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ABSTRACT 

Models and simulation furnish abstractions to manage complexities allowing 

engineers to visualize the proposed system and to analyze and validate system behavior 

before constructing it. Unified Modeling Language (UML) and its systems engineering 

extension, Systems Modeling Language (SysML), provide a rich set of diagrams for 

systems specification. However, the lack of executable semantics of such notations limits 

the capability of analyzing and verifying defined specifications. This research has developed 

an executable system architecting framework based on SysML-CPN transformation, which 

introduces dynamic model analysis into SysML modeling by mapping SysML notations to 

Colored Petri Net (CPN), a graphical language for system design, specification, simulation, 

and verification. A graphic user interface was also integrated into the CPN model to 

enhance the model-based simulation. A set of methodologies has been developed to 

achieve this framework. The aim is to investigate system wide properties of the proposed 

system, which in turn provides a basis for system reconfiguration. This framework can be 

applied to general system development. For demonstration purpose, the Global Earth 

Observation System of Systems (GEOSS) was selected as an example and was modeled as 

a distributed information system that involves multi-task concurrent processing driven by 

discrete events. The simulation results helped to refine the architecture design, and finally 

verified and validated the behavior and functionality of the system being modeled. The 

Model Driven Architecture (MDA) approach from software engineering has also been 

investigated and applied in the systems engineering context to create a SysML-based 

modeling process, which keeps all the SysML diagrams related to each other and provides 

a cue for what diagrams to build and how to build them.  
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1. INTRODUCTION 

Document driven approaches to system development have been a predominant 

approach to design in the past. As systems become increasingly complex, this type of 

approach is falling short because the document itself is always up for interpretation and is 

subject to misunderstanding [1]. This problem can be solved with formal specifications by 

models since formal models have well defined semantics that are more difficult to 

misinterpret than a textual specification. Model-based systems engineering leverages the 

use of models across many of activities in system development which allows an enormous 

potential for increasing design productivity, system quality, and lifetime by shifting the 

bulk of design efforts to early phases [2, 3]. Models can be used both to analyze the 

problem domain and to describe and specify the architecture for the solution domain. 

However, the only way for one to be sure about the correctness of the models is to test 

those models. The specification of formal models, execute those models and analyze the 

simulation results creates a new paradigm of systems engineering – executable system 

architecting. A forma1 model of the architecture design is needed for specifying and 

proving the system properties. An executable model is capable of generating dynamic 

behavior and can be used to check the overall integrity and internal consistency of the 

architecture model, evaluate the specifications of the system, refine the system design, 

forecast its performance, verify its functionality, experiment different system 

configurations, and select the right design alternatives. 

Despite nearly universal acceptance by the software industry as the standard object 

oriented design notation, the Unified Modeling Language (UML) is weak in defining 

precise dynamic semantics [4, 5, 6]. The Systems Modeling Language (SysML) extends 

UML to allow modeling of a wide range of systems but still lacks execution semantics. 

Consequently, the UML/SysML-based designs are not formally verifiable. This research 

proposes a design methodology that supplements SysML modeling with dynamic model 

analysis capability using Colored Petri Net (CPN). CPN can provide a formal dynamic 

semantic framework for the SysML notations plus the behavioral modeling and analysis 

strength needed by system designers. Accordingly, a conversion procedure was developed 

to facilitate the transformation from SysML specifications to CPN models. This procedure 
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is based on the condition/event interpretation of the place/transition of CPN. The purpose 

of developing an executable architecture for the proposed system in this thesis is to 

facilitate the investigation of the system wide properties and refine the system design based 

on the analysis. Therefore, the interactive behavior of the system components is of greater 

interest than the reactive behavior of the individual components. In order to concentrate on 

the interactive behavior, the transformation process from SysML model to CPN model in 

this thesis is primarily based on SysML sequence diagrams. 

The executable model has been extremely useful in assisting the system 

development. In this thesis, the proposed system was incrementally developed based on 

four use case scenarios. The simulation of these scenarios demonstrate that the architecture 

of the proposed system can be modified to better achieve its intended results based on the 

executable system architecting framework developed in this thesis. The executable model 

also helped to reveal missing specifications and requirements.  

Modeling can follow different paradigms depending on the system to be modeled. 

However, a system design that is resilient to change is highly desired. The development of 

Object-Oriented modeling approach has proven to be more flexible, maintainable than the 

functional decomposition paradigm and a greater potential for reuse. The Model Driven 

Architecture (MDA) approach is a more advanced way of writing specifications, which is 

still under development. The MDA initiative and the standards that support it allow the 

same model specifying business system or application functionality and behavior to be 

realized on multiple platforms [7]. This leads to greater advantages in improving 

portability, cross-platform interoperability, platform independence, domain specificity, 

reusability, productivity, and maintainability. MDA was initially developed as a software 

design approach, but its principles can also be applied to other areas such as business 

process modeling. This thesis explores MDA’s applications in the system engineering 

context.  

This research continues the work conducted by Madwaraj Rao (former M.S. 

student in Systems Engineering at the University of Missouri-Rolla) for his thesis [8-10]. 

In his work, both the Department of Defense Architecture Framework (DoDAF) and 

Systems Modeling Language (SysML) were used to model the Global Earth Observation 

System of Systems (GEOSS) by following a structured approach and an object-oriented 
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approach, respectively. The SysML model was then converted to an executable model 

represented by CPN. This CPN model was used to simulate one scenario of GEOSS. The 

behavior of the system being modeled was analyzed and verified based on the simulation. 

In this research, several use case scenarios have been considered and executed in 

parallel. This allows the analysis of concurrent behavior. The target system to be modeled 

is still GEOSS. However, the system was decomposed into lower levels of abstraction 

where physical architecture was introduced. This allows the distributed prosperities of the 

system to be modeled and analyzed. The Model Driven Architecture (MDA) approach 

from software engineering has been investigated. A SysML based modeling process, in 

systems engineering context, was developed using the advanced principles of MDA. The 

feasibility of this process is demonstrated by modeling the GEOSS. The advantages of 

using this modeling process to model the proposed system were analyzed. A new method 

was developed for converting a SysML model to a CPN model in order to facilitate the 

modeling of concurrent behavior. For the simulation, a Graphical user interface (GUI) was 

integrated into the original CPN to give graphical feedback supporting interactive control 

of the simulation. The Message Sequence Charts (MSCs) were used as a main tool for 

architecture analysis and functionality verification/ validation.  

 

1.1. MOTIVATION 

The specification and development of Network centric systems is a complex task. 

One reason is such systems often involve highly distributed and heterogeneous architecture 

and are equally distributed in their development, procurement, management, and 

maintenance. Furthermore, complexities exist not only in the individual systems but also in 

the integration of these systems. As an example, in modern computation environment, a 

distributed system often consists of a number of hardware or software components which 

are located at networked computers. These components usually proceed concurrently but 

also have to communicate and interact with each others to achieve complex work. The 

distributed nature of the system components leads to a heavy emphasis on web services, 

which allow previously incompatible applications to interoperate regardless of language, 

platform, operating systems, or physical locations. The overall management and life cycle 

maintenance of such systems are great challenges, especially when the systems are 
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continually evolving. For example, many of the new domain applications have to be 

achieved by integrating systems with other legacy systems to form a complex system of 

systems. For such systems, in many cases, it is impossible to build a real system and test its 

performance before implementation. 

Models and simulations can address these challenges by allowing engineers to 

visualize the proposed system and to evaluate the performance before constructing it. 

Models assist in managing complexities, facilitate communications, and help detect errors 

and omissions in designs. Simulation-based designs allow experiments to explore multiple 

solutions and enable early and on-going verification and validation to reduce risk and 

address problems in a cost effective way offering significant savings in time and resources. 

Unified Modeling Language (UML) has become the de facto standard modeling 

language in the design process of object-oriented system but is software centric. The 

systems engineering community has been looking for a modeling language that is 

compatible with UML but allows modeling a wide range of systems. This has resulted in 

the evolution of Systems Modeling Language (SysML). It is of great interest to see how 

SysML can support the modeling of network centric systems and how a SysML model can 

achieve a high fidelity representation of the real system. So far, relatively few approaches 

can be found in the literature investigating UML/SysML for hardware design and 

hardware/software co-design. This research will contribute to the practice of applying 

SysML in system design. 

The system engineering community benefits from the achievement of software 

engineering. The software industry has developed a large number of methodologies and 

approaches in system architecting. Many of the advance principles of these methodologies 

can be, or have been, applied in the system engineering context. The aforementioned 

modeling paradigms are examples of them. Efforts are currently underway within the 

Object Management Group (OMG) and associated organizations to enhance the UML 

(including the SysML) and MDA for use in systems engineering. Therefore, there is much 

research to be done in these areas. 
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1.2. PROBLEM DEFINITION 

This research will take the Global Earth Observation System of Systems (GEOSS) 

as an example and explore the modeling and simulation of network centric system of 

systems.  

From a net centric system view, GEOSS is envisioned as a network of regional, 

national, and global systems that rapidly and systematically acquires and disseminates data 

and data products on Earth observations to serve a broad range of critical and expanding 

societal needs. From a physical view, GEOSS is a system of sensors, communication 

devices, storage, computers and other devices used in concert to observe the Earth. In this 

research, the GEOSS is viewed as an information processing system. 

This thesis focuses on some specific features of network centric systems, i.e. the 

system will be modeled as a distributed multi-task concurrent processing system with high 

interoperability, maintainability, and expandability. The challenge is to model the 

management, discovery, access, and process of the observation datasets and information 

products in a distributed and heterogeneous computational environment that links 

distributed centers, users, models, data, applications, computer networks and storage 

resources together. 

 

1.3. RESEARCH OBJECTIVE 

The main purpose of this research is to develop an executable system architecting 

paradigm to facilitate the investigation of system wide prosperities of the proposed system, 

which, in turn, can provide a basis for system reconfiguration. A set of methodologies for 

achieving this framework also needs to be developed. Following are specific goals. 

1. Investigate how to supplement SysML-based specifications with executable 

semantics. Develop a methodology to convert SysML models to executable models and 

demonstrate its feasibility. Develop the mapping between elements of the SysML model 

and the executable model. 

2. Investigate approaches to model-based simulation. Investigate methods for 

analyzing system behavior and performance based on simulation results. Explore how the 

simulation results can help to refine the architecture design.  
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3. Develop a SysML-based modeling process that facilitates the development of 

architecting specifications in a systematic way. Demonstrate its feasibility; and justify its 

advantages in modeling the network centric systems.  

 

1.4. SECTION ORGANIZATION 

The rest of this thesis is organized as follows. Section 2 provides the literature 

review, which includes a discussion of related work undertaken in the areas of executable 

system architecting, and an introduction of some background information and tools used in 

this thesis. Section 3 discusses the modeling methodology used in this research. It includes 

a SysML-based model driven architecting process, a procedure for converting SysML 

models to CPN models, approaches for carrying out simulation based on CPN models, and 

methodologies for architecture evaluation and analysis. Section 4 presents the model 

development process with GEOSS as an example. Section 5 demonstrates how an 

executable model can be derived from the SysML model by following the procedure 

developed in Section 3. Section 6 demonstrates how to execute the CPN model developed 

in Section 5. Section 7 discusses how to carry out architecture evaluation and analysis 

based on the simulation results. Finally, Section 8 sums up the conclusions and discusses 

directions for further research.  

A complete set of SysML diagrams developed for the proposed system is attached 

in Appendix A. A complete set of pages from the CPN model is attached in Appendix B. 

The output Message Sequence Charts (MSCs) for selected CPN pages are packaged in 

Appendix C. The GEOSS 10-Year Implementation Plan Reference Document is attached 

in Appendix D. 
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2. LITERATURE REVIEW 

Executable modeling allows models to be tested as prototypes, and is emerging as a 

powerful supporting methodology. Intensive research has been conducted in this area in 

recent years, especially in the software engineering context. Since the Unified Modeling 

Language (UML) [11, 12] is almost universally accepted by the software industry as the 

modeling language, many efforts have been undertaken to make UML executable. In [13, 

14, 15], three popular approaches are discussed. The are Executable UML(xUML) [16], 

Executable and Translatable UML (X
TUML) [17, 18], and Virtual Machines (VM) [19, 20]. 

The executable model is one pillar supporting the Model-Driven Architecture (MDA) 

initiative announced by the Object Management Croup (OMG) in 2001. Many of 

aforementioned approaches allow the execution of Platform Independent Model (PIM). 

However, these approaches are intensely software centric being aimed at automatic code 

generation, e.g. the xUML approach relies on a platform-specific code generation 

mechanism to achieve executable model. Furthermore, they are based on UML StateChart 

variants [4, 5, 21-23], which means they take an asynchronous view of the system and 

concentrate on the reactive behavior of the individual objects. This further limits their 

application to software engineering. For modeling general systems, the UML state 

machines lack well-defined execution semantics, do not support modeling of multiple 

instances of classes [11], and do not scale well to large systems [24, 25]. 

An alternative approach to making UML executable is to incorporate the Colored 

Petri Nets (CPN) [26-29] as a supplement to the well-established UML diagrams. UML is 

well suited to model the static aspects of a system; however CPN is good at modeling and 

subsequently validating the behavioral characteristics of concurrent object architectures. 

The reasons CPN is a good candidate for this purpose are discussed in depth in Section 

3.4.1 of this thesis. The use of UML in conjunction with CPN can benefit from the strength 

of both modeling languages. This topic has been studied intensely in recent years. Much of 

the work done is concerned with transformation (manually or automatically) from UML 

notation to Petri nets, often aimed at formal verification and validation, e.g. [30-33]. Also, 

Petri nets have been used to ascribe formal execution semantics to UML notations via a 

rule-based approach, e.g. [34]. While much of the combined use of UML and CPN is often 
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discussed in general terms, a small number of examples have concentrated on pinpointing a 

number of specific, important design issues that can be addressed properly in CPN, but not 

at all or not as easily in UML, e.g., some specific design issues that are addressed better 

with CPN than with UML are pointed out in [6]. The design of user interfaces is described 

in [24]. High-level Petri nets in conjunction with mobile computing have been investigated 

in [35]. Some research has also addressed the development of concepts and theories that 

combine the ideas of object-orientation in general (not just UML) and Petri nets [36]. Some 

research even proposes a CPN profile for UML [37].  

However, much of the work is still based on the transformation of UML state 

machines. This limits its usage in general systems since StateChart variants only model the 

reactive behavior of a single object [30]. Only a few examples can be found in the literature 

that use the combination of UML and CPN for general system modeling with an emphasis 

on interactive behavior between systems components, e.g., [38], where a UML-based 

process for developing Command, Control, Communications, Computer, Intelligence, 

Surveillance, and Reconnaissance (C4ISR) architectures based on an Object-Oriented 

paradigm is presented and a CPN model for verifying and validating the architecture model 

being built is suggested. In [39], a software tool, Bonapart, has been used to build the 

executable model. This software tool is based on the concept of Petri Net but specialized in 

process simulation and analysis (simulation of amounts, costs, times and capacities). A 

procedure for converting UML diagrams to CPN models using an object-oriented approach 

is presented in [40]. This procedure imposes a rationale for style constraints on the use of 

UML artifacts. The methodologies for evaluating the logic, behavior, and performance of 

the architecture based on the simulation are also discussed in [40]. Using CPN only to 

specify and simulate a system is also possible. Four of such examples are given in [41]. 

However, this is not very common since CPN is not good at giving purely static 

descriptions of system architecture.  

The execution of CPN models allows detailed behavior and performance analysis 

of the architecture providing a basis for refining the system configuration. Some 

approaches for modifying system architecture based on simulation also appeared in 

literature. The modification can be categorized into reconfiguration and refinements. In 

[42], a set of approaches for refining a CPN model are summarized. These are type 
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refinement (change color set definition of a place), node refinement (decompose a 

components) and adding a subnet to an existing net. The architecture can then be modified 

accordingly. An application of these approaches can be found in [43] where the 

reconfiguration (of the architecture) approaches have also been used. The purpose of the 

simulation in [43] is to test the dynamic configuration capability of a reconfigurable system 

and the effectiveness of the new configuration. In [44], Petri Net has been used to evaluate 

and modify the architecture of a dynamically evolving system. In [45], Petri Net has been 

used to reconfigure the architecture of Flexible Manufacturing Systems (FMS) to respond 

to changes in requirements. The simulation of CPN also can be used for checking the 

completeness of specifications and/or requirements, experimenting different system 

configurations, and select the right design alternatives. Examples can be seen in [41]. 

As mentioned before, the System Modeling Language (SysML) was developed to 

overcome deficiencies of UML in modeling systems that include hardware, software, data, 

personnel, procedures, and facilities. Some limitations of UML for modeling non-software 

systems and the required extensions to UML have been discussed in [46, 47]. However, 

still relative few works can be found that derives executable models from SysML model. In 

[8, 9], the architecture for GEOSS was developed using both Department of Defense (DoD) 

Architecture Framework (DoDAF) and SysML. The SysML Model was then converted to 

an executable model represented by CPN that allows behavior and functionality analysis. 

The mapping between elements of SysML diagrams and CPN models is in similar line with 

the mapping between elements of UML models and CPN models presented in [40]. The 

block definition diagrams of SysML have been used to start the conversion process in this 

case. 

The modeling and validation of the architecture for complex systems with 

emerging behavior, e.g. network centric systems, is a tough job due to the complexity of 

the problem domain. The DoDAF Architecture Framework is designed for addressing such 

challenges, and therefore is an ideal guideline for developing a network centric system. 

Many network centric systems have been modeled using the DoDAF Architecture 

Framework, e.g. [8, 9, 48]. The executable model approach discussed above gives one 

solution to the analysis, verification and validation of such system. However, in some cases, 

the behavior of such systems may be too complex to observe and analyze by regular 
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methods. Therefore, computation intelligence technologies have also been applied for 

facilitating the modeling of such systems. Examples can be seen in [49-52]. 

A brief insight into the literature on related tools used in this thesis and some other 

background information is presented below. 

 

2.1. GEOSS  

Global Earth Observation System of Systems (GEOSS) was collaboratively 

developed by interested countries and organizations. The aim is to achieve comprehensive 

and sustained Earth observations. Comprehensive information about GEOSS can be found 

in [53]. Most of the information required for this research has been derived from this 

document, e.g. end user requirements and performance indicators. This document 

highlights the origin and purpose of the GEOSS implementation plan and the vision and 

scope of GEOSS. It also presents the societal benefits areas of GEOSS, the capacity 

building, outreach, governance, and the related technical approaches, including 

observations and modeling, products/data management, architecture and interoperability, 

data sharing arrangement, and research facilitation.  

 

2.2. DEPARTMENT OF DEFENSE ARCHITECTURE FRAMEWORK 

The Department of Defense (DoD) Architecture Framework (DoDAF) defines a 

common approach for architecture description development, presentation, and integration 

for both war-fighting operations and business operations and processes. Within the 

DoDAF, architectures are described in terms of three views: Operational View (OV), 

Systems View (SV), and Technical Standards View (TV). The OV is a description of the 

tasks and activities, operational elements, and information exchanges required to 

accomplish desired missions. The Systems View (SV) is a set of graphical and textual 

products that describe systems and interconnections providing for, or supporting, system 

functions. The SV associates systems resources to the OV. These systems resources 

support the operational activities and facilitate the exchange of information among 

operational nodes. The TV is the minimal set of rules governing the arrangement, 

interaction, and interdependence of system parts or elements. Its purpose is to ensure that a 

system satisfies a specified set of operational requirements. A detail understanding of the 
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DoDAF can be obtained from [54-56]. DoDAF evolved from Command, Control, 

Communications, Computers, Intelligence, Surveillance, and Reconnaissance (C4ISR) 

Architecture Framework version 2.0. Now, DoDAF has been updated to DoDAF version 

1.5. 

DoDAF provides the guidance, rules, and product descriptions for developing and 

presenting architecture descriptions, e.g. on how to view the system, what to present in 

describing each view, and how to present them. In this research, DoDAF has been used in 

analyzing the problem domain. 

 

2.3. SYSTEMS MODELING LANGUAGE (SysML) 

Model Driven Architecture (MDA) development process has been employed in this 

thesis. Unified Modeling Language (UML) is the key enabling technology of MDA. UML 

is a general-purpose modeling language to graphically illustrate system concepts. It was 

originally developed for software engineering by Object Management Goup (OGM) but 

has been universally accepted as modeling standard. SysML, which is an extension of 

UML, was developed to address the limitations of UML for modeling non-software 

systems. SysML reuses a subset of UML 2.1 and provides additional extensions needed to 

address the requirements for modeling general systems. The extension abilities include 

modeling parametric equations, physical architecture, system interfaces and requirements. 

Modeling using UML or SysML provides the capability to develop a consistent, verifiable, 

and validated model that allows the systems engineer to discover missing requirements, 

evaluate alternatives, and verify the performance requirements. The most update version of 

SysML is SysML 1.0. A detailed specification of SysML 1.0 can be found at [57].  

 

2.4. COLORED PETRI-NETS 

Colored Petri Net (CPN) is a graphical discrete-event modeling language. The CPN 

modeling language combines Petri nets and programming languages. Petri nets [58, 59] 

provide the foundation of the graphical notation and the semantical foundation for 

modeling concurrency, synchronization, and communication in systems. The functional 

programming language, Standard ML [60, 61], provides the primitives for compactly 



 

 

12

modeling the sequential aspects of systems (such as data manipulation) and for creating 

compact and parameteriable models [41]. 

CPN is state and action oriented at the same time – providing an explicit description 

of both the states and the actions. CPN models are executable and describe the states of a 

system and the events (transitions) between the states. CPN includes a module concept that 

makes it possible to organize large models into a hierarchically related set of modules. The 

CPN modeling language is supported by CPN Tools. CPN Tools is a tool for editing, 

simulating and analyzing CPN. The tool features incremental syntax checking and code 

generation which take place while a net is being constructed. 

An introduction to the practical use of CPN is provided in [62]. It introduces the 

basic ideas behind the CPN language and illustrates how CPN models can be analyzed by 

means of simulation, state spaces and condensed state spaces. Detailed specification and 

application skills of CPN can be found in [18, 26-28, 63-65]. The use of CPN with the 

example of a simple communication protocol is demonstrated in [62]. It gives out basic 

concept of CPN, such as places, transitions, tokens, markings, color set, code segment, 

guide condition, and declaration. An insight into the simulation, state space analysis, and 

performance analysis is also provided with the example in [62]. In [40], an approach to 

simulating and validating a UML models using CPN has been demonstrated.  

 

2.5. ARTISAN STUDIO 

ARTiSAN Studio, developed by ARTiSAN Software Tools Inc., is a multi-user 

suite of development tools that provides systems and software modeling and 

component-based development specifically for technical systems. 

ARTiSAN Studio is built on a true, shared, object repository. Development teams 

can create and share access to diagrams, models, and documentation. The entire team is 

kept in synch throughout the project and updated of any changes that affect them. 

ARTiSAN Studio is an integrated suite for UML modeling. It embraces the UML 

2.0 and OMG SysML standards.  

ARTiSAN Studio provides a number of good features to facilitate model 

development [66]. For example:  
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ARTiSAN Studio automatically establishes a single data dictionary that maintains 

a consistent view across the model. Model items are defined once in the model and can be 

referenced on any diagram as either a symbol or rich text reference. Consequently, any 

change to the model element is automatically propagated across all diagrams and textual 

descriptions, ensuring architectural consistency and completeness. 

The flexible package view allows the user to structure models in a variety of ways 

and quickly switch between the project, dictionary, relationship and diagram browser 

views.  

ARTiSAN Studio supports domain and organization specific extensions to the 

UML through the mechanism of profiles, a collection of stereotypes and tags. It 

pre-defined a wide range of standard UML profiles and also supports the user defined 

profiles. For example, by adding the DoDAF profile, the studio can be used for DoDAF 

modeling. 

ARTiSAN Studio enables the user to analyze and model system requirements in a 

number of UML diagrams. ARTiSAN Studio has also established mature interfaces to 

Telelogic DOORS and other Requirement Management (RM) tools. Any model elements 

can be traced to any textual requirements managed in the user’s tool of choice, unleashing 

the full power of impact and trace analysis. 

ARTiSAN Studio supports code generation. Different parts of the model can be 

implemented in different programming languages, including C, C++, Java, Ada 83/95 and 

Spark Ada 83/95. On-demand Code Synchronization (OCS) supports forward generation, 

reverse engineering and round tripping.  

ARTiSAN Studio supports state machine generation, which allows the user to build 

and simulate executable models as a demonstration tool, and/or to validate and verify 

system behavior. Simulations can also be hooked to Graphical User Interface (GUI) 

prototyping tools, such as Altia Design. 

ARTiSAN Studio provides a powerful Document Generator. High-quality 

documents can be easily configured to meet the user’s project standards. 

ARTiSAN Studio also offers an online tutorial in the form of Real-time Perspective 

Mentor [67], which provides a comprehensive set of object-oriented development 
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techniques and detailed guidance on how to make the best use of the modeling capability 

supported by ARTiSAN Studio. 

All the SysML diagrams in this thesis have been developed using ARTiSAN studio. 

It gave tremendous convenience in the model development and modification process.  

 

2.6. BRITNEY SUITE 

BRITNeY is the abbreviation of “Basic Real-time Interactive Tool for Net-based 

animation” [68]. It was developed by Michael Westergaard. BRITNeY Suite consists of a 

Java application and a CPN ML library which (among other things) enables visualization 

and advanced interaction through CPN Tools.  

BRITNeY Suite currently focuses on four things: animation based on the 

simulation of a CPN, optionally using CPN Tools, state-space analysis of CPN models, 

editing, simulation, and state-space analysis of bi-graphical reactive systems, and loading 

of CPN models in the most recent proposal for a standard interchange format for 

High-level Petri nets. 

The simulation based animation can be run directly from BRITNeY Suite. 

BRITNeY Suite allows deploying animations without modifying the CPN model. 

BRITNeY Suite supports state-space analysis of CPN models loaded via CPN 

Tools. This includes drawing the state-space graphs (occurrence graphs). 

BRITNeY Suite supports input of a bi-graphical reactive system (BRS) using a 

simple text format. BRITNeY Suite also supports entry of BRS by means of an 

asynchronous pi-calculus process, by an ambient-calculus expression, and by converting a 

CPN. 

BRITNeY Suite also supports drawing of Message Sequence Charts (MSC) 

(including space chart and transition chart) in an automatic way or in an advanced user 

defined way.  
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3. MODELING METHODOLOGY 

3.1. AN EXECUTABLE SYSTEM ARCHITECTING PARADIGM 

Models have three types of basic functions: specification (of a system to be built), 

presentation (of a system to be explained to other people, or ourselves), and execution. 

However, no single modeling tool currently available can do all of them best. This suggests 

a combination usage of these tools can take immediate advantages of the best of these tools. 

Unified Modeling Language (UML) and Systems Modeling Language (SysML) 

are well suited for specification since they have strict syntax and rich semantics. They are 

also excellent for communicating design details to other people because they are widely 

accepted. However, due to lack of executable semantics, UML/SysML-based designs 

cannot be formally verified [69]. In this thesis SysML is employed to define the formal 

specifications of the proposed system. 

The DoDAF architecture framework does well in presentation since the 

architecture represented in this way is very easy to understand. However, DoDAF only 

provides a guideline or a template for architecture description but is inadequate in the 

semantic foundations for describing architectures, which makes it insufficient in 

specification. This problem has been realized and measures have been taken to remedy it 

[70]. In this thesis, DoDAF architecture framework is used as a supplement tool in 

analyzing problem domain. 

Because SysML and UML cannot perform formal model verification, human 

reviews have to be involved to check the correctness of the design and assess how well the 

designed architecture meets the system requirements upstream. Unfortunately, the quality 

of the review is subject to the human reviewer’s ability to detect inherent flaws. As designs 

become increasingly complex, knowing how their myriad parts all fit together becomes 

increasingly difficult, if not impossible. By going one step further – that is, converting the 

SysML-based design to an executable and verifiable model – the design and review 

process can be greatly strengthened. As a result, the quality of the final system can be 

greatly improved. 

This research suggests the use of Colored Petri Net (CPN) as the modeling 

language for specifying the executable model. CPN models are executable and verifiable. 



 

 

16

CPNs provide rich capability for carrying out system analysis, either by means of 

simulation or by means of more formal analysis methods. A number of analysis techniques 

supported by CPN can be found in [26-28, 62, 69, 71]. The reason to choose CPN is 

analyzed in depth in Section 3.4.1 of this thesis. On the other hand, CPNs are not suited for 

giving purely static descriptions of system architecture. 

The transformation from SysML specification to CPN model must follow 

well-defined mapping rules to secure faithful transformation. Only in this way, can the 

simulation of the executable model be used to verify and validate the system modeled by 

SysML. There are several ways to do the conversion depending on the system behavior of 

interest, e.g. reactive behavior or interactive behavior. Some existing rules for UML to 

CPN transformation have already been discussed in Section 2 of this thesis. The 

conversion procedure used in this thesis is presented in detail in Section 3.4.5 of this thesis. 

CPNs can communicate with external applications and processes based on 

Standard ML(SML language). This allows CPNs to be integrated with other tools that can 

enhance the simulation, e.g. providing graphic user interface, instant feedback, interactive 

control of the simulation process, and etc. 

Based on the above concerns, an executable system architecting process can be 

developed (see Figure 3.1). This is an iterative process. The basic steps are as follows: 

1. The overall process starts from requirements analysis and specification where 

the mission is defined, the operational concept is analyzed, system requirements are 

captured, and use cases are delineated.  

2. The formal model of the system is represented by SysML. This modeling activity 

transforms the natural language specification into a formal, standardized model (a set of 

SysML diagrams). The principles of Modern Driven Architecture (MDA) approach have 

been applied to guide the modeling process in this thesis. 

3. This SysML model is then converted to an executable model represented by 

Colored Petri Net (CPN). The CPN model must faithfully render the structure and behavior 

of the architecture model. The accuracy depends strongly on the conversion process. 

Well-defined rules need to be established and govern this transformation. 

4. The executable model is then exercised. The behavior of the modeled system can 

be observed. The simulation can be enhanced by integrating external tools to the original 
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Figure 3.1.  Executable System Architecting Paradigm 

 

 

 

CPN model. Note that the executable model should be exercised for each use case and their 

combinations in order to fully simulate the real-word applications. 

5. The final step is architecture evaluation and analysis. The tasks in this step 
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requirements), and system configuration refinement. CPN tools provide a set of analysis 

tools for detailed net analysis. The verification and validation is carried out through the 

comparison of sequence diagrams of the SysML model and Message Sequence Charts 

(MSCs) generated by CPN model. If there is a match, then the model can be verified. If the 

match is insufficient, then either the SysML model needs to be redesigned in order to better 

represent the system architecture, or the system architecture needs to be reconfigured to 

better satisfy the requirements. The system configuration can then be refined according to 

the simulation and analysis results. Therefore, the above process becomes an iterative 

process. It is recommended to test the system behavior at each level of abstraction before 

entering into a lower lever of abstraction. 

 

Modeling 

Model 
Transformation 

Refinement 

Requirement Analysis 
and Specification 

 
 Requirements Analysis

Capture desired behaviors

Formal Model 
 
 

SysML Representation 
Based on MDA paradigm 

Executable model
 CPN 

Simulation 
 
 Behaviors as modeled

Interactive GUI 

Architecture Evaluation 
and Analysis 

 
 
 
 Architecture refinement 

& reconfiguration 

Functionality verification

Behavior analysis 

Start 

End 



 

 

18

3.2. OBJECT ORIENTED ANALYSIS 

The concept of Object-Oriented Analysis (OOA) has been used to identify, analysis, 

and define system components in this thesis.  

Object-Oriented Analysis (OOA) aims to model the problem domain in terms of 

objects and the services they provide. From the OOA perspective, a system is composed of 

a set of related, interacting objects. The behavior of the system is generated through the 

collaboration of these objects. The state of the system is the combined state of all the 

objects in it. An object is an entity that has state, attributes, and operations. OOA involves 

identifying and defining objects in terms of these three prosperities. The interaction 

between objects may be messages (including operation calls) or other item flows. OOA 

emphasize importance of well-defined interfaces between objects. 

The Unified Modeling Language (UML) has become the standard modeling 

language used in object-oriented analysis and design. UML uses the concept of “Class” to 

describe objects. Classes provide a way of grouping objects with similarity.  

 

3.3. MODEL DRIVEN ARCHITECTING APPROACH 

The Model Driven Architecture (MDA) approach is a new way of writing 

specifications adopted by the Object Management Group (OMG) in 2001. It promotes the 

use of models as the primary artifacts in software development. MDA makes use of 

Platform Independent Models (PIMs), which define system functionality and behavior 

completely free of technical and implementation concerns, and Platform Specific Models 

(PSMs), which represent design and implementation. PIMs are transformed into one or 

more PSMs according to Platform Models (PM) that describe how a system uses a 

particular type of platform. The PSMs produced in this way may then undergo further 

transformations to more specific PSMs and eventually to source codes. The MDA 

approach enables the same model specifying business processes or application 

functionalities to be realized on multiple platforms. The three primary goals of MDA are 

portability, interoperability and reusability [7]. 

The MDA approach is still under development, some basic concepts can be found 

in [72, 73].The OMG documents the overall process in a document called the MDA Guide 

[7]. 
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In order to develop a modeling process using the MDA paradigm, it is necessary to 

discuss the core techniques that are applicable to this process and the advantages of using 

MDA approach. 

3.3.1. The Core MDA Technique is Model Transformation.  “Model transfor- 

mation is the process of converting one model to another model of the same system. The 

input to the transformation is the marked PIM and the mapping. The result is the PSM and 

the record of transformation.” [7]. Model transformation allows the developer to clearly 

define the refinements from PIMs to PSMs and the relationships between those models. 

Since MDA is still relatively new and evolving, many model transformation approaches 

have been developed as discussed in [7, 72, 74]. Some paradigms and approaches 

developed in software engineering can also be applied for this process. The 

Component-Based Software Engineering (CBSE) is discussed in [75-77]. As defined in 

[77], “a software component is a unit of composition with contractually specified 

interfaces and explicit context dependencies only. A software component can be deployed 

independently and is subject to composition by third party”. Components are considered to 

be a higher level of abstraction than objects (a concept in the Object-Oriented 

Programming (OOP) context). Components are selected at build-time and configured at 

run-time. A component only exhibits its provided or required interfaces. Therefore, 

components allow more reusability and portability through inheritance and adapting 

existing components. Another hot on-going research is the application of Aspect-Oriented 

Programming (AOP) or Aspect Oriented Software Development (AOSD) in MDA. Some 

work in this respect can be seen in [78-80]. AOP or AOSD addresses the separation of 

concerns, especially the cross-cutting concerns by modeling them as reusable modules 

called aspects. Cross-cutting concerns cut across many modules in a program thus reducing 

the modularity of OOP and increasing the complexity. AOP method involves developing a 

primary model and a set of aspect models (which encapsulate crosscutting concerns into 

reusable modules) separately, and then weaving them together to create the application at 

well defined locations, called join points. The principles of CBSE and AOP have been 

applied to guide the model development in this thesis. 
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3.3.2. The Model-Based Specification is More Precise and Rich in Semantics 

than the Object Oriented Paradigm.  Model-based specification defines behavior precisely, 

formalizing in the model all terms that must be defined for those behaviors. 

In Object-Oriented programming, object is the only concept for specification 

whereas MDA employs multitude concepts, such as collaborations (interaction between 

objects), design patterns, middleware, components, and aspects [81]. 

In addition, because many aspects of a system might be of interest, the MDA 

approach allows the use of various modeling concepts and notations to highlight one or 

more particular perspectives, or views, of that system. 

3.3.3. MDA Designs Portability, Interoperability and Reusability into the 

System at the Model Level.  MDA creates a conceptual framework that separates funda- 

mental logic behind a specification from the specifics of the particular middleware that 

implements it. This allows greater flexibility when architecting and evolving these systems 

[82]. 

Portability will be enhanced because PIMs remain unchanged in the face of 

changing technology. As new platform technologies emerge, only the related PSMs need 

to be modeled according to the new Platform Models. Existing PIMs can then be 

transformed into these new PSMs. This allows rapid development and delivery of new 

system. Other architectures are generally tied to a particular technology. This will result in 

repeated efforts in modeling of the system’s functionality and behavior each time a new 

technology comes along.  

Since PIMs are technology neutral, with the standards that support MDA, they can 

be realized on multiple platforms. This allows the possibility of large scale reuse of proven, 

tested business models captured in the PIMs.  

MDA enables different applications to be integrated by explicitly relating their 

models. This facilitates integration and interoperability. More complete descriptions of 

MDA can be found in [7, 83]. 

The OMG is promoting this framework and is working on standards that help 

realize it. It can be concluded that the MDA has significant advantages to allow portability, 

cross-platform interoperability, platform independence, domain specificity, and increased 

productivity. 
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3.3.4. MDA Approach is Ideal for Building and Maintaining the GEOSS 

Architecture.  Although the MDA approach stemmed from the software engineering, many 

of the core principles are applicable in the systems engineering context. As discussed in 

Section 1.2, GEOSS in this modeling task can be conceived as a distributed computing 

system and thus many of the modeling approaches of software engineering can be easily 

applied. An in-depth analysis of the requirements of the GEOSS reveals that some highly 

desirable attributes of such system are interoperability and extensibility. From the above 

analysis, it can be concluded that the MDA approach is ideal for modeling network centric 

system like GEOSS. Detailed requirements analysis can be seen in Section 4.2 of this 

thesis.  

3.3.5. A MDA Process for Developing System Model.  In this section, a SysML- 

based process for developing architecting representation is presented. The process 

demonstrates the feasibility of developing architecture descriptions based on MDA 

paradigm.  

3.3.5.1 Preamble to the process.  MDA specifies three default types of models for  

a system corresponding to three layers of abstraction. They are Computation Independent 

Model (CIM), Platform Independent Model (PIM), and Platform Specific Model (PSM). A 

set of models can be constructed within each layer. During the architecting process a CIM 

is transformed to a PIM architecture model, then to a PIM detailed design model, and 

likewise to have several abstractions within the PSM level. However, for MDA, a 

“platform” is meaningful only in relation to a particular point of view – in other words, one 

person’s PIM is another person’s PSM. Therefore, the concept of abstract platform has 

often been used in this context [84-86]. “An abstract platform is determined by 

considering the platform characteristics that are relevant for applications at a certain level 

of platform-independence as well as the various design goals” [85]. An MDA-based 

design process should be able to accommodate designs at different levels of platform 

independence. For simplicity, PSM and PIM here are conceived as relative to each other in 

this thesis. 

A three-dimensional view of a system helps to understand and develop a MDA 

model [81]. They are: vertical – different levels of abstraction of the same subject; 

horizontal – different subject areas or views that are not more or less abstract than each 
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others; and variants – a family of related components that share the same interface and can 

be configured for different applications. Figure 3.2 reflects these concepts. 

 

 

 

 
Figure 3.2.  Three-Dimensional Decomposition of a System 
(Adapted from Model-Driven Architecture and Integration  

Opportunities and Challenges Version 1.1 [81]) 
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3.3.5.2 An overview of the modeling process.  The modeling process is shown in 

Figure 3.2 This diagram depicts an overview of the SysML-based modeling process with 

MDA principles applied. For each of the modeling phases, this diagram shows the essential 

tasks, associated inputs, and output products. The basics of the iteration loop are as 

follows: 

Stage 1. Requirements Analysis -The essential tasks in the requirements analysis 

phase are mission definition, operational concept analysis, requirements capture and use 

case scenarios definition. The input for the mission definition is where one receives the 

architecting task. Then, the textual requirements can be specified by extracting the 

application requirements and a preliminary SysML requirement diagram can be depicted 

based on the analysis of missions. From this point, an operational concept can be created 

that describes how the mission will be carried out. The DoDAF products, such as the High 

Level Operational Concept Graphic (OV-1), and the Operational Activity Model (OV-5),  

 

 

 

 
Figure 3.3.  MDA Modeling Process 
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are good choices for this purpose. The operational concept can then be used to refine the 

requirements and create more detail requirements diagrams. With this information in hand, 

functions can be grouped to create the use cases. A use case describes a specific operational 

aspect of the system in the form a service provided by the system for an actor. 

Stage 2. Architecting Analysis and Design.   The main objective in this step is to 

transform the identified functional requirements into a coherent description of system 

architecture in a systematic way. The detail steps are as follows: 

1. Construct Computation Independent Model (CIM). Given one or more use cases 

and the operational concept created in the former steps, a generic CIM can be created to 

model the business process, which is both domain independent and platform independent. 

This business process of CIM can be developed by identifying the top level horizontal 

partition of the system. Different use cases may correspond to different business models. 

These can be viewed as a set of variants of one generic business model. At this point, no 

details about the target domain and platform are being taken into consideration. It is 

recommended to use the concept of CBSE [77] to define each part of the CIM as 

components (referred as component hereafter) in order to allow configuration and make 

generic model possible. This CIM often corresponds to the high level Operational View of 

the DoDAF architecture representation. The SysML Block Definition Diagram and 

Internal Block diagram can be used to represent the CIM. 

With these components identified, the domain operations of each component that 

are needed for carrying out the tasks specified in the use case can be identified. These 

operations can form a set of high level activity diagrams that show the flow of operations, 

decisions points and operation calls. These high level activity diagrams specify the 

dynamic behavior of the CIM and provide a basis for separating concerns in later 

refinements. 

2. Construct Structure Diagrams. The initial PIM is created by transforming from 

the CIM with appropriate domain information added in (and thus the PIM is domain 

dependent but platform independent). This PIM contains components for carrying out the 

system-level functionalities and the domain operations carried by these components. This 

set of generic components can be extracted by identifying general abstractions and 

similarities of a set of applications. Note that a component is a high level abstraction of an 
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object. One component may have multiple instances to be chosen for a particular 

application. The technique of black box analysis can be used to facilitate the abstraction. 

By applying this concept, the system-level functionalities can be verified and validated 

through the execution of the corresponding black-box use case model (The executable 

model however should be developed separately).  

3. Refine the first PIM by adding domain information and mapping domain 

operations to the target platform (or more precisely, the abstract platform). The system is 

then decomposed to a lower level of abstraction (or the PSM in relation to its PIM). The 

domain information is generally the implementation concerns. For example, each domain 

operation is implemented by certain resources of a given target platform(s). This suggests 

the decomposition can be done by identifying the required resources needed to implement 

the application. Alternatively, the implementation of the domain operation may need some 

common services provided by the target platforms. This refinement process involves white 

box analysis, i.e. the components needed to support or collectively realize the domain 

operations are identified and allocated. The system thus built can be verified and validated 

through the execution of the corresponding white box use case model. This PIM to PSM 

refinement process is further carried out until the desired abstraction level is achieved. The 

models developed in this step can be represented by SysML Block Definition Diagram and 

Internal Block diagram. 

4. Refine the structure design. If there are components representing certain 

cross-cutting concerns, separate them from the above models. These cross-cutting 

components can be weaved back at proper joints when the system is instantiated. The 

separation of cross-cutting components helps to increase both reusability and 

maintainability of the system model. 

5. Transform these block diagrams into sequence diagrams. For each of the domain 

operations specified in the CIM stage, there may be a sequence diagram that elaborates on 

the detail interactions between system components identified in the block definition 

diagrams. The messages sent to or received by the interacting objects can be events (input 

or output signals between system parts and outside actors), item flows (message/data 

exchanges) or operation calls (calling an operation on the receiver). Note that a sequence 

diagram is in the application domain so it has to be defined for each use case scenario.  
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6. Transform sequence diagrams into activity diagrams. By observing the input and 

output message flow of an object in the sequence diagrams, the operations (actions) that the 

object needs to conduct in order to generate the output can be identified. The information 

for determining action sequence and item/object flows between operations (actions) can be 

derived from the sequence diagrams developed in the preceding step. 

7. Refine system structure design. The structure diagrams developed in previous 

steps have not specified the connections between its components and the corresponding 

interfaces and item flows. This information is identified in developing the sequence and 

activity diagrams. With this information in hand, a refined structure diagram can be created 

and represented by Internal Block diagrams. The Internal Block Diagrams define the 

internal structure of a block in terms of its prosperities (part), connectors, and ports. 

The operational calls identified in sequence diagrams can be used to specify 

standard ports and the corresponding interfaces. 

The object flows identified in activity diagrams, together with the message 

exchanges in sequence diagrams, can be used to specify the flow ports, flow properties, 

flow specifications and item flows. 

The operations that are identified by observing the required input and desired 

output of each interacting objects in sequence diagrams (and are later defined in activity 

diagrams) can be grouped to define each object (block) using block definition diagrams. 

The attributes of each block derive from the object flows as mentioned above. So far, the 

structure design of the system can be completed. 

8. Transform sequence diagrams to state Machine diagrams. A State Machine 

diagram describes the reactive behavior of an object. The State Machine diagrams need to 

be developed for all object classes that have behavior. The State Machine diagrams can be 

used to generate simulation for each object.  

9. Use case integration. The final step is the use case consistency analysis, in which 

the verified and validated use case models are integrated into a common framework that 

can be executed as concurrent processes.  
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3.4. SYNTHESIS OF THE EXECUTABLE MODEL 

As discussed in Section 2, a number of approaches have been proposed to make 

UML executable. However, all this work is based on UML StateChart variants and 

concentrates on the reactive behavior of a single object, i.e. it views each object as 

potentially having a state machine that can execute asynchronously and concurrently [16]. 

This kind of approach is targeted at software engineering. In the system engineering 

context, it is often more important to model the interactive behavior between the 

components of a system. Hence, it is better to define the executable model that relies on 

synchronous operation calls between objects to produce a complete synchronous model of 

the subject matter. 

3.4.1. Select a Proper Simulation Tool.  The ARTiSAN studio used to develop  

the SysML model in this thesis provides a simulation capability based on state diagrams. 

However, this simulation capability is not enough to fully exercise the behavior of the 

system being modeled in this thesis for the following reasons:  

1. A state diagram is created for each single object. The simulations associated with 

such state diagrams are also divided into single object views. There is no way to connect 

these individual views together. 

2. The State diagram does not support hierarchy structure. This makes the 

simulation of complex systems rather difficult.  

Based on the prosperities of the system to be modeled in this thesis and the 

objectives of this research, the following criteria were identified for choosing the 

simulation tool: 

1. General purpose (because this research is aimed at modeling general system). 

2. Both state and action oriented (because the behavior of the system to be modeled 

should be described in these two terms). 

3. Discreet event driven (because the emphasis of the modeling task is the 

interactions between the components of the system). 

4. Concurrent behavior (because the system to be modeled should support 

concurrent behavior). 

5. Synchronization (because parallel processes need to coordinate with each other). 

6. Object-oriented and easy to map to UML/SysML notations. 
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7. Capability for supporting analysis.  

8. Verifiable. 

Based on these criteria, the Colored Petri Net (CPN) seems to be the best choice 

among those having been investigated because it satisfies all those criteria. Some of the 

reasons and advantages of using CPN are highlighted as follows (In [62], a number of 

advantages for using CPN has been provided. Only those that are closely related to the 

purpose of this thesis are mentioned here):  

1. CPN is very general instead of domain specific, i.e., it is not aimed directly at 

modeling a specific class of systems, but aimed towards a large variety of different systems. 

The applications of CPNs range from informal systems (such as the description of work 

processes) to formal systems (such as communication protocols). They also range from 

software systems to hardware systems [62]. CPN is very basic and works like a low level 

programming language because it has few, but powerful, modeling primitives that make it 

possible to model systems and concepts at different levels of abstraction. However, this is 

both a weakness and a strength [41]. Other simulation tools are either tied to a particular 

application, e.g. network simulation, or a particular aspect, e.g. process simulation. 

2. CPNs are well suited for modeling concurrency, synchronization, and resource 

sharing behavior of a system.  

3. CPNs have flexibility of token definition and manipulation. It is possible to use 

tokens to model various architectural elements. Each token in a CPN has a value typed by a 

pre-defined data type. Different token types can be used to represent different architectural 

elements, e.g. components, tasks, messages, events, and even use cases can all be described 

by different types of tokens. The value of tokens can be investigated and modified by the 

transitions corresponding to different system behavior [87]. 

4. CPNs offer hierarchical descriptions through the concept of sub-page, which can 

be used as a module definition mechanism for various purposes. This makes it possible for 

CPNs to model large systems in a manageable and modular way. 

5. CPNs have an explicit description of both states and actions. Actions can be 

represented by CPN transitions. How the actual action occurs is not the interest of modeling; only 

how the conditions for the action to take place and what the effects of that action are. The state 

carries the concepts of conditions and effects; the transition carries the concept of state change. 
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6. CPNs have a graphical representation, which is intuitively very appealing and 

easy to understand [62]. 

7. CPNs have well-defined semantics which unambiguously define the behavior of 

each CPN. The presence of the semantics makes it possible to implement simulators for 

CPNs and also forms the foundations for the formal analysis methods [62]. 

8. CPNs have a semantics which builds upon true concurrency, instead of 

interleaving. In an interleaving semantics, it is impossible to have two actions in the same 

step, and thus concurrency only means that the actions can occur after each other, in any 

order. A true concurrency semantics is easier to work with because it is closer to the way 

human beings think about concurrent actions [62]. The concurrent concept is also 

illustrated in Figure 3.6. 

9. CPNs integrate the description of control and synchronization with the 

description of data manipulation. This means that on a single sheet of paper it can be seen 

what the environment, enabling conditions and effects of an action are. Many other 

graphical description languages work with graphs which only describe the environment of 

an action – while the detailed behavior is specified separately (often by means of 

unstructured prose) [62]. 

10. CPNs offer interactive simulations where the results are presented directly on 

the CPN diagram. The simulation makes it possible to debug a large model while it is being 

constructed. The data values of the moving tokens can be inspected [62]. 

The major weaknesses of CPNs are:  

1. They are too low-level to serve as a suitable means for communication and 

visualization.  

2. They lack commercially acceptable tools for developing Petri net models. An 

approach has been provided to address this drawback in [32], where an interface is 

developed that is extensible to any drawing package capable of using Web services and 

eXtensible Markup Language/Simple Object Access Protocol (XML/SOAP).  

3. Although the state space concept provides a powerful analysis tool, as the system 

size and complexity increase, the state space of the CPN grows exponentially, which could 

become too difficult to manage both graphically and analytically, if it is not impossible. 
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3.4.2. Conversion Rules Based on Static Views.  The executable model must fai- 

thfully render the structure and behavior of the architecture model. The accuracy depends 

strongly on the conversion process. Therefore, an automatically generated executable 

model based solely on the information of the architecture model is highly desired. 

However, such automation currently does not exist in commercial tools so the conversion 

in this thesis is a manual process. 

By following the steps in the preceding section, the architecture models should 

have sufficient details to enable the generation of a CPN model. Several approaches can be 

used to generate the CPN model. For example, executable models can be derived from 

various behavioral diagrams (Activity Diagrams, Sequence Diagram, State Machine 

Diagrams, etc.) or structural diagrams (Block Definition Diagram, Internal Block Diagram 

etc.). A method of deriving the CPN model primarily from UML class diagrams (some 

related diagrams need to be modified according to some style constraints for this purpose) 

is described in [40]. The basic ideas are summarized in Table 3.1.  

 

 

 

Table 3.1.  Mapping Rules for Converting UML Models to CPN Models 

System Elements UML Artifacts CPN Elements  

Fixed component Class Substitution transition 

Transient information Class attribute Token 

Message Type Association class Place 

Operation Class Operation Transition 

 

 

 

A similar idea can be applied to the model represented by SysML. The Internal 

Block Diagrams and Block Definition Diagrams can be used as the main source for this 

conversion. The basic mapping rules are summarized in Table 3.2. 

However, in this thesis the conversion is based on behavior diagrams. The reason 

will be discussed in the next section. 
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Table 3.2.  Possible Mapping Rules for Converting SysML Models to CPN Models 

System Elements SysML Artifacts CPN Elements  

Fixed component Parts within internal 

block diagram 

Substitution 

transition 

Transient information/event Item flow Token 

Message Type Flow propriety Place 

Operation Block Operation Transition 

 

 

 

3.4.3. Case Based Syntheses.  Note that the above mentioned approach is actually 

trying to derive dynamic behavior (an executable should surely represent dynamic 

behavior) from a static view of the system (class diagram is a static view). This approach 

works well for models that only have one use case scenario. For a CPN model that supports 

multiple use case scenarios, there are additional concerns to be addressed. For example, the 

workflow may be different from case to case. The corresponding information/object flow 

between objects may also be case sensitive. That is the system may have different 

configurations (in terms of connections and the information/object that flows between) for 

different use case scenarios in order to perform different tasks. Hence, a generic class 

diagram is insufficient to render the case specific information which is necessary for an 

executable model. One way to solve this problem is to follow the approach defined in [40] 

(or the modified approach for SysML models as described in the above section) and further 

develop an algorithm to cope with the multi-scenario problems. This method is expected to 

be able to generate a generic executable model that simulates multi use case scenarios 

using one structure. This seems tempting but is not the always the best solution (reasons 

will be discussed later) from an execution perspective. Another problem with this 

class-diagram based transformation is that a class is a group of objects sharing the same 

properties and operations, and however, what is actually interacting with each other is the 

instance of a class. By following the class-diagram based transformation, it is very easy to 

get confused with classes and their instances, which will result in an interleave process 

instead of the desired parallel process (see Figure 3.6). 
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Alternatively, one can use behavioral diagrams as the basis of conversion and 

construct a representation for each use case scenario to reflect different configurations of 

the system. Sequence diagrams carry the key information necessary for the conversion 

(object, information/object flow, and operations (by linking to activity diagrams)); and a 

set of SysML sequence diagrams is always constructed for each use case scenario. This 

make the set of sequence diagrams a good candidate for the conversion purpose. In this 

thesis, a procedure was developed to convert the CPN model primarily from SysML 

sequence diagrams. Information from several concordant diagrams was also needed. This 

method turned out to have additional benefit since a set of sequence diagrams specified for 

a use case scenario keeps only the connections between objects in that context eliminating 

unnecessary information (connections, code segments and etc) and thus makes workflow 

clearer. A CPN model constructed in this way is more readable and maintainable, and 

easily extends as well. There are also other advantages that will be discussed later. 

3.4.4. Consistence Issues in SysML Models.   In order to derive a CPN model  

from a SysML model, there should be an unambiguous mapping between elements of 

SysML and elements of CPN. For this reason, two types of style consistence have been 

recommended in this research. 

● Style Consistence in Sequence diagrams. The entities on sequence diagrams 

represent instances of objects (represented by block), not the objects themselves. The 

information on the message lines between lifelines can represents message (object) 

exchanges and/or operation calls. The conversion process requires a consistent 

representation. Therefore, the following style should be followed: 

1. When message (object) exchanges and/or operation calls are involved in the 

interaction of two objects, the message (object) exchanges should be labeled on the 

message lines, the operation calls should be labeled in the description line corresponding to 

the receiver’s lifeline. 

2. When only an operation call is involved in the interaction between two objects, it 

is viewed as a special message sent to the receiver in order to activate a service provided by 

the receiver.  

● Concordance between SysML artifacts. The SysML model should maintain an 

integrated dictionary, a single repository of definitions and descriptions of all elements of 
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every diagram in the model. The concordance concepts between SysML elements in 

different diagrams are reflected in Figure 3.4 (also can be seen in Table 3.3). The items 

connected by dashed lines should use consistent names. 

Note: A I_B1B2 Data interface is also shown in the internal block diagram but has 

not yet been related to any element in the sequence diagram shown on the graph. This 

indicates it has not been used in this case but may be used in other sequence diagrams. Note 

that a block diagram always shows generic information whereas a sequence diagram 

always shows context information. 

 

 

 

 
Figure 3.4.  Concordance between Activity, Sequence, and Block Diagrams 
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3.4.5. The Procedure for Synthesizing CPN Models from SysML Models and 

the Mapping Rules.  In order to derive a CPN model from a SysML model, an unambiguous 

mapping between the elements of the various SysML diagrams and the elements of the 

CPN must be established. This includes structural elements such as places, transitions, 

input and output arcs, and logical elements such as color sets, variables, and the 

associations of color sets with places, arc inscriptions, guard functions, and code segments. 

Figure 3.5 outlines the procedure for synthesizing a CPN from a SysML model used in this 

thesis. One basic idea is to interpret places and transitions in a CPN model as conditions 

and events, respectively. An event can occur if all conditions for the event hold. 

 

 

 

Step 0: Augment the sequence diagram(s). For each object in the sequence diagram(s), add 

operation names to the appropriate position on the lifeline in between the input and output 

message/event. The operations have been defined in a block definition diagram 

Step 1: Create a transition for each operation in the sequence diagram(s) (preferably also 

label the object name next to the operation name).  

Step 2: Create a substitution transition for each nested sequence diagram. 

Step 3: Create a place for each message/event between lifelines. Assign the appropriate 

color set and create the corresponding declaration in the index. 

Step 4: Create arcs between the transitions and the places according to the sequence 

diagrams. There should be a one-to-one matching between the numbers of message/event 

in the sequence diagrams and the number of places between transitions in the CPN model.

Step 5: Add Arc inscriptions, guard functions, or code segments derived from the rules 

associated with each operation. 

Step 6: Create a sub-page for each substitution transition.  

6.1. Follows step 0 to 5 to create all the related transitions, places and arcs.  

6.2. Assign the Input, Output, and I/O ports places.  

Step 7: Assign socket places and connect all substitution transitions and their sub-pages. 

Step 8: Specify initial markings related each places.  

 
Figure 3.5.  Procedure for Synthesizing a CPN Model from a SysML Model 
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Based on the above procedures, the basic mappings between elements in SysML 

diagrams and elements in a CPN model are summarized in the Table 3.3. 

 

 

 

Table 3.3.  Mapping between Elements in a SysML Model and a CPN Model 

Elements in SysML Diagrams System 

Entities Sequence Diagram Activity Diagram Block Diagram 

Elements in 

CPN Model  

Fixed 

component 
Interacting Object  __ Part 

Substitution 

transition 

Transient 

information/

event 

Information on the 

Message line between 

lifelines 

Object flow Item flow Token 

Message 

Type 
__ __ 

Flow 

specification. 

Place and its 

color set 

declaration 

Operation 

Call 

Information on the 

Message line and/or 

description line 

Object flow 
Interface 

specification 
Place  

Operations __ Action  Block definition Transition 

Flow 
Message line between 

lifelines 

Dashed line 

connecting Object 

flow and action 

Ports and Port 

connection 
Arc 

Module  
Nested sequence 

diagram 

Child activity 

diagram 
__ 

Substitution 

transition 

 

 

 

3.4.6. Instantiation and Concurrent Processing.  The concurrent system involves 

multiple processing units working concurrently. This requires multiple instances of the 

same object to be created (for each use case scenario) for each of the concurrent processing 
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task. If, for example, only one instance of an object is created, the processing requests from 

other use case scenarios have to line in a queue and be processed one after each other, in 

any order. Therefore, the different use case scenarios are not proceeding in parallel. Figure 

3.6 depicts this idea. Of course, resource constraints and sharing may prevent tasks from  

 

 

 

 
Figure 3.6.  Interleaving Process vs. Concurrent Process 
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being processed in parallel. This concern will be discussed in a concrete case in later 

sections. By following the procedure specified in the preceding section, a CPN transition is 

created for each operation in each use case scenario, which enables parallel processing.  

3.4.7. Results of the Object Oriented Approach and the Model Driven Approach. 

As mentioned in Section 3.4.2 of this thesis, the conversion method used in [40] is based on 

UML Class diagram. The resulting CPN model is in line with the Object-Oriented 

approach. For each interacting object, a substitution transition is created and in the 

corresponding sub-page, a transition is created for each of the operations belonging to that 

object, together with those places representing attributes of that object. Therefore, each 

sub-page defines a class (class name corresponds to the sub-page name and the substitution 

transition name; attributes correspond to places; and operations correspond to transitions).  

The conversion method used in this thesis is based on SysML diagrams. The 

resulting CPN model is in line with the MDA approach since the sequence diagram is 

constructed according to the MDA paradigm. For example, the overall process starts from 

the high level business process, and then is gradually decomposed to lower levels of 

abstraction through substitution transitions. MDA benefit can be reflected in the 

executable model. First, modularity: common operations that are carried out by several 

objects can be organized into modular components which are reusable. Second, easy to 

maintain: if there is a change in the business process or a new use case scenario is 

introduced, only the high level process needs to be modified (or created). All the lower 

CPN pages can be reused. If there is a change in the lower level, the change usually is 

localized in the modular level and only the sub-pages need to be modified. This is 

analogous to the relationships between Platform Independent Models (PIMs) and Platform 

Specific Models (PSMs) in the MDA approach. These proprieties are very useful since 

during the design process, the designer often needs to shift back and forth between the CPN 

model and the SysML model in order to refine or reconfigure the design, or to 

incrementally develop the system. Figure 3.7 reflects the concept of reusable module in a 

CPN. 
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Figure 3.7.  Reusable Module in a CPN 

 

 

 

3.5. SIMULATION 

The CPN model provides a very detailed view on the execution of the system but it 

also contains many details that are not needed in the simulation. The simulation and its 

results should be as easy to observe as possible in order to facilitate the behavior and 

performance analysis. In addition, from an execution perspective, the simulation 

sometimes may need to interact with outside users during the simulation as the real system 

does. Therefore, a Graphical User Interface (GUI) for the CPN is highly desired. In this 

thesis, the BRITNeY Suite [68] was employed for these purposes. 

With the help of the BRITNeY, a GUI is integrated into the original CPN model. 

During the simulation, the CPN is running underneath the GUI. The user needs only to 

interact with the GUI to control the execution of the CPN model. A couple of graphic 

outputs can be generated after the simulation, such as the Message Sequence Charts 

(MSCs), the State Space Graphs, and etc. They provide effective means to analyze the 
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behavior of the system. The following three animation tools supported by the BRITNeY 

have been used in this thesis: 

3.5.1. Interactive Control.  The interactive control includes accepting inputs from 

outside users and providing graphical feedback. It is achieved by adding code segments to 

related transitions. These code segments are executed when the corresponding transition 

fires in the execution of the CPN model. 

3.5.2. Message Sequence Charts (MSCs).  There are four ways to generate the 

MSCs: 

Transition Message Sequence Charts – can be generated fully automatically based 

on the fired transitions. This kind of chart shows a timed sequence of fired transitions and 

their bindings. The sequence of operations in a simulation can be observed through this 

kind of chart. 

Place Message Sequence Charts – can be generated fully automatically based on 

values added and removed from places. 

Code Segment Message Sequence Charts – use the code segments attached to CPN 

transitions together with MSC animation plug-in to generate the MSCs. 

Monitor Message Sequence Charts – use CPN monitors together with MSC 

animation plug-in to generate the MSCs.  

3.5.3. State Space Graphs.  By adding appropriate auxiliary texts to a CPN page,  

and evaluating these texts, the state Space Graph will be created on the graph window of 

the BRITNeY Suite. The layout of the graph can be adjusted automatically or manually.  

Note that the executable model should be exercised for each use case scenario and 

their combinations in order to fully simulate the real-word application of the system being 

modeled. 

 

3.6. ARCHITECTURE EVALUATION AND ANALYSIS 

The tasks in this step include behavior and performance analysis, functionality 

verification and system configuration refinement. Three forms of methods for architectural 

evaluation, i.e. logical, behavioral, and performance, are described in [40]. The logic is 

examined by testing each step of the execution to ensure that the model is following the 

desired logic. The behavior of the system can be observed directly from the simulation. 
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However, it is often beyond the capability of human being to observe the details of 

simulation by watching the CPN and its markings. Alternative ways must be developed to 

observe the simulation. A numbers of such ways supported by CPN are provided in [62], 

e.g. simulation report, adding report places, business, charts, Message Sequence Charts 

(MSCs), state space reports, and state space graphs. These methods and tools enable 

detailed net analysis in a static way. 

3.6.1. Behavior and Functionality Verification.  The behavior of the architecture 

should be compared to the user’s requirements. The initial system behavior is captured by 

the sequence diagrams in the architecture model, which represents the desired behavior as 

specified in the requirements. After an architecture model has been converted to a CPN 

model, the modeled behavior can be observed from the simulation. This suggests an 

effective way of verifying and validating the behavior and functionality of the modeled 

system is to compare the Message Sequence Chart (MSC) (generated by executing the 

CPN model) and the SysML sequence diagrams. If there is a match, the model can be 

verified and validated. If the match is insufficient, then either the architecture model needs 

to be refined in order to better represent the system architecture or the system architecture 

needs to be reconfigured in order to better satisfy the requirements.  

3.6.2. Specification Completeness Checking.  From the comparison of the input 

sequence diagrams and the output MSCs, the missing specifications in sequence diagrams 

can be easily identified. The missing specifications in other diagrams can be found based 

on the concordance between different SysML diagrams as discussed in Section 3.4.4. The 

underneath rationale is that an executable always leads to more complete specifications 

since the model will not be fully operational until all parts and interaction of the system has 

been at least abstractly specified. For the same reason, some of the missing specifications 

can even be found during the development of the executable models.  

Experimenting the simulation can also help to identify the missing requirements. 

The existence of missing requirements implies that there are functions that the system must 

support in order to generate the required behavior or desired performance but have not 

been yet specified. 

The refined new model needs to be evaluated again. Thus the system design is an 

iterative process. 
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This section provided a set of generalized methodologies that constitute a 

framework of executable system architecting. In the following sections, these 

methodologies will be applied to a concrete system. It will be shown in detail how to use 

these methodologies to solve practical problems, which includes model development, 

executable model synthesis, simulation, and architecture evaluation and analysis. Some 

application specific concerns and solutions will also be highlighted. 
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4. MODEL DEVELOPMENT 

The model development presented in this section demonstrates the application of 

the modeling methodology described in the previous section. The Global Earth 

Observation System of Systems (GEOSS) is the target system to be modeled. The basic 

information about the GEOSS was derived from the 10-Year Implementation Plan 

Reference Document, which is attached in Appendix D. 

 

4.1. MISSION DEFINITION 

The purpose of the architecting activity is to develop a model of the GEOSS 

according to identified requirements. The model can then be used for various purposes 

such as understanding, presenting, planning, managing or building such system, or system 

acquisition procurement and integration. 

The following is a mission statement of the system to be modeled, which is adapted 

from [53]. 

“Understanding the Earth system – its weather, climate, oceans, atmosphere, water, 

land, geodynamics, natural resources, ecosystems, and natural and human-induced hazards 

– is crucial to enhancing human health, safety and welfare, alleviating human suffering 

including poverty, protecting the global environment, reducing disaster losses, and 

achieving sustainable development. Observations of the Earth system constitute critical 

input for advancing this understanding.” 

“The purpose of GEOSS is to achieve comprehensive, coordinated and sustained 

observations of the Earth system, in order to improve monitoring of the state of the Earth, 

increase understanding of Earth processes, and enhance prediction of the behavior of the 

Earth system. GEOSS will meet the need for timely, quality long-term global information 

as a basis for sound decision making, and will enhance delivery of benefits to society in the 

following initial areas: 

• Reducing loss of life and property from natural and human-induced disasters; 

• Understanding environmental factors affecting human health and well-being; 

• Improving management of energy resources; 
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• Understanding, assessing, predicting, mitigating, and adapting to climate 

variability and change; 

• Improving water resource management through better understanding of the water 

cycle; 

• Improving weather information, forecasting, and warning; 

• Improving the management and protection of terrestrial, coastal, and marine 

ecosystems; 

• Supporting sustainable agriculture and combating desertification;  

• Understanding, monitoring, and conserving biodiversity.” 

 

4.2. REQUIREMENTS CAPTURE 

Based on the above mission statements, the requirements of the system were 

analyzed and extracted from application requirements. A textual representation of the 

requirements can be organized in a hierarchical manner with index numbers as shown in 

Figure 4.1 (adapted from [88]). The SysML requirements diagrams help to capture the 

requirements clearly. Figure 4.2 depicts the functional requirements decomposition. 

 

 

 

REQ_G 0: The GEOSS shall be able to achieve comprehensive, coordinated and 

sustained observations of the Earth system, in order to improve monitoring of 

the state of the Earth, increase understanding of Earth processes, and enhance 

prediction of the behavior of the Earth system. GEOSS will meet the need for 

timely, quality long-term global information as a basis for sound decision 

making, and will enhance delivery of benefits to society in selected areas. 

 REQ_G 1.1 Disaster Mitigation Functional Requirements: 

• Continuity of operations 

• Continuous, real-time data streams 

• Rapid tasking of other data sources 

 
Figure 4.1.  GEOSS Functional Requirements 
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  • Global coordination of resources 

• Rapid generation of accurate information and forecasts, and 

• Efficient sharing of information products, in formats that are adapted 

to users’ needs. 

 REQ_G 1.2 Human Health and Well-Being Functional Requirements: 

• Increased coverage and resolution of observations 

• Observations of environmental elements not presently observed 

• Issue-specific observations, especially those related to air and water 

quality 

• Long-term, sustained observations of ground cover, and air and 

water quality. 

 REQ_G 1.3 Energy Resources Functional Requirements: 

• Continuity of operations 

• Continuous, real-time data streams 

• Time scales of hours, days, seasons, years and decades 

• Geographic scales including point source, regional, and global scale

• Efficient sharing of information products, in formats that are adapted 

to users’ needs. 

 REQ_G 1.4 Climatic Functional Requirements: 

• Improved knowledge of Earth’s past and present climate, including 

natural variability, and understanding of causes of observed variability 

and change 

• Climate system variables that specify the state, forcings, and 

feedbacks 

• Reduced uncertainty in Earth’s climate change forecasts 

• Integrated observations from operational and research observing 

systems 

• Better understanding of the sensitivity and adaptability of natural and 

managed ecosystems. 

 
Figure 4.1.  GEOSS Functional Requirements (cont.) 
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 REQ_G 1.5 Water Availability and Quality Functional Requirements: 

• Continuity of operations 

• Continuous, real-time data streams 

• Rapid tasking of other data sources 

• Global coordination of resources 

• Rapid generation of accurate information and forecasts, and 

• Efficient sharing of information products, in formats that are adapted 

to users’ needs. 

 REQ_G 1.6 Weather Forecasting Functional Requirements: 

• Increased coverage and resolution of observations 

• Observations of environmental elements not 

• presently observed 

• Improved timeliness, data quality, and long-term continuity of 

observations 

• Integrated multi-purpose observing systems and networks that allow 

rapid dissemination of weather information. 

 REQ_G 1.7 Ecosystems and Ecological Forecasting Functional Requirements: 

• Understand ecosystem composition, structure, and function 

• Monitor status and trends in ecosystem conditions and important 

ecological processes 

• Develop and improve ecological prediction and interpretation tools

• Develop and test a comprehensive forecasting framework through 

pilot and case studies 

• Efficient sharing of information products, in formats that are adapted 

to users’ needs 

 REQ_G 1.8 Sustainable Agriculture and Forestry, and Combating Land 

Degradation Functional Requirements: 

• Land Cover Assessment 

• Change Detection 

 
Figure 4.1.  GEOSS Functional Requirements (cont.) 
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  • Soil Moisture Content 

• Species Composition Surveys 

• Linking Observations Across Different Scales.  

 REQ_G 1.9 Understanding, monitoring, and conserving biodiversity Functional 

Requirements: 

• Open access to continuous, real-time, near real-time, and delayed 

data streams, and rapid access to archives 

• Robust calibration and validation for all systems 

• An efficient process to transition research into operations Global 

coordination of resources 

• Rapid generation of accurate information and forecasts 

• Efficient sharing of information products, in formats that are adapted 

to users’ needs. 

REQ_GIS 0: The GEOSS information System shall knit together the distributed 

components of GEOSS into a global whole that functions as a unified 

component. It shall effectively ingest and archive observations and 

integrated observations into the data and communications components that 

move data among systems and users in a distributed environment. 

The GEOSS will be required to link observations collected from a broad 

range of platforms: space, atmospheric, land surface, and oceans. 

Observations may be point measurements, continuous measurements, or 

imagery and variables may be biological, geological, chemical, physical, or 

abstract. The many millions of individual measurements anticipated to be 

obtained daily by the sensor networks will be transmitted (in real-time, 

near-real-time, and delayed modes) directly to end users, as well as to the 

applications and data-assimilating models that process these measurements 

into maps, plots, forecasts, and other useful forms of information.  

While the GEOSS vision recognizes that data products, rather than raw data, 

are typically required by users, the development of most data products will 

 
Figure 4.1.  GEOSS Functional Requirements (cont.) 
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 be the responsibility of the various subsystem of the GEOSS. The 

requirements of the GEOSS with respect to product generation are as 

follows:  

1. to ensure that the needs of product generators are met for timely delivery 

of quality-controlled data;  

2. to provide accurate and thorough metadata accompanying the data;  

3. to provide a uniform guaranteed minimum level of geo- and time- 

referenced graphical browse capability for all classes of data.  

The GEOSS system shall also guarantee assured data discovery and 

minimal browsing capability depend upon descriptive metadata, ensuring 

that the data are readily intelligible to users. 

 REQ_GIS 1.1: The system shall be able to collect remote and in-situ sensor 

measurements from various Earth observations e.g. space 

observations, atmospheric observations, land surface observations, 

and ocean observations. The system shall also have data telemetry 

capability. 

  REQ_GIS 1.1.1: Collecting in situ measurements. 

  REQ_GIS 1.1.2: Performing remote sensing. 

  REQ_GIS 1.1.3: Conveying data from sensors to primary data assembly 

centers. 

 REQ_GIS 1.2: The system shall be able to manage data/information (includes data 

archiving, access, processing, transport, and discovery) to enable 

efficient sharing of information products. 

  REQ_GIS 1.2.1: Metadata management. The system shall provide simple, clear 

guidelines and extensible standards for metadata; ensure that 

the linkages between data and metadata are maintained with 

great reliability; provide for communication of metadata 

among components of the system; provide training and tools 

to increase end users’ and data providers’ capacity in meta-

 
Figure 4.1.  GEOSS Functional Requirements (cont.) 
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   data generation and management. 

  REQ_GIS 1.2.2: Data Archive. Long-term archive and stewardship of 

GEOSS data sets and metadata; conform to related standards 

and user requirements.  

  REQ_GIS 1.2.3: Data Discovery. The ability to search for and find data sets of 

interest and access them in an interoperable manner from 

user applications.  

  REQ_GIS 1.2.4: Data assembly and Transport. The ability to transmit data 

between various GEOSS points (e.g. sensor nets, assembly 

centers, archive centers, and users) in real time and delayed 

mode; the mechanisms for aggregation and buffering of data 

streams over useful spans of time and space.  

 REQ_GIS 1.3: The system shall be able to process data into useful products that are 

ready to use by various applications.  

  REQ_GIS 1.3.1: Quality control and quality assurance. The mechanism for 

assuring that data are of known, documented quality. 

  REQ_GIS 1.3.2: Data-translation and filter. The mechanism for making data 

compatible as they are transported between various 

applications. These services include format conversion, 

region and parameter subsets, point extraction and 

re-gridding.  

  REQ_GIS 1.3.3: Visualizing data/information product and publishing them 

on the Internet for uniform on-line browse. 

 REQ_GIS 1.4: The system shall coordinate the distributed resources to support 

various applications that run on the system.  

  REQ_GIS 1.4.1: Dynamic allocating computing tasks to grid computers. 

  REQ_GIS 1.4.2: Managing the deployment and configuration of real 

applications. 

  REQ_GIS 1.4.3: Planning workflow and coordinating resources, data and 

 
Figure 4.1.  GEOSS Functional Requirements (cont.) 
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  REQ_GIS 1.4.3: applications. Enable the automation of a process in a whole 

or part, according to a set of procedural rules. 

 REQ_GIS 1.5: The system shall be able to (1) improve, develop, test, and validate 

operational models; (2) produce accurate estimates of current states 

of various areas of Earth systems; (3) develop data assimilating 

techniques to initialize and update models for more accurate 

forecasts of state changes; and (4) optimize the observing. 

  REQ_GIS 1.5.1: Supporting various analysis models for each domain 

applications. 

  REQ_GIS 1.5.2: Supporting various domain specific applications and tools. 

Sustaining and enhancing capacities in research, training, 

and development. 

 REQ_GIS 1.6: The System shall be able to interface with the user community and 

the decision support systems they use.  

  REQ_GIS 1.6.1: Providing internet portals for user involvement. Access to 

data and metadata shall be available through the Internet via 

a portal. 

  REQ_GIS 1.6.2: Supporting and integrating various user applications and 

services 

 
Figure 4.1.  GEOSS Functional Requirements (cont.) 

 

 

 

The high level requirements for the GEOSS were drawn from [53]. A <<derive>> 

relationship was used to model this dependency. These high level requirements were then 

decomposed into sub requirements based on different services areas that the system is 

supposed to support. The model items that satisfy or verify specific requirements were also 

related to the corresponding requirements using the <<satisfy>> relationship.  

The nonfunctional requirements are shown in Figure 4.3. The corresponding 

textual requirements are given in Figure 4.4. 
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Figure 4.2.  Requirements Diagram – GEOSS Functional Requirements Decomposition 
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Figure 4.3.  Requirements Diagram – GEOSS Nonfunctional Requirements 
 

 

 

REQ_GIS-NF 1.1: Interoperability.  

The System shall support Interoperability across components and 

services: 

Transparency (format, protocol, etc.); 

Defining and updating interoperability arrangements including 

technical specifications for collecting, processing, storing, and 

disseminating shared data, metadata and products; 

Facilitating architecture and data standards, using existing standards 

wherever possible, and identifying gaps in existing standards; 

Integrated multi-purpose observing systems and networks; 

Global coordination of resources; 

Make data available in multiple forms including the data’s native form

Offer a cross-language and cross-platform data access mechanism that 

is independent of the data repository 

 
Figure 4.4.  GEOSS Nonfunctional Requirements 
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 Enable the abstraction of encoding and transmission mechanisms and 

allow transparent distributed access to data using multiple protocols 

REQ_GIS-NF 1.2: Legacy System.  

The system shall build on existing systems and initiatives 

• defining the components of the GEOSS architecture 

• converging or harmonizing observation methods 

• promoting the use of existing standards and references, inter- 

calibration, and data assimilation 

The system shall provide a backward-compatible, version-controlled 

software environment. 

The system shall not adversely impact existing data access methods or 

systems of the data providers. 

REQ_GIS-NF 1.3: Openness. 

The system shall support open design and standards process 

The system shall provide access to all types of data: physical, 

chemical, biological, and geological. 

Interfaces to data repositories may reside at any location that has 

network connectivity with the application and the data repository 

REQ_GIS-NF 1.4: Flexibility/Extensibility/Scalability.  

The GEOSS as a whole shall be extensible in terms of function, 

volume, capacity, and throughput. 

REQ_GIS-NF 1.5: User-friendly and customization.  

The GEOSS shall provide access to data in a manner that is (largely) 

transparent to the user; 

Generic treatment of data sources isolating the requesting client from 

specific representations, unique request semantics, and protocols. 

The System shall support customization and personalized services; 

REQ_GIS-NF 1.6: User feedback and interaction.  

The system shall support effective user feedback and interactions. 

 
Figure 4.4.  GEOSS Nonfunctional Requirements (cont.) 
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 The system shall respond automatically, in a coordinated manner, to 

both internal and external influences in a manner that optimizes 

overall system performance. 

REQ_GIS-NF 1.7: Effectivity.  

The System shall support reliable, sustained, efficient operations. 

Improved timeliness, data quality, and long-term continuity of 

observations. 

Rapid generation of accurate information and forecasts 

REQ_GIS-NF 1.8: Performance.  

The GEOSS shall be developed to conform to minimum performance 

requirements. The following TBD notional performance requirements 

apply:  

1. Minimum storage at Regional Data Centers, Data Assembly 

Centers, Modeling Centers, Archive Centers  

2. Minimum aggregate computing capacity (ops/s) at Regional Data 

Centers, Data Assembly Centers, Modeling Centers, Archive Centers 

3. Minimum communications bandwidth among Regional Data 

Centers, Data Assembly Centers, Modeling Centers, Archive Centers. 

4. Maximum latency from data request to return to requesting user for 

simple data requests.  

5. Maximum latency from data request to return to multiple 

simultaneous requesting users for simple data requests.  

6. Maximum latency from data request to return to requesting user for 

complex data requests, including data aggregation, subsetting. 

7. Maximum latency from data request to return to multiple 

simultaneous requesting users for complex data requests, including 

data aggregation, subsetting.  

8. Minimum data volume rate of sustained delivery of volumes of data 

to a single user.  

 
Figure 4.4.  GEOSS Nonfunctional Requirements (cont.) 
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 9. Minimum data volume rate of sustained delivery of volumes of data 

to multiple users simultaneously. 

 
Figure 4.4.  GEOSS Nonfunctional Requirements (cont.) 

 

 

 

Note that the requirement model evolved through design phases, where design 

details were added and design elements were linked with appropriate requirements. The 

above requirement models only show the final results. 

 

4.3. OPERATIONAL CONCEPT ANALYSIS 

Given the requirements, a high level operational concept that describes how the 

mission will be carried out can be formulated. The DoDAF products can be used for this 

purpose. Since the main purpose of using DoDAF products in this thesis is to facilitate the 

function analysis and refine the requirements, only the High-Level Operational Concept 

Graphic (OV-1) has been used here.  

The intent of OV-l is to provide a quick, high- level description of what the 

architecture is supposed to do, and how it is supposed to do it, including the interactions 

between the subject architecture and its environment, and between the architecture and 

external systems. Figure 4.5 shows the OV-l. The architecture describes the major system 

modules, data elements or objects, and interfaces between those modules. From a 

functional view, GEOSS includes the following four efficiently linked systems: the 

Observations and Data Telemetry system; Data Analysis and Modeling system; User 

Service System (a variety of services available to the users), and External Control System 

(providing oversight mechanisms to ensure the proper functioning and smooth evolution of 

GEOSS, e.g. fault detection and correction, security, monitoring and evaluation of system 

performance, providing for system extensibility). All these systems are connected by the 

Information Management Infrastructure, which integrates the diverse data flow from a 

variety of sources and incorporates the data flow into an open-access, scalable, modular 

and distributed real-time system.  
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Figure 4.5.  GEOSS High-Level Operational Concept Graphic (OV-1) 
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Data flow within GEOSS begins with the Observing & Data Telemetry System. 

Raw measurements from its elements are processed at various primary data assembly and 

quality control sites. These measurements then enter the data communications 

infrastructure. Both the observations and the processed information (e.g. predictions and 

analysis results) are delivered by the GEOSS Information Management Infrastructure as 

requested by the end user. Three basic tasks are performed by the infrastructure. They are: 

 Data management, including: 

• GEOSS-wide descriptions of data sets (Metadata Management);  

• The ability to search for and find data sets of interest (Data Discovery);  

• The ability to securely archive data and metadata and retrieve them on demand 

(Data Archive); 

• The ability to access the data in an interoperable manner from client applications 

(Data Transport).  

 Resource management (coordinates the distributed resources to support various 

applications that run on the system, e.g. dynamic allocation computing tasks to grid 

computers, manage the deployment and configuration of real applications, and plan 

workflows), and  

 Primary data processing (data quality control, format conversion, visualization, 

and publishing the data on the Internet for uniform on-line browse). 

The data and information product of the system are also grouped into four 

categories, inputs, outputs, outcomes and impacts, as shown in the figure. 

The scope of the system is delineated using the rectangular box. Actors are end 

users who interact with the systems and hence are placed outside the system but are 

connected to the appropriate part of the system. 

 

4.4. USE CASE DEFINITION 

Based on the above information, functionality can be grouped to create the use 

cases. A use case describes the usage of the system (subject) in the form of a set of services 

provided by the system for its actors (environment).  
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Figure 4.6 is a top level use case of GEOSS (All actors shown in this diagram 

should be connected to each of the use case but the association relationships have not been 

shown explicitly in this diagram for simplicity purpose).  

 

 

 

 
 

Figure 4.6.  GEOSS Top Level Use Case Diagram 
 

 

Figure 4.7 shows the decomposition of the Weather Forecasting Service use case 

and the related use cases.  

Figure 4.8 shows the middle level use case.  

Figure 4.9 shows the decomposition of Data and Resource Management use case. 
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Figure 4.7.  GEOSS High Level Operational Use Case Diagram 
 

 

 

 
 

Figure 4.8.  GEOSS Middle Level Use Case Diagram 
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Figure 4.9.  Decomposition of the Data and Resource Management Use Case 
 

 

 

In these diagrams, the “include” relationship defines common functionality which 

is shared among multiple use cases and is always performed as part of the base use case. 

The “extend” relationship defines optional functionality that extends the base use cases. 

The “generalization” specifies variants of the base use case. These diagrams are also 

shown in Appendix A. 
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4.5. USE CASE SCENARIOS 

A use case scenario in this thesis refers to a specific application of the system. The 

operational concept can support several use case scenarios. A scenario can be used as a test 

case to verify the architecture being modeled. 

Four use case scenarios were considered in this thesis. They are selected from [89] 

as shown in Figure 4.10 through Figure 4.13. These figures have been extracted from 

Popkin’s System Architect where they reside as OV-6a diagrams (Operational Rules 

Model of DoDAF products). These scenarios were, however, revised as required for the 

modeling purpose in this thesis. The system being modeled in this thesis contains both 

automatic processes and configurable processes. The workflows for these four scenarios 

are configurable ones, which are based on some pre-defined automatic processes. These 

configurations represent the initial set of the system, which should be defined case by case.  

4.5.1. Five Day Ocean Forecast Use Case Scenario.  Figure 4.10 presents the Five 

Day Ocean Forecast use case scenario. A highlight of the scenario is given as follows: 

National or Global modeling is performed in data assembly centers. National and 

Global modeling makes use of the consolidated regional forecasts as boundary input to 

global (ocean basin) modeling and also takes high resolution core variables provided by 

regional observing systems as input.  

The steps depicted in Figure 4.10, are simultaneously executed in multiple 

locations at different levels (e.g. regional, national, and global) exchanging information 

between cycles, in order to provide continuous high fidelity nowcasts and forecasts for a 

true five day forecasting capability, similar to that of the National Weather Service. 

For detail descriptions of this use case scenario, please refer to [90].  

4.5.2. Five-Day Ocean Forecast – Pre-Operational Use Case Scenario.  The Five 

Day Ocean Forecast application is an operational system that demands high reliability and 

availability. Therefore, updates to the operational system are thoroughly tested and 

examined in a separate but equally stressing environment before being transitioned into the 

operational system. That’s why a pre-operational scenario is needed. 

Figure 4.11, presents the Use Case scenario for maintaining and operating a 

Pre-Operational version of the Five Day Ocean Forecasting application. The scenario 

begins with the receipt of a change proposal generated as an output from the Academic  



  

 
 

Pe
rf

or
m

 S
en

so
r 

C
ol

le
ct

io
ns

 

C
on

so
lid

at
e 

Se
ns

or
 D

at
a 

A
cc

es
s C

ur
re

nt
 

D
at

a 

Q
A

/Q
C

 C
ur

re
nt

 
D

at
a 

&
 

R
et

rie
ve

 
B

at
ho

m
et

ric
 

D
at

a 

R
et

rie
ve

 
C

lim
at

ol
og

ic
al

 
D

at
a 

R
et

rie
ve

 
H

is
to

ric
al

 
Se

ns
or

 D
at

a 

C
ha

ra
ct

er
iz

e 
Im

pr
ov

em
en

t 
U

se
 C

as
e 

R
ep

la
ce

 O
pe

ra
tio

na
l 

M
od

el
 w

ith
 th

e 
ne

xt
 

ve
rs

io
n 

Pu
bl

is
h 

O
pe

ra
tio

na
l 

In
pu

ts
 

A
rc

hi
ve

 
C

ur
re

nt
 

Se
ns

or
 D

at
a 

G
en

er
at

e 
A

le
rts

 &
 

A
la

rm
s

Pe
rf

or
m

 T
hr

es
ho

ld
 

A
na

ly
se

s

R
un

 
O

pe
ra

tio
na

l 
M

od
el

s 

Fi
ve

 D
ay

 O
ce

an
 

Fo
re

ca
st

-P
re

-O
pe

ra
ti

on
al

 U
se

 c
as

e 
Pu

bl
is

h 
C

ur
re

nt
 

Fo
re

ca
st

A
rc

hi
ve

 C
ur

re
nt

 
Fo

re
ca

st
Q

A
/Q

C
 

O
pe

ra
tio

na
l 

M
od

el
 O

ut
pu

ts

C
on

so
lid

at
e 

M
od

el
 In

pu
ts

Sy
nt

he
si

ze
 

R
eg

io
na

l 
Fo

re
ca

st
s 

&
 

O

O
 

&
O

O

R
un

 w
ith

 C
ur

re
nt

 
V

er
si

on

D
is

tri
bu

te
 

N
at

io
na

l 
Fo

re
ca

st
s 

O
bt

ai
n 

G
rid

 B
ou

nd
ar

y 
C

on
di

tio
ns

 fr
om

 
N

at
io

na
l F

or
ec

as
t 

D
is

tri
bu

te
 

R
eg

io
na

l 
Fo

re
ca

st
s 

O
bt

ai
n 

La
te

st
 

Fo
re

ca
st

s f
ro

m
 

R
eg

io
ns

 

R
eg

io
na

l 
or

 
N

at
io

na
l?

R
eg

io
na

l 
or

 
N

at
io

na
l?

N
ex

t 
V

er
si

on
 

R
ea

dy
?

Figure 4.10.  Five Day Ocean Forecast Use Case Scenario 
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Modeling and Algorithm Research Use Case (which is pretty much like the Characterize 

Improvements Use Case Scenario mentioned shortly later so it has not been modeled in this 

thesis). After running the proposed change in parallel with the operational system and 

comparing the resulting outputs, the scenario ends with an approved change being queued 

for introduction into the operational system. 

This Use Case is targeted for the specific instance of Pre-Operational Five Day 

Ocean Forecasting. There can, and probably will be, several instances of Pre-Operational 

Five Day Ocean Forecasting models being examined at the same time, some at the national 

level and some at each Regional Association. 

For detail descriptions of this use case scenario, please refer to [91] 

 

 

 

 
Figure 4.11.  Five-Day Ocean Forecast – Pre-Operational Use Case Scenario 
 

 

 

4.5.3. Characterize Improvements Use Case Scenario.  The evolution of operat- 

ional GEOSS systems and subsystems across time is governed by a set of processes that 

introduce changes in a controlled non-disruptive manner. As academic research is 

conducted and updates to operational systems are proposed, any potential changes to the 

systems are carefully evaluated to characterize the improvements. Figure 4.12, depicts a 
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stand-alone use case scenario that can be applied in a variety of different situations in order 

to evaluate the outputs from a research or pre-operational system against the outputs from 

the current operational system and/or the actual sensor readings.  

For detail descriptions of this use case scenario, please refer to [92].  

 

 

 

 
Figure 4.12.  Characterize Improvements Use Case Scenario 
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making use of the latest high-resolution digital elevation maps and the near-shore maps. 
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set is used to create new maps showing how much further inland flooding could stretch 

under various forcing conditions.  

This Use Case is based, in large, on an AP Wire article entitled “Storm surges could 

be twice as bad as those caused by Isabel” published April 30, 2006.  

For detail descriptions of this use case scenario, please refer to [93]. 

 

 

 

 
Figure 4.13.  Emergency Management Use Case Scenario 
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4.6. COMPUTATION INDEPENDENT MODEL (CIM) DEVELOPMENT 

A generic Computation Independent Model (CIM) can be created by abstracting 

the business process aspect of the operational concept. Here both structure diagrams and 

behavior diagrams have been used to specify CIM. 

In Figure 4.14, a block definition diagram has been used to identify the domain of 

the system. The information was extracted directly from the OV-1. Block is a SysML 

stereotype based on UML class. It provides a unifying concept to describe the structure of 

an element or a system. Unlike UML class, multiple compartments can be used to describe 

the block characteristics in SysML. This is an advantage of SysML over UML. A block 

definition diagram describes the relationship between blocks (e.g. composition, association, 

generalization). SysML uses different arrow types to indicate this relationship. The 

composition relationships and reference relationships are used in Figure 4.14. 

In Figure 4.15, an Internal Block Diagram is used to depict the business process for 

representing the CIM. This business process was developed by identifying the top level 

functional organization partition from a horizontal view [81]. At this point, no details about 

the target domain and platform are being taken into consideration. An internal block 

 

 

 

 
Figure 4.14.  Block Definition Diagram – GEOSS Domain Breakdown 
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Figure 4.15.  Internal Block Diagram – GEOSS High Level Operation 

 

 

 

diagram shows the connection between composition parts. Interfaces, which are service or 

signal exchanges, are represented by SysML standard ports, either provided type or 

required type. Data and item flows between parts are represented by SysML flow port. In 

Figure 4.16, a block definition diagram is used to present the interface definitions 

corresponding to the standard port in Figure 4.15. 

The dynamic behavior of the components identified so far can be specified using 

activity diagrams. An activity diagram specifies sequences of actions, the object flow 

between actions and conditions for coordinating activities. These actions can be separated 

into swim lanes, each of which represents a specific responsible entity, e.g. an 

organizational group or a subsystem.  
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Figure 4.16.  Block Definition Diagram – Interface Definition 
 

 

 

Activity diagrams can be presented in a variety of ways to show different views of 

the system behavior. Figure 4.17 is a high level activity diagram showing generic behavior. 

It modeled the control-driven serial behavior of the system. Control flows were represented 

by solid arrows connecting actions (represented by rounded rectangles). Objects flows 

between actions were represented by dashed arrows that connect the object (represented by 

rectangle) and the actions (represented by rounded rectangles). Parallel activities start from 

Fork Nodes and end at Joint Nodes. For a multi-task system, Figure 4.18 represents the 

prototype of a single thread of behavior that the system may carry out in all use cases. For 

each specific use case some of the actions may not take place. 

Since the GEOSS was modeled as a parallel processing system, the concurrent 

behavior should also be modeled in some way. Figure 4.18 did this job. It modeled the I/O 

driven continuous parallel behavior of the system. All actions in this diagram share the 

same fork node and the same joint node since, and at any specific point of time, all of these 

actions may take place concurrently corresponding to a specific point of stage in carrying 

out a task.  
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Figure 4.17.  GEOSS– High Level Activity Diagram Showing Generic Behavior 
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Figure 4.18.  GEOSS – High Level Activity Diagram Showing Concurrent Behavior 
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4.7. PRELIMINARY STRUCTURE DIAGRAMS DEVELOPMENT 

In this step, the model transformation principles of MDA approach were applied. 

Domain information was iteratively introduced and drove the decomposition from CIM to 

PIM and from PIMs to PSMs.  

The resulting system architecture was a layered architecture, unlike the typical 

federated one. This style of organizing the components standardizes “structure” and 

leverages enormous flexibility in “behavior”. In Figure 4.19, a SysML block definition 

diagram is used to describe the relationship of the components in GEOSS. The 

“generalization” relationship is used to describe different variants of the same base blocks. 

As shown in Figure 4.19, the system activities are realized as five distinct yet 

highly interconnected layers and a cross-cutting layer according to their roles in data and 

information processing. Lower layers provide service to upper layers and upper layers are 

logically closer to the user.  

Layer 1 is packaged into “user interface” and comprised of web portals (including 

websites) that spawn user-customized workflows and various user applications, e.g. 

decision-support tools that automatically ingest information products from pre-configured 

workflows. These collaborating components interact directly with end users and end-user 

tools and provide all the behavior of the system with the supports of the lower layers. The 

complexities of the underlying system architecture and the implementation details are 

hidden from outside users. 

Layer 2 is packaged into “Applications & Tools” and comprised of common 

applications and tools that provide services to the user applications. It contains the various 

numerical models employed by GEOSS for predicting and analyzing observations. It also 

includes data translation and visualization toolkits for pre-processing or post-processing 

data and information products. Components within this layer generally interact with one 

another in a fashion that is coordinated by the workflow tools. These components are 

identified by concerning the needs for interoperation between the applications in the upper 

level and the domain specific operations that these applications carry out. 

Layer 3 is packaged into “Configuration & Execution Management” and comprised 

of “service modules” that would be invoked by GEOSS workflows. They are divided into 

the following five groups: 
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Figure 4.19.  Block Definition Diagram – GEOSS Structure Breakdown 
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• Application environment configuration components manage the deployment and 

configuration of real applications facilitating their executions.  

• Application resource management components coordinate the distributed 

computational resources to support various applications that run on the system. 

• Data management components coordinate input and output of an application 

(usually the model input/output). These components coordinates with resource 

management components to make sure the data goes to its intended destinations.  

• Archive management components establish dynamic and standardized 

connections to existing repositories of GEOSS (data/ metadata/ information product). 

• Workflow management components provide a coordinated mechanism to manage 

resources, data and application tasks. 

These components are identified by concerning the interfaces between the 

applications and the hardware infrastructure. 

Layer 4 is packaged into “Resource Access”. It provides the data transport service 

and the standard protocols for accessing the raw services. These components were 

identified by concerning the interfaces between local and remote computational resources. 

Layer 5 is packaged into “Resources” representing all the physical raw resources 

including distributed database and storage, computational hardware and software, sensors, 

and data collection centers.  

Some cross-cutting components provide functionality that spans multiple layers, 

for example, catalog, registration, subscription, security, and monitoring service. These 

components are identified and grouped into a package named “Common Services”. In 

general, such cross-cutting components provide ancillary services that are needed by the 

tasks in Configuration & Execution Management layer. For instance, directory provides 

services that enable discovery and location of data and resources throughout the system. 

Note that only a preliminary structure diagram can be developed from the 

information on hand in this step. The detail specifications of interfaces and flow properties 

between interconnecting components need information from the sequence diagrams and 

activity diagrams which will be developed after this step. 
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4.8. SEQUENCE DIAGRAMS DEVELOPMENT 

The sequence diagrams illustrate the flow of control between actors and systems or 

between the parts of a system. The sequence of message passing (over time) between 

interacting entities are depicted on the horizontal line between the lifelines under each 

interacting object. The messages can be events (input or output signals between system 

parts and outside actors), item flows, or operation calls. To manage the complexity, 

hierarchical sequence diagrams are used. Appendix A20 through Appendix A22 depict the 

top level sequence activities for each of the use case scenario (The Pre-Operational use 

case and the Characterize Improvements use case were combined together for 

simplification purpose). The reference interactions that further elaborate on the system 

behavior are represented by rectangles that span several interacting objects. A sub-level 

sequence diagram was created for each of these reference interactions. Each of theses 

nesting sequence diagrams might also have nested sequence diagrams. Appendix A23 

through Appendix A30 shows these nested sequence diagrams.  

 

4.9. ACTIVITY DIAGRAMS DEVELOPMENT 

By examining the input and output message flow of an object in the sequence 

diagrams, the operations (actions) that the object needs to conduct in order to generate the 

output can be identified.  

Again, these sets of activity diagrams were organized in hierarchical structures. For 

each of the action shown in high level activity diagrams, there is, if needed, a child activity 

diagram that further elaborates on that action, which may contain further child activity 

diagrams. Appendix A33 through Appendix A40 shows these child activity diagrams.  

 

4.10. REFINE STRUCTURE DIAGRAMS 

Now, enough information is available for refining the structure diagrams. The tasks 

involve the definition of blocks in terms of their operations and attributes, the specification 

of connections between blocks, and the corresponding interfaces and item flows. When 

these are done, the specifications of structure diagrams should be completed. In Figure 

4.20, an internal block diagram was used to show the internal structure of GEOSS in terms 

of its prosperities (part), connectors, and ports. 
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Figure 4.20.  Internal Block Diagram GEOSS Internal Connection 
 

 

 

The operational calls identified in sequence diagrams are used to specify standard 

ports and the corresponding interfaces. A Standard Port can either be “provided” or 

“required”, which represents the services that the owning block provides to its 

environment or the services that the owning block expects of its environment, respectively. 

The standard port is typed by interface specification. In Figure 4.21, a block definition 

diagram was used to define the interface specifications. 
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Figure 4.21. Block Definition Diagram for Interface Definition 
 

 

 

The object flows identified in activity diagrams and message exchanges in 

sequence diagrams were used to specify the Flow Ports, Flow Specifications and Item 

Flows. Flow Ports and the associated Flow Specifications define “what can flow” between 

the block and its environment, whereas Item Flows specify “what does flow” in a specific 
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usage context. Flow Ports and Item Flows have been shown in the above internal block 

diagram. Flow Specifications are defined using a block definition diagram as shown in 

Figure 4.22. 

 

 

 

 
 

Figure 4.22.  Block Definition Diagram for the Flow Specification 
 

 

 

The operations identified in activity diagrams and sequence diagrams were grouped 

for each of GEOSS’s components to form the block definitions as shown in Appendix A10 

through A 14. 

The main purpose of the model development in this thesis is to facilitate the 

simulation of system behavior, which mainly involves the interaction of the components 

(object) within the system. A State machine diagram illustrates the behavior of an 

individual object and thus is of little usefulness for this purpose. Therefore, the state 

machine diagrams have not been used here. 
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5. EXECUTABLE MODEL DEVELOPMENT 

In this section, the SysML model developed in the preceding phase was converted 

to an executable model represented by Colored Petri Net (CPN). The conversion was based 

on SysML sequences diagrams as discussed in Section 3.4 of this thesis. 

 

5.1. MODEL OVERVIEW  

The complete CPN model is hierarchically structured into 15 modules. The module 

concept of CPN is achieved through the substitution transitions which have associated 

sub-modules providing a more precise and detailed description of the activity represented 

by the substitution transition. A sub-module of a substitution transition may contain further 

substitution transitions. A CPN module is presented on a CPN page. As discussed earlier, 

the conversion method used in this thesis is case based, which means each use case 

scenario will have a corresponding representation in the CPN model. Appendix B2 through 

Appendix B5 presents the 4 top level modules (page) of the CPN model, each 

corresponding to a specific use case scenario and the associated sequence diagram. For 

each of the lower level sequence diagrams, there is also a corresponding sub-module 

(page). They are shown in Appendix B6 through Appendix B15. Each of these 

sub-modules is connected to its corresponding substitution transition through specific 

sockets and ports. The hierarchy relationship is depicted in Figure 5.1, which also shows 

the corresponding index of these pages in appendix B.  

A transition was named by both the operation that the transition represents and the 

owning object of that operation. Since an operation is always conducted by an object, this 

naming policy clearly shows this relationship. The colors (data types) of tokens that can 

reside on a place are determined by the color set of the place. Color sets are similar to data 

types in conventional programming languages. Appendix B16 lists the definitions of the 

color sets used in this CPN model. These color sets are constructed using the attributes of 

the blocks in related block definitions diagrams. The variables and functions used in the 

CPN model are also shown in Appendix B16. A state of a CPN is called a marking. It 

consists of a number of tokens positioned on the individual places. 
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Figure 5.1.  Page Hierarchy of the CPN Model 

 

 

 

A new CPN page named “UserInput” was created but had no associated SysML 

sequence diagrams. It was created exclusively for simulation purposes. In order to better 

simulate the real-word situation, the concurrent execution of multiple tasks, the user is 

given the freedom to specify which task(s) and how many times each task(s) are going to 

be executed in the simulation. This is done by giving the proper Initial Markings to specific 

places in the “UserInput” page. For example, the three places, Five Day Ocean Forecast, 

PreOperational Model and Emergency Management, respectively, are given the initial 

markings of "Ocean Forecast", "Operational Model Basline Update" and "Emergency 

Management". These initial markings are notations that represent the three top level tasks 

to be executed by the CPN model. The three places named zCycles1, zCycles2 and 

zCycles3, respectively are used to specify how many times each of the above three tasks is 

going to be executed with “0” meaning no execution. Note that the Characterize 
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Improvement use case scenario is always executed in combination with the 

Pre-Operational use case scenario in this thesis so the exestuation of Characterize 

Improvement scenario is designed to be invoked by the Pre-Operational scenario.  

 

5.2. THE ANIMATION GRAPHICAL USER INTERFACE (GUI) 

The CPN model can be integrated with the BRITNEY suite to generate a Graphical 

User Interface (GUI) during the simulation. The integration is done by adding certain 

artifacts to the CPN model in the way defined by the BRITNEY suite. Two types of GUI 

supported by the BRITNEY suite have been used in this thesis. 

5.2.1. The Interactive Interface.  Two type of user interactions are involved in the 

use case scenarios modeled in this thesis. 

The first is instant feedback. The BRITNEY suite can extract information during 

the simulation and give instant feedback. This provides a means to monitor the simulation 

by observing the information of interest. For example, during the execution of the 

scenarios modeled in this thesis, the system may generate some products, say ocean 

forecast, which gives important information about the execution of the simulation 

(indicating the completeness of the Five day ocean forecast scenario in this case).  

The second is interactive control. The model will ask for and accept user input 

during the simulation in order to determine the workflow of the simulation. For example, 

during the execution of the scenarios modeled in this thesis, there are some decision points 

that need the user to review certain outcomes of the execution and make decisions, which 

may have impacts on the workflow. 

These user interactions in the execution of the CPN model are achieved by 

attaching code segments to interested transitions in the CPN model. These code segments 

are executed whenever the corresponding transition occurs in the simulation of the CPN 

model. As an example, the transition Distrubite RegForecast -ResAccess (see Figure 5.2) 

has an attached code segment displaying a dialog window on the users screen with the text 

5 Day Ocean Forecast Output2-Distributed Service Product: Regional Ocean Forecast, 

which indicates the completion of one cycle of five day ocean forecast scenario. While the 

transition Identify Required and Desired Improvements – AnlsTool (see Figure 5.3) has an 

attached code segment that asks for the user’s input using a dialog window. The user is 
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asked to review the performance of the beta model and decide whether there is an 

improvement. If the user inputs “y” meaning “yes”, the transition Update to New Mdl – 

Models (see Figure 5.4) will be fired after some steps and the operational model used in the 

five day ocean forecast will be replaced by the beta model in the later simulation process.  

 

 

 

 
 

Figure 5.2.  The Code Segment on Transition Distrubite RegForecast -ResAccess from 
Page FiveDOceanForecast 

 

 

 

 
 
Figure 5.3.  The Code Segment on Transition Identify Required and Desired Improvements 

– AnlsTool from Page Improvement 
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Figure 5.4.  The Transition Update to New Mdl – Models fom Page FiveDOceanForecast 
 

 

 

In addition to the code segments, certain declarations need to be set up in the 

“Animation setup” declaration group of the CPN tools as shown in Figure 5.5. The 

declarations set up the connection to the BRITNeY suite.  

 

 

 

Animation setup 

structure dialog = GetString(val name = "Question"); 

structure msg = ShowString(val name = "Important Message"); 

 
Figure 5.5.  Declarations under the Animation Setup Declaration Group 

http://wiki.daimi.au.dk/cpntools-help/cpn_ml.wiki
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In this declaration, two new objects, dialog and msg are created in the BRITNeY 

suite. Each object is created by a Standard ML functor, which takes as parameter a 

descriptive name of the new object. The available methods for each object can be seen by 

evaluating open <object-name> as shown Figure 5.6. 

 

 

 

 
 

Figure 5.6.  Evaluating Auxiliary Texts on a CPN Page 
 

 

 

5.2.2. Message Sequence Charts (MSCs).  The generation of Message Sequence 

Charts (MSCs) provides a powerful tool for analyzing the behavior of the system. The 

BRITNeY suite supports 5 approaches to drawing MSCs. In this thesis, the more advanced 

approach, Monitor Message Sequence Chart, was employed because it allows more control 

on the style of the output of MSCs. 

This approach of generating MSCs uses the MSC animation plug-in of BRITNeY 

with monitor in CPN. The only steps needed on the CPN model are 1) creating a proper 

User-Defined Monitor, which monitors interested transitions, and 2)adding MSC object 

declarations. Here, the top CPN page of the five day ocean forecast scenario is taken as an 

example to show how the transitions of this page are monitored and how the MSC was 

created. 

http://wiki.daimi.au.dk/britney/monitor_message_sequence_.wiki?cmd=get&anchor=Monitor+Message+Sequence+Charts
http://www.daimi.au.dk/~mw/local/tincpn/adoc/dk/klafbang/tincpn/animation/plugin/MSC.html
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The declaration of the MSC object specifies the name of the MSC that events will 

be drawn on during the simulation (see Figure 5.7). It is given a name so the BRITNeY 

Suite can recognize it. 

 

 

 

 
 

Figure 5.7.  A Screenshot on Declarations of the MSC Object  
 

 

 

In order to create the monitor, the User-Defined Monitor tool of CPN should be 

applied to each of the transitions that are going to be monitored. The selected transitions 

are shown in the Nodes ordered by pages group under the CPN monitor index (see Figure 

5.8). 

There are five parts in the monitor specification. 

1. Initialization function (see Figure 5.9). 

These specifications initialize the MSC with the interacting objects that are going 

to be shown on the top of the MSC (analogues to the SysML sequence diagram). The order 

specified here determines the order of the objects shown in the MSC.  
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Figure 5.8.  A Screenshot after Applying User-Defined Monitor Tool to Related 
Transitions 

 

 

 

fun init (FiveDOceanForecast'PostProcess_1_mark : DataLbxTpxValxTpMxServID ms,

          FiveDOceanForecast'ResAccess1_1_mark : DataLbxTpxValxTpMxServID ms, 

          FiveDOceanForecast'ResAccess2_1_mark : DataLbxTpxValxTpMxServID ms, 

          FiveDOceanForecast'ResAccess3_1_mark : DataLbxTpxValxTpMxServID ms) =

       (msc5dOF.addProcess("DesktopApp"); 

       msc5dOF.addProcess("ObsSys"); 

       msc5dOF.addProcess("WebsitePortals"); 

       msc5dOF.addProcess("AnlsTool"); 

       msc5dOF.addProcess("ResAccess"); 

       msc5dOF.addProcess("Database"); 

       msc5dOF.addProcess("Models"); 

       msc5dOF.addProcess("PreProcess"); 

       msc5dOF.addProcess("PostProcess") 

) 

 
Figure 5.9.  Specifications for Initialization Function 
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2. Prediction function (see Figure 5.10). 

The predication functions will evaluate to true when one of the monitored 

transitions fires with some binding. The code is auto-generated.  

 

 

 

fun pred (bindelem, 

            FiveDOceanForecast'PostProcess_1_mark : DataLbxTpxValxTpMxServID ms, 

            FiveDOceanForecast'ResAccess1_1_mark : DataLbxTpxValxTpMxServID ms, 

            FiveDOceanForecast'ResAccess2_1_mark : DataLbxTpxValxTpMxServID ms, 

            FiveDOceanForecast'ResAccess3_1_mark : DataLbxTpxValxTpMxServID ms) =

let 

  fun predBindElem (FiveDOceanForecast'Disseminate_Model_Input (1,  

                              {Id,Lb,Tp,Tp2,TpM,US,vl})) = true 

     | predBindElem (FiveDOceanForecast'Distribute_Observations (1,  

                              {Id,Lb,Tp,TpM,US,vl})) = true 

     | predBindElem (FiveDOceanForecast'Distrubite_RegForecast (1,  

                              {Id,Lb,Tp,TpM,US,vl})) = true 

     | predBindElem (FiveDOceanForecast'Distrubute_NatForecast (1,  

                              {Id,Lb,Tp,TpM,US,vl})) = true 

     | predBindElem (FiveDOceanForecast'Interpret_Services (1,  

                              {Id,US})) = true 

     | predBindElem (FiveDOceanForecast'Publish_Forecast (1,  

                              {ApRqs,Id,Lb,Tp,TpM,Tps,US,vl})) = true 

     | predBindElem (FiveDOceanForecast'QA (1,  

                              {Id,Lb,Tp,Tp2,TpM,US,vl})) = true 

     | predBindElem (FiveDOceanForecast'Receive_Mdl (1,  

                              {ApRqs,Id,InRqs,Tps,US})) = true 

     | predBindElem (FiveDOceanForecast'Sorting (1,  

 
Figure 5.10.  Specifications for Prediction Function  
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                              {ApRqs,Id,Lb,Tp,TpM,Tps,US,vl})) = true 

     | predBindElem (FiveDOceanForecast'Threshold_analysis (1,  

                              {ApRqs,Id,Lb,TH,Tp,TpM,Tps,US,vl})) = true 

     | predBindElem (FiveDOceanForecast'Transmit_Anc_Info (1,  

                              {Id,Lb,Tp,TpM,US,vl})) = true 

     | predBindElem (FiveDOceanForecast'Update_to_New_Mdl (1,  

                              {Tps,Tps2})) = true 

     | predBindElem _ = false 

in 

  predBindElem bindelem   

end 

 
Figure 5.10.  Specifications for Prediction Function (cont.) 

 

 

 

3. Observation function (see Figure 5.11). 

The observation function extracts the information of interest from the binding 

element and transforms it so it can be used in the action function. The information of 

interest is a triple (the sender object, the receiver object, and the message sent from sender 

to receiver). 

 

 

 

fun obs (bindelem, 

            FiveDOceanForecast'PostProcess_1_mark : DataLbxTpxValxTpMxServID ms, 

            FiveDOceanForecast'ResAccess1_1_mark : DataLbxTpxValxTpMxServID ms, 

            FiveDOceanForecast'ResAccess2_1_mark : DataLbxTpxValxTpMxServID ms, 

            FiveDOceanForecast'ResAccess3_1_mark : DataLbxTpxValxTpMxServID ms) =

Let 

 
Figure 5.11.  Specifications for Observation Function 
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  fun obsBindElem (FiveDOceanForecast'Disseminate_Model_Input (1,  

                              {Id,Lb,Tp,Tp2,TpM,US,vl})) = 

         [("PreProcess","ResAccess","PrepareMdlInput 

"),("ResAccess","Models","MdelInput 

"^DataLbxTpxValxTpMxServID.mkstr(("",Tp2,vl,Tp2^"MetaDt"),(US,Id))),

             ("ResAccess","Models","MdelInput 

"^DataLbxTpxValxTpMxServID.mkstr(("",Tp2,vl,Tp2^"MetaDt"),(US,Id))),

             ("ResAccess","Database","MdelInput 

"^DataLbxTpxValxTpMxServID.mkstr(("",Tp2,vl,Tp2^"MetaDt"),(US,Id))),

             ("ResAccess","Models","MdelInput 

"^DataLbxTpxValxTpMxServID.mkstr(("",Tp2,vl,Tp2^"MetaDt"),(US,Id)))] 

     | obsBindElem (FiveDOceanForecast'Distribute_Observations (1,  

                              {Id,Lb,Tp,TpM,US,vl})) =  

         [("ObsSys","ResAccess","CollectObservations "),("ResAccess","PreProcess","Obs 

"^DataLbxTpxValxTpMxServID.mkstr((Lb,Tp,vl,TpM),(US,Id))), 

             ("ResAccess","Database","Obs 

"^DataLbxTpxValxTpMxServID.mkstr((Lb,Tp,vl,TpM),(US,Id))), 

             ("ResAccess","AnlsTool","Obs 

"^DataLbxTpxValxTpMxServID.mkstr((Lb,Tp,vl,TpM),(US,Id))), 

             ("ResAccess","WebsitePortals","Obs 

"^DataLbxTpxValxTpMxServID.mkstr((Lb,Tp,vl,TpM),(US,Id)))] 

     | obsBindElem (FiveDOceanForecast'Distrubite_RegForecast (1,  

                              {Id,Lb,Tp,TpM,US,vl})) =  

         [("ResAccess","Database","DistrubiteRegF 

"^DataLbxTpxValxTpMxServID.mkstr(("Distributed",Tp,vl,TpM),(US,Id)))]

     | obsBindElem (FiveDOceanForecast'Distrubute_NatForecast (1,  

                              {Id,Lb,Tp,TpM,US,vl})) =  

         [("ResAccess","Database","DistrubiteNatF 

"^DataLbxTpxValxTpMxServID.mkstr(("Distributed",Tp,vl,TpM),(US,Id)))]

     | obsBindElem (FiveDOceanForecast'Interpret_Services (1, {Id,US})) =  
 

Figure 5.11.  Specifications for Observation Function (cont.) 
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         [("DesktopApp","ObsSys","RequireObs"^AppxInputxServ.mkstr([],["Ocean 

Obs-"],(US,Id))), 

         ("DesktopApp","WebsitePortals","RequireAncInfo"^AppxInputxServ.mkstr([], 

["Bathymetric data-","climatological data-","Historical sensor data-","Ocean 

Forecast Product-"],(US,Id))), 

         ("DesktopApp","PreProcess","PreProcessReq 

"^AppxInputxServ.mkstr(["Consolidate-","translate-"],["ObsPrd-Ocean 

Obs-","Bathymetric data-","climatological data-","Historical sensor 

data-","Ocean Forecast Product-"],(US,Id))), 

         ("DesktopApp","Models","ModelsReq"^AppxInputxServ.mkstr(["Ocean Forecast 

model-"],["Processed Model Input for-Ocean Forecast model-"],(US,Id))), 

         ("DesktopApp","AnlsTool","AnlsToolReq"^AppxInputxServ.mkstr 

(["SortForecast"],["Regional Ocean Forecast-","National Ocean 

Forecast-"],(US,Id))), 

         ("DesktopApp","AnlsTool","AnlsToolReq"^AppxInputxServ.mkstr(["Threshold 

analysis-"],[],(US,Id))), 

         ("DesktopApp","DesktopApp","ServicesReq"^AppxInputxServ.mkstr(["Publish 

Forecast"],["Ocean Forecast Product-"],(US,Id)))] 

     | obsBindElem (FiveDOceanForecast'Publish_Forecast (1,  

                              {ApRqs,Id,Lb,Tp,TpM,Tps,US,vl})) =  

         [("DesktopApp","AnlsTool","PubForecast 

"^DataLbxTpxValxTpMxServID.mkstr(("",hd Tps,vl,(hd 

Tps)^"MetaDt"),(US,Id))), 

         ("DesktopApp","AnlsTool","PubForecast 

"^DataLbxTpxValxTpMxServID.mkstr(("",hd Tps,vl,(hd 

Tps)^"MetaDt"),(US,Id))), 

         ("DesktopApp","WebsitePortals","PubForecast 

"^DataLbxTpxValxTpMxServID.mkstr(("",hd Tps,vl,(hd 

Tps)^"MetaDt"),(US,Id))), 

         ("DesktopApp","Database","PubForecast  
 

Figure 5.11.  Specifications for Observation Function (cont.) 
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                 "^DataLbxTpxValxTpMxServID.mkstr(("",hd Tps,vl,(hd 

Tps)^"MetaDt"),(US,Id)))] 

     | obsBindElem (FiveDOceanForecast'QA (1,  

                              {Id,Lb,Tp,Tp2,TpM,US,vl})) =  

         [("Models","ResAccess","RunModel"),("ResAccess","PostProcess", 

"Transmit_Mdl_Output"),("PostProcess","ResAccess","QAQC 

Data"),("ResAccess","DesktopApp","QAQC 

"^DataLbxTpxValxTpMxServID.mkstr(("",Tp2,vl,Tp2^"MetaDt"),(US,Id))),

         ("ResAccess","Database","QAQC 

"^DataLbxTpxValxTpMxServID.mkstr(("",Tp2,vl,Tp2^"MetaDt"),(US,Id)))]

     | obsBindElem (FiveDOceanForecast'Receive_Mdl (1,  

                              {ApRqs,Id,InRqs,Tps,US})) =  

         [("Models","","ModelsReq "^AppxInputxServ.mkstr(if Tps<>[] 

then (Tps,InRqs,(US,Id)) 

else (ApRqs,InRqs,(US,Id))))] 

     | obsBindElem (FiveDOceanForecast'Sorting (1,  

                              {ApRqs,Id,Lb,Tp,TpM,Tps,US,vl})) =  

         [("AnlsTool","ResAccess","Sorting "^DataLbxTpxValxTpMxServID.mkstr((Lb,hd 

Tps,vl,(hd Tps)^"MetaDt"),(US,Id))), 

          ("AnlsTool","ResAccess","Sorting "^DataLbxTpxValxTpMxServID.mkstr((Lb, 

(List.nth(Tps,1)),vl,(List.nth(Tps,1))^"MetaDt"),(US,Id)))] 

     | obsBindElem (FiveDOceanForecast'Threshold_analysis (1,  

                              {ApRqs,Id,Lb,TH,Tp,TpM,Tps,US,vl})) =  

         [("AnlsTool","DesktopApp","ThresholdAnaResult "^TypexServID.mkstr(if 

vl>=TH  

                                                  then ("Ocean Alarm",(US,Id)) 

                                                  else ("",(US,Id))))] 

     | obsBindElem (FiveDOceanForecast'Transmit_Anc_Info (1,  

         [("WebsitePortals","ResAccess","CollectAncInfo 

"),("ResAccess","PreProcess","Anc_Info  
 

Figure 5.11.  Specifications for Observation Function (cont.) 
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                 "^DataLbxTpxValxTpMxServID.mkstr((Lb,Tp,vl,TpM),(US,Id)))] 

                              {Id,Lb,Tp,TpM,US,vl})) =  

     | obsBindElem (FiveDOceanForecast'Update_to_New_Mdl (1, {Tps,Tps2})) =  

         [("WebsitePortals","Models","Update_to_New_Md "^Types.mkstr(Tps))] 

     | obsBindElem _ = [] 

in 

  obsBindElem bindelem   

end 

 
Figure 5.11.  Specifications for Observation Function (cont.) 

 

 

 

4. Action function (see Figure 5.12). 

The action function processes the observed data according to the description above. 

 

 

 

fun action [] = () 

    | action ((process, "", msg)::rest) =  

    (msc5dOF.addInternalEvent(process,msg); 

    action rest) 

  | action ((snd,rcv,msg)::rest) =  

    (msc5dOF.addEvent(snd,rcv,msg); 

     action rest) 

Figure 5.12.  Specifications for Action Function 
 

 

 

5. Stop Function (see Figure 5.13). 

The stop function could be used to add a line, which indicates the simulation has 

stopped. 

http://www.daimi.au.dk/~mw/local/tincpn/adoc/dk/klafbang/tincpn/animation/plugin/MSC.html#addLine%28java.lang.String%29
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fun stop (FiveDOceanForecast'PostProcess_1_mark : DataLbxTpxValxTpMxServID ms,

              FiveDOceanForecast'ResAccess1_1_mark : DataLbxTpxValxTpMxServID ms,

              FiveDOceanForecast'ResAccess2_1_mark : DataLbxTpxValxTpMxServID ms,

              FiveDOceanForecast'ResAccess3_1_mark : DataLbxTpxValxTpMxServID ms) 

=() 

 
Figure 5.13.  Specifications for Stop Function  

 

 

 

5.3. SOME EXECUTION SPECIFIC CONCERNS 

The purpose of converting the SysML model into the CPN model is to execute the 

model. In order to facilitate the simulation, there are some execution-specific concerns that 

need to be addressed. The above mentioned animation graphical user interface, and the 

addition of “UserInput” page are examples. In many of the approaches used to address 

these concerns, some extra CPN constructs, which were not converted from the SysML 

model, were added to the CPN model. Some of the execution specific concerns considered 

in this thesis are summarized below:  

1. Stop point. 

Although in the real world the modeled scenarios of GEOSS are continuously 

running, the simulation has to be stopped after the desired tasks are completed so that the 

analysis can be followed. This is achived by adding Breakpoint monitors in the CPN model. 

A Breakpoint monitor can stop simulations when certain conditions are fulfilled. Three 

kinds of breakpoint monitors are available in the CPN tools. They are “Place contents 

monitors”, “Transition enabled monitors” and “Generic breakpoint monitors”. The place 

contents monitors were used in the CPN model of this thesis. 

A Place Contents monitor will check the number of tokens on a place to determine 

if a simulation should be stopped. The simulation can be stopped either when the place is 

empty or when the place is not empty. To create a Place contents monitor, the user can 

apply the Create place contents monitor tool to the place to be monitored. The option under 

the Type index entry of the monitor will determine when the simulation should stop (see 

Figure 5.14). 
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Figure 5.14.  A Screenshot on the Place Contents Monitor Index 
 

 

 

For the convenience of monitoring places, some places and transitions were added 

to the original CPN model that could generate the “end signals”. For example, when each 

of the three scenarios (the Pre-operational use case and the Characterize Improvements are 

combined together) in this CPN model completes its assigned task(s), a token will be added 

to the corresponding place on the UserInput page that is designed to receive the end signal 

from that scenario. Only when all of these three places get their tokens, can it be concluded 

that the simulation is completed. The End Simulation transition on the UserInput page does 

this job since it needs tokens from the three places to fire. The fire of this transition will 

send a token to the place zSimEndsig, which is the place being monitored. When this place 

is not empty the end condition is satisfied and the CPN Tool will stop the simulation.  

2. Uniform data structure for information identification. 

The message exchanges between components of the system should be written in a 

format, structure and vocabulary that is understood by both parties. In addition, the 

message should be uniquely identifiable. For example, in this CPN model, some of the 

transitions may process data coming from different task (scenario) sources or different 

cycles of the same task. There must be a mechanism to discriminate this data. Therefore, a 

uniform data structure is applied in this model. All related data was post-fixed by the name 

of the source task and the number of cycles of that task, whereas a short descriptive 

notation was added to the front of a datum when it goes through a transition and is 

processed by the activity represented by that transition. This change signifies that the 

datum has been processed into a different form. For example, suppose a token takes the 

value of Data(“Ocean Forecast”1), when it caused the fire of the transition Archive data, 
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the token value in the output place will be ArchivedData(“Ocean Forecast”1). This event 

can be interpreted as the specific data from the five day ocean forecast scenario is archived. 

3. Simulation monitor. 

In order to record some results of a simulation, a number of report places can be 

added. Such places gather historical information about the simulation without influencing 

the simulation. The place named “zTemp” in page FiveDOceanForecast of the CPN model 

is an example. It records what has been processed by the post-processing operation in the 

five day ocean forecast scenario. Such places are colored pink in the model of this thesis. 

4. Model resource constraints. 

Many of the numerical models used in GEOSS need intense computational power, 

which often involves grid computing. Multiple tasks running concurrently on the net may 

compete for resources. This gives rise to the resource constraint problems. This CPN 

model tried to model a simple case of this concern. As can be seen in the Appendix B7, 

there is a fusion place named Computation resources, which was not connected to any 

transition in this page. However, it was connected to all SltCfgCmpRsc pages (represents 

Select and Configure Computational resources module) through fusion places. Fusion 

places are sets of places that anything happening to each place in the set also happens to all 

the other places in the set. The Computation resources fusion place mentioned above was 

typed by an enumerated color set with only one instance “e”. Every operation that involves 

computation needs to get computational resources (“e”) before it can proceed. Accordingly, 

the Resource Scheduling transition on every SltCfgCmpRsc page needs to get a token from 

this place so that a computing task can be performed. When the computing task is 

completed, a token can be placed back to this place. 

When there are more concurrently running computing tasks than the available 

tokens on the Computational resources place, the computing tasks that requests resources 

latter will be suspended until other computational resource(s) are released.  

5. Other additional transitions and places. 

Some other transitions and places may also be added to the original CPN model for 

simulation control purposes. For example, Figure 5.15 shows a construct that was used to 

continually generate data which signify the sensor measures. This construct was created 

exclusively for generating signals that drive the execution of the system. There are also 
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some constructs added to achieve certain functions such as the “Anti-places/limit places”, 

“Queues/stacks”, and “Inhibitor arcs” [71]. 

 

 

 

 
 

Figure 5.15.  A Screenshot on a CPN Construct for Generating Tokens 
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6. SIMULATION 

6.1. SET UP SIMULATION 

Since the CPN model was integrated with the BRITNEY suite, the simulation can 

be run directly from the BRITNeY Suite. BRITNeY should run on the same machine as the 

CPN Tools, otherwise additional Java functors need to be set up. Following are the steps to 

run the simulation:  

1. Start BRITNeY Suite; 

2. Load the CPN model (The BRITNeY needs to be run before the CPN tool is 

loaded);  

3. Set the desired cycles to be run for each use case scenario by giving the proper 

initial markings to the zCycle place corresponding to the use case scenario on the 

UserInput page, with “0” representing no execution. Other position integers represent the 

number of cycles wanted; 

4. Apply the Play tool of the BRITNeY Suite to the Simulator console window. 

After the CPN model is loaded, there will be a number of windows opened, each of 

which corresponds to a declaration of the MSC object in the CPN Tool. The name of the 

window is the same as that defined in the declaration. The objects specified in the 

initialization functions are shown in rounded rectangles on the top of the windows with no 

connections between the objects yet. Along with the execution of the simulation, message 

lines are drawn between interacting objects in a synchronic manner. This gives a way to 

observe the simulation in a real-time and intuitive way. In certain specified stages of the 

simulation, a dialog window will pop up; either a message window showing that the event 

associated with the fire of certain transitions happened or an input window that requires 

input from the user in order to direct the workflow. When such a window appears, click OK 

(for message window), or give proper input (for input window) to dismiss the window and 

let the simulation continue.  

Those use case scenarios can be executed individuality (in any number of cycles) or 

in any of their combinations (in terms of different scenarios and number of cycles for each 

scenario). This allows examining the correctness of the modeled system when it works 

under each single use scenario or under a multi-task parallel processing environment. 
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When executed in combination, the individual use case can communicate with each other 

so these uses cases are integrated in the model. If executed individually, the five day ocean 

forecast use case must run at least once before the pre-operational use case scenario can run 

since the latter needs the data produced by the former.  

 

6.2. SIMULATION RESULTS 

Appendix C1 through C9 presents a set of MSCs generated based on a simulation. 

This simulation involved the execution of two cycles of the five day ocean forecast and one 

cycle of other use case scenarios. Since the ocean forecast is a repeated activity it was run 

twice. 

The message lines were added to the chart in a time sequence along the vertical 

direction. The information shown on a message line is the token value that was inputted to 

or outputted from a transition. The small solid square at the vertical line represents an 

internal event process.  

The MSCs clearly show the behavior that the system generated during a simulation. 

They allow close examination of the dynamic behavior since the behavior is captured and 

presented in a static view.  

The MSC can have a message line (or square) for each step. This means the MSC 

contains all the information in the simulation report. However, it is more common to only 

record a few key activities. This gives a condensed overview of the interest activities and 

thus makes it faster to interpret the simulation results and easier to observe whether the 

CPN model behaves as expected. This is why the Monitor Message Sequence Charts rather 

than other types were used in this thesis. 

http://wiki.daimi.au.dk/britney/monitor_message_sequence_.wiki?cmd=get&anchor=Monitor+Message+Sequence+Charts
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7. ARCHITECTURE EVALUATION AND ANALYSIS 

The tasks in this step include behavior and performance analysis, functionality 

verification and System configuration refinement. In [40], some guidelines for architecture 

evaluation using the CPN are presented. Since the CPN model is an executable model, the 

architecture evaluation can be done by both simulation and analysis. In using the 

simulation, the Message Sequence Chart (MSC) was used in this thesis and for the analysis, 

the state space report was used.  

 

7.1. SIMULATION BASED ANALYSIS 

The simulation results can be used to help the analysis of the architecture in two 

aspects: 1) the behavior and functionality verification/validation, and 2) the specification 

completeness checking. 

7.1.1. Behavior and Functionality Verification/Validation.   The architecture  

model has established a standard or reference against which an executable model of the 

system’s architecture can be compared. The methodology for behavior analysis and 

functionality verification/validation has been discussed in Section 3.6.1. Here, an example 

is presented to illustrate how to compare the input SysML sequence diagrams in the 

architecture model and the output Message Sequence Charts (MSCs) after the simulation. 

The example presented involves the activity of collecting observation data. 

Appendix A25 shows the sequence diagram. Appendix C5 shows the corresponding MSC 

generated based on a simulation. The interacting objects are shown on the top of both 

charts. A close examination reveals that both graphs share the same objects however the 

MSC has more objects. The extra objects are beyond the boundary of the observation 

system so they are not shown in the sequence diagram. The bold solid line on the left of the 

sequence diagram represents the system boundary. The interaction of system to its 

environment is through this boundary. Since the purpose of the MSC is to show the 

interaction occurring during the simulation, there is little sense to discriminate the system 

boundary. The extra objects can be viewed as collectively forming part of the environment 

(boundary) of the observation system, and thus the two charts are consistent.  
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The verification of the behavior of the modeled system can be done by comparing 

the message lines in time sequences. From the comparison, it could be seen that the activity 

sequences, as reflected by the message lines, on both charts were exactly the same although 

the wording of the message may be a little different. As discussed earlier, the message lines 

in sequence diagrams can represent either message (item) exchanges or operation calls, 

while in a MSC, the message lines represent both. However, they are closely related to 

each other. 

Note that two operations, the create metadata and the event, change & pattern 

detection, in the sequence diagram are molded as a parallel activity. However, in a 

simulation, there must be one operation first and the other later since the fire of a transition 

takes no time. Therefore, the two operations are shown as sequence activities on the MSC 

but this did not conflict with the sequence diagram.  

After close examination and analysis, it can be concluded that the behavior as 

modeled matched the desired behavior in the case of collecting observations, and thus the 

observation system module can be verified and validated.  

7.1.2. Specification Completeness Checking.  The methodology for checking 

 missing specifications has been discussed in Section 3.6.2. An example of identifying 

missing requirements is shown here. As introduced in Section 5.3, a construct was added to 

the CPN model to simulate the resource constraints (the computational resources). The 

computation resources place was initially given six tokens. The simulation was running 

normally until the computational resources were gradually reduced to “1” when the five 

day ocean forecast scenario and the pre-operational scenario (including the associated 

Characterize Improvement scenario) stopped producing the desired outcome. A closer 

examination reveals that the problem was caused by a lack of synchronous mechanisms 

between data management and resource management. The run model operation of the five 

day ocean forecast use case was assigned the computational resources but could not 

complete the operation because it had not received the required input. The operation could 

not get the input because the input processing task could not get the computational 

resources (occupied by the run model task) and thus was unable to serve the data. This 

dilemma will prevent both use cases from producing further outcomes. This result suggests 

that, under the resource constraints, there must be a mechanism to solve the 
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synchronization of data and computational resource. Some possible solutions are: using the 

workflow management to synchronize data and computational resources; using the 

combination of workflow management, monitor and resource management to temporarily 

release the computational resources that are assigned but have not been used and reassign 

the resources when there are spare resources; letting the resource management allow itself 

to release the resource after a certain waiting time and reassign the resources after a certain 

delay; or many more other approaches. One of these functionalities must be specified in the 

requirements and be fulfilled by the model in later design cycles. However, modeling the 

detailed functions of these components was beyond the scope of this thesis so the model 

has not been modified and the executable model will be run with enough resources.  

 

7.2. STATE SPACE ANALYSIS 

A State Space Report provides some key information about the behavior of the 

CPN. However, due to the complexity of this CPN model and the limitation of processing 

power and memory restrictions of the platform, a full state space report can not be 

generated. The state space report shown in this thesis is a partially generated report, which 

was obtained by setting the time criteria to stop calculating state space at 10 hours. The 

state space report has four parts.  

The first part of the state space report is shown in Figure 7.1. It contains the 

statistical information about the size of the state space. The state space has 129807 nodes 

and 491863 arcs. The information of the SCC-graph (Strongly Connected Components) 

[29] also shows that there are 129433 strongly connected components and 491037 arcs that 

start in one component and end in another. A strongly connected component is a maximal 

sub-graph in which it is possible to find a path from any node to another. The strongly 

connected components are less than the state space nodes in Figure 7.1. It means there are 

infinite occurrence sequences. As discussed earlier, in order to simulate the sensor 

collection, which is continually sending observations, a construct is used that keeps the 

Collect Sensor Obs transition continually firing and thus continuously generating tokens 

that represent sensor readings. There are also other similar transitions in the CPN model. 

Such transitions will cause infinite occurrences. This is the reason a stop point monitor was 

applied as discussed in Section 5.3.  
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 Statistics 
-----------------------------------------------------------------------
 
  State Space 
     Nodes:  129807 
     Arcs:   491863 
     Secs:   36001 
     Status: Partial 
 
  Scc Graph 
     Nodes:  129433 
     Arcs:   491037 
     Secs:   56 

 
Figure 7.1.  State Space Report-Part 1 

 

 

 

A partial section of the second part of the state space report is shown in Figure 7.2. 

The upper part shows the upper and lower integer bounds, which is the maximal and 

minimal number of tokens which the individual places may have. The middle and lower 

part show multi-set bounds. The upper multi-set bound of a place is the smallest multi-set 

which is larger than all reachable markings of the place. The lower multi-set bound is the 

largest multi-set which is smaller than all reachable markings of the place. 

 

 

 
Boundedness Properties 
------------------------------------------------------------------------
 
  Best Integer Bounds 
                             Upper      Lower 
     CollectAncillaryInfo'ArchiveMgt 1 
                             1          1 
     CollectAncillaryInfo'Catalog 1 
                             4          0 
     CollectAncillaryInfo'Catalog1 1 
                             1          1 
      CollectObs'ObsSys2 1    1          0 
     CollectObs'PreProcess 1 1          0 
     CollectObs'PreProcess1 1 
                             1          0 
         ….. ….. 
 

Figure  7.2.  State Space Report-Part 2 
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Best Upper Multi-set Bounds 
------------------------------------------------------------------------
     CollectAncillaryInfo'ArchiveMgt 1 
                         1`([],("",0))++ 
1`(["Bathymetric data-","climatological data-","Historical sensor 
data-","Ocean Forecast Product-"],("Ocean Forecast",1)) 
     CollectAncillaryInfo'ArchiveMgt 2 
                         1`([],("",0))++ 
1`("Look for-","Historical sensor data-",("Ocean Forecast",1))++ 
1`("Look for-","Ocean Forecast Product-",("Ocean Forecast",1))++ 
1`("Look for-","climatological data-",("Ocean Forecast",1)) 
     CollectAncillaryInfo'Catalog1 1 
                         1`[] 
     CollectAncillaryInfo'Catalog1 2 
                         1`[] 

          ………. 
  Best Lower Multi-set Bounds 
------------------------------------------------------------------------
     CollectAncillaryInfo'ArchiveMgt 1 
                         empty 
     CollectAncillaryInfo'Catalog 1 
                         empty 
     CollectAncillaryInfo'Database1 1 
                         empty 
     CollectAncillaryInfo'WebsitePortals2 2 
                         empty 
         Computation'Computation_Resources2 1 

          ………. 

 
Figure  7.2.  State Space Report-Part 2 (cont.) 

 

 

 

The third part of the state space report is shown in Figure 7.3. This part provides 

information about home and liveness. A home marking is a marking which is reachable 

from all reachable markings, i.e., a marking which can always be reached irrespective of 

what has happened up to now. A dead marking is a marking with no enabled transitions. A 

dead transition is a transition that has not been enabled in a reachable marking. When there 

are dead markings there can not be any live transitions. Since the model contains 

transitions that infinitely generate tokens which will drive the system state to be 

continuously changing, the initial marking can not be home marking. Since this is a 

partially generated state space report, information about the dead marking and dead 

transition is not correct. For example, Figure 7.3 shows the Archive_Data transition on 
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page ArchiveData as a dead transition but after the execution of the CPN model, there are 

many tokens generated on the output places of this transition. It indicates that this transition 

must have been enabled many times and thus is not a dead transition. 

The fourth part of the state space report is shown in Figure 7.4. This part provides 

information about the fairness properties, i.e. how often the individual transitions occur. 

 

 

 
 Home Properties 
------------------------------------------------------------------------
 
  Home Markings 
     Initial Marking is not a home marking 
 
 Liveness Properties 
------------------------------------------------------------------------
 
  Dead Markings 
     79576 [99999,99998,99997,99996,99995,...] 
 
  Dead Transition Instances 
     ArchiveData'Archive_Data 1 
     ArchiveData'Archive_Management 1 
     ArchiveData'Data_Transport 1 

          ………. 
 

Figure  7.3.  State Space Report-Part 3 
 

 

 
 Live Transition Instances 
     None 
 
 Fairness Properties 
------------------------------------------------------------------------
       ArchiveData'Receive_Data 1 
                         Fair 
       ArchiveData'Register_in_Catalog 1 
                         Fair 
       CollectAncillaryInfo'Accept_Task 1 
                         No Fairness 
              CollectAncillaryInfo'Access_Dt 1 
                         Fair 

          ………. 
 

Figure  7.4.  State Space Report-Part 4 
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7.3. SYSTEM REFINEMENTS 

The proposed system was incrementally developed based on four use case 

scenarios. For each of them, there was an iterative process of architecture model 

development, simulation, and verification/validation. The former developed models were 

then used as a starting point when incorporating new use case scenarios. The modification 

of the system architecture occurred at both the process of developing executable models 

and the process of simulating the executable models thus built. In order to effectively 

modify the system architecture, the modification should follow some structured rules or 

methods. The methods presented in [42] give some insight into this modification. It should 

also be mentioned that the use of ARTiSAN studio greatly facilitated this modification and 

the incremental development process since any change to the model element is 

automatically propagated across all diagrams and textual descriptions, ensuring 

architectural consistency and completeness. 

As an example, the “Configuration & Execution” layer in the model developed for 

this thesis did not have a “Workflow management” component in the first version of the 

architecture design. During the simulation, it was found that the “computation” operation 

could not perform batch processing or assimilate multiple inputs, which are desired 

features. Upon closer examination, it was revealed that this resulted from the lack of a 

mechanism that coordinates batch tasks and multiple inputs. Therefore, a “Workflow 

management” component was defined and added to the architecture to address this 

problem. 
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8. CONCLUSIONS AND FUTURE WORK 

8.1. CONCLUSIONS 

This research proposed an executable system architecting framework based on 

SysML-CPN transformation. Its feasibility and advantages have been demonstrated using 

an information system. This methodology should be able to generalize and be applied to a 

broad range of discrete-event driven, concurrent system designs, which may involve 

hardware, software, data, personnel, procedures and facilities. The contribution of this 

research is having developed a set of methodologies to help to achieve this framework.  

A formal procedure has been developed to convert a SysML model into a CPN 

model. The conversion is based on SysML sequence diagrams and also needs information 

from other SysML diagrams. A well-defined mapping between various SysML artifacts 

and CPN elements has been established. Concordances between various SysML artifacts 

are suggested. This procedure proved to be successful by the model developed in this 

thesis. 

Translating SysML-based specifications into CPNs is not difficult and permits the 

formal verification of SysML-based designs. A CPN model is developed according to the 

above procedure. This CPN model is capable of demonstrating the behavior of a 

distributed, multi-task, concurrent-processing system. Several use case scenarios have 

been employed to test this model. These use case scenarios can be executed individually or 

in any of their combinations. This allows for the examination of the correctness of the 

modeled system when it works under each single use case scenario or under a multi-task 

parallel processing environment. When executed in combination, the individual use case 

scenario can communicate with each other so these uses case are integrated in the model. It 

was demonstrated that the simulation based analysis can be used to verify and validate the 

behavior and functionality of the system to be built. The architecture of the system can be 

modified based on the simulation results. The executable model can also reveal the missing 

specification, and missing requirements in the architecture model, and thus provides a 

basis for system design refinement. 

The simulation is augmented by incorporating Graphic User Interface (GUI) 

animation tools. Interactive control during execution enables dynamic decisions to be 
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simulated, better representing the real-world scenarios. Real-time graphic feedback greatly 

facilitates the monitor of model execution. The Message Sequence Chart (MSC) provides 

an effective way to analyze and verify the model being built. 

This research has also demonstrated the use of SysML to model network centric 

systems. In order to address the challenges of such systems, including the management of 

distributed resources, the coordination among multi tasks, the integration of 

multi-platforms and diversified user interfaces, the continuous evolving of system 

components, and etc., the Model Driven Architecture (MDA) approach is advocated. This 

research shows that the MDA approach is ideal for addressing the above challenges. MDA 

designs portability, interoperability and extensibility into the system at the model level. A 

Model developed in this way is resilient to change and can support system evolvement very 

well.  

A SysML based process for developing architecture representation following the 

MDA paradigm is developed. This process demonstrates the feasibility of developing 

architecture descriptions based on the MDA paradigm in the systems engineering context. 

The process is illustrated on a specific example of an information system. It is reasonable 

to believe that this process can be generalized. In this process, SysML demonstrates 

advantages over UML in requirement management and behavior modeling. Finally, the 

process of modeling, simulating and performing analysis gives a dramatically improved 

understanding of the modeled system. 

 

8.2. FUTURE WORK 

In this thesis, the modeling activities emphasize the functional aspect of the system. 

The SysML demonstrates its capability in this respect. There are some systems that the 

nonfunctional performances are so important that they must be modeled, tested and 

verified. However, some of the nonfunctional performances may be emergent behavior, 

which poses great challenges on both modeling and simulation. The simulation of such 

systems is more important for the purpose of verifying the nonfunctional performances. 

Therefore, the next step in this research can be adding the nonfunctional concerns to the 

system modeling and simulation tasks. The nonfunctional concerns can be time constraint, 

resource constraint, optimization under time/resource constraint or other criteria, dynamic 
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scheduling or scheduling under uncertainty, and system security concerns. These 

nonfunctional concerns are often coupled together. For example, under the resource 

constraints, multiple tasks may compete for resources. This can give rise to a couple of 

other concerns, such as task scheduling and priority of tasks. In the meantime, subjected to 

the availability of resources, the time needed for processing a task would be affected (to 

model this effect, a timed CPN must be employed). In addition, nonfunctional 

requirements can also impose constraints on the functional behavior. For example, security 

requirements in GEOSS increase substantially with sharing of physical resources for 

storage or computing, especially when the resources are distributed across multiple 

institutions. Introducing the security requirements into the system development may 

require the system to have components that carry out the registration, subscription, 

authorization and authentication services. In the meantime, the access ability of data and 

computational resources would need to be controlled and prioritized. In order to simulate 

the nonfunctional performance, some mathematic methods or computation intelligence 

tools might be integrated into the executable model, e.g. to solve the dynamic scheduling in 

stochastic environment. 

In this thesis, only one type of system architecture has been developed and 

subsequently validated. In the next step, several different designs can be developed and 

analyzed so that the best design alternative can be chosen based on simulations. 

It also can be tried to model other systems. The GEOSS is driven by single input, 

the observations, and multiple service (output) requests, the end-user applications within 

the identified social-economy benefit areas. The interaction between system components 

involves mainly information exchanges. For such systems, few unexpected things can 

happen in the simulation. In order to fully benefit from the model-based simulation, a 

system that has multiple inputs and multiple rules governing the cooperation of the system 

components is recommended. A good candidate is the Intelligent Transportation System 

(ITS). Unlike GEOSS, ITS is driven by multiple inputs, e.g. traffic in city street, road 

conditions on the high way, free parking spaces, and etc. The system can be divided into 

several distinct yet highly interconnected sub-systems according to the functions they 

perform, e.g. traffic management systems, commercial vehicle management system, 

traveler information system, and etc. The proper function of each sub-system relies on 
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intensive information communication between theses sub-systems. The services (i.e. the 

outputs of the system) that ITS provides and their qualities depend heavily on some 

pre-specified rules that govern the cooperation between the different components of the 

systems. The rules, in this context, have at least two aspects: the information exchanges 

and service request/response between interacting components. For GEOSS, in order to 

reveal something that can be called collaboration rules, the system has to be decomposed 

into low levels of abstraction which will dramatically increases the complexity of the 

system. The configuration and execution management layer modeled in this thesis does 

contain some collaboration rules but has not been specified in detail yet due to the 

complexity of the entire model.  

The development of MDA has shown evidence that a paradigm shift is occurring in 

the area of information system construction, i.e., from object and component technology to 

model technology. MDA designs also shows significance in other areas such as business 

process modeling. Therefore, it is necessary to further explore the MDA application in 

system engineering as well.  

In the next step, the model-based simulation can also be enhanced. For example, to 

develop a federation of simulations that represent different aspects of a system, e.g. 

business processes, communications networks, operational environment and performance 

measurements (amounts, costs, times, capacities, scheduling, and etc.). This may require 

new executable modeling tools. 

In order to more effectively modify the system architecture based on simulations, 

the modification should follow some structured rules or methods, which deserves further 

research. 
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APPENDIX B1  

 

 CPN PAGE NAME: UserInput - DESCRIPTION: Simulation setup
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APPENDIX B2  

 
 CPN PAGE NAME: FiveDOceanForecast - DESCRIPTION: Five Day Ocean Forecast 

Use Case
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APPENDIX B3  

 
 CPN PAGE NAME: EmergencyMgt - DESCRIPTION: Emergency Management Use 

Case
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 CPN PAGE NAME: ModelUpdate - DESCRIPTION: Five-Day Ocean Forecast – 

Pre-Operational Use Case
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APPENDIX B5  

 
 CPN PAGE NAME: Improvement - DESCRIPTION: Characterize Improvements Use 

Case
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APPENDIX B6  

 

 CPN PAGE NAME: ExternalControl - DESCRIPTION: External Control Port 
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APPENDIX B7  

 

 CPN PAGE NAME: Resources - DESCRIPTION: Resource Module
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APPENDIX B8  

 

 CPN PAGE NAME: ArchiveData - DESCRIPTION: Data Archive Management Module
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APPENDIX B9  

 

 CPN PAGE NAME: CollectObs - DESCRIPTION: Collect Observations Data Module
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 CPN PAGE NAME: CollectAncillaryInfo - DESCRIPTION: Collect Ancillary 

Information Module
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 CPN PAGE NAME: Prepare Md In - DESCRIPTION: Model Input Pre-processing 

Module
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 CPN PAGE NAME: Computation - DESCRIPTION: Computation
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APPENDIX B13  

 
 CPN PAGE NAME: Workflow Mgt - DESCRIPTION: Workflow Management Module
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 CPN PAGE NAME: SltCfgCmpRsc - DESCRIPTION: Select and Configure Computing 

Resource Module
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 CPN PAGE NAME: DataDiscvAccess - DESCRIPTION: Data Discovery and Access 

Module
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APPENDIX B16 
(* Standard declarations *) 

     colset UNIT = unit; 

     colset INT = int; 

     colset BOOL = bool; 

     colset STRING = string; 

     colset E= with e; 

(* Simple CS *) 

     colset USNm = string; 

     colset Type=string; 

     colset Type1=string; 

     colset Label=string; 

     colset Attachmt=string; 

     colset Address=int; 

     colset Tp_Meta=string; 

     colset Variance=int with ~10..10; 

     colset Value=int; 

     colset CtrolSgn=bool with (no,yes); 

     colset EU=with Y|N; 

     colset Ten0=int with 0..10; 

     colset Ten1=int with 1..10; 

     colset VarianceS=int with ~3..3; 

(* Compound CS *) 

     colset UserServxID=product USNm*INT; 

     colset Types=list Type; 

     colset Type1s=list Type1; 

     colset AppRqs=list Type; 

     colset InputRqs=list Type; 

     colset AppxInputxServ= 

     product AppRqs*InputRqs*UserServxID; 

     colset InputRqsxServID= 



 

 

169

     product InputRqs*UserServxID; 

     colset AppRqsxServID= 

     product AppRqs*UserServxID; 

     colset DataLbxTpxVal= 

     product Label*Type*Value timed; 

     colset DataLbTpValxServID= 

     product DataLbxTpxVal*UserServxID; 

     colset DataLbxTpxValxAtc= 

     product DataLbxTpxVal*Attachmt; 

     colset DataLbTpValxAtcxServID= 

     product DataLbxTpxVal*Attachmt*UserServxID; 

     colset DataLbxTpxValxTpM= 

     product Label*Type*Value*Tp_Meta; 

     colset DataLbxTpxValxTpMxServID= 

     product DataLbxTpxValxTpM*UserServxID; 

     colset DataLbxTpxValxTpMxServIDs= 

     list DataLbxTpxValxTpMxServID; 

     colset TpxTp_Meta=product Type*Tp_Meta; 

     colset DataLbxTpxServID= 

     product Label*Type*UserServxID; 

     colset DirItem= 

     product Address*Label*Type*Tp_Meta; 

     colset DirLs=list DirItem; 

     colset LbxMeta= 

     product Label*Tp_Meta; 

     colset ValxTpM=product INT*Tp_Meta; 

     colset TypexServID= 

     product Type*UserServxID; 

     colset Type1xServID= 

     product Type1*UserServxID; 

     colset LbxAppInputServ= 
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     product Label*AppxInputxServ; 

     colset Tp1sxTps=product Type1s*Types; 

     colset TpxTp1xServId= 

     product Type*Type1*UserServxID; 

     colset LbxTp= 

     product Label*Type; 

     colset AppxInput= 

     product AppRqs*InputRqs; 

(* Variables *) 

     var US,US1,US2:USNm; 

     var Id,Id1,Id2,TH,ct, Add,n,k: INT; 

     var vl,vl2: Value; 

     var USxId,USxId1, 

     USxId2,USxId3:UserServxID; 

     var vr:Variance; 

     var vrS:VarianceS; 

     var Tp,Tp2,Tp3,Dsn:Type; 

     var Tp1:Type1; 

     var Tps,Tps2:Types; 

     var Tp1s,Tp1s2:Type1s; 

     var Lb,Lb2:Label; 

     var Atc:Attachmt; 

     var TpM,TpM2:Tp_Meta; 

     var ApRqs:AppRqs; 

     var InRqs,InRqs2:InputRqs; 

     var DLs,DLs2:DirLs; 

     var DrIt: DirItem; 

     var CtrSgn:CtrolSgn; 

     var u:UNIT; 

     var LbTpVSId:DataLbTpValxServID; 

     var eu:EU; 
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     var LbAIS1,LbAIS2:LbxAppInputServ; 

     var s: Ten0; 

     var r: Ten1; 

     var rf:BOOL; 

     var Fdata: DataLbxTpxValxTpMxServID; 

     var Fdatas: DataLbxTpxValxTpMxServID; 

     var TpSId:TypexServID; 

     var Tp1SId:Type1xServID; 

(* Functions *) 

     fun ExtractLsE(DrIt:DirItem) = #3 DrIt; 

     fun Ok(s:Ten0,r:Ten1)=(r<=s); 

(* Animation setup *) 

     structure dialog = GetString(val name = "Question"); 

     structure msg = ShowString(val name = "Important Message"); 

structure msc5dOF=MSC(val name="msc5dForecast") 

structure mscEmMgt=MSC(val name="mscEmgcMgt") 

structure mscMdUpdt=MSC(val name="mscMdUpdt") 

structure mscImpv=MSC(val name="mscImpv") 

structure mscClObs=MSC(val name="mscClObs") 

structure mscClAnc=MSC(val name="mscClAnc") 

structure mscCmp=MSC(val name="mscCmp") 

structure mscSltCfgCR=MSC(val name="mscSltCfgCR") 

structure mscDtDscAcs=MSC(val name="mscDtDscAcs") 

structure graph = Graph(val name = "State-space visulisation") 

CPN Declarations 
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GEOSS 10-YEAR IMPLEMENTATION PLAN: REFERENCE DOCUMENT 
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Only the Table of Contents for the document is attached here. Full reference  

  document can be found at http://earchobservations.org/docs/IPTT_201-1web.pdf.  
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