" eType="/0/Succession" eOpposite="/0/Succession/

finalSuccOf"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="Function" abstract="

true" eSuperTypes="/0/ActivityConcept"/>

<eClassifiers xsi:type="ecore:EClass" name="UserFunction"

eSuperTypes="/0/Function"/>

<eClassifiers xsi:type="ecore:EClass" name="SystemFunction"

eSuperTypes="/0/Function"/>

<eClassifiers xsi:type="ecore:EClass" name="Parameter">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="name"

ordered="false" unique="false" lowerBound="1" eType="/1/String

"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="

inparameterOf" ordered="false" lowerBound="1" eType="/0/

ActivityConcept" eOpposite="/0/ActivityConcept/inparameter"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="

outparameterOf" ordered="false" lowerBound="1" eType="/0/

ActivityConcept" eOpposite="/0/ActivityConcept/outparameter"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="BusinessObject"

eSuperTypes="/0/Parameter">

<eStructuralFeatures xsi:type="ecore:EReference" name="attributes"

ordered="false" upperBound="-1" eType="/0/Attribute"

containment="true"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="Attribute">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="name"



APPENDIX E. AMABULO MODEL DEFINITION - ECORE MODEL 271

ordered="false" unique="false" lowerBound="1" eType="/1/String

"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="stateChart"

ordered="false" lowerBound="1" eType="/0/StateChart"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="StateChart">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="name"

ordered="false" unique="false" lowerBound="1" eType="/1/String

"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="states"

ordered="false" upperBound="-1" eType="/0/State" containment="

true" eOpposite="/0/State/inStateChart"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="

initialStates" ordered="false" lowerBound="1" upperBound="-1"

eType="/0/State"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="State">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="name"

ordered="false" unique="false" lowerBound="1" eType="/1/String

"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="

inStateChart" ordered="false" lowerBound="1" eType="/0/

StateChart" eOpposite="/0/StateChart/states"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="successor"

ordered="false" upperBound="-1" eType="/0/State"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="Constraint">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="name"

ordered="false" unique="false" lowerBound="1" eType="/1/String

"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="value"

ordered="false" unique="false" lowerBound="1" eType="/1/String

"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="

preconditionOf" ordered="false" lowerBound="1" eType="/0/

ActivityConcept" eOpposite="/0/ActivityConcept/precondition"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="

postconditionOf" ordered="false" lowerBound="1" eType="/0/

ActivityConcept" eOpposite="/0/ActivityConcept/postcondition

"/>



APPENDIX E. AMABULO MODEL DEFINITION - ECORE MODEL 272

<eStructuralFeatures xsi:type="ecore:EReference" name="guard"

ordered="false" lowerBound="1" eType="/0/Guard" eOpposite="/0/

Guard/constraint"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="Succession">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="name"

ordered="false" unique="false" lowerBound="1" eType="/1/String

"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="predecessor

" ordered="false" eType="/0/ActivityConcept"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="successor"

ordered="false" eType="/0/ActivityConcept"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="guard"

ordered="false" lowerBound="1" upperBound="-1" eType="/0/Guard

" eOpposite="/0/Guard/inSuccession"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="finalSuccOf

" ordered="false" eType="/0/Process" eOpposite="/0/Process/

finalSuccession"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="Guard">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="name"

ordered="false" unique="false" lowerBound="1" eType="/1/String

"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="isParallel"

ordered="false" unique="false" lowerBound="1" eType="/1/

Boolean"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="

inSuccession" ordered="false" lowerBound="1" upperBound="-1"

eType="/0/Succession" eOpposite="/0/Succession/guard"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="constraint"

ordered="false" lowerBound="1" eType="/0/Constraint"

containment="true" eOpposite="/0/Constraint/guard"/>

</eClassifiers>

</ecore:EPackage>

<ecore:EPackage name="PrimitiveTypes">

<eClassifiers xsi:type="ecore:EDataType" name="String"/>

<eClassifiers xsi:type="ecore:EDataType" name="Boolean"/>

<eClassifiers xsi:type="ecore:EDataType" name="Integer"/>

</ecore:EPackage>

</xmi:XMI>



Appendix F

Example Model - XMI

The four eyes decision process example model (see Figure 4.2.6) as XMI, the XML-based
interchange format.

Listing F.1: Four Eyes Decision Process,Amabulo Model
<?xml version=" 1 .0 " encoding="ISO−8859−1"?>
<xmi:XMI xmi :ve r s i on=" 2 .0 " xmlns:xmi=" ht tp : //www. omg . org /XMI"

xmlns :x s i=" ht tp : //www.w3 . org /2001/XMLSchema−i n s t anc e " xmlns="
Amabulo" xs i : s chemaLocat ion="Amabulo�ATL/Amabulo . e co re#/0">

<StateChart xmi : id="a1" name=" O f f e r : d e c i s i o n " i n i t i a l S t a t e s="a2">
<s t a t e s x s i : t y p e=" State " xmi : id="a2" name="undecided " su c c e s s o r="a5

�a3"/>
<s t a t e s x s i : t y p e=" State " xmi : id="a3" name=" f i r s tDec id e rAccep t ed "

su c c e s s o r="a4�a5"/>
<s t a t e s x s i : t y p e=" State " xmi : id="a4" name="accepted "/>
<s t a t e s x s i : t y p e=" State " xmi : id="a5" name=" dec l i n ed "/>

</StateChart>
<Bus inessObject xmi : id="a6" name=" Of f e r ">
<a t t r i b u t e s x s i : t y p e=" Attr ibute " xmi : id="a7" name=" de c i s i o n "

stateChart="a1"/>
<a t t r i b u t e s x s i : t y p e=" Attr ibute " xmi : id="a8" name=" f i r s tD e c i d e r "/>
<a t t r i b u t e s x s i : t y p e=" Attr ibute " xmi : id="a9" name=" secondDecider "/>

</ Bus inessObject>
<Process xmi : id="a10" name="FourEyesPrincipleDiagram" conta in s="a11�

a18�a23�a26" f i n a l S u c c e s s i o n="a55�a56"/>
<UserFunction xmi : id="a11" name=" f i r s t D e c i s i o n " i np r o c e s s="a10">
<inparameter x s i : t y p e="Parameter" xmi : id="a12" name=" Of f e r "/>
<inparameter x s i : t y p e="Parameter" xmi : id="a13" name=" inputValue "/>

273



APPENDIX F. EXAMPLE MODEL - XMI 274

<inparameter x s i : t y p e="Parameter" xmi : id="a14" name=" inputValue1 "/>
<outparameter x s i : t y p e="Parameter" xmi : id="a15" name=" Of f e r "/>
<precond i t i on x s i : t y p e=" Constra int " xmi : id="a16" value=" o f f e r .

d e c i s i o n==’undecided ’ "/>
<pos t cond i t i on x s i : t y p e=" Constra int " xmi : id="a17" value=" o f f e r .

d e c i s i o n==’dec l ined ’ � | | � o f f e r . d e c i s i o n==’decider1Accepted ’ "/>
</UserFunction>
<UserFunction xmi : id="a18" name=" secondDec i s ion " i np r o c e s s="a10">
<inparameter x s i : t y p e="Parameter" xmi : id="a19" name=" Of f e r "/>
<outparameter x s i : t y p e="Parameter" xmi : id="a20" name=" Of f e r "/>
<precond i t i on x s i : t y p e=" Constra int " xmi : id="a21" value=" o f f e r .

d e c i s i o n==’decider1Accepted ’ "/>
<pos t cond i t i on x s i : t y p e=" Constra int " xmi : id="a22" value=" o f f e r .

d e c i s i o n==’dec l ined ’ � | | � o f f e r . d e c i s i o n==’accepted ’ "/>
</UserFunction>
<SystemFunction xmi : id="a23" name="SendAcceptedMessage" i np r o c e s s="

a10">
<inparameter x s i : t y p e="Parameter" xmi : id="a24" name=" Of f e r "/>
<precond i t i on x s i : t y p e=" Constra int " xmi : id="a25" value=""/>

</SystemFunction>
<SystemFunction xmi : id="a26" name="SystemDeclinedMessage " i np r o c e s s=

"a10">
<inparameter x s i : t y p e="Parameter" xmi : id="a27" name=" Of f e r "/>
<precond i t i on x s i : t y p e=" Constra int " xmi : id="a28" value=""/>

</SystemFunction>
<Guard xmi : id="a29" name="N65897" inSucc e s s i on="a57">
<con s t r a i n t x s i : t y p e=" Constra int " xmi : id="a30" value=" true "/>

</Guard>
<Guard xmi : id="a31" name="N65912" inSucc e s s i on="a51�a52">
<con s t r a i n t x s i : t y p e=" Constra int " xmi : id="a32" value=" true "/>

</Guard>
<Guard xmi : id="a33" name="N65927" inSucc e s s i on="a52">
<con s t r a i n t x s i : t y p e=" Constra int " xmi : id="a34" value=" o f f e r .

d e c i s i o n==’ f i r s tDec ide rAccepted ’ "/>
</Guard>
<Guard xmi : id="a35" name="N65954" inSucc e s s i on="a53�a54">
<con s t r a i n t x s i : t y p e=" Constra int " xmi : id="a36" value=" true "/>

</Guard>
<Guard xmi : id="a37" name="N65969" inSucc e s s i on="a51">



APPENDIX F. EXAMPLE MODEL - XMI 275

<con s t r a i n t x s i : t y p e=" Constra int " xmi : id="a38" value=" o f f e r .
d e c i s i o n==’dec l inded ’ "/>

</Guard>
<Guard xmi : id="a39" name="N65996" inSucc e s s i on="a51�a53">

<con s t r a i n t x s i : t y p e=" Constra int " xmi : id="a40" value=" true "/>
</Guard>
<Guard xmi : id="a41" name="N66011" inSucc e s s i on="a53">

<con s t r a i n t x s i : t y p e=" Constra int " xmi : id="a42" value=" o f f e r .
d e c i s i o n==’dec l inded ’ "/>

</Guard>
<Guard xmi : id="a43" name="N66038" inSucc e s s i on="a54">

<con s t r a i n t x s i : t y p e=" Constra int " xmi : id="a44" value=" o f f e r .
d e c i s i o n==’accepted ’ "/>

</Guard>
<Guard xmi : id="a45" name="N66065" inSucc e s s i on="a55�a56">

<con s t r a i n t x s i : t y p e=" Constra int " xmi : id="a46" value=" true "/>
</Guard>
<Guard xmi : id="a47" name="N66080" inSucc e s s i on="a56">

<con s t r a i n t x s i : t y p e=" Constra int " xmi : id="a48" value=" true "/>
</Guard>
<Guard xmi : id="a49" name="N66095" inSucc e s s i on="a55">

<con s t r a i n t x s i : t y p e=" Constra int " xmi : id="a50" value=" true "/>
</Guard>
<Succe s s i on xmi : id="a51" predec e s s o r="a11" su c c e s s o r="a26" guard="

a31�a37�a39"/>
<Succe s s i on xmi : id="a52" predec e s s o r="a11" su c c e s s o r="a18" guard="

a31�a33"/>
<Succe s s i on xmi : id="a53" predec e s s o r="a18" su c c e s s o r="a26" guard="

a35�a41�a39"/>
<Succe s s i on xmi : id="a54" predec e s s o r="a18" su c c e s s o r="a23" guard="

a35�a43"/>
<Succe s s i on xmi : id="a55" predec e s s o r="a23" guard="a49�a45"

f ina lSuccOf="a10"/>
<Succe s s i on xmi : id="a56" predec e s s o r="a26" guard="a47�a45"

f ina lSuccOf="a10"/>
<Succe s s i on xmi : id="a57" su c c e s s o r="a11" guard="a29"/>

</xmi:XMI>



APPENDIX F. EXAMPLE MODEL - XMI 276



Appendix G

Changed Contract Negotiation

Model Example

This model bases on the example model of Section 8.1.1 and contains all changed re-
quirements as listed in Section 8.1.3. It was used for validation purposes in Chapter
8.

G.1 Changed Visual UML Model

ViewAndEdit ViewAndEditactivity [   ]

<<UserAction>>
EnterSpecificContractData

Contract Contract

<<UserAction>>
EditMasterData

Contract

Contract

<<SystemAction>>
ValidateMasterData

Contract

Contract

 [contract.masterDataIsValid=='false']

 [contract.masterDataIsValid=='true']

Figure G.1.1: Changed Edit Data Sub-Process

277



APPENDIX G. CHANGED CONTRACT NEGOTIATION MODEL EXAMPLE 278

ContractDiagramm ContractDiagrammactivity [   ]

ConditionConfirmation : 
ConditionConfirmation

ConditionSpecification : 
ConditionSpecification

<<UserAction>>
BrokerReviewerDecides

Contract

Contract

<<SystemAction>>
AssignBroker

Contract

Contract

<<SystemAction>>
SendBoundMessage

Contract

<<SystemAction>>
AssignUnderwriter

Contract Contract

<<UserAction>>
ClientCreatesOffer

Contract

ViewAndEdit : 
ViewAndEdit

<<UserAction>>
ForwardToCollege

Contract

Contract

<<UserAction>>
BrokerSubmits

Contract

Contract

<<UserAction>>
ChooseNextBroker

Action

BrokerAction

<<SystemAction>>
SendBackToClient

Contract

Contract

<<UserAction>>
ModifyOfferState

Contract

Contract

<<SystemAction>>
SaveAsDraft

Contract

Contract

<<SystemAction>>
CreateNewOffer

Contract

<<SystemAction>>
BindContract

Contract

Contract

<<SystemAction>>
LoadContract

Contract
ContractRequest

<<SystemAction>>
SendNotification

Contract

<<UserAction>>
ShowContract

Contract

<<UserAction>>
CancelOffer

Contract

Contract

<<UserAction>>
BrokerDecides

Contract
Contract

<<UserAction>>
InputContractID

ContractRequest

Local Postcondition = 
contract.state=='pending'

Local Precondition = 
contract.state=='accepted' 
Local Postcondition = 
contract.state=='bound'

Local Postcondition = 
contract.state=='canceled' 
Local Precondition = 
contract.state=='bound'

Local Precondition = 
contract.state=='bound'

 [contract.state=='withdrawn']

 [contract.state=='declined'] [contract.state=='undecided']

 [brokerAction.action=='sendBack']

 [contract.exists==false]

 [contract.state=='rejected'] [contract.state=='rejected']

 [brokerAction.action=='forward']

 [contract.exists=='true' && 
contract.state=='bound']

 [contractRequest.contractId=='0' && 
contractRequest.user=='Client']

 [contract.state=='undecided']

  [brokerAction.action=='saveAsDraft']

 [contract.needReview=='true']

brokerAction=='decide'

 [contract.brokerDecision=='accepted']

 [contract.exists=='true' && 
contract.state=='undecided']

 [contractRequest.contractId=='0' && 
contractRequest.user=='Broker']

 [contract.needReview=='false']

 [contractRequest.contractId!='0']

 [contract.state=='accepted']

 [contract.state=='accepted']

Figure G.1.2: Changed Activity Diagram “ContractDiagram”



APPENDIX G. CHANGED CONTRACT NEGOTIATION MODEL EXAMPLE 279

ConditionSpecification ConditionSpecificationactivity [   ]

<<SystemAction>>
SentAcceptanceMessage

Contract

<<UserAction>>
UWReviewerDecides

Contract Contract

<<SystemAction>>
SentDeclinatureMessage

Contract
<<UserAction>>

ShowFinalContract

<<UserAction>>
UWSpecifiesConditions

Contract
Contract

<<SystemAction>>
SendBackToBroker

Contract Contract

<<UserAction>>
UWReviewsContract

Contract

<<UserAction>>
NextUWAction

UwAction

ExpertChat : 
ExpertChat

Local Postcondition = 
contract.state=='undecided'

Local Postcondition = 
contract.state=='accepted'

Local Precondition = 
contract.state=='pending'

 [uwAction.action=='sendBack']

 [contract.state=='declined']

 [contract.state=='declined']

 [uwAction.action=='expertChat']

 [uwAction.action=='decide']

 [contract.state=='accepted']

 [contract.state=='pending']

Figure G.1.3: Changed Condition Specification Sub-Process

ExpertChat ExpertChatactivity [   ]

<<UserAction>>
AnswerQuestion

Contract Contract <<UserAction>>
AskQuestion

Contract
Contract

<<UserAction>>
ReadAnswer

Contract

UwAction

UwAction.action=='expertChat'

UwAction.action=='finishExpertChat'

Figure G.1.4: Changed Expert Chat Sub-Process



APPENDIX G. CHANGED CONTRACT NEGOTIATION MODEL EXAMPLE 280

ConditionConfirmation ConditionConfirmationactivity [   ]

<<UserAction>>
BrokerDecideConditions

Contract

Contract

<<SystemAction>>
SendWithdrawnMessage

Contract

<<UserAction>>
BrokerReviewDecides

Conditions
Contract

Contract

Local Precondition = 
contract.state=='withdrawn'

Local Precondition = 
contract.state=='accepted'

 [contract.state=='accepted']

 [contract.state=='accepted']

 [contract.state=='withdrawn'] [contract.state=='withdrawn']

Figure G.1.5: Changed Condition Confirmation Sub-Process

package ClassesData [   ]

-broker : String
-needReview : Boolean
-conditions : String
-valid : Boolean
-state : String
-contractId : long
-reviewerDecision : String
-masterDataIsValid : String
-brokerDecision : String
-uwDecision

Contract

-user : String
-contractId : long

ContractRequest

-action : String

BrokerAction

-action : String

UwAction

Figure G.1.6: Changed Class Diagram

state machine Contract:state Contract:state[   ]

bound

rejected

withdrawn
declined

canceled

accepted

undecided

pending

expired

Figure G.1.7: Changed Contract Domain States and their Transitions



APPENDIX G. CHANGED CONTRACT NEGOTIATION MODEL EXAMPLE 281

G.2 Results of Automated Model Comparison

Modified Processes (3)

ViewAndEdit (in process:ContractDiagramm)

In Process: ContractDiagramm (was :ContractDiagramm
)

PreCondition: --- (was: --- )

PostCondition: --- (was: --- )

 

Modified Deleted Added Unchanged

Children (4) 0 : 0 : 1 :
SendValidationMessage

3 : ValidateMasterData
EditMasterData
EnterSpecificContractData

Transitions (6) 0 : 1 : ValidateMasterData
-->
EnterSpecificContractData

2 : ValidateMasterData
-->
SendValidationMessage
SendValidationMessage
-->
EnterSpecificContractData

4 :
EnterSpecificContractData
--> (o) EditMasterData
--> ValidateMasterData o
--> EditMasterData
ValidateMasterData -->
EditMasterData

Inparameter
(0)

n/a 0 : 0 : 0 :

Outparameter
(0)

n/a 0 : 0 : 0 :

ExpertChat (in process:ConditionSpecification)

In Process: ConditionSpecification (was
:ConditionSpecification )

PreCondition: --- (was: --- )

PostCondition: --- (was: --- )

 

Modified Deleted Added Unchanged

Children (3) 0 : 0 : 0 : 3 : AskQuestion
AnswerQuestion
ReadAnswer

Transitions (4) 2 : o --> AskQuestion
ReadAnswer --> (o)

1 : ReadAnswer -->
AskQuestion

0 : 2 : AnswerQuestion
--> ReadAnswer
AskQuestion -->
AnswerQuestion

Inparameter
(0)

n/a 0 : 0 : 0 :

Outparameter
(0)

n/a 0 : 0 : 0 :

ContractDiagramm (in process:---)

Deleted Processes (0)

Added Processes (0)

Amabulo ModelDiff - Explore the Difference file:///data/projekte/_Dissertation_Code/diff-report.xhtml

1 von 2 08/12/2009 18:09

Figure G.2.1: Model Comparison Tool, Screenshot 1



APPENDIX G. CHANGED CONTRACT NEGOTIATION MODEL EXAMPLE 282

Modified Processes (3)

ViewAndEdit (in process:ContractDiagramm)

ExpertChat (in process:ConditionSpecification)

ContractDiagramm (in process:---)

In Process: --- (was :--- )

PreCondition: --- (was: --- )

PostCondition: --- (was: --- )

 

Modified Deleted Added Unchanged

Children (26) 0 : 1 : SendNotification 0 : 26 : SendBackToClient
SendBoundMessage
AssignBroker
SendWithdrawnMessage
CreateNewOffer LoadContract
SentDeclinatureMessage
AssignUnderwriter BindContract
SaveAsDraft ClientCreatesOffer
CancelOffer ReviewerSubmit
BrokerDecides
BrokerReviewDecidesConditions
ForwardToCollege
BrokerReviewerDecides
InputContractID
ModifyOfferState
BrokerSubmits
BrokerDecideConditions
ChooseNextBrokerAction
ShowContract
ConditionConfirmation
ViewAndEdit
ConditionSpecification

Transitions
(54)

1 :
ChooseNextBrokerAction
--> SaveAsDraft

2 : ShowContract -->
SendNotification
SendNotification -->
ConditionSpecification

1 : ShowContract -->
ConditionSpecification

52 : ConditionSpecification -->
InputContractID
ConditionSpecification -->
ConditionConfirmation
ConditionSpecification -->
InputContractID ViewAndEdit
--> ChooseNextBrokerAction
ConditionConfirmation -->
InputContractID
ConditionConfirmation -->
BindContract
ChooseNextBrokerAction -->
ForwardToCollege
ChooseNextBrokerAction -->
SendBackToClient
ChooseNextBrokerAction -->
BrokerDecides
BrokerDecideConditions -->
SendWithdrawnMessage
BrokerDecideConditions -->
SendWithdrawnMessage
BrokerDecideConditions -->

Amabulo ModelDiff - Explore the Difference file:///data/projekte/_Dissertation_Code/diff-report.xhtml

1 von 3 08/12/2009 18:10
Figure G.2.2: Model Comparison Tool, Screenshot 2



APPENDIX G. CHANGED CONTRACT NEGOTIATION MODEL EXAMPLE 283

Modified Processes (3)

Deleted Processes (0)

Added Processes (0)

Unchanged Processes (2)

Modified Function (0)

Deleted Function (1)

SendValidationMessage (in process:ViewAndEdit, SystemFunction)

Added Function (1)

SendNotification (in process:ContractDiagramm, SystemFunction)

Unchanged Function (48)

Modified StateCharts (1)

Contract:state

Deleted Added Unchanged

States (9) 0 1 expired 8 undecided accepted declined
canceled withdrawn pending
bound rejected

Transitions (18) 0 1 bound --> expired 17 o --> undecided o -->
undecided bound --> canceled
o --> undecided pending -->
declined pending --> accepted
pending --> undecided o -->
undecided o --> undecided o
--> undecided o --> undecided
accepted --> bound accepted
--> withdrawn o --> undecided
undecided --> rejected
undecided --> pending o -->
undecided

Deleted StateCharts (0)

Added StateCharts (0)

Unchanged StateCharts (0)

Amabulo ModelDiff - Explore the Difference file:///data/projekte/_Dissertation_Code/diff-report.xhtml

1 von 2 08/12/2009 18:28
Figure G.2.3: Model Comparison Tool, Screenshot 3



APPENDIX G. CHANGED CONTRACT NEGOTIATION MODEL EXAMPLE 284



Bibliography

[AK02] David Akehurst and Stuart Kent. A relational approach to defining trans-
formations in a metamodel. In UML 2002 — The Unified Modeling Lan-

guage, volume 2460/2002 of Lecture Notes in Computer Science, pages 155–
178. Springer-Verlag, 2002.

[AM04] Alain Abran and James W. Moore, editors. Guide to the Software Engineering

Body of Knowledge. IEEE Computer Society, 2004.

[Apaa] Apache Software Foundation. Cayenne. http://cayenne.apache.org/ [last
checked 2010-06-14].

[Apab] Apache Software Foundation. Struts. http://struts.apache.org/ [last checked
2010-06-14].

[Bal01] Helmut Balzert. Lehrbuch der Software-Technik. Spektrum - Akademischer
Verlag, 2. edition, 2001.

[BBB+08] Nomunbilegt Batsukh, Matthias Book, Tobias Brückmann, Jens Geier,
Volker Gruhn, Alex Klebeck, and Clemens Schäfer. Automatic generation
of ruler-based user interfaces of web applications. In ICIW ’08: Proc. Third

Intl. Conf. on Internet and Web Applications and Services, pages 103–108.
IEEE Computer Society, 2008.

[BBB09] Gordon Blair, Nelly Bencomo, and Robert B.France. Models@Run.Time.
Computer, 42(10):22–27, 2009.

[BBF+01] Beatrice Berard, Michel Bidoit, Alain Finkel, Francois Laroussinie, Antoine
Petit, Laure Petrucci, Philippe Schnoebelen, and Pierre McKenzie. Systems

and Software Verification - Model-Checking Techniques and Tools. Springer-
Verlag, 2001.

285



BIBLIOGRAPHY 286

[BCK03] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice.
Addison-Wesley, 2003.

[BCT05] Alan Brown, Jim Conallen, and Dave Tropeano. Model, modeling and model-
driven architecture (MDA). In Sami Beydeda, Matthias Book, and Volker
Gruhn, editors, Model-Driven Software Development, pages 3–18. Springer-
Verlag, 2005.

[BDH+05] Behzad Bordbar, Dirk Draheim, Matthias Horn, Ina Schulz, and Gerald We-
ber. Integrated model-based software development, data access, and data
migration. In Model Driven Engineering Languages and Systems (MoDELS

2005), volume 3713/2005 of Lecture Notes in Computer Science. Springer-
Verlag, 2005.

[Ber96] Philip A. Bernstein. Middleware: a model for distributed system services.
Communications of the ACM, 39(2):86–98, 1996.

[BG01] Jean Bézivin and Olivier Gerbé. Towards a precise definition of the omg/mda
framework. In ASE ’01: Proceedings of the 16th IEEE International Confer-

ence on Automated Software Engineering, page 273, Washington, DC, USA,
2001. IEEE Computer Society.

[BG08] Tobias Brückmann and Volker Gruhn. Amabulo - a model architecture for
business logic. In ECBS 2008. 15th Annual IEEE International Conference

and Workshop on the Engineering of Computer Based Systems, pages 445–
452. IEEE Computer Society, 2008.

[BG09] Tobias Brückmann and Volker Gruhn. Modellierung und Qualitätssicherung
von UML-Modellen der Geschäftslogik von Informationssystemen (in Ger-
man). Software Engineering 2009, P-143, 2009.

[BG10] Tobias Brückmann and Volker Gruhn. An architectural blueprint for model
driven development and maintenance of business logic for information sys-
tems. In Proceedings of the 4th European Conference on Software Architecture

(ECSA2010), 2010.

[Bor] Borland Software Corporation. Borland Together.
http://www.borland.com/together [last checked 2010-06-14].



BIBLIOGRAPHY 287

[BVJ] Jean Bézivin, Patrick Valduriez, and Frédéric Jouault. ATL (ATLAS Trans-
formation Language). http://www.eclipse.org/m2m/atl/ [last checked 2009-
09-23].

[CCT95] Gerardo Canfora, Aniello Cimitile, and Maria Tortorella. Prolog for software
maintenance. In SEKE’95, The 7th International Conference on Software

Engineering and Knowledge Engineering, pages 478–486. Knowledge Systems
Institute, 1995.

[CFB00] Stefano Ceri, Piero Fraternali, and Aldo Bongio. Web Modeling Language
(WebML): a modeling language for designing web sites. Computer Networks,
33(1-6):137–157, 2000.

[CH03] Krzysztof Czarnecki and Simon Helsen. Classification of model transforma-
tion approaches. In OOPSLA’03 Workshop on Generative Techniques in the

Context of Model-Driven Architecture, 2003.

[Che76] Peter Pin-Shan Chen. The entity-relationship model – toward a unified view
of data. Transactions on Database Systems (TODS), 1(1):9–36, 1976.

[CKK02] Paul Clements, Rick Kazman, and Mark Klein. Evaluating Software Architec-

tures - Methodes and Case Studies. Addison-Wesley, 2002.

[CN01] Paul Clements and Linda Northrop. Software Product Lines: Practices and

Patterns. Addison-Wesley, 2001.

[Cod90] Edgar F. Codd. The Relational Model for Database Management: Version 2.
Addison-Wesley, 1990.

[CPN] CPN Group, University of Aarhus, Denmark. CPNTOOLS- Computer Tool
for Coloured Petri Nets. http://wiki.daimi.au.dk/cpntools [last checked 2010-
06-14].

[Def09] Information system. In Encyclopædia Britannica. Encyclopædia Britannica,
Inc, 2009.

[DFF+] Zoé Drey, Cyril Faucher, Franck Fleurey, Vincent Mahé, and Didier Vojtisek.
Kermeta language. http://www.kermeta.org/ [last checked 2010-06-15].

[Ecla] Eclipse Foundation. eclipse. http://www.eclipse.org [last checked 2010-06-14].



BIBLIOGRAPHY 288

[Eclb] Eclipse Foundation. Viatra 2. http://eclipse.org/gmt/VIATRA2/ [last checked
2010-06-14].

[Ecl09] Eclipse Foundation. Eclipse modeling framework project (emf), 2009.

[EES09] Holger Eichelberger, Yilmaz Eldogan, and Klaus Schmid. A comprehensive
survey of UML compliance in current modelling tools. In Peter Liggesmeyer,
Gregor Engels, Jürgen Münch, Jörg Dörr, and Norman Riegel, editors, Soft-

ware Engineering 2009, volume 143 of LNI, pages 39–50. GI, 2009.

[EHK01] Gregor Engels, Reiko Heckel, and Jochen Küster. Rule-based specification of
behavioral consistency based on the UML meta-model. In UML 2001 – The

Unified Modeling Language. Modeling Languages, Concepts, and Tools, volume
2185/2001 of Lecture Notes in Computer Science, pages 272–286. Springer-
Verlag, 2001.

[EHK03] Gregor Engels, Reiko Heckel, and Jochen M. Küster. The consistency work-
bench: A tool for consistency management in UML-based development. In
UML 2003 - The Unified Modeling Language, volume 2863/2003 of Lecture

Notes in Computer Science, pages 356–359. Springer-Verlag, 2003.

[EKHG01] Gregor Engels, Jochen Küster, Reiko Heckel, and Luuk Groenewegen. A
methodology for specifying and analyzing consistency of object-oriented be-
havioral models. In ESEC/FSE-9: Proceedings of the 8th European software

engineering conference held jointly with 9th ACM SIGSOFT international

symposium on Foundations of software engineering. ACM, 2001.

[EM85] Hartmut Ehrig and Bernd Mahr. Fundamentals of Algebraic Specification I.

Equations and Initial Semantics. Springer-Verlag, 1985.

[Erl05] Thomas Erl. Service-Oriented Architecture: Concepts, Technology and Design.
Prentice Hall International, 2005.

[FBB+07] Franck Fleurey, Erwan Breton, Benoit Baudry, Alain Nicolas, and Jean-Marc
Jézéquel. Model-driven engineering for software migration in a large indus-
trial context. In Model Driven Engineering Languages and Systems (MoDELS

2007), volume 4735/2007 of Lecture Notes in Computer Science. Springer-
Verlag, 2007.



BIBLIOGRAPHY 289

[FR07] Robert France and Bernhard Rumpe. Model-driven development of complex
software: A research roadmap. In FOSE ’07: 2007 Future of Software Engi-

neering, pages 37–54. IEEE Computer Society, 2007.

[Fra] Fractis Ltd. Iceberg. http://www.geticeberg.com [last checked 2010-06-15].

[GCP01] Jaime Gómez, Cristina Cachero, and Oscar Pastor. Conceptual modeling of
device-independent web applications. IEEE Multimedia, 8(2):26–39, 2001.

[GJ07] Shirley Gregor and David Jones. The anatomy of a design theory. Journal of

the Association for Information Systems, 8(5):312–335, 2007.

[Gor06] Ian Gorton. Essential Software Architecture. Springer-Verlag, 2006.

[Har87] David Harel. Statecharts: A visual formalism for complex systems. Science of

Computer Programming, 8(3):231–274, 1987.

[IEE98] IEEE Std 1219-1998 IEEE Standard for Software Maintenance. IEEE Stan-
dards Association, 1998.

[IEE00] IEEE/EIA 12207 Software Life Cycle Processes. IEEE Standards Association,
2000.

[Int] International Business Machines Corp. (IBM). Rational Software Archi-
tect. http://www.ibm.com/software/awdtools/swarchitect [last checked 2010-
06-15].

[Int04] International Telecommunication Union (ITU). Message sequence chart (msc).
http://www.itu.int/rec/T-REC-Z.120/en [last checked 2010-06-15], 2004.

[Jen92] Kurt Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods, and

Practical Use. Springer-Verlag, 1992.

[JKW07] Kurt Jensen, Lars Michael Kristensen, and Lisa Wells. Coloured petri nets and
CPN tools for modelling and validation of concurrent systems. International

Journal on Software Tools for Technology Transfer (STTT), 2007.

[JLMT08] Stefan Jurack, Leen Lambers, Katharina Mehner, and Gabriele Taentzer. Suf-
ficient criteria for consistent behavior modeling with refined activity diagrams.
In Model Driven Engineering Languages and Systems (MoDELS 2008), volume
5301/2010 of Lecture Notes in Computer Science. Springer-Verlag, 2008.



BIBLIOGRAPHY 290

[KBC05] Audris Kalnins, Janis Barzdins, and Edgars Celms. Model transformation
language mola. In European MDA Workshops: Foundations and Applications,

MDAFA 2003 and MDAFA 2004, volume 3599/2005 of Lecture Notes in Com-

puter Science, pages 62–76. Springer-Verlag, 2005.

[KGC07] Sascha Konrad, Heather Goldsby, and Betty Cheng. i2MAP: An Incremental
and Iterative Modeling and Analysis Process. In Model Driven Engineering

Languages and Systems (MoDELS 2007), volume 4735/2007 of Lecture Notes

in Computer Science. Springer-Verlag, 2007.

[KHK+08] Jana Koehler, Rainer Hauser, Jochen Küster, Ksenia Ryndina, Jussi Van-
hatalo, and Michael Wahler. The role of visual modeling and model trans-
formations in business-driven development. In Proceedings of the Fifth Inter-

national Workshop on Graph Transformation and Visual Modeling Techniques

(GT-VMT 2006), volume 211 of Electronic Notes in Theoretical Computer

Science, pages 5–15. Elsevier Science, 2008.

[KK02] Nora Koch and Andreas Kraus. The expressive power of UML-based web
engineering. In Proceedings of the Second Int. Workshop on Web-Oriented

Software Technology (IWWOST’02), pages 105–119, 2002.

[KKRT06] Mila Keren, Andrei Kirshin, Julia Rubin, and Ahto Truu. MDA approach for
maintenance of business applications. In Model Driven Architecture – Founda-

tions and Applications, Second European Conference (ECMDA-FA 2006), vol-
ume 4066/2006 of Lecture Notes in Computer Science, pages 40–51. Springer-
Verlag, 2006.

[KNS92] Gerhard Keller, Markus Nüttgens, and August-Wilhelm Scheer. Semantis-
che Prozessmodellierung auf der Grundlage "Ereignisgesteuerter Prozessketten
(EPK)". Veröffentlichungen des Institutes für Wirtschaftsinformatik, Univer-

sität des Saarlandes, 1992.

[Lie01] Henry Lieberman. Your Wish is My Command: Programming By Example,
volume 1. Morgan Kaufmann, 2001.

[LS06] Michael Lawley and Jim Steel. Practical declarative model transformation
with Tefkat. In Satellite Events at the MoDELS 2005 Conference, volume
3844/2006 of Lecture Notes in Computer Science, pages 139–150. Springer-
Verlag, 2006.



BIBLIOGRAPHY 291

[LV02] Juan Lara and Hans Vangheluwe. AToM3: A tool for multi-formalism and
meta-modelling. In Fundamental Approaches to Software Engineering (FASE

2002), volume 2306/2002 of Lecture Notes in Computer Science, pages 174–
188. Springer-Verlag, 2002.

[Mar05] Frank Marschall. Modelltransformationen als Mittel der modellbasierten En-

twicklung von Software-Systemen. PhD thesis, Institut für Informatik der
Technischen Universität München, 2005.

[MCS02] Rakesh Mohan, Mitchell Cohen, and Josef Schiefer. A State Machine Based
Approach for a Process Driven Development of Web-Applications. In Advanced

Information Systems Engineering (CAiSE 2002), volume 2348/2006 of Lecture

Notes in Computer Science. Springer-Verlag, 2002.

[Mic] Microsoft Corporation. .NET. http://www.microsoft.com/net [last checked
2010-06-14].

[MID] MID GmbH. MID Innovator. http://www.mid.de [last checked 2010-06-14].

[MVG06] Tom Mens and Pieter Van Gorp. A taxonomy of model transformation. In
Proceedings of the International Workshop on Graph and Model Transforma-

tion (GraMoT 2005), volume 152 of Electronic Notes in Theoretical Computer

Science, pages 125–142. Elsevier, 2006.

[NoM] NoMagic, Inc. Magic Draw. http://www.magicdraw.com [checked: 2010-04-
25].

[Now08] Frank Nowak. Semantische Integration verschiedener UML-Diagramme zur
Unterstützung der modellzentrierten Software-Entwicklung. Diploma thesis.
Department of Computer Science, University of Leipzig, 2008.

[NS73] Isaac Nassi and Ben Shneiderman. Flowchart techniques for structured pro-
gramming. ACM SIGPLAN Notices, 8(8):12–26, 1973.

[Obj06] Object Management Group (OMG). Meta Object Facility (MOF) Core Spec-
ification 2.0. http://www.omg.org/spec/MOF/2.0 [last checked 2010-06-15],
2006.

[Obj07a] Object Management Group (OMG). Meta Object Facility (MOF)
2.0 Query/View/Transformation Specification. http://www.omg.org/cgi-
bin/doc?ptc/2007-07-07 [last checked 2010-06-15], 2007.



BIBLIOGRAPHY 292

[Obj07b] Object Management Group (OMG). Unified Modeling Language (UML):
Superstructure, Version 2.1.2. http://www.omg.org/spec/UML/2.1.2 [last
checked 2010-06-15], 2007.

[Obj07c] Object Management Group (OMG). XML Metadata Interchange (XMI),
v2.1.1. http://www.omg.org/spec/XMI/2.1.1 [last checked 2010-06-15], 2007.

[Obj09] Object Management Group (OMG). Business Process Modeling Notation
(BPMN) 1.2. http://www.omg.org/spec/BPMN/1.2 [last checked 2010-06-
14], January 2009.

[Oraa] Oracle Corporation. Core J2EE Patterns. http://java.sun.com/blueprints/
corej2eepatterns/Patterns [last checked 2010-06-15].

[Orab] Oracle Corporation. EJB 3.0 Specification Final Release. http://java.sun.com/
products/ejb/docs.html [last checked 2010-06-16].

[Orac] Oracle Corporation. J2EE 1.4 Glossary. http://java.sun.com/javaee/ refer-
ence/glossary [last checked 2010-06-15].

[Orad] Oracle Corporation. JavaBeans API Specifications. http://java.sun.com/
javase/technologies/desktop/javabeans/docs/spec.html [last checked 2010-06-
15].

[Orae] Oracle Corporation. Oracle Application Express. http://apex.oracle.com [last
checked 2010-06-14].

[Oraf] Oracle Corporation. Oracle designer. http://www.oracle.com/technology/
products/designer/index.html [last checked 2010-06-15].

[Ora08] Oracle Corporation. JavaServer Faces Technology. http://java.sun.com/
javaee/javaserverfaces [last checked 2010-06-15], 2008.

[OSV08] Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala: A

Comprehensive Step-by-step Guide. Artima Inc, 2008.

[Pet] Petri Nets Steering Committee, TGI group at the University of
Hamburg, Germany. Petri Nets World. http://www.informatik.uni-
hamburg.de/TGI/PetriNets [last checked 2010-06-15].



BIBLIOGRAPHY 293

[Pet62] Carl Adam Petri. Kommunikation mit Automaten. Bonn: Institut für Instru-
mentelle Mathematik, Schriften des IIM Nr. 2, 1962.

[PMBC09] Alan Paller, Bob Martin, Mason Brown, and Steve Christey. 2009
CWE/SANS Top 25 Most Dangerous Programming Errors. Technical report,
SANS Institute, 2009.

[Poh07] Klaus Pohl. Requirements Engineering - Grundlagen, Prinzipien, Techniken.
dpunkt.verlag, 2007.

[Reda] Red Hat, Inc. Hibernate - Relational Persistence for Java and .NET.
http://www.hibernate.org [last checked 2010-06-15].

[Redb] Red Hat, Inc. JBoss Application Server. http://www.jboss.org/jbossas [last
checked 2010-06-15].

[Redc] Red Hat, Inc. Seam Framework. http://www.seamframework.org [last
checked: 2010-06-15].

[SB05] Tilman Seifert and Gerd Beneken. Evolution and maintenance of MDA appli-
cations. In Sami Beydeda, Matthias Book, and Volker Gruhn, editors, Model-

Driven Software Development, pages 269–286. Springer-Verlag, 2005.

[SBPM08] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF:

Eclipse Modeling Framework. Addison-Wesley, 2008.

[Sei03] Ed Seidewitz. What models mean. IEEE Software, 20(5):26–32, Sep 2003.

[SM04] Tim Schattkowsky and Wolfgang Müller. Model-based design of embedded
systems. In Proceedings of the Design, Automation and Test in Europe Con-

ference and Exhibition (DATE’04), 2004.

[SM05] Tim Schattkowsky and Wolfgang Müller. A UML virtual machine for embed-
ded systems. In Proceedings of the International Conference on Information

Systems - New Generations (ISNG 2005), 2005.

[SMC74] Wayne P. Stevens, Glenford J. Myers, and Larry L. Constantine. Structured
design. IBM Systems Journal, 13(2):155, 1974.

[SMG06] Christian Seybold, Silvio Meier, and Martin Glinz. Scenario-driven modeling
and validation of requirements models. In Proceedings of the 2006 International

Workshop on Scenarios and State Machines (SCESM’06). ACM, 2006.



BIBLIOGRAPHY 294

[Smi99] Graeme Smith. The Object-Z Specification Language, volume 1 of Advances in

Formal Methods. Springer-Verlag, 1999.

[Spa] Sparx Systems. Enterprise Architect. http://www.sparxsystems.com [last
checked 2010-06-15].

[Tra06] Laurence Tratt. The MT model transformation language. In Proceedings of

the 2006 ACM Symposium on Applied Computing (SAC ’06), pages 1296–1303.
ACM, 2006.

[vdAtH05] Wil van der Aalst and Arthur ter Hofstede. YAWL: yet another workflow
language. Information Systems, 30(4):245 – 275, 2005.

[W3C99] W3C. XSL Transformations (XSLT) - Version 1.0. http://www.w3.org/
TR/xslt [last checked 2010-06-15], 1999.

[Web] Web Models s.r.l. Webratio. http://www.webratio.com [last checked 2010-06-
15].

[Wil03] Edward D. Willink. UMLX: A graphical transformation language for MDA.
Technical report, Thales Research and Technology Limited, 2003.

[WL06] Daniel Waddington and Patrick Lardieri. Model-centric software development.
IEEE Computer, 39(2):28–29, Feb 2006.

[WSG08] Jules White, Douglas Schmidt, and Aniruddha Gokhale. Simplifying auto-
nomic enterprise java bean applications via model-driven engineering and sim-
ulation. Software and Systems Modeling, 7(1):3–23, 02 2008.

[Zha07] Kang Zhang. Visual Languages and Applications. Springer-Verlag, 2007.



List of Figures

2.3.1 Illustration of Improper Input Validation . . . . . . . . . . . . . . . . . . 18
2.4.1 Absolute Abstraction Distance . . . . . . . . . . . . . . . . . . . . . . . 22
2.6.1 Three-Tier Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.1 Overview of Amabulo Infrastructure Blueprint . . . . . . . . . . . . . . . 42
3.2.1 Amabulo Setup and Integration Process . . . . . . . . . . . . . . . . . . 49
3.2.2 Amabulo Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.0.1 Detailed View on the Visual Model Layer . . . . . . . . . . . . . . . . . 56
4.1.1 EPC Model Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.1.2 BPMN Model Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.1.3 CPN Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.1.4 State Chart Model Example . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.1.5 MSC Model Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.1.6 YAWL Model Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.1.7 UML Model Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2.1 UML Language Extension . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2.2 Example Stereotype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2.3 Amabulo UML Profile: Overview of Model Elements of Activity Diagrams 71
4.2.4 Amabulo UML Profile: Overview of Model Elements of Class Diagrams 72
4.2.5 Amabulo UML Profile: Overview of Model Elements of State Machine

Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2.6 Four Eyes Decision Process, UML Model . . . . . . . . . . . . . . . . . . 75
4.3.1 Abstract Example Transformation . . . . . . . . . . . . . . . . . . . . . 81
4.3.2 Control Flow Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.3.3 Example Transformation Rule . . . . . . . . . . . . . . . . . . . . . . . . 83

295



LIST OF FIGURES 296

5.0.1 Detailed View on Abstract Model Layer . . . . . . . . . . . . . . . . . . 88
5.1.1 Without Abstract Model Layer . . . . . . . . . . . . . . . . . . . . . . . 90
5.1.2 With Abstract Model Layer . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2.1 Process Modeling Concepts Supported by Visual Modeling Languages . 92
5.2.2 Observed Structure of Business Functions . . . . . . . . . . . . . . . . . 97
5.3.1 Amabulo Meta Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.3.2 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.4.1 Different Versions of a Logical Equivalent Visual Model . . . . . . . . . 121
5.4.2 Example Model, Visually Modified Only . . . . . . . . . . . . . . . . . . 123
5.4.3 Changed Four Eyes Decision Process, UML Model . . . . . . . . . . . . 125
5.4.4 Model Comparison Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.0.1 Detailed View on Abstract System Layer . . . . . . . . . . . . . . . . . . 139
6.3.1 Colored Petri Nets, Overview . . . . . . . . . . . . . . . . . . . . . . . . 147
6.4.1 CPN Mapping Collection, Part 1 . . . . . . . . . . . . . . . . . . . . . . 152
6.4.2 CPN Mapping Collection, Part 2 . . . . . . . . . . . . . . . . . . . . . . 156
6.4.3 Nested Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.4.4 Mapping of Input and Output Parameter . . . . . . . . . . . . . . . . . 161
6.4.5 Mapping of Output Only Parameter . . . . . . . . . . . . . . . . . . . . 164
6.4.6 Four Eyes Decision Process Example in CPN . . . . . . . . . . . . . . . 166
6.5.1 CPNTools, Screenshot . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

7.0.1 Overview of Code Generation Layer . . . . . . . . . . . . . . . . . . . . 172
7.1.1 Delegation Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
7.1.2 Interface Integration Example . . . . . . . . . . . . . . . . . . . . . . . . 176
7.2.1 Application Tier Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 178
7.2.2 Generated Business Object Triple . . . . . . . . . . . . . . . . . . . . . . 179
7.2.3 Generated Processes and Actions . . . . . . . . . . . . . . . . . . . . . . 181
7.2.4 UML Sequence Diagram: Call of a User Function . . . . . . . . . . . . . 183
7.2.5 UML Sequence Diagram: Call of a User Function . . . . . . . . . . . . . 185
7.3.1 Screenshot of Code Comparison Tool . . . . . . . . . . . . . . . . . . . . 187

8.1.1 Contract Negotiation Process, Overview . . . . . . . . . . . . . . . . . . 192
8.1.2 Edit Data Sub-Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
8.1.3 Condition Specification Sub-Process . . . . . . . . . . . . . . . . . . . . 193
8.1.4 Expert Chat Sub-Process . . . . . . . . . . . . . . . . . . . . . . . . . . 194



LIST OF FIGURES 297

8.1.5 Condition Confirmation Sub-Process . . . . . . . . . . . . . . . . . . . . 194
8.1.6 Class Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
8.1.7 Contract Domain States and their Transitions . . . . . . . . . . . . . . . 196
8.3.1 Excerpt of Process “Contract Diagram” . . . . . . . . . . . . . . . . . . . 205
8.3.2 Example for Violated Domain States (Top: Excerpt of a Process View,

Bottom: Excerpt of a Domain State Chart) . . . . . . . . . . . . . . . . 210
8.3.3 Code Comparison Tool, Screenshot . . . . . . . . . . . . . . . . . . . . . 212

9.2.1 Related Work Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

A.1.1Examples for UserActions . . . . . . . . . . . . . . . . . . . . . . . . . . 246
A.1.2Examples for SystemActions . . . . . . . . . . . . . . . . . . . . . . . . . 246

G.1.1Changed Edit Data Sub-Process . . . . . . . . . . . . . . . . . . . . . . 277
G.1.2Changed Activity Diagram “ContractDiagram” . . . . . . . . . . . . . . 278
G.1.3Changed Condition Specification Sub-Process . . . . . . . . . . . . . . . 279
G.1.4Changed Expert Chat Sub-Process . . . . . . . . . . . . . . . . . . . . . 279
G.1.5Changed Condition Confirmation Sub-Process . . . . . . . . . . . . . . . 280
G.1.6Changed Class Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
G.1.7Changed Contract Domain States and their Transitions . . . . . . . . . 280
G.2.1Model Comparison Tool, Screenshot 1 . . . . . . . . . . . . . . . . . . . 281
G.2.2Model Comparison Tool, Screenshot 2 . . . . . . . . . . . . . . . . . . . 282
G.2.3Model Comparison Tool, Screenshot 3 . . . . . . . . . . . . . . . . . . . 283



LIST OF FIGURES 298



List of Tables

2.1 Categories of Software Models . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 Evaluation of Behavioral Modeling Languages . . . . . . . . . . . . . . . 66
4.2 Comparison of Model Transformation Languages . . . . . . . . . . . . . 80

8.1 Sample Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
8.2 Elements in Domain Chart Compared to Elements in Activity Diagrams 200
8.3 Duration and Error Rates for Manual Domain State Chart Identification 201
8.4 Generated Artifacts from Contract Negotiation Model . . . . . . . . . . 210
8.5 Comparison of Manually Analyzed Code Artifacts . . . . . . . . . . . . . 211

10.1 Amabulo Design Theory Components (following Gregor and Jones [GJ07])237

C.1 Table of Notation: Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
C.2 Table of Notation: Relations . . . . . . . . . . . . . . . . . . . . . . . . . 262
C.3 Table of Notation: Convenience Functions . . . . . . . . . . . . . . . . . 263

299



LIST OF TABLES 300



Selbständigkeitserklärung

Hiermit erkläre ich, die vorliegende Dissertation selbständig und ohne unzulässige fremde
Hilfe angefertigt zu haben. Ich habe keine anderen als die angeführten Quellen und
Hilfsmittel benutzt und sämtliche Textstellen, die wörtlich oder sinngemäß aus veröf-
fentlichten oder unveröffentlichten Schriften entnommen wurden, und alle Angaben, die
auf mündlichen Auskünften beruhen, als solche kenntlich gemacht. Ebenfalls sind alle
von anderen Personen bereitgestellten Materialen oder erbrachten Dienstleistungen als
solche gekennzeichnet.

Tobias Brückmann
Leipzig, den 28. Juni 2010

301



302



Curriculum Vitae

Ausbildung

1999-2004 Studium der Medieninformatik an der TU Dresden
Abschluss: Dipl.-Medieninf.

1998 Abitur
Elisabeth-Gymnasium Eisenach

Berufserfahrung

Mai-August 2009 University of Tartu, Estland
Visiting PhD Student als Stipendiat der Archimedes
Sihtasutus

seit 2005 Universität Leipzig
Wissenschaftlicher Mitarbeiter an der Professur für
Angewandte Telematik/e-Business,
Institut für Informatik

2004 Architekturbüro Sickmann & Noth Leipzig
Freier Mitarbeiter

2000-2003 TU Dresden
Studentischer Mitarbeiter

Gremientätigkeit

Mai 2009-Juni 2010 Mitglied im Fakultätsrat
der Fakultät für Mathematik und Informatik
Universität Leipzig

2000-2003 Prüfungsausschuss Diplom-Medieninformatik
TU Dresden

303


	Introduction
	Motivation
	Information Systems 
	Changing Requirements
	Software Maintenance
	Maintenance Efforts
	Issues in Software Maintenance and Development

	Abstraction and Automation with Software Models
	Structured Abstraction by Software Models
	Automation by Model Processing

	Model Driven Software Engineering
	Model-to-Model Transformation
	Model-to-Code Transformation
	Model Interpretation

	Automation Approaches for Information Systems
	Three-Tier Architecture 
	Automation Approaches for Presentation Layer
	Automation Approaches for Persistency Layer
	Automation Approaches for Business Logic

	Thesis

	Architectural Overview
	Amabulo Infrastructure BlueprintA preliminary version of the discussion in this section is accepted for publication in amabulo-ecsa-2010.
	Visual Model Layer
	Abstract Model Layer
	Abstract System Layer
	Code Generation Layer
	Application Layer

	Amabulo Methodology
	Setup and Integration Phase
	Development and Maintenance Phase

	Summary

	Visual Model Layer
	Visual Modeling Languages for System's Behavior
	Requirements for Visual Modeling Languages
	Overview and Evaluation of Visual Modeling Languages 
	Conclusion

	Amabulo UML-Profile - A Meta Model for Modeling Business LogicA preliminary version of the discussion in this section was published in Bruckmann:2008p429.
	UML Language Architecture and Customization
	Amabulo Process View: UML Activity Diagram
	Amabulo Structural View: UML Class Diagram
	Amabulo State View: UML State Diagram
	Example Model

	Mapping from Visual Model into Abstract Model
	Requirements for Model Transformation Languages
	Evaluation of Transformation Languages
	UML Profile Mapping into Abstract Model Layer

	Requirements for Visual Modeling Tools
	Summary

	Abstract Model Layer
	A Domain Specific Model as Model in the Middle
	Requirements for a Meta Model for Business Logic
	Major Modeling Concepts in Visual Behavior Models
	Major Control Structures in Business Logic Code
	Conclusion

	Amabulo Meta Model Definition
	Elements for Structural Modeling
	Elements for State Modeling
	Elements for Process Modeling
	Implementation

	Amabulo Model Comparison Tool
	Semantic vs. Syntactic Differences
	Comparison Function for Amabulo Models
	Implementation

	Summary

	Abstract System Layer
	Purpose of an Abstract System Representation
	Setup and Integration Phase 
	Maintenance and Development Phase 

	What Robustness Means
	Assumptions for the Need of Robustness
	Assurance of Local Conditions
	Assurance of Global Domain States

	Coloured Petri Nets
	Transformation from Amabulo Model into Coloured Petri NetsA preliminary version of the ideas of this section in se2009.
	Mapping of Business Objects and State Charts
	Mapping of Processes
	Mapping of Functions with Output Parameter
	Example CPN 

	CPN Analysis and Simulation ToolA preliminary version of the discussion in this section was published in se2009.
	Analysis Opportunities

	Summary

	Code Generation LayerA preliminary version of the discussion in this section is accepted for publication in amabulo-ecsa-2010.
	Aspects of Code Integration
	Integration Issues and Approaches

	J2EE-Code Generator
	Architectural Overview of a Generated J2EE-Application
	Business Objects
	Processes
	User Functions
	System Functions

	Code Comparison Tool
	Summary

	Validation
	Industrial Example Scenario
	Example Model
	Sample Infrastructure
	Changed Requirements

	Improvements Considering Software Modeling 
	Semantic Abstraction through Domain State Modeling
	Tool Supported Impact Analysis
	Reuse of Matured Modeling Languages
	Systems Simulation before Code Generation 

	Improvements Considering Program Implementation
	Reliable Assertions on System's Robustness
	Support Program Understanding
	Prevent Loss of Handwritten Code 
	Complete Implementation of Systems' Requirements
	Extensive Testing Process
	Maintainability - Prevent Loss of Structure
	Maintainability - Inconsistent Documentation

	Improvements During Setup and Integration Phase
	Clear Separation of Visual Models and Code Generators
	Reduced Complexity of Meta Models
	Precisely Defined Semantics
	Reuse of Existing Analysis and Simulation Concepts and Tools

	Summary

	Related Work
	Criteria Indicating Related Work
	Discussion of Related Work

	Discussion
	Contribution
	Conclusion
	Further Research Opportunities

	Amabulo UML Profile Definition
	Activity Diagram

	UML to Amabulo Transformation
	Amabulo Model Elements
	Example Model - in Amabulo Terms
	Amabulo Model Definition - Ecore Model
	Example Model - XMI 
	Changed Contract Negotiation Model Example
	Changed Visual UML Model
	Results of Automated Model Comparison

	Bibliography

