
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

Summer 2007

Executable system architecting using systems modeling language Executable system architecting using systems modeling language

in conjunction with Colored Petri Nets - a demonstration using the in conjunction with Colored Petri Nets - a demonstration using the

GEOSS network centric system GEOSS network centric system

Renzhong Wang

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Systems Engineering Commons

Department: Department:

Recommended Citation Recommended Citation
Wang, Renzhong, "Executable system architecting using systems modeling language in conjunction with
Colored Petri Nets - a demonstration using the GEOSS network centric system" (2007). Masters Theses.
4574.
https://scholarsmine.mst.edu/masters_theses/4574

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F4574&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/309?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F4574&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/4574?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F4574&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

EXECUTABLE SYSTEM ARCHITECTING USING SYSTEMS MODELING

LANGUAGE IN CONJUNCTION WITH COLORED PETRI NETS –

A DEMONSTRATION USING THE GEOSS NETWORK CENTRIC SYSTEM

by

RENZHONG WANG

A THESIS

Presented to the Faculty of the Graduate School of the

UNIVERSITY OF MISSOURI-ROLLA

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE IN SYSTEMS ENGINEERING

2007

Approved by

_______________________________ _______________________________
Cihan H. Dagli, Advisor David Enke

Scott E. Grasman

© 2007

Renzhong Wang

All Rights Reserved

iii

ABSTRACT

Models and simulation furnish abstractions to manage complexities allowing

engineers to visualize the proposed system and to analyze and validate system behavior

before constructing it. Unified Modeling Language (UML) and its systems engineering

extension, Systems Modeling Language (SysML), provide a rich set of diagrams for

systems specification. However, the lack of executable semantics of such notations limits

the capability of analyzing and verifying defined specifications. This research has developed

an executable system architecting framework based on SysML-CPN transformation, which

introduces dynamic model analysis into SysML modeling by mapping SysML notations to

Colored Petri Net (CPN), a graphical language for system design, specification, simulation,

and verification. A graphic user interface was also integrated into the CPN model to

enhance the model-based simulation. A set of methodologies has been developed to

achieve this framework. The aim is to investigate system wide properties of the proposed

system, which in turn provides a basis for system reconfiguration. This framework can be

applied to general system development. For demonstration purpose, the Global Earth

Observation System of Systems (GEOSS) was selected as an example and was modeled as

a distributed information system that involves multi-task concurrent processing driven by

discrete events. The simulation results helped to refine the architecture design, and finally

verified and validated the behavior and functionality of the system being modeled. The

Model Driven Architecture (MDA) approach from software engineering has also been

investigated and applied in the systems engineering context to create a SysML-based

modeling process, which keeps all the SysML diagrams related to each other and provides

a cue for what diagrams to build and how to build them.

iv

ACKNOWLEDGMENTS

I would like to thank one and all who made this study possible. First, I would like to

express my deepest sense of gratitude to my advisor, Dr. Cihan H. Dagli, for his continuous

guidance, encouragement, support, and patience in this research and my entire studies at

the University of Missouri-Rolla. I would also like to extended appreciations to my

advisory committee members, Dr. David Enke, and Dr. Scott Grasman, for their time and

contributions.

I am deeply indebted to my parents, Enming Wang and Xiuyun Hong, who were

continuously backing me in whatever I wanted to pursue. I am grateful to my sister Yang

Wang who has always been supporting me. I would also like to thank all my relatives,

friends, and past colleagues, who have encouraged me, helped me, supported me and cared

about me. Without your help and encouragement, I couldn’t have been here to study.

It has been a great pleasure to work with my colleagues in the Smart Engineering

Systems Lab who have always encouraged me and helped me.

Finally, I would like to thank the Engineering Management and Systems

Engineering Department for providing me funds during my study at UMR.

v

TABLE OF CONTENTS

Page

ABSTRACT... iii

ACKNOWLEDGMENTS ... iv

LIST OF ILLUSTRATIONS... viii

LIST OF TABLES.. x

SECTION

1. INTRODUCTION.. 1

1.1. MOTIVATION... 3

1.2. PROBLEM DEFINITION.. 5

1.3. RESEARCH OBJECTIVE ... 5

1.4. SECTION ORGANIZATION .. 6

2. LITERATURE REVIEW... 7

2.1. GEOSS.. 10

2.2. DEPARTMENT OF DEFENSE ARCHITECTURE FRAMEWORK............. 10

2.3. SYSTEMS MODELING LANGUAGE (SysML).. 11

2.4. COLORED PETRI-NETS .. 11

2.5. ARTISAN STUDIO.. 12

2.6. BRITNEY SUITE... 14

3. MODELING METHODOLOGY... 15

3.1. AN EXECUTABLE SYSTEM ARCHITECTING PARADIGM.................... 15

3.2. OBJECT ORIENTED ANALYSIS .. 18

3.3. MODEL DRIVEN ARCHITECTING APPROACH 18

3.3.1. The Core MDA Technique is Model Transformation............................ 19

3.3.2. The Model-Based Specification is More Precise and Rich in
Semantics than the Object Oriented Paradigm 20

3.3.3. MDA Designs Portability, Interoperability and Reusability into the
System at the Model Level .. 20

3.3.4. MDA Approach is Ideal for Building and Maintaining the GEOSS
Architecture ... 21

3.3.5. A MDA Process for Developing System Model 21

vi

3.3.5.1 Preamble to the process ..21

3.3.5.2 An overview of the modeling process ..23

3.4. SYNTHESIS OF THE EXECUTABLE MODEL.. 27

3.4.1. Select a Proper Simulation Tool... 27

3.4.2. Conversion Rules Based on Static Views .. 30

3.4.3. Case Based Syntheses .. 31

3.4.4. Consistence Issues in SysML Models .. 32

3.4.5. The Procedure for Synthesizing CPN Models from SysML Models
and the Mapping Rules ... 34

3.4.6. Instantiation and Concurrent Processing.. 35

3.4.7. Results of the Object Oriented Approach and the Model Driven
Approach.. 37

3.5. SIMULATION.. 38

3.5.1. Interactive Control.. 39

3.5.2. Message Sequence Charts (MSCs)... 39

3.5.3. State Space Graphs .. 39

3.6. ARCHITECTURE EVALUATION AND ANALYSIS................................... 39

3.6.1. Behavior and Functionality Verification.. 40

3.6.2. Specification Completeness Checking ... 40

4. MODEL DEVELOPMENT ... 42

4.1. MISSION DEFINITION .. 42

4.2. REQUIREMENTS CAPTURE .. 43

4.3. OPERATIONAL CONCEPT ANALYSIS... 54

4.4. USE CASE DEFINITION .. 56

4.5. USE CASE SCENARIOS... 60

4.5.1. Five Day Ocean Forecast Use Case Scenario .. 60

4.5.2. Five-Day Ocean Forecast – Pre-Operational Use Case Scenario........... 60

4.5.3. Characterize Improvements Use Case Scenario..................................... 62

4.5.4. Emergency Management Use Case Scenario... 63

4.6. COMPUTATION INDEPENDENT MODEL (CIM) DEVELOPMENT........ 65

4.7. PRELIMINARY STRUCTURE DIAGRAMS DEVELOPMENT.................. 70

4.8. SEQUENCE DIAGRAMS DEVELOPMENT... 73

4.9. ACTIVITY DIAGRAMS DEVELOPMENT... 73

vii

4.10. REFINE STRUCTURE DIAGRAMS.. 73

5. EXECUTABLE MODEL DEVELOPMENT .. 77

5.1. MODEL OVERVIEW.. 77

5.2. THE ANIMATION GRAPHICAL USER INTERFACE (GUI)...................... 79

5.2.1. The Interactive Interface .. 79

5.2.2. Message Sequence Charts (MSCs)... 82

5.3. SOME EXECUTION SPECIFIC CONCERNS ... 91

6. SIMULATION ... 95

6.1. SET UP SIMULATION ... 95

6.2. SIMULATION RESULTS ... 96

7. ARCHITECTURE EVALUATION AND ANALYSIS .. 97

7.1. SIMULATION BASED ANALYSIS... 97

7.1.1. Behavior and Functionality Verification/Validation.............................. 97

7.1.2. Specification Completeness Checking ... 98

7.2. STATE SPACE ANALYSIS.. 99

7.3. SYSTEM REFINEMENTS .. 103

8. CONCLUSIONS AND FUTURE WORK... 104

8.1. CONCLUSIONS... 104

8.2. FUTURE WORK.. 105

APPENDICES

A. SYSML SPECIFICATIONS FOR GEOSS... 108

B. CPN MODEL FOR GEOSS.. 151

C. MSC CHARTS GENERATED BASED ON A SIMULATION 172

D. GEOSS 10-YEAR IMPLEMENTATION PLAN: REFERENCE DOCUMENT 196

BIBLIOGRAPHY... 199

VITA .. 210

viii

LIST OF ILLUSTRATIONS

Figure Page

3.1. Executable System Architecting Paradigm... 17

3.2. Three-Dimensional Decomposition of a System .. 22

3.3. MDA Modeling Process ... 23

3.4. Concordance between Activity, Sequence, and Block Diagrams........................... 33

3.5. Procedure for Synthesizing a CPN Model from a SysML Model 34

3.6. Interleaving Process vs. Concurrent Process .. 36

3.7. Reusable Module in a CPN... 38

4.1. GEOSS Functional Requirements... 43

4.2. Requirements Diagram – GEOSS Functional Requirements Decomposition........ 50

4.3. Requirements Diagram – GEOSS Nonfunctional Requirements 51

4.4. GEOSS Nonfunctional Requirements... 51

4.5. GEOSS High-Level Operational Concept Graphic (OV-1).................................... 55

4.6. GEOSS Top Level Use Case Diagram ... 57

4.7. GEOSS High Level Operational Use Case Diagram.. 58

4.8. GEOSS Middle Level Use Case Diagram .. 58

4.9. Decomposition of the Data and Resource Management Use Case......................... 59

4.10. Five Day Ocean Forecast Use Case Scenario ... 61

4.11. Five-Day Ocean Forecast – Pre-Operational Use Case Scenario 62

4.12. Characterize Improvements Use Case Scenario ... 63

4.13. Emergency Management Use Case Scenario ... 64

4.14. Block Definition Diagram – GEOSS Domain Breakdown..................................... 65

4.15. Internal Block Diagram – GEOSS High Level Operation...................................... 66

4.16. Block Definition Diagram – Interface Definition... 67

4.17. GEOSS– High Level Activity Diagram Showing Generic Behavior 68

4.18. GEOSS – High Level Activity Diagram Showing Concurrent Behavior............... 69

4.19. Block Definition Diagram – GEOSS Structure Breakdown................................... 71

4.20. Internal Block Diagram GEOSS Internal Connection.. 74

4.21. Block Definition Diagram for Interface Definition .. 75

4.22. Block Definition Diagram for the Flow Specification.. 76

ix

5.1. Page Hierarchy of the CPN Model ... 78

5.2. The Code Segment on Transition Distrubite RegForecast -ResAccess from
Page FiveDOceanForecast ... 80

5.3. The Code Segment on Transition Identify Required and Desired
Improvements – AnlsTool from Page Improvement.. 80

5.4. The Transition Update to New Mdl – Models fom Page FiveDOceanForecast..... 81

5.5. Declarations under the Animation Setup Declaration Group 81

5.6. Evaluating Auxiliary Texts on a CPN Page.. 82

5.7. A Screenshot on Declarations of the MSC Object.. 83

5.8. A Screenshot after Applying User-Defined Monitor Tool to Related Transitions. 84

5.9. Specifications for Initialization Function.. 84

5.10. Specifications for Prediction Function.. 85

5.11. Specifications for Observation Function .. 86

5.12. Specifications for Action Function ... 90

5.13. Specifications for Stop Function... 91

5.14. A Screenshot on the Place Contents Monitor Index ... 92

5.15. A Screenshot on a CPN Construct for Generating Tokens..................................... 94

7.1. State Space Report-Part 1 ... 100

7.2. State Space Report-Part 2 ... 100

7.3. State Space Report-Part 3 ... 102

7.4. State Space Report-Part 4 ... 102

x

LIST OF TABLES

Table Page

3.1. Mapping Rules for Converting UML Models to CPN Models................................. 30

3.2. Possible Mapping Rules for Converting SysML Models to CPN Models 31

3.3. Mapping between Elements in a SysML Model and a CPN Model 35

1. INTRODUCTION

Document driven approaches to system development have been a predominant

approach to design in the past. As systems become increasingly complex, this type of

approach is falling short because the document itself is always up for interpretation and is

subject to misunderstanding [1]. This problem can be solved with formal specifications by

models since formal models have well defined semantics that are more difficult to

misinterpret than a textual specification. Model-based systems engineering leverages the

use of models across many of activities in system development which allows an enormous

potential for increasing design productivity, system quality, and lifetime by shifting the

bulk of design efforts to early phases [2, 3]. Models can be used both to analyze the

problem domain and to describe and specify the architecture for the solution domain.

However, the only way for one to be sure about the correctness of the models is to test

those models. The specification of formal models, execute those models and analyze the

simulation results creates a new paradigm of systems engineering – executable system

architecting. A forma1 model of the architecture design is needed for specifying and

proving the system properties. An executable model is capable of generating dynamic

behavior and can be used to check the overall integrity and internal consistency of the

architecture model, evaluate the specifications of the system, refine the system design,

forecast its performance, verify its functionality, experiment different system

configurations, and select the right design alternatives.

Despite nearly universal acceptance by the software industry as the standard object

oriented design notation, the Unified Modeling Language (UML) is weak in defining

precise dynamic semantics [4, 5, 6]. The Systems Modeling Language (SysML) extends

UML to allow modeling of a wide range of systems but still lacks execution semantics.

Consequently, the UML/SysML-based designs are not formally verifiable. This research

proposes a design methodology that supplements SysML modeling with dynamic model

analysis capability using Colored Petri Net (CPN). CPN can provide a formal dynamic

semantic framework for the SysML notations plus the behavioral modeling and analysis

strength needed by system designers. Accordingly, a conversion procedure was developed

to facilitate the transformation from SysML specifications to CPN models. This procedure

2

is based on the condition/event interpretation of the place/transition of CPN. The purpose

of developing an executable architecture for the proposed system in this thesis is to

facilitate the investigation of the system wide properties and refine the system design based

on the analysis. Therefore, the interactive behavior of the system components is of greater

interest than the reactive behavior of the individual components. In order to concentrate on

the interactive behavior, the transformation process from SysML model to CPN model in

this thesis is primarily based on SysML sequence diagrams.

The executable model has been extremely useful in assisting the system

development. In this thesis, the proposed system was incrementally developed based on

four use case scenarios. The simulation of these scenarios demonstrate that the architecture

of the proposed system can be modified to better achieve its intended results based on the

executable system architecting framework developed in this thesis. The executable model

also helped to reveal missing specifications and requirements.

Modeling can follow different paradigms depending on the system to be modeled.

However, a system design that is resilient to change is highly desired. The development of

Object-Oriented modeling approach has proven to be more flexible, maintainable than the

functional decomposition paradigm and a greater potential for reuse. The Model Driven

Architecture (MDA) approach is a more advanced way of writing specifications, which is

still under development. The MDA initiative and the standards that support it allow the

same model specifying business system or application functionality and behavior to be

realized on multiple platforms [7]. This leads to greater advantages in improving

portability, cross-platform interoperability, platform independence, domain specificity,

reusability, productivity, and maintainability. MDA was initially developed as a software

design approach, but its principles can also be applied to other areas such as business

process modeling. This thesis explores MDA’s applications in the system engineering

context.

This research continues the work conducted by Madwaraj Rao (former M.S.

student in Systems Engineering at the University of Missouri-Rolla) for his thesis [8-10].

In his work, both the Department of Defense Architecture Framework (DoDAF) and

Systems Modeling Language (SysML) were used to model the Global Earth Observation

System of Systems (GEOSS) by following a structured approach and an object-oriented

3

approach, respectively. The SysML model was then converted to an executable model

represented by CPN. This CPN model was used to simulate one scenario of GEOSS. The

behavior of the system being modeled was analyzed and verified based on the simulation.

In this research, several use case scenarios have been considered and executed in

parallel. This allows the analysis of concurrent behavior. The target system to be modeled

is still GEOSS. However, the system was decomposed into lower levels of abstraction

where physical architecture was introduced. This allows the distributed prosperities of the

system to be modeled and analyzed. The Model Driven Architecture (MDA) approach

from software engineering has been investigated. A SysML based modeling process, in

systems engineering context, was developed using the advanced principles of MDA. The

feasibility of this process is demonstrated by modeling the GEOSS. The advantages of

using this modeling process to model the proposed system were analyzed. A new method

was developed for converting a SysML model to a CPN model in order to facilitate the

modeling of concurrent behavior. For the simulation, a Graphical user interface (GUI) was

integrated into the original CPN to give graphical feedback supporting interactive control

of the simulation. The Message Sequence Charts (MSCs) were used as a main tool for

architecture analysis and functionality verification/ validation.

1.1. MOTIVATION

The specification and development of Network centric systems is a complex task.

One reason is such systems often involve highly distributed and heterogeneous architecture

and are equally distributed in their development, procurement, management, and

maintenance. Furthermore, complexities exist not only in the individual systems but also in

the integration of these systems. As an example, in modern computation environment, a

distributed system often consists of a number of hardware or software components which

are located at networked computers. These components usually proceed concurrently but

also have to communicate and interact with each others to achieve complex work. The

distributed nature of the system components leads to a heavy emphasis on web services,

which allow previously incompatible applications to interoperate regardless of language,

platform, operating systems, or physical locations. The overall management and life cycle

maintenance of such systems are great challenges, especially when the systems are

4

continually evolving. For example, many of the new domain applications have to be

achieved by integrating systems with other legacy systems to form a complex system of

systems. For such systems, in many cases, it is impossible to build a real system and test its

performance before implementation.

Models and simulations can address these challenges by allowing engineers to

visualize the proposed system and to evaluate the performance before constructing it.

Models assist in managing complexities, facilitate communications, and help detect errors

and omissions in designs. Simulation-based designs allow experiments to explore multiple

solutions and enable early and on-going verification and validation to reduce risk and

address problems in a cost effective way offering significant savings in time and resources.

Unified Modeling Language (UML) has become the de facto standard modeling

language in the design process of object-oriented system but is software centric. The

systems engineering community has been looking for a modeling language that is

compatible with UML but allows modeling a wide range of systems. This has resulted in

the evolution of Systems Modeling Language (SysML). It is of great interest to see how

SysML can support the modeling of network centric systems and how a SysML model can

achieve a high fidelity representation of the real system. So far, relatively few approaches

can be found in the literature investigating UML/SysML for hardware design and

hardware/software co-design. This research will contribute to the practice of applying

SysML in system design.

The system engineering community benefits from the achievement of software

engineering. The software industry has developed a large number of methodologies and

approaches in system architecting. Many of the advance principles of these methodologies

can be, or have been, applied in the system engineering context. The aforementioned

modeling paradigms are examples of them. Efforts are currently underway within the

Object Management Group (OMG) and associated organizations to enhance the UML

(including the SysML) and MDA for use in systems engineering. Therefore, there is much

research to be done in these areas.

5

1.2. PROBLEM DEFINITION

This research will take the Global Earth Observation System of Systems (GEOSS)

as an example and explore the modeling and simulation of network centric system of

systems.

From a net centric system view, GEOSS is envisioned as a network of regional,

national, and global systems that rapidly and systematically acquires and disseminates data

and data products on Earth observations to serve a broad range of critical and expanding

societal needs. From a physical view, GEOSS is a system of sensors, communication

devices, storage, computers and other devices used in concert to observe the Earth. In this

research, the GEOSS is viewed as an information processing system.

This thesis focuses on some specific features of network centric systems, i.e. the

system will be modeled as a distributed multi-task concurrent processing system with high

interoperability, maintainability, and expandability. The challenge is to model the

management, discovery, access, and process of the observation datasets and information

products in a distributed and heterogeneous computational environment that links

distributed centers, users, models, data, applications, computer networks and storage

resources together.

1.3. RESEARCH OBJECTIVE

The main purpose of this research is to develop an executable system architecting

paradigm to facilitate the investigation of system wide prosperities of the proposed system,

which, in turn, can provide a basis for system reconfiguration. A set of methodologies for

achieving this framework also needs to be developed. Following are specific goals.

1. Investigate how to supplement SysML-based specifications with executable

semantics. Develop a methodology to convert SysML models to executable models and

demonstrate its feasibility. Develop the mapping between elements of the SysML model

and the executable model.

2. Investigate approaches to model-based simulation. Investigate methods for

analyzing system behavior and performance based on simulation results. Explore how the

simulation results can help to refine the architecture design.

6

3. Develop a SysML-based modeling process that facilitates the development of

architecting specifications in a systematic way. Demonstrate its feasibility; and justify its

advantages in modeling the network centric systems.

1.4. SECTION ORGANIZATION

The rest of this thesis is organized as follows. Section 2 provides the literature

review, which includes a discussion of related work undertaken in the areas of executable

system architecting, and an introduction of some background information and tools used in

this thesis. Section 3 discusses the modeling methodology used in this research. It includes

a SysML-based model driven architecting process, a procedure for converting SysML

models to CPN models, approaches for carrying out simulation based on CPN models, and

methodologies for architecture evaluation and analysis. Section 4 presents the model

development process with GEOSS as an example. Section 5 demonstrates how an

executable model can be derived from the SysML model by following the procedure

developed in Section 3. Section 6 demonstrates how to execute the CPN model developed

in Section 5. Section 7 discusses how to carry out architecture evaluation and analysis

based on the simulation results. Finally, Section 8 sums up the conclusions and discusses

directions for further research.

A complete set of SysML diagrams developed for the proposed system is attached

in Appendix A. A complete set of pages from the CPN model is attached in Appendix B.

The output Message Sequence Charts (MSCs) for selected CPN pages are packaged in

Appendix C. The GEOSS 10-Year Implementation Plan Reference Document is attached

in Appendix D.

7

2. LITERATURE REVIEW

Executable modeling allows models to be tested as prototypes, and is emerging as a

powerful supporting methodology. Intensive research has been conducted in this area in

recent years, especially in the software engineering context. Since the Unified Modeling

Language (UML) [11, 12] is almost universally accepted by the software industry as the

modeling language, many efforts have been undertaken to make UML executable. In [13,

14, 15], three popular approaches are discussed. The are Executable UML(xUML) [16],

Executable and Translatable UML (X
TUML) [17, 18], and Virtual Machines (VM) [19, 20].

The executable model is one pillar supporting the Model-Driven Architecture (MDA)

initiative announced by the Object Management Croup (OMG) in 2001. Many of

aforementioned approaches allow the execution of Platform Independent Model (PIM).

However, these approaches are intensely software centric being aimed at automatic code

generation, e.g. the xUML approach relies on a platform-specific code generation

mechanism to achieve executable model. Furthermore, they are based on UML StateChart

variants [4, 5, 21-23], which means they take an asynchronous view of the system and

concentrate on the reactive behavior of the individual objects. This further limits their

application to software engineering. For modeling general systems, the UML state

machines lack well-defined execution semantics, do not support modeling of multiple

instances of classes [11], and do not scale well to large systems [24, 25].

An alternative approach to making UML executable is to incorporate the Colored

Petri Nets (CPN) [26-29] as a supplement to the well-established UML diagrams. UML is

well suited to model the static aspects of a system; however CPN is good at modeling and

subsequently validating the behavioral characteristics of concurrent object architectures.

The reasons CPN is a good candidate for this purpose are discussed in depth in Section

3.4.1 of this thesis. The use of UML in conjunction with CPN can benefit from the strength

of both modeling languages. This topic has been studied intensely in recent years. Much of

the work done is concerned with transformation (manually or automatically) from UML

notation to Petri nets, often aimed at formal verification and validation, e.g. [30-33]. Also,

Petri nets have been used to ascribe formal execution semantics to UML notations via a

rule-based approach, e.g. [34]. While much of the combined use of UML and CPN is often

8

discussed in general terms, a small number of examples have concentrated on pinpointing a

number of specific, important design issues that can be addressed properly in CPN, but not

at all or not as easily in UML, e.g., some specific design issues that are addressed better

with CPN than with UML are pointed out in [6]. The design of user interfaces is described

in [24]. High-level Petri nets in conjunction with mobile computing have been investigated

in [35]. Some research has also addressed the development of concepts and theories that

combine the ideas of object-orientation in general (not just UML) and Petri nets [36]. Some

research even proposes a CPN profile for UML [37].

However, much of the work is still based on the transformation of UML state

machines. This limits its usage in general systems since StateChart variants only model the

reactive behavior of a single object [30]. Only a few examples can be found in the literature

that use the combination of UML and CPN for general system modeling with an emphasis

on interactive behavior between systems components, e.g., [38], where a UML-based

process for developing Command, Control, Communications, Computer, Intelligence,

Surveillance, and Reconnaissance (C4ISR) architectures based on an Object-Oriented

paradigm is presented and a CPN model for verifying and validating the architecture model

being built is suggested. In [39], a software tool, Bonapart, has been used to build the

executable model. This software tool is based on the concept of Petri Net but specialized in

process simulation and analysis (simulation of amounts, costs, times and capacities). A

procedure for converting UML diagrams to CPN models using an object-oriented approach

is presented in [40]. This procedure imposes a rationale for style constraints on the use of

UML artifacts. The methodologies for evaluating the logic, behavior, and performance of

the architecture based on the simulation are also discussed in [40]. Using CPN only to

specify and simulate a system is also possible. Four of such examples are given in [41].

However, this is not very common since CPN is not good at giving purely static

descriptions of system architecture.

The execution of CPN models allows detailed behavior and performance analysis

of the architecture providing a basis for refining the system configuration. Some

approaches for modifying system architecture based on simulation also appeared in

literature. The modification can be categorized into reconfiguration and refinements. In

[42], a set of approaches for refining a CPN model are summarized. These are type

9

refinement (change color set definition of a place), node refinement (decompose a

components) and adding a subnet to an existing net. The architecture can then be modified

accordingly. An application of these approaches can be found in [43] where the

reconfiguration (of the architecture) approaches have also been used. The purpose of the

simulation in [43] is to test the dynamic configuration capability of a reconfigurable system

and the effectiveness of the new configuration. In [44], Petri Net has been used to evaluate

and modify the architecture of a dynamically evolving system. In [45], Petri Net has been

used to reconfigure the architecture of Flexible Manufacturing Systems (FMS) to respond

to changes in requirements. The simulation of CPN also can be used for checking the

completeness of specifications and/or requirements, experimenting different system

configurations, and select the right design alternatives. Examples can be seen in [41].

As mentioned before, the System Modeling Language (SysML) was developed to

overcome deficiencies of UML in modeling systems that include hardware, software, data,

personnel, procedures, and facilities. Some limitations of UML for modeling non-software

systems and the required extensions to UML have been discussed in [46, 47]. However,

still relative few works can be found that derives executable models from SysML model. In

[8, 9], the architecture for GEOSS was developed using both Department of Defense (DoD)

Architecture Framework (DoDAF) and SysML. The SysML Model was then converted to

an executable model represented by CPN that allows behavior and functionality analysis.

The mapping between elements of SysML diagrams and CPN models is in similar line with

the mapping between elements of UML models and CPN models presented in [40]. The

block definition diagrams of SysML have been used to start the conversion process in this

case.

The modeling and validation of the architecture for complex systems with

emerging behavior, e.g. network centric systems, is a tough job due to the complexity of

the problem domain. The DoDAF Architecture Framework is designed for addressing such

challenges, and therefore is an ideal guideline for developing a network centric system.

Many network centric systems have been modeled using the DoDAF Architecture

Framework, e.g. [8, 9, 48]. The executable model approach discussed above gives one

solution to the analysis, verification and validation of such system. However, in some cases,

the behavior of such systems may be too complex to observe and analyze by regular

10

methods. Therefore, computation intelligence technologies have also been applied for

facilitating the modeling of such systems. Examples can be seen in [49-52].

A brief insight into the literature on related tools used in this thesis and some other

background information is presented below.

2.1. GEOSS

Global Earth Observation System of Systems (GEOSS) was collaboratively

developed by interested countries and organizations. The aim is to achieve comprehensive

and sustained Earth observations. Comprehensive information about GEOSS can be found

in [53]. Most of the information required for this research has been derived from this

document, e.g. end user requirements and performance indicators. This document

highlights the origin and purpose of the GEOSS implementation plan and the vision and

scope of GEOSS. It also presents the societal benefits areas of GEOSS, the capacity

building, outreach, governance, and the related technical approaches, including

observations and modeling, products/data management, architecture and interoperability,

data sharing arrangement, and research facilitation.

2.2. DEPARTMENT OF DEFENSE ARCHITECTURE FRAMEWORK

The Department of Defense (DoD) Architecture Framework (DoDAF) defines a

common approach for architecture description development, presentation, and integration

for both war-fighting operations and business operations and processes. Within the

DoDAF, architectures are described in terms of three views: Operational View (OV),

Systems View (SV), and Technical Standards View (TV). The OV is a description of the

tasks and activities, operational elements, and information exchanges required to

accomplish desired missions. The Systems View (SV) is a set of graphical and textual

products that describe systems and interconnections providing for, or supporting, system

functions. The SV associates systems resources to the OV. These systems resources

support the operational activities and facilitate the exchange of information among

operational nodes. The TV is the minimal set of rules governing the arrangement,

interaction, and interdependence of system parts or elements. Its purpose is to ensure that a

system satisfies a specified set of operational requirements. A detail understanding of the

11

DoDAF can be obtained from [54-56]. DoDAF evolved from Command, Control,

Communications, Computers, Intelligence, Surveillance, and Reconnaissance (C4ISR)

Architecture Framework version 2.0. Now, DoDAF has been updated to DoDAF version

1.5.

DoDAF provides the guidance, rules, and product descriptions for developing and

presenting architecture descriptions, e.g. on how to view the system, what to present in

describing each view, and how to present them. In this research, DoDAF has been used in

analyzing the problem domain.

2.3. SYSTEMS MODELING LANGUAGE (SysML)

Model Driven Architecture (MDA) development process has been employed in this

thesis. Unified Modeling Language (UML) is the key enabling technology of MDA. UML

is a general-purpose modeling language to graphically illustrate system concepts. It was

originally developed for software engineering by Object Management Goup (OGM) but

has been universally accepted as modeling standard. SysML, which is an extension of

UML, was developed to address the limitations of UML for modeling non-software

systems. SysML reuses a subset of UML 2.1 and provides additional extensions needed to

address the requirements for modeling general systems. The extension abilities include

modeling parametric equations, physical architecture, system interfaces and requirements.

Modeling using UML or SysML provides the capability to develop a consistent, verifiable,

and validated model that allows the systems engineer to discover missing requirements,

evaluate alternatives, and verify the performance requirements. The most update version of

SysML is SysML 1.0. A detailed specification of SysML 1.0 can be found at [57].

2.4. COLORED PETRI-NETS

Colored Petri Net (CPN) is a graphical discrete-event modeling language. The CPN

modeling language combines Petri nets and programming languages. Petri nets [58, 59]

provide the foundation of the graphical notation and the semantical foundation for

modeling concurrency, synchronization, and communication in systems. The functional

programming language, Standard ML [60, 61], provides the primitives for compactly

12

modeling the sequential aspects of systems (such as data manipulation) and for creating

compact and parameteriable models [41].

CPN is state and action oriented at the same time – providing an explicit description

of both the states and the actions. CPN models are executable and describe the states of a

system and the events (transitions) between the states. CPN includes a module concept that

makes it possible to organize large models into a hierarchically related set of modules. The

CPN modeling language is supported by CPN Tools. CPN Tools is a tool for editing,

simulating and analyzing CPN. The tool features incremental syntax checking and code

generation which take place while a net is being constructed.

An introduction to the practical use of CPN is provided in [62]. It introduces the

basic ideas behind the CPN language and illustrates how CPN models can be analyzed by

means of simulation, state spaces and condensed state spaces. Detailed specification and

application skills of CPN can be found in [18, 26-28, 63-65]. The use of CPN with the

example of a simple communication protocol is demonstrated in [62]. It gives out basic

concept of CPN, such as places, transitions, tokens, markings, color set, code segment,

guide condition, and declaration. An insight into the simulation, state space analysis, and

performance analysis is also provided with the example in [62]. In [40], an approach to

simulating and validating a UML models using CPN has been demonstrated.

2.5. ARTISAN STUDIO

ARTiSAN Studio, developed by ARTiSAN Software Tools Inc., is a multi-user

suite of development tools that provides systems and software modeling and

component-based development specifically for technical systems.

ARTiSAN Studio is built on a true, shared, object repository. Development teams

can create and share access to diagrams, models, and documentation. The entire team is

kept in synch throughout the project and updated of any changes that affect them.

ARTiSAN Studio is an integrated suite for UML modeling. It embraces the UML

2.0 and OMG SysML standards.

ARTiSAN Studio provides a number of good features to facilitate model

development [66]. For example:

13

ARTiSAN Studio automatically establishes a single data dictionary that maintains

a consistent view across the model. Model items are defined once in the model and can be

referenced on any diagram as either a symbol or rich text reference. Consequently, any

change to the model element is automatically propagated across all diagrams and textual

descriptions, ensuring architectural consistency and completeness.

The flexible package view allows the user to structure models in a variety of ways

and quickly switch between the project, dictionary, relationship and diagram browser

views.

ARTiSAN Studio supports domain and organization specific extensions to the

UML through the mechanism of profiles, a collection of stereotypes and tags. It

pre-defined a wide range of standard UML profiles and also supports the user defined

profiles. For example, by adding the DoDAF profile, the studio can be used for DoDAF

modeling.

ARTiSAN Studio enables the user to analyze and model system requirements in a

number of UML diagrams. ARTiSAN Studio has also established mature interfaces to

Telelogic DOORS and other Requirement Management (RM) tools. Any model elements

can be traced to any textual requirements managed in the user’s tool of choice, unleashing

the full power of impact and trace analysis.

ARTiSAN Studio supports code generation. Different parts of the model can be

implemented in different programming languages, including C, C++, Java, Ada 83/95 and

Spark Ada 83/95. On-demand Code Synchronization (OCS) supports forward generation,

reverse engineering and round tripping.

ARTiSAN Studio supports state machine generation, which allows the user to build

and simulate executable models as a demonstration tool, and/or to validate and verify

system behavior. Simulations can also be hooked to Graphical User Interface (GUI)

prototyping tools, such as Altia Design.

ARTiSAN Studio provides a powerful Document Generator. High-quality

documents can be easily configured to meet the user’s project standards.

ARTiSAN Studio also offers an online tutorial in the form of Real-time Perspective

Mentor [67], which provides a comprehensive set of object-oriented development

14

techniques and detailed guidance on how to make the best use of the modeling capability

supported by ARTiSAN Studio.

All the SysML diagrams in this thesis have been developed using ARTiSAN studio.

It gave tremendous convenience in the model development and modification process.

2.6. BRITNEY SUITE

BRITNeY is the abbreviation of “Basic Real-time Interactive Tool for Net-based

animation” [68]. It was developed by Michael Westergaard. BRITNeY Suite consists of a

Java application and a CPN ML library which (among other things) enables visualization

and advanced interaction through CPN Tools.

BRITNeY Suite currently focuses on four things: animation based on the

simulation of a CPN, optionally using CPN Tools, state-space analysis of CPN models,

editing, simulation, and state-space analysis of bi-graphical reactive systems, and loading

of CPN models in the most recent proposal for a standard interchange format for

High-level Petri nets.

The simulation based animation can be run directly from BRITNeY Suite.

BRITNeY Suite allows deploying animations without modifying the CPN model.

BRITNeY Suite supports state-space analysis of CPN models loaded via CPN

Tools. This includes drawing the state-space graphs (occurrence graphs).

BRITNeY Suite supports input of a bi-graphical reactive system (BRS) using a

simple text format. BRITNeY Suite also supports entry of BRS by means of an

asynchronous pi-calculus process, by an ambient-calculus expression, and by converting a

CPN.

BRITNeY Suite also supports drawing of Message Sequence Charts (MSC)

(including space chart and transition chart) in an automatic way or in an advanced user

defined way.

15

3. MODELING METHODOLOGY

3.1. AN EXECUTABLE SYSTEM ARCHITECTING PARADIGM

Models have three types of basic functions: specification (of a system to be built),

presentation (of a system to be explained to other people, or ourselves), and execution.

However, no single modeling tool currently available can do all of them best. This suggests

a combination usage of these tools can take immediate advantages of the best of these tools.

Unified Modeling Language (UML) and Systems Modeling Language (SysML)

are well suited for specification since they have strict syntax and rich semantics. They are

also excellent for communicating design details to other people because they are widely

accepted. However, due to lack of executable semantics, UML/SysML-based designs

cannot be formally verified [69]. In this thesis SysML is employed to define the formal

specifications of the proposed system.

The DoDAF architecture framework does well in presentation since the

architecture represented in this way is very easy to understand. However, DoDAF only

provides a guideline or a template for architecture description but is inadequate in the

semantic foundations for describing architectures, which makes it insufficient in

specification. This problem has been realized and measures have been taken to remedy it

[70]. In this thesis, DoDAF architecture framework is used as a supplement tool in

analyzing problem domain.

Because SysML and UML cannot perform formal model verification, human

reviews have to be involved to check the correctness of the design and assess how well the

designed architecture meets the system requirements upstream. Unfortunately, the quality

of the review is subject to the human reviewer’s ability to detect inherent flaws. As designs

become increasingly complex, knowing how their myriad parts all fit together becomes

increasingly difficult, if not impossible. By going one step further – that is, converting the

SysML-based design to an executable and verifiable model – the design and review

process can be greatly strengthened. As a result, the quality of the final system can be

greatly improved.

This research suggests the use of Colored Petri Net (CPN) as the modeling

language for specifying the executable model. CPN models are executable and verifiable.

16

CPNs provide rich capability for carrying out system analysis, either by means of

simulation or by means of more formal analysis methods. A number of analysis techniques

supported by CPN can be found in [26-28, 62, 69, 71]. The reason to choose CPN is

analyzed in depth in Section 3.4.1 of this thesis. On the other hand, CPNs are not suited for

giving purely static descriptions of system architecture.

The transformation from SysML specification to CPN model must follow

well-defined mapping rules to secure faithful transformation. Only in this way, can the

simulation of the executable model be used to verify and validate the system modeled by

SysML. There are several ways to do the conversion depending on the system behavior of

interest, e.g. reactive behavior or interactive behavior. Some existing rules for UML to

CPN transformation have already been discussed in Section 2 of this thesis. The

conversion procedure used in this thesis is presented in detail in Section 3.4.5 of this thesis.

CPNs can communicate with external applications and processes based on

Standard ML(SML language). This allows CPNs to be integrated with other tools that can

enhance the simulation, e.g. providing graphic user interface, instant feedback, interactive

control of the simulation process, and etc.

Based on the above concerns, an executable system architecting process can be

developed (see Figure 3.1). This is an iterative process. The basic steps are as follows:

1. The overall process starts from requirements analysis and specification where

the mission is defined, the operational concept is analyzed, system requirements are

captured, and use cases are delineated.

2. The formal model of the system is represented by SysML. This modeling activity

transforms the natural language specification into a formal, standardized model (a set of

SysML diagrams). The principles of Modern Driven Architecture (MDA) approach have

been applied to guide the modeling process in this thesis.

3. This SysML model is then converted to an executable model represented by

Colored Petri Net (CPN). The CPN model must faithfully render the structure and behavior

of the architecture model. The accuracy depends strongly on the conversion process.

Well-defined rules need to be established and govern this transformation.

4. The executable model is then exercised. The behavior of the modeled system can

be observed. The simulation can be enhanced by integrating external tools to the original

17

Figure 3.1. Executable System Architecting Paradigm

CPN model. Note that the executable model should be exercised for each use case and their

combinations in order to fully simulate the real-word applications.

5. The final step is architecture evaluation and analysis. The tasks in this step

include behavior and performance analysis, functionality verification (against the

requirements), and system configuration refinement. CPN tools provide a set of analysis

tools for detailed net analysis. The verification and validation is carried out through the

comparison of sequence diagrams of the SysML model and Message Sequence Charts

(MSCs) generated by CPN model. If there is a match, then the model can be verified. If the

match is insufficient, then either the SysML model needs to be redesigned in order to better

represent the system architecture, or the system architecture needs to be reconfigured to

better satisfy the requirements. The system configuration can then be refined according to

the simulation and analysis results. Therefore, the above process becomes an iterative

process. It is recommended to test the system behavior at each level of abstraction before

entering into a lower lever of abstraction.

Modeling

Model
Transformation

Refinement

Requirement Analysis
and Specification

 Requirements Analysis

Capture desired behaviors

Formal Model

SysML Representation
Based on MDA paradigm

Executable model
 CPN

Simulation

 Behaviors as modeled

Interactive GUI

Architecture Evaluation
and Analysis

 Architecture refinement

& reconfiguration

Functionality verification

Behavior analysis

Start

End

18

3.2. OBJECT ORIENTED ANALYSIS

The concept of Object-Oriented Analysis (OOA) has been used to identify, analysis,

and define system components in this thesis.

Object-Oriented Analysis (OOA) aims to model the problem domain in terms of

objects and the services they provide. From the OOA perspective, a system is composed of

a set of related, interacting objects. The behavior of the system is generated through the

collaboration of these objects. The state of the system is the combined state of all the

objects in it. An object is an entity that has state, attributes, and operations. OOA involves

identifying and defining objects in terms of these three prosperities. The interaction

between objects may be messages (including operation calls) or other item flows. OOA

emphasize importance of well-defined interfaces between objects.

The Unified Modeling Language (UML) has become the standard modeling

language used in object-oriented analysis and design. UML uses the concept of “Class” to

describe objects. Classes provide a way of grouping objects with similarity.

3.3. MODEL DRIVEN ARCHITECTING APPROACH

The Model Driven Architecture (MDA) approach is a new way of writing

specifications adopted by the Object Management Group (OMG) in 2001. It promotes the

use of models as the primary artifacts in software development. MDA makes use of

Platform Independent Models (PIMs), which define system functionality and behavior

completely free of technical and implementation concerns, and Platform Specific Models

(PSMs), which represent design and implementation. PIMs are transformed into one or

more PSMs according to Platform Models (PM) that describe how a system uses a

particular type of platform. The PSMs produced in this way may then undergo further

transformations to more specific PSMs and eventually to source codes. The MDA

approach enables the same model specifying business processes or application

functionalities to be realized on multiple platforms. The three primary goals of MDA are

portability, interoperability and reusability [7].

The MDA approach is still under development, some basic concepts can be found

in [72, 73].The OMG documents the overall process in a document called the MDA Guide

[7].

19

In order to develop a modeling process using the MDA paradigm, it is necessary to

discuss the core techniques that are applicable to this process and the advantages of using

MDA approach.

3.3.1. The Core MDA Technique is Model Transformation. “Model transfor-

mation is the process of converting one model to another model of the same system. The

input to the transformation is the marked PIM and the mapping. The result is the PSM and

the record of transformation.” [7]. Model transformation allows the developer to clearly

define the refinements from PIMs to PSMs and the relationships between those models.

Since MDA is still relatively new and evolving, many model transformation approaches

have been developed as discussed in [7, 72, 74]. Some paradigms and approaches

developed in software engineering can also be applied for this process. The

Component-Based Software Engineering (CBSE) is discussed in [75-77]. As defined in

[77], “a software component is a unit of composition with contractually specified

interfaces and explicit context dependencies only. A software component can be deployed

independently and is subject to composition by third party”. Components are considered to

be a higher level of abstraction than objects (a concept in the Object-Oriented

Programming (OOP) context). Components are selected at build-time and configured at

run-time. A component only exhibits its provided or required interfaces. Therefore,

components allow more reusability and portability through inheritance and adapting

existing components. Another hot on-going research is the application of Aspect-Oriented

Programming (AOP) or Aspect Oriented Software Development (AOSD) in MDA. Some

work in this respect can be seen in [78-80]. AOP or AOSD addresses the separation of

concerns, especially the cross-cutting concerns by modeling them as reusable modules

called aspects. Cross-cutting concerns cut across many modules in a program thus reducing

the modularity of OOP and increasing the complexity. AOP method involves developing a

primary model and a set of aspect models (which encapsulate crosscutting concerns into

reusable modules) separately, and then weaving them together to create the application at

well defined locations, called join points. The principles of CBSE and AOP have been

applied to guide the model development in this thesis.

20

3.3.2. The Model-Based Specification is More Precise and Rich in Semantics

than the Object Oriented Paradigm. Model-based specification defines behavior precisely,

formalizing in the model all terms that must be defined for those behaviors.

In Object-Oriented programming, object is the only concept for specification

whereas MDA employs multitude concepts, such as collaborations (interaction between

objects), design patterns, middleware, components, and aspects [81].

In addition, because many aspects of a system might be of interest, the MDA

approach allows the use of various modeling concepts and notations to highlight one or

more particular perspectives, or views, of that system.

3.3.3. MDA Designs Portability, Interoperability and Reusability into the

System at the Model Level. MDA creates a conceptual framework that separates funda-

mental logic behind a specification from the specifics of the particular middleware that

implements it. This allows greater flexibility when architecting and evolving these systems

[82].

Portability will be enhanced because PIMs remain unchanged in the face of

changing technology. As new platform technologies emerge, only the related PSMs need

to be modeled according to the new Platform Models. Existing PIMs can then be

transformed into these new PSMs. This allows rapid development and delivery of new

system. Other architectures are generally tied to a particular technology. This will result in

repeated efforts in modeling of the system’s functionality and behavior each time a new

technology comes along.

Since PIMs are technology neutral, with the standards that support MDA, they can

be realized on multiple platforms. This allows the possibility of large scale reuse of proven,

tested business models captured in the PIMs.

MDA enables different applications to be integrated by explicitly relating their

models. This facilitates integration and interoperability. More complete descriptions of

MDA can be found in [7, 83].

The OMG is promoting this framework and is working on standards that help

realize it. It can be concluded that the MDA has significant advantages to allow portability,

cross-platform interoperability, platform independence, domain specificity, and increased

productivity.

21

3.3.4. MDA Approach is Ideal for Building and Maintaining the GEOSS

Architecture. Although the MDA approach stemmed from the software engineering, many

of the core principles are applicable in the systems engineering context. As discussed in

Section 1.2, GEOSS in this modeling task can be conceived as a distributed computing

system and thus many of the modeling approaches of software engineering can be easily

applied. An in-depth analysis of the requirements of the GEOSS reveals that some highly

desirable attributes of such system are interoperability and extensibility. From the above

analysis, it can be concluded that the MDA approach is ideal for modeling network centric

system like GEOSS. Detailed requirements analysis can be seen in Section 4.2 of this

thesis.

3.3.5. A MDA Process for Developing System Model. In this section, a SysML-

based process for developing architecting representation is presented. The process

demonstrates the feasibility of developing architecture descriptions based on MDA

paradigm.

3.3.5.1 Preamble to the process. MDA specifies three default types of models for

a system corresponding to three layers of abstraction. They are Computation Independent

Model (CIM), Platform Independent Model (PIM), and Platform Specific Model (PSM). A

set of models can be constructed within each layer. During the architecting process a CIM

is transformed to a PIM architecture model, then to a PIM detailed design model, and

likewise to have several abstractions within the PSM level. However, for MDA, a

“platform” is meaningful only in relation to a particular point of view – in other words, one

person’s PIM is another person’s PSM. Therefore, the concept of abstract platform has

often been used in this context [84-86]. “An abstract platform is determined by

considering the platform characteristics that are relevant for applications at a certain level

of platform-independence as well as the various design goals” [85]. An MDA-based

design process should be able to accommodate designs at different levels of platform

independence. For simplicity, PSM and PIM here are conceived as relative to each other in

this thesis.

A three-dimensional view of a system helps to understand and develop a MDA

model [81]. They are: vertical – different levels of abstraction of the same subject;

horizontal – different subject areas or views that are not more or less abstract than each

22

others; and variants – a family of related components that share the same interface and can

be configured for different applications. Figure 3.2 reflects these concepts.

Figure 3.2. Three-Dimensional Decomposition of a System
(Adapted from Model-Driven Architecture and Integration

Opportunities and Challenges Version 1.1 [81])

A complex system may consist of many interrelated models organized along well

defined layers of abstraction, with mappings defined from one set of models into another.

The basic driving force for the model transformation is domain information, i.e. by

continually adding domain information, a set of models can be developed from the initial

CIM. The two best practices are applied to facilitate this transformation process. They are

CBSE and AOP as discussed in Section 3.3.1 of this thesis. CBSE allows components to be

configurable and thus is used as part of the solution to the variance caused by multiple use

cases. AOP helps to separate and modularize cross-cutting components.

D
ifferent levels of abstractions

Different subject areas

Marketing Service Sales R & D Manufacturing

Variants

23

3.3.5.2 An overview of the modeling process. The modeling process is shown in

Figure 3.2 This diagram depicts an overview of the SysML-based modeling process with

MDA principles applied. For each of the modeling phases, this diagram shows the essential

tasks, associated inputs, and output products. The basics of the iteration loop are as

follows:

Stage 1. Requirements Analysis -The essential tasks in the requirements analysis

phase are mission definition, operational concept analysis, requirements capture and use

case scenarios definition. The input for the mission definition is where one receives the

architecting task. Then, the textual requirements can be specified by extracting the

application requirements and a preliminary SysML requirement diagram can be depicted

based on the analysis of missions. From this point, an operational concept can be created

that describes how the mission will be carried out. The DoDAF products, such as the High

Level Operational Concept Graphic (OV-1), and the Operational Activity Model (OV-5),

Figure 3.3. MDA Modeling Process

on-going verification and validation

White Box Use Case
Scenarios

Scenario based Test
Cases

Architectural Design

Architecture Analysis & Design

Requirements Analysis

Use Case Definition

Use Case Integration

Requirements Capture

Operational Concept

Mission Definition
DoDAF Products

Domain
Information

Model
Transformation
 (Refinement)

CIM

PIM

PSM

Black Box Use Case
Scenarios

PSM

…

PIM

PSM
PIM

PSM
PIM

Use Cases
Diagrams

Requirement
Diagrams

Block Definition
Diagrams

Sequence
Diagrams

State Machine
Diagrams

Activity Diagrams

Refined Internal
Block Diagrams

Internal Block
Diagrams

Platform

Specialty

A
bstraction

24

are good choices for this purpose. The operational concept can then be used to refine the

requirements and create more detail requirements diagrams. With this information in hand,

functions can be grouped to create the use cases. A use case describes a specific operational

aspect of the system in the form a service provided by the system for an actor.

Stage 2. Architecting Analysis and Design. The main objective in this step is to

transform the identified functional requirements into a coherent description of system

architecture in a systematic way. The detail steps are as follows:

1. Construct Computation Independent Model (CIM). Given one or more use cases

and the operational concept created in the former steps, a generic CIM can be created to

model the business process, which is both domain independent and platform independent.

This business process of CIM can be developed by identifying the top level horizontal

partition of the system. Different use cases may correspond to different business models.

These can be viewed as a set of variants of one generic business model. At this point, no

details about the target domain and platform are being taken into consideration. It is

recommended to use the concept of CBSE [77] to define each part of the CIM as

components (referred as component hereafter) in order to allow configuration and make

generic model possible. This CIM often corresponds to the high level Operational View of

the DoDAF architecture representation. The SysML Block Definition Diagram and

Internal Block diagram can be used to represent the CIM.

With these components identified, the domain operations of each component that

are needed for carrying out the tasks specified in the use case can be identified. These

operations can form a set of high level activity diagrams that show the flow of operations,

decisions points and operation calls. These high level activity diagrams specify the

dynamic behavior of the CIM and provide a basis for separating concerns in later

refinements.

2. Construct Structure Diagrams. The initial PIM is created by transforming from

the CIM with appropriate domain information added in (and thus the PIM is domain

dependent but platform independent). This PIM contains components for carrying out the

system-level functionalities and the domain operations carried by these components. This

set of generic components can be extracted by identifying general abstractions and

similarities of a set of applications. Note that a component is a high level abstraction of an

25

object. One component may have multiple instances to be chosen for a particular

application. The technique of black box analysis can be used to facilitate the abstraction.

By applying this concept, the system-level functionalities can be verified and validated

through the execution of the corresponding black-box use case model (The executable

model however should be developed separately).

3. Refine the first PIM by adding domain information and mapping domain

operations to the target platform (or more precisely, the abstract platform). The system is

then decomposed to a lower level of abstraction (or the PSM in relation to its PIM). The

domain information is generally the implementation concerns. For example, each domain

operation is implemented by certain resources of a given target platform(s). This suggests

the decomposition can be done by identifying the required resources needed to implement

the application. Alternatively, the implementation of the domain operation may need some

common services provided by the target platforms. This refinement process involves white

box analysis, i.e. the components needed to support or collectively realize the domain

operations are identified and allocated. The system thus built can be verified and validated

through the execution of the corresponding white box use case model. This PIM to PSM

refinement process is further carried out until the desired abstraction level is achieved. The

models developed in this step can be represented by SysML Block Definition Diagram and

Internal Block diagram.

4. Refine the structure design. If there are components representing certain

cross-cutting concerns, separate them from the above models. These cross-cutting

components can be weaved back at proper joints when the system is instantiated. The

separation of cross-cutting components helps to increase both reusability and

maintainability of the system model.

5. Transform these block diagrams into sequence diagrams. For each of the domain

operations specified in the CIM stage, there may be a sequence diagram that elaborates on

the detail interactions between system components identified in the block definition

diagrams. The messages sent to or received by the interacting objects can be events (input

or output signals between system parts and outside actors), item flows (message/data

exchanges) or operation calls (calling an operation on the receiver). Note that a sequence

diagram is in the application domain so it has to be defined for each use case scenario.

26

6. Transform sequence diagrams into activity diagrams. By observing the input and

output message flow of an object in the sequence diagrams, the operations (actions) that the

object needs to conduct in order to generate the output can be identified. The information

for determining action sequence and item/object flows between operations (actions) can be

derived from the sequence diagrams developed in the preceding step.

7. Refine system structure design. The structure diagrams developed in previous

steps have not specified the connections between its components and the corresponding

interfaces and item flows. This information is identified in developing the sequence and

activity diagrams. With this information in hand, a refined structure diagram can be created

and represented by Internal Block diagrams. The Internal Block Diagrams define the

internal structure of a block in terms of its prosperities (part), connectors, and ports.

The operational calls identified in sequence diagrams can be used to specify

standard ports and the corresponding interfaces.

The object flows identified in activity diagrams, together with the message

exchanges in sequence diagrams, can be used to specify the flow ports, flow properties,

flow specifications and item flows.

The operations that are identified by observing the required input and desired

output of each interacting objects in sequence diagrams (and are later defined in activity

diagrams) can be grouped to define each object (block) using block definition diagrams.

The attributes of each block derive from the object flows as mentioned above. So far, the

structure design of the system can be completed.

8. Transform sequence diagrams to state Machine diagrams. A State Machine

diagram describes the reactive behavior of an object. The State Machine diagrams need to

be developed for all object classes that have behavior. The State Machine diagrams can be

used to generate simulation for each object.

9. Use case integration. The final step is the use case consistency analysis, in which

the verified and validated use case models are integrated into a common framework that

can be executed as concurrent processes.

27

3.4. SYNTHESIS OF THE EXECUTABLE MODEL

As discussed in Section 2, a number of approaches have been proposed to make

UML executable. However, all this work is based on UML StateChart variants and

concentrates on the reactive behavior of a single object, i.e. it views each object as

potentially having a state machine that can execute asynchronously and concurrently [16].

This kind of approach is targeted at software engineering. In the system engineering

context, it is often more important to model the interactive behavior between the

components of a system. Hence, it is better to define the executable model that relies on

synchronous operation calls between objects to produce a complete synchronous model of

the subject matter.

3.4.1. Select a Proper Simulation Tool. The ARTiSAN studio used to develop

the SysML model in this thesis provides a simulation capability based on state diagrams.

However, this simulation capability is not enough to fully exercise the behavior of the

system being modeled in this thesis for the following reasons:

1. A state diagram is created for each single object. The simulations associated with

such state diagrams are also divided into single object views. There is no way to connect

these individual views together.

2. The State diagram does not support hierarchy structure. This makes the

simulation of complex systems rather difficult.

Based on the prosperities of the system to be modeled in this thesis and the

objectives of this research, the following criteria were identified for choosing the

simulation tool:

1. General purpose (because this research is aimed at modeling general system).

2. Both state and action oriented (because the behavior of the system to be modeled

should be described in these two terms).

3. Discreet event driven (because the emphasis of the modeling task is the

interactions between the components of the system).

4. Concurrent behavior (because the system to be modeled should support

concurrent behavior).

5. Synchronization (because parallel processes need to coordinate with each other).

6. Object-oriented and easy to map to UML/SysML notations.

28

7. Capability for supporting analysis.

8. Verifiable.

Based on these criteria, the Colored Petri Net (CPN) seems to be the best choice

among those having been investigated because it satisfies all those criteria. Some of the

reasons and advantages of using CPN are highlighted as follows (In [62], a number of

advantages for using CPN has been provided. Only those that are closely related to the

purpose of this thesis are mentioned here):

1. CPN is very general instead of domain specific, i.e., it is not aimed directly at

modeling a specific class of systems, but aimed towards a large variety of different systems.

The applications of CPNs range from informal systems (such as the description of work

processes) to formal systems (such as communication protocols). They also range from

software systems to hardware systems [62]. CPN is very basic and works like a low level

programming language because it has few, but powerful, modeling primitives that make it

possible to model systems and concepts at different levels of abstraction. However, this is

both a weakness and a strength [41]. Other simulation tools are either tied to a particular

application, e.g. network simulation, or a particular aspect, e.g. process simulation.

2. CPNs are well suited for modeling concurrency, synchronization, and resource

sharing behavior of a system.

3. CPNs have flexibility of token definition and manipulation. It is possible to use

tokens to model various architectural elements. Each token in a CPN has a value typed by a

pre-defined data type. Different token types can be used to represent different architectural

elements, e.g. components, tasks, messages, events, and even use cases can all be described

by different types of tokens. The value of tokens can be investigated and modified by the

transitions corresponding to different system behavior [87].

4. CPNs offer hierarchical descriptions through the concept of sub-page, which can

be used as a module definition mechanism for various purposes. This makes it possible for

CPNs to model large systems in a manageable and modular way.

5. CPNs have an explicit description of both states and actions. Actions can be

represented by CPN transitions. How the actual action occurs is not the interest of modeling; only

how the conditions for the action to take place and what the effects of that action are. The state

carries the concepts of conditions and effects; the transition carries the concept of state change.

29

6. CPNs have a graphical representation, which is intuitively very appealing and

easy to understand [62].

7. CPNs have well-defined semantics which unambiguously define the behavior of

each CPN. The presence of the semantics makes it possible to implement simulators for

CPNs and also forms the foundations for the formal analysis methods [62].

8. CPNs have a semantics which builds upon true concurrency, instead of

interleaving. In an interleaving semantics, it is impossible to have two actions in the same

step, and thus concurrency only means that the actions can occur after each other, in any

order. A true concurrency semantics is easier to work with because it is closer to the way

human beings think about concurrent actions [62]. The concurrent concept is also

illustrated in Figure 3.6.

9. CPNs integrate the description of control and synchronization with the

description of data manipulation. This means that on a single sheet of paper it can be seen

what the environment, enabling conditions and effects of an action are. Many other

graphical description languages work with graphs which only describe the environment of

an action – while the detailed behavior is specified separately (often by means of

unstructured prose) [62].

10. CPNs offer interactive simulations where the results are presented directly on

the CPN diagram. The simulation makes it possible to debug a large model while it is being

constructed. The data values of the moving tokens can be inspected [62].

The major weaknesses of CPNs are:

1. They are too low-level to serve as a suitable means for communication and

visualization.

2. They lack commercially acceptable tools for developing Petri net models. An

approach has been provided to address this drawback in [32], where an interface is

developed that is extensible to any drawing package capable of using Web services and

eXtensible Markup Language/Simple Object Access Protocol (XML/SOAP).

3. Although the state space concept provides a powerful analysis tool, as the system

size and complexity increase, the state space of the CPN grows exponentially, which could

become too difficult to manage both graphically and analytically, if it is not impossible.

30

3.4.2. Conversion Rules Based on Static Views. The executable model must fai-

thfully render the structure and behavior of the architecture model. The accuracy depends

strongly on the conversion process. Therefore, an automatically generated executable

model based solely on the information of the architecture model is highly desired.

However, such automation currently does not exist in commercial tools so the conversion

in this thesis is a manual process.

By following the steps in the preceding section, the architecture models should

have sufficient details to enable the generation of a CPN model. Several approaches can be

used to generate the CPN model. For example, executable models can be derived from

various behavioral diagrams (Activity Diagrams, Sequence Diagram, State Machine

Diagrams, etc.) or structural diagrams (Block Definition Diagram, Internal Block Diagram

etc.). A method of deriving the CPN model primarily from UML class diagrams (some

related diagrams need to be modified according to some style constraints for this purpose)

is described in [40]. The basic ideas are summarized in Table 3.1.

Table 3.1. Mapping Rules for Converting UML Models to CPN Models

System Elements UML Artifacts CPN Elements

Fixed component Class Substitution transition

Transient information Class attribute Token

Message Type Association class Place

Operation Class Operation Transition

A similar idea can be applied to the model represented by SysML. The Internal

Block Diagrams and Block Definition Diagrams can be used as the main source for this

conversion. The basic mapping rules are summarized in Table 3.2.

However, in this thesis the conversion is based on behavior diagrams. The reason

will be discussed in the next section.

31

Table 3.2. Possible Mapping Rules for Converting SysML Models to CPN Models

System Elements SysML Artifacts CPN Elements

Fixed component Parts within internal

block diagram

Substitution

transition

Transient information/event Item flow Token

Message Type Flow propriety Place

Operation Block Operation Transition

3.4.3. Case Based Syntheses. Note that the above mentioned approach is actually

trying to derive dynamic behavior (an executable should surely represent dynamic

behavior) from a static view of the system (class diagram is a static view). This approach

works well for models that only have one use case scenario. For a CPN model that supports

multiple use case scenarios, there are additional concerns to be addressed. For example, the

workflow may be different from case to case. The corresponding information/object flow

between objects may also be case sensitive. That is the system may have different

configurations (in terms of connections and the information/object that flows between) for

different use case scenarios in order to perform different tasks. Hence, a generic class

diagram is insufficient to render the case specific information which is necessary for an

executable model. One way to solve this problem is to follow the approach defined in [40]

(or the modified approach for SysML models as described in the above section) and further

develop an algorithm to cope with the multi-scenario problems. This method is expected to

be able to generate a generic executable model that simulates multi use case scenarios

using one structure. This seems tempting but is not the always the best solution (reasons

will be discussed later) from an execution perspective. Another problem with this

class-diagram based transformation is that a class is a group of objects sharing the same

properties and operations, and however, what is actually interacting with each other is the

instance of a class. By following the class-diagram based transformation, it is very easy to

get confused with classes and their instances, which will result in an interleave process

instead of the desired parallel process (see Figure 3.6).

32

Alternatively, one can use behavioral diagrams as the basis of conversion and

construct a representation for each use case scenario to reflect different configurations of

the system. Sequence diagrams carry the key information necessary for the conversion

(object, information/object flow, and operations (by linking to activity diagrams)); and a

set of SysML sequence diagrams is always constructed for each use case scenario. This

make the set of sequence diagrams a good candidate for the conversion purpose. In this

thesis, a procedure was developed to convert the CPN model primarily from SysML

sequence diagrams. Information from several concordant diagrams was also needed. This

method turned out to have additional benefit since a set of sequence diagrams specified for

a use case scenario keeps only the connections between objects in that context eliminating

unnecessary information (connections, code segments and etc) and thus makes workflow

clearer. A CPN model constructed in this way is more readable and maintainable, and

easily extends as well. There are also other advantages that will be discussed later.

3.4.4. Consistence Issues in SysML Models. In order to derive a CPN model

from a SysML model, there should be an unambiguous mapping between elements of

SysML and elements of CPN. For this reason, two types of style consistence have been

recommended in this research.

● Style Consistence in Sequence diagrams. The entities on sequence diagrams

represent instances of objects (represented by block), not the objects themselves. The

information on the message lines between lifelines can represents message (object)

exchanges and/or operation calls. The conversion process requires a consistent

representation. Therefore, the following style should be followed:

1. When message (object) exchanges and/or operation calls are involved in the

interaction of two objects, the message (object) exchanges should be labeled on the

message lines, the operation calls should be labeled in the description line corresponding to

the receiver’s lifeline.

2. When only an operation call is involved in the interaction between two objects, it

is viewed as a special message sent to the receiver in order to activate a service provided by

the receiver.

● Concordance between SysML artifacts. The SysML model should maintain an

integrated dictionary, a single repository of definitions and descriptions of all elements of

33

every diagram in the model. The concordance concepts between SysML elements in

different diagrams are reflected in Figure 3.4 (also can be seen in Table 3.3). The items

connected by dashed lines should use consistent names.

Note: A I_B1B2 Data interface is also shown in the internal block diagram but has

not yet been related to any element in the sequence diagram shown on the graph. This

indicates it has not been used in this case but may be used in other sequence diagrams. Note

that a block diagram always shows generic information whereas a sequence diagram

always shows context information.

Figure 3.4. Concordance between Activity, Sequence, and Block Diagrams

Object 2 Object 3Object 1

Action A1

Action A3

Action A4

Action A2

Opr Call

Msg

Msg

Object 2 Object 3

Block 3

Operation: A3

Block 2

Operation: A2

Sequence Diagram

Activity Diagram Internal Block Diagram

Action A2

Action A3

Action A4

Action A1

Item A1O1
Item O2O3Data

Item O3A4

<<Interface>>
I_B2B3 Data

getSignal:Type

Flowport_B2B3

Flowport_B2B3

StdPortB2B3

StdPortB2B3

I_B2B3 Date I_B2B3 Cmd

I_B2B3 Cmd I_B2B3 Date

bdd[block]System[StdPortB2B3 Interface Definitions]

<<Interface>>
I_B2B3 Cmd

perform Action A3

<<flowSpecficaitons>>
Flowport_B2B3

<<flowProperities>>
Item O2O3 Data

bdd FlowSpecifications
Do Act A2

Do Act A3

Do Act A4

Item O2O3Cmd

Block Definition Diagram
Object 1

Block 1

Operation: A1
Operation: A4

34

3.4.5. The Procedure for Synthesizing CPN Models from SysML Models and

the Mapping Rules. In order to derive a CPN model from a SysML model, an unambiguous

mapping between the elements of the various SysML diagrams and the elements of the

CPN must be established. This includes structural elements such as places, transitions,

input and output arcs, and logical elements such as color sets, variables, and the

associations of color sets with places, arc inscriptions, guard functions, and code segments.

Figure 3.5 outlines the procedure for synthesizing a CPN from a SysML model used in this

thesis. One basic idea is to interpret places and transitions in a CPN model as conditions

and events, respectively. An event can occur if all conditions for the event hold.

Step 0: Augment the sequence diagram(s). For each object in the sequence diagram(s), add

operation names to the appropriate position on the lifeline in between the input and output

message/event. The operations have been defined in a block definition diagram

Step 1: Create a transition for each operation in the sequence diagram(s) (preferably also

label the object name next to the operation name).

Step 2: Create a substitution transition for each nested sequence diagram.

Step 3: Create a place for each message/event between lifelines. Assign the appropriate

color set and create the corresponding declaration in the index.

Step 4: Create arcs between the transitions and the places according to the sequence

diagrams. There should be a one-to-one matching between the numbers of message/event

in the sequence diagrams and the number of places between transitions in the CPN model.

Step 5: Add Arc inscriptions, guard functions, or code segments derived from the rules

associated with each operation.

Step 6: Create a sub-page for each substitution transition.

6.1. Follows step 0 to 5 to create all the related transitions, places and arcs.

6.2. Assign the Input, Output, and I/O ports places.

Step 7: Assign socket places and connect all substitution transitions and their sub-pages.

Step 8: Specify initial markings related each places.

Figure 3.5. Procedure for Synthesizing a CPN Model from a SysML Model

35

Based on the above procedures, the basic mappings between elements in SysML

diagrams and elements in a CPN model are summarized in the Table 3.3.

Table 3.3. Mapping between Elements in a SysML Model and a CPN Model

Elements in SysML Diagrams System

Entities Sequence Diagram Activity Diagram Block Diagram

Elements in

CPN Model

Fixed

component
Interacting Object __ Part

Substitution

transition

Transient

information/

event

Information on the

Message line between

lifelines

Object flow Item flow Token

Message

Type
__ __

Flow

specification.

Place and its

color set

declaration

Operation

Call

Information on the

Message line and/or

description line

Object flow
Interface

specification
Place

Operations __ Action Block definition Transition

Flow
Message line between

lifelines

Dashed line

connecting Object

flow and action

Ports and Port

connection
Arc

Module
Nested sequence

diagram

Child activity

diagram
__

Substitution

transition

3.4.6. Instantiation and Concurrent Processing. The concurrent system involves

multiple processing units working concurrently. This requires multiple instances of the

same object to be created (for each use case scenario) for each of the concurrent processing

36

task. If, for example, only one instance of an object is created, the processing requests from

other use case scenarios have to line in a queue and be processed one after each other, in

any order. Therefore, the different use case scenarios are not proceeding in parallel. Figure

3.6 depicts this idea. Of course, resource constraints and sharing may prevent tasks from

Figure 3.6. Interleaving Process vs. Concurrent Process

Operation A

Class A

Input

Interleaving Process

Concurrent Process

2

1`Input from process1
+1`Input from process3

Input Output
1

1`Output for process2

Three processes are interleaved at the
point for Operation A from Class A.
Only one task is processed at a point of
time. Inputs have to be processed one by
one, not in parallel.
The graph shows that processed 2 has been
processed but processe1 and process 3 is
still waiting

Operation A

Instance 1 of
Class A

Input Output
1

1`Output for process1

Operation A

Instance 2 of
Class A

Input Output
1

1`Output for process2

Operation A

Instance 3 of
Class A

1

1`Input from process3

Input Output

Multiple Instances of a class should be
created for concurrent processing unit
The graph shows that process 1 and 2 have
been processed. Process 3 is about to be
processed

37

being processed in parallel. This concern will be discussed in a concrete case in later

sections. By following the procedure specified in the preceding section, a CPN transition is

created for each operation in each use case scenario, which enables parallel processing.

3.4.7. Results of the Object Oriented Approach and the Model Driven Approach.

As mentioned in Section 3.4.2 of this thesis, the conversion method used in [40] is based on

UML Class diagram. The resulting CPN model is in line with the Object-Oriented

approach. For each interacting object, a substitution transition is created and in the

corresponding sub-page, a transition is created for each of the operations belonging to that

object, together with those places representing attributes of that object. Therefore, each

sub-page defines a class (class name corresponds to the sub-page name and the substitution

transition name; attributes correspond to places; and operations correspond to transitions).

The conversion method used in this thesis is based on SysML diagrams. The

resulting CPN model is in line with the MDA approach since the sequence diagram is

constructed according to the MDA paradigm. For example, the overall process starts from

the high level business process, and then is gradually decomposed to lower levels of

abstraction through substitution transitions. MDA benefit can be reflected in the

executable model. First, modularity: common operations that are carried out by several

objects can be organized into modular components which are reusable. Second, easy to

maintain: if there is a change in the business process or a new use case scenario is

introduced, only the high level process needs to be modified (or created). All the lower

CPN pages can be reused. If there is a change in the lower level, the change usually is

localized in the modular level and only the sub-pages need to be modified. This is

analogous to the relationships between Platform Independent Models (PIMs) and Platform

Specific Models (PSMs) in the MDA approach. These proprieties are very useful since

during the design process, the designer often needs to shift back and forth between the CPN

model and the SysML model in order to refine or reconfigure the design, or to

incrementally develop the system. Figure 3.7 reflects the concept of reusable module in a

CPN.

38

Figure 3.7. Reusable Module in a CPN

3.5. SIMULATION

The CPN model provides a very detailed view on the execution of the system but it

also contains many details that are not needed in the simulation. The simulation and its

results should be as easy to observe as possible in order to facilitate the behavior and

performance analysis. In addition, from an execution perspective, the simulation

sometimes may need to interact with outside users during the simulation as the real system

does. Therefore, a Graphical User Interface (GUI) for the CPN is highly desired. In this

thesis, the BRITNeY Suite [68] was employed for these purposes.

With the help of the BRITNeY, a GUI is integrated into the original CPN model.

During the simulation, the CPN is running underneath the GUI. The user needs only to

interact with the GUI to control the execution of the CPN model. A couple of graphic

outputs can be generated after the simulation, such as the Message Sequence Charts

(MSCs), the State Space Graphs, and etc. They provide effective means to analyze the

Event 3
Module M1

A set of operations

Port
input

Module M2
A set of operations

Event
m1

Object m1
Operation m1

Port
Output

Event 4
Object 2

Operation 2

A process
configuration
in scenario 1

Event 1
Module M1

A set of operations Event 2
Object 1

Operation 1

A process
configuration
in scenario 2

Reusable
Module

39

behavior of the system. The following three animation tools supported by the BRITNeY

have been used in this thesis:

3.5.1. Interactive Control. The interactive control includes accepting inputs from

outside users and providing graphical feedback. It is achieved by adding code segments to

related transitions. These code segments are executed when the corresponding transition

fires in the execution of the CPN model.

3.5.2. Message Sequence Charts (MSCs). There are four ways to generate the

MSCs:

Transition Message Sequence Charts – can be generated fully automatically based

on the fired transitions. This kind of chart shows a timed sequence of fired transitions and

their bindings. The sequence of operations in a simulation can be observed through this

kind of chart.

Place Message Sequence Charts – can be generated fully automatically based on

values added and removed from places.

Code Segment Message Sequence Charts – use the code segments attached to CPN

transitions together with MSC animation plug-in to generate the MSCs.

Monitor Message Sequence Charts – use CPN monitors together with MSC

animation plug-in to generate the MSCs.

3.5.3. State Space Graphs. By adding appropriate auxiliary texts to a CPN page,

and evaluating these texts, the state Space Graph will be created on the graph window of

the BRITNeY Suite. The layout of the graph can be adjusted automatically or manually.

Note that the executable model should be exercised for each use case scenario and

their combinations in order to fully simulate the real-word application of the system being

modeled.

3.6. ARCHITECTURE EVALUATION AND ANALYSIS

The tasks in this step include behavior and performance analysis, functionality

verification and system configuration refinement. Three forms of methods for architectural

evaluation, i.e. logical, behavioral, and performance, are described in [40]. The logic is

examined by testing each step of the execution to ensure that the model is following the

desired logic. The behavior of the system can be observed directly from the simulation.

40

However, it is often beyond the capability of human being to observe the details of

simulation by watching the CPN and its markings. Alternative ways must be developed to

observe the simulation. A numbers of such ways supported by CPN are provided in [62],

e.g. simulation report, adding report places, business, charts, Message Sequence Charts

(MSCs), state space reports, and state space graphs. These methods and tools enable

detailed net analysis in a static way.

3.6.1. Behavior and Functionality Verification. The behavior of the architecture

should be compared to the user’s requirements. The initial system behavior is captured by

the sequence diagrams in the architecture model, which represents the desired behavior as

specified in the requirements. After an architecture model has been converted to a CPN

model, the modeled behavior can be observed from the simulation. This suggests an

effective way of verifying and validating the behavior and functionality of the modeled

system is to compare the Message Sequence Chart (MSC) (generated by executing the

CPN model) and the SysML sequence diagrams. If there is a match, the model can be

verified and validated. If the match is insufficient, then either the architecture model needs

to be refined in order to better represent the system architecture or the system architecture

needs to be reconfigured in order to better satisfy the requirements.

3.6.2. Specification Completeness Checking. From the comparison of the input

sequence diagrams and the output MSCs, the missing specifications in sequence diagrams

can be easily identified. The missing specifications in other diagrams can be found based

on the concordance between different SysML diagrams as discussed in Section 3.4.4. The

underneath rationale is that an executable always leads to more complete specifications

since the model will not be fully operational until all parts and interaction of the system has

been at least abstractly specified. For the same reason, some of the missing specifications

can even be found during the development of the executable models.

Experimenting the simulation can also help to identify the missing requirements.

The existence of missing requirements implies that there are functions that the system must

support in order to generate the required behavior or desired performance but have not

been yet specified.

The refined new model needs to be evaluated again. Thus the system design is an

iterative process.

41

This section provided a set of generalized methodologies that constitute a

framework of executable system architecting. In the following sections, these

methodologies will be applied to a concrete system. It will be shown in detail how to use

these methodologies to solve practical problems, which includes model development,

executable model synthesis, simulation, and architecture evaluation and analysis. Some

application specific concerns and solutions will also be highlighted.

42

4. MODEL DEVELOPMENT

The model development presented in this section demonstrates the application of

the modeling methodology described in the previous section. The Global Earth

Observation System of Systems (GEOSS) is the target system to be modeled. The basic

information about the GEOSS was derived from the 10-Year Implementation Plan

Reference Document, which is attached in Appendix D.

4.1. MISSION DEFINITION

The purpose of the architecting activity is to develop a model of the GEOSS

according to identified requirements. The model can then be used for various purposes

such as understanding, presenting, planning, managing or building such system, or system

acquisition procurement and integration.

The following is a mission statement of the system to be modeled, which is adapted

from [53].

“Understanding the Earth system – its weather, climate, oceans, atmosphere, water,

land, geodynamics, natural resources, ecosystems, and natural and human-induced hazards

– is crucial to enhancing human health, safety and welfare, alleviating human suffering

including poverty, protecting the global environment, reducing disaster losses, and

achieving sustainable development. Observations of the Earth system constitute critical

input for advancing this understanding.”

“The purpose of GEOSS is to achieve comprehensive, coordinated and sustained

observations of the Earth system, in order to improve monitoring of the state of the Earth,

increase understanding of Earth processes, and enhance prediction of the behavior of the

Earth system. GEOSS will meet the need for timely, quality long-term global information

as a basis for sound decision making, and will enhance delivery of benefits to society in the

following initial areas:

• Reducing loss of life and property from natural and human-induced disasters;

• Understanding environmental factors affecting human health and well-being;

• Improving management of energy resources;

43

• Understanding, assessing, predicting, mitigating, and adapting to climate

variability and change;

• Improving water resource management through better understanding of the water

cycle;

• Improving weather information, forecasting, and warning;

• Improving the management and protection of terrestrial, coastal, and marine

ecosystems;

• Supporting sustainable agriculture and combating desertification;

• Understanding, monitoring, and conserving biodiversity.”

4.2. REQUIREMENTS CAPTURE

Based on the above mission statements, the requirements of the system were

analyzed and extracted from application requirements. A textual representation of the

requirements can be organized in a hierarchical manner with index numbers as shown in

Figure 4.1 (adapted from [88]). The SysML requirements diagrams help to capture the

requirements clearly. Figure 4.2 depicts the functional requirements decomposition.

REQ_G 0: The GEOSS shall be able to achieve comprehensive, coordinated and

sustained observations of the Earth system, in order to improve monitoring of

the state of the Earth, increase understanding of Earth processes, and enhance

prediction of the behavior of the Earth system. GEOSS will meet the need for

timely, quality long-term global information as a basis for sound decision

making, and will enhance delivery of benefits to society in selected areas.

 REQ_G 1.1 Disaster Mitigation Functional Requirements:

• Continuity of operations

• Continuous, real-time data streams

• Rapid tasking of other data sources

Figure 4.1. GEOSS Functional Requirements

44

 • Global coordination of resources

• Rapid generation of accurate information and forecasts, and

• Efficient sharing of information products, in formats that are adapted

to users’ needs.

 REQ_G 1.2 Human Health and Well-Being Functional Requirements:

• Increased coverage and resolution of observations

• Observations of environmental elements not presently observed

• Issue-specific observations, especially those related to air and water

quality

• Long-term, sustained observations of ground cover, and air and

water quality.

 REQ_G 1.3 Energy Resources Functional Requirements:

• Continuity of operations

• Continuous, real-time data streams

• Time scales of hours, days, seasons, years and decades

• Geographic scales including point source, regional, and global scale

• Efficient sharing of information products, in formats that are adapted

to users’ needs.

 REQ_G 1.4 Climatic Functional Requirements:

• Improved knowledge of Earth’s past and present climate, including

natural variability, and understanding of causes of observed variability

and change

• Climate system variables that specify the state, forcings, and

feedbacks

• Reduced uncertainty in Earth’s climate change forecasts

• Integrated observations from operational and research observing

systems

• Better understanding of the sensitivity and adaptability of natural and

managed ecosystems.

Figure 4.1. GEOSS Functional Requirements (cont.)

45

 REQ_G 1.5 Water Availability and Quality Functional Requirements:

• Continuity of operations

• Continuous, real-time data streams

• Rapid tasking of other data sources

• Global coordination of resources

• Rapid generation of accurate information and forecasts, and

• Efficient sharing of information products, in formats that are adapted

to users’ needs.

 REQ_G 1.6 Weather Forecasting Functional Requirements:

• Increased coverage and resolution of observations

• Observations of environmental elements not

• presently observed

• Improved timeliness, data quality, and long-term continuity of

observations

• Integrated multi-purpose observing systems and networks that allow

rapid dissemination of weather information.

 REQ_G 1.7 Ecosystems and Ecological Forecasting Functional Requirements:

• Understand ecosystem composition, structure, and function

• Monitor status and trends in ecosystem conditions and important

ecological processes

• Develop and improve ecological prediction and interpretation tools

• Develop and test a comprehensive forecasting framework through

pilot and case studies

• Efficient sharing of information products, in formats that are adapted

to users’ needs

 REQ_G 1.8 Sustainable Agriculture and Forestry, and Combating Land

Degradation Functional Requirements:

• Land Cover Assessment

• Change Detection

Figure 4.1. GEOSS Functional Requirements (cont.)

46

 • Soil Moisture Content

• Species Composition Surveys

• Linking Observations Across Different Scales.

 REQ_G 1.9 Understanding, monitoring, and conserving biodiversity Functional

Requirements:

• Open access to continuous, real-time, near real-time, and delayed

data streams, and rapid access to archives

• Robust calibration and validation for all systems

• An efficient process to transition research into operations Global

coordination of resources

• Rapid generation of accurate information and forecasts

• Efficient sharing of information products, in formats that are adapted

to users’ needs.

REQ_GIS 0: The GEOSS information System shall knit together the distributed

components of GEOSS into a global whole that functions as a unified

component. It shall effectively ingest and archive observations and

integrated observations into the data and communications components that

move data among systems and users in a distributed environment.

The GEOSS will be required to link observations collected from a broad

range of platforms: space, atmospheric, land surface, and oceans.

Observations may be point measurements, continuous measurements, or

imagery and variables may be biological, geological, chemical, physical, or

abstract. The many millions of individual measurements anticipated to be

obtained daily by the sensor networks will be transmitted (in real-time,

near-real-time, and delayed modes) directly to end users, as well as to the

applications and data-assimilating models that process these measurements

into maps, plots, forecasts, and other useful forms of information.

While the GEOSS vision recognizes that data products, rather than raw data,

are typically required by users, the development of most data products will

Figure 4.1. GEOSS Functional Requirements (cont.)

47

 be the responsibility of the various subsystem of the GEOSS. The

requirements of the GEOSS with respect to product generation are as

follows:

1. to ensure that the needs of product generators are met for timely delivery

of quality-controlled data;

2. to provide accurate and thorough metadata accompanying the data;

3. to provide a uniform guaranteed minimum level of geo- and time-

referenced graphical browse capability for all classes of data.

The GEOSS system shall also guarantee assured data discovery and

minimal browsing capability depend upon descriptive metadata, ensuring

that the data are readily intelligible to users.

 REQ_GIS 1.1: The system shall be able to collect remote and in-situ sensor

measurements from various Earth observations e.g. space

observations, atmospheric observations, land surface observations,

and ocean observations. The system shall also have data telemetry

capability.

 REQ_GIS 1.1.1: Collecting in situ measurements.

 REQ_GIS 1.1.2: Performing remote sensing.

 REQ_GIS 1.1.3: Conveying data from sensors to primary data assembly

centers.

 REQ_GIS 1.2: The system shall be able to manage data/information (includes data

archiving, access, processing, transport, and discovery) to enable

efficient sharing of information products.

 REQ_GIS 1.2.1: Metadata management. The system shall provide simple, clear

guidelines and extensible standards for metadata; ensure that

the linkages between data and metadata are maintained with

great reliability; provide for communication of metadata

among components of the system; provide training and tools

to increase end users’ and data providers’ capacity in meta-

Figure 4.1. GEOSS Functional Requirements (cont.)

48

 data generation and management.

 REQ_GIS 1.2.2: Data Archive. Long-term archive and stewardship of

GEOSS data sets and metadata; conform to related standards

and user requirements.

 REQ_GIS 1.2.3: Data Discovery. The ability to search for and find data sets of

interest and access them in an interoperable manner from

user applications.

 REQ_GIS 1.2.4: Data assembly and Transport. The ability to transmit data

between various GEOSS points (e.g. sensor nets, assembly

centers, archive centers, and users) in real time and delayed

mode; the mechanisms for aggregation and buffering of data

streams over useful spans of time and space.

 REQ_GIS 1.3: The system shall be able to process data into useful products that are

ready to use by various applications.

 REQ_GIS 1.3.1: Quality control and quality assurance. The mechanism for

assuring that data are of known, documented quality.

 REQ_GIS 1.3.2: Data-translation and filter. The mechanism for making data

compatible as they are transported between various

applications. These services include format conversion,

region and parameter subsets, point extraction and

re-gridding.

 REQ_GIS 1.3.3: Visualizing data/information product and publishing them

on the Internet for uniform on-line browse.

 REQ_GIS 1.4: The system shall coordinate the distributed resources to support

various applications that run on the system.

 REQ_GIS 1.4.1: Dynamic allocating computing tasks to grid computers.

 REQ_GIS 1.4.2: Managing the deployment and configuration of real

applications.

 REQ_GIS 1.4.3: Planning workflow and coordinating resources, data and

Figure 4.1. GEOSS Functional Requirements (cont.)

49

 REQ_GIS 1.4.3: applications. Enable the automation of a process in a whole

or part, according to a set of procedural rules.

 REQ_GIS 1.5: The system shall be able to (1) improve, develop, test, and validate

operational models; (2) produce accurate estimates of current states

of various areas of Earth systems; (3) develop data assimilating

techniques to initialize and update models for more accurate

forecasts of state changes; and (4) optimize the observing.

 REQ_GIS 1.5.1: Supporting various analysis models for each domain

applications.

 REQ_GIS 1.5.2: Supporting various domain specific applications and tools.

Sustaining and enhancing capacities in research, training,

and development.

 REQ_GIS 1.6: The System shall be able to interface with the user community and

the decision support systems they use.

 REQ_GIS 1.6.1: Providing internet portals for user involvement. Access to

data and metadata shall be available through the Internet via

a portal.

 REQ_GIS 1.6.2: Supporting and integrating various user applications and

services

Figure 4.1. GEOSS Functional Requirements (cont.)

The high level requirements for the GEOSS were drawn from [53]. A <<derive>>

relationship was used to model this dependency. These high level requirements were then

decomposed into sub requirements based on different services areas that the system is

supposed to support. The model items that satisfy or verify specific requirements were also

related to the corresponding requirements using the <<satisfy>> relationship.

The nonfunctional requirements are shown in Figure 4.3. The corresponding

textual requirements are given in Figure 4.4.

50

Figure 4.2. Requirements Diagram – GEOSS Functional Requirements Decomposition

51

Figure 4.3. Requirements Diagram – GEOSS Nonfunctional Requirements

REQ_GIS-NF 1.1: Interoperability.

The System shall support Interoperability across components and

services:

Transparency (format, protocol, etc.);

Defining and updating interoperability arrangements including

technical specifications for collecting, processing, storing, and

disseminating shared data, metadata and products;

Facilitating architecture and data standards, using existing standards

wherever possible, and identifying gaps in existing standards;

Integrated multi-purpose observing systems and networks;

Global coordination of resources;

Make data available in multiple forms including the data’s native form

Offer a cross-language and cross-platform data access mechanism that

is independent of the data repository

Figure 4.4. GEOSS Nonfunctional Requirements

52

 Enable the abstraction of encoding and transmission mechanisms and

allow transparent distributed access to data using multiple protocols

REQ_GIS-NF 1.2: Legacy System.

The system shall build on existing systems and initiatives

• defining the components of the GEOSS architecture

• converging or harmonizing observation methods

• promoting the use of existing standards and references, inter-

calibration, and data assimilation

The system shall provide a backward-compatible, version-controlled

software environment.

The system shall not adversely impact existing data access methods or

systems of the data providers.

REQ_GIS-NF 1.3: Openness.

The system shall support open design and standards process

The system shall provide access to all types of data: physical,

chemical, biological, and geological.

Interfaces to data repositories may reside at any location that has

network connectivity with the application and the data repository

REQ_GIS-NF 1.4: Flexibility/Extensibility/Scalability.

The GEOSS as a whole shall be extensible in terms of function,

volume, capacity, and throughput.

REQ_GIS-NF 1.5: User-friendly and customization.

The GEOSS shall provide access to data in a manner that is (largely)

transparent to the user;

Generic treatment of data sources isolating the requesting client from

specific representations, unique request semantics, and protocols.

The System shall support customization and personalized services;

REQ_GIS-NF 1.6: User feedback and interaction.

The system shall support effective user feedback and interactions.

Figure 4.4. GEOSS Nonfunctional Requirements (cont.)

53

 The system shall respond automatically, in a coordinated manner, to

both internal and external influences in a manner that optimizes

overall system performance.

REQ_GIS-NF 1.7: Effectivity.

The System shall support reliable, sustained, efficient operations.

Improved timeliness, data quality, and long-term continuity of

observations.

Rapid generation of accurate information and forecasts

REQ_GIS-NF 1.8: Performance.

The GEOSS shall be developed to conform to minimum performance

requirements. The following TBD notional performance requirements

apply:

1. Minimum storage at Regional Data Centers, Data Assembly

Centers, Modeling Centers, Archive Centers

2. Minimum aggregate computing capacity (ops/s) at Regional Data

Centers, Data Assembly Centers, Modeling Centers, Archive Centers

3. Minimum communications bandwidth among Regional Data

Centers, Data Assembly Centers, Modeling Centers, Archive Centers.

4. Maximum latency from data request to return to requesting user for

simple data requests.

5. Maximum latency from data request to return to multiple

simultaneous requesting users for simple data requests.

6. Maximum latency from data request to return to requesting user for

complex data requests, including data aggregation, subsetting.

7. Maximum latency from data request to return to multiple

simultaneous requesting users for complex data requests, including

data aggregation, subsetting.

8. Minimum data volume rate of sustained delivery of volumes of data

to a single user.

Figure 4.4. GEOSS Nonfunctional Requirements (cont.)

54

 9. Minimum data volume rate of sustained delivery of volumes of data

to multiple users simultaneously.

Figure 4.4. GEOSS Nonfunctional Requirements (cont.)

Note that the requirement model evolved through design phases, where design

details were added and design elements were linked with appropriate requirements. The

above requirement models only show the final results.

4.3. OPERATIONAL CONCEPT ANALYSIS

Given the requirements, a high level operational concept that describes how the

mission will be carried out can be formulated. The DoDAF products can be used for this

purpose. Since the main purpose of using DoDAF products in this thesis is to facilitate the

function analysis and refine the requirements, only the High-Level Operational Concept

Graphic (OV-1) has been used here.

The intent of OV-l is to provide a quick, high- level description of what the

architecture is supposed to do, and how it is supposed to do it, including the interactions

between the subject architecture and its environment, and between the architecture and

external systems. Figure 4.5 shows the OV-l. The architecture describes the major system

modules, data elements or objects, and interfaces between those modules. From a

functional view, GEOSS includes the following four efficiently linked systems: the

Observations and Data Telemetry system; Data Analysis and Modeling system; User

Service System (a variety of services available to the users), and External Control System

(providing oversight mechanisms to ensure the proper functioning and smooth evolution of

GEOSS, e.g. fault detection and correction, security, monitoring and evaluation of system

performance, providing for system extensibility). All these systems are connected by the

Information Management Infrastructure, which integrates the diverse data flow from a

variety of sources and incorporates the data flow into an open-access, scalable, modular

and distributed real-time system.

55

Figure 4.5. GEOSS High-Level Operational Concept Graphic (OV-1)

Information Management infrastructure

Data
Management

O
ut

co
m

eExternal Control System

Observation & Data Telemetry

Systems
Sensor
Networks

Data Retrieve
& Consolidate

Modeling & Analysis
Systems

User Interface

Services Aware Tools

Web Services Infrastructure

Distributed Resources

Meta data
Data Discovery

Data Transport

Data Archive

Primary Data Assembly
& Quality Control

User Service System

Data

Other Data Portals
(Social-economic data) Predictions &

Analysis
Observations

Policy
Decisions

Management
Decisions

Analysis
Models

Analysis
Tools

Application/Data
Management

Dynamic Planning
& Scheduling

Maintenance &
Management

Operational
information

Health
DisastersForecasts

AgricultureEcology

Climate
Water Energy Oceans

Social Benefits

Information Products
(Forecasts, Maps, images),
On-line Browse

In
pu

ts

Im
pa

ct
s

O
ut

pu
ts

 Resource
Management

Primary Data
Processing

User

Community

Cyber

Infrastructur

System

Operator

Research

Community

Observational

Community

56

Data flow within GEOSS begins with the Observing & Data Telemetry System.

Raw measurements from its elements are processed at various primary data assembly and

quality control sites. These measurements then enter the data communications

infrastructure. Both the observations and the processed information (e.g. predictions and

analysis results) are delivered by the GEOSS Information Management Infrastructure as

requested by the end user. Three basic tasks are performed by the infrastructure. They are:

 Data management, including:

• GEOSS-wide descriptions of data sets (Metadata Management);

• The ability to search for and find data sets of interest (Data Discovery);

• The ability to securely archive data and metadata and retrieve them on demand

(Data Archive);

• The ability to access the data in an interoperable manner from client applications

(Data Transport).

 Resource management (coordinates the distributed resources to support various

applications that run on the system, e.g. dynamic allocation computing tasks to grid

computers, manage the deployment and configuration of real applications, and plan

workflows), and

 Primary data processing (data quality control, format conversion, visualization,

and publishing the data on the Internet for uniform on-line browse).

The data and information product of the system are also grouped into four

categories, inputs, outputs, outcomes and impacts, as shown in the figure.

The scope of the system is delineated using the rectangular box. Actors are end

users who interact with the systems and hence are placed outside the system but are

connected to the appropriate part of the system.

4.4. USE CASE DEFINITION

Based on the above information, functionality can be grouped to create the use

cases. A use case describes the usage of the system (subject) in the form of a set of services

provided by the system for its actors (environment).

57

Figure 4.6 is a top level use case of GEOSS (All actors shown in this diagram

should be connected to each of the use case but the association relationships have not been

shown explicitly in this diagram for simplicity purpose).

Figure 4.6. GEOSS Top Level Use Case Diagram

Figure 4.7 shows the decomposition of the Weather Forecasting Service use case

and the related use cases.

Figure 4.8 shows the middle level use case.

Figure 4.9 shows the decomposition of Data and Resource Management use case.

58

Figure 4.7. GEOSS High Level Operational Use Case Diagram

Figure 4.8. GEOSS Middle Level Use Case Diagram

59

Figure 4.9. Decomposition of the Data and Resource Management Use Case

In these diagrams, the “include” relationship defines common functionality which

is shared among multiple use cases and is always performed as part of the base use case.

The “extend” relationship defines optional functionality that extends the base use cases.

The “generalization” specifies variants of the base use case. These diagrams are also

shown in Appendix A.

60

4.5. USE CASE SCENARIOS

A use case scenario in this thesis refers to a specific application of the system. The

operational concept can support several use case scenarios. A scenario can be used as a test

case to verify the architecture being modeled.

Four use case scenarios were considered in this thesis. They are selected from [89]

as shown in Figure 4.10 through Figure 4.13. These figures have been extracted from

Popkin’s System Architect where they reside as OV-6a diagrams (Operational Rules

Model of DoDAF products). These scenarios were, however, revised as required for the

modeling purpose in this thesis. The system being modeled in this thesis contains both

automatic processes and configurable processes. The workflows for these four scenarios

are configurable ones, which are based on some pre-defined automatic processes. These

configurations represent the initial set of the system, which should be defined case by case.

4.5.1. Five Day Ocean Forecast Use Case Scenario. Figure 4.10 presents the Five

Day Ocean Forecast use case scenario. A highlight of the scenario is given as follows:

National or Global modeling is performed in data assembly centers. National and

Global modeling makes use of the consolidated regional forecasts as boundary input to

global (ocean basin) modeling and also takes high resolution core variables provided by

regional observing systems as input.

The steps depicted in Figure 4.10, are simultaneously executed in multiple

locations at different levels (e.g. regional, national, and global) exchanging information

between cycles, in order to provide continuous high fidelity nowcasts and forecasts for a

true five day forecasting capability, similar to that of the National Weather Service.

For detail descriptions of this use case scenario, please refer to [90].

4.5.2. Five-Day Ocean Forecast – Pre-Operational Use Case Scenario. The Five

Day Ocean Forecast application is an operational system that demands high reliability and

availability. Therefore, updates to the operational system are thoroughly tested and

examined in a separate but equally stressing environment before being transitioned into the

operational system. That’s why a pre-operational scenario is needed.

Figure 4.11, presents the Use Case scenario for maintaining and operating a

Pre-Operational version of the Five Day Ocean Forecasting application. The scenario

begins with the receipt of a change proposal generated as an output from the Academic

Pe
rf

or
m

 S
en

so
r

C
ol

le
ct

io
ns

C
on

so
lid

at
e

Se
ns

or
 D

at
a

A
cc

es
s C

ur
re

nt

D
at

a

Q
A

/Q
C

 C
ur

re
nt

D

at
a

&

R
et

rie
ve

B

at
ho

m
et

ric

D
at

a

R
et

rie
ve

C

lim
at

ol
og

ic
al

D

at
a

R
et

rie
ve

H

is
to

ric
al

Se

ns
or

 D
at

a

C
ha

ra
ct

er
iz

e
Im

pr
ov

em
en

t
U

se
 C

as
e

R
ep

la
ce

 O
pe

ra
tio

na
l

M
od

el
 w

ith
 th

e
ne

xt

ve
rs

io
n

Pu
bl

is
h

O
pe

ra
tio

na
l

In
pu

ts

A
rc

hi
ve

C

ur
re

nt

Se
ns

or
 D

at
a

G
en

er
at

e
A

le
rts

 &

A
la

rm
s

Pe
rf

or
m

 T
hr

es
ho

ld

A
na

ly
se

s

R
un

O

pe
ra

tio
na

l
M

od
el

s

Fi
ve

 D
ay

 O
ce

an

Fo
re

ca
st

-P
re

-O
pe

ra
ti

on
al

 U
se

 c
as

e
Pu

bl
is

h
C

ur
re

nt

Fo
re

ca
st

A
rc

hi
ve

 C
ur

re
nt

Fo

re
ca

st
Q

A
/Q

C

O
pe

ra
tio

na
l

M
od

el
 O

ut
pu

ts

C
on

so
lid

at
e

M
od

el
 In

pu
ts

Sy
nt

he
si

ze

R
eg

io
na

l
Fo

re
ca

st
s

&

O

O

&
O

O

R
un

 w
ith

 C
ur

re
nt

V

er
si

on

D
is

tri
bu

te

N
at

io
na

l
Fo

re
ca

st
s

O
bt

ai
n

G
rid

 B
ou

nd
ar

y
C

on
di

tio
ns

 fr
om

N

at
io

na
l F

or
ec

as
t

D
is

tri
bu

te

R
eg

io
na

l
Fo

re
ca

st
s

O
bt

ai
n

La
te

st

Fo
re

ca
st

s f
ro

m

R
eg

io
ns

R
eg

io
na

l
or

N

at
io

na
l?

R
eg

io
na

l
or

N

at
io

na
l?

N
ex

t
V

er
si

on

R
ea

dy
?

Figure 4.10. Five Day Ocean Forecast Use Case Scenario

61

62

Modeling and Algorithm Research Use Case (which is pretty much like the Characterize

Improvements Use Case Scenario mentioned shortly later so it has not been modeled in this

thesis). After running the proposed change in parallel with the operational system and

comparing the resulting outputs, the scenario ends with an approved change being queued

for introduction into the operational system.

This Use Case is targeted for the specific instance of Pre-Operational Five Day

Ocean Forecasting. There can, and probably will be, several instances of Pre-Operational

Five Day Ocean Forecasting models being examined at the same time, some at the national

level and some at each Regional Association.

For detail descriptions of this use case scenario, please refer to [91]

Figure 4.11. Five-Day Ocean Forecast – Pre-Operational Use Case Scenario

4.5.3. Characterize Improvements Use Case Scenario. The evolution of operat-

ional GEOSS systems and subsystems across time is governed by a set of processes that

introduce changes in a controlled non-disruptive manner. As academic research is

conducted and updates to operational systems are proposed, any potential changes to the

systems are carefully evaluated to characterize the improvements. Figure 4.12, depicts a

Queue
Operational
Model
Baseline
Update

&

Academic Modeling
& Algorithm
Research Use case

Subscribe to
Operational Inputs

Approve Change to
Operational Model
Baseline

Run Beta
Model

Characterize
Improvements
Use case

QA/QC Beta
Model Outputs

Publish Beta
Forecast

Forecast
Improved?

Change Proposal

O

Create Beta
Version
Forecasting Model

Forecast Not Improved

Forecast
Improved

63

stand-alone use case scenario that can be applied in a variety of different situations in order

to evaluate the outputs from a research or pre-operational system against the outputs from

the current operational system and/or the actual sensor readings.

For detail descriptions of this use case scenario, please refer to [92].

Figure 4.12. Characterize Improvements Use Case Scenario

4.5.4. Emergency Management Use Case Scenario. Figure 4.13 shows the emer-

gency management plan carried out by the Maryland Emergency Management Agency and

other related organizations being aimed at reducing public health risks and effectively

mitigating the effects of natural hazards.

The specific events being addressed are category 3 and category 4 hurricanes that

come on-shore. Emergency plans need to be updated regularly. Part of the update includes

making use of the latest high-resolution digital elevation maps and the near-shore maps.

The SLOSH (Sea, Lake, and Overland Surge from Hurricanes) model is used to perform a

major part of the analysis. Large sets of cases are inputted to get a robust Monte Carlo

simulation producing Maximum Envelopes of Water (MEOWs). This intermediate product

&

Subscribe to
Operational
Forecast

Subscribe to
Research or
Beta Forecast

Retrieve
Sensor Data

Identify Required
and Desired
Improvements

Compare Operational
to Research or Beta
Forecast

Compare Actual
Measures to Forecast

&

&

64

set is used to create new maps showing how much further inland flooding could stretch

under various forcing conditions.

This Use Case is based, in large, on an AP Wire article entitled “Storm surges could

be twice as bad as those caused by Isabel” published April 30, 2006.

For detail descriptions of this use case scenario, please refer to [93].

Figure 4.13. Emergency Management Use Case Scenario

Distribute
Inundation
Report

&

Need to
Update
Evaluation
Plan is
Realized

Execute
SLOSH Model
Through IOOS

Retrieve
SLOSH results
from IOOS

Significant Changes Found

Threshold
Exceed?

Subscribe to Core
Variables in IOOS

Continue Monitoring

Significant
Changes?

Retrieve Digital
Elevation Maps
from IOOS

Retrieve Core
Variables from
IOOS

Select Hurricane
Monte Carlo
Data set

&

&

Update MOMS set
Points in IOOS

Prepare
Inundation
Report

O

MOMS Sends
Emergency
Notifications

MOMS
Monitors Core
Variables in
IOOS

&

No Significant Changes

Threshold
Exceed

Within Thresholds

65

4.6. COMPUTATION INDEPENDENT MODEL (CIM) DEVELOPMENT

A generic Computation Independent Model (CIM) can be created by abstracting

the business process aspect of the operational concept. Here both structure diagrams and

behavior diagrams have been used to specify CIM.

In Figure 4.14, a block definition diagram has been used to identify the domain of

the system. The information was extracted directly from the OV-1. Block is a SysML

stereotype based on UML class. It provides a unifying concept to describe the structure of

an element or a system. Unlike UML class, multiple compartments can be used to describe

the block characteristics in SysML. This is an advantage of SysML over UML. A block

definition diagram describes the relationship between blocks (e.g. composition, association,

generalization). SysML uses different arrow types to indicate this relationship. The

composition relationships and reference relationships are used in Figure 4.14.

In Figure 4.15, an Internal Block Diagram is used to depict the business process for

representing the CIM. This business process was developed by identifying the top level

functional organization partition from a horizontal view [81]. At this point, no details about

the target domain and platform are being taken into consideration. An internal block

Figure 4.14. Block Definition Diagram – GEOSS Domain Breakdown

66

Figure 4.15. Internal Block Diagram – GEOSS High Level Operation

diagram shows the connection between composition parts. Interfaces, which are service or

signal exchanges, are represented by SysML standard ports, either provided type or

required type. Data and item flows between parts are represented by SysML flow port. In

Figure 4.16, a block definition diagram is used to present the interface definitions

corresponding to the standard port in Figure 4.15.

The dynamic behavior of the components identified so far can be specified using

activity diagrams. An activity diagram specifies sequences of actions, the object flow

between actions and conditions for coordinating activities. These actions can be separated

into swim lanes, each of which represents a specific responsible entity, e.g. an

organizational group or a subsystem.

67

Figure 4.16. Block Definition Diagram – Interface Definition

Activity diagrams can be presented in a variety of ways to show different views of

the system behavior. Figure 4.17 is a high level activity diagram showing generic behavior.

It modeled the control-driven serial behavior of the system. Control flows were represented

by solid arrows connecting actions (represented by rounded rectangles). Objects flows

between actions were represented by dashed arrows that connect the object (represented by

rectangle) and the actions (represented by rounded rectangles). Parallel activities start from

Fork Nodes and end at Joint Nodes. For a multi-task system, Figure 4.18 represents the

prototype of a single thread of behavior that the system may carry out in all use cases. For

each specific use case some of the actions may not take place.

Since the GEOSS was modeled as a parallel processing system, the concurrent

behavior should also be modeled in some way. Figure 4.18 did this job. It modeled the I/O

driven continuous parallel behavior of the system. All actions in this diagram share the

same fork node and the same joint node since, and at any specific point of time, all of these

actions may take place concurrently corresponding to a specific point of stage in carrying

out a task.

68

Figure 4.17. GEOSS– High Level Activity Diagram Showing Generic Behavior

69

Figure 4.18. GEOSS – High Level Activity Diagram Showing Concurrent Behavior

70

4.7. PRELIMINARY STRUCTURE DIAGRAMS DEVELOPMENT

In this step, the model transformation principles of MDA approach were applied.

Domain information was iteratively introduced and drove the decomposition from CIM to

PIM and from PIMs to PSMs.

The resulting system architecture was a layered architecture, unlike the typical

federated one. This style of organizing the components standardizes “structure” and

leverages enormous flexibility in “behavior”. In Figure 4.19, a SysML block definition

diagram is used to describe the relationship of the components in GEOSS. The

“generalization” relationship is used to describe different variants of the same base blocks.

As shown in Figure 4.19, the system activities are realized as five distinct yet

highly interconnected layers and a cross-cutting layer according to their roles in data and

information processing. Lower layers provide service to upper layers and upper layers are

logically closer to the user.

Layer 1 is packaged into “user interface” and comprised of web portals (including

websites) that spawn user-customized workflows and various user applications, e.g.

decision-support tools that automatically ingest information products from pre-configured

workflows. These collaborating components interact directly with end users and end-user

tools and provide all the behavior of the system with the supports of the lower layers. The

complexities of the underlying system architecture and the implementation details are

hidden from outside users.

Layer 2 is packaged into “Applications & Tools” and comprised of common

applications and tools that provide services to the user applications. It contains the various

numerical models employed by GEOSS for predicting and analyzing observations. It also

includes data translation and visualization toolkits for pre-processing or post-processing

data and information products. Components within this layer generally interact with one

another in a fashion that is coordinated by the workflow tools. These components are

identified by concerning the needs for interoperation between the applications in the upper

level and the domain specific operations that these applications carry out.

Layer 3 is packaged into “Configuration & Execution Management” and comprised

of “service modules” that would be invoked by GEOSS workflows. They are divided into

the following five groups:

71

Figure 4.19. Block Definition Diagram – GEOSS Structure Breakdown

72

• Application environment configuration components manage the deployment and

configuration of real applications facilitating their executions.

• Application resource management components coordinate the distributed

computational resources to support various applications that run on the system.

• Data management components coordinate input and output of an application

(usually the model input/output). These components coordinates with resource

management components to make sure the data goes to its intended destinations.

• Archive management components establish dynamic and standardized

connections to existing repositories of GEOSS (data/ metadata/ information product).

• Workflow management components provide a coordinated mechanism to manage

resources, data and application tasks.

These components are identified by concerning the interfaces between the

applications and the hardware infrastructure.

Layer 4 is packaged into “Resource Access”. It provides the data transport service

and the standard protocols for accessing the raw services. These components were

identified by concerning the interfaces between local and remote computational resources.

Layer 5 is packaged into “Resources” representing all the physical raw resources

including distributed database and storage, computational hardware and software, sensors,

and data collection centers.

Some cross-cutting components provide functionality that spans multiple layers,

for example, catalog, registration, subscription, security, and monitoring service. These

components are identified and grouped into a package named “Common Services”. In

general, such cross-cutting components provide ancillary services that are needed by the

tasks in Configuration & Execution Management layer. For instance, directory provides

services that enable discovery and location of data and resources throughout the system.

Note that only a preliminary structure diagram can be developed from the

information on hand in this step. The detail specifications of interfaces and flow properties

between interconnecting components need information from the sequence diagrams and

activity diagrams which will be developed after this step.

73

4.8. SEQUENCE DIAGRAMS DEVELOPMENT

The sequence diagrams illustrate the flow of control between actors and systems or

between the parts of a system. The sequence of message passing (over time) between

interacting entities are depicted on the horizontal line between the lifelines under each

interacting object. The messages can be events (input or output signals between system

parts and outside actors), item flows, or operation calls. To manage the complexity,

hierarchical sequence diagrams are used. Appendix A20 through Appendix A22 depict the

top level sequence activities for each of the use case scenario (The Pre-Operational use

case and the Characterize Improvements use case were combined together for

simplification purpose). The reference interactions that further elaborate on the system

behavior are represented by rectangles that span several interacting objects. A sub-level

sequence diagram was created for each of these reference interactions. Each of theses

nesting sequence diagrams might also have nested sequence diagrams. Appendix A23

through Appendix A30 shows these nested sequence diagrams.

4.9. ACTIVITY DIAGRAMS DEVELOPMENT

By examining the input and output message flow of an object in the sequence

diagrams, the operations (actions) that the object needs to conduct in order to generate the

output can be identified.

Again, these sets of activity diagrams were organized in hierarchical structures. For

each of the action shown in high level activity diagrams, there is, if needed, a child activity

diagram that further elaborates on that action, which may contain further child activity

diagrams. Appendix A33 through Appendix A40 shows these child activity diagrams.

4.10. REFINE STRUCTURE DIAGRAMS

Now, enough information is available for refining the structure diagrams. The tasks

involve the definition of blocks in terms of their operations and attributes, the specification

of connections between blocks, and the corresponding interfaces and item flows. When

these are done, the specifications of structure diagrams should be completed. In Figure

4.20, an internal block diagram was used to show the internal structure of GEOSS in terms

of its prosperities (part), connectors, and ports.

74

Figure 4.20. Internal Block Diagram GEOSS Internal Connection

The operational calls identified in sequence diagrams are used to specify standard

ports and the corresponding interfaces. A Standard Port can either be “provided” or

“required”, which represents the services that the owning block provides to its

environment or the services that the owning block expects of its environment, respectively.

The standard port is typed by interface specification. In Figure 4.21, a block definition

diagram was used to define the interface specifications.

75

Figure 4.21. Block Definition Diagram for Interface Definition

The object flows identified in activity diagrams and message exchanges in

sequence diagrams were used to specify the Flow Ports, Flow Specifications and Item

Flows. Flow Ports and the associated Flow Specifications define “what can flow” between

the block and its environment, whereas Item Flows specify “what does flow” in a specific

76

usage context. Flow Ports and Item Flows have been shown in the above internal block

diagram. Flow Specifications are defined using a block definition diagram as shown in

Figure 4.22.

Figure 4.22. Block Definition Diagram for the Flow Specification

The operations identified in activity diagrams and sequence diagrams were grouped

for each of GEOSS’s components to form the block definitions as shown in Appendix A10

through A 14.

The main purpose of the model development in this thesis is to facilitate the

simulation of system behavior, which mainly involves the interaction of the components

(object) within the system. A State machine diagram illustrates the behavior of an

individual object and thus is of little usefulness for this purpose. Therefore, the state

machine diagrams have not been used here.

77

5. EXECUTABLE MODEL DEVELOPMENT

In this section, the SysML model developed in the preceding phase was converted

to an executable model represented by Colored Petri Net (CPN). The conversion was based

on SysML sequences diagrams as discussed in Section 3.4 of this thesis.

5.1. MODEL OVERVIEW

The complete CPN model is hierarchically structured into 15 modules. The module

concept of CPN is achieved through the substitution transitions which have associated

sub-modules providing a more precise and detailed description of the activity represented

by the substitution transition. A sub-module of a substitution transition may contain further

substitution transitions. A CPN module is presented on a CPN page. As discussed earlier,

the conversion method used in this thesis is case based, which means each use case

scenario will have a corresponding representation in the CPN model. Appendix B2 through

Appendix B5 presents the 4 top level modules (page) of the CPN model, each

corresponding to a specific use case scenario and the associated sequence diagram. For

each of the lower level sequence diagrams, there is also a corresponding sub-module

(page). They are shown in Appendix B6 through Appendix B15. Each of these

sub-modules is connected to its corresponding substitution transition through specific

sockets and ports. The hierarchy relationship is depicted in Figure 5.1, which also shows

the corresponding index of these pages in appendix B.

A transition was named by both the operation that the transition represents and the

owning object of that operation. Since an operation is always conducted by an object, this

naming policy clearly shows this relationship. The colors (data types) of tokens that can

reside on a place are determined by the color set of the place. Color sets are similar to data

types in conventional programming languages. Appendix B16 lists the definitions of the

color sets used in this CPN model. These color sets are constructed using the attributes of

the blocks in related block definitions diagrams. The variables and functions used in the

CPN model are also shown in Appendix B16. A state of a CPN is called a marking. It

consists of a number of tokens positioned on the individual places.

78

Figure 5.1. Page Hierarchy of the CPN Model

A new CPN page named “UserInput” was created but had no associated SysML

sequence diagrams. It was created exclusively for simulation purposes. In order to better

simulate the real-word situation, the concurrent execution of multiple tasks, the user is

given the freedom to specify which task(s) and how many times each task(s) are going to

be executed in the simulation. This is done by giving the proper Initial Markings to specific

places in the “UserInput” page. For example, the three places, Five Day Ocean Forecast,

PreOperational Model and Emergency Management, respectively, are given the initial

markings of "Ocean Forecast", "Operational Model Basline Update" and "Emergency

Management". These initial markings are notations that represent the three top level tasks

to be executed by the CPN model. The three places named zCycles1, zCycles2 and

zCycles3, respectively are used to specify how many times each of the above three tasks is

going to be executed with “0” meaning no execution. Note that the Characterize

GEOSSv2n_N4msc-Mon-Obj

CollectObs
Appendix B9

CollectAncillaryInfo(1)
Appendix B10

Prepare Md In
Appendix B11

Computation(3)
Appendix B12

Workflow Mgt(3)
Appendix B13

SltCfgCmpRsc(3)
Appendix B14

DataDiscvAccess(3)
Appendix B15

Appendix B1
UserInput
Appendix B1
UserInput

Appendix B2
FiveDOceanForecast
Appendix B2
FiveDOceanForecast

Appendix B3
EmergencyMgt
Appendix B3
EmergencyMgt

Appendix B5
Improvement
Appendix B5
Improvement

Appendix B7
Resources
Appendix B7
Resources

Appendix B6
ExternalControl
Appendix B6
ExternalControl

Appendix B4
ModelUpdate
Appendix B4
ModelUpdate

Computation(5)
Appendix B12

Workflow Mgt(5)
Appendix B13

SltCfgCmpRsc(5)
Appendix B14

DataDiscvAccess(5)
Appendix B15

Computation(4)
Appendix B12

Workflow Mgt(4)
Appendix B13

SltCfgCmpRsc(4)
Appendix B14

DataDiscvAccess(4)
Appendix B15

CollectAncillaryInfo(2)
Appendix B10

Computation(6)
Appendix B12

Workflow Mgt(6)
Appendix B13

SltCfgCmpRsc(6)
Appendix B14

DataDiscvAccess(6)
Appendix B15

Computation(1)
Appendix B12

Workflow Mgt(1)
Appendix B13

SltCfgCmpRsc(1)
Appendix B14

DataDiscvAccess(1)
Appendix B15

Computation(2)
Appendix B12

Workflow Mgt(2)
Appendix B13

SltCfgCmpRsc(2)
Appendix B14

DataDiscvAccess(2)
Appendix B15

Archive Data
Appendix B8

79

Improvement use case scenario is always executed in combination with the

Pre-Operational use case scenario in this thesis so the exestuation of Characterize

Improvement scenario is designed to be invoked by the Pre-Operational scenario.

5.2. THE ANIMATION GRAPHICAL USER INTERFACE (GUI)

The CPN model can be integrated with the BRITNEY suite to generate a Graphical

User Interface (GUI) during the simulation. The integration is done by adding certain

artifacts to the CPN model in the way defined by the BRITNEY suite. Two types of GUI

supported by the BRITNEY suite have been used in this thesis.

5.2.1. The Interactive Interface. Two type of user interactions are involved in the

use case scenarios modeled in this thesis.

The first is instant feedback. The BRITNEY suite can extract information during

the simulation and give instant feedback. This provides a means to monitor the simulation

by observing the information of interest. For example, during the execution of the

scenarios modeled in this thesis, the system may generate some products, say ocean

forecast, which gives important information about the execution of the simulation

(indicating the completeness of the Five day ocean forecast scenario in this case).

The second is interactive control. The model will ask for and accept user input

during the simulation in order to determine the workflow of the simulation. For example,

during the execution of the scenarios modeled in this thesis, there are some decision points

that need the user to review certain outcomes of the execution and make decisions, which

may have impacts on the workflow.

These user interactions in the execution of the CPN model are achieved by

attaching code segments to interested transitions in the CPN model. These code segments

are executed whenever the corresponding transition occurs in the simulation of the CPN

model. As an example, the transition Distrubite RegForecast -ResAccess (see Figure 5.2)

has an attached code segment displaying a dialog window on the users screen with the text

5 Day Ocean Forecast Output2-Distributed Service Product: Regional Ocean Forecast,

which indicates the completion of one cycle of five day ocean forecast scenario. While the

transition Identify Required and Desired Improvements – AnlsTool (see Figure 5.3) has an

attached code segment that asks for the user’s input using a dialog window. The user is

80

asked to review the performance of the beta model and decide whether there is an

improvement. If the user inputs “y” meaning “yes”, the transition Update to New Mdl –

Models (see Figure 5.4) will be fired after some steps and the operational model used in the

five day ocean forecast will be replaced by the beta model in the later simulation process.

Figure 5.2. The Code Segment on Transition Distrubite RegForecast -ResAccess from
Page FiveDOceanForecast

Figure 5.3. The Code Segment on Transition Identify Required and Desired Improvements

– AnlsTool from Page Improvement

81

Figure 5.4. The Transition Update to New Mdl – Models fom Page FiveDOceanForecast

In addition to the code segments, certain declarations need to be set up in the

“Animation setup” declaration group of the CPN tools as shown in Figure 5.5. The

declarations set up the connection to the BRITNeY suite.

Animation setup

structure dialog = GetString(val name = "Question");

structure msg = ShowString(val name = "Important Message");

Figure 5.5. Declarations under the Animation Setup Declaration Group

http://wiki.daimi.au.dk/cpntools-help/cpn_ml.wiki

82

In this declaration, two new objects, dialog and msg are created in the BRITNeY

suite. Each object is created by a Standard ML functor, which takes as parameter a

descriptive name of the new object. The available methods for each object can be seen by

evaluating open <object-name> as shown Figure 5.6.

Figure 5.6. Evaluating Auxiliary Texts on a CPN Page

5.2.2. Message Sequence Charts (MSCs). The generation of Message Sequence

Charts (MSCs) provides a powerful tool for analyzing the behavior of the system. The

BRITNeY suite supports 5 approaches to drawing MSCs. In this thesis, the more advanced

approach, Monitor Message Sequence Chart, was employed because it allows more control

on the style of the output of MSCs.

This approach of generating MSCs uses the MSC animation plug-in of BRITNeY

with monitor in CPN. The only steps needed on the CPN model are 1) creating a proper

User-Defined Monitor, which monitors interested transitions, and 2)adding MSC object

declarations. Here, the top CPN page of the five day ocean forecast scenario is taken as an

example to show how the transitions of this page are monitored and how the MSC was

created.

http://wiki.daimi.au.dk/britney/monitor_message_sequence_.wiki?cmd=get&anchor=Monitor+Message+Sequence+Charts
http://www.daimi.au.dk/~mw/local/tincpn/adoc/dk/klafbang/tincpn/animation/plugin/MSC.html

83

The declaration of the MSC object specifies the name of the MSC that events will

be drawn on during the simulation (see Figure 5.7). It is given a name so the BRITNeY

Suite can recognize it.

Figure 5.7. A Screenshot on Declarations of the MSC Object

In order to create the monitor, the User-Defined Monitor tool of CPN should be

applied to each of the transitions that are going to be monitored. The selected transitions

are shown in the Nodes ordered by pages group under the CPN monitor index (see Figure

5.8).

There are five parts in the monitor specification.

1. Initialization function (see Figure 5.9).

These specifications initialize the MSC with the interacting objects that are going

to be shown on the top of the MSC (analogues to the SysML sequence diagram). The order

specified here determines the order of the objects shown in the MSC.

84

Figure 5.8. A Screenshot after Applying User-Defined Monitor Tool to Related
Transitions

fun init (FiveDOceanForecast'PostProcess_1_mark : DataLbxTpxValxTpMxServID ms,

 FiveDOceanForecast'ResAccess1_1_mark : DataLbxTpxValxTpMxServID ms,

 FiveDOceanForecast'ResAccess2_1_mark : DataLbxTpxValxTpMxServID ms,

 FiveDOceanForecast'ResAccess3_1_mark : DataLbxTpxValxTpMxServID ms) =

 (msc5dOF.addProcess("DesktopApp");

 msc5dOF.addProcess("ObsSys");

 msc5dOF.addProcess("WebsitePortals");

 msc5dOF.addProcess("AnlsTool");

 msc5dOF.addProcess("ResAccess");

 msc5dOF.addProcess("Database");

 msc5dOF.addProcess("Models");

 msc5dOF.addProcess("PreProcess");

 msc5dOF.addProcess("PostProcess")

)

Figure 5.9. Specifications for Initialization Function

85

2. Prediction function (see Figure 5.10).

The predication functions will evaluate to true when one of the monitored

transitions fires with some binding. The code is auto-generated.

fun pred (bindelem,

 FiveDOceanForecast'PostProcess_1_mark : DataLbxTpxValxTpMxServID ms,

 FiveDOceanForecast'ResAccess1_1_mark : DataLbxTpxValxTpMxServID ms,

 FiveDOceanForecast'ResAccess2_1_mark : DataLbxTpxValxTpMxServID ms,

 FiveDOceanForecast'ResAccess3_1_mark : DataLbxTpxValxTpMxServID ms) =

let

 fun predBindElem (FiveDOceanForecast'Disseminate_Model_Input (1,

 {Id,Lb,Tp,Tp2,TpM,US,vl})) = true

 | predBindElem (FiveDOceanForecast'Distribute_Observations (1,

 {Id,Lb,Tp,TpM,US,vl})) = true

 | predBindElem (FiveDOceanForecast'Distrubite_RegForecast (1,

 {Id,Lb,Tp,TpM,US,vl})) = true

 | predBindElem (FiveDOceanForecast'Distrubute_NatForecast (1,

 {Id,Lb,Tp,TpM,US,vl})) = true

 | predBindElem (FiveDOceanForecast'Interpret_Services (1,

 {Id,US})) = true

 | predBindElem (FiveDOceanForecast'Publish_Forecast (1,

 {ApRqs,Id,Lb,Tp,TpM,Tps,US,vl})) = true

 | predBindElem (FiveDOceanForecast'QA (1,

 {Id,Lb,Tp,Tp2,TpM,US,vl})) = true

 | predBindElem (FiveDOceanForecast'Receive_Mdl (1,

 {ApRqs,Id,InRqs,Tps,US})) = true

 | predBindElem (FiveDOceanForecast'Sorting (1,

Figure 5.10. Specifications for Prediction Function

86

 {ApRqs,Id,Lb,Tp,TpM,Tps,US,vl})) = true

 | predBindElem (FiveDOceanForecast'Threshold_analysis (1,

 {ApRqs,Id,Lb,TH,Tp,TpM,Tps,US,vl})) = true

 | predBindElem (FiveDOceanForecast'Transmit_Anc_Info (1,

 {Id,Lb,Tp,TpM,US,vl})) = true

 | predBindElem (FiveDOceanForecast'Update_to_New_Mdl (1,

 {Tps,Tps2})) = true

 | predBindElem _ = false

in

 predBindElem bindelem

end

Figure 5.10. Specifications for Prediction Function (cont.)

3. Observation function (see Figure 5.11).

The observation function extracts the information of interest from the binding

element and transforms it so it can be used in the action function. The information of

interest is a triple (the sender object, the receiver object, and the message sent from sender

to receiver).

fun obs (bindelem,

 FiveDOceanForecast'PostProcess_1_mark : DataLbxTpxValxTpMxServID ms,

 FiveDOceanForecast'ResAccess1_1_mark : DataLbxTpxValxTpMxServID ms,

 FiveDOceanForecast'ResAccess2_1_mark : DataLbxTpxValxTpMxServID ms,

 FiveDOceanForecast'ResAccess3_1_mark : DataLbxTpxValxTpMxServID ms) =

Let

Figure 5.11. Specifications for Observation Function

87

 fun obsBindElem (FiveDOceanForecast'Disseminate_Model_Input (1,

 {Id,Lb,Tp,Tp2,TpM,US,vl})) =

 [("PreProcess","ResAccess","PrepareMdlInput

"),("ResAccess","Models","MdelInput

"^DataLbxTpxValxTpMxServID.mkstr(("",Tp2,vl,Tp2^"MetaDt"),(US,Id))),

 ("ResAccess","Models","MdelInput

"^DataLbxTpxValxTpMxServID.mkstr(("",Tp2,vl,Tp2^"MetaDt"),(US,Id))),

 ("ResAccess","Database","MdelInput

"^DataLbxTpxValxTpMxServID.mkstr(("",Tp2,vl,Tp2^"MetaDt"),(US,Id))),

 ("ResAccess","Models","MdelInput

"^DataLbxTpxValxTpMxServID.mkstr(("",Tp2,vl,Tp2^"MetaDt"),(US,Id)))]

 | obsBindElem (FiveDOceanForecast'Distribute_Observations (1,

 {Id,Lb,Tp,TpM,US,vl})) =

 [("ObsSys","ResAccess","CollectObservations "),("ResAccess","PreProcess","Obs

"^DataLbxTpxValxTpMxServID.mkstr((Lb,Tp,vl,TpM),(US,Id))),

 ("ResAccess","Database","Obs

"^DataLbxTpxValxTpMxServID.mkstr((Lb,Tp,vl,TpM),(US,Id))),

 ("ResAccess","AnlsTool","Obs

"^DataLbxTpxValxTpMxServID.mkstr((Lb,Tp,vl,TpM),(US,Id))),

 ("ResAccess","WebsitePortals","Obs

"^DataLbxTpxValxTpMxServID.mkstr((Lb,Tp,vl,TpM),(US,Id)))]

 | obsBindElem (FiveDOceanForecast'Distrubite_RegForecast (1,

 {Id,Lb,Tp,TpM,US,vl})) =

 [("ResAccess","Database","DistrubiteRegF

"^DataLbxTpxValxTpMxServID.mkstr(("Distributed",Tp,vl,TpM),(US,Id)))]

 | obsBindElem (FiveDOceanForecast'Distrubute_NatForecast (1,

 {Id,Lb,Tp,TpM,US,vl})) =

 [("ResAccess","Database","DistrubiteNatF

"^DataLbxTpxValxTpMxServID.mkstr(("Distributed",Tp,vl,TpM),(US,Id)))]

 | obsBindElem (FiveDOceanForecast'Interpret_Services (1, {Id,US})) =

Figure 5.11. Specifications for Observation Function (cont.)

88

 [("DesktopApp","ObsSys","RequireObs"^AppxInputxServ.mkstr([],["Ocean

Obs-"],(US,Id))),

 ("DesktopApp","WebsitePortals","RequireAncInfo"^AppxInputxServ.mkstr([],

["Bathymetric data-","climatological data-","Historical sensor data-","Ocean

Forecast Product-"],(US,Id))),

 ("DesktopApp","PreProcess","PreProcessReq

"^AppxInputxServ.mkstr(["Consolidate-","translate-"],["ObsPrd-Ocean

Obs-","Bathymetric data-","climatological data-","Historical sensor

data-","Ocean Forecast Product-"],(US,Id))),

 ("DesktopApp","Models","ModelsReq"^AppxInputxServ.mkstr(["Ocean Forecast

model-"],["Processed Model Input for-Ocean Forecast model-"],(US,Id))),

 ("DesktopApp","AnlsTool","AnlsToolReq"^AppxInputxServ.mkstr

(["SortForecast"],["Regional Ocean Forecast-","National Ocean

Forecast-"],(US,Id))),

 ("DesktopApp","AnlsTool","AnlsToolReq"^AppxInputxServ.mkstr(["Threshold

analysis-"],[],(US,Id))),

 ("DesktopApp","DesktopApp","ServicesReq"^AppxInputxServ.mkstr(["Publish

Forecast"],["Ocean Forecast Product-"],(US,Id)))]

 | obsBindElem (FiveDOceanForecast'Publish_Forecast (1,

 {ApRqs,Id,Lb,Tp,TpM,Tps,US,vl})) =

 [("DesktopApp","AnlsTool","PubForecast

"^DataLbxTpxValxTpMxServID.mkstr(("",hd Tps,vl,(hd

Tps)^"MetaDt"),(US,Id))),

 ("DesktopApp","AnlsTool","PubForecast

"^DataLbxTpxValxTpMxServID.mkstr(("",hd Tps,vl,(hd

Tps)^"MetaDt"),(US,Id))),

 ("DesktopApp","WebsitePortals","PubForecast

"^DataLbxTpxValxTpMxServID.mkstr(("",hd Tps,vl,(hd

Tps)^"MetaDt"),(US,Id))),

 ("DesktopApp","Database","PubForecast

Figure 5.11. Specifications for Observation Function (cont.)

89

 "^DataLbxTpxValxTpMxServID.mkstr(("",hd Tps,vl,(hd

Tps)^"MetaDt"),(US,Id)))]

 | obsBindElem (FiveDOceanForecast'QA (1,

 {Id,Lb,Tp,Tp2,TpM,US,vl})) =

 [("Models","ResAccess","RunModel"),("ResAccess","PostProcess",

"Transmit_Mdl_Output"),("PostProcess","ResAccess","QAQC

Data"),("ResAccess","DesktopApp","QAQC

"^DataLbxTpxValxTpMxServID.mkstr(("",Tp2,vl,Tp2^"MetaDt"),(US,Id))),

 ("ResAccess","Database","QAQC

"^DataLbxTpxValxTpMxServID.mkstr(("",Tp2,vl,Tp2^"MetaDt"),(US,Id)))]

 | obsBindElem (FiveDOceanForecast'Receive_Mdl (1,

 {ApRqs,Id,InRqs,Tps,US})) =

 [("Models","","ModelsReq "^AppxInputxServ.mkstr(if Tps<>[]

then (Tps,InRqs,(US,Id))

else (ApRqs,InRqs,(US,Id))))]

 | obsBindElem (FiveDOceanForecast'Sorting (1,

 {ApRqs,Id,Lb,Tp,TpM,Tps,US,vl})) =

 [("AnlsTool","ResAccess","Sorting "^DataLbxTpxValxTpMxServID.mkstr((Lb,hd

Tps,vl,(hd Tps)^"MetaDt"),(US,Id))),

 ("AnlsTool","ResAccess","Sorting "^DataLbxTpxValxTpMxServID.mkstr((Lb,

(List.nth(Tps,1)),vl,(List.nth(Tps,1))^"MetaDt"),(US,Id)))]

 | obsBindElem (FiveDOceanForecast'Threshold_analysis (1,

 {ApRqs,Id,Lb,TH,Tp,TpM,Tps,US,vl})) =

 [("AnlsTool","DesktopApp","ThresholdAnaResult "^TypexServID.mkstr(if

vl>=TH

 then ("Ocean Alarm",(US,Id))

 else ("",(US,Id))))]

 | obsBindElem (FiveDOceanForecast'Transmit_Anc_Info (1,

 [("WebsitePortals","ResAccess","CollectAncInfo

"),("ResAccess","PreProcess","Anc_Info

Figure 5.11. Specifications for Observation Function (cont.)

90

 "^DataLbxTpxValxTpMxServID.mkstr((Lb,Tp,vl,TpM),(US,Id)))]

 {Id,Lb,Tp,TpM,US,vl})) =

 | obsBindElem (FiveDOceanForecast'Update_to_New_Mdl (1, {Tps,Tps2})) =

 [("WebsitePortals","Models","Update_to_New_Md "^Types.mkstr(Tps))]

 | obsBindElem _ = []

in

 obsBindElem bindelem

end

Figure 5.11. Specifications for Observation Function (cont.)

4. Action function (see Figure 5.12).

The action function processes the observed data according to the description above.

fun action [] = ()

 | action ((process, "", msg)::rest) =

 (msc5dOF.addInternalEvent(process,msg);

 action rest)

 | action ((snd,rcv,msg)::rest) =

 (msc5dOF.addEvent(snd,rcv,msg);

 action rest)

Figure 5.12. Specifications for Action Function

5. Stop Function (see Figure 5.13).

The stop function could be used to add a line, which indicates the simulation has

stopped.

http://www.daimi.au.dk/~mw/local/tincpn/adoc/dk/klafbang/tincpn/animation/plugin/MSC.html#addLine%28java.lang.String%29

91

fun stop (FiveDOceanForecast'PostProcess_1_mark : DataLbxTpxValxTpMxServID ms,

 FiveDOceanForecast'ResAccess1_1_mark : DataLbxTpxValxTpMxServID ms,

 FiveDOceanForecast'ResAccess2_1_mark : DataLbxTpxValxTpMxServID ms,

 FiveDOceanForecast'ResAccess3_1_mark : DataLbxTpxValxTpMxServID ms)

=()

Figure 5.13. Specifications for Stop Function

5.3. SOME EXECUTION SPECIFIC CONCERNS

The purpose of converting the SysML model into the CPN model is to execute the

model. In order to facilitate the simulation, there are some execution-specific concerns that

need to be addressed. The above mentioned animation graphical user interface, and the

addition of “UserInput” page are examples. In many of the approaches used to address

these concerns, some extra CPN constructs, which were not converted from the SysML

model, were added to the CPN model. Some of the execution specific concerns considered

in this thesis are summarized below:

1. Stop point.

Although in the real world the modeled scenarios of GEOSS are continuously

running, the simulation has to be stopped after the desired tasks are completed so that the

analysis can be followed. This is achived by adding Breakpoint monitors in the CPN model.

A Breakpoint monitor can stop simulations when certain conditions are fulfilled. Three

kinds of breakpoint monitors are available in the CPN tools. They are “Place contents

monitors”, “Transition enabled monitors” and “Generic breakpoint monitors”. The place

contents monitors were used in the CPN model of this thesis.

A Place Contents monitor will check the number of tokens on a place to determine

if a simulation should be stopped. The simulation can be stopped either when the place is

empty or when the place is not empty. To create a Place contents monitor, the user can

apply the Create place contents monitor tool to the place to be monitored. The option under

the Type index entry of the monitor will determine when the simulation should stop (see

Figure 5.14).

92

Figure 5.14. A Screenshot on the Place Contents Monitor Index

For the convenience of monitoring places, some places and transitions were added

to the original CPN model that could generate the “end signals”. For example, when each

of the three scenarios (the Pre-operational use case and the Characterize Improvements are

combined together) in this CPN model completes its assigned task(s), a token will be added

to the corresponding place on the UserInput page that is designed to receive the end signal

from that scenario. Only when all of these three places get their tokens, can it be concluded

that the simulation is completed. The End Simulation transition on the UserInput page does

this job since it needs tokens from the three places to fire. The fire of this transition will

send a token to the place zSimEndsig, which is the place being monitored. When this place

is not empty the end condition is satisfied and the CPN Tool will stop the simulation.

2. Uniform data structure for information identification.

The message exchanges between components of the system should be written in a

format, structure and vocabulary that is understood by both parties. In addition, the

message should be uniquely identifiable. For example, in this CPN model, some of the

transitions may process data coming from different task (scenario) sources or different

cycles of the same task. There must be a mechanism to discriminate this data. Therefore, a

uniform data structure is applied in this model. All related data was post-fixed by the name

of the source task and the number of cycles of that task, whereas a short descriptive

notation was added to the front of a datum when it goes through a transition and is

processed by the activity represented by that transition. This change signifies that the

datum has been processed into a different form. For example, suppose a token takes the

value of Data(“Ocean Forecast”1), when it caused the fire of the transition Archive data,

93

the token value in the output place will be ArchivedData(“Ocean Forecast”1). This event

can be interpreted as the specific data from the five day ocean forecast scenario is archived.

3. Simulation monitor.

In order to record some results of a simulation, a number of report places can be

added. Such places gather historical information about the simulation without influencing

the simulation. The place named “zTemp” in page FiveDOceanForecast of the CPN model

is an example. It records what has been processed by the post-processing operation in the

five day ocean forecast scenario. Such places are colored pink in the model of this thesis.

4. Model resource constraints.

Many of the numerical models used in GEOSS need intense computational power,

which often involves grid computing. Multiple tasks running concurrently on the net may

compete for resources. This gives rise to the resource constraint problems. This CPN

model tried to model a simple case of this concern. As can be seen in the Appendix B7,

there is a fusion place named Computation resources, which was not connected to any

transition in this page. However, it was connected to all SltCfgCmpRsc pages (represents

Select and Configure Computational resources module) through fusion places. Fusion

places are sets of places that anything happening to each place in the set also happens to all

the other places in the set. The Computation resources fusion place mentioned above was

typed by an enumerated color set with only one instance “e”. Every operation that involves

computation needs to get computational resources (“e”) before it can proceed. Accordingly,

the Resource Scheduling transition on every SltCfgCmpRsc page needs to get a token from

this place so that a computing task can be performed. When the computing task is

completed, a token can be placed back to this place.

When there are more concurrently running computing tasks than the available

tokens on the Computational resources place, the computing tasks that requests resources

latter will be suspended until other computational resource(s) are released.

5. Other additional transitions and places.

Some other transitions and places may also be added to the original CPN model for

simulation control purposes. For example, Figure 5.15 shows a construct that was used to

continually generate data which signify the sensor measures. This construct was created

exclusively for generating signals that drive the execution of the system. There are also

94

some constructs added to achieve certain functions such as the “Anti-places/limit places”,

“Queues/stacks”, and “Inhibitor arcs” [71].

Figure 5.15. A Screenshot on a CPN Construct for Generating Tokens

95

6. SIMULATION

6.1. SET UP SIMULATION

Since the CPN model was integrated with the BRITNEY suite, the simulation can

be run directly from the BRITNeY Suite. BRITNeY should run on the same machine as the

CPN Tools, otherwise additional Java functors need to be set up. Following are the steps to

run the simulation:

1. Start BRITNeY Suite;

2. Load the CPN model (The BRITNeY needs to be run before the CPN tool is

loaded);

3. Set the desired cycles to be run for each use case scenario by giving the proper

initial markings to the zCycle place corresponding to the use case scenario on the

UserInput page, with “0” representing no execution. Other position integers represent the

number of cycles wanted;

4. Apply the Play tool of the BRITNeY Suite to the Simulator console window.

After the CPN model is loaded, there will be a number of windows opened, each of

which corresponds to a declaration of the MSC object in the CPN Tool. The name of the

window is the same as that defined in the declaration. The objects specified in the

initialization functions are shown in rounded rectangles on the top of the windows with no

connections between the objects yet. Along with the execution of the simulation, message

lines are drawn between interacting objects in a synchronic manner. This gives a way to

observe the simulation in a real-time and intuitive way. In certain specified stages of the

simulation, a dialog window will pop up; either a message window showing that the event

associated with the fire of certain transitions happened or an input window that requires

input from the user in order to direct the workflow. When such a window appears, click OK

(for message window), or give proper input (for input window) to dismiss the window and

let the simulation continue.

Those use case scenarios can be executed individuality (in any number of cycles) or

in any of their combinations (in terms of different scenarios and number of cycles for each

scenario). This allows examining the correctness of the modeled system when it works

under each single use scenario or under a multi-task parallel processing environment.

96

When executed in combination, the individual use case can communicate with each other

so these uses cases are integrated in the model. If executed individually, the five day ocean

forecast use case must run at least once before the pre-operational use case scenario can run

since the latter needs the data produced by the former.

6.2. SIMULATION RESULTS

Appendix C1 through C9 presents a set of MSCs generated based on a simulation.

This simulation involved the execution of two cycles of the five day ocean forecast and one

cycle of other use case scenarios. Since the ocean forecast is a repeated activity it was run

twice.

The message lines were added to the chart in a time sequence along the vertical

direction. The information shown on a message line is the token value that was inputted to

or outputted from a transition. The small solid square at the vertical line represents an

internal event process.

The MSCs clearly show the behavior that the system generated during a simulation.

They allow close examination of the dynamic behavior since the behavior is captured and

presented in a static view.

The MSC can have a message line (or square) for each step. This means the MSC

contains all the information in the simulation report. However, it is more common to only

record a few key activities. This gives a condensed overview of the interest activities and

thus makes it faster to interpret the simulation results and easier to observe whether the

CPN model behaves as expected. This is why the Monitor Message Sequence Charts rather

than other types were used in this thesis.

http://wiki.daimi.au.dk/britney/monitor_message_sequence_.wiki?cmd=get&anchor=Monitor+Message+Sequence+Charts

97

7. ARCHITECTURE EVALUATION AND ANALYSIS

The tasks in this step include behavior and performance analysis, functionality

verification and System configuration refinement. In [40], some guidelines for architecture

evaluation using the CPN are presented. Since the CPN model is an executable model, the

architecture evaluation can be done by both simulation and analysis. In using the

simulation, the Message Sequence Chart (MSC) was used in this thesis and for the analysis,

the state space report was used.

7.1. SIMULATION BASED ANALYSIS

The simulation results can be used to help the analysis of the architecture in two

aspects: 1) the behavior and functionality verification/validation, and 2) the specification

completeness checking.

7.1.1. Behavior and Functionality Verification/Validation. The architecture

model has established a standard or reference against which an executable model of the

system’s architecture can be compared. The methodology for behavior analysis and

functionality verification/validation has been discussed in Section 3.6.1. Here, an example

is presented to illustrate how to compare the input SysML sequence diagrams in the

architecture model and the output Message Sequence Charts (MSCs) after the simulation.

The example presented involves the activity of collecting observation data.

Appendix A25 shows the sequence diagram. Appendix C5 shows the corresponding MSC

generated based on a simulation. The interacting objects are shown on the top of both

charts. A close examination reveals that both graphs share the same objects however the

MSC has more objects. The extra objects are beyond the boundary of the observation

system so they are not shown in the sequence diagram. The bold solid line on the left of the

sequence diagram represents the system boundary. The interaction of system to its

environment is through this boundary. Since the purpose of the MSC is to show the

interaction occurring during the simulation, there is little sense to discriminate the system

boundary. The extra objects can be viewed as collectively forming part of the environment

(boundary) of the observation system, and thus the two charts are consistent.

98

The verification of the behavior of the modeled system can be done by comparing

the message lines in time sequences. From the comparison, it could be seen that the activity

sequences, as reflected by the message lines, on both charts were exactly the same although

the wording of the message may be a little different. As discussed earlier, the message lines

in sequence diagrams can represent either message (item) exchanges or operation calls,

while in a MSC, the message lines represent both. However, they are closely related to

each other.

Note that two operations, the create metadata and the event, change & pattern

detection, in the sequence diagram are molded as a parallel activity. However, in a

simulation, there must be one operation first and the other later since the fire of a transition

takes no time. Therefore, the two operations are shown as sequence activities on the MSC

but this did not conflict with the sequence diagram.

After close examination and analysis, it can be concluded that the behavior as

modeled matched the desired behavior in the case of collecting observations, and thus the

observation system module can be verified and validated.

7.1.2. Specification Completeness Checking. The methodology for checking

 missing specifications has been discussed in Section 3.6.2. An example of identifying

missing requirements is shown here. As introduced in Section 5.3, a construct was added to

the CPN model to simulate the resource constraints (the computational resources). The

computation resources place was initially given six tokens. The simulation was running

normally until the computational resources were gradually reduced to “1” when the five

day ocean forecast scenario and the pre-operational scenario (including the associated

Characterize Improvement scenario) stopped producing the desired outcome. A closer

examination reveals that the problem was caused by a lack of synchronous mechanisms

between data management and resource management. The run model operation of the five

day ocean forecast use case was assigned the computational resources but could not

complete the operation because it had not received the required input. The operation could

not get the input because the input processing task could not get the computational

resources (occupied by the run model task) and thus was unable to serve the data. This

dilemma will prevent both use cases from producing further outcomes. This result suggests

that, under the resource constraints, there must be a mechanism to solve the

99

synchronization of data and computational resource. Some possible solutions are: using the

workflow management to synchronize data and computational resources; using the

combination of workflow management, monitor and resource management to temporarily

release the computational resources that are assigned but have not been used and reassign

the resources when there are spare resources; letting the resource management allow itself

to release the resource after a certain waiting time and reassign the resources after a certain

delay; or many more other approaches. One of these functionalities must be specified in the

requirements and be fulfilled by the model in later design cycles. However, modeling the

detailed functions of these components was beyond the scope of this thesis so the model

has not been modified and the executable model will be run with enough resources.

7.2. STATE SPACE ANALYSIS

A State Space Report provides some key information about the behavior of the

CPN. However, due to the complexity of this CPN model and the limitation of processing

power and memory restrictions of the platform, a full state space report can not be

generated. The state space report shown in this thesis is a partially generated report, which

was obtained by setting the time criteria to stop calculating state space at 10 hours. The

state space report has four parts.

The first part of the state space report is shown in Figure 7.1. It contains the

statistical information about the size of the state space. The state space has 129807 nodes

and 491863 arcs. The information of the SCC-graph (Strongly Connected Components)

[29] also shows that there are 129433 strongly connected components and 491037 arcs that

start in one component and end in another. A strongly connected component is a maximal

sub-graph in which it is possible to find a path from any node to another. The strongly

connected components are less than the state space nodes in Figure 7.1. It means there are

infinite occurrence sequences. As discussed earlier, in order to simulate the sensor

collection, which is continually sending observations, a construct is used that keeps the

Collect Sensor Obs transition continually firing and thus continuously generating tokens

that represent sensor readings. There are also other similar transitions in the CPN model.

Such transitions will cause infinite occurrences. This is the reason a stop point monitor was

applied as discussed in Section 5.3.

100

 Statistics

 State Space
 Nodes: 129807
 Arcs: 491863
 Secs: 36001
 Status: Partial

 Scc Graph
 Nodes: 129433
 Arcs: 491037
 Secs: 56

Figure 7.1. State Space Report-Part 1

A partial section of the second part of the state space report is shown in Figure 7.2.

The upper part shows the upper and lower integer bounds, which is the maximal and

minimal number of tokens which the individual places may have. The middle and lower

part show multi-set bounds. The upper multi-set bound of a place is the smallest multi-set

which is larger than all reachable markings of the place. The lower multi-set bound is the

largest multi-set which is smaller than all reachable markings of the place.

Boundedness Properties
--

 Best Integer Bounds
 Upper Lower
 CollectAncillaryInfo'ArchiveMgt 1
 1 1
 CollectAncillaryInfo'Catalog 1
 4 0
 CollectAncillaryInfo'Catalog1 1
 1 1
 CollectObs'ObsSys2 1 1 0
 CollectObs'PreProcess 1 1 0
 CollectObs'PreProcess1 1
 1 0
 ….. …..

Figure 7.2. State Space Report-Part 2

101

Best Upper Multi-set Bounds
--
 CollectAncillaryInfo'ArchiveMgt 1
 1`([],("",0))++
1`(["Bathymetric data-","climatological data-","Historical sensor
data-","Ocean Forecast Product-"],("Ocean Forecast",1))
 CollectAncillaryInfo'ArchiveMgt 2
 1`([],("",0))++
1`("Look for-","Historical sensor data-",("Ocean Forecast",1))++
1`("Look for-","Ocean Forecast Product-",("Ocean Forecast",1))++
1`("Look for-","climatological data-",("Ocean Forecast",1))
 CollectAncillaryInfo'Catalog1 1
 1`[]
 CollectAncillaryInfo'Catalog1 2
 1`[]

 ……….
 Best Lower Multi-set Bounds
--
 CollectAncillaryInfo'ArchiveMgt 1
 empty
 CollectAncillaryInfo'Catalog 1
 empty
 CollectAncillaryInfo'Database1 1
 empty
 CollectAncillaryInfo'WebsitePortals2 2
 empty
 Computation'Computation_Resources2 1

 ……….

Figure 7.2. State Space Report-Part 2 (cont.)

The third part of the state space report is shown in Figure 7.3. This part provides

information about home and liveness. A home marking is a marking which is reachable

from all reachable markings, i.e., a marking which can always be reached irrespective of

what has happened up to now. A dead marking is a marking with no enabled transitions. A

dead transition is a transition that has not been enabled in a reachable marking. When there

are dead markings there can not be any live transitions. Since the model contains

transitions that infinitely generate tokens which will drive the system state to be

continuously changing, the initial marking can not be home marking. Since this is a

partially generated state space report, information about the dead marking and dead

transition is not correct. For example, Figure 7.3 shows the Archive_Data transition on

102

page ArchiveData as a dead transition but after the execution of the CPN model, there are

many tokens generated on the output places of this transition. It indicates that this transition

must have been enabled many times and thus is not a dead transition.

The fourth part of the state space report is shown in Figure 7.4. This part provides

information about the fairness properties, i.e. how often the individual transitions occur.

 Home Properties
--

 Home Markings
 Initial Marking is not a home marking

 Liveness Properties
--

 Dead Markings
 79576 [99999,99998,99997,99996,99995,...]

 Dead Transition Instances
 ArchiveData'Archive_Data 1
 ArchiveData'Archive_Management 1
 ArchiveData'Data_Transport 1

 ……….

Figure 7.3. State Space Report-Part 3

 Live Transition Instances
 None

 Fairness Properties
--
 ArchiveData'Receive_Data 1
 Fair
 ArchiveData'Register_in_Catalog 1
 Fair
 CollectAncillaryInfo'Accept_Task 1
 No Fairness
 CollectAncillaryInfo'Access_Dt 1
 Fair

 ……….

Figure 7.4. State Space Report-Part 4

103

7.3. SYSTEM REFINEMENTS

The proposed system was incrementally developed based on four use case

scenarios. For each of them, there was an iterative process of architecture model

development, simulation, and verification/validation. The former developed models were

then used as a starting point when incorporating new use case scenarios. The modification

of the system architecture occurred at both the process of developing executable models

and the process of simulating the executable models thus built. In order to effectively

modify the system architecture, the modification should follow some structured rules or

methods. The methods presented in [42] give some insight into this modification. It should

also be mentioned that the use of ARTiSAN studio greatly facilitated this modification and

the incremental development process since any change to the model element is

automatically propagated across all diagrams and textual descriptions, ensuring

architectural consistency and completeness.

As an example, the “Configuration & Execution” layer in the model developed for

this thesis did not have a “Workflow management” component in the first version of the

architecture design. During the simulation, it was found that the “computation” operation

could not perform batch processing or assimilate multiple inputs, which are desired

features. Upon closer examination, it was revealed that this resulted from the lack of a

mechanism that coordinates batch tasks and multiple inputs. Therefore, a “Workflow

management” component was defined and added to the architecture to address this

problem.

104

8. CONCLUSIONS AND FUTURE WORK

8.1. CONCLUSIONS

This research proposed an executable system architecting framework based on

SysML-CPN transformation. Its feasibility and advantages have been demonstrated using

an information system. This methodology should be able to generalize and be applied to a

broad range of discrete-event driven, concurrent system designs, which may involve

hardware, software, data, personnel, procedures and facilities. The contribution of this

research is having developed a set of methodologies to help to achieve this framework.

A formal procedure has been developed to convert a SysML model into a CPN

model. The conversion is based on SysML sequence diagrams and also needs information

from other SysML diagrams. A well-defined mapping between various SysML artifacts

and CPN elements has been established. Concordances between various SysML artifacts

are suggested. This procedure proved to be successful by the model developed in this

thesis.

Translating SysML-based specifications into CPNs is not difficult and permits the

formal verification of SysML-based designs. A CPN model is developed according to the

above procedure. This CPN model is capable of demonstrating the behavior of a

distributed, multi-task, concurrent-processing system. Several use case scenarios have

been employed to test this model. These use case scenarios can be executed individually or

in any of their combinations. This allows for the examination of the correctness of the

modeled system when it works under each single use case scenario or under a multi-task

parallel processing environment. When executed in combination, the individual use case

scenario can communicate with each other so these uses case are integrated in the model. It

was demonstrated that the simulation based analysis can be used to verify and validate the

behavior and functionality of the system to be built. The architecture of the system can be

modified based on the simulation results. The executable model can also reveal the missing

specification, and missing requirements in the architecture model, and thus provides a

basis for system design refinement.

The simulation is augmented by incorporating Graphic User Interface (GUI)

animation tools. Interactive control during execution enables dynamic decisions to be

105

simulated, better representing the real-world scenarios. Real-time graphic feedback greatly

facilitates the monitor of model execution. The Message Sequence Chart (MSC) provides

an effective way to analyze and verify the model being built.

This research has also demonstrated the use of SysML to model network centric

systems. In order to address the challenges of such systems, including the management of

distributed resources, the coordination among multi tasks, the integration of

multi-platforms and diversified user interfaces, the continuous evolving of system

components, and etc., the Model Driven Architecture (MDA) approach is advocated. This

research shows that the MDA approach is ideal for addressing the above challenges. MDA

designs portability, interoperability and extensibility into the system at the model level. A

Model developed in this way is resilient to change and can support system evolvement very

well.

A SysML based process for developing architecture representation following the

MDA paradigm is developed. This process demonstrates the feasibility of developing

architecture descriptions based on the MDA paradigm in the systems engineering context.

The process is illustrated on a specific example of an information system. It is reasonable

to believe that this process can be generalized. In this process, SysML demonstrates

advantages over UML in requirement management and behavior modeling. Finally, the

process of modeling, simulating and performing analysis gives a dramatically improved

understanding of the modeled system.

8.2. FUTURE WORK

In this thesis, the modeling activities emphasize the functional aspect of the system.

The SysML demonstrates its capability in this respect. There are some systems that the

nonfunctional performances are so important that they must be modeled, tested and

verified. However, some of the nonfunctional performances may be emergent behavior,

which poses great challenges on both modeling and simulation. The simulation of such

systems is more important for the purpose of verifying the nonfunctional performances.

Therefore, the next step in this research can be adding the nonfunctional concerns to the

system modeling and simulation tasks. The nonfunctional concerns can be time constraint,

resource constraint, optimization under time/resource constraint or other criteria, dynamic

106

scheduling or scheduling under uncertainty, and system security concerns. These

nonfunctional concerns are often coupled together. For example, under the resource

constraints, multiple tasks may compete for resources. This can give rise to a couple of

other concerns, such as task scheduling and priority of tasks. In the meantime, subjected to

the availability of resources, the time needed for processing a task would be affected (to

model this effect, a timed CPN must be employed). In addition, nonfunctional

requirements can also impose constraints on the functional behavior. For example, security

requirements in GEOSS increase substantially with sharing of physical resources for

storage or computing, especially when the resources are distributed across multiple

institutions. Introducing the security requirements into the system development may

require the system to have components that carry out the registration, subscription,

authorization and authentication services. In the meantime, the access ability of data and

computational resources would need to be controlled and prioritized. In order to simulate

the nonfunctional performance, some mathematic methods or computation intelligence

tools might be integrated into the executable model, e.g. to solve the dynamic scheduling in

stochastic environment.

In this thesis, only one type of system architecture has been developed and

subsequently validated. In the next step, several different designs can be developed and

analyzed so that the best design alternative can be chosen based on simulations.

It also can be tried to model other systems. The GEOSS is driven by single input,

the observations, and multiple service (output) requests, the end-user applications within

the identified social-economy benefit areas. The interaction between system components

involves mainly information exchanges. For such systems, few unexpected things can

happen in the simulation. In order to fully benefit from the model-based simulation, a

system that has multiple inputs and multiple rules governing the cooperation of the system

components is recommended. A good candidate is the Intelligent Transportation System

(ITS). Unlike GEOSS, ITS is driven by multiple inputs, e.g. traffic in city street, road

conditions on the high way, free parking spaces, and etc. The system can be divided into

several distinct yet highly interconnected sub-systems according to the functions they

perform, e.g. traffic management systems, commercial vehicle management system,

traveler information system, and etc. The proper function of each sub-system relies on

107

intensive information communication between theses sub-systems. The services (i.e. the

outputs of the system) that ITS provides and their qualities depend heavily on some

pre-specified rules that govern the cooperation between the different components of the

systems. The rules, in this context, have at least two aspects: the information exchanges

and service request/response between interacting components. For GEOSS, in order to

reveal something that can be called collaboration rules, the system has to be decomposed

into low levels of abstraction which will dramatically increases the complexity of the

system. The configuration and execution management layer modeled in this thesis does

contain some collaboration rules but has not been specified in detail yet due to the

complexity of the entire model.

The development of MDA has shown evidence that a paradigm shift is occurring in

the area of information system construction, i.e., from object and component technology to

model technology. MDA designs also shows significance in other areas such as business

process modeling. Therefore, it is necessary to further explore the MDA application in

system engineering as well.

In the next step, the model-based simulation can also be enhanced. For example, to

develop a federation of simulations that represent different aspects of a system, e.g.

business processes, communications networks, operational environment and performance

measurements (amounts, costs, times, capacities, scheduling, and etc.). This may require

new executable modeling tools.

In order to more effectively modify the system architecture based on simulations,

the modification should follow some structured rules or methods, which deserves further

research.

108

APPENDIX A

SYSML SPECIFICATIONS FOR GEOSS

109

INDEX

APPENDIX A1: Requirements Diagram – GEOSS Functional Requirements

APPENDIX A2: Requirements Diagram – GEOSS Nonfunctional Requirements

APPENDIX A3: Use Case Diagram-GEOSS[Top-level Use Case]

APPENDIX A4: Use Case Diagram-GEOSS[High-level Operational Use Case]

APPENDIX A5: Use Case Diagram-GEOSS[Mid-level Use Case]

APPENDIX A6: Use Case Diagram-UC-GEOSS[Lower-level Use Case].MDI

APPENDIX A7: Block Definition Diagram – GEOSS Structure [Domain Breakdown]

APPENDIX A8: Block Definition Diagram – GEOSS Structure

APPENDIX A9: Block Definition Diagram – GEOSS Structure[UserInterface]

APPENDIX A10: Block Definition Diagram – GEOSS Structure[Application&Tools]

APPENDIX A11: Block Definition Diagram –

GEOSSStructure[Configuration&ExecutionManagement

APPENDIX A12: Block Definition Diagram – GEOSS Structure[ResourceAccess]

APPENDIX A13: Block Definition Diagram – GEOSS Structure[Resources]

APPENDIX A14: Block Definition Diagram – GEOSS Structure[CommonServices]

APPENDIX A15: Internal Block Diagram – GEOSS High Level Operation

APPENDIX A16: Block Definition Diagram – GEOSS Interface Definitions

APPENDIX A17: Internal Block Diagram – GEOSS Infrastructure

APPENDIX A18: Block Definition Diagram – GEOSSInfrasture[InterfaceDefinitions]

APPENDIX A19: Block Definition Diagram – GEOSSFlowSpections

APPENDIX A20: Sequence Diagram – Five Day Ocean Forecast[Object Interaction]

APPENDIX A21: Sequence Diagram – Emergency Management[Object Interaction]

APPENDIX A22: Sequence Diagram – Forecast Improvement[Object Interaction]

APPENDIX A23: Sequence Diagram – Archive Data

APPENDIX A24: Sequence Diagram – Collect Ancillary Information

APPENDIX A25: Sequence Diagram – Collect Observation Data

APPENDIX A26: Sequence Diagram – Computation

APPENDIX A27: Sequence Diagram – Data Discovery & Access

APPENDIX A28: Sequence Diagram – Prepare Model Inputs

110

APPENDIX A29: Sequence Diagram – Run Operational Model

APPENDIX A30: Sequence Diagram – Select & Config Compution Resources

APPENDIX A31: Activity Diagram – GEOSS[Serial Behavior – Prototype]

APPENDIX A32: Activity Diagram – GEOSS[Continous Parallel Activities]

APPENDIX A33: Activity Diagram – Archive Data

APPENDIX A34: Activity Diagram – Collect Ancillary Information

APPENDIX A35: Activity Diagram – Collect Observation Data

APPENDIX A36: Activity Diagram – Computation

APPENDIX A37: Activity Diagram – Data Discovery & Access

APPENDIX A38: Activity Diagram – Prepare Model Inputs

APPENDIX A39: Activity Diagram – Run Operational Model

APPENDIX A40: Activity Diagram – Select & Config Compution Resources

111

APPENDIX A1:

Requirements Diagram – GEOSS Functional Requirements

112

APPENDIX A2:

Requirements Diagram – GEOSS Nonfunctional Requirements

113

APPENDIX A3:

Use Case Diagram-GEOSS[Top-level Use Case]

114

APPENDIX A4:

Use Case Diagram-GEOSS[High-level Operational Use Case]

115

APPENDIX A5:

Use Case Diagram-GEOSS[Mid-level Use Case]

116

APPENDIX A6:

Use Case Diagram-UC-GEOSS[Lower-level Use Case].MDI

117

APPENDIX A7:

Block Definition Diagram – GEOSS Structure [Domain Breakdown]

118

APPENDIX A8:

Block Definition Diagram – GEOSS Structure

119

APPENDIX A9:

Block Definition Diagram – GEOSS Structure[UserInterface]

120

APPENDIX A10:

Block Definition Diagram – GEOSS Structure[Application&Tools]

121

APPENDIX A11:

Block Definition Diagram – GEOSS Structure[Configuration&ExecutionManagement

122

APPENDIX A12:

Block Definition Diagram – GEOSS Structure[ResourceAccess]

123

APPENDIX A13:

Block Definition Diagram – GEOSS Structure[Resources]

124

APPENDIX A14:

Block Definition Diagram – GEOSS Structure[CommonServices]

125

APPENDIX A15:

Internal Block Diagram – GEOSS High Level Operation

126

APPENDIX A16:

Block Definition Diagram – GEOSS Interface Definitions

127

APPENDIX A17:

Internal Block Diagram – GEOSS Infrastructure

128

APPENDIX A18:

Block Definition Diagram – GEOSSInfrasture[InterfaceDefinitions]

129

APPENDIX A19:

Block Definition Diagram – GEOSSFlowSpections

130

APPENDIX A20:

Sequence Diagram – Five Day Ocean Forecast[Object Interaction]

131

APPENDIX A21:

Sequence Diagram – Emergency Management[Object Interaction]

132

APPENDIX A22:

Sequence Diagram – Forecast Improvement[Object Interaction]

133

APPENDIX A23:

Sequence Diagram – Archive Data

134

APPENDIX A24:

Sequence Diagram – Collect Ancillary Information

135

APPENDIX A25:

Sequence Diagram – Collect Observation Data

136

APPENDIX A26:

Sequence Diagram – Computation

137

APPENDIX A27:

Sequence Diagram – Data Discovery & Access

138

APPENDIX A28:

Sequence Diagram – Prepare Model Inputs

139

APPENDIX A29:

Sequence Diagram – Run Operational Model

140

APPENDIX A30:

Sequence Diagram – Select & Config Compution Resources

141

APPENDIX A31:

Activity Diagram – GEOSS[Serial Behavior – Prototype]

142

APPENDIX A32:

Activity Diagram – GEOSS[Continous Parallel Activities]

143

APPENDIX A33:

Activity Diagram – Archive Data

144

APPENDIX A34:

Activity Diagram – Collect Ancillary Information

145

APPENDIX A35:

Activity Diagram – Collect Observation Data

146

APPENDIX A36:

Activity Diagram – Computation

147

APPENDIX A37:

Activity Diagram – Data Discovery & Access

148

APPENDIX A38:

Activity Diagram – Prepare Model Inputs

149

APPENDIX A39:

Activity Diagram – Run Operational Model

150

APPENDIX A40:

Activity Diagram – Select & Config Compution Resources

151

APPENDIX B

CPN MODEL FOR GEOSS

152

INDEX CPN PAGE NAME DESCRIPTION

APPENDIX B1 UserInput Simulation setup

APPENDIX B2 FiveDOceanForecast Five Day Ocean Forecast Use Case

APPENDIX B3 EmergencyMgt Emergency Management Use Case

APPENDIX B4 ModelUpdate Five-Day Ocean Forecast – Pre-Operational Use Case

APPENDIX B5 Improvement Characterize Improvements Use Case

APPENDIX B6 ExternalControl External Control Port

APPENDIX B7 Resources Resource Module

APPENDIX B8 ArchiveData Data Archive Management Module

APPENDIX B9 CollectObs Collect Observations Data Module

APPENDIX B10 CollectAncillaryInfo Collect Ancillary Information Module

APPENDIX B11 Prepare Md In Model Input Pre-processing Module

APPENDIX B12 Computation Computation

APPENDIX B13 Workflow Mgt Workflow Management Module

APPENDIX B14 SltCfgCmpRsc Select and Configure Computing Resource Module

APPENDIX B15 DataDiscvAccess Data Discovery and Access Module

APPENDIX B16 ---- Declarations

153

APPENDIX B1

 CPN PAGE NAME: UserInput - DESCRIPTION: Simulation setup

154

APPENDIX B2

 CPN PAGE NAME: FiveDOceanForecast - DESCRIPTION: Five Day Ocean Forecast

Use Case

155

APPENDIX B3

 CPN PAGE NAME: EmergencyMgt - DESCRIPTION: Emergency Management Use

Case

156

APPENDIX B4

 CPN PAGE NAME: ModelUpdate - DESCRIPTION: Five-Day Ocean Forecast –

Pre-Operational Use Case

157

APPENDIX B5

 CPN PAGE NAME: Improvement - DESCRIPTION: Characterize Improvements Use

Case

158

APPENDIX B6

 CPN PAGE NAME: ExternalControl - DESCRIPTION: External Control Port

159

APPENDIX B7

 CPN PAGE NAME: Resources - DESCRIPTION: Resource Module

160

APPENDIX B8

 CPN PAGE NAME: ArchiveData - DESCRIPTION: Data Archive Management Module

161

APPENDIX B9

 CPN PAGE NAME: CollectObs - DESCRIPTION: Collect Observations Data Module

162

APPENDIX B10

 CPN PAGE NAME: CollectAncillaryInfo - DESCRIPTION: Collect Ancillary

Information Module

163

APPENDIX B11

 CPN PAGE NAME: Prepare Md In - DESCRIPTION: Model Input Pre-processing

Module

164

APPENDIX B12

 CPN PAGE NAME: Computation - DESCRIPTION: Computation

165

APPENDIX B13

 CPN PAGE NAME: Workflow Mgt - DESCRIPTION: Workflow Management Module

166

APPENDIX B14

 CPN PAGE NAME: SltCfgCmpRsc - DESCRIPTION: Select and Configure Computing

Resource Module

167

APPENDIX B15

 CPN PAGE NAME: DataDiscvAccess - DESCRIPTION: Data Discovery and Access

Module

168

APPENDIX B16
(* Standard declarations *)

 colset UNIT = unit;

 colset INT = int;

 colset BOOL = bool;

 colset STRING = string;

 colset E= with e;

(* Simple CS *)

 colset USNm = string;

 colset Type=string;

 colset Type1=string;

 colset Label=string;

 colset Attachmt=string;

 colset Address=int;

 colset Tp_Meta=string;

 colset Variance=int with ~10..10;

 colset Value=int;

 colset CtrolSgn=bool with (no,yes);

 colset EU=with Y|N;

 colset Ten0=int with 0..10;

 colset Ten1=int with 1..10;

 colset VarianceS=int with ~3..3;

(* Compound CS *)

 colset UserServxID=product USNm*INT;

 colset Types=list Type;

 colset Type1s=list Type1;

 colset AppRqs=list Type;

 colset InputRqs=list Type;

 colset AppxInputxServ=

 product AppRqs*InputRqs*UserServxID;

 colset InputRqsxServID=

169

 product InputRqs*UserServxID;

 colset AppRqsxServID=

 product AppRqs*UserServxID;

 colset DataLbxTpxVal=

 product Label*Type*Value timed;

 colset DataLbTpValxServID=

 product DataLbxTpxVal*UserServxID;

 colset DataLbxTpxValxAtc=

 product DataLbxTpxVal*Attachmt;

 colset DataLbTpValxAtcxServID=

 product DataLbxTpxVal*Attachmt*UserServxID;

 colset DataLbxTpxValxTpM=

 product Label*Type*Value*Tp_Meta;

 colset DataLbxTpxValxTpMxServID=

 product DataLbxTpxValxTpM*UserServxID;

 colset DataLbxTpxValxTpMxServIDs=

 list DataLbxTpxValxTpMxServID;

 colset TpxTp_Meta=product Type*Tp_Meta;

 colset DataLbxTpxServID=

 product Label*Type*UserServxID;

 colset DirItem=

 product Address*Label*Type*Tp_Meta;

 colset DirLs=list DirItem;

 colset LbxMeta=

 product Label*Tp_Meta;

 colset ValxTpM=product INT*Tp_Meta;

 colset TypexServID=

 product Type*UserServxID;

 colset Type1xServID=

 product Type1*UserServxID;

 colset LbxAppInputServ=

170

 product Label*AppxInputxServ;

 colset Tp1sxTps=product Type1s*Types;

 colset TpxTp1xServId=

 product Type*Type1*UserServxID;

 colset LbxTp=

 product Label*Type;

 colset AppxInput=

 product AppRqs*InputRqs;

(* Variables *)

 var US,US1,US2:USNm;

 var Id,Id1,Id2,TH,ct, Add,n,k: INT;

 var vl,vl2: Value;

 var USxId,USxId1,

 USxId2,USxId3:UserServxID;

 var vr:Variance;

 var vrS:VarianceS;

 var Tp,Tp2,Tp3,Dsn:Type;

 var Tp1:Type1;

 var Tps,Tps2:Types;

 var Tp1s,Tp1s2:Type1s;

 var Lb,Lb2:Label;

 var Atc:Attachmt;

 var TpM,TpM2:Tp_Meta;

 var ApRqs:AppRqs;

 var InRqs,InRqs2:InputRqs;

 var DLs,DLs2:DirLs;

 var DrIt: DirItem;

 var CtrSgn:CtrolSgn;

 var u:UNIT;

 var LbTpVSId:DataLbTpValxServID;

 var eu:EU;

171

 var LbAIS1,LbAIS2:LbxAppInputServ;

 var s: Ten0;

 var r: Ten1;

 var rf:BOOL;

 var Fdata: DataLbxTpxValxTpMxServID;

 var Fdatas: DataLbxTpxValxTpMxServID;

 var TpSId:TypexServID;

 var Tp1SId:Type1xServID;

(* Functions *)

 fun ExtractLsE(DrIt:DirItem) = #3 DrIt;

 fun Ok(s:Ten0,r:Ten1)=(r<=s);

(* Animation setup *)

 structure dialog = GetString(val name = "Question");

 structure msg = ShowString(val name = "Important Message");

structure msc5dOF=MSC(val name="msc5dForecast")

structure mscEmMgt=MSC(val name="mscEmgcMgt")

structure mscMdUpdt=MSC(val name="mscMdUpdt")

structure mscImpv=MSC(val name="mscImpv")

structure mscClObs=MSC(val name="mscClObs")

structure mscClAnc=MSC(val name="mscClAnc")

structure mscCmp=MSC(val name="mscCmp")

structure mscSltCfgCR=MSC(val name="mscSltCfgCR")

structure mscDtDscAcs=MSC(val name="mscDtDscAcs")

structure graph = Graph(val name = "State-space visulisation")

CPN Declarations

172

APPENDIX C

MSC CHARTS GENERATED BASED ON A SIMULATION

173

INDEX DESCRIPTION

APPENDIX C1 Output MSC – Five Day Ocean Forecast Use Case

APPENDIX C2 Output MSC – Emergency Management Use Case

APPENDIX C3 Output MSC – Five–Day Ocean Forecast – Pre–Operational Use Case

APPENDIX C4 Output MSC – Characterize Improvements Use Case

APPENDIX C5 Output MSC – Collect Observations Data Module

APPENDIX C6 Output MSC – Collect Ancillary Information Module

APPENDIX C7 Output MSC – Computation

APPENDIX C8 Output MSC – Select and Configure Computing Resource Module

APPENDIX C9 Output MSC – Data Discovery and Access Module

174

APPENDIX C1

Output MSC – Five Day Ocean Forecast Use Case-1

175

APPENDIX C1

Output MSC – Five Day Ocean Forecast Use Case-2

176

APPENDIX C2

Output MSC – Emergency Management Use Case

177

APPENDIX C3

Output MSC – Five–Day Ocean Forecast – Pre–Operational Use Case

178

APPENDIX C4

Output MSC – Characterize Improvements Use Case

179

APPENDIX C5

Output MSC – Collect Observations Data Module

180

APPENDIX C6

Output MSC – Collect Ancillary Information Module-1

181

APPENDIX C6

Output MSC – Collect Ancillary Information Module-2

182

APPENDIX C6

Output MSC – Collect Ancillary Information Module-3

183

APPENDIX C7

Output MSC – Computation-1

184

APPENDIX C7

Output MSC – Computation-2

185

APPENDIX C7

Output MSC – Computation-3

186

APPENDIX C8

Output MSC – Select and Configure Computing Resource Module-1

187

APPENDIX C8

Output MSC – Select and Configure Computing Resource Module-2

188

APPENDIX C8

Output MSC – Select and Configure Computing Resource Module-3

189

APPENDIX C9

Output MSC – Data Discovery and Access Module-1

190

APPENDIX C9

Output MSC – Data Discovery and Access Module-2

191

APPENDIX C9

Output MSC – Data Discovery and Access Module-3

192

APPENDIX C9

Output MSC – Data Discovery and Access Module-4

193

APPENDIX C9

Output MSC – Data Discovery and Access Module-5

194

APPENDIX C9

Output MSC – Data Discovery and Access Module-6

195

APPENDIX C9

Output MSC – Data Discovery and Access Module-7

196

APPENDIX D

GEOSS 10-YEAR IMPLEMENTATION PLAN: REFERENCE DOCUMENT

197

Only the Table of Contents for the document is attached here. Full reference

 document can be found at http://earchobservations.org/docs/IPTT_201-1web.pdf.

197

http://earchobservations.org/docs/IPTT_201-1web.pdf

198

198

199

BIBLIOGRAPHY

[1] Scott Niemann. I-Logix Whitepaper: Executable Systems Design with UML 2.0.
Telelogic, 2004. http://www.omg.org/news/whitepapers/Executable_System_
Design_UML.pdf (accessed June 2007).

[2] Center for Software Engineering, University of Southern California. Guidelines for

Model-Based (System) Architecting and Software Engineering (MBASE). Deliverables.
http://sunset.usc.edu/classes/cs577a_2000/guidelines/Deliverables-II.pdf
(accessed June 2007).

[3] Muth, Thomas, Dominikus Herzberg, and Jens Larsen. “A fresh view on

model-based systems engineering: The processing system paradigm.” In
Proceedings of the International Council on Systems Engineering (INCOSE),
Sydney, 2001.

[4] Schattkowsky, Tim and Wolfgang Mueller. “Transformation of UML State

Machines for Direct Execution.” In Proceedings of the 2005 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC'05), Vol. 00,
117-124. 2005.

[5] Varro, Daniel. “A formal semantics of UML StateCharts by Model Transition

Systems.” In Lecture Notes In Computer Science, Vol. 2505; Proceedings of the
First International Conference on Graph Transformation, 378-392. London, UK:
Springer-Verlag, 2002.

[6] Jens Bæk Jørgensen. “Coloured Petri Nets in UML-Based Software Development

– Designing Middleware for Pervasive Healthcare.” In Proceedings of the Fourth
International Workshop on Practical Use of Coloured Petri Nets and the CPN
Tools, Aarhus, Denmark, 28-30 August 2002, edited by Kurt Jensen, 61-80.
Technical Report DAIMI PB-560, August 2002.

[7] Miller, Joaquin. MDA Guide, Version 1.0.1, Ed. Jishnu Mukerji. Object

Management Group, omg/2003-06-01, 12 June 2003.
http://www.omg.org/cgi-bin/doc?omg/03-06-01 (accessed June 2007).

[8] Rao, Madwaraj, Sreeram Ramakrishnan, and Cihan H. Dagli. “Modeling and

Simulation of Net Centric System Of Systems Using Systems Modeling
Language And Colored Petrinets: A Demonstration Using The Global Earth
Observation System Of Systems.” Systems Engineering Journal, forthcoming.

[9] Rao, Madwaraj, Sreeram Ramakrishnan, and Cihan H. Dagli. “Modeling the

Global Earth Observation System of Systems.” In CD Proceedings of IERC
Industrial Engineering Research Conference, Orlando, Florida, 20-24 May 2006.

200

[10] Rao, U. B. Madwaraj. “Modeling and Simulation of Net Centric System of
systems Using Systems Modeling Language and Color Petri Nets-A
Demonstration Using the Global Earth Observation System of Systems.” Master’s
thesis, University of Missouri Rolla, May 2005.

[11] Rumbaugh, James, Ivar Jacobson, and Grady Booch. The Unified Modeling

Language Reference Manual. 2nd ed. Reading, Mass.: Addison-Wesley, 07 July
2004.

[12] Booch, Grady, Ivar Jacobson, James Rumbaugh, Ivar Jacobson, and James

Rumbaugh. The Unified Modeling Language User Guide. 2nd ed. Reading, Mass.:
Addison-Wesley, May 2005.

[13] Michael von der Beeck. “A Structured Operational Semantics for

UML-StateCharts.” Software and Systems Modeling Journal, Vol. 1, No. 2
(December 2002): 130-141. Springer Berlin / Heidelberg.

[14] Schattkowsky, Tim. “Model-based Development of Embedded Systems:

Executable Models vs. Code Generation.”
http://www-verimag.imag.fr/EVENTS/2003/SIVOES-MDA/Papers/Schattkowsk
y.pdf (accessed June 2007).

[15] Schattkowsky Tim, Wolfgang Mueller, and Achim Rettberg. “A Model-Based

Approach for Executable Specifications on Reconfigurable Hardware.” In
Proceedings of the conference on Design, Automation and Test in Europe, Vol. 2,
692-697. IEEE Computer Society, 2005.

[16] Mellor, Stephen J. and Marc J. Balcer. Executable UML – A Foundation for

Model-Driven Architecture. Addison-Wesley, 2002.

[17] Mellor, Stephen J.. “Executable and Translatable UML.” Embedded Systems

Design. http://www.embedded.com/showArticle.jhtml?articleID=9900932
(accessed June 2007).

[18] Flint, Shayne R. and Clive V. Boughton. “Executable/Translatable UML and

Systems Engineering.” In Proceedings of Systems Engineering Test and
Evaluation (SETE) Conference 2003, Canberra, Australia, 27-29 October 2003.

[19] Riehle, Dirk, Steven Fraleigh, Dirk Bucka-Lassen, and Nosa Omorogbe. “The

Architecture of a UML Virtual Machine.” In Proceedings of the 2001 Conference
on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA '01), 327-341. ACM Press, 2001.

[20] Schattkowsky, Tim and Wolfgang Mueller. “Model-Based Specification and

Execution of Embedded Real-Time Systems.” In Proceedings of the conference
on Design, automation and test in Europe, 1392- 1393 Vol. 2, February 2004.

201

[21] Börger, Egon, Alessandra Cavarra, and Elvinia Riccobene. “Modeling the
Dynamics of UML State Machines.” In Proceedings of ASM 2000, LNCS. Vol.
1912, edited by Y. Gurevich, P. W. Kutter, M. Odersky, and L. Thiele. Springer,
2000.

[22] Lilius, Johan, and Iván Porres Paltor. “Formalising UML State Machines for

Model Checking.” In Proceedings of UML'99 -The Unified Modeling Language:
Beyond the Standard, Second International Conference, Fort Collins, CO, USA,
October 1999, 430-445. Springer, 1999.

[23] Kleppe, Anneke, and Jos Warmer. “Unification of Static and Dynamic Semantics

of UML: a Study in redefining the Semantics of the UML using the pUML OO
Meta Modelling Approach.” Technical Reports, K-01, Klasse Objecten, July 2001.
http://www.klasse.nl/papers/unification-report.pdf (accessed June 2007).

[24] Elkoutbi, Mohammed and Rudolf K. Keller. “User Interface Prototyping Based

on UML Scenarios and High-Level Petri Nets.” In Proceedings of 21st
International Conference on Application and Theory of Petri Nets, Vol. 1825 of
Lecture Notes in Computer Science. Springer-Verlag, 2000.

[25] Jørgensen1, Jens Bæk, and Søren Christensen. “Executable Design Models for a

Pervasive Healthcare Middleware System.” In Proceedings of the 5th UML
Conference, Vol. 2460 of Lecture Notes in Computer Science, 140-149.
Springer-Verlag, 2002.

[26] Jensen, Kurt. Coloured Petri Nets: Basic Concepts, Analysis Methods and

Practical Use Volume 1: Basic Concepts. Springer-Verlag, 1992.

[27] Jensen, Kurt. Coloured Petri Nets: Basic Concepts, Analysis Methods and

Practical Use Volume 2: Analysis Methods. Springer-Verlag, 1995.

[28] Jensen, Kurt. Coloured Petri Nets: asic Concepts, Analysis Methods and

Practical Use Volume 3: Practical use. Springer-Verlag, 1997.

[29] Kristensen, Lars M., Søren Christensen, and Kurt Jensen. “The Practitioner’s

Guide to Coloured Petri Nets.” International Journal on Software Tools for
Technology Transfer, No.2(2)(1998): 98-132.

[30] Hu, Zhaoxia, and Sol M. Shatz. “Mapping UML Diagrams to a Petri Net Notation

for System Simulation.” In Proceedings of the International Conference on
Software Engineering and Knowledge Engineering (SEKE), Banff, Canada, 2004.

[31] Pettit, Robert. G. and Hassan Gomaa. “Validation of Dynamic Behavior in UML

Using Colored Petri Nets.” In proceedings of UML 2000 Behavioral Semantics
Workshop, York, England. October 2000.

202

[32] Ben M. Faul. “Verifiable Modeling Techniques Using a Colored Petri Net
Graphical Language.” Technology Review Journal, (Spring/Summer 2004).
Northrop Grumman, 2004. http://www.ms.northropgrumman.com/PDFs/TRJ/
TRJ-2004/SS/04SS_Faul.pdf (accessed June 2007).

[33] King, Peter, and Rob Pooley. “Using UML to Derive Stochastic Petri Net

Models.” In UKPEW ’99: Proceedings of the Fifteenth UK Performance
Engineering Workshop, Department of Computer Science, The University of
Bristol, July 1999, edited by N. Davies and J. Bradley, 45-56.

[34] Baresi1, Luciano, and Mauro Pezzè. “On Formalizing UML with High-Level

Petri Nets.” In Concurrent object-oriented programming and petri nets: advances
in petri nets, 276-304, New York: Springer-Verlag, 2001.

[35] Ojala, Leo, Nisse Husberg, and Teemu Tynjälä. “Modelling and Analysing a

Distributed Dynamic Channel Allocation Algorithm for Mobile Computing Using
High-Level Net Methods.” In Proceedings of Workshop on Practical Use of
High-level Petri Nets, Aarhus, Denmark, 2000, edited by Kurt Jensen.

[36] Agha, Gul. A., and Fiorella De Cindio. 2001. In Concurrent Object- Oriented

Programming and Petri Nets, Ed. Grzegorz Rozenberg. Vol. 2001 of The Lecture
Notes in Computer Science. Springer-Verlag.

[37] Hansen, Klaus Marius. Towards a Coloured Petri Net Profile for the Unified

Modeling: Issues, Definition, and Implementation. Technical Report
COT/2-52-V0.1 (DRAFT). Centre for Object Technology, Aarhus, Denmark,
2001.

[38] Bienvenu, Michael, P., Insub Shin, and Alexander H.. Levis. “C4ISR

Architectures: III. An Object-Oriented Approach for Architecture Design.”
Systems Engineering, Vol. 3, No. 4, 2000. John Wiley and Sons Inc..

[39] Barr, Paul C. “Adding Behavior to the C4ISR Architecture using Petri Nets.”

Presentation, The 14th Annual Software Technology Conference, Salt Lake City,
Utah, 2002. http://www.sstc-online.org/Proceedings/2002/SpkrPDFS/WedTracs/
p525.pdf (accessed June 2007).

[40] Wagenhals, Lee, W., Sajjad Haider, and Alexander H., Levis. “Synthesizing

Executable Models of Object Oriented Architectures.” Systems Engineering, Vol.
6, No. 4, 2003. Wiley Periodicals, Inc..

[41] Kristensen, Lars Michael, Jens Bæk Jørgensen, and Kurt Jensen. “Application of

Coloured Petri Nets in system development.” In Lectures on Concurrency and
Petri Nets: Advances in Petri Nets, Ed. Jörg Desel, Wolfgang Reisig, Grzegorz
Rozenberg, Vol. 3098 of Lecture Notes in Computer Science. 626-685.
Springer-Verlag, June 2004.

http://www.ms.northropgrumman.com/PDFs/TRJ/ TRJ-2004/SS/04SS_Faul.pdf
http://www.ms.northropgrumman.com/PDFs/TRJ/ TRJ-2004/SS/04SS_Faul.pdf

203

[42] Lakos, Charles A.. “Composing Abstractions of Coloured Petri Nets.” In
Proceedings of 21st Int. Conference on Application and Theory of Petri Nets
(ICATPN’2000), Aarhus, Denmark, June 2000, Vol. 1825 of Lecture Notes in
Computer Science. 323-342.

[43] Rust, Carsten, Friedhelm Stappert, and Reinhard Bernhardi-Grisson. “Petri Net

Based Design of Reconfigurable Embedded Real-Time Systems.” In Design and
Analysis of Distributed Embedded Systems, Ed. B. Kleinjohann, K.H. Kim, L.
Kleinjohann, and A. Rettberg, Vol. 91 of IFIP International Federation for
Information Processing, 41-50. October 2002.

[44] Rammig, Franz and Carsten Rust. “Modeling of Dynamically Modifiable

Embedded Real-Time Systems.” In Proceedings of the 9th IEEE International
Workshop on Object-oriented Real-time Dependable Systems (WORDS 2003F), 1
October 2003.

[45] Belabbas, Aissam, and Pascal Berruet. “FMS Reconfiguration based on Petri Nets

Models.” In Proceedings of the 2004 IEEE International Conference on Systems:
Man and Cybernetics, 10-13 October 2004, Vol. 2, 1819-1824.

[46] Hause, C., Matthew. “Rebuilding the Tower of Babel: The Case for UML with

Realtime Extensions.” In Proceedings of the INCOSE Spring Symposium 2001,
INCOSE UK chapter, 14-16 May 2001.

[47] Dagli, Cihan, H., and Kevin Orr. “Can Systems Modeling Language Impact

Systems Engineering?” In CD Proceedings of INCOSE 2006, Orlando, Florida,
13-19 July 2006.

[48] Dagli, Cihan H.. “Architecting and Engineering System of Systems.” Presentation.

Industrial Engineering research Conference IERC, Atlanta, Georgia, 15-18 May 2005.

[49] Meyyappan, Lakshmanan, and Cihan H. Dagli. “Swarm Based Systems of

systems Behavior Simulation for Network-Centric Enterprise.” In CD
Proceedings of the 18th International Conference on Production Research,
Salerno, Italy, 2005.

[50] Meyyappan, Lakshmanan, and Cihan H. Dagli. “Network-Centric First

Responder Architecture with Swarming Robots Entity.” In CD Proceedings of
CSER Conference on Systems Engineering Research, Hoboken, New Jersey,
23-25 March 2005.

[51] Kilicay, Nil, and Cihan H. Dagli. “Methodologies for Understanding Behavior of

System of Systems.” In CD Proceedings of CSER Conference on Systems
Engineering Research, Hoboken, New Jersey, 14-16 March 2007.

204

[52] Kilicay, Nil, Cihan H. Dagli, and David Enke. “Multi-agent Architectures for
Analysis of Complex Adaptive Systems.” In Proceedings of the 7th International
Conference, Adaptive Computing in Design and Manufacture, Bristol UK, 25-27
April 2006. 185- 190.

[53] Group on Earth Observations. Global Earth Observation System of Systems,

10-Year Implementation Plan Reference Document.
http://www.earthobservations.org/index.html (accessed June 2007).

[54] DoD (Department of Defense) Architecture Framework Working Group. DoD

Architecture Framework Version 1.5, Volume I: Definition and Guidelines. 23
April 2007. http://jitc.fhu.disa.mil/ (accessed June 2007).

[55] DoD (Department of Defense) Architecture Framework Working Group. DoD

Architecture Framework Version 1.5, Volume II: Product Descriptions. 23 April
2007. http://jitc.fhu.disa.mil/ (accessed June 2007).

[56] DoD (Department of Defense) Architecture Framework Working Group. DoD

Architecture Framework Version 1.5: Architecture Data Description. 23 April
2007. http://jitc.fhu.disa.mil/ (accessed June 2007).

[57] Object Management Group. OMG Systems Modeling Language (OMG SysML)

Specification. Final Adopted Specification, ptc/06-05-04.
http://www.omg.org/cgi-bin/doc?ptc/06-05-04 (accessed June 2007).

[58] Desel, Jörg, and Wolfgang Reisig. “Place or Transition Petri Nets.” In Lecture on

Petri nets I: Basic Models, Vol. 1491 of Lecture Notes in Computer Science,
122-173. Springer-Verlag, 1998.

[59] Reisig, Wolfgang. “Petri Nets.” EACTS Monographs in Theoretical Computer

Science, Vol. 4. Springer-Verlag, 1985.

[60] Ullman, Jeffrey D.. Elements of ML Programming. Prentice-Hall, 1998.

[61] Andrew Cumming. “A Gentle Introduction to ML.” Computer Studies, Napier

University. http://www.dcs.napier.ac.uk/course-notes/sml/manual.html (accessed
June 2007).

[62] Jensen, Kurt. “An Introduction to the practical use of Colored Petri Nets.” In

Lectures on Petri Nets II: Applications, Ed. Wolfgang Reisig and Grzegorz
Rozenberg, Vol. 1492 of Lecture Notes in Computer Science. 237-292,
Springer-Verlag 1998.

[63] Jensen, Kurt. “Coloured Petri Nets: A High-level Language for System Design

and Analysis.” In Advances in Petri Nets 1990, Ed. Grzegorz Rozenberg, Vol. 483
of Lecture Notes in Computer Science. 342-416. Springer-Verlag, 1991.

http://www.earthobservations.org/index.html
http://www.dcs.napier.ac.uk/course-notes/sml/manual.html

205

[64] Jensen, Kurt. “An Introduction to the Theoretical Aspects of Coloured Petri
Nets.” In A Decade of Concurrency, Ed. J.W. de Bakker, W.-P. de Roever, and G.
Rozenberg, Vol. 803 of Lecture Notes in Computer Science. 230-272. London,
UK: Springer-Verlag, 1994.

[65] Jensen, Kurt. “Condensed State Spaces for Symmetrical Coloured Petri Nets.”
Formal Methods in System Design, Vol. 9, No. 1-2 (August 1996): 7-40. Kluwer
Academic Publishers, 1996.

[66] ARTiSAN Software Tools, Inc.. “Studio Datasheet.”

http://www.artisansw.com/pdf/product_sheets/studio.pdf. (accessed June 2007).

[67] ARTiSAN Software Tools Inc.. “Real-time Perspective Mentor.” comes with

ARTiSAN software installation.

[68] Westergaard, Michael. “BRITNeY Suite Home Page.” University of Aarhus,

Aarhus N, Denmark. http://wiki.daimi.au.dk/britney/britney.wiki (accessed June
2007).

[69] Aalst, W.M.P. van der. “Three Good Reasons for Using a Petri-Net-based

Workflow Management System.” In Proceedings of the International Working
Conference on Information and Process Integration in Enterprises (IPIC'96),
Camebridge, Massachusettspp,1996, Ed. S. Navathe and T. Wakayama. 179-201.

[70] Ang, Huei Wan, Dave Nicholson, and Brad Mercer. Improving the Practice of

DoD Architecting with the Architecture Specification Mode.l Mclean, VA:
MITRE Corp. http://www.mitre.org/work/tech_papers/tech_papers_05/05_0423/
05_0423.pdf (accessed June 2007).

[71] Department of Computer Science – Daimi, University of Aarhus, Aarhus N,

Denmark. “CPN ToolS: Online version of Help.”
http://wiki.daimi.au.dk/cpntools-help/cpntools-help.wiki (accessed June 2007).

[72] Truyen, Fran. White paper: The fast guide to Model Driven Architecture, The

basics of Model Driven Architecture (MDA). Cephas Consulting Corp. January
2006. http://www.omg.org/mda/mda_files/Cephas_MDA_Fast_Guide.pdf
(accessed June 2007).

[73] Object Management Group. “Model driven architecture (MDA) FAQ.”

http://www.omg.org/mda/faq_mda.htm (accessed June 2007).

[74] Czarnecki, Krzysztof and Simon Helsen. “Classification of Model

Transformation Approaches.” In Proceedings of Workshop on Generative
Techniques in the Context of Model-Driven Architecture, OOPSLA’03, Anaheim,
California, 27 October 2003.

http://www.artisansw.com/pdf/product_sheets/studio.pdf
http://wiki.daimi.au.dk/britney/britney.wiki
http://wiki.daimi.au.dk/cpntools-help/cpntools-help.wiki

206

[75] ARIST, Component-based Design and Integration Platforms. Project
IST-2001-34820. http://www.irisa.fr/triskell/publis/2003/Jezequel03b.pdf
(accessed June 2007).

[76] Frédéric Fondement and Raul Silaghi. “Defining Model Driven Engineering

Processes.” Presentation, WiSME@UML 2004, Lisbon, Portugal, 11 October
2004. http://www.metamodel.com/wisme-2004/accept/21.pdf (accessed June
2007).

[77] Szyperski, Clemens A.. Component software, beyond object-oriented

programming. 2nd ed. Addison-Wesley, 2002.

[78] Simmonds, Devon, Arnor Solberg, Raghu Reddy, Robert France, and Sudipto

Ghosh. “An Aspect Oriented Model Driven Framework.” In Proceedings of the
9th International Enterprise Distributed Object Computing Conference (EDOC
2005), Enschede, The Netherlands, 19-23 September, 2005, 119-130. IEEE
Computer Society Press.

[79] Wampler, Dean. “The Role of Aspect-Oriented Programming in OMG’s

Model-Driven Architecture.” Aspect Programming, Inc., 2003.
http://www.aspectprogramming.com/papers/AOP%20and%20MDA.pdf
(accessed June 2007).

[80] France, Robert, Indrakshi Ray, Geri Georg, and Sudipto Ghosh. “An

Aspect-Oriented Approach to Early Design Modeling.” In IEE Proceedings -
Software (2004), Vol. 151, Issue 4, 6 August 2004, 173-185.
http://ieeexplore.ieee.org/iel5/5658/29547/01341255.pdf?tp=&arnumber=13412
55&isnumber=29547 (accessed June 2007).

[81] Desmond DSouza, Kinetium. “Model-Driven Architecture and Integration

Opportunities and Challenges.” Version 1.1.
http://www.omg.org/mda/presentations.htm (accessed June 2007).

[82] Object Management Group Inc.. “Model Driven Architecture: The Architecture

of Choice for a Changing World.” http://www.omg.org/mda/ (accessed June
2007).

[83] Frankel, David S.. Model Driven Architecture: Applying MDA to Enterprise

Computing. Indianapolis, IN: Wiley Publishing, April 2003.

[84] Almeida, João Paulo, Remco Dijkman, Marten van Sinderen, and Luís Ferreira

Pires. “On the Notion of Abstract Platform in MDA Development.” In
Proceedings of the 8th IEEE International Enterprise Distributed Object
Computing Conference, EDOC, Monterey, CA, USA, September 2004, Vol. 00,
253-263. IEEE Computer Society, 2004.

http://www.metamodel.com/wisme-2004/accept/21.pdf
http://www.omg.org/

207

[85] Almeida, João Paulo, Remco Dijkman, Marten van Sinderen, and Luís Ferreira
Pires. “Platform-independent modelling in MDA: supporting abstract platforms.”
In Proceedings of Model Driven Architecture: European MDA Workshops:
Foundations and Applications, MDAFA 2003 and MDAFA 2004, Twente, The
Netherlands, 26-27 June, 2003 and Linköping, Sweden, 10-11 June 2004. Revised
Selected Papers. 174-188, Vol 3599 of Lecture Notes in Computer Science.
Springer Verlag. ISSN 0302-9743 ISBN 978-3-540-28240-2.

[86] Almeida, João Paulo, Marten van Sinderen, Luís Ferreira Pires, and Dick Quartel.

“A systematic approach to platform-independent design based on the service
concept.” In Proceedings of the 7th International Conference on Enterprise
Distributed Object Computing, 112. IEEE Computer Society, 2000.

[87] Xu, Jianli and Juha Kuusela. “Modeling Execution Architecture of Software

System Using Colored Petri Nets.” In Proceedings of the 1st international
workshop on Software and performance, Santa Fe, New Mexico, United States,
1998, 70-75.

[88] Hankin, S. and the DMAC Steering Committee, 2005. Data Management and

Communications Plan for Research and Operational Integrated Ocean Observing
Systems: I. Interoperable Data Discovery, Access, and Archive. Ocean.US,
Arlington, VA 304 pp. http://dmac.ocean. us/dacsc/imp_plan.jsp (accessed June
2007).

[89] Raytheon Corporation Intelligence and Information system (IIS). IOOS U.S.

Integrated Ocean Observing System, GSA Schedule Contract Number:
GS23F0263K, Delivery Order Number: DG133C06NC0517, 31 August 2006.
http://www.ocean.us/IOOS_Arch_Proposals (accessed June 2007).

[90] Raytheon Corporation Intelligence and Information system (IIS). IOOS U.S.

Integrated Ocean Observing System: Five Day Ocean Forecast, GSA Schedule
Contract Number: GS23F0263K, Delivery Order Number: DG133C06NC0517,
31 August 2006. http://www.ocean.us/IOOS_Arch_Proposals (accessed June
2007).

[91] Raytheon Corporation Intelligence and Information system (IIS). IOOS U.S.

Integrated Ocean Observing System: Five Day Ocean Forecast –
Pre-Operational, GSA Schedule Contract Number: GS23F0263K, Delivery
Order Number: DG133C06NC0517, 31 August 2006.
http://www.ocean.us/IOOS_Arch_Proposals (accessed June 2007).

[92] Raytheon Corporation Intelligence and Information system (IIS). IOOS U.S.

Integrated Ocean Observing System: Evaluation of Forecasting Accuracy. GSA
Schedule Contract Number: GS23F0263K, Delivery Order Number:
DG133C06NC0517, 31 August 2006. http://www.ocean.us/IOOS_Arch_Proposals
(accessed June 2007).

208

[93] Raytheon Corporation Intelligence and Information system (IIS). IOOS U.S.
Integrated Ocean Observing System: Federal Agency & MACOORA Cooperative
Maryland Emergency Management. GSA Schedule Contract Number:
GS23F0263K, Delivery Order Number: DG133C06NC0517, 31 August 31 2006.
http://www.ocean.us/IOOS_Arch_Proposals (accessed June 2007).

[94] Wagenhals, Lee W., Insub Shin, Daesik Kim, and Alexander, H. Levis. “C4ISR

Architectures: II. A Structured Analysis Approach for Architecture Design.”
Systems Engineering, Vol. 3, No. 4, 2000. John Wiley and Sons Inc..

[95] Wagenhals, Lee W., and Alexander, H., Levis. “C4ISR Architectures: I.

Developing a Process for C4ISR Architecture Design.” Systems Engineering
Journal, Vol. 3, No. 4, 2000. John Wiley & Sons Inc..

[96] Kent, Stuart. “Model Driven Engineering.” In Proceedings of Integrated Formal

Methods: Third International Conference, IFM 2002, Turku, Finland, 15-17 May
2002, Vol. 2335 of LNCS. 286-298. Springer-Verlag, 2003.

[97] Object Management Group. “MOF 2.0 Query / Views / Transformations RFP.”
ad/2002-04-10, 24 April 2002. http://www.omg.org/cgi-bin/doc?ad/2002-4-10
(accessed June 2007).

[98] Courtney, Steve, and John Laws. “Developing Real-Time Distributed Systems

with Executable Object-Oriented Models.” ObjecTime. Limited.
http://www.stsc.hill.af.mil/crosstalk/1997/11/distributed.asp (accessed June
2007).

[99] Soley, Richard, and the OMG Staff Strategy Group. “Model Driven

Architecture.” In Object Management Group White Paper, Draft 3.2, 27
November 2000. ftp://ftp.omg.org/pub/docs/omg/00-11-05.pdf (accessed June
2007).

[100] Hause, C., Matthew, Francis Thom, and Alan Moore. “Model Driven Systems

Engineering: More Than Just Pictures.” In Proceedings of The International
Council on Systems Engineering, Mid Atlantic Regional Conference, 2-4
November 2004.

[101] Alanen, Marcus, Johan Lilius, Ivan Porres, and Dragos Truscan. “Realizing a

Model Driven Engineering Process.” In Technical Report, No. 565. Turku Centre
for Computer Science, November 2003.

[102] Poole, John D.. “Model-Driven Architecture: Vision, Standards, And Emerging

Technologies.” In Proceedings of ECOOP 2001: Workshop on Metamodeling and
Adaptive Object Models, April 2001. http://www.cwmforum.org (accessed June
2007).

209

[103] Baresi, Luciano, Reiko Heckel, Sebastian Thöne, and Dániel Varró. “Style-Based
Modeling and Refinement of Service-Oriented Architectures.” Journal of
Software and Systems Modelling, Vol. 5, No. 2 (2006): 187-207. Springer Berlin /
Heidelberg.

210

VITA

Renzhong Wang was born in Benxi, Liaoning Province, China, on March 15th,

1975. In July 1998, he received his B.E. with Honors in Automobile and Tractor from the

Jilin University of Technology, China. Immediately after attaining his Bachelor’s degree,

he joined the China Automotive Technology & Research Center (CATARC), a

comprehensive scientific research institute engaging in standardization, test and

certification, research and development, technology management, and information

services. Shortly after working as a testing engineer in CATARC, he was sent to work at

the State Administration of Machinery Industry (for two years), and then the State

Economic & Trade Commission (for another two years), and last, the National

Development and Reform Commission (for another two years) assisting in the

administration of the domestic automotive industry. Working in these positions, Renzhong

developed interests in project management and Systems Engineering. His continued

interests in these two areas prompted him to pursue a Master degree in Systems

Engineering at the University of Missouri-Rolla, Rolla, Missouri, where he received his

M.S. degree in August 2007.

	Executable system architecting using systems modeling language in conjunction with Colored Petri Nets - a demonstration using the GEOSS network centric system
	Recommended Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	 TABLE OF CONTENTS
	 LIST OF ILLUSTRATIONS
	 LIST OF TABLES
	1. INTRODUCTION
	1.1. MOTIVATION
	1.2. PROBLEM DEFINITION
	1.3. RESEARCH OBJECTIVE
	1.4. SECTION ORGANIZATION

	2. LITERATURE REVIEW
	2.1. GEOSS
	2.2. DEPARTMENT OF DEFENSE ARCHITECTURE FRAMEWORK
	2.3. SYSTEMS MODELING LANGUAGE (SysML)
	2.4. COLORED PETRI-NETS
	2.5. ARTISAN STUDIO
	2.6. BRITNEY SUITE

	3. MODELING METHODOLOGY
	3.1. AN EXECUTABLE SYSTEM ARCHITECTING PARADIGM
	3.2. OBJECT ORIENTED ANALYSIS
	3.3. MODEL DRIVEN ARCHITECTING APPROACH
	3.3.1. The Core MDA Technique is Model Transformation. “Model transfor-
	3.3.2. The Model-Based Specification is More Precise and Rich in Semantics than the Object Oriented Paradigm. Model-based specification defines behavior precisely,
	3.3.3. MDA Designs Portability, Interoperability and Reusability into the System at the Model Level. MDA creates a conceptual framework that separates funda-
	3.3.4. MDA Approach is Ideal for Building and Maintaining the GEOSS Architecture. Although the MDA approach stemmed from the software engineering, many
	3.3.5. A MDA Process for Developing System Model. In this section, a SysML-
	3.3.5.1 Preamble to the process. MDA specifies three default types of models for
	3.3.5.2 An overview of the modeling process. The modeling process is shown in

	3.4. SYNTHESIS OF THE EXECUTABLE MODEL
	3.4.1. Select a Proper Simulation Tool. The ARTiSAN studio used to develop
	3.4.2. Conversion Rules Based on Static Views. The executable model must fai-
	3.4.3. Case Based Syntheses. Note that the above mentioned approach is actually
	3.4.4. Consistence Issues in SysML Models. In order to derive a CPN model
	3.4.5. The Procedure for Synthesizing CPN Models from SysML Models and the Mapping Rules. In order to derive a CPN model from a SysML model, an unambiguous
	3.4.6. Instantiation and Concurrent Processing. The concurrent system involves
	3.4.7. Results of the Object Oriented Approach and the Model Driven Approach.

	3.5. SIMULATION
	3.5.1. Interactive Control. The interactive control includes accepting inputs from
	3.5.2. Message Sequence Charts (MSCs). There are four ways to generate the MSCs:
	3.5.3. State Space Graphs. By adding appropriate auxiliary texts to a CPN page,

	3.6. ARCHITECTURE EVALUATION AND ANALYSIS
	3.6.1. Behavior and Functionality Verification. The behavior of the architecture
	3.6.2. Specification Completeness Checking. From the comparison of the input

	4. MODEL DEVELOPMENT
	4.1. MISSION DEFINITION
	4.2. REQUIREMENTS CAPTURE
	4.3. OPERATIONAL CONCEPT ANALYSIS
	4.4. USE CASE DEFINITION
	4.5. USE CASE SCENARIOS
	4.5.1. Five Day Ocean Forecast Use Case Scenario. Figure 4.10 presents the Five
	4.5.2. Five-Day Ocean Forecast – Pre-Operational Use Case Scenario. The Five
	4.5.3. Characterize Improvements Use Case Scenario. The evolution of operat-
	4.5.4. Emergency Management Use Case Scenario. Figure 4.13 shows the emer-

	4.6. COMPUTATION INDEPENDENT MODEL (CIM) DEVELOPMENT
	4.7. PRELIMINARY STRUCTURE DIAGRAMS DEVELOPMENT
	4.8. SEQUENCE DIAGRAMS DEVELOPMENT
	4.9. ACTIVITY DIAGRAMS DEVELOPMENT
	4.10. REFINE STRUCTURE DIAGRAMS

	5. EXECUTABLE MODEL DEVELOPMENT
	5.1. MODEL OVERVIEW
	5.2. THE ANIMATION GRAPHICAL USER INTERFACE (GUI)
	5.2.1. The Interactive Interface. Two type of user interactions are involved in the
	5.2.2. Message Sequence Charts (MSCs). The generation of Message Sequence

	5.3. SOME EXECUTION SPECIFIC CONCERNS

	6. SIMULATION
	6.1. SET UP SIMULATION
	6.2. SIMULATION RESULTS

	7. ARCHITECTURE EVALUATION AND ANALYSIS
	7.1. SIMULATION BASED ANALYSIS
	7.1.1. Behavior and Functionality Verification/Validation. The architecture
	7.1.2. Specification Completeness Checking. The methodology for checking

	7.2. STATE SPACE ANALYSIS
	7.3. SYSTEM REFINEMENTS

	8. CONCLUSIONS AND FUTURE WORK
	8.1. CONCLUSIONS
	8.2. FUTURE WORK

	APPENDIX A
	APPENDIX B
	APPENDIX C
	APPENDIX D
	BIBLIOGRAPHY
	 VITA

