
DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF AARHUS

IT-parken, Aabogade 34
DK-8200 Aarhus N, Denmark

ISSN 0105-8517

October 2007

DAIMI PB - 584

Kurt Jensen (Ed.)

Eighth Workshop and Tutorial on
Practical Use of Coloured Petri Nets
and the CPN Tools
Aarhus, Denmark, October 22-24, 2007

Preface

This booklet contains the proceedings of the Eighth Workshop on Practical Use of
Coloured Petri Nets and the CPN Tools, October 22-24, 2007. The workshop is
organised by the CPN group at Department of Computer Science, University of
Aarhus, Denmark. The papers are also available in electronic form via the web
pages: http://www.daimi.au.dk/CPnets/workshop07/

Coloured Petri Nets and the CPN Tools are now licensed to more than 5.600
users in 129 countries. The aim of the workshop is to bring together some of the
users and in this way provide a forum for those who are interested in the practical
use of Coloured Petri Nets and their tools.

The submitted papers were evaluated by a programme committee with the
following members:

Wil van der Aalst, Netherlands
João Paulo Barros, Protugal
Jonathan Billington, Australia
Jörg Desel, Germany
Joao M. Fernandes, Portugal
Jorge de Figueiredo, Brazil
Monika Heiner, Germany
Thomas Hildebrandt, Denmark
Kurt Jensen, Denmark (chair)
Ekkart Kindler, Denmark
Lars M. Kristensen, Denmark
Johan Lilius, Finland
Daniel Moldt, Germany
Laure Petrucci, France
Rüdiger Valk, Germany
Lee Wagenhals, USA
Jianli Xu, Finland
Karsten Wolf, Germany

The programme committee has accepted 13 papers for presentation. Most of these
deal with different projects in which Coloured Petri Nets and their tools have been
put to practical use – often in an industrial setting. The remaining papers deal with
different extensions of tools and methodology.

The papers from the first seven CPN Workshops can be found via the web
pages: http://www.daimi.au.dk/CPnets/. After an additional round of reviewing
and revision, some of the papers have also been published as special sections in
the International Journal on Software Tools for Technology Transfer (STTT). For
more information see: http://sttt.cs.uni-dortmund.de/

Kurt Jensen

Table of Contents
Invited Tutorials:
Lars M. Kristensen and Michael Westergaard
The ASCoVeCo State Space Analysis Platform: Next Generation Tool
Support for State Space Analysis... 1

Ekkart Kindler
Component Tools: A Frontend for Formal Methods ... 7

Regular Papers:
Paul Fleischer and Lars M. Kristensen
Towards Formal Specification and Validation of Secure Connection
Establishment in a Generic Access Network Scenario .. 9

E. Bacarin, W.M.P van der Aalst, E. Madeira, and C. B. Medeiros
Towards Modeling and Simulating a Multi-party Negotiation Protocol with
Colored Petri Nets.. 29

Jonathan Billington and Amar Kumar Gupta
Effectiveness of Coloured Petri nets for Modelling and Analysing the
Contract Net Protocol .. 49

Carmen Bratosin, Wil van der Aalst, and Natalia Sidorova
Modeling Grid Workflows with Colored Petri Nets.. 67

Karolina Zurowska and Ralph Deters
Overcoming Failures in Composite Web Services by Analysing Colored Petri
Nets .. 87

Nick Russel1, Arthur H.M. ter Hofstede and Wil M.P. van der Aalst
newYAWL: Specifying a Workflow Reference Language using Coloured
Petri Nets.. 107

Kristian Bisgaard Lassen and Simon Tjell
Translating Colored Control Flow Nets into Readable Java via Annotated
Java Workflow Nets... 127

Visar Januzaj
CPNunf: A tool for McMillan’s Unfolding of Coloured Petri Nets 147

Christine Choppy, Laure Petrucci, and Gianna Reggio
Designing coloured Petri net models: a method .. 167

R.S. Mans, W.M.P. van der Aalst, P.J.M. Bakker, A.J. Moleman, K.B. Lassen
and J.B. Jørgensen
From Requirements via Colored Workflow Nets to an Implementation in
Several Workflow Systems.. 187

Jõao M. Fernandes, Simon Tjell, and Jens Bæk Jørgensen
Requirements Engineering for Reactive Systems with Coloured Petri Nets:
the Gas Pump Controller Example?... 207

Óscar R. Ribeiro and Jõao M. Fernandes
On the Use of Coloured Petri Nets for Visual Animation 223

Kristian L. Espensen, Mads K. Kjeldsen, and Lars M. Kristensen
Towards Modelling and Validation of the DYMO Routing Protocol for
Mobile Ad-hoc Networks .. 243

The ASCoVeCo State Space Analysis Platform:

Next Generation Tool Support for State Space Analysis⋆

Invited Tutorial

Lars M. Kristensen and Michael Westergaard

Department of Computer Science, University of Aarhus,
IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark,

Email: {kris,mw}@daimi.au.dk

Extended Abstract

State space analysis is one of the main approaches to model-based verification of concur-
rent systems and is one of the most successfully applied analysis methods for Coloured Petri
Nets (CP-nets or CPNs) [13, 16, 17]. The basic idea of state space exploration and analysis is
to compute all reachable states and state changes of the concurrent system under considera-
tion and represent these as a directed graph. From a constructed state space it is possible to
verify and analyse a large class of behavioural properties by considering, e.g., the standard
behavioural properties of CP-nets, traverse a constructed state space by means of user-defined
queries, or conduct LTL and CTL model checking [4, 10]. Another main advantage of state
space analysis is that it can be supported by computer tools in a highly automatic way, and it
can provide counter examples demonstrating why the system does not have a certain property.

The main limitation of using state spaces to verify behavioural properties of systems is
the state explosion problem [24], i.e., that state spaces of systems may have an astronomical
number of reachable states which means that they are too large to be handled with the
available computing power (CPU speed and memory). Methods for alleviating this inherent
complexity problem is an active area of research and has led to the development of a large
collection of state space reduction methods. These methods have significantly broadened the
class of systems that can be verified and state spaces can now be used to verify systems of
industrial size. Some of these methods [2, 15, 14, 25] have been developed in the context of the
CPN modelling language. Other methods (e.g., [23, 22, 26, 11]) have been developed outside
the context of the CPN modelling language, but state space reduction methods are generally
independent of any concrete modelling language and hence also applicable for CP-nets.

A computer tool supporting state spaces must implement a wide range of state space
reduction methods since no single reduction method works well on all systems. Both CPN
Tools [5] and its predecessor Design/CPN [6] have supported state space analysis in it most
basic form and experimental prototype libraries have been developed supporting state space
reduction methods such as the symmetry method [15, 18], the equivalence method [14, 19],
time condensed state spaces [3], and the sweep-line method [2, 21]. The software architectures
of CPN Tools and Design/CPN have, however, made it difficult to support a collection of
state space reduction methods in a coherent manner in these tools.

This tutorial presents the ASCoVeCo State Space Analysis Platform (ASAP) which is
currently being developed in the context of the ASCoVeCo research project [1]. ASAP rep-
resents the next generation of tool support for state space exploration and analysis of CPN

⋆ Supported by the Danish Research Council for Technology and Production.

1

models. The aim and vision of ASAP is to provide an open platform suited for research,
educational, and industrial use of state space exploration. This means that the ASAP will
support a wide collection of state space exploration methods and have an architecture that
allows the research community to extend the set of supported methods. Furthermore, ASAP
will be sufficiently mature to be used for educational purposes, including teaching of advanced
state space methods, as well as sufficiently mature to be used in industrial projects as has
been the case with CPN Tools and Design/CPN. ASAP is a stand-alone tool and is able to
load models created with CPN Tools. ASAP will be available for Windows XP/Vista, Linux,
and Mac OS X.

The ASAP platform consists of a graphical user interface (GUI) and a state space explo-
ration engine (SSE engine). Figure 1(left) shows the software architecture of the graphical user
interface which is implemented in Java based on the Eclipse Rich Client Platform (RCP) [9].
The software architecture of the SSE engine is shown in Fig. 1(right). It is based on Standard

ML (SML) and relies on the CPN simulator used in CPN Tools. The SSE engine implements
the state space Exploration and model checking algorithms supported by ASAP. The state
space exploration and model checking algorithms implemented rely on a set of Storage and
Waiting Set components for efficient storage and exploration of state spaces. Furthermore, the
SSE engine implements the Query Languages(s) used for writing state space queries and to
verify properties.

J a v aE c l i p s e R i c h C l i e n t P l a t f o r mG r a p h i c a lM o d e l l i n gF r a m e w o r k E c l i p s e M o d e l l i n g F r a m e w o r kJ o b E x e c u t i o nL a n g u a g e C P N M o d e lR e p r e s e n t a t i o nCPNM od el I nst anti at orCPNM od el L oad erI nspect orS ch ed ul erJ o b E x e c u t i o nL a n g u a g eE d i t o r
S t a n d a r d M LM od el Si mul at or(s) S t orage(s) W ai ti ng ` S et(s) Q uery L anguage(s)E x p l o r a t i o n (s)

Fig. 1. ASAP platform architecture: GUI (left) and SSE engine (right).

The ASAP GUI makes it possible to create and manage verification projects consisting
of a collection of verification jobs. The GUI has three different perspectives for working with
verification projects:

– An editing perspective for creating and editing verification jobs.
– An execution perspective for controlling the execution of verification jobs.
– An inspection perspective for inspecting and interpreting analysis results.

Verification jobs are constructed and specified using the verification Job Execution Language

(JEL) and the JEL Editor. JEL is a graphical language inspired by data-flow diagrams that

2

makes it possible to specify the CPN models, queries, state space explorations, and pro-
cessing of analysis results that constitute a verification job. JEL and the JEL Editor are
implemented using the Eclipse Modelling Framework (EMF) [8] and the Graphical Modelling

Language [7] (GMF). The ASAP GUI additionally has a Model Loader component and a Model

Instantiation component that can load and instantiate CPN models created with CPN Tools.
Hence, models created using CPN Tools can be used directly with ASAP and since ASAP
relies on the same underlying CPN simulator as CPN Tools, there is no CPN semantical gap
between the two tools. It is worth noticing that it is only the CPN Model Loader, CPN Model

Instantiator, and CPN Model Representation components that are specific to CPN models. The
other components are independent of the CPN modelling formalism.

Figure 2 shows a snapshot of the graphical user interface in the editing perspective. The
user interface consists of three main parts apart from the usual menus and tool-bars at the
top.

Fig. 2. Snapshot of the graphical user interface – editing perspective.

To the left is an overview of the verification projects loaded, in this case just a single
project named Demo is loaded. A verification project consists of a number of verification jobs,
models, and queries. In this case there are three verification job all concerned with checking

3

deadlock properties. A CPN model named erdp is loaded, which is a CPN model of an edge
router discovery protocol [20]. At the bottom of the user interface is a console, which makes it
possible to interact directly with the SSE engine using SML. This makes it easy to experiment
with the tool and to issue queries that need not be stored as part of the verification project.
The large area at the top-right is the editing area. The editing area can be used to edit queries
and verification jobs. In this case two jobs are being edited and the two windows shows the
graphical representation in JEL of the parts being edited.

ASAP has an interface to the CPN simulator providing a set of primitives that makes it
easy to access the transition relation of the CPN model and thereby augment the platform
with new state space exploration and model checking algorithms. The primitives available is
specified by the MODEL SIMULATOR SML signature (interface) listed in Fig. 3. The signature
deals with states and events (ll. 3–4). It is possible to get the initial states of the model (l.
9). Each state is represented as the actual state and all enabled events in that state. In order
to accommodate non-deterministic formalisms, we allow a number of initial states, so a list
of states is returned instead of just a single state. From a state and an event, it is possible to
get (all) successor states (l. 12), and from a state and a sequence (list) of events, it is possible
to get (all) states that are the result of executing the sequence of events from the specified
state (l. 16). If a user tries to execute an event that is not enabled, the EventNotEnabled

exception (l. 6) is raised in both nextStates and executeSequence.

1 signature MODEL_SIMULATOR =

2 sig

3 eqtype state

4 eqtype event

5

6 exception EventNotEnabled

7

8 (* --- get the initial states and enabled events in each state --- *)

9 val getInitialStates : unit -> (state * event list) list

10

11 (* --- get the successor states and enabled events in each successor state --- *)

12 val nextStates : state * event -> (state * event list) list

13

14 (* --- execute an event sequence and return the list of resulting states --- *)

15 (* --- and enabled events --- *)

16 val executeSequence : state * event list -> (state * event list) list

17 end

Fig. 3. SML signature of the model simulator interface.

The SSE engine currently implements full state space exploration, bit-state hashing [11],
hash compaction [26], the comback method [25], state caching [12], and the equivalence
method [14] based on canonicalisation of equivalent markings. All these methods have been
implemented using the CPN simulator interface in Fig. 3 and the storage and waiting set
components provided by the SSE engine. Currently only verification of safety properties is
supported by ASAP. State space exploration can be done both breadth-first and depth-first.
It is worth observing that the model simulator interface allows the state space exploration

4

and model checking algorithms to be implemented such that they are independent from a
concrete modelling language.

As part of the development of ASAP, we have also developed a test and benchmarking tool
containing a collection of small, medium, and large CPN models. This benchmarking suite
makes it simple to profile the performance (e.g., time and space usage) of state space methods
and their implementation. The benchmarking tool includes an SQL database where profiling
data can be stored and a web-based GUI that makes it possible to query the database and
display the results graphically.

During the CPN workshop we plan to make a first technology preview release of ASAP.
For version 1.0 we plan to complete the implementation of the simulator interface in the SSE
engine, and additionally implement the sweep-line method [2, 21], time condensed state spaces
[3], and CTL and LTL model checking [10, 4]. Also, we plan to implement and provide the same
set of state space query functions available in the state space tool of CPN Tools. In the user
interface we will complete the implementation of the JEL Editor, implement an SML Query
Editor, and implement the inspection perspective. Also, we will implement a functionality
similar to the state space report and a simple interactive and automatic visualisation of state
spaces as known from CPN Tools.

Acknowledgements. The authors wish to acknowledge the work of Surayya Urazimbetova and
Mads K. Kjeldsen who are significantly contributing to the development of ASAP via their
employment as student programmers in the ASCoVeCo project.

References

1. The ASCoVeCo Project. www.daimi.au.dk/~ascoveco.
2. S. Christensen, L.M. Kristensen, and T. Mailund. A Sweep-Line Method for State Space Exploration. In

Proc. of TACAS’01, volume 2031 of LNCS, pages 450–464. Springer-Verlag, 2001.
3. S. Christensen, L.M. Kristensen, and T. Mailund. Condensed State Spaces for Timed Petri Nets. In Proc.

of 22nd International Conference on Application and Th eory of Petri Nets, volume 2075 of Lecture Notes
in Computer Science, pages 101–120. Springer-Verlag, 2001.

4. E. Clarke, O. Grumberg, and D. Peled. Model Checking. The MIT Press, 1999.
5. CPN Tools. www.daimi.au.dk/CPNTools.
6. Design/CPN. www.daimi.au.dk/designCPN.
7. Eclipse Graphical Modelling Framework (GMF). www.eclipse.org/modeling/gmf/.
8. Eclipse Modelling Framework (EMF). www.eclipse.org/modeling/emf/.
9. Eclipse Rich Client Platform (RCP). www.eclipse.org/home/categories/rcp.php.

10. E. A. Emerson. Temporal and Modal Logic, volume B of Handbook of Theoretical Computer Science,
chapter 16, pages 995–1072. Elsevier, 1990.

11. G.J. Holzmann. An Analysis of Bitstate Hashing. Formal Methods in System Design, 13:289–307, 1998.
12. C. Jard and T. Jeron. Bounded-memory Algorithms for Verification On-the-fly. In Proc. of CAV’91,

volume 575 of LNCS, pages 192–202. Springer-Verlag, 1991.
13. K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use. Volume 1:Basic

Concepts. Monographs in Theoretical Computer Science. Springer-Verlag, 1992.
14. K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use. Volume 2: Analysis

Methods. Monographs in Theoretical Computer Science. Springer-Verlag, 1994.
15. K. Jensen. Condensed State Spaces for Symmetrical Coloured Petri Nets. Formal Methods in System

Design, 9, 1996.
16. K. Jensen and L.M. Kristensen. Coloured Petri Nets – Modelling and Validation of Concurrent Systems.

Springer-Verlag, In preparation.
17. K. Jensen, L.M. Kristensen, and L. Wells. Coloured Petri Nets and CPN Tools for Modelling and Validation

of Concurrent Systems. In International Journal on Software Tools for Technology Transfer (STTT), 9(3-
4):213–254, 2007.

5

18. J.B. Jørgensen and L.M. Kristensen. Computer Aided Verification of Lamports Fast Mutual Exclusion
Algorithm Using Coloured Petri Nets and Occurrence Graphs with Symmetries. IEEE Transactions on
Parallel and Distributed Systems, 10(7):714–732, 1999.

19. J.B. Jørgensen and L.M. Kristensen. Verification of coloured petri nets using state spaces with equivalence
classes. In Petri Net Approaches for Modelling and Validation, volume 1 of LINCOM Studies in Computer
Science, chapter 2, pages 17–34. Lincoln Europa, 2003.

20. L.M. Kristensen and K. Jensen. Specification and validation of an edge router discovery protocol for
mobile ad-hoc networks. In Proc. of Integration of Software Specification Techniques for Applications in
Engineering, volume 3147 of Lecture Notes in Computer Science, pages 248–269. Springer-Verlag, 2004.

21. L.M. Kristensen and T. Mailund. A Generalised Sweep-Line Method for Safety Properties. In Proc. of
FME’02, volume 2391 of LNCS, pages 549–567. Springer-Verlag, 2002.

22. D. Peled. All from One, One for All: On Model Checking Using Representatives. In Proceedings of CAV’93,
volume 697 of Lecture Notes in Computer Science, pages 409–423. Springer-Verlag, 1993.

23. A. Valmari. Error Detection by Reduced Reachability Graph Generation. In Proceedings of the 9th
European Workshop on Application and Theory of Petri Nets, pages 95–112, 1988.

24. A. Valmari. The State Explosion Problem. In Lectures on Petri Nets I: Basic Models, volume 1491 of
Lecture Notes in Computer Science, pages 429–528. Springer-Verlag, 1998.

25. M. Westergaard, L.M. Kristensen, G.S. Brodal, and L.A. Arge. The ComBack Method – Extending Hash
Compaction with Backtracking. In Proc. of ICATPN’07, volume 4546 of Lecture Notes in Computer
Science, pages 445–464. Springer-Verlag, 2007.

26. P. Wolper and D. Leroy. Reliable Hashing without Collision Detection. In Proc. of CAV’93, volume 697
of LNCS, pages 59–70. Springer-Verlag, 1993.

6

Component Tools: A Frontend for Formal Methods

Ekkart Kindler, Technical University of Denmark, Copenhagen

Abstract
Petri Nets are a powerful technique for modelling, analysing, and validating all kinds of
systems. In order to exploit the full power of Petri nets, different versions of Petri nets and tools
need to be used, and, sometimes, we need to combine them with other techniques. This makes it
necessary to model the same system in different Petri net formalisms or other notations over and
over again. Moreover, systems will often be constructed from standard components so that the
modeller would like to build his system from these components. This way, even users with no
experience in Petri nets can model systems. In order to help this group of users, the analysis
results obtained by Petri net tools or other formal methods must be presented and visualized
independently from Petri nets. Component Tools is a platform designed for this purpose. Along
with a 3D-visualisation of the behaviour of the system (PNVis), non-experts can build Petri net
models and see their model running in (virtual) reality.
The tutorial will cover the concepts of ComponentTools as well as the concepts and modelling
philosophy of the 3D-visualisation. Moreover, the tutorial will discuss the underlying software
technology which makes it easy to implement this kind of tools. In addition to the existing
concepts the tutorial will give an overview of ideas for future work and challenging research
projects -- with the potential for many PhD theses.

References
E. Kindler and F. Nillies: Petri Nets and the Real World.
Petri Net Newsletter 70, Cover Picture Story, pp. 3-8, April 2006.
http://www.upb.de/cs/kindler/publications/copies/PRW-PNNL70.pdf

E. Kindler and C. Páles: 3D-Visualization of Petri Net Models: Concept and Realization.
In: J. Cortadella and W. Reisig (eds.): International Conference on Theory and Application of
Petri Nets 2004, 25th International Conference, Bolgna, Italy. Springer, LNCS 3099: 464-473,
June 2004.

E. Kindler, V. Rubin, and R. Wagner: Component Tools: Application and Integration of Formal
Methods.
In: Electronic proceedings of the Workshop Object Orientierte Software Entwicklung 2005
(OOSE '05), Satellite event of Net.ObjectDays 2005, Erfurt, Germany, September 2005.
http://www.upb.de/cs/kindler/publications/copies/OOSE05.pdf

E. Kindler, V. Rubin, and R. Wagner: Component Tools: Integrating Petri nets with other formal
methods.
International Conference on Theory and Application of Petri Nets 2006, 27th International
Conference, Turku, Finland. June 2006. LNCS 4024, pp. 37-56.

E. Kindler and R. Wagner: Triple Graph Grammars:
Concepts, Extensions, Implementations, and Application Scenarios.
Tech. Rep. tr-ri-07-284, Software Engineering Group, Department of Computer Science,
University of Paderborn, June 2007.
http://www.upb.de/cs/ag-schaefer/Veroeffentlichungen/Quellen/Papers/2007/tr-ri-07-284.pdf

7

8

Towards Formal Specification and Validation of

Secure Connection Establishment in a

Generic Access Network Scenario⋆

Paul Fleischer and Lars M. Kristensen

Department of Computer Science, University of Aarhus,
IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark,

{pf,kris}@daimi.au.dk

Abstract. The Generic Access Network (GAN) architecture is defined
by the 3rd Generation Partnership Project (3GPP), and allows telephone
services, such as SMS and voice-calls, to be accessed via generic IP net-
works. The main usage of this is to allow mobile phones to use WiFi in
addition to the usual GSM network. The GAN specification relies on the
Internet Protocol Security layer (IPSec) and the Internet Key Exchange
protocol version 2 (IKEv2) to provide encryption across IP networks,
and thus avoid compromising the security of the telephone networks.
The detailed usage of these two internet protocols (IPSec and IKEv2) is
only roughly sketched in the GAN specification. As part of the process
to develop solutions to support the GAN architecture, TietoEnator Den-
mark has developed a more detailed GAN scenario which describes how
IPsec and IKEv2 are to be used during the connection establishment
procedure. The constribution of this paper is to present a CPN model
developed to formally specify and validate the detailed GAN scenario
considered by TietoEnator.

1 Introduction

The Generic Access Network (GAN) [1] architecture as specified by the 3rd
Generation Partnership Project (3GPP) [2] allows access to common telephone
services such as SMS and voice-calls via generic Internet Protocol (IP) [3] net-
works. The operation of GAN is based on a Mobile Station (e.g., a cellular phone)
opening an encrypted tunnel to a Security Gateway via an IP-network. A GAN

Controller is responsible for relaying the commands send via this tunnel to the
telephone network, which in turn allows mobile stations to access the services
on the telephone network. The Security Gateway and the GAN Controller can
either reside on the same physical machine or on two separate machines commu-
nicating by IP. The encrypted tunnel is provided by the Encapsulating Security
Payload (ESP) mode of the IP security layer (IPSec) [4]. In order to provide
such an encrypted tunnel, both ends have to authenticate each other, and agree

⋆ Supported by the Danish Research Council for Technology and Production and
TietoEnator Denmark.

9

on both encryption algorithm and keys. This is achieved using the Internet Key
Exchange v2 (IKEv2) protocol [5]. The GAN specification [1] merely states that
IKEv2 and IPSec are to be used, and in which operating modes. However, what
that means for the message exchange is not specified, and is left to the IKEv2 and
IPSec standards. As such, there is no clear specification of the IKEv2 message
exchange and the states that the protocol entities are to be in when establishing
a GAN connection.

TietoEnator Denmark [6] is working on providing solutions to support the
GAN architecture. Prior to the implementation, a textual usage scenario was
formulated [7] which constitutes a specific instantiation of the full GAN archi-
tecture. The purpose of this scenario was two-fold. First, it defines the scope of
the software to be developed, i.e., which parts of the full GAN specification are
supposed to be supported. Secondly, the scenario describes thoughts about the
initial design of both the software and the usage of it. The scenario describes the
details of how a mobile station is configured with an IP-address using DHCP [8]
and then establishes an ESP-tunnel [9] to the Security Gateway using IKEv2 [5]
and IPSec [4]. At this point, the mobile station is ready to communicate securely
with the GAN Controller. The focus of the scenario is the establishment of the
secure tunnel and initial GAN message exchanges which are the detailed parts
omitted in the full GAN specification. Throughout this paper the term GAN

scenario refers to the detailed scenario [7] described by TietoEnator, while GAN

architecture refers to the generic architecture as specified in [1].

The contribution of this paper is to describe the results of a project at Ti-
etoEnator, where Coloured Petri Nets [10] were used as a supplement to a textual
description of the GAN scenario to be implemented. The model has been con-
structed from the material available from TietoEnator [7], the GAN specification
[1], and the IKEv2 specification [5]. The CPN model deals only with the connec-
tion establishing aspect of the GAN architecture, as this is the main focus of the
TietoEnator project. As the scenario from TietoEnator deals with the aspect of
configuring the mobile station with an initial IP-address, the model does not only
cover the communication of the GAN protocol, but also of the DHCP messages
and actual IP-packet flow. The CPN model includes a generic IP-stack model,
which supports packet forwarding and ESP-tunnelling. This modelling approach
was chosen to allow the model to be very close to the scenario description used
by TietoEnator with the aim of easing the understanding of the model for Ti-
etoEnator engineers which will eventually implement the GAN scenario. The
model was presented to the engineers at two meetings. Each meeting resulted
in minor changes of the model. Even though the TietoEnator engineers have
did not have any experience with Coloured Petri Nets, they quickly accepted
the level of abstraction and agreed that the scenario was the same as they had
described by text.

Coloured Petri Nets have been used to model various Internet protocols (e.g.,
[11][12]). The general approach of modelling Internet protocols is to abstract as
much of the environment away, and only deal with the core of the protocol.
The advantage of this approach is that the model gets simpler and the analysis

10

becomes easier due to restricted state space size. The approach presented in
this paper also makes use of abstraction. However, the chosen abstraction level
is based on a scenario, rather than a single protocol specification. This gives
a complete picture of the scenario, rather than a single protocol. This is an
advantage when working with design of actual protocol implementations as it
gives an overview of the needed features and component interaction. The main
drawback is that the model becomes larger and more difficult to analyse. Such
a scenario model is not well suited for checking properties of a single protocol
as done in [11] and [12].

The rest of this paper is organised as follows. Sect. 2 gives an introduction
to the GAN scenario as defined by TietoEnator and presents the top-level of
the constructed CPN model. Sect 3 and Sect. 4 present selected parts of the
constructed CPN model including a discussion of the modelling choices made.
In Sect. 5 we explain how the model of the GAN specification was validated
using simulation and state space analysis. Finally, in Sect. 6 we sum up the
conclusions and discuss future work. The reader is assumed to be familiar with
the CPN modelling language [10] and CPN Tools [13].

2 The GAN Scenario

This section gives an introduction to the GAN scenario [7] as defined by Ti-
etoEnator and the constructed CPN model. Fig. 1 shows the top-level module
of the constructed CPN model. The top-level module has been organised such
that it reflects the network architecture of the GAN scenario. The six substi-
tution transitions represent the six network nodes in the scenario and the four
places with thick lines represent networks connected to the network nodes. The
places with thin lines connected to the substitution transitions Provisioning Secu-

rity Gateway, Default Security Gateway, Provisioning GAN Controller, and Default

GAN Controller are used to provide configuration information to the correspond-
ing network nodes. The module has been annotated with network and interface
IP addresses to provide that information at the topmost level.

The substitution transition MobileStation represents the mobile station which
is connecting to the telephone network via a generic IP-network. The place Wire-

less Network connected to MobileStation represents the wireless network which
connects the mobile station to a wireless router represented by the substitu-
tion transition WirelessRouter. The wireless router is an arbitrary access point
with routing functionality, and is connected to the ProvisioningSecurityGateway,
through Network B. The provisioning security gateway is connected to the Pro-

visioningGANController via Network C. There is a second pair of security gateway
(DefaultSeurityGateway) and GAN controller (DefaultGANController). The pro-
visioning GAN controller is responsible for authenticating any connection, and
redirecting them to another GAN controller in order to balance the load over a
number of GAN controllers. In the GAN scenario, the default GAN controller
represents the GAN controller which everything is redirected to. It is worth
mentioning, that the generic GAN architecture sees the security gateway as a

11

iface 0:
13.1.1.1

iface 1:
13.0.0.1

iface 0:
172.1.1.2

13.0.0.0/8

iface 0:
190.1.1.1

190.0.0.0/8

iface 0:
190.1.1.254

iface 1:
172.1.1.254

172.0.0.0/8

iface 0:
172.1.1.1

iface 0:
12.1.1.1

iface 1:
12.0.0.1

12.0.0.0/8

Default
GAN

Controller

GANController

Default
Security
Gateway

SecurityGateway

Provisioning
GAN

Controller

GANController

Provisioning
Security
Gateway

SecurityGateway

Wireless
Router

WirelessRouter

Mobile
Station

MobileStation

Default
SGConfig

ConfigDefaultSG

NODE_CONFIG

SG Config

ConfigProvSG

NODE_CONFIG

Default
GANCConfig

ConfigDefaultGANC

NODE_CONFIG

Prov.
GANCConfig

ConfigProvGANC

NODE_CONFIG

Network
D

NET_PACKET

Network
C

NET_PACKET

Network
B

NET_PACKET

Wireless
Network

NET_PACKET

MobileStation WirelessRouter

SecurityGateway GANController

SecurityGateway GANController

Fig. 1. Top-level module the GAN scenario CPN model.

component within the GAN controller. However, TietoEnator decided to sepa-
rate the two which makes the message exchange more clear. Neither the Wireless

Router nor Network B are required to be owned or operated by the telephone
operator. However, all security gateways, GAN controllers, and Network C and
Network D are assumed to be under the control of the telephone operator, as
non-encrypted messages will be exchanged across them.

The basic exchange of messages in the GAN scenario consists of a number
of steps as depicted in the Message Sequence Charts (MSCs) in Figs. 2-4. The
MSCs have been generated from the constructed CPN model using the BritNeY
animation tool [14].

The scenario assumes that the Mobile Station is completely off-line to begin
with. It then goes through 5 steps: Acquire an IP address using DHCP, Create
a secure tunnel to the provisioning security gateway, use the GAN protocol to
acquire the addresses of the security gateway and GAN controller to use for
further communication, create a secure tunnel to the new security gateway, and
finally initiate a GAN connection with the new GAN controller. The last step
is not modelled, and step 4 is similar to step 2 and will as such not be treated
separately.

The first step is to create a connection to an IP-network which is connected
to the Provisioning Security Gateway of the service provider. It is assumed that
a physical connection to the network is present. This step is depicted in Fig. 2
where the Mobile Station sends a DHCP Request to the Wireless Router and re-

Fig. 2. MSC showing DHCP step of connection establishment.

12

ceives a DHCP Answer containing the IP address. The Mobile Station is assumed
to be equipped with either the domain name or IP address of the provisioning
security gateway and the provisioning GAN controller. In this paper, we assume
that the IP address is known, as this allows us to not model the DNS server and
name lookup.

Having obtained an IP-address via DHCP, the mobile station can now start
negotiating the parameters for the secure tunnel with the provisioning security
gateway using IKEv2. This is illustrated in the MSC shown in Fig. 3. This is done
in 3 phases. The first phase is the initial IKEv2 exchange, where the two parties
agree on the cryptographic algorithms to use, and exchange Diffie-Hellman val-
ues in order to established a shared key for the rest of the message exchanges.
The second phase is the exchange of Extensible Authentication Protocol (EAP)
messages. The idea of EAP is that it is possible to use any kind of authenti-
cation protocol with IKEv2. In this situation, a protocol called EAP-SIM is
used. As can be seen in Fig. 3, the Provisioning Security Gateway initiates the

Fig. 3. MSC showing IKE step of connection establishment.

EAP message exchange by returning an EAP Request to the Mobile Station’s
authentication request. The actual EAP-SIM protocol exchanges 4 messages (2
requests and 2 responses) before it succeeds. As an result of the EAP-phase,
the two parties have a shared secret key. In the third phase the Mobile Station

13

uses this shared key to perform final authentication. The last packet sent by the
Provisioning Security Gateway contains the network configuration for the Mobile

Station needed to establish a secure tunnel.

Having established the secure tunnel, the Mobile Station can open a secure
connection to the Provisioning GAN Controller and register itself. This is shown
in the MSC in Fig. 4. If the Provisioning GAN Controller accepts the Mobile
Station, it sends a redirect message, stating a pair of security gateway and GAN
controller to use for any further communication. The Mobile Station closes the
connection to the Provisioning GAN Controller and the Provisioning Security Gate-

way. The final two steps of establishing a connection are to negotiate new IPSec
tunnel parameters with the new security gateway, and establish a connection to
the GAN controller. Having established the connection, the scenario ends. Fig. 4
only shows the registration with the Provisioning Security Gateway.

Fig. 4. MSC showing GAN step of connection establishment.

The scenario modelled involves multiple layers of the IP network stack.
DHCP, used to configure the mobile station, is a layer 2 protocol, while IKE
is a layer 4 protocol, and GAN is a layer 5 protocol. In order to accomodate
all these layers in the model, a rather detailed representation of the IP com-
ponents has been made. However, where simplifications were posible they have
been made. For instance, the GAN protocol uses TCP, but TCP has not been
modelled. Instead the network is currently lossless, but may reorder packets.
This is not a problem, as GAN messages can be received out of order without
messing things up. This is due to the fact, that the GAN Client only receives
exactly the message it expects. The IP model contains routing which behaves
similarly to the routing procedures implemented in real IP stacks. Some simpli-
fications have been made to the routing algorithm, however, the end behaviour
is the same. Each network node connected to an IP network has a routing table
which contains information on how to deliver IP packets. In its simplest form,
the entries in a routing table are pairs of destination network address and next
hop, describing what the next hop is for IP packets matching the network ad-
dress. In the IP model presented in this paper, IP addresses assigned to local
interfaces have entries in the routing table as well, with a special next hop value.
This is usually not the case for IP-stacks, but simplifies the routing model as
ingoing routing can be performed without inspecting the list of interfaces. The
ESP tunnel, which is used to secure the communication between the mobile sta-
tion and the security gateway, is a part of the IPSec protocol suite, which is an

14

extension to the IP stack. Only enough of IPSec is modelled to support this tun-
nelling, and as such IPSec is not modelled. There are two components that are
related to IPSec in the model: Routing and the Security Policy Database (SPD).
The routing system ensures that packets are put into the ESP tunnel, and ex-
tracted again at the other end. The SPD describes what packets are allowed
to be sent and received by the IP-stack, and is also responsible for identifying
which packets are to be tunnelled. Each entry in the SPD contains the source
and destination addresses to use for matching packets, and an action to perform.
Modelled actions are bypass, which means allow, and tunnel, which means that
the matched packet is to be sent through an ESP tunnel.

3 Modelling the GAN Network Nodes

The CPN module is organised in 31 modules, with the top-level module being
depicted in Fig. 1. The top module has four submodules: MobileStation, Wire-

lessRouter, SecurityGateway and GANController. Each of these modules has one
or more protocol modules and an IP layer module. The modelling of the protocol
entities and the IP layer will be discussed in Sect. 4.

In this section we present these modules in further detail. It can be seen
that the provisioning and default GAN controller is represented using the same
module and the same is the case with the provisioning and default security
gateways.

3.1 Mobile Station

Fig. 5 shows the MobileStation module. The IP Layer substitution transition rep-
resents the IP layer of the mobile station and the Physical Layer substitution
transition represents the interface to the underlying physical network. To the
left are the three places which configure the IP layer module with a Security Pol-

icy Database, a Routing Table, and IP and MAC Addresses of the mobile station.
These are also accessed in the DHCP, IKE, and GAN modules, as the configura-
tion places are fusion places. This has been done to reduce the number of arcs in
the module and since the security policy database, routing table, and addresses
are globally accessible in the mobile station. The remaining substitution transi-
tions model the steps that the mobile station goes through when establishing a
GAN connection. The mobile station is initially in a Down state represented by
a unit token on the place Down.

There are two tokens on the Addresses place representing the MAC and IP
addresses assigned to the interfaces of the mobile station. The ADDR colour set
is defined as follows:

colset IP_ADDR = product INT * INT * INT * INT;

colset MAC_ADDR = INT;

colset IFACE = INT;

colset IFACExIP_ADDR = product IFACE * IP_ADDR;

15

Connect to
Default SG

IKEInitiator

Physical Layer

MS Interfaces

GANC
Communication

GANClient

Connect to
Provisioning SG

IKEInitiator

DHCP

DHCP Client

IP Layer

IP-Layer

VIF open to
Def-SG

IP_ADDR

Send
Buffer

IP_PACKET

Receive
Buffer

IP_PACKET

VIF
Closed

IP_ADDR

VIF open
to P-SG

IP_ADDR

Network
Buffer

IFACEBUFxNET_PACKET

Ready

IP_ADDR

Security
Policy

Database

MS SPD

MSInitSPD

SPD_ENTRY_LIST

Routing
Table

MS Routing Table

ROUTING_TABLE

Addresses

MS Addresses

1`MacAddr((0,2))++
1`IpAddr((0, (0,0,0,0)))

ADDR

Down

()

UNIT

Network A

I/O
NET_PACKET

I/O

MS Addresses

MS Routing Table

MS SPD

IP-Layer

DHCP Client

IKEInitiator

GANClient

MS Interfaces

IKEInitiator

1

1`[{src=((0,0,0,0),0),dest=((0,0,0,0),
0),nl_info=PayloadList([PAYLOAD_DH
CP]),policy=SpdBypass}]

2

1`IpAddr((0,(0,0,0,0)))++
1`MacAddr((0,2))

1 1`()

Fig. 5. The MobileStation module.

16

colset IFACExMAC_ADDR = product IFACE * MAC_ADDR;

colset ADDR = union IpAddr : IFACExIP_ADDR +

MacAddr : IFACExMAC_ADDR;

IP addresses are represented as a product of four integers, one for each octet
of the address it represents. So, the IP address 192.0.0.1 becomes (192,0,0,1).
MAC addresses and interfaces are represented as integers. On Fig. 5,
IpAddr((0,(0,0,0,0))) means that interface 0 is assigned the all-zero IP ad-
dress ((0,0,0,0)). MacAddr((0,2)) means that interface 0 has the MAC ad-
dress 2.

Initially, the SPD is configured to allow DHCP messages to pass in and
out of the mobile station. The single token on the Security Policy Database

place represents a single rule, matching packets with any source and any des-
tination (src=((0,0,0,0),0) and dest=((0,0,0,0),0)) and DHCP payload
(nl info=PayloadList([PAYLOAD DCHP])). The policy for this rule is bypass,
meaning that packets matching this rule are to be allowed. As the routing table
is initially empty (no IP configured), there are no tokens on the Routing Table

place.
The first step is to perform DHCP configuration as was previously illustrated

in Fig. 2. This is done in the submodule of the DHCP substitution transition in
Fig. 5. The DHCP module accesses all three configuration places. After having
configured the mobile station with DHCP, a token is placed on the Ready place,
representing that the mobile station is now ready to start to communicate with
the provisioning security gateway. The Connect to provisioning SG substitution
transition takes care of establishing the ESP tunnel to the provisioning secu-
rity gateway, as shown in the MSC on Fig. 3. After having connected to the
provisioning security gateway, the GAN Communication transition is responsible
for sending a GAN discovery message to the provisioning GAN controller and
receiving the answer, which will be either reject or accept. In the first case, the
mobile station keeps sending discovery messages until one is accepted. When an
accept message is received, the ESP tunnel to the provisioning security gateway
is closed, and the IP address of the security gateway in the accept packet is
placed on the VIF Closed place. Finally, the Connect to Default SG transition is
responsible for establishing a new ESP tunnel to the default security gateway
(which was the one received with the GAN accept message).

3.2 Wireless Router

Fig. 6 shows the WirelessRouter module. The wireless router has an IP layer, a
physical layer, a security policy database, a routing table, and a set of associated
addresses similar to the mobile station. The SPD is setup to allow any packets
to bypass it. The wireless router has 2 interfaces, the Addresses place assigns
MAC address 1 and IP address 190.1.1.254 to interface 0, and MAC address
3 and IP address 172.1.1.254 to interface 1.

The routing table contains a single token of the colour set ROUTING TABLE

which represents the complete routing table. The definition of this colour set is
as follows:

17

colset NETWORK_ADDR = product IP_ADDR * INT;

colset ROUTING_ENTRY = product NETWORK_ADDR * IP_NEXTHOP;

colset ROUTING_TABLE = list ROUTING_ENTRY;

The colour set is a list of ROUTING ENTRY. The NETWORK ADDR colour
set represents a network address in an IP-network. It consists of an IP address
and a prefix, which selects how much of the IP address to use for the network
address. For instance, a prefix of 24 means to use the 24 first bits the IP address
as the network address, which corresponds to using the first 3 octets (3 ∗ 8 =
24). Usually, this is written as 192.2.0.0/24, but in our model it becomes
((192,2,0,0),24) The IP NEXTHOP field is explained in detail in Sect. 4.4.

In the Wireless Router module, the routing table is set up such that packets
to the host with IP address 190.1.1.1 are to be delivered directly via interface 0
(Direct(0)), packets to the network 172.1.1.0/24 are to be delivered directly
through interface 1 (Direct(1)), and finally packets destined for 190.1.1.254

(the Wireless Router itself) are terminated at interface 0 (Terminate(0)).
The wireless router implements the DHCP Server which is used initially by

the mobile station to obtain an IP address. It can be seen that the wireless router
has a physical connection to both Network A and Network B.

3.3 Security Gateway

Fig. 7 shows the SecurityGateway module. The security gateway has an IP layer,
a physical layer, a security policy database, routing table, and a set of associated
addresses similar to the mobile station and the wireless router. The configura-
tion places are initialised via the Init transition which obtains the configuration
parameters from the input port place Config. The security gateway implements
the IKE responder protocol module which communicates with the IKE Initiator of
the mobile station as described by the MSC shown in Fig. 3.

The Config place is associated with the SG Config socket place of the top-level
module (see Fig. 1) for the instance of the SecurityGateway module that corre-
sponds to the Provisioning Security Gateway substitution transition (see Fig. 1).
The initial marking of the SG Config configures the provisioning security gateway
with two physical interfaces and a virtual interface for use with the ESP-tunnel.
Interface 0 is configured with MAC address 4 and IP address 172.1.1.1, while
interface 1 is configured with MAC address 5 and IP address 12.0.0.1. The
third interface, interface 2, does not have any MAC address assigned to it, but
only the IP address 80.0.0.1. The reason for this is that it is a virtual interface.
The security policy database is set up such that packets sent via interface 2 are
put into an ESP tunnel. The default security gateway is configured in a similar
way.

3.4 GAN Controller

Fig. 8 shows the GAN Controller module which is the common submodule of the
substitution transitions Provisioning GAN Controller and Default GAN Controller

18

Network A

I/O
NET_PACKET
I/O

Addresses

ADDR

Receive
Buffer

IP_PACKET

Send
Buffer

IP_PACKET

Security
Policy

Database

SPD_ENTRY_LIST

Routing
Table

ROUTING_TABLE

Network
Buffer

IFACEBUFxNET_PACKET

Network B

I/O
NET_PACKET
I/O

IP Layer

IP-LayerIP-Layer

DHCP
Server

DHCPServerDHCPServer

Physical Layer

WR InterfacesWR Interfaces

1`(((190,1,1,1),0),Direct(0))++
1`(((172,1,1,0),24),Direct(1))++
1`(((190,1,1,254),0),Terminate(0))

1`MacAddr(0,1)++
1`MacAddr(1,3)++
1`IpAddr((0,(190,1,1,254)))++
1`IpAddr((1,(172,1,1,254)))

1`{src=(ip_any_addr,0),
dest=(ip_any_addr,0),nl_info =
AnyNextLayer,policy=SpdBypass}

41`IpAddr((0,(190,1,1,254)))++
1`IpAddr((1,(172,1,1,254)))++
1`MacAddr((0,1))++
1`MacAddr((1,3))

1

1`[{src=((0,0,0,0),0),dest=((0,0,0,0),
0),nl_info=AnyNextLayer,policy=SpdB
ypass}]

1

1`[(((190,1,1,1),0),Direct(0)),(((172,1,
1,0),24),Direct(1)),(((190,1,1,254),0),
Terminate(0))]

Fig. 6. The WirelessRouter module.

Network
B

I/O
NET_PACKET

I/O

Network
Buffer

IFACEBUFxNET_PACKET

Addresses

ADDR

Receive
Buffer

IP_PACKET

Send
Buffer

IP_PACKET

Routing
Table

ROUTING_TABLE

SPD

SPD_ENTRY_LIST

Network
C

I/O
NET_PACKET

I/O

Config

In
NODE_CONFIG

In

IP Layer

IP-LayerIP-Layer

IKE
Responder

IKEResponderIKEResponder

Physical Layer

SG InterfacesSG Interfaces

Init

p
p

(spe_list,
 rt,
 addrList)

spe_list

rt

addrList

Fig. 7. The SecurityGateway module.

19

in Fig. 1. Besides the IP and physical network layers, the GAN Controller imple-
ments the GANServer module which will be presented in the next section. The
GAN controllers are configured in a similar way as the security gateways.

addrList

rt

spe_list

(spe_list,
 rt,
 addrList)

GAN Server

GANServer

Init

Physical Layer

GANC Interfaces

IP Layer

IP-Layer

Config

In
NODE_CONFIG

Receive
Buffer

IP_PACKET

Send
Buffer

IP_PACKET

Security
Policy

Database

SPD_ENTRY_LIST

Routing
Table

ROUTING_TABLE

Addresses

ADDR

Network
Buffer

IFACEBUFxNET_PACKET

Network
C

I/O
NET_PACKET

I/O

In
IP-Layer

GANC Interfaces

GANServer

Fig. 8. The GAN Controller module.

4 Modelling the Protocol Entities

This section describes the modelling of the protocol entities present in the mobile
station, wireless router, security gateways, and GAN controllers. The description
of the protocol entities has been organised such that it reflects how we have
decided to organise the protocol entities in the CPN model. This means that we
always describe peer protocol entities, i.e., when describing the DHCP client of
the mobile station we simultaneously describe its peer protocol entity which is
the DHCP server of the wireless router.

4.1 Dynamic Host Configuration Protocol

Fig. 9(top) shows the DHCP Client module of the mobile station and Fig. 9(bottom)
shows the DHCP Server module of the wireless router. The two modules model
the part of GAN connection establishment which was shown in Fig. 2. The
DHCP client starts by broadcasting a request for an IP address and then awaits
a response from the DHCP server. When the DHCP server receives a request it
selects one of its FreeAddresses and sends an answer back to the DHCP client.
When the client receives the answer it configures itself with the IP address and
updates it routing table and security policy database accordingly. Three en-
tries are added to the routing table: 1‘((#ip(da),32), Terminate(0)) means
that the IP address received in the DHCP answer belongs to interface 0, while

20

1‘(calcNetwork(#ip(da), #netmask(da)), Direct(0)) specifies that the net-
work from which the IP address has been assigned, is reachable via interface 0. Fi-
nally, a default route is installed with 1‘(((0,0,0,0),0), Via(#default gw(da))),
such that packets which no other routing entry matches, are send to the default
gateway specified in the DHCP answer. The SPD is modified so that the pre-
vious rule, which allowed all DHCP traffic is removed and replaced with a new
rule, which states that all packets sent from the assigned IP address are allowed
to pass out, and all packets sent to the assigned IP address are allowed to pass
in.

Wait for DHCP
Response

UNIT

Down

In
UNIT

()

In

Send
Buffer

Out
IP_PACKET

Out

Node
Configured

Out
IP_ADDR

Out
Receive
Buffer

In
IP_PACKET

In

Addresses

MS Addresses

ADDR

1`MacAddr((0,2))++
1`IpAddr((0, (0,0,0,0)))

MS Addresses

Routing
Table

MS Routing Table

ROUTING_TABLE

MS Routing Table

SPD

MS SPD

SPD_ENTRY_LIST

MSInitSPD

MS SPD

Send
DHCP

Request

Receive
DHCP

Answer

[#payload(p) = DhcpAnswer(da)]

()

()

{src=ip_any_addr,
dest=(255,255,255,255),
payload=DhcpRequest(mac)}

MacAddr(iface, mac)

1`((#ip(da),32), Terminate(0))++
1`(calcNetwork(#ip(da), #netmask(da)),Direct(0))++
1`(((0,0,0,0),0), Via(#default_gw(da)))

spe_list

1`{src=(#ip(da),0),
dest=(ip_any_addr,0),
nl_info=AnyNextLayer,
policy=SpdBypass}

p

(172,1,1,1)

()

IpAddr(iface,ip_any_addr)

IpAddr(iface, #ip(da))

Receive
Buffer

In
IP_PACKET

In

Send
Buffer

Out
IP_PACKET

Out

Free
Addresses

IP_ADDR

1`(190,1,1,1)

Assigned
Addresses

MACXIP_ADDR

Receive
DHCP

Request

{src=src_ip,
dest=dest_ip,
payload=DhcpRequest(mac)
}

ip_addr(mac,ip_addr)

{src=ip_any_addr,
dest=(255,255,255,255),
payload=DhcpAnswer(
{ip = ip_addr,
out_iface = 0,
target=mac,
netmask=(255,255,255,0),
default_gw=(190,1,1,254),
dns_servers=[(190,1,1,250)]}
)}

Fig. 9. DHCP client (top) and DHCP server (bottom) modules.

4.2 IKEv2 Modules

Fig. 10(left) shows the IKEInitiator module of the mobile station and Fig. 10(right)
shows the IKEResponder module of the security gateways. The modules model
second step of the GAN connection establishment that was illustrated in Fig. 3.
Each module describes the states that the protocol entities go through dur-
ing the IKE message exchange. The state changes are represented by substi-
tution transitions and Fig. 11 shows the Send IKE SA INIT Packet and Han-

dle SA INIT Request modules.

21

The Send IKE SA INIT Packet transition on Fig. 11(top) takes the IKE Ini-
tiator from the state Ready to Await IKE SA INIT and sends an IKE message
to the security gateway initialising the communication. The IP address of the
security gateway is retrieved from the Ready place. Fig. 11(bottom) shows how
the IKE SA INIT packet is handled by the IKE Responder module (which the
security gateway implements). Upon receiving an IKE SA INIT packet it sends a
response and moves the responder to the Wait for EAP Auth state. The submod-
ules of the other substitution transition of the IKE modules are similar. Neither
initiator nor responder will receive packets that are not expected. They remain
in the network buffer forever.

Ready

In
IP_ADDR

In

Send
Buffer

Out
IP_PACKET

Out

Receive
Buffer

In

IP_PACKET

In

Await
IKE_SA_INIT

UNIT

Await IKE_AUTH
ongoing EAP

UNIT

IKE
Packets
Initiator

IPxIP_PAYLOAD

Wait
for EAP Reply

UNIT

Wait for
IKE_AUTH Reply

UNIT

IKE_AUTH
Done

Out
IP_ADDR

Out

Wait
for EAP Reply 2

UNIT

Append
IP Header

Receive
IKE_AUTH

Reply
Setup vifSetup vif

Send
IKE_SA_INIT

Packet
Send IKE_SA_INIT PacketSend IKE_SA_INIT Packet

Send
IKE_AUTH

Packet

Send IKE_AUTH PacketSend IKE_AUTH Packet

Send
EAP Data

Send EAP DataSend EAP Data

Send
EAP Data 2

Send EAP Data 2Send EAP Data 2

Receive
EAP Reply

Receive EAP ReplyReceive EAP Reply

{src=(190,1,1,1), dest=dest_ip,
payload=ip_payload}

(dest_ip, ip_payload)

Send
Buffer

Out
IP_PACKET

Out

Receive
Buffer

In
IP_PACKET

In

Outgoing
IKE Replies

IPxIP_PAYLOAD

Incoming
IKE Requests

IPxIKE_PACKET

Wait
for EAP AUTH

IP_ADDR

Wait for
EAP

IP_ADDR

Wait for
EAP 2

IP_ADDR

Wait for
AUTH

IP_ADDR

Addresses

I/O

ADDR

I/O

Append
IP Header

Receive
IKE Request

[#payload(p) =
 IkeInitiator(ike_packet)]

Handle
SA_INIT Request

Handle SA_INIT RequestHandle SA_INIT Request

Handle
EAP AUTH
Request

Handle EAP AUTH RequestHandle EAP AUTH Request

Handle
EAP

Request
Handle EAP RequestHandle EAP Request

Handle
EAP Data

Handle EAP DataHandle EAP Data

Handle
AUTH

Request
Handle AUTH RequestHandle AUTH Request

(dest_ip, ip_payload)

{src=src_ip,
dest=dest_ip,
payload=ip_payload}

p

(#src(p), ike_packet)

IpAddr(0,src_ip)

Fig. 10. IKE initiator (left) and IKE responder (right) modules.

22

4.3 GAN Modules

On Fig. 12(top) the GANClient module of the mobile station is shown, while
Fig. 12(bottom) shows the GANServer module of the GAN controller. In the
Tunnel Configured state, a secure tunnel to the security gateway has been es-
tablished. The mobile station initiates the GAN communication by sending a
GA-RC discovery message. The Send GA RC Discovery Message transition does
just that, and places the mobile station in the Wait for GA RC Response, where
the mobile station will wait until a response is received from the GAN controller.
As can be seen in Fig. 12(right), the GAN controller can either answer a request
with an accept or reject message. If the GANClient receives a reject response, the
Handle GA RC Reject transition will put the client back into the Tunnel Config-

ured state, and another discovery message will be sent. This will continue until
an accept message is received, in which case the Handle GA RC Accept transition
puts the client in the GA RC Accept Received state, and closes the secure tunnel.
The is done by removing the address associated with the tunnel from the Ad-

dresses place, and removing any entries in the SPD and routing table containing
references to the interface.

4.4 IP Network Layer

Fig. 13 shows the IPLayer module which is used to model the IP network layer in
the mobile station, wireless router, security gateways, and the GAN controllers.
As mentioned in Sect. 2 many details of the IP stack have been modelled, such as
the routing system and the security policy database. Transport protocols (e.g.,
TCP), are however, not modelled.

The access to the underlying physical network is modelled via the input/output
port place Network which has the colour set NET PACKET defined as:

colset NET_PACKET = product MAC_ADDR * MAC_ADDR * IP_PACKET;

The first component of the product is the source MAC address, while the second
is the destination MAC address. The final component is the payload, which
currently can only be an IP packet. MAC addresses are represented by integers.
The actual physical network layer has been abstracted away, as we do not care
whether the physical network is, e.g., an Ethernet or an ATM network.

The chosen representation of a network cannot lose packets but can reorder
them, as tokens are picked non-deterministically from the Network place. A real
network does occasionally drop packets, and considering losing packets is espe-
cially important when building fault-tolerant systems. Both IKE and TCP use
timeouts and sequence numbers to retransmit packets, such that the protocols
deal with lossy networks. Rather than modelling the retransmission schemes, we
have chosen to have a losseless network.

Receiving packets from the network is modelled as a transition which con-
sumes a NET PACKET-token, with the destination MAC address corresponding to
the MAC address of the network node. Sending packets is a matter of produc-
ing a NET PACKET-token with the correct source and destination addresses and

23

Await
IKE_SA_INIT

Out
UNIT

Out

Ready

In
IP_ADDR

In

IKE
Packets
Initiator

Out IPxIP_PAYLOADOut

Send
IKE_SA_INIT

Packet

()

dest_ip

(dest_ip,
IkeInitiator({
exch = IKE_SA_INIT({
 SAi=[sa_proposal1],
 KEi=2,
 SAr=[],
 KEr=0}),
msg_id = 0}))

Wait
for EAP AUTH

Out
IP_ADDR

Out

Outgoing
IKE Replies

Out
IPxIP_PAYLOAD

Out

Incoming
IKE Requests

In
IPxIKE_PACKET

In

Handle
SA_INIT Request

[#exch(ike_packet)=
 IKE_SA_INIT(sa_init)]

src_ip

(src_ip,
IkeResponder({
msg_id=(#msg_id(ike_packet)),
exch=IKE_SA_INIT({SAr = [hd(#SAi(sa_init))],
 KEr = (#KEi(sa_init)),
 SAi=[], KEi=0
 })
 }))

(src_ip, ike_packet)

Fig. 11. Example of IKE initiator (top) and IKE responder (bottom) submodules.

Tunnel
Configured

In
IP_ADDR

In

Send
Buffer

Out
IP_PACKET

Out

Receive
Buffer

In
IP_PACKET

In

Wait for GA RC
Response

IP_ADDR

GA RC Accept
Received

Out
IP_ADDR

Out

Addresses

MS Addresses

ADDR

MS Addresses

Routing
Table

MS Routing Table

ROUTING_TABLE

MS Routing Table

SPD

MS SPD

SPD_ENTRY_LIST

MSInitSPD

MS SPD

Send
GA RC Discovery

Message

Handle
GA RC Reject

[#payload(p) =
 GANPayload(GARCReject)]

Handle
GA RC Accept

[#payload(p) =
 GANPayload(GARCAccept(ip_addr2, ip_addr3))]

ip_addr

ip_addr

pip_addr

ip_addr

{src=ip_addr,
dest=(12,1,1,1),
payload=GANPayload(GARCDiscovery)}

IpAddr(1,ip_addr)

rt

rt_remove_iface(1, ip_addr, rt)

spe_list

spd_remove_iface
(1, ip_addr, spe_list)

p

ip_addr

ip_addr2

1`MacAddr((0,2))++
1`IpAddr((0, (0,0,0,0)))

2

1`IpAddr((0,(0,0,0,0)))++
1`MacAddr((0,2))

1

1`[{src=((0,0,0,0),0),dest=((0,0,0,0),
0),nl_info=PayloadList([PAYLOAD_DH
CP]),policy=SpdBypass}]

Send
Buffer

Out
IP_PACKET

Out

Receive
Buffer

In
IP_PACKET

In

Reject
Discovery
Request

[#payload(p) =
 GANPayload(GARCDiscovery)]

Accept
Discovery
Request

[#payload(p) =
 GANPayload(GARCDiscovery)]

{src=(12,1,1,1),
dest=(#src(p)),
payload=GANPayload(
 GARCReject)}

p

{src=(12,1,1,1),
dest=(#src(p)),
payload=GANPayload(
 GARCAccept((172,1,1,2),(13,1,1,1)))}

p

Fig. 12. GANC modules mobile station (top) and controller (bottom).

24

Addresses

I/O
ADDR

I/O

Send
Buffer

In
IP_PACKET

In

Network

I/O
IFACEBUFxNET_PACKET

I/O

Receive
Buffer

Out IP_PACKETOut

SPD

I/O

SPD_ENTRY_LIST

I/O

Allowed
Packets

IP_PACKET

Routing
Table

I/O

ROUTING_TABLE

I/O

Received
Packets

IP_PACKET

Allowed
Incoming
Packets

IP_PACKET

Receive
Network
Packet

[(dest_mac = 0 andalso src_mac <> mac)
orelse dest_mac = mac]

Check SPD
Out

Check SPD OutCheck SPD Out

Outgoing
Routing

Outgoing RoutingOutgoing Routing

Ingoing
Routing

Ingoing RoutingIngoing Routing

Check SPD
In

Check SPD InCheck SPD In

(NetIn iface,(src_mac, dest_mac, p))

MacAddr(iface,mac)

p

Fig. 13. The IP-Layer module. In-going packet flow (right) and outgoing packet flow
(left).

the intended IP packet. The IP layer is completely generic and configured with 3
places for network addresses, routing table, and Security Policy Database (SPD).
The Routing Table place corresponds to the routing table found in real IP im-
plementations. It consists of a number of entries, each of a pair (NETWORK ADDR,

IP NEXTHOP), where IP NEXTHOP is as defined as:

colset IP_NEXTHOP = union Direct : IFACE +

Via : IP_ADDR +

Terminate : IFACE;

The colour set defines which action is to be taken for packets going to the
specified IP network. There are three possible actions to take: Direct, the packet
can be delivered directly via the local physical network via IFACE. Via, the packet
can get closer to its destination by being delivered to the IP ADDR. Terminate,
the destination network address is a local interface address of IFACE.

The SPD place is the SPD database, and describes which packets are allowed
to be sent and received by the IP layer. An entry in the SPD database can also
specify that certain packets are to be tunnelled through a secure tunnel. Finally,
the Addresses place contains one token for each address known to the IP Layer.
These addresses are both physical (MAC) addresses, and IP addresses. Each
ADDR token contains both an interface number, and the address (MAC or IP).

Packets to be sent are put on the Send Buffer place by upper-layers. The first
step done by the IP layer, is to check the SPD database, which is done by the
Check SPD Out transition. The Check SPD Out module looks through the SPD

25

database to find an entry which matches the source and destination addresses of
the packet. If no entry is found, the packet is dropped. If an entry is found, the
entries action is applied. Either the action in bypass, meaning that the packet
can be sent further down the IP-stack, or the action is tunnel, meaning that the
packet is to be sent through a secure tunnel. In the latter case, a new IP-packet
is constructed according to the tunnel information associated with the tunnel

action. The new packet is placed on the Outgoing Packets place, and has to pass
the outgoing SPD check as well. If the packet is allowed to be sent, it is put
on the Allowed Packets place. In order to be able to construct a NET PACKET

token, the destination MAC needs to be found. This is done by the Outgoing

Routing transition. As can be seen in Fig. 13, it needs to know both about the
routing table and the addresses. If a next-hop has been found, a token is placed
on the Network place with information about which interface to send on and the
MAC address of the next-hop.

Ingoing packets are retrieved from the Network place by the Receive Network

Packet transition. Destination MAC and interface number of the network packet
have to match one of the MAC addresses configured in the Addresses place. The
IP PACKET inside the NET PACKET is placed on the Received Packets place. Check

SPD In performs incoming SPD check, while Ingoing Routing decides if the packet
is to be delivered locally, forwarded, or is a tunnelled packet which has to be
de-tunnelled. In the latter case, the packet is put on the Received Packets place,
and goes through SPD checking and routing again. If the packet has its final
destination at the local node, it is put in the Receive Buffer. The IP PACKET

colour set models IP packets and is defined as:

colset IP_PACKET = record dest : IP_ADDR *

src : IP_ADDR *

payload : IP_PAYLOAD;

It has a source and destination IP address and a payload. The IP PAYLOAD

colour set is a union of all possible payloads. The colour set is never used by any
of the generic network components, and is as such defined accordingly to the rest
of the model. In the GAN scenario, the IP PAYLOAD colour set has constructors
for DHCP, IKEv2, and GAN packets.

5 Validation of the GAN Scenario

During the construction of the model, simulation was used to check that the
model behaviour was as desired. Even though simulation does not guarantee
correct behaviour, it was very useful in finding modelling errors and make explicit
where further specification of the message exchanges were required. For instance,
simulation was a valuable tool in validating the packet forwarding capabilities
of the IP-layer. By placing tokens that represent packets to be forwarded on
a network nodes input buffer and starting the simulation, it is easy to see if
the packet is being placed in the output buffer as expected. If not, then single-
stepping through the simulation helps to understand the behaviour of the model,

26

and modify it so that it behaves as intended. Simulation was also heavily used to
show engineers at TietoEnator, how the model and especially how the IP-packet
flow worked and thereby enabling discussions of the specification. The advantage
of simulation over state space verification is that the simulation has immediate
visual feedback, and as such is much easier to understand.

A formal validation was performed on the state space generated from the
model. The generated state space consists of 683 nodes, while the Strongly Con-
nected Component (SCC) graph consists of 598 nodes of which 1 is non-trivial.
There is a single home marking with number 683 which also is a dead marking.
The most interesting property to check is that the mobile station can always
end up being configured properly, i.e., that it has both gotten an IP address,
has successfully communicated with the provisioning GAN controller, and re-
ceived addresses of the default security gateway and GAN controller. For this,
we checked that in marking 683 there is a token in the VIF open to Def-SG place
of the mobile station (see Fig. 5). Furthermore, we checked that there were no
tokens in any of the other places of the mobile station state machine. This would
indicate an error in the model, as we do not want the mobile station to be able to
be in two states at the same time. To do this we defined a predicate, which checks
that only the VIF open to Def-SG contains tokens. Checking all nodes in the state
space for this predicate, shows that it holds only for marking 683. It is also inter-
esting to investigate whether the routing table and security policy database look
as expected. Rather than defining predicates, we displayed the dead marking in
the simulator tool of CPN Tools and inspected the configuration of the mobile
station. This showed that both routing tables, address assignments, and secu-
rity policy database were as expected. The state space report also showed that
the transitions RejectDiscoveryRequest and HandleGARCReject (see Fig. 12) both
were impartial. This means that if the system does not terminate in marking
683, then it is because the GAN controller keeps rejecting the connection.

6 Conclusion and Future Work

The overall goal of the project was to construct a CPN model and obtain a
more complete specification of the GAN scenario to be implemented by TietoE-
nator. The act of constructing the CPN model helped to specify the details of
the message exchanges that were not explicit in the textual scenario description.
Including a detailed modelling of the IP stack was necessary in order to cap-
ture the details of sending GAN packets from the mobile station to the GAN
controller. Furthermore, it was required in order to validate correctness of the
the routing table contents, SPD entries, and IP address distribution. The CPN
model has been discussed with TietoEnator engineers, and they were convinced
of its correctness by using the simulation capabilities of CPN Tools. Using sim-
ulation and state space analysis has helped to give further confidence in the
constructed model, but more importantly it has provided valuable information
about the properties of the scenario.

27

The initial GAN model presented in this paper matches the GAN scenario as
closely as possible, meaning that every entity in the scenario has been represented
in the model, and every action in the scenario has a model counterpart. This
allows much easier understanding of the model, when the scenario is known, as
all components in the model are known in advance. Currently, we are working
on an extended version with multiple mobile stations and GAN controllers.

In near future, TietoEnator is to implement the GAN controller. Based on
the experience from the project presented in this paper, it has been decided
that CP-Nets will be used to model the initial controller design. Besides the
advantages of having a formal model which can be validated by means of state
space analysis, the goal is to generate template code for the GAN controller
directly from a CPN model of the controller. This will ease the work of the
initial implementation and help ensure that the implementation is consistent
with the design as specified by the CPN model.

References

1. 3GPP: Digital cellular telecommunications system (Phase 2+); Generic access to
the A/Gb interface; Stage 2. 3GPP TS 43.318 version 6.9.0 Release 6 (2007)

2. 3GPP: Website of 3GPP. http://www.3gpp.org (2007)
3. Postel, J.e.a.: Internet Protocol DARPA Internet Program Protocol Specification.

RFC791 (1981)
4. Kent, S., Seo, K.: Security Architecture for the Internet Protocol. RFC4301 (2005)
5. Kaufman, C.E.: Internet Key Exchange (IKEv2) Protocol. RFC4306 (2005)
6. TietoEnator: Website of TietoEnator Denmark. http://www.tietoenator.dk

(2007)
7. Grimstrup, P.: Interworking Description for IKEv2 Library. Ericsson Internal.

Document No. 155 10-FCP 101 4328 Uen (2006)
8. Droms, R.: Dynamic Host Configuration Protocol. RFC2131 (1997)
9. Kent, S.: IP Encapsulating Security Payload (ESP). RFC4303 (2005)

10. Jensen, K., Kristensen, L.M., Wells, L.: Coloured Petri Nets and CPN Tools for
Modelling and Validation of Concurrent Systems. STTT (International Journal on
Software Tools for Technology Transfer) (2007)

11. Villapol, M.E., Billington, J.: Analysing properties of the resource reservation pro-
tocol. In: Applications and Theory of Petri Nets 2003: 24th International Confer-
ence, ICATPN 2003, Eindhoven, The Netherlands, June 23-27, 2003. Proceedings.
Volume Volume 2679/2003 of Lecture Notes in Computer Science., Springer Berlin
/ Heidelberg (2003) 377–396

12. Kristensen, L.M., Jensen, K.: Specification and validation of an edge router dis-
covery protocol for mobile ad hoc networks. In Ehrig, H., Damm, W., Desel, J.,
Groe-Rhode, M., Reif, W., Schnieder, E., Westkmper, E., eds.: Integration of Soft-
ware Specification Techniques for Applications in Engineering. Volume Volume
3147/2004 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg
(2004) 248–269

13. University of Aarhus: CPNTools. http://www.daimi.au.dk/CPNTools (2007)
14. Westergaard, M.: BRITNeY Suite. http://wiki.daimi.au.dk/britney (2007)

28

Towards Modeling and Simulating a Multi-party

Negotiation Protocol with Colored Petri Nets

E. Bacarin1, W.M.P van der Aalst2, E. Madeira3, and C. B. Medeiros3

1 Department of Computer Science - UEL - CP 6001 86051-990 Londrina,PR Brazil. bacarin@uel.br
2 Department of Mathematics and Computer Science, Eindhoven University of Technology, P.O. Box

513, NL-5600 MB, Eindhoven, The Netherlands. w.m.p.v.d.aalst@tue.nl
3 Institute of Computing - UNICAMP - CP 6176 13081-970 Campinas,SP Brazil.

{edmundo,cmbm}@ic.unicamp.br

Abstract. E-contracting, i.e., establishing and enacting electronic contracts, has become
important because of technological advances (e.g., the availability of web services) and more
open markets. However, the establishment of an e-contract is complicated and error prone.
There are multiple negotiation styles ranging from auctions to bilateral bargaining. This
paper provides an approach for modeling multi-party negotiation protocols in colored Petri
nets. It is shown how different negotiation styles can be modeled in a unified and consistent
way. Moreover, CPN Tools is used to analyze the resulting colored Petri nets. Simulation
can be used for both validation and performance analysis, while state-space analysis can be
used to discover anomalies in various multi-part negotiation protocols.

1 Introduction

Contracts are documents that states the mutual obligations and authorizations that reflect the
agreements between two trading partners [1]. An e-contract is a contract modeled, specified and
enacted by a software system [2].

E-contracting has become important because of technological advances, for instance, agent
technology and web services have allowed for the establishment of virtual enterprises or manage-
ment of supply chains. E-contracting is a means to regulate the relationship among partners of a
virtual enterprise or a particular supply chain.

According to Angelov [3], automatic negotiation is not a trivial task. Most of the negotiation
systems proposed so far have an overly limited scope: they run a particular kind of negotiation
– typically a bargain or an auction – in a restricted market place. The produced contracts are
signed by only two negotiators. Several bilateral contracts must be produced when the agreement
comprises more than two partners. In a collaborative multi-partner settlement, this may cause
semantic loss. A single contract signed by several partners can express a common goal shared by
them by means of a rich set of complex relationships. Splitting this contract into a number of
bilateral contracts can make unclear some of these relationships, and even destroy others. This
paper aims at both automatic negotiation and multi-party contracts. It shows how the main parts
of the SPICA negotiation protocol [4] can be modeled and simulated by means of Petri nets.

The main contributions are: a) the paper describes a negotiation protocol that combines dif-
ferent negotiation styles — namely: bargain, auction, ballot — to produce an e-contract that can
be signed by several partners; b) it shows how such a protocol can be modeled as a colored Petri
net (CPN) and simulated using CPN Tools [5]; c) it also shows how the capabilities of CPN Tools
assisted in the identification of design flaws and how these were addressed.

The paper is organized as follows. Section 2 overviews some related work. Section 3 briefly
introduces various negotiation protocols, presents a running example that is used throughout the
paper, and illustrates the SPICA negotiation protocol through short examples. Section 4 shows
how the main parts of the SPICA protocol were modeled in terms of colored Petri nets and
presents some of its subnets (the total model is composed of 31 subnets). Section 5 describes how
the model was adjusted to simulate the running example. Section 6 discusses what we have learnt
by modeling and simulating the protocol using CPN Tools, which problems we have encountered,
and how they were addressed. Finally, Section 7 concludes the paper.

29

2 Related Work

This section reviews related work on negotiation processes and the use of CPN Tools to model
and validate protocols.

There are a number of mechanisms that guide the negotiation process. Bartolini [6] constructs
negotiation templates that specify different negotiation parameters. Chiu [7] also uses contract
templates as a reference document for negotiation. Similarly, [8] uses a contract template that
describes the negotiation parameters, how they are interrelated, along with meta-level rules about
the negotiation. In contrast, [9] uses a set of examples of good agreements and it is up to the
negotiator to try to get as close as possible to one of the examples.

Like most of the related work, our negotiation process is guided by a contract model. Thus,
broadly speaking, the negotiation process concerns determining values for unbound properties.

Our negotiation process is developed through the exchange of messages among the negotiators
that comply with a specific protocol. This is a common approach, like the ones based on FIPA’s
standards [10], e.g., [11]. Governatori and others [12] use a different approach. They propose a
negotiation process that uses Defeasible Logic.

Whatever the basis of the negotiation process, all negotiators must understand concepts and
names used during the negotiation. The work of [11] combines the use of ontologies and agent
technologies to help in solving naming problems in car assembly supply chain negotiations. Our
approach also uses ontologies (see [4])

According to Angelov [3], automatic negotiation is a difficult task. Tools that help in the design
and implementation of negotiation protocols are needed. Jensen and others [5] present CPN Tools.
It builds on Coloured Petri Nets [13] and provides a rich set of resources for modeling, simulating
and validating systems where concurrency, communication, and synchronisation play an important
role.

CPN Tools has been used to analyse both experimental protocols and also well-established
ones. Chen and others [14] use CPNs to model a multi-agent system for supply chain management
based on agent negotiation. They describe their negotiation protocol and explain how they formally
modeled the negotiation process by using CPNs. The negotiation protocol presented is similar
to our auction and bargain negotiation styles. Liu and Billington [15] analysed the Capability
Exchange Signalling (CES) protocol using CPN Tools and found it may fail in some specific
circumstances.

3 Negotiation: A Particular Protocol

3.1 Overview of Negotiation Protocols

Negotiation is a process by which autonomous entities communicate and compromise to reach an
agreement on matters of mutual interest while maximizing their individuals utilities [16]. Auto-
mated negotiation (e-negotiation) is done by software rather than people and organizations, in
general in the form of software agents, and their agreement is stated in e-contracts.

A negotiation process involves a number of issues. To begin with, the number of negotiators

involved is typically one-to-one (bargaining), one-to-many (bidding), or many-to-many (double-

auction). In bargains, one seller deals with one buyer. Bidding also has a broad range of flavors,
which involve request for proposals and interactions among seller(s) and buyer(s). The so-called
English or Dutch auctions have many buyers competing for a product sold by an auctioneer. In
English auctions, the auctioneer defines a start price and the bidders increase continuously the
item’s value until the last bid cannot be beaten. Dutch auctions start with a high value and the
auctioneer decreases this value until a buyer agrees to pay the proposed value. A many-to-many
negotiation can occur through a so-called double auction. In this case, several sellers offer their
products on a “shared space” and several buyers submit their bids. There is a mechanism that
matches offers and bids.

A second issue that needs to be addressed by the negotiation process is related to the number
of items. The negotiation process may be restricted to a single product or to a bundle of items.
In the latter case, the buyer may be interested in buying all items or none of them [8].

30

A third issue refers to the negotiation strategy. According to [12], techniques for designing
negotiation strategies can be classified into three categories: (i) game-theoretic, (ii) heuristic, and
(iii) argumentation. The first approach models a negotiation situation as a game and attempts to
find dominant strategies for each participant by applying game theory techniques. In heuristic-
based approaches, a strategy consists of a family of tactics (i.e., a method for generating counter-
offers), and a set of rules for selecting a particular tactic depending on the stage of the negotiation.
Argumentation-based approaches extend heuristic ones by introducing communication patterns
such as threats (e.g., “that is my last offer”), rewards, etc.

The fourth issue concerns how the negotiation process is finished: either by agreement or by
withdrawal. In [6], agreement formation rules determine which proposals are matched. In [9], a
negotiation is aborted if agreement is not reached in a predefined number of rounds.

Finally, the last issue concerns how to renegotiate an existing contract due to some external
change. This includes discovering which contracts were affected by the change, which clauses
should be modified, who should modify the contract, and so forth.

3.2 Running Example

This section presents the running example that will be used throughout the remainder of the
paper.

Milkyway Dairy is a fictitious dairy industry that produces milk derivatives, especially lowfat
yoghurt. The farms in its region mainly produce milk and fruits. Periodically, Milkyway Dairy
negotiates contracts with nearby farmers for future delivery of milk, blueberries and peaches.
Thus, they can plan their future production. Because of governmental regulations, the dairy and
the farmers must agree upon maximum milk quota each one will be allowed to deliver. However,
the dairy will seek the cheapest supplier for each fruit. The price of the milk is defined at delivery
by an official price list, but Milkway negotiates with the farmers a minimum price that will be
payed at delivery. In turn, the farmers guarantee that they will deliver at least 500 liters of milk
each week. The prices and quantities of different fruits are established during the negotiation.

Milkyway has a predefined draft (or model) for this contract. The negotiation process consists
of filling some gaps in this model. The gaps, denominated properties, are identified by names
preceded by # (e.g., #MINPRICE, #PRICEBERRY). A simplified version of this contract model
is shown in plain English in Figure 1. Thus, the parties will agree upon, for instance, a value for
the minimum price (#MINPRICE in Clause 3) and which farm will provide berries (#Fa). Note
that this contract is a multi-party contract signed by the dairy and by several farmers.

Clause 1:Milkyway Dairy, herein named Dairy, and farms Farm 1,
Farm 2, Farm 3, Farm 4, herein respectively named F1, F2, F3 and F4,
agree that the amount of milk Dairy may buy each week from any of
the stated farms is at most #QMAX liters.

Clause 2:F1,F2,F3 and F4 will deliver altogether at least 500 liters of
milk per week to Dairy.

Clause 3:The price of milk is defined by the Official Price List at the
moment of delivery. However, the Dairy agrees to pay at least #MIN-
PRICE per liter of delivered milk.

Clause 4:If farms F1, F2, F3 and F4 do not succeed to fulfill clause 2,
they must pay Dairy a fine worth 10000*#MINPRICE.

Clause 5:Farm #Fa agrees to deliver #QBERRY Kg of blueberries at
e#PRICEBERRY a kilogram weekly.

Clause 6:Farm #Fb agrees to deliver #QPEACH Kg of peaches at
e#PRICEPEACH a kilogram weekly.

Fig. 1. Simplified multi-party contract with six properties that need to be negotiated

31

3.3 The SPICA Protocol

This section describes the negotiation process. In this paper, we focus on our SPICA protocol
[4]. SPICA (SuPply chain Integration, Coordination, contracting and Auditing framework) is the
Latin term for the ear of some grains (e.g., as in ear of corn, or wheat). It is the main star in the
Virgo constellation. This constellation is associated to a few myths related to agriculture. In this
protocol, the negotiation process is orchestrated by a leader negotiator and is guided by a contract
model. The contract model is a predefined contract template which is filled in with values agreed
upon by the negotiators. After a successful negotiation, a new contract is created from the model
and the negotiated values. Subsequent sections detail the negotiation process itself.

Organization of the Negotiation. A negotiation process involves two or more negotiators. One
of them is the leader. There is a notary responsible for bureaucratic chores (e.g., constructing the
final contract) or acting as a trusted third-party (e.g., to control ballots).

These players exchange information within a negotiation process through asynchronous mes-
sages. The messages may be peer-to-peer or broadcasted. A contract negotiation has several phases,
including leader election, objective and restriction announcement, property negotiation, commit
attempt, and contract construction. These phases are described in [4], the core being property
negotiation. This is the focus of this paper and is presented in the following sections.

Core Negotiation. There are three generic styles of negotiation: ballots, auctions and bargains.
Ballots are used when the negotiators have to reach consensus on a property’s value. In our
example, most of the farms must agree upon a value for QMAX. Auctions are used when there is
competition among different negotiators in order to bind a property to a value. This is the case
of property PRICEBERRY. Bargains are used when there are two negotiators and they want to
interact to reach a value that is convenient for both. For instance, in our example the dairy and
Farm 4 interact to find a consensual value for PRICEPEACH. All these styles may be used to
negotiate a single contract.

The negotiation styles are built on a few negotiation primitives, i.e., types of messages ex-
changed among the participants. These primitives rely on two basic mechanisms: request for pro-

posals (RFP) and offers. The following paragraphs describe RFPs and offers. Subsequently, the
negotiation primitives and the negotiation styles are shown in a few short examples.

An RFP is an invitation. A negotiator A sends an RFP to a negotiator B asking for a value for
one or more properties. An RFP may prescribe some restrictions on the expected answer and may
also bind the value of other properties. For instance, the dairy intends to buy 100kg of peaches
from Farm 4. Thus, it sends an RFP to Farm 4 assigning the value 100 to QPEACH and asking
a value for PRICEPEACH.

An offer is a promise. A negotiator who wants to assign a value to one or more properties sends
an offer to another negotiator. The offer indicates the properties the first negotiator is interested in
and the values it proposes for them. If the other negotiator accepts such offer, both negotiators are
committed to the proposed values. A negotiator can answer to an RFP by sending back an offer
that proposes values for the desired properties and that complies with the restrictions indicated
in the RFP. If a negotiator is not interested in a RFP, it replies to the RFP by indicating that it
will not send an offer. Conversely, a negotiator who receives an offer agrees upon it, disagrees, or
proposes a counter-offer. Thus, two negotiators may engage in a cycle of counter-offers until they
reach an agreement or give up.

To sum up, offers and RFPs have two distinguishing differences. First, all properties included
in an offer must have their values defined in advance, the other party may only agree or disagree on
those values. In contrast, an RFP may have properties with predefined values, but also, at least,
one unbound property, whose value is subject to negotiation. Second, the party that issues an
offer is committed to it, i.e., if the other party agrees upon, the issuer must honor it. In contrast,
the party that issues an RFP is neither obliged to keep the RFP valid nor to accept any offer in
response to it. That is, an RFP does not imply any level of commitment.

The following describes how RFPs and offers are exchanged by means of specific messages,
and how such messages are organized into the three negotiation styles mentioned before (bargains,

32

ballots and auctions). In these examples, any text enclosed by triangles represents an RFP, and
text enclosed by squares represents an offer. They do not show all the information they carry, but
only the information relevant for the examples. Messages are numbered and show the sender (e.g.,
dr:) for convenience.

Figure 2 shows the dairy (dr) and Farm 4 (f4) bargaining the price of a certain amount
of peaches. In the first message (1), the dairy sends an RFP to farm f4 asking for a proposal
for property PRICEPEACH, considering that property QPEACH has value 100. Next, (2) f4

offers 108 for that property. However, the dairy does not agree upon such value and (3) sends
a counter-offer proposing 92. Finally, (4) f4 agrees upon the proposed value. This sequence of
counter-offers may be arbitrarily long and may also be finished without agreement by sending a
proposal no agree message.

1. dr: send f4 new rfp �PRICEPEACH?; QPEACH=100�

2. f4: send dr new offer 2PRICEPEACH=108; QPEACH=1002

3. dr: send f4 new offer 2PRICEPEACH=92; QPEACH=1002

4. f4: send dr proposal agree 2PRICEPEACH=92; QPEACH=1002

Fig. 2. Bargain

The next two examples show how the notary cooperates in the negotiation process. Figure 3
presents the negotiation of property QMAX. This property requires that most of the farms agree on
a value, thus a ballot is performed under control of the notary. First, the dairy asks the notary to
conduct the ballot. It informs the issue to be voted and the possible votes. In the example, the
issue is an offer proposing the value 187 to property QMAX and the alternatives are agree (VOK) or
disagree (VNOK). Next, (2) the notary (nt) acknowledges to the leader (i.e., dr) that it will conduct
that ballot. The notary (3) broadcasts the issue to be voted to the negotiators. Each negotiator (4-
7) sends its vote to the notary. Finally, the notary counts the votes and (8) broadcasts the result
informing that the issue was approved and the number of votes each alternative has received.
There are other messages to inform that the issue was not approved or that a tie has happened.

1. dr: send nt control ballot 2QMAX=1872 VOK,VNOK

2. nt: send dr will conduct 2QMAX=1872 VOK,VNOK

3. nt: broadcastvoting 2QMAX=1872 VOK,VNOK

4. f1: send nt vote VOK

5. f2: send nt vote VOK

6. f3: send nt vote VNOK

7. f4: send nt vote VOK

8. nt: broadcastbal res BAPPROVED VOK:3, VNOK:1

Fig. 3. Ballot

The scenario shown in Figure 4 follows a variant of an English auction that aims at minimizing
the value of PRICEBERRY. The maximum price is 180. Thus, (1) the dairy asks the notary to
advertise an auction for an RFP and wants the notary to collect at most four answers within 30
seconds. The notary (2) broadcasts the RFP and waits as requested. The farms receive the RFP
and (3-6) send offers to the notary in response. A negotiator may decline an RFP by returning
a no offer answer. The notary collects the answers and (7) sends them to the dairy. The labels
O1,...,O4 stand for the offers from f1,...,f4, respectively. Now, the leader chooses the best offer
(PRICEBERRY=112) and (8) asks the notary to start a new auction round, restricting the expected
price. This process is repeated (9-12). Eventually none of the negotiators is interested in offering
a lower price and all of them answer no offer. Now, the dairy (13) agrees upon the best offer of

33

the previous round. The dairy also sends a proposal no agree message to all defeated offers (not
shown in the figure).

1. dr: send nt first answers 4 30 �PRICEBERRY?≤180; QBERRY=100�

2. nt: broadcastnew rfp �PRICEBERRY?<180; QBERRY=100�

3. f1: send nt new offer 2PRICEBERRY=160; QBERRY=1002

4. f2: send nt new offer 2PRICEBERRY=112; QBERRY=1002

5. f3: send nt new offer 2PRICEBERRY=130; QBERRY=1002

6. f4: send nt new offer 2PRICEBERRY=170; QBERRY=1002

7. nt: send dr collected answers O1,O2,O3,O4

8. dr: send nt first answers 4 30 �PRICEBERRY?<112; QBERRY=100�

9. nt: broadcastnew rfp �PRICEBERRY?<112; QBERRY=100�

10. f2: send nt no offer

11. f3: send nt new offer 2PRICEBERRY=98; QBERRY=1002

12. ...

13. dr: send f1 proposal agree 2PRICEBERRY=47; QBERRY=1002

Fig. 4. Auction

The examples given in this section show how the properties of our running example (Figure 1)
can be negotiated using different styles of negotiation. However, the style of negotiation has only
been described in plain English and can be interpreted in different ways. Therefore, we formalize
the different styles and primitives in terms of CPNs.

4 Modeling the SPICA Negotiation Protocol in CPNs

This section describes how the protocols presented in Section 3.3 can be modeled as Colored Petri
Nets (CPNs) using CPN Tools. The Petri net model is composed of 31 subnets (19 if replicated
instances are not counted). The top-level page is presented in Figure 5. In total there are about 300
places and 200 transitions. This model assumes the absence of exceptions (e.g., communication
infrastructure is reliable) and the diligence and fairness of the negotiators. Thus, the negotiators
will always receive and answer properly any message from the leader or the notary. The model also
makes some simplifications. For instance, RPFs and Offers can be used to announce an auction,
however, the model only accepts RFPs.

Section 4.1 presents the most important color sets used in the model. Section 4.2 shows a model
for the overall negotiation process. Section 4.3 details the subnets for bargains. Finally, the models
for ballots and auctions are only briefly described because of space limitations (Section 4.4).

4.1 Color Sets

This section presents the main color sets used in the model. The names of the properties in
the contract model are represented by the PropertyName color set. The color set NegId is used
to identify and to address negotiators: L stands for the leader and F1...F4 refer to the farms;
EVERYBODY stands for all farms; NO BODY is an invalid value for initialization purposes.

colset PropertyName = with QMAX | MINPRICE | QBERRY | PRICEBERRY |QPEACH |PRICEPEACH;

colset NegId = with L | F1 | F2 | F3 | F4 | EVERYBODY | NO BODY;

The Property color set represents the properties being negotiated. It consists of a property
name (PropertyName), a status code that indicates if it was agreed upon (PropAgreement), the
Value agreed upon (if any), and the list of the negotiators who had agreed upon this value
LstNegId. PropAgreement is set to AGREED to indicate that the property was negotiated and the
partners have agreed upon a value; NOT AGREED is the opposite, and IN NEGOTIATION indicates
that the property was not negotiated.

34

colset LstNegId = listNegId;

colset PropAgreement = with AGREED | NOT AGREED | IN NEGOTIATION;

colset Value = INT;

colset Property = product PropertyName * PropAgreement * Value * LstNegId;

The leader builds a negotiation plan (NegoPlan) before it starts negotiating the contract’s
properties (Section 4.2). A negotiation plan is a table whose entries describe which properties will
be negotiated together (PropertyNameLst) and the style of negotiation to be used (TypeNego).
For instance, in our example, properties QBERRY and PRICEBERRY are negotiated together using
an auction (AUC). Other styles of negotiation are ballots (BLT) and bargains (BARG).

colset TypeNego = with BLT | AUC | BARG;

colset PropertyNameLst = list PropertyName;

colset NegoPlanItem = product TypeNego * PropertyNameLst;

colset NegoPlan = list NegoPlanItem;

Negotiators exchange RFPs and offers within a negotiation. An RFP has a unique identifier
(RfpId), and references to the originator (From) and recipient (To) of the request. The recipient
may be a single negotiator (e.g., F1) or EVERYBODY which causes the RFP to be broadcasted.

colset RfpId = MessageId;

colset From = NegId;

colset To= NegId;

colset Operator = with GE | LE | EQ | OM | NEQ;

colset Restriction = product PropertyName * Operator * Value;

colset LstRestriction = list Restriction;

colset Rfp = product RfpId * From * To * LstRestriction * AuctId;

The RFP also has a list of restrictions (LstRestriction) on the properties values. For instance,
the list of restrictions for the RFP of the initial message in Figure 4 should be:

[(QBERRY,EQ,100), (PRICEBERRY,LE,180), (PRICEBERRY,OM,0)]

Note that OM stands for “offer me”, and the value after it is meaningless.4 Thus the negotiator
is expecting an offer for PRICEBERRY, provided that it is less or equal (LE) than 180. The other
operators are great or equal (GE), equal (EQ), and not equal (NEQ). The value for QBERRY is already
bound by the RFP and the recipient must agree on it. An RFP may be used in an auction. If so,
the auction identifier (AuctId) is also set.

An offer may be an answer to a previous RFP or to another previous offer. Thus, ParentId
relates the offer to the previous RFP. The answer to an RFP can be a No Offer. This means that
the negotiator is not interested in sending an offer for such RFP. In this case, NoOffer is set.
The offer identifies its originator and recipient to be an RFP (From and To). When a negotiator
receives an offer, it evaluates it. If the negotiator agrees upon the received offer, it assigns the
value OK to field Eval; otherwise, it assigns the value X to it. In an auction, the best offer of the
current round is marked with NR (New Round), indicating that a new auction round should start.
When an offer is created, the Eval field is set to NE (Not Evaluated). PropertyLst has all the
properties being negotiated. This list must contain all properties referenced by a previous RFP
(if any). The negotiator that issued the offer may accept a subsequent counter-offer by setting
CounterOfferAllowed to true. Note that in an auction (Section 4.4) it is always set to false.
ParentIsRfp is set to true whenever the offer answers an immediate previous RFP. Finally, an
offer has a unique identifier (OfferId).

colset ParentId = MessageId;

colset Eval= with OK | X | NE | NR;

colset NoOffer = int with 1..0;

colset PropertyLst = listProperty;

colset CounterOfferAllowed = BOOL;

colset Offer = product ParentId * NoOffer * From * To * Eval * PropertyLst * CounterOfferAllowed

* ParentIsRfp * OfferId;

4 Note that the union type could be used here. However, for reasons of simplicity we did not do so.

35

Other colors used in the model that are specific to different negotiation styles will be described
when needed.

4.2 The Overall Negotiation Process

Figure 5 shows the main net of our model. The negotiation process aims at assigning values to
properties. The properties to be negotiated are in the place ToNegotiate. Broadly speaking, the
leader builds a negotiation plan (see transition PlanHowToNegotiate). Then, the leader follows
this plan and coordinates the negotiation. At the end, properties are grouped based on whether
they were agreed on or not (see places Agreed and NotAgreed). Some properties may fail to be
negotiated, e.g., when no negotiator is interested in an auction. Such properties are put in the
place NotNegotiated. If all properties were successfully negotiated, a new contract can be built.
This last step is out of the scope of this paper.

or

()

or

()

()

givenup_offer(ns)

or

or

or

b new_try(ns)

ns

ns

np_reeval(or)

negit

negplnplnit::negpln

build_nplan(propts)

propts

ni_ro(negit)

ni_ro(negit)

negit

ni_ro(negit)

negit

negit

np_prepare_neg(plnit)

negit

negit

np2

[of_nooffer(or)]

Separate

SeparateProperties

giveup[not (try_new_strategy(ns))]

TryNewStrategy

[try_new_strategy(ns)]

ReevaluateStrategy

[offer_disagreed(or)]

np1

[offer_agreed(or)]

Ballot
Process

ToBallot

PlanHowToNegotiate

ByBargaing

[ni_type(negit)=BARG]

ByAuction

[ni_type(negit)=AUC]

ByBallot

[ni_type(negit)=BLT]

PrepareNegotiation

Bargain
Proces

Bargain

Auction
Process

Auction

NotNegotiated

Property

Offers

Offer

New
Negotiation

Item

1`()

UNIT

NewStrategy

NewStrategy

NotAgreed

Property

Agreed

Property

PlanedNegotiation

NegoPlan

Ready to
negotiate

NegotItem

NegotiatedOffer

Offer

ToBargaing

RfpOrOffer

ToAuction

RfpOrOffer

ToBallot

RfpOrOffer

ToNegotiate

1`[QMAX,MINPRICE,QBERRY,
PRICEBERRY,QPEACH,PRICEPEACH]

PropertyNameLst

Auction

Bargain

ToBallot

SeparateProperties

1

1`()

1

1`[QMAX,MINPRICE,QBERRY,PRICEBE
RRY,QPEACH,PRICEPEACH]

Fig. 5. Negotiation Process (NegotiateProperty page)

The negotiation plan for our example is shown in Figure 6. It shows that the leader will first
negotiate property QMAX using a ballot, then MINPRICE. In the third step, it will negotiate properties
QBERRY and PRICEBERRY by an auction. Finally, QPEACH and PRICEPEACH will be negotiated through
a bargain. Note that each step uses one negotiation item and starts after the previous one has
ended (notice place NewNegotiationItem).

Each negotiation style (bargain, ballot, or auction) is started by sending the first RFP or
offer to the corresponding subnets (substitution transitions BallotProcess, AuctionProcess and
BargainProcess). To enable reuse, a new color set (RfpOrOffer) is introduced and used in places
where tokens represent RFPs or offers. The negotiation is carried out by the three subnets shown in
Figure 5. These subnets deliver back the offers that were agreed upon and those that were not. In
the latter case, the leader may change the negotiation strategy (transition ReevaluateStrategy),
even changing the negotiation style, and submit them again to be negotiated.

Style Properties

1. BLT [QMAX]
2. BLT [MINPRICE]
3. AUC [QBERRY,PRICEBERRY]
4. BARG [QPEACH,PRICEPEACH]

Fig. 6. Negotiation plan for the running example

36

Figure 7, shows the tree view of all subpages. Figure 7.a depicts the topmost net and the three
main subnets. Figures 7.b to 7.d detail these subnets. The nodes are named after the page names,
and a number in front of the name denotes the number of replications of this page (if any). For
instance, there are four replications of ProcessRfp within page AuctionNegotiators (Figure 7.b).
Each node is annotated with a pair P:X T:Y. The first stands for the number (X) of places (P) in
that page and the latter, the number (Y) of transitions (T), e.g., the page BargainNegotiators

has 10 places and 6 transitions ((Figure 7.d)). The paper only shows the underlined pages.

Fig. 7. Tree view: (a) topmost page and its main subpages; (b)-(d) subpages are detailed

4.3 Modeling Bargains

A bargain is characterized by a cycle of offers and counter-offers. The negotiators end up agree-
ing upon an offer or they give up. Figure 8 shows the subnet that models the bargaining pro-
cess. The RFP or offer to be bargained enters the subnet via place ToBargain. The leader di-
rects this RFP (or offer) to the other negotiators by putting it in place RfpToNegotiators (or
OfferToNegotiators). The negotiators can make counter-offers by putting offers in the place
OfferToLeader. Leader and negotiators may engage in a cycle of counter-offers until one of them
agrees upon the offer or gives up the bargain. In both cases, the partner places an acceptance

notification in the place NotificationToNegotiators or NotificationToLeader. An acceptance
notification is an offer with special settings, which is denoted by the Eval field. At the end, the
leader puts the negotiated offers in the place OfferNeg.

Figures 9 and 10 detail the substitution transitions Leader and Negotiators, respectively.
Figure 9 shows how the leader develops the bargain and Figure 10 shows how the negotiators react
to it. The latter figure also shows how RFPs and offers are processed in a bargain. Figure 9 shows a
few design directives used in the model. First of all, the messages were modeled as transitions. The
firing of such transitions means that a message is sent, broadcasted, or received. The transitions are
named after the message. Prefixes are used to identify whether the data was sent (s), broadcasted
(b) or received (r). For instance, the transition named b new rfp (Figure 9) means that the
message new rfp was broadcasted to the negotiators. There are transitions not related to exchange
of messages. The second design decision that should be noted is that data conveyed by messages
are modeled as tokens, e.g., the place ToBarg (Figure 9) stores the RFP or offer that starts the
bargaining process.

When there is an RFP to be negotiated in place ToBarg (Figure 9), the leader sends or broad-
casts a new rfp message that conveys such RFP. This is represented by transitions s new rfp and
b new rfp, respectively. After a few firings, such an RFP will be available to the other negotiators
in the place RFP (Figure 10). Similarly, when there is an offer to be negotiated, the leader sends
or broadcasts it. It will be available to the negotiators via place OFFER fr LEADER (Figure 10).

37

Negotiators

BargainNegotiators

Leader

BargainLeader

OffersNegotiated

Offer

ToBargain

In
RfpOrOffer

NotificationToLeader

Offer

NotificationTo
Negotiators

Offer

OfferNeg

Out
Offer

OfferToNegotiators

Offer

OfferToLeader

Offer

RfpToNegotiators

Rfp

Out

In

BargainLeader
BargainNegotiators

Fig. 8. Bargain subnet. Cycle of counter-offers is emphasized.

or

or

or

or

or

or

or

or

or

or

or

or

get_offer(ro)

get_rfp(ro)

or

or

or

f_leader_anl_of(or)

or

ro

get_offer(ro)

ro

ro

get_rfp(ro)

ro

or

r_proposal_agree

[offer_agreed(or)]

r_proposal_no_agree

[offer_disagreed(or)]

s_proposal_no_agree

[offer_disagreed(or)]

s_proposal_agree

[offer_agreed(or)]r_no_offer

[is_no_offer(or)]

r_new_offer3

[not(is_no_offer(or))]

s_new_offer1

[is_offer_to_send(ro)]

b_new_offer

[is_offer_to_broadcast(ro)]

s_new_rfp

[is_rfp_to_send(ro)]

b_new_rfp

[is_rfp_to_broadcast(ro)]

s_new_offer2

[offer_not_eval(or)]

analyze

AgreementNotification

In
Offer OfferNegot

Out
Offer

NotifyAgreement

Out
Offer

OfferReceived

In
Offer

ResAnalysis

Offer

OffersRcvd

Offer

NewOffer

Out
Offer

NewRfp

Out

Rfp
ToBarg

In
RfpOrOffer

In

Out

Out

In

Out

Out

In

Fig. 9. BargainLeader subnet

When the other negotiator(s) receive(s) an RFP (in the place RFP, Figure 10), the answer
to the leader is put in the out-port OFFER to LEADER. The negotiator(s) receive(s) offers from
the leader through the in-port OFFER fr LEADER. Such an offer may be a response to a directly
preceding RFP. In this case, the offer passes through the Process RFP (Bargain) subnet, but is
handled by the Process Offer (Bargain) subnet. The arriving offer should also be a new offer
or a counter-offer from the leader. In both cases, the offer goes directly to the Process Offer

(Bargain) subnet.

An agreement notification from the leader arrives via the port AgrNotfFrLeader and may fol-
low two paths: (a) it is directed to Process RFP (Bargain) subnet, when the leader immediately
agreed upon the first offer sent by the negotiator, or (b) the notification is directed to the Process
Offer (Bargain) subnet.

Figure 10 shows neither individual negotiators nor makes a distinction whether the messages
were sent or broadcasted. These details are presented in Figure 11. An RFP is directed to the
corresponding receiver or broadcasted to all negotiators. Note that the answers of each negotiator
are joined in one respective single place. The subnet for Process Offer (Bargain) is designed
in a similar way.

38

or

or

or

or

or

or

or

or

NotRelatedToRfp2

[not (parent_is_rfp(or))]

RelatedToRfp2

[parent_is_rfp(or)]

NotRelatedToRfp1

[not (parent_is_rfp(or))]

RelatedToRfp1

[parent_is_rfp(or)]

Process
Offer

(Bargain)

ProcessOfferBarg

Process
RFP

(Bargain)

ProcessRfpBarg

OFFERSNEGOTIATED

Out

Offer

NOTIFYLEADER

Out

Offer

OFFER_to_LEADER

Out

Offer

AgrNotfFrLeader

In

Offer

OFFER_fr_LEADER

In

Offer

RFP

In
Rfp

AgreementNotifification

Offer

Offer

Offer

AgreementNotification

Offer

CounterOffer1

Offer

In

In

In

Out

Out

Out

ProcessRfpBarg

ProcessOfferBarg

Fig. 10. BargainNegotiators subnet

Figure 12 presents the elementary ProcessRFP. It shows the messages that are received and
sent by the negotiator and the function it uses to assess the received RFP (f analyze rfp). Recall
that this subnet is used by several negotiators and each negotiator evaluates the RFP differently.
Thus, the f analyze rfp function actually dispatches the RFP to specific functions. For this
reason, the token in RFP place is of color RfpXNegId and contains the RFP and the identification
of the negotiator it is meant for.

Finally, Figure 13 shows the elementary ProcessOffer. New offers arrive in the place Offer.
Function f analyze offer dispatches it to the correct negotiator. The (dis)agreed offers are made
available to the partner negotiator through the place AgreeDisagree. They are collected in the
OffersNegotiated place. Conversely, the negotiator decides to make a counter-offer, which is
placed in CounterOffer. A No Offer message is just collected (transition r no offer). Agreement
notifications related to previous offers are received in through port AgreementNotification and
are also collected.

Note that the same patterns of ProcessRfp and ProcessOffer were applied to subpages at
different levels. For instance, Figures 10 and 11 have the same structure of Figure 12.

4.4 Modeling Ballots and Auctions

Figure 14 details the BallotProcess subnet referred to in Figure 5. It shows the leader, the notary
and the negotiators interacting in a ballot process. The leader role is detailed in Figure 15. Note
that the leader asks the notary to conduct the ballot (transition s control ballot), receives the
notary’s acknowledgment (transition r will conduct) and, eventually, receives the result of the
ballot (r bal res).

The notary role is detailed in Figure 16. First, the notary receives a message from the leader to
conduct a ballot (transition r control ballot). It accepts the job (transition s will conduct)
and broadcasts the issue to the negotiators (b voting). The notary receives votes (r vote) or
vetoes (r veto). In case it does not receive any veto, the notary counts the votes and broadcasts
the result (b bal res). Otherwise, the notary informs all participants that a veto has occurred.
However, none of the farms in the running example has veto power. Thus, the veto scenario does
not occur.

The BallotNegotiators subnet (not shown) directs the issue to be voted to each negotiator,
collects their votes and, eventually, sends them the ballot result. Figure 17 shows how a negotiator
reacts when it receives a vote request. Basically, it analyzes the issue and decides either to vote or
to veto (see function vrr analyze). Its choice is sent to the notary (s vote or s veto). Eventually,
the negotiator receives the ballot result (r bal res).

39

oror

oror

oror

or

or

or

or

oror

oror

oror

(rfp,F4)

(rfp,F3)

(rfp,F2)

(rfp,F1)

(rfp,F4)

(rfp,F3)

(rfp,F2)

(rfp,F1)

rfp

rfp

rfp

rfp

rfp

broadcast

[rfp_to(rfp)=EVERYBODY]

s4ran

[of_to(or)=F4]

s4rco

[of_to(or)=F4]

s4r

[rfp_to(rfp)=F4]

s3ran

[of_to(or)=F3]

s3rco

[of_to(or)=F3]

s3r

[rfp_to(rfp)=F3]

s2ran

[of_to(or)=F2]

s2rco

[of_to(or)=F2]

s2r

[rfp_to(rfp)=F2]

s1an

[of_to(or)=F1]

s1rco

[of_to(or)=F1]

s1r

[rfp_to(rfp)=F1]

Proc
Rfp
4

ProcessRfp

Proc
Rfp
3

ProcessRfp

Proc
Rfp
2

ProcessRfp

Proc
Rfp
1

ProcessRfp

co4

Offer

co3

Offer

co2

Offer

r4

RfpXNegId

r3

RfpXNegId

r2

RfpXNegId

an4

Offer

an3

Offer

an2

Offer

an1

Offer

co1

Offer

r1

RfpXNegId

OFFERNEGOT

Out
Offer

EVALCO

Out Offer

OFFER

Out
Offer

AGREEMNOTIF

In
Offer

COUNTEROFFER

In
Offer

RFP

In
Rfp

In

In

In

Out

Out

Out

ProcessRfp

ProcessRfp

ProcessRfp

ProcessRfp

Fig. 11. ProcessRfpBarg subnet

The notary also collaborates in an auction. Figure 18 shows an auction step being directed to
negotiators. Each negotiator uses ProcessRfp subnet to react to a negotiation step. Note that this
is the same subnet used in bargains. The other subnets are not presented for the sake of brevity.

5 Implementing the Negotiator’s Strategies

To simulate the model, we configured the CPN for the scenario presented in Section 3.2. For each
property, each negotiator (including the dairy) has a value (or a range of values) it considers a
“good deal” and for which it will always agree upon. There are also values the negotiator will
never agree upon. Values in-between will be accepted with specific probabilities: the nearer to the
expected value, the higher the acceptance probability. Each farm has also distinctive characteris-
tics, mainly its production capability for each product (Figure 19). These characteristics influence
its decision. For instance, Farm 1 weekly produces a large amount of milk (400 liters). Thus, it
tends to agree upon high values for QMAX. However, Farm 2 has a low production capacity (50
liters). It will not agree upon high values for QMAX for fear that the week quota should be fulfilled
by the other farms.

According to the model presented in Figure 5, the leader may have several strategies to nego-
tiate the value of a property. When a negotiation fails, the leader can try again negotiating that
property using a different strategy. The simulation uses this capability to negotiate properties
QMAX and MINPRICE. For instance, the leader has a lower and an upper limit to QMAX (QMAX min

and QMAX max). It starts in the middle point between these values and submits increasing values to
successive ballots. If the proposed values reach unsuccessfully the upper limit, the leader submits
successive decreasing values starting from the middle point.

40

or

oror

oror

or

or

or

or

orf_analyze_rfp(rfp_neg)rfp_neg

r_proposal_no_agree

[offer_disagreed(or)]

r_proposal_agree

[offer_agreed(or)]

CounterOfferReceived

s_no_offer

[is_no_offer(or)]

s_new_offer

[not(is_no_offer(or))]

r_new_rfp

CounterOffer

In

Offer

Negotiated

Out

Offer

EvaluateCounterOffer

Out

Offer

AgreementNotification

In

Offer

OfferOrNoOffer

Out
Offer

Answer

Offer

RFP

In

RfpXNegId

In
Out

In

Out

Out

In

Fig. 12. Elementary Process RFP (ProcessRfp subnet)

or

or

or

or

or

or

or

ofr_neg

(or,neg)

(or,neg)

or

(or,neg)

or

or

oror

or

f_analyze_offer(ofr_neg)

r_proposal_agree

[offer_agreed(or)]

r_proposal_no_agree

[offer_disagreed(or)]

r_new_offer

[not(is_no_offer(or))]

r_no_offer

[is_no_offer(or)]

s_proposal_nagree

[offer_disagreed(or)]

s_proposal_agree

[offer_agreed(or)]

s_new_offer

[offer_not_eval(or)]

AnalyzeOffer

OffersNegotiated

Out
Offer

AgreementNotification

In
Offer

OfferReceived

OfferXNegId

NoOffer

Offer

CounterOffer

Out
Offer

AgreeDisagree

Out Offer

Answer

Offer

Offer

In
OfferXNegId
In

Out

Out

In Out

Fig. 13. Elementary Process Offer (ProcessOffer subnet)

The dairy is interested in buying 100kg of peaches weekly. Only Farm 4 can afford such amount.
Thus, they engage in a bargain that comprises two properties: QPEACH (bound by the leader) and
PRICEPEACH. The dairy has two parameters that guide the negotiation. PEACH PRICE GD LD is a
threshold value, i.e., values lesser or equal to it are considered a good deal (cheap enough) and
are always accepted. PEACH PMAX LD is the opposite, values higher than it are refused.

The dairy starts the bargain by sending an RFP to Farm 4 assigning the value of 100Kg to
QPEACH and requesting a value for PRICEPEACH. Eventually, the dairy receives an offer from
Farm 4. The closer the offered price is to the “good deal”, the higher the probability of being
accepted. If not accepted, the dairy will choose (by chance) between refusing the offer or making
a counter-offer. If it chooses to make a counter-offer, the value for a future counter-offer uses the
value of PEACH PRICE GD LD (e.g., 10) as a reference point: if the proposed value (e.g., 14) is at
a “distance” d (i.e. 4), beyond the “good deal”, the counter-offer will be exactly at the same
“distance” before the “good deal” (i.e., 6).

Similarly, Farm 4 has two parameters to negotiate PRICEPEACH. The value it considers a good
deal is PEACH PRICE GD F4. Values higher than it are always accepted. PEACH PMIN F4 is the op-
posite (too cheap), values lower than it are always rejected. The diagram in Figure 20 depicts
Farm 4’s decision table. GD stands for PEACH PRICE GD F4; MP, for PEACH PMIN F4; numbers above
the line are fractions (in percentage) of GD; and numbers below the line are acceptance probabili-

41

br

br

br

br_offer(br)

br

Negotiators
Vote

BallotNegotiators

tb6

Notary
Controls
Ballot

BallotNotary

Leader
Controls
Ballot

BallotLeader

BallotResult

BallotResult

BR4

BallotResult

OfferVoted

Out
Offer

ResltBroadcstd

BallotResult

VoteRecvd

Vote

BallotBroadcasted

Ballot

NotaryAck

Ballot

AskNotary

Ballot

ToBallot

In
RfpOrOffer
In

Out

BallotLeader BallotNotary
BallotNegotiators

Fig. 14. BallotProcess subnet

br

bal

br

bal1

bal1 bal2

bl_control_ballot(ro)

bl_control_ballot(ro)ro

r_bal_res

r_will_conduct

s_control_ballot

Result

BallotResult

BallotResult

In
BallotResult

WaitingResult

Ballot

AckfromNotary

In

Ballot

WaitingAck

Ballot

AskedNotary

Out
Ballot

ToVote

In

RfpOrOffer

In Out

In

In

Fig. 15. BallotLeader subnet

ties. For instance, if Farm 4 receives an offer whose value is at least 90% of GD, but no bigger than
GD, it will accept the offer with probability 0.8.

Other negotiators use similar approaches, but with different parameter values. They are not
described here for brevity.

Recall Figure 5. One execution of the model should produce as a result of a negotiation
the markings shown in Figure 21. Note the agreed values for properties MINPRICE, QMAX and
PRICEBERRY. There was no agreement on the value for PRICEPEACH.

6 Discussion

This section discusses what we have learnt from the modeling process and some results obtained
from simulations and state space analysis.

The construction of the model led us to new insights into the modeling process and into our
negotiation protocol. We followed a top-down approach to model the protocol. At the end, we
noticed that there were different subnets to handle RFPs in auctions and in bargains. This also
happened to offers. Thus, we updated our model using a bottom-up approach: we focused on the
handling of RFPs and offers and how to combine them to allow different styles of negotiation (bal-
lots, auctions, and bargains), e.g., compare Figures 11 and 18. This gave us a better understanding
about the role of RFPs and offers within our protocol. This allowed us to replicate elementary
structures in higher subnets. For instance, compare Figures 10, 11 and 12. Note that they have
identical interfaces, and the flow of information is the same.

42

b
b
b
b

()

bal

bal

bb

br

vt

bal

br

br

br

bn_count(bb)

bb

vt
(bal1,vt::vlst)

(bal1,vlst)

bn_ballot_vetoed(bb,vt)

bal

bal

(bal,[])

balbal

votes_counted

r_vote

[not(is_veto(vt))]

r_veto

[is_veto(vt)]

b_voting

s_will_conduct

r_control_ballot

b_bal_res

b_bal_res_vetoed

CanCount

UNIT

Announce

Ballot

BroadcastBallot

Out
Ballot

BallotResult

BallotResult

Vote

In

Vote

Ballot

Out

BallotResult

ReceivedVeto

BallotResult

ExpectingVotes

BallotBox

AcceptConduct

Out
Ballot

AcceptedBal

Ballot

ToVote

In

Ballot

In

Out

Out

In

Out

Fig. 16. BallotNotary subnet

br

br

()

()

()

vt

vt

vt

vtvrr_analyze(balneg)

balneg

r_bal_res

s_veto

[is_veto(vt)]

s_vote

[not(is_veto(vt))]

r_voting

Ballot
Result

BallotResult

ReceivedResult

In
BallotResult

WaitingResult

UNIT

Vote

Out

Vote

IssueAnalyzed

Vote

VoteRequest

In

BallotXNegId

In

Out

In

Fig. 17. VotingRequestReceive subnet

The modeling process also helped us to improve the SPICA protocol. It showed that the
protocol lacked negotiation plans and also that it should allow alternative strategies to negotiate
a property.

We used CPN Tools to build the model. CPN Tools helped us in several ways. First, calculating
the model’s state space was a hard job. Several simplifications and processing hours would be
needed to produce a full state space. This made clear that the protocol’s implementation will
demand extreme care. Second, it helped us to assess the correctness of the model, especially by
indicating some unexpected dead markings. Third, it allowed to simulate the running example
presented in Section 3.2.

State space analysis. The calculation of the state space was a non-trivial task for several
reasons. The model’s first version aimed at producing actual values for the properties, e.g., a
negotiation should come out with the value 187 for property QMAX in our running example. This
easily produces a huge state space. We tried several alternatives to calculate a full state space.
First, we created a new model version with some simplifications. The allowed values for properties
were restricted (e.g., -1..+1) and the decisions were not based on the offered values, but taken
by chance. However, these restrictions did not make possible the calculation of a full state space,
even spending several processing hours of a Pentium 4 (3GHz, 1Gb). Then, we split the model

43

or

or

or

or
or

(rfp,F4)

(rfp,F3)

(rfp,F2)

(rfp,F1)

rfp

aun2

Process
Rfp 4

ProcessRfp

Process
Rfp 3

ProcessRfp

Process
Rfp 2

ProcessRfp

aun1
Process
Rfp 1

ProcessRfp

n4

Offer

n3

Offer

n2

Offer

n1

Offer

co4

Offer

co3

Offer

co2

Offer

co1

Offer

ng4

Offer

ng3

Offer

ng2

Offer

ng1

Offer

ec4

Offer

ec3

Offer

ec2

Offer

ec1

Offer

Rfp4

RfpXNegId

Rfp3

RfpXNegId

Rfp2

RfpXNegId

Rfp1

RfpXNegId

Notifications

In

Offer

Answers

Out

Offer

RFP

In
Rfp

In Out

In

ProcessRfp

ProcessRfp

ProcessRfp

ProcessRfp

Fig. 18. AuctionNegotiators subnet

Production Capacity F1 F2 F3 F4

Milk (liters) 400 50 200 150

Blueberry (kg) 100 200 150 300

Peach (kg) 50 30 80 100

Fig. 19. Production capacity

into tree distinct models – one for auctions, another for ballots and another for bargains – and
deleted unneeded places and transitions of the main net (Figure 5).

For the bargain sub-model, we managed to calculate the full state space. However, this was not
possible for the ballot sub-model. Thus, we tried to reduce the number of negotiators by dropping
two negotiators, i.e., only the other two remaining negotiators took part in ballots. We succeeded
in obtaining a full state space for the reduced ballot sub-model (Figure 22). This analysis showed
a few dead transitions, which are caused by two factors: (a) the model’s reduction and (b) some
possibilities allowed by the model were not used by the running example. The dead transitions
SeparateProperties’not negotiated and SeparateProperties’sp3 are examples for the first
factor. A property can be not negotiated only when a negotiator is not interested in an RFP and
sends back a No Offer answer. This cannot happen in a ballot. The other transitions are related
to the veto power a negotiator may have in a ballot. The farms in our running example do not
have such a power.

0
v

MP

0.2
v

80%

0.5
v

90%

0.8
v

GD

1

Fig. 20. F4’s PRICEPEACH decision table

44

Agreed 1‘(QMAX,AGREED,202,[]) ++ 1‘(MINPRICE,AGREED,15,[]) ++
1‘(QBERRY,AGREED,100,[F3]) ++ 1‘(PRICEBERRY,AGREED,39,[F3])

NotAgreed 1‘(QPEACH,NOT AGREED,100,[L] ++
1‘(PRICEPEACH,NOT AGREED,57,[L])

Fig. 21. A negotiation result

Statistics

State Space
Nodes: 6387 Arcs: 22816 Secs: 26 Status: Full

Scc Graph
Nodes: 6387 Arcs: 22816 Secs: 2

Boundedness Properties

(Omitted)

Home Properties

Home Markings
None

Liveness Properties

Dead Markings
8 [6387,6386,6385,6380,6372,...]

Dead Transition Instances
BallotNotary’b bal res vetoed 1 BallotNotary’r veto 1
SeparateProperties’not negotiated 1 SeparateProperties’sp3 1
VotingRequestReceived’s veto 1 VotingRequestReceived’s veto 2

Live Transition Instances
None

Fig. 22. State space report for the ballot sub-model (excerpt).

For the auction sub-model, even making such reductions, it was not possible to produce a full
state space.

Statistics

State Space
Nodes: 241569 Arcs: 1134868 Secs: 43000 Status: Partial

Scc Graph
Nodes: 241569 Arcs: 1134868 Secs: 190

Fig. 23. State space report for the auction sub-model (excerpt).

Model correctness. CPN tools helped us to assess the correctness of the model. It showed
a few expected dead markings (e.g., in those states that collect negotiated offers), but also un-
expected ones. For instance, one configuration did not replace the token in NewNegotiationItem

(Figure 5) hindering the execution of the next negotiation round. CPN Tools also highlighted
another synchronization problem. It may happen when a negotiation fails and the convenience of
a new strategy is evaluated. The solution found is based in specific characteristics of the running
example and cannot be generalized. Thus, such synchronization issues must be better addressed
in future versions of the model.

Simulation. We used CPN tools to run simulations and to produce performance reports.
The generated performance report helped us to assess the correctness of the model. We wanted
that: (a) new strategies were tried, (2) distinct simulation produced different outputs, (3) all
properties reached the final places Agreed, NotAgreed or NotNegotiated (Figure 5), (4) eventu-
ally, some auction failed (this guarantees that a property is put in the NotNegotiated place).
Figure 24 shows a performance report. Recall Figure 5. Regarding the first concern, a new

45

strategy is tried when transition TryNewStrategy fires. According to the performance report,
this happens, in average, 1.74 times in each simulation run (see line count iid of monitor
Count trans occur NegotiateProperty’TryNewStrategy 1). To assess the second concern, three
marking size monitors were assigned to the final places (see columns Min and Max of monitors
Marking size NegotiateProperty’Agreed 1, Marking size NegotiateProperty’NotAgreed 1

and Marking size NegotiateProperty’NotNegotiated 1). Note that the maximum numbers of
tokens observed in each place is greater than zero. This means that eventually a token reached such
places. Note also that the minimum number of tokens differs from the maximum. It means that
the outputs can vary in each simulation. To assess the third concern, we grouped the final places
and assigned a monitor (Final places) that counted the total number of tokens in these places. For
the running example, the number of tokens in the final places at the end of a simulation must be
ever 6. Note that the measures Min and Max for max iid are both 6. This does not guarantee the
correctness of the model, however the opposite would show that the model was incorrect. Finally,
a transition occurrence monitor was assigned to np2 transition (Figure 5) in order to verify the
fourth concern. If an auction fails, this transition fires. The performance report showed that this
transition eventually fires.

Fig. 24. Performance report

46

7 Conclusion

The paper presented the initial steps aiming at the implementation of our negotiation protocol.
First, we modeled the core part of this negotiation protocol using CPN Tools. The goal was to
simulate a negotiation for the running example presented in Section 3.2. We used the simulation
capabilities of CPN Tools to assess the correctness and the adequacy of the model. Although such
simulations cannot prove the correctness of the model, they can, at least, show flaws in the model.
In fact, the simulations helped us to identify problems that could be repaired. Some weaknesses
were also identified and will be taken into consideration in the actual implementation of the model.
The simulation also helped us in ascertaining that the protocol is suitable to the purposes it is
intended for. Although each negotiator used a simple strategy, the negotiation process provided
by/observed during the simulation corresponded to our expectations, and reasonable values were
produced.

We also desired to have a stronger confidence about the model’s correctness. Thus, we tried to
perform state space analysis. We had to simplify the model and even to split it into three distinct
sub-models. We managed to obtain full state spaces for the bargain and ballot sub-models, but
not for the auction sub-model. Although we did not fully succeed, this process also helped us
to identify flaws in the model. We tried to correct them both in the original model and in the
sub-models.

Acknowledgment

This paper is partially supported by CAPES/Brazil under grant 4635/06-0, CNPq WebMaps II
Project, and FAPESP.

References

1. Weigand, H., Heuvel, W.: Cross-organizational workflow integration using contracts. Decision Support
Systems 33(3) (July 2002) 247–265

2. Krishna, R., Karlapalem, K., Chiu, D.: An ERec framework for e-contract modeling, enactment and
monitoring. Data & Knowledge Engineering 51(1) (oct 2004) 31–58

3. Angelov, S.: Foundations of B2B Electronic Contracting. PhD thesis, Technische Universiteit Eind-
hoven (2005)

4. Bacarin, E., Madeira, E., Medeiros, C.: Contract e-negotiation in agricultural supply chains. Intl.
Journal of Electronic Commerce (2007) http://www.gvsu.edu/business/ijec (to appear).

5. Jesen, K., Kristensen, L., Wells, L.: Coloured petri nets and cpn tools for modelling and validation
of concurrent systems. Intl. J. on Software Tools for Technology Transfer 9(3-4) (2007) 213–254

6. Bartolini, C., Preist, C., Jennings, N.: A software framework for automated negotiation. In: SELMAS.
(2004) 213–235

7. Chiu, D., Cheung, S., Hung, P., Chiu, S., Chung, A.: Developing e-negotiation support with a meta-
modeling approach in a web services environment. Decision Support Systems 40(1) (July 2005) 51–69

8. Reeves, D., Wellman, M., Grosof, B.: Automated negotiation from declarative contract descriptions.
In: Proc. of the 5th International Conference on Autonomous Agents, Canada, ACM Press (2001)
51–58

9. Henderson, P., Crouch, S., Walters, R., Ni, Q.: Comparison of some negotiation algorithms using
a tournament-based approach. In: Agent Technologies, Infrastructure, Tools and Applications for
E-Services. Volume 2592 of Lecture Notes in Artificial Intelligence. Springer (Jan 2003) 137–150

10. FIPA: Fipa abstract architecture specification. Available at www.fipa.org (2000)

11. Malucelli, A., Palzer, D., Oliveira, E.: Ontology-based services to help solving the heterogeneity
problem in e-commerce negotiations. Electronic Commerce Research and Applications 5(1) (2006)
29–43

12. Governatori, G., Dumas, M., ter Hofstede, A., Oaks, P.: A formal approach to protocols and strategies
for (legal) negotiation. In: ICAIL. (2001) 168–177

13. Jensen, K.: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use. Springer-Verlag
(1997)

47

14. Chen, Y., Peng, Y., Finin, T., Labrou, Y., Cost, S.: A negotiation-based multi-agent system for supply
chain management. In Working Notes of the Agents ’99 Workshop on Agents for Electronic Commerce
and Managing the Internet-Enabled Supply Chain., Seattle, WA, April 1999. (1999)

15. Liu, L., J, B.: Enhancing the CES Protocol and its Verification. Sixth Workshop and Tutorial on
Practical Use of Coloured Petri Nets and the CPN Tools (2005)

16. Dang, J., Huhns, M.: Concurrent Multiple-Issue Negotiation for Internet-Based Services. IEEE
Internet Computing 10(6) (2006) 42–49

48

Effectiveness of Coloured Petri nets for Modelling and
Analysing the Contract Net Protocol

Jonathan Billington and Amar Kumar Gupta

Computer Systems Engineering Centre
School of Electrical and Information Engineering

University of South Australia
Mawson Lakes Campus, SA 5095, AUSTRALIA

Email: jonathan.billington@unisa.edu.au, gupay003@students.unisa.edu.au

Abstract. The Contract Net Protocol was developed to facilitate contract negotiation in Multi-
Agent Systems, between an auctioneer and many bidders. It is therefore important to analyse
the protocol to ensure that it terminates correctly and satisfies other important properties. There
have been few attempts to model and analyse this protocol in the literature. The main paper
on its verification, published in 2004, suggests that Coloured Petri nets are inadequate for this
task. This seems to be due to a misunderstanding of what Coloured Petri Nets are. The main aim
of this paper is therefore to show how Coloured Petri nets can be used effectively to model and
analyse this protocol. We present a model of the protocol implemented in CPN Tools. The level
of abstraction excludes details of the messages communicated between the agents and processing
that does not affect the operation of the protocol. We analyse the protocol and show that it
terminates correctly (there are no deadlocks or livelocks, and the terminal states show that the
auctioneer and bidders have consistent states)and that there is no dead code (all procedures are
executable). We also demonstrate that the channel bounds and number of terminal states depend
linearly on the number of bidder agents participating in the negotiations for up to 6 bidders and
conjecture that this is true in general.

1 Introduction

1.1 Background

Planning and task allocation are important activities for most organizations. Task allocation
may involve the distribution of tasks among different subcontracting companies. The design
and use of protocols to aid the above process is still of great interest to both business and
government organizations. In this paper, we attempt to analyse one such protocol, called the
Contract Net Protocol [17], which is used in Multi-Agent Systems (MAS) [4] to facilitate
agent interaction. This work was motivated by discussions with researchers at the Australian
Defence Science and Technology Organisation (DSTO), who are working on the application of
multi-agent systems to transport logistics [16].

The Contract Net Protocol involves contracting between agents comprising an auctioneer
(the service requesting agent) and a set of bidders (service providing agents). The auctioneer
initiates the negotiation process by sending a Task Announcement to a number of bidders, who
bid to provide the service or respond with a refusal. After all bids are received, the auctioneer
selects the most suitable one (if present) and rejects all the others.

The first specification of the Contract Net Protocol was developed by Smith [17]. The
protocol has also been adopted by the Foundation for Intelligent Physical Agents (FIPA) [8]
and specified using the Unified Modelling Language (UML) [3], but with a minor modification
to the one proposed by Smith [17]. The use of the Foundation for Intelligent Physical Agents -
Agent Communication Language (FIPA-ACL) [7] for message interaction is quite complicated.
To overcome this, Perugini [16] presents a new protocol representation, called the Protocol
Flow Diagram, and uses it to describe the Contract Net Protocol.

We believe it is important to verify the properties of a protocol before implementation [2].
This is very important for the Contract Net Protocol as it is being used as the basis for
developing more complex negotiation protocols [16]. Thus we see this work as a necessary first
step for analysing more complex agent negotiation protocols.

49

1.2 Related Work

A lot of work has been reported regarding the application of the Contract Net Protocol in
different domains (see for example [10,18]), but there is little work on verifying the properties
of the protocol. Nowostawski et al [13] advocate the use of Coloured Petri nets (CPNs) [11,12]
as a modelling technique for agent interaction protocols, using the Contract Net Protocol as
an example. Unfortunately, they present an incomplete ‘Coloured Petri Net model for 3 bid-
ders/contractors (their Fig. 7), which is not clear because no net annotations nor declarations
are included, so that the CPN just looks like a Petri Net model. Hence it does not specify the
behaviour of the protocol. This model reflects similar behaviour for three different contractors
by repeating net structure, which does not take advantage of the power of coloured Petri nets
in modelling similar behaviour by using the same net structure with different tokens. Further,
there is no discussion of analysis, let alone verification of properties. Paurobally et al [15] rep-
resent the Contract Net Protocol (when its messages are expressed in FIPA-ACL) formally
in extended Propositional Dynamic Logic and graphically in extended statecharts and prove
properties like termination and consistency in beliefs. Based on the (Coloured) Petri net model
of [13], Paurobally et al [15] argue that Petri nets are not suited to modelling and analyzing the
Contract Net Protocol. The inadequacy of Petri nets for modelling agent interactions has also
been discussed in [14]. We believe this is due to a misunderstanding of Petri nets and CPNs in
particular, as demonstrated in Chapter 5 of [14]. This has further stimulated us to show that
the Contract Net Protocol can be modelled and analysed using Coloured Petri Nets.

1.3 Contribution

In this paper, we present a Coloured Petri Net model of the Contract Net Protocol, based on
the Protocol Flow Diagram representation of it in Chapter 4 of [16], and analyse it using state
spaces.

This paper has a threefold contribution. Firstly, we present, for the first time, an abstract
model of the Contract Net Protocol using Coloured Petri Nets that is suited to analysis.
Secondly, we analyse the Contract Net Protocol and confirm the results in [15]. Further, we
prove some additional properties of the protocol, including absence of livelocks, and obtain
expressions for the number of terminal states and channel bounds, as a function of the maximum
number of bidders. We thus demonstrate that Coloured Petri Nets are suited to the modelling
and analysis of interaction protocols contrary to the claims made by Paurobally et al [15].

1.4 Organization

The rest of the paper is organized as follows. Section 2 discusses the main features of the
Contract Net Protocol [16], leading to the development of our model in Section 3, which
further explains the operation of the protocol. We analyse this model in Section 4. Lastly,
Section 5 presents conclusions along with a discussion of future work.

2 Contract Net Protocol

2.1 Time Sequence Diagram Representation

The Contract Net Protocol is illustrated by the three time sequence diagrams shown in Figs. 1
to 3. These diagrams just represent the interactions between the auctioneer and one bidder. The
time sequence diagrams use the terminology of Perugini [16] which is different from FIPA’s
representation [9]. For instance, the auctioneer replaces the initiator, bidder replaces the
participant, and Task Announcement the cfp (call for proposals). The agents (auctioneer
and bidder agents) involved in the negotiations are represented by two vertical lines, where

50

Bidder Auctioneer

Task Announcement

Messages
States States

Bid

Grant Bid

READY

WAIT

BID_RCVD

EXIT_C

W_TA

TEBP

W_RES

exit_c

Fig. 1. Bidding Process ending in a Contract.

Bidder Auctioneer

Task Announcement

Messages
States States

Bid

Reject Bid

READY

WAIT

BID_RCVD

EXIT_NC

W_TA

TEBP

W_RES

exit_nc

Fig. 2. Bidding Process ending Without a Contract.

BidderAuctioneer

Task Announcement

Messages
States States

Refuse

READY

WAIT

EXIT_NC

W_TA

TEBP

exit_nc

Fig. 3. Refusing Process.

51

time increases downwards. The so called ‘speech acts’ (messages communicated between the
agents) are represented by arrows between the two vertical lines.

The states for the auctioneer and the bidders are given in Table 1. There are five possible
states for the auctioneer and for each bidder. The table also defines the meaning of each state.
READY and W TA correspond to initial states, while (EXIT NC, EXIT C) and (exit nc,
exit c) represent the set of terminal states of the auctioneer and bidders respectively. Terminal
states of the auctioneer are represented by uppercase letters, whereas the bidders use lowercase.
The terminology for terminal states is that used by Perugini [16].

Table 1. Representation of States.

Auctioneer Bidders

READY (READY to send a Task Announcement) W TA (Waiting for a Task Announcement)
WAIT (WAITing for bids) TEBP (Task Evaluation and Bid Preparation)

BID RCVD (BID ReCeiVeD) W RES (Waiting for RESult)
EXIT NC (EXIT with No Contract) exit nc (exit with no contract)

EXIT C (EXIT with Contract) exit c (exit with contract)

2.2 Operation

The auctioneer initiates the negotiation process by broadcasting a Task Announcement to a
number of bidders. The Task Announcement contains the details of the tasks to be performed
and the deadline for the submission of the bids. On receipt of the Task Announcement, the
bidders evaluate the task and then decide whether to bid or refuse. Each bidder must either
Bid or Refuse (to bid). The Bid may contain information concerning the price that must be
paid to carry out the task, the time required to complete the task and any other aspect that
the auctioneer might have asked for in the Task Announcement. The Refuse signifies that
the bidder is not willing to perform the task. As the auctioneer is dealing with a number
of bidders, it may receive both Bid and Refuse messages but can only receive one of either
from each bidder. In case of a Refuse, the bidder exits the process without a contract, which
the auctioneer records. Once a message (Bid or Refuse) is received from all the bidders, the
auctioneer starts processing the bids (if any). After the selection of a bid, it sends a Grant Bid
message to the concerned bidder and sends a Reject Bid message to the rest of the bidders.
The auctioneer may also reject all the bids by sending a Reject Bid to those that have bid.
The bidders exit the process with or without a contract on receipt of the Grant Bid or Reject
Bid respectively.

The three possible scenarios of the negotiation process are illustrated by the time sequence
diagrams in Figs. 1 to 3. The figures also show the sequence of messages exchanged between
the auctioneer and the bidder and the state resulting from their receipt. For instance, the
auctioneer changes state from READY to WAIT after broadcasting a Task Announcement,
while a bidder that is waiting for a Task Announcement in the state W TA, would change
state to Task Evaluation and Bid Preparation (TEBP) on receipt of the Task Announcement.
Figure 1 corresponds to the case in which the bidder sends a Bid in response to the Task
Announcement. After considering all the bids (not shown in Fig. 1), the auctioneer grants this
bid (and no others) by sending a Grant Bid message, resulting in a contract at the end of
the negotiation process. This is also reflected by the terminal states, EXIT C (for auctioneer)
and exit c (for bidder). Figure 2 represents a similar scenario where the auctioneer rejects the
bid by sending a Reject Bid message and changes state to EXIT NC. At the other end, the
bidder in the state W RES changes state to exit nc on receipt of the message. The negotiation
ends without a contract as is evident from the terminal states. The third scenario depicted by

52

Fig. 3 is the case when a bidder refuses to bid for the task by sending a Refuse message in
response to the Task Announcement sent by the auctioneer. Without communication of any
further messages, the negotiation ends without a contract.

Since the auctioneer is dealing with a number of bidders simultaneously, the auctioneer may
be in several different states (but with respect to different bidders) during the negotiation. Even
though the negotiation process with some bidders may come to an end (on submission of a
Refuse in response to the Task Announcement), the process would still continue with respect
to other bidders.

3 CPN Model of the Contract Net Protocol

In this section we firstly detail the assumptions made when creating the model and then define
its data structures, before discussing the model’s structure. Then using an equivalent flat model
we describe all the procedures and the operation of the protocol. This allows visualisation of
the message flows between the auctioneer and the bidders.

3.1 Assumptions

1. All the bidders are known to the auctioneer before the negotiation takes place. This is
appropriate for software agents, or a list of preferred suppliers.

2. All the speech acts (Task Announcement, Bid, Refuse, Grant Bid and Reject Bid) are just
represented by their names, as other information contained in these messages does not
affect the protocol’s actions.

3. All the bids are received before the process of selecting a bid occurs. This means that we do
not have to model a deadline, and is reasonable for software agents and preferred suppliers.

4. The communication channel is reliable i.e. messages do not get lost but the receipt of
messages is concurrent. This could correspond to a Task Announcement being placed on a
website, and accessed by the bidders independently.

5. We only consider task allocation, and not any further interaction that may occur after the
task has been allocated [16].

3.2 Declarations

Figure 4, taken directly from CPN Tools, shows the declarations for the CPN model of the
Contract Net Protocol. The protocol facilitates interaction between a single auctioneer and
multiple bidders. The identity of the bidders is represented by the colour set BDR as can be
seen in the declarations (Fig. 4). Its value ranges from 1 to the maximum number of bidders
(MaxBdrs). Hence MaxBdrs is a parameter of the model. The effect of varying this parameter
on the analysis of the model is presented in Section 4.

The states of the auctioneer and the bidders are defined by the colour sets STauc and STbdr
respectively according to Table 1. The state READY (for auctioneer) and W TA (for bidders)
corresponds to the initial state of the negotiation process in which the auctioneer is ready to
broadcast a Task Announcement and the bidders are waiting for it. EXIT NC and EXIT C
represent terminal states of the negotiation process for the auctioneer. EXIT NC indicates that
the negotiation has ended without a contract and EXIT C that a contract has been awarded.
The same applies for the bidders where the set of terminal states are represented by exit nc
and exit c.

The colour sets MESauc and MESbdr define the messages communicated from the auc-
tioneer to the bidders (TA, GB, RB) and from the bidders to the auctioneer (BID, REFUSE)
respectively. They are defined in Table 2.

53

 Fig. 4. Declarations for the CPN model of the Contract Net Protocol.

Table 2. Messages and their representation in the CPN Model.

Message Value in Colour Set MESauc or MESbdr

Task Announcement TA
Bid BID

Refuse REFUSE
Grant Bid GB
Reject Bid RB

The auctioneer negotiates with a number of bidders simultaneously. Thus we need to asso-
ciate the auctioneer’s states and messages with the bidder’s identity. This has been achieved
by the declaration of the colour sets BDR STauc and BDR MESauc. Because all the bidders
are stored in one place, their states and messages are also associated with the bidder’s identity
as defined by colour sets BDR STbdr and BDR MESbdr respectively.

The colour set RESP (RESPonse) is defined as an integer which keeps track of the number
of responses received. This is needed to detect when all the responses from the bidders have
been received. Lastly, the singleton colour set GR1 (GRant only 1) is defined to ensure that
only one bidder is granted the contract.

3.3 Model Structure and CPN Diagrams

Figure 5 shows the main page of the CPN model of the Contract Net Protocol. It contains
5 places and 4 substitution transitions and provides the main structure for the protocol. The
auctioneer’s and the bidders’ states are modelled by the places Auctioneer’s State and Bidders
State respectively. They communicate with each other via the abstract communication channel
represented by the places AUCTIONEER 2 BIDDERS and BIDDERS 2 AUCTIONEER as seen in
the middle of Fig. 5. The place Responses records the number of responses received from the
bidders, so that the auctioneer knows when all bids are in. The main actions of the protocol
are modelled by the 4 substitution transitions, Send Messages, Receive Messages, Bidding OR
Refusing and Receive Responses.

The auctioneer’s procedures for sending messages to the bidders are hidden by the substi-
tution transition Send Messages which is expanded in Fig. 6. The transitions Broadcasting TAs,

54

��������� ����	
�
���	�
 �������		� �����	
���

�������
��������
��� ��� !� "����� !!"#$��%���#����
��� �
������		�� ���	�
�����	
� &

� &� ������'�
���� ����
�� &����
�� & �� !� "����� !!"#$���	��(# ��&� �)������*����+ �
,

��������*��
�� �
,

��&� �)������������+ �	
�

�� �
,

��+ �	
� ���� ��*����- � ��*����	.����	.

��+ �
,

Fig. 5. Main Page of the CPN Model

��� �� �� �� 	
� �� 	��� ����� ����� �� ��
� �� �� ����� ����� �� ��

��������� ������

	� �� ������
� 	� � ! ""#� �"� 	"

� $
��� %&&	' �� ��&	(�)� ��	� �&(�)��)�� �� � �*�(������ ��	�(��)����
���

�)�	&(+�� �
�� �
� �"��� �� &,���
���� �� �� �� 	
� ��

��	�(��)� -.) � ���	-� ��� "#/������	�(��)� -.) � ���	-� ��� "#	&� �0� ��	� �&(�)� -.) � ���	-� ��� "#���

��� �� &,��� %
� ��� �� 	��
��� ��� ��

Fig. 6. Send Messages

55

���������

�����	
���
������� ��������	 ����� ��������������� ����������� �� ������ ������������

 �	 �!"��# �	 �!�����$�#

 �	 �!�%����# �	 �!"��# ���
 ���
&'
���
 ���
&'���(

 �	 �!��)���#

 �	�!��#

Fig. 7. Receive Responses

Granting and Rejecting define the rules for broadcasting a Task Announcement, and Grant and
Reject Bid speech acts respectively. Receive Responses, shown in Fig. 7, details the process of
receiving Bid and Refuse messages from the bidders in response to the Task Announcement,
modelled by the transitions Rcv Bid and Rcv Refuse respectively. Similarly, Fig. 8 models the
actions taken by the bidders on reception of messages from the auctioneer and Fig. 9 details
their bidding and refusing procedures.

This structure allows the individual procedures used by the different parties to be defined in
separate blocks, which makes each individual diagram easier to read. However, the disadvantage
is that it is no longer readily apparent how the bidders and auctioneer interact, which is
important for understanding how the protocol works. Now that we have introduced the main
procedures we would like to describe the model in detail with respect to a flat model that is
equivalent to combining Figs. 6 to 9. This will make it easier to understand the operation of
the protocol as described in Section 3.4.

Figure 10 shows the CPN diagram for the Contract Net Protocol in a single page which
makes it easier to visualise message flow while relating it to the protocol’s procedures. With
reference to Fig. 10, the auctioneer is modelled on the left, the bidders on the right, and
they communicate via two places, AUCTIONEER 2 BIDDERS and BIDDERS 2 AUCTIONEER,
which represent a reliable (but not ordered) channel for each direction of communication. The
auctioneer is modelled with 3 places, which represent its state (Auctioneer’s State), the number
of responses received (Responses) and if a bid has been granted (GRonly1). In contrast, the
bidders are modelled with only a single place, (Bidders State), representing the states of each
of the bidders. The significance of each place is very briefly discussed below.

Auctioneer’s State: This place stores the states of the auctioneer with respect to all the
bidders. It is typed by the colour set BDR STauc (product of BDR and STauc) to identify the
state of the auctioneer in relation to a particular bidder. The initial marking of this place is:
BDR STauc.mult(BDR.all(),1‘READY).

BDR.all is a predefined function that returns a multi-set comprising the set of all bidders.
BDR STauc.mult is another predefined function that returns a product based on the multi-sets
specified in its argument, i.e. one appearance of all the bidders and 1‘READY. For this argu-
ment, the function returns a multi-set with one appearance of all the bidders in the READY

56

��������
��� �����

�	
	��	�
���������� ��������� ��������������	������	��� ������������ �������	�

�� ���������!������"���
�����	# ����������"�������� ��	# �����������"�����

�������

Fig. 8. Receive Messages

����� ���
��		 ���

�
���� �����
�������� �������	���		�������
�� ������	�
�� ���
��	�������
��	����� ���	���! ����"� ��	����#���

��	 ���
����	 ����� �

Fig. 9. Bidding OR Refusing

57

��� �������

	�

���

�� ����

��� ������ ��
��

������ ����
����

����
	
� ������ ����� ��	
� ���� �
� �! ��� �"# � $ 	��"# � �	�

�"# � ��%�� �� �"# � 	�
�

�"# � �&�� ����"# � �&�� �����"# � 	�
 ���'
� �"# � 	�
 ���'
�

�"# � 	�
��"# � ��%�� ��

�"# � �&�� �����"# � (���� �"# � 	�
 ���'
��"# � (����

�"# � �)*� �+���"# � (����� �"# � �)*� ����"# � (�����
�"# � $ 	��"# � �	�

�"# � �)*� �+���"# � ��	,� �"# � (������"# � ��	,��"# � ��	,��"# � (����
�"# � ���

	
� �� ��� ����� ��	
� ����
�� �! (����

	
� �� ��� ����� ��	
� ����
�� �! ���
-� � �. ��� * +� ���� / ��)	# �� $ �� +� * +� ���� / ��)	# �� � �0 � �1 � �� � �0 	 *#

� �. ��� �# $ �� +� �# 	 *## * +�� �1 � � * +�� �0��

	 �2�# �� �� * +� �� �
$ � 2 +� 3�

� ���2 +���

	�

���4 ��� �������

	 *## ��� � �� � �

��� ������� 4 	�

���

�� �� *2 +���5 � � �� � �	
� �� ��� ����� ��	
� ����
�� �! ���
-� 	
� �� ��� � ��� ,�! 6

�! ��� $ ��

	
� ����"# �	
� ������ �

	
� �� �"# �	
� �� �"# ����� ��	
� ���� �
� �! (����

Fig. 10. CPN Diagram of the Contract Net Protocol.

58

state. For example for MaxBdrs=3, the function would evaluate to: 1‘(B(1),READY)++
1‘(B(2),READY)++1‘(B(3),READY).

Bidders State: This place stores the states of all the bidders. Typed by the colour set
BDR STbdr (product of BDR and STbdr), the initial marking of this place corresponds to
the multi-set evaluated by the function: BDR STbdr.mult(BDR.all(),1‘W TA), which returns
a multi-set with one appearance of all the bidders in the state W TA.

AUCTIONEER 2 BIDDERS: This place represents an abstract communication channel used
by the auctioneer to broadcast messages to the bidders. Only the messages of the auctioneer
(TA, GB and RB) would be available at this place along with the identity of the bidder to
which it is destined and hence it is typed by the colour set BDR MESauc. The place is initially
empty.

BIDDERS 2 AUCTIONEER: Similar to AUCTIONEER 2 BIDDERS, this place contains only
the bidder’s messages (BID, REFUSE) along with their identity as defined by BDR MESbdr.
This place is also empty initially.

Responses: This place records the number of messages received (whether BID or REFUSE)
from the bidders, so that the auctioneer knows when all responses to the Task Announcement
have been received. It thus contains the token 0 at the start of the negotiation process.

GRonly1: (GRant only 1) This place ensures that a maximum of one bid is granted.

3.4 Operation of the model

Initially, the auctioneer is ready to broadcast a Task Announcement to all bidders (in the
state READY with respect to all bidders) and all the bidders are in the state W TA (Waiting
for Task Announcement). The auctioneer initiates the negotiation process by sending a Task
Announcement to each of the bidders via the occurrence of the transition Broadcasting TAs
(Broadcasting Task Announcements). After Broadcasting TAs fires, the auctioneer is in the
state WAIT for each of the bidders.

At this point, the transition Rcv TA (Receive Task Announcement) is enabled as the bidders
are in the state W TA and the TA has arrived. As the bidders are all different entities and in
general geographically distributed, we model all the activities of the bidders to be concurrent.
When the transition Rcv TA fires, a bidder removes its Task Announcement from the channel
and changes state to TEBP (Task Evaluation and Bid Preparation).

Once any bidder is in the state TEBP, it first evaluates the task (by considering its resources
and any other criteria needed for the execution of the task). After the evaluation of the task,
the bidder decides whether to bid or refuse. If the bidder opts to bid, then it prepares the bid.
The bid contains details such as the price to be paid, the time it would take to complete the
task and any other details that the auctioneer might have asked for. We neither consider the
details of the Task Announcement nor the details of the bid in the model. The decision to bid
or refuse is modelled as a non-deterministic choice, by transitions Bidding and Refusing. The
occurrence of the transition Bidding changes the state of the bidder to W RES (a state where
it would be waiting for a decision on its submitted bid), while the occurrence of the transition
Refusing changes the state of the bidder to exit nc (a state of the bidder where the negotiation
has ended without any contract).

After the message from the bidder gets through the communication channel and reaches
the auctioneer (in the state WAIT for that bidder), the transition Rcv Bid or Rcv Refuse is
enabled depending on the message BID and REFUSE respectively. The occurrence of Rcv Bid
causes the auctioneer to change state (with respect to that particular bidder) from WAIT
to BID RCVD while the occurrence of Rcv Refuse causes the auctioneer to change state to
EXIT NC (the negotiation process is complete and no contract is formed). In addition, the
number of responses received is increased by one each time Rcv Bid or Rcv Refuse occurs. The
purpose of this mechanism is to keep track of the number of bidders who have replied to the

59

Task Announcement to determine when all replies have been received, which would be equal to
the value of MaxBdrs. When this happens, the transitions Granting and Rejecting are enabled
provided the auctioneer receives at least one bid in response to the Task Announcement. If all
bidders refuse to bid, the protocol terminates with the auctioneer in the EXIT NC state and
all the bidders in exit nc.

Given that there was at least one bid received, the auctioneer could grant any one of the
bids or reject all the bids (in case none of the bids received are suitable). We model this process
of selection or rejection of a bid non-deterministically. When all the responses are received, the
guard on transitions Granting and Rejecting evaluates to true. When the auctioneer receives at
least one bid, the transitions Granting and Rejecting would both be enabled. The place GRonly1
ensures that only a single bid is granted (if at all). The absence of a token at the place GRonly1
signifies that a bid has been granted and the auctioneer’s objective achieved.

On occurrence of Granting, the auctioneer changes state from BID RCVD to EXIT C with
respect to the chosen bidder and sends a GB (Grant Bid) message to that bidder. All the
other bids received must then be sent a RB (Reject Bid) message via Rejecting. It may also be
possible that the auctioneer chooses to reject all the bids in which case the transition Granting
would not occur. The transition Rejecting operates in a similar way except that it causes the
auctioneer to change its state from BID RCVD to EXIT NC (with respect to the bid that is
being rejected) and sends a RB (Reject Bid) to the bidder of the rejected bid, when fired.

Once the messages reach the bidders, the transition Granted or Rejected is enabled depend-
ing on the message GB and RB respectively. The occurrence of Granted causes the bidder to
change its state from W RES to exit c while the occurrence of Rejected causes the transition in
state of the bidder from W RES to exit nc. This process continues until all the bidders reach
a terminal state (exit c or exit nc). We expect that when the negotiations have terminated,
the bidder that has received the contract (in exit c) will be the same as the bidder that the
auctioneer believes has the contract (i.e. is in state EXIT C).

4 State Space Analysis Results

The state space analysis results are presented in Table 3. It shows the properties of the state
space as a result of varying the parameter MaxBdrs from 1 to 6.

Table 3. State space analysis results as a function of the parameter MaxBdrs.

Properties/MaxBdrs 1 2 3 4 5 6

State Space Nodes 10 54 290 1578 8798 50238
State Space Arcs 10 93 721 5185 36181 248833
Time (hh:mm:ss) 00:00:00 00:00:00 00:00:00 00:00:03 00:02:02 01:08:11
Scc Graph Nodes 10 54 290 1578 8798 50238
Scc Graph Arcs 10 93 721 5185 36181 248833
Dead Markings 2 3 4 5 6 7

Home Space (Dead Markings) true true true true true true
Dead Transition Instances none none none none none none
Live Transition Instances none none none none none none

Channel Bound 1 2 3 4 5 6

4.1 Absence of Deadlocks and Consistency in Beliefs

The state space is illustrated for MaxBdrs = 1 in Fig. 11. We can observe from the table that
the number of dead markings is one more than MaxBdrs:

No. of Dead Markings = MaxBdrs + 1.

60

������ ����	
��� �� ��� ��������������� ���������� ����	
����� �� ���������� �� !�"�
������ ����	�#$ �%& �� ���������� � ����� �������� �%& �� ��� �������

���� '���� ����' ����(�)%* �%& �� ��� !������������+ �'���" ����(�)%*�� �� �����������"��"
+���'����+ ����	�,�
* �%& �� ��� !������������

���"
������ ����	
��	�#$ � �� ���������� �� !�"�

�"�+��� ����	�,�
*�� �� ��� �������

�"������������ ������-)�
) * �%&�� �� ��

Fig. 11. Reachability Graph (MaxBdrs=1)

For any value of MaxBdrs, one of the dead markings corresponds to a contract not being
established at the end of the negotiations. This marking consists of all the bidders in the
state exit nc and the auctioneer in the state EXIT NC with respect to all the bidders. This
is marking 6 in Fig. 11. This situation can be reached in two ways. Firstly, all the bidders
could have submitted a REFUSE message (not willing to bid for the task) in response to the
Task Announcement and changed state to exit nc. The auctioneer on receipt of the REFUSE
messages would change state to EXIT NC. When the auctioneer receives all the messages (all
REFUSE), the auctioneer would be in the state EXIT NC with respect to all the bidders. The
negotiations thus terminate with no contract being awarded. This corresponds to path 3,4,6
in Fig. 11. The second way in which the above scenario could occur would be after the receipt
of all the replies from the bidders, with the number of bids ranging from at least one to a
maximum of MaxBdrs. The auctioneer rejects all the bids by sending a RB message to each of
the bidders that bid and changes state to EXIT NC in each case. It would already be in this
state for those bidders that submitted a REFUSE message. At the other end, those bidders
waiting for a response to their bid (state W RES) on receipt of the RB message, would change
state to exit nc. Other bidders who had submitted a REFUSE message would already be in
this state. This corresponds to path 3,5,7,9,6 in Fig. 11. The places (AUCTIONEER 2 BIDDERS
and BIDDERS 2 AUCTIONEER) representing the communication channel are empty, signifying

61

no unprocessed messages from either the auctioneer or any of the bidders. The value of the
token on the place Responses is equal to MaxBdrs, since the auctioneer has received all the
responses. The place GRonly1 contains the gr1 token indicating that the transition Granting
wasn’t fired, and hence no bid had been granted. Though the protocol would end without a
contract being formed, this particular dead marking is acceptable, because the auctioneer may
not receive any bids or may reject all the bids if none of the received bids are acceptable.

The additional MaxBdr dead markings comprise for each of the MaxBdrs bidders, one
bidder in the state exit c with the rest of the bidders in the state exit nc and the auctioneer
in state EXIT C with respect to the same bidder (who is in the state exit c), and EXIT NC
with respect to the rest of the bidders. This signifies that a contract has been formed at the
end of the negotiations with one bidder while the negotiations with the rest of the bidders
have ended without a contract. The places representing the communication channel are empty
signifying that all the messages of the auctioneer and the bidders have been processed. The
place Responses contains a token whose value equals MaxBdrs indicating that all the responses
have been received. Lastly, the place GRonly1 is empty, signifying the grant of a bid which is
also corroborated by the auctioneer and one of the bidders only, being in the state EXIT C
and exit c respectively. These dead markings are desired terminal states of the protocol. When
MaxBdrs=1, there is only one of these markings, corresponding to marking 10 in Fig. 11.

 Fig. 12. Node Descriptors for the dead markings (MaxBdrs=3)

This is illustrated further with the help of Fig. 12 from CPN Tools, which shows the node
descriptors for the dead markings for three bidders. Node 210 corresponds to the dead marking
where no contract is formed at the end of the negotiations. The multi-set of tokens on the place
Auctioneer’s State shows that the auctioneer is in the state EXIT NC with respect to all the
three bidders. The place Bidders State shows all three bidders are in the state exit nc. The
channel places are empty which is also true for the rest of the dead markings (242, 243 and
249). The place Responses contains a single 3 token indicating that the responses from all
three bidders have been received, which is also the case for all the dead markings. The place
GRonly1 contains one gr1 token indicating that no bid has been granted. Node Descriptors
of the remaining three dead markings (242, 243 and 249) in Fig. 12 reveal that a contract
is formed between the auctioneer and the bidders B(3), B(2) and B(1) respectively. This is

62

consistent with the absence of a token at the place GRonly1 in these three cases. The total
number of dead markings is 4 (3 + 1) as given by the generalized expression, of which one
case corresponds to no contract being formed and the remaining three cases correspond to a
contract being formed as described above.

The above discussions also justify the consistency in beliefs between the auctioneer and the
bidders. It is clear from Fig. 12 that the bidder that has been awarded the contract (in state
exit c) is the same as the bidder that the auctioneer believes has the contract (in state EXIT C
with respect to that bidder). Similarly, the bidders that have not been awarded a contract (in
state exit nc) are the same as the bidders that the auctioneer believes haven’t received the
contract (in state EXIT NC with respect to those bidders). This belief is consistent as can be
seen in each of the dead markings in Fig. 12 and would hold in general.

4.2 Absence of Livelocks and Proper Termination

As can be seen from Table 3, the size of the state space increases exponentially with the number
of bidders. Also, the number of nodes and arcs in the Scc Graph always remain the same as
that of the State Space for all values of MaxBdrs that we have examined. This leads us to the
conclusion that there is no cyclic behavior in the system, which is expected. This indicates that
there are no livelocks, further corroborated by the fact that all the dead markings (MaxBdrs
+ 1) form a home space for all the values of MaxBdrs specified in Table 3. We conjecture
that this would be true for any value of MaxBdrs. Since all the dead markings are desirable
and they form a home space (for the cases examined), this implies that the system will always
terminate correctly. The presence of dead markings excludes the possibility of live transition
instances, as is confirmed in Table 3.

4.3 Absence of Dead Code

There are no instances of dead transitions for any value of MaxBdrs examined, revealing that all
transitions are required (no dead code). This means that all the specified actions are executed.

4.4 Channel Bound

Table 3 also shows the bounds (upper integer bounds) on the communication channel which is
the same for both AUCTIONEER 2 BIDDERS and BIDDERS 2 AUCTIONEER. As can be seen,
this limit is equal to MaxBdrs for all the cases considered.

5 Conclusions and Future Work

In this paper, we have presented the first complete CPN model of the Contract Net Protocol.
We claim the level of abstraction of the model is appropriate for analysing important properties
of the protocol. For the values of MaxBdrs considered (1 to 6), we have proved a number of
properties using state space analysis. Firstly, if the protocol terminates, then the protocol
terminates correctly (partial correctness). Secondly, the fact that all the dead markings form a
home space implies the absence of livelocks in the system. This ensures that the protocol will
always terminate in all possible behaviours (progress). The number of terminal states is given
by MaxBdrs+1, corresponding to a contract with each of the bidders or no contract being
granted. Further we show that both channel bounds are limited to MaxBdrs.

We therefore believe that the model and results in this paper refute the claims made by
Paurobally [14, 15] that Coloured Petri Nets are not suited to the modelling and analysis of
interaction protocols, by illustrating their ability to successfully model and analyse the Contract
Net Protocol. We believe our CPN model is complete, non-ambiguous and compact, being able

63

to be drawn on a single page. The CPN models the multithreaded nature of the auctioneer, as
it deals with many bidders concurrently. Further it is parametric, modelling the Contract Net
Protocol for any number of bidders using the same structure and inscriptions, contrary to the
model presented in Fig. 7 of Nowostawski et al [13], which is structurally different, incomplete
and ambiguous. Further, the CPN diagram and its declarations provide a semantics for the
Protocol Flow Diagram representation of Perugini [16].

In addition to proving correct termination and consistency in beliefs (that the protocol
terminates with a common belief between the auctioneer and each of the bidders) as was done
in [15], we have also proved the absence of livelocks. Further we have shown how the number
of terminal states and channel bounds are related to the parameter MaxBdrs.

This work can be extended in many directions. We would like to prove these properties for
all values of MaxBdrs and then consider relaxing Assumptions 3 and 5. This would introduce
deadlines and allow further interaction between the auctioneer and the successful bidder as the
task proceeds. One could then consider relaxing Assumption 1 to extend the model to open
multi-agent systems, where the identities of all the bidders are not necessarily known a priori.
We believe that Assumption 4 is realistic and that the abstractions made in Assumption 2 do
not affect the properties we are trying to prove, which do not concern data. We would also like
to extend this work to more elaborate negotiation protocols such as the Extended Contract
Net Protocol (ECNP) [5,6], the Contract Net Protocol extension (CNP-ext) [1] and the Provi-
sional Agreement Protocol (PAP) [16]. Each of these protocols provides greater flexibility with
planning and task allocation than its preceding ones and is considerably more complex.

Acknowledgements

The authors would like to acknowledge fruitful discussions with their colleagues, Guy Gallasch
and Nimrod Lilith, regarding this work. We are also very grateful to the anonymous reviewers
for their constructive comments that helped us to improve the paper.

References

1. S. Aknine, S. Pinson, and M. F. Shakun. An Extended Multi-Agent Negotiation Protocol. Autonomous
Agents and Multi-Agent Systems, 8(1):5–45, 2004.

2. J. Billington, G. E. Gallasch, and B. Han. A Coloured Petri Net Approach to Protocol Verification. In
Lectures on Concurrency and Petri Nets, Lecture Notes in Computer Science, volume 3098, pages 210–290.
Springer-Verlag, 2004.

3. G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User Guide. Addison-Wesley,
2nd edition, 2005.

4. J. Ferber. Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence. Addison Wesley
Longman, 1999.

5. K. Fischer and N. Kuhn. A DAI Approach to Modelling the Transportation Domain, DFKI Research Report
RR-93-25. German Research Centre for Artificial Intelligence (DFKI), Saarbrücken, 1993.

6. K. Fischer, J. P. Müller, I. Heimig, and A. W. Scheer. Intelligent Agents in Virtual Enterprises. In
Proceedings of the 1st International Conference on the Practical Application of Intelligent Agents and Multi-
Agent Technology, London, UK, pages 205–223, 1996.

7. Foundation for Intelligent Physical Agents-Agent Communication Language specification (FIPA-ACL).
http://www.fipa.org.

8. Foundation for Intelligent Physical Agents (FIPA). http://www.fipa.org.
9. Foundation for Intelligent Physical Agents (FIPA). http://www.fipa.org/specs/fipa00029/SC00029.

10. F. S. Hsieh. Modelling and Analysis of Contract Net Protocol. In Lecture Notes in Computer Science,
volume 3140, pages 142–146. Springer-Verlag Berlin Heidelberg, 2004.

11. K. Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use. Volumes 1 to 3, Basic
Concepts, Analysis Methods and Practical Use. Monographs in Theoretical Computer Science. Springer-
Verlag, 2nd edition, 1997.

12. K. Jensen, L. M. Kristensen, and L. Wells. Coloured Petri Nets and CPN Tools for Modelling and Validation
of Concurrent Systems. International Journal on Software Tools for Technology Transfer, 9(3-4):213–254,
Springer–Verlag, 2007.

64

13. M. Nowostawski, M. Purvis, and S. Cranefield. A Layered Approach for Modelling Agent Conversations.
In Proceedings of the 2nd International Workshop on Infrastructure for Agents, MAS, and Scalable MAS,
a satellite workshop of the 5th International Conference on Autonomous Agents, Montreal, pages 163–170,
2001.

14. S. Paurobally. Rational Agents and the Processes and States of Negotiation. PhD thesis, Imperial College,
London, UK, 2002.

15. S. Paurobally, J. Cunningham, and N. R. Jennings. Verifying the Contract Net Protocol: A Case Study in
Interaction Protocol and Agent Communication Language Semantics. In Proceedings of 2nd International
Workshop on Logic and Communication in Multi-Agent Systems, Nancy, France, pages 98–117, 2004.

16. D. Perugini. Agents for Logistics: A Provisional Agreement Approach. PhD thesis, The University of
Melbourne, Victoria, Australia, 2006.

17. R.G. Smith. The Contract Net Protocol: High-Level Communication and Control in a Distributed Problem
Solver. IEEE Transactions On Computers, C-29(12):1104–1113, 1980.

18. P. Ulam, Y. Endo, A. Wagner, and R. Arkin. Integrated Mission Specification and Task Allocation for Robot
Teams-Design and Implementation. In Proceedings of the IEEE International Conference on Robotics and
Automation, Roma, Italy, pages 4428–4435, 2007.

65

66

Modeling Grid Workflows with

Colored Petri Nets⋆

Carmen Bratosin, Wil van der Aalst, and Natalia Sidorova

Department of Mathematics and Computer Science
Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
c.c.bratosin@tue.nl, w.m.p.v.d.aalst@tue.nl, n.sidorova@tue.nl

Abstract. Grid computing refers to the deployment of a widely dis-
tributed architecture for the execution of computationally challenging
tasks. The grid provides a set of distributed resources which can be
used for “computing on demand” or for constructing a “virtual super-
computer”. Recently, several researchers started to look at the relation
between workflow management and grid computing. The flow of work
through a grid can be seen as a classical “workflow”. However, as op-
posed to the classical workflows, the resources are not humans and are
not managed by some centralized client-server architecture. Instead, the
grid is highly distributed and the resources are computing power, mem-
ory, etc. Currently, there is no conceptual framework for grid computing
and the role of workflows in grids is unclear. This paper provides ini-
tial steps towards a conceptual framework expressed in terms of Colored
Petri Nets. CPN Tools is used to model grids while focusing on the work-
flow aspects. The resulting model can be analyzed to detect deadlocks,
etc. The framework is illustrated using process mining as an application.

Keywords: Colored Petri nets; grid computing; modeling.

1 Introduction

Grid computing [21] is concerned with the development and advancement of
technologies that provide seamless and scalable access to wide-area distributed
resources. Currently, many researchers and practitioners are developing software
to support grid computing. A well-known example is the Globus Toolkit which
provides an open source software toolkit for building grids [17]. Within the grid
community several research groups have made attempts to adopt ideas from
workflow management and apply them in a grid context [15, 18, 19, 23, 25]. For
many grid applications the workflow-paradigm is quite natural, e.g., complex
scientific computations can be modeled as workflows. However, unlike classi-
cal workflows the control is decentralized and resources are computing power,
memory, etc. rather than people.

⋆ This research is supported by the GLANCE NWO project “Workflow Management
for Large Parallel and Distributed Applications”.

67

Despite the current interest in grids and workflow, a good conceptual model

of grids is missing and most researchers are focusing on the practical realization
of grids. Terms like “resource”, “job”, and “workflow” are subject to multiple
interpretations. Therefore, in this paper, we model the basic grid concepts in
terms of Colored Petri Nets (CPNs, [20]). The main purpose is to clarify the
basic concepts. Moreover, we also show that the mapping of grids onto CPNs
allows for all kinds of analysis. Given the fact that the allocation and deallocation
of resources in grids is done in a distributed manner and that multiple resources
may be involved in some task, a grid workflow may easily deadlock. Therefore,
this paper will focus on the use of state-space analysis to discover deadlocks.

Grids are often used in areas where there is a need for a lot of (preferably
inexpensive) computing power. Examples can be found in scientific comput-
ing, e.g., SETI@home searches for possible evidence of radio transmissions from
extraterrestrial intelligence using data from radio telescopes. SETI@home uses
CPU-scavenging for this, i.e., a grid of unused desktop computers is exploited
to analyze the radio transmissions. This particular form of grid use is also called
“voluntary computing” because the resources are made available without a clear
economic motive for the participants. Another interesting application domain
is the use of grids for data mining to analyse the large volumes of data gener-
ated today (cf. the DataMiningGrid project [2]). In this paper, we will focus on
a particular application: the utilization of grid computing for process mining.
The goal of process mining is to extract models (e.g. Petri nets) from event logs
[9]. This is possible because many systems ranging from enterprise information
systems and web applications to embedded and high-tech systems are collecting
enormous volumes of audit trails. To deal with these large amounts of data and
computationally expensive process mining algorithms, grids are particularly use-
ful. High-level process mining tasks can easily be described as workflows where
the activities correspond to the execution of particular process mining algo-
rithms. Therefore, process mining is an interesting application domain for grid
computing.

The remainder of the paper is organized as follows. In Section 2 we present
a running example and motivate the utilization of grid computing for process
mining. Section 3 introduces the basic grid concepts which are mapped onto
CPNs in Section 4. Related work is discussed in Section 6 and Section 7 concludes
the paper.

2 Running Example: Applying Grid Technology to

Process Mining

As indicated in the introduction, in this paper we focus on using grid technology
for large process mining tasks. In recent years, process mining has emerged
as a way to analyze systems and their actual use based on the event logs they
produce [11]. Note that, unlike classical data mining, the focus of process mining
is on concurrent processes and not on static or mainly sequential structures. A

68

classical example is the α-algorithm [11] which automatically constructs a Petri
net based on a set of observed system traces.

Process mining is applicable to a wide range of systems. These systems may
be pure information systems (e.g., ERP systems) or systems where the hardware
plays a more prominent role (e.g., embedded systems). The only requirement is
that the system produces event logs, thus recording (parts of) the actual behav-
ior. Information systems such as classical workflow management systems (e.g.
Staffware) case handling systems (e.g. FLOWer), PDM systems (e.g. Windchill),
middleware (e.g., IBM’s WebSphere), hospital information systems (e.g., Chip-
soft) record detailed information about the activities that have been executed.
Other systems recording events are medical systems (e.g., X-ray machines), pro-
duction systems (e.g., wafer steppers), copiers, sensor networks, etc. An example
is the “CUSTOMerCARE Remote Services Network” of Philips Medical Systems
(PMS). This is a worldwide internet-based private network that links PMS equip-
ment to remote service centers. An event that occurs within an X-ray machine
(e.g., moving the table, setting the deflector, etc.) is recorded and analyzed. The
logging capabilities of the machines of PMS illustrate that event logs are widely
available.

The goal of process mining is to extract information (e.g., process models)
from these logs, i.e., process mining describes a family of a-posteriori analysis
techniques exploiting the information recorded in the event logs.

Simple algorithms such as the α-algorithm [11] are linear in the size of the
event log. However, such algorithms do not perform well on real-life data and
their simplicity is misleading for two reasons: (1) more advanced process min-
ing algorithms are needed that require lots of computing power and parameter
tuning and (2) the “process of process mining” consists of additional pre- and
post-processing steps (filtering, cleaning, merging, conformance checking, etc.).
It should be noted that event logs may be huge, e.g., there may be thousands of
different cases and there may be thousands of events per case. Logs such as the
ones produced by the machines of PMS illustrate the computational challenges.
Moreover, some process mining techniques require lots of computing power. Con-
sider for example the genetic process mining algorithms described in [24]. All
of the more advanced algorithms have lots of parameters that need to be set.
Typically, the algorithms are run with different parameter settings to achieve ac-
ceptable results. Hence, different process mining experiments are run iteratively
or in parallel. Besides running the core process mining algorithms several pre-
and post-processing steps need to conducted.

The main goal of grid computing is to offer wide distributed computing and
storage facilities for complex applications. From the observations just made,
process mining process can require challenging computational executions, and
also has to deal with a large amount of data. Therefore, process mining is an

interesting application domain for grid computing. On the one hand, there are
clear computational challenges that can be addressed through grid computing.
On the other hand, the “process of process mining” can be seen as a workflow

69

start endprepare log analyze log select

algorithm
heuristic

miner

check

conformance

return

results

alpha

miner

genetic

miner

+ -

start
set

parameters

partition log

for 10 fold

checking

1

+

check

results
10

2

run

algorithm

-

end
return

results

Fig. 1. The process mining workflow expressed in terms of YAWL [6]

consisting of activities ranging from data preparation and filtering to discovery
and conformance checking.

To illustrate the application of grid computing to process mining, we use
a rather simple and abstract example as shown in Figure 1. It is kept simple
so that it is understandable by non-process mining experts and to allow for
understandable CPN models later in this paper.

Figure 1 describes a typical process mining scenario in terms of the workflow
language YAWL [6]. YAWL extends Petri nets with notations useful for repre-
senting workflows. The workflow at the top of Figure 1 shows that a high-level
process mining job starts with the preparation of the log (task prepare log). It
includes the scanning of the log for inconsistencies (e.g., descending timestamps,
missing event types, etc.) and the addition of dummy start and end events if
needed. Then the log is analyzed (task analyze log) and several characteristics
are collected, e.g., size, completeness, number of event types, distribution of ac-
tivities, etc. Based on this task select algorithm chooses a particular algorithm
that is expected to perform well given the characteristics of the log. If character-
istics indicate that the log is highly structured and has no noise, the α-algorithm
may be selected. If it contains some noise and is large, the heuristic miner [22]
may be selected. The genetic miner may be selected if the structure of the model
is complicated, there is noise, and the log is not too large. After running one of
the process mining algorithms, the quality of the result is checked (task check

conformance). If the quality is acceptable or there are no more alternatives,

70

the results are returned. Otherwise, another algorithm is selected and the pro-
cess is repeated. Each of the process mining algorithms corresponds to a YAWL
subprocess. In Figure 1 only the subprocess genetic miner is described. The ge-
netic miner starts by setting the parameters. Genetic algorithms typically have
many different parameters that one can experiment with. The genetic miner has
parameters such as population size, number of generations, seed, elitism, muta-
tion rate, fitness function, crossover type, etc. Although not shown in Figure 1
different instances of the same algorithm could run in parallel with different pa-
rameters to improve response time. After task set parameters, the log is split and
replicated for 10-fold checking. k-fold cross validation divides the data set into k

subsets. Each time, one of the k subsets is used as the test set and the other k−1
subsets are put together to form a training set. Then the average error across
all k trials is computed. In this workflow the cases in the logs are split over 10
sets and each of the 10 parallel branches in Figure 1 takes 9 of these 10 sets to
construct a process model based on the genetic algorithm. After applying the
algorithm the result is evaluated using the remaining test set. Task check results

collects these results and decides whether a new experiment is needed, i.e., the
subprocess returns to task set parameters or ends with task return results.

Figure 1 also shows some annotations describing the use of resources. For
this simplified example, we assume that there are only two types of required
properties for task execution: CPU and disk space. Disk space is denoted by the
small tube and CPU power is denoted by a small hexagon. Disk space is typically
allocated for multiple subsequent tasks while CPUs are typically released after
each task. Task prepare log claims space for storing the entire log and the overall
results. This space is only returned at the end of the workflow. Since the genetic
algorithm is a more complex process, the algorithm has its own private data
space.

In the remainder of this paper, we will use process mining and in particular
the example shown in Figure 1 to illustrate our approach.

3 Grid Workflows

This section introduces the basic grid concepts relevant for the remainder of this
paper. As indicated, we will model grids in terms of CPNs and emphasize the
workflow aspect of grid computing.

The standard grid architecture [16] is composed of several layers: (1) the in-

frastructure layer composed of resources (e.g. databases, cluster computers), (2)
the application layer, where the grid user describes the processes to be submitted
to the grid, and (3) the middleware layer, which is in charge of finding a resource
for the user requirements and other management issues (e.g. monitoring, fault
recovery).

Infrastructure layer The grid infrastructure is a widely distributed infrastruc-
ture, composed of different resources, linked via the Internet. The resources allow
for the execution of different tasks. Examples of typical resources in a grid infras-
tructure are computing elements (e.g. cluster computers) and storage elements

71

(e.g databases) [3]. A computing element is usually described in terms of its com-
puting power and software available, e.g. number of CPU’s, installed software
packages, main memory size, operating system. A storage element is a resource
that allows grid users to store and manage files together with the space assigned
to them. The typical characteristics of a storage element are the software used to
manage the device, the allocated space, and, an identifier of the data contained.
A storage element typically contains multiple storage areas.

We define the resource capacity as a set of characteristics that we will refer
to as properties. Examples are the number of CPU’s and HDD size. The capacity
of a resource can be described as a multiset of properties, e.g., two CPU’s and
one disk of 1GB.

Because a resource may host applications according to the available capacity,
we split the capacity in free capacity (i.e., available computing power or stor-
age to be used by a grid job) and busy capacity (i.e., capacity that is already
allocated/reserved for the performance of certain jobs). We refer to the set of
resources composing a grid infrastructure as the resource pool. In the model pre-
sented in this paper, we assume that the resource pool is fixed and that the
resources are reliable, i.e. if an application was allocated on a resource, then the
resource will eventually perform it.

Application layer The upper level of a grid architecture is composed of user
applications. Such applications define the jobs to be executed using the grid
infrastructure. Since jobs may causally depend on one another, the application
level needs to specify the “flow of work”. Therefore, we use the term grid workflow

to refer to the processes specified at the application level. Note that there may
be different grid workflows using the same infrastructure and that there may be
multiple instances of the same grid workflow (referred to as process instances).
For each process instance, a partially ordered set of jobs needs to be executed.
The grid workflow defines the dependencies between jobs and the properties
required per job. In a grid workflow one can find the classical workflow patterns
[7] but also patterns focusing on resource allocation, e.g., allocating multiple
resources to the same job.

Middleware layer The linking between user jobs and resources is done by a
matchmaker (or broker). In this paper we restrict ourselves to middleware work-
ing according to a “just-in-time” strategy, i.e., at the moment job instance must
be executed, the matchmaker searches for an available resource matching the
job, and if it exists the job is allocated to that resource. After the allocation,
the free capacity of the resource and the busy capacity are updated according
to the job requirements.

In the next section we map the concepts mentioned onto CPNs with two
goals in mind: (1) to clarify the basic grid concepts and (2) to show that Petri-
net based analysis is useful and feasible in a grid context. Figure 2 illustrates
the grid model we aim to represent in terms of CPNs. The model is composed of
the grid workflows (i.e., application layer) submitted to the grid and a common
resource pool, containing all the infrastructure resources with their capacity (i.e.,

72

Fig. 2. Grid Model

infrastructure layer). The grid model assumes a very simple middleware layer
and will be represented by the allocation/deallocation of the jobs instances only.

4 Modeling Grids in Terms of CPNs

In the previous section, we have presented the main components of a grid model.
In this section, we describe how to model a grid using Colored Petri Nets (CPN)
[20] and present some basic design patterns [7] that support the modeling of
dependencies between grid jobs. We conclude the section by providing a CPN
model for the running example presented in Section 2.

4.1 Mapping the grid model onto CPNs

As we discussed in the previous section, a grid model is composed of a set of
grid workflows, a pool of resources, and allocation/deallocation mechanisms. In
our examples, we typically focus on a single grid workflow, however the same
approach can be used to model multiple grid workflows sharing a grid infras-
tructure.

We model the grid infrastructure in terms of a resource pool place. This place
contains tokens corresponding to the resources. Each resource has a unique id
modeled by the color set ResID. The capacity of a resource is expressed in
terms of available (free) capacity and allocated (busy) capacity. Both types of
capacity are modeled as a multiset of properties. Recall that a property refers to
a single resource characteristic, e.g., a capability like storage space, computing
power, bandwidth, etc. The color set Prop is used to model properties (e.g. CPU,
storage area), and color set Props represents a multiset of properties. Note that
Props is defined as a list of Prop elements to model multisets. The tokens of
the resource pool place are of the color set Res. This color set incorporates the
resource id, the available capacity, and allocated capacity.

The grid workflows are modeled as an extension of the classical workflow
nets [4] and there are also clear relations with the so-called colored workflow

73

Fig. 3. Color sets for a grid workflow

nets [8]. Like in a workflow net there is a single input start place and a single
output end place, and every node of the grid workflow is on a path from the
start place to the end place. However, we distinguish between two types of
places: job places and control places. Job places correspond to the execution of
jobs while using resources from the grid and control places are merely added for
the routing of process instances. Job places are mirrored by requirement places
indicating the resource requirements in terms of a multiset of properties. Another
difference with classical workflow nets is that transitions do not represent tasks
but correspond to the allocation or deallocation of resources, i.e., we are forced
to model the workflow at a finer level of granularity. Initially, all job places
and control places are empty and only the requirement places contain tokens.
Moreover, for each process instance a token is added to the start place.

Process instances are referred to using the color set PInst. All control places,
including the start and end place, are of type PInst. Job places are of type Job.
This color set is defined as the product of a process instance id (color set PInst)
and a resource id (color set ResID).1 Each requirement place contains one token
of type Props, i.e., the token holds a multiset of properties denoting the resource
requirements of the corresponding job place.

In the CPN model we assume a very simple middleware layer, therefore the
binding between the grid infrastructure and the grid workflows can be realized
through allocation and deallocation transitions. When a job is created, i.e., a
token is put on a job place, an allocation transition fires. If a job completes, i.e.,
a token is removed from a job place, a deallocation transition fires.

Figure 3 presents all the basic color sets defined for the grid model. In the
definitions, we define also the basic operations for multisets. These operations
will be used for modeling with allocating and deallocation capacity.

Figure 4 shows a very simple example of a grid model which uses the color
sets mentioned before. There is one start and one end place and these are the
only two control places. There is just one job place j of type Job. The cor-
responding requirements place is named r and is of type Props. The resource

1 Note that this color set assumes that a job cannot use multiple resources. Later we
will relax this requirement.

74

i ireq

(i,rid)

req
t2t1

[en((rid,free,busy),req)]

j1

Job

r1

["cap1"]

Props PInst

PIinit

PInst

start end

take((rid,free,busy),req) return((rid,free,busy),req)

resources
(rid,free,busy) (rid,free,busy)

Res

ResInit

(i,rid)

Fig. 4. A simple job example

pool is modeled by the place resources. An allocation transition t1 precedes
the job place in Figure 4. The guard of this transition is given by the function
en((rid,free,busy),req). The transition is enabled if there exists at least one re-
source (rid) such that the token in r place (req) is a subset of the multiset free

(i.e. free resource capacity).

By the firing of transition t1, a token containing the process id (i) and the
allocated resource id (rid) is created for the job place j. At the same time,
the allocated resource characteristics are retrieved from the resource pool. The
token of the resource pool is modified by function take((rid,free,busy),req). The
function modifies the capacity occupied by the job as busy capacity.

When the job is finished, the deallocation transition fires (transition t2 in
Figure 4). The function return((rid,free,busy),req) modifies the token of the re-
source that the job releases, by updating the free capacity of the resource (i.e.
the new free capacity is the reunion of the free capacity with the capacity equal
with the job requirements).

4.2 Basic patterns

In the previous subsection we modeled a grid model containing just one grid
workflow and this grid workflow consisted of only one job. However, it is obvious
how these types and naming conventions can be used to represent larger grid
models. To illustrate this we define some basic patterns to help a grid user to
define his process. These are inspired by the workflow patterns in [7]. However,
we also provide a pattern dedicated to multiple resource allocation.

Atomic job In the previous section, we have presented a simple job example (see
Figure 4). The quadruple job place, requirement place, allocation transition,
and deallocation transition is the most simple pattern that we use in our model.
All the other patterns are composed of this pattern. Therefore, for simplicity
we define a subpage containing this pattern.The user can use this subpage in
different locations of his grid workflow, adapting the marking of the req place
according to the job description. Note that for each job type a different subpage
can be defined that is reused multiple times.

75

i

i

i

i

Job 1

Job 1

Job 2

Job 2

t2t1

c3

PInst

c4

PInst

c2

PInst

c1

PInst

end

PInst

resources

Res

start

Job 2

Job 1

ResInitPIinit

PInst

i

i

Fig. 5. Parallel pattern

Parallel pattern A common pattern in grid computing is the execution of differ-
ent jobs in parallel. Figure 5 presents the parallel pattern. Since the matchmaker
assumes all the jobs to be independent, two tokens are created so that the match-
maker allocates each job when it finds a suitable resource for this job. The jobs
can in principle be different, therefore they are mapped to two different Job sub-
pages. The process instance will wait till both jobs finish, and then the transition
t2 fires, which terminates the execution of the pattern.

Multiple resource allocation A typical scenario in grid computing is that multiple
resources are needed for the execution of a job. For example, a job requires
access to a storage area, that contains some data and, after some computation,
the result is written back to the same storage area. The storage area has to be
reserved till the computation is finished. Figure 6 illustrates one of the possible
patterns to realize this. This pattern creates a job to reserve one of the resources,
and then looking for a second resource. The first resource remains locked till the
second resource finishes the computation.

i i

ii

i

i

(i,rid)

t2

Job

["cap2"]

Props

Job

r1

["cap1"]

Props

PInst

end

PInst

Res

start

PIinit

PInst

j2

t1

[en((rid,free,busy),req)]

t3 t4

resources

(rid,free,busy)

take((rid,free,busy),req) return((rid,free,busy),req)

(rid,free,busy)

(rid,free,busy)

PInst

c1 c2

(rid,free,busy)

req req

req req

(i,rid) (i,rid)

return((rid,free,busy),req)ResInittake((rid,free,busy),req)

j1
(i,rid)[en((rid,free,busy),req)]

r2

Fig. 6. Multiple resource allocation: Pattern 1

76

req1req1

1`return((rid1,free1,busy1),req1)++
1`return((rid2,free2,busy2),req2)

1`(rid1,free1,busy1)++
1`(rid2,free2,busy2)

1`take((rid1,free1,busy1),req1)++
1`take((rid2,free2,busy2),req2)

1`(rid1,free1,busy1)++
1`(rid2,free2,busy2)

i i

req2req2

(i,rid1,rid2) (i,rid1,rid2)
t2t1

[en((rid1,free1,busy1),req1) andalso en((rid2,free2,busy2),req2)]

r1

["cap1"]

Props

j

r2

["cap2"]

Props

end

PInst

resources

ResInit

Res

start

PIinit

PInst

Job2

Fig. 7. Multiple resource allocation: Pattern 2

The disadvantage of the pattern illustrated by Figure 6 is that it can lead to
deadlocks when a second resource is not available in the resource pool because
it is already locked by other jobs.

Figure 7 presents another pattern to realize the allocation of multiple re-
sources. For each of the required resources, the user creates a requirement place:
r1 and r2. From the resource pool the allocation transition retrieves two re-
sources, each one corresponding to one of the requirements places. In this case
the token of the job place contains one process instance id and two resources ids.
The deallocation transition will release both resources. In this second pattern,
there may be multiple resources involved in the same job. This makes the model
less simple and may lead to modeling errors such as releasing the wrong resource.

4.3 Process mining example mapped to CPN

Figure 8 shows the CPN model of the process mining example already described
in Section 2. In Figure 1 this grid model was introduced using a YAWL diagram.
Here we focus on the mapping of Figure 1 into Figure 8 using the patterns defined
before.

First, a storage area has to be allocated (places SA allocated and req for

SA). The storage area will be used to store and to retrieve the results of all the
executed computations. The allocated storage area will be released only when all
the other jobs of the same instance have finished. We choose to use the multiple
resource pattern shown in Figure 6 to model this behavior.

The sequence of jobs prepare log and analyze log follows the sequence pat-
tern. After, the analyze log, a choice between different mining algorithms should
be made. To model this choice we introduce a new color set ChAlg that can
take three values: AA, HM, and GM. Each of the three values corresponds to
the choice of one of the process mining tools: AA for the plug-in using the α-

77

i

ii

(i,cha) (i,cha) (i,cha)

(i,cha)

i i

ii

return((rid,free,busy),req)take((rid,free,busy),req)

(rid,free,busy)
(rid,free,busy)

(i,rid)(i,rid)

i

i

i

i

i

i
i

(i,ch)

i(i,ch)

i
AnalyzeLog

AnalyzeLog

tendtstart

[en((rid,free,busy),req)]

Check conformance

CheckConformance

t3

[cha=GM]

t2

[cha=HM]

t1

[cha=AA]

Genetic miner

GeneticMiner

Heuristic min.

HeuristicMiner

Alpha alg.

AlphaAlgorithm

Prepare log

PrepareLog

t5

[ch=restart]

t6

[ch=finish]

Select
algorithm

c5

PIChAlg

req for SA

sa

Props

SA allocated

Job

c6

PInst

c7

PInst

c8

PInst

c2

PInst

c10

PIChoice

c4

PInst

c3

PInst

c9

PInst

c1

PInst

end

PInst

resources

ResInit

Res

start

PIinit

PInst

PrepareLog

AlphaAlgorithmHeuristicMinerGeneticMiner

CheckConformance

AnalyzeLog

req req

F
ig

.
8
.
C

P
N

m
o
d
el

o
f
th

e
p
ro

cess
m

in
in

g
w

o
rk

fl
ow

78

i

i

return((rid,free,busy),req)take((rid,free,busy),req)

(rid,free,busy)
(rid,free,busy)

i

(i,ch)

(i,rid)

reqreq

(i,rid)

(i,ch)

i

t2

[ch=finish]

t1

[en((rid,free,busy),req)]

Run algorithm

RunAlg

[ch=restart]

req for SA

sa

Props

SA allocated

Job

PIChoice

c3

PInst

c2

PInst
PInst

start

In

PInst

end

Out

PInst
resources

I/O

ResInit

Res
I/O

Out

In

RunAlg

c4

re-start

CheckResults

CheckResultsCheckResults

c1
Partition log and

set param

PartitionLogSetParamPartitionLogSetParam

N threads
are created

Synchronization of
the N threads

Fig. 9. Genetic miner

algorithm, HM for heuristic miner, and GM for genetic miner. Note that place
c5 has PIChAlg as color set. This color set is the product of PInst and ChAlg.

After the selected algorithm is executed, job check conformance is submitted
to the grid. According to the results one of the algorithms (re-)starts or the
process ends. To make this choice we use a variable from the color set Choice,
that can take two values: restart to (re-)do one of the algorithms and finish to
end the process. Note that place c10 has PIChoice as color set. This color set is
the product of PInst and Choice.

For the execution of the α-algorithm and heuristic miner, a resource with
free CPU capacity is needed. On the other hand, the use of genetic algorithms
requires a more complex process (cf. Figure 9). A new storage area is allocated
in order to store/retrieve intermediate results of the genetic miner. Then a com-
puting element is used to partition the log and to set the parameters. N different
threads are created inside subpage PartitionLogSetParam (not shown here), and
on each thread the genetic miner algorithm is performed (a grid job requiring a
computing element). When all threads have finished, the results of the threads
are combined and analyzed (job check results). After the job check results ends,
all the process re-runs or it stops (for this choice an element of color set Choice

is used).
The example CPN model shows that it is indeed possible to model complex

computations using a grid infrastructure. Using CPN Tools we were able to
clarify the basic terms used in grid computing. Moreover, the allocation and
deallocation of resources may lead to deadlock problems as will be shown in the
next section. Because of this, the CPN model is also useful from an analysis
point of view.

5 Analysis of Grid Workflows

The analysis of grid workflows may include validation (i.e. checks whether the
workflow behaves as expected), verification (i.e. workflow correctness) and per-

79

formance analysis (i.e. evaluating whether time or cost requirements are ful-
filled). In this section we focus on a specific type of analysis: verification. The
verification of grid workflow is related to the correctness properties such as ab-
sence of deadlocks, livelocks and resource conflicts (cf. [14]). To verify these
properties, we use the state space analysis functionality provided by CPN Tools.
The analysis is conducted in two steps. First, we perform a soundness check. For
this purpose, we will extend the soundness property [10] for traditional work-
flow such that it takes into account the grid workflow characteristics. In the
second step, we verify whether there are any resource conflicts between differ-
ent jobs originating from different grid workflows and their instances. We also
show a more efficient deadlock analysis technique which allows us to look at one
instance in isolation.

5.1 Soundness check

Since we are interested in soundness, we assume in this subsection that the
resource pool has an “infinite” amount of resources (i.e. whenever a job claims
resources, available resources exist in the resource pool).

The correctness property that we want to establish is soundness. A traditional
workflow is sound if it satisfies the following property: if we put a token in the
start place, there is a possible path to reach the end place with just one token
from each reachable state, and if the end place is reached no “garbage” tokens are
left behind (i.e. all the places except the end place are unmarked). In our case,
because the grid workflow contains also requirements places and a resource place,
we have to extend the soundness property with the following two conditions: (1)
the marking of the requirements places remains the same for all the reachable
markings and (2) the resource pool place marking in the final state has the same
value as in the initial state.

The necessary and sufficient conditions that ensure that a grid workflow is
sound using the state space report of CPN Tools are the following: (1) there
exists only one dead marking, this marking should also be a home marking
(i.e. a marking reachable from all other markings) and there are no other home
markings, moreover this dead marking is indeed the desired final marking (i.e.
the marking meets the soundness conditions) and (2) the lower and upper bounds
of a requirement place marking are equal.

For Figure 8, CPN Tools generated a full state space of 91 nodes and 139 arcs
in less than one second for an initial state with just one process instance and a re-
source pool tokens2: 1‘("CE",["CPU","CPU","CPU","CPU","CPU","CPU","CPU",
"CPU","CPU","CPU","CPU"],[])++ 1‘("SE",["SA","SA","SA"],[]).

The state space report provided information about boundedness properties,
home properties and liveness properties as below3:

2 Note that we did not add infinitely many resources to the initial marking. However,
it is easy to check whether sufficient resources have been added by checking the multi
set bounds in the state space report.

3 We present a partial state space report that contains only the necessary information
to establish grid workflow soundness.

80

Boundedness Properties

Best Integer Bounds

Upper Lower

AlphaAlgorithm’r 1 1 1

AnalyzeLog’r 1 1 1

CheckConformance’r 1 1 1

CheckResults’r 1 1 1

GeneticMiner’req_for_SA 1 1

HeuristicMiner’r 1 1 1

PM’req_for_SA 1 1 1

PartitionLogSetParam’r 1 1

PrepareLog’r 1 1 1

RunAlg’r 1 1 1

Best Upper Multi-set Bounds

AlphaAlgorithm’r 1 1‘["CPU"]

AnalyzeLog’r 1 1‘["CPU"]

CheckConformance’r 1

1‘["CPU"]

CheckResults’r 1 1‘["CPU"]

GeneticMiner’req_for_SA 1

1‘["SA"]

HeuristicMiner’r 1 1‘["CPU"]

PM’req_for_SA 1 1‘["SA"]

PartitionLogSetParam’r 1

1‘["CPU"]

PrepareLog’r 1 1‘["CPU"]

RunAlg’r 1 1‘["CPU"]

Best Lower Multi-set Bounds

AlphaAlgorithm’r 1 1‘["CPU"]

AnalyzeLog’r 1 1‘["CPU"]

CheckConformance’r 1

1‘["CPU"]

CheckResults’r 1 1‘["CPU"]

GeneticMiner’req_for_SA 1

1‘["SA"]

HeuristicMiner’r 1 1‘["CPU"]

PM’req_for_SA 1 1‘["SA"]

PartitionLogSetParam’r 1

1‘["CPU"]

PrepareLog’r 1 1‘["CPU"]

RunAlg’r 1 1‘["CPU"]

Home Properties

Home Markings

[28]

Liveness Properties

Dead Markings

[28]

Dead Transition Instances

None

Live Transition Instances

None

From the boundedness properties, we observe that each of the requirement
places (i.e. r places) has a lower bound equal to the upper bound. Marking 28
is a home marking and a dead marking and it corresponds to the desired final
marking. Therefore, we conclude that the process mining grid workflow is sound.

5.2 Resource verification

The main problem in resource sharing is the potential of deadlocks when multiple
instances run in parallel and compete for the same resources step-by-step. There-
fore, we now look at the analysis of a grid model with multiple instances and a
limited set of resources. Using CPNTools we want to verify whether soundness
is jeopardized. We do this by looking for deadlocks.

Let us consider the process mining grid workflow again. For two process
instances and a resource pool containing the following tokens:

1‘("CE1",["CPU","CPU","CPU"],[])++1‘("SE1",["SA"],[])++1‘("SE2",["SA"],[])

CPN Tools generates a full state space with 1140 nodes and 2176 arcs in less
than 2 seconds. The state space report contains three dead markings and no
home markings.

81

Home Properties

Home Markings

None

Liveness Properties

Dead Markings

[420,456,952]

Dead marking 952 is the desired final marking (i.e. the grid model proper
terminates), and the other two (420,456) refer to instances where both of process
instances deploy the genetic miner concurrently. The deadlocks occur because
each of the instances needs an additional storage area, but the resource pool
depleted all available storage areas. Even if we increase the number of available
resources, the system will deadlock when the number of process instances running
in parallel is also increased.

In the following subsection, we propose a method to correct such a grid
workflow in order to ensure its proper termination independently from the num-
ber/type of available resources.

5.3 Correcting a resource constraint grid workflow

In [26], we studied resource-constraint processes with homogeneous resources
and we have shown that a necessary and sufficient condition that ensures proper
termination (i.e. absence of deadlocks violating e.g. the soundness property) is
that any path resulting in the claim of one or more resources should have a
successor path resulting in the release of some resources.

We verify the necessary and sufficient condition for each property type.
Therefore, we construct an automaton modeling the behavior of the system just
from the point of view of claiming and releasing of resources, abstracting from
all the the other possible events (i.e. those events are considered as silent steps).
Figure 10 presents the automaton for the process mining workflow. In state s1,
the system needs to reserve a computing element with a free CPU capacity, and
in state s3 a new storage area if the genetic miner algorithm is selected. The two
claims are made without being preceded by releases of resources providing the
same type of property. Therefore, the workflow does not satisfy the necessary

Fig. 10. Process mining automaton

82

Fig. 11. Modified process mining automaton

and sufficient condition (presented in [26]) neither for CPU property, neither for
SA property.

To avoid deadlocks the model shown in Figure 8 needs to be corrected. The
correction of the grid workflow is made by checking if there are enough resources
to execute all the jobs composing the workflow (cf. [26]). The resources are just
claimed and released, ensuring that the necessary and sufficient condition is
satisfied. The algorithm presented in [26] is applied for each property type.

For the running example, the corrected automaton, by joining the results
for each property type, is shown in Figure 11. The only modification made is
to claim and to release in state start two additional resources with properties
SA and CPU. For the corrected automaton, we observe that the necessary and
sufficient condition is fulfilled. We map the solution from the automaton to the

Fig. 12. The changed process mining workflow

83

CPN model, by changing the guard of the allocating transition of the first storage
area as shown in Figure 12. From the resource pool, three resources are required
(rid1, rid2 and rid3). Each of this resources must fulfill one of the requirements

of the jobs contained by the workflow. Just one resource is kept (rid1, as in the
original model), and the other two are released without any modification.

For the modified model, CPN Tools generates a full state space with 492
nodes and 664 arcs in less than one second. Just one marking is reported as
both a home marking and dead marking and it corresponds to the desired final
marking. Hence the grid model is sound.

6 Related Work

The idea of using grid workflows to model and enact complex scientific processes
and distributed resources such as computing elements and data has emerged
in the grid community in recent years. Grid workflow systems [1, 15, 25] have
been developed, but most of them support only directed acyclic graphs (DAGs)
as a modeling language. The disadvantage of using a DAG is that it does not
support loop patterns and choice patterns. Therefore, in the last years, Petri
Nets were introduced [12, 19] as a more powerful and suitable language to model
grid workflows. However, most of the work is focused on the practical realization
of grids, and less attention has been paid to providing a conceptual framework
to model grid workflows.

Many reseachers have applied Petri nets to workflow management [4, 27].
Note that these papers do not necessarily focus on grid workflows. Moreover,
these papers typically focus on a single aspect, e.g. control flow verification,
while ignoring the interplay between resources and workflows. However, there
have been some papers using CPNs to address other aspects of workflows, e.g.
[8]. To address the deadlock problem in grids we propose to use a variant of the
technique proposed in [26].

The running example comes from the process mining domain. In [13], the
authors proposed a process mining workflow that can call process mining algo-
rithms using a process engine. More details related to process mining concepts
and algorithms can be found in [11, 22, 24].

7 Conclusion

In this paper, we propose a conceptual framework to use CPN for modeling and
verifying of grid workflows. Grid concepts such as “job”, “grid workflow” and
“resource” have been explained in order to map them on CPNs.

We proposed some basic patterns in order to model common grid behavior
such as parallel execution and multiple resources allocation. Combining these
patterns, a complex grid workflow was build up.

Moreover, we showed that CPN Tools can be used to conduct soundness and
resource verification to find potential deadlocks. The state space analysis from

84

CPN Tools is able to discover deadlocks when multiple instances run in parallel
while incrementally claiming similar resources. Based on our previous work [26],
we have corrected the model such that all instances terminate properly.

This paper is mainly conceptual. However, it is good to mention that we
are in the process of connecting YAWL, Globus, and ProM. YAWL [6] is used
as a workflow engine taking care of the orchestration. Globus [17] is an open
source software toolkit used for building Grid systems and applications but is not
process-aware. ProM [5] is used to execute the actual process mining activities.
ProM provides a plugable architecture with dozens of process mining algorithms
and a lot of functionalities related to filtering, conversion, conformance checking,
etc. Currently, ProM [5] aims at interactive mining. However, as shown in [13],
ProM can be adapted such that its functionality can be invoked by a workflow
engine.

References

1. DAGMan (Directed Acyclic Graph manager): Condor meta-scheduler.
http://www.cs.wisc.edu/condor/dagman/.

2. DataMiningGrid Project. http://www.datamininggrid.org/.

3. GLUE Schema V1.3. http://forge.gridforum.org/sf/go/doc14185?nav=1.

4. W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management.
The Journal of Circuits, Systems and Computers, 8(1):21–66, 1998.

5. W.M.P. van der Aalst, B.F. van Dongen, C. Günther, R. Mans, A.K. Alves de
Medeiros, A. Rozinat, V. Rubin, M. Song, H. Verbeek, and A. Weijters. ProM 4.0:
Comprehensive Support for Real Process Analysis. In J. Kleijn and A. Yakovlev,
editors, ICATPN 2007, volume 4546 of LNCS, pages 484–494. Springer-Verlag,
Berlin, 2007.

6. W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another Workflow
Language. Information Systems, 30(4):245–275, 2005.

7. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A. Barros.
Workflow Patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

8. W.M.P. van der Aalst, J. Jørgensen, and K. Lassen. Let’s Go All the Way: From
Requirements via Colored Workflow Nets to a BPEL Implementation of a New
Bank System Paper. In R. Meersman and Z. T. et al., editors, OTM Confederated
International Conferences, CoopIS, DOA, and ODBASE 2005, volume 3760 of
LNCS, pages 22–39. Springer-Verlag, Berlin, 2005.

9. W.M.P. van der Aalst, B. van Dongen, J. Herbst, L. Maruster, G. Schimm, and
A. Weijters. Workflow Mining: A Survey of Issues and Approaches. Data and
Knowledge Engineering, 47(2):237–267, 2003.

10. W.M.P. van der Aalst and K. M. van Hee. Workflow Management: Models, Meth-
ods, and Systems. MIT Press, 2002.

11. W.M.P. van der Aalst, A. Weijters, and L. Maruster. Workflow Mining: Discovering
Process Models from Event Logs. IEEE Transactions on Knowledge and Data
Engineering, 16(9):1128–1142, 2004.

12. M. Alt, S. Gorlatch, A. Hoheisel, and H.-W. Pohl. A Grid Workflow Language using
High-Level Petri Nets. Technical Report TR-0032, Institute on Grid Information
and Monitoring Services, CoreGRID - Network of Excellence, March 2006.

85

13. L. Cabac and N. Knaak. Process mining in Petri net-based agent-oriented software
development. In D. Moldt, F. Kordon, K. van Hee, J.-M. Colom, and R. Bastide,
editors, Proceedings of the International Workshop on Petri Nets and Software En-
gineering (PNSE’07), pages 7–21, Siedlce, Poland, June 2007. Akademia Podlaska.

14. J. Chen and Y. Yang. Key research issues in grid workflow verification and vali-
dation. In ACSW Frontiers ’06: Proceedings of the 2006 Australasian workshops
on Grid computing and e-research, pages 97–104, Darlinghurst, Australia, 2006.
Australian Computer Society, Inc.

15. E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil, M.-H. Su, K. Vahi,
and M. Livny. Pegasus: Mapping scientific workflows onto the Grid. Grid Com-
puting: LNCS, 3165:11–20, 2004.

16. I. Foster. The anatomy of the grid: Enabling scalable virtual organizations. Pro-
ceedings. First IEEE/ACM International Symposium on Cluster Computing and
the Grid, pages 6–7, 2001.

17. I. Foster. Globus toolkit version 4: Software for service-oriented systems. In H. Jin,
D. A. Reed, and W. Jiang, editors, NPC, volume 3779 of LNCS, pages 2–13.
Springer, 2005.

18. G. C. Fox and D. Gannon. Workflow in Grid Systems. Concurrency and Compu-
tation: Practice and Experience, 18(10):1009–1019, 2006.

19. A. Hoheisel. User tools and languages for graph-based Grid workflows. Concur-
rency and Computation: Practice and Experience, 18(10):1101–1113, 2006.

20. K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use. Volume 1. EATCS monographs on Theoretical Computer Science. Springer-
Verlag, Berlin, 1997.

21. C. Kesselman and I. Foster. The Grid: Blueprint for a New Computing Infrastruc-
ture. Morgan Kaufmann Publishers, November 1998.

22. L. Maruster, A. Weijters, W.M.P. van der Aalst, and A. van den Bosch. A Rule-
Based Approach for Process Discovery: Dealing with Noise and Imbalance in Pro-
cess Logs. Data Mining and Knowledge Discovery, 13(1):67–87, 2006.

23. A. S. McGough, W. Lee, and J. Darlington. Workflow deployment in ICENI II. In
International Conference on Computational Science (3), pages 964–971, 2006.

24. A. Medeiros, A. Weijters, and W.M.P. van der Aalst. Genetic Process Mining:
A Basic Approach and its Challenges. In C. Bussler et al., editor, BPM 2005
Workshops (Workshop on Business Process Intelligence), volume 3812 of LNCS,
pages 203–215. Springer-Verlag, Berlin, 2006.

25. T. M. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, R. M. Greenwood,
T. Carver, K. Glover, M. R. Pocock, A. Wipat, and P. Li. Taverna: a tool
for the composition and enactment of bioinformatics workflows. Bioinformatics,
20(17):3045–3054, 2004.

26. K. M. van Hee, A. Serebrenik, N. Sidorova, M. Voorhoeve, and J. van der Wal.
Scheduling-free resource management. Data and Knowledge Engineering, 61(1):59–
75, 2007.

27. Y. Wang, C. Lin, Y. Yang, and Y. Qu. Grid service workflow models and their
equivalent simplification methods. In GCC Workshops, pages 302–307. IEEE Com-
puter Society, 2006.

86

Overcoming Failures in Composite Web Services by Analysing

Colored Petri Nets

Karolina Zurowska, Ralph Deters

Department of Computer Science
University of Saskatchewan

Saskatoon, CANADA
zurowska.kar@usask.ca, deters@cs.usask.ca

Abstract

Web Services (WS) is a middleware approach aimed at improving interoperability and flexible aggre-
gation of new and existing software components. Unlike other middleware approaches (e.g. CORBA,
RPC) web services are based on already established standards (e.g. HTTP, SOAP and XML), which
in turn have enabled it to become a widely accepted technology for system integration. One of the
most important elements of WS is the simplicity with which existing WS can be aggregated into new
composite services. But the flexibility, offered by the WS, also poses new problems. One of them is
how to ensure that composite web services deal efficiently with faults and failures of their underlying
services and components.

This paper focuses on the issue of faults and failures in composite web services (CWS). After a
review of existing approaches the paper presents a novel model-driven approach that is based on the
use of colored Petri Nets. It shows how they are used to model CWS and interactions with other web
services, and how the model is analyzed to make CWS more robust.

1 Introduction

A web service (WS) is an interface that exposes software functionality over a network in a declarative
manner, and thus enables clients dynamic binding [21].

By using XML to describe operations and exchanged messages, and well established standards like
HTTP and SOAP, web services support interoperability and aggregation of software components and
existing WS. The first feature enables service providers and service consumers to overcome organizational
and platform borders. And due to the ability to aggregate existing WS into new composite web services
(CWS), it becomes possible to reuse existing services and then develop layers of services. The layers of
services can support modeling complex business processes, thus allowing the realization of applications
that spread across many providers.

WS expose existing software that may contain faults [7], which can lead to failures. Consequently every
WS will inherit the faults and failures of its underlying components and may also introduce additional
ones due to its implementation. It is also important to note that due to the networked nature of web
services they can also encounter failures that are characteristic to distributed systems. These failures are
mostly consequences of servers unavailability or problems with network connections. To avoid propagation
of faults and failures, composite web service must handle them locally.

Propositions to overcome faults and failures in WS and CWS exist in the standards specifications
(WSDL [34] and BPEL [26]) and in the literature. The standards define special types of messages that

87

 (1)

 (2)(3)

Figure 1: The concept of SOA [36].

indicate exceptional situations, so during the implementation of a CWS, special procedures (compensation
or fault handlers) to handle them should be designed. In the literature [3, 4, 9, 10, 13, 14, 15, 22, 25] there
are works that address the problem of how to implement replication techniques in web services, thus how
to make web services more reliable. The number of methods dedicated to the specific challenges of CWS
is however rather small and often based on assumptions (e.g. reduced autonomy) that are not consistent
with the goals of composite web services.

The work presented in this paper aims to preserve the autonomy of web services used in CWS, which
means that only the model of the CWS and the results obtained during its executions is taken into account.
The presented work is based on the concept of analyzing the workflow of the CWS in order to determine
alternatives, which enable reliable execution even if used components encounter failures. Searching for those
alternatives is performed before the execution of the CWS, and the choice of an appropriate alternative to
execute is made before each subsequent execution of the CWS.

In this paper colored Petri Nets are used, which offer a modeling language for design, specification and
the simulation of systems [23]. The colored Petri Nets have a graphical representation as well as formal
mathematical foundations, and they offer many formal verification methods [23]. One of them, namely an
analysis of an occurrence graph [24], is used in this work. It is the basis for inferring the reachability of a
success state of the CWS from states that represent failures. This approach doesn’t require knowledge or
control over interacting WS, thus it ensures that their autonomy is not limited in CWS.

The remainder of the paper is organized as follows. Section 2 presents the definitions of web services,
which is followed by a review of solutions for the fault and failure management in web services. Section 3
describes the proposed solution, and section 4 and 5 present modeling and analysis details. The execution
is described in section 6. The paper ends with conclusions and an outlook on future work.

2 Background and related work

In this section we present the definitions of web services, as well as ways in which we can compose them.
Then we define faults and failures and we review the approaches proposed in the literature to deal with
them in web services.

2.1 Atomic and composite WS

WS are currently the most popular implementation of the Service Oriented Architecture (SOA) design
and integration approach. The basic principle that underlies SOA is presented in Figure 1. According to
this an abstract description of a service, understood as software functionality, is published in a registry
(discovery facility). There it can be found by a requestor that wants to use it. The requestor, after finding
the description, binds to the service, so it obtains enough information to connect over a network to it [36].

88

The broad idea of the Service Oriented Architecture is adapted by the WS. Therefore the notion of WS
refers to systems that are built from several networked modules, however it also refers to a set of standards,
which supports an implementation of such applications [38]. In the first approach a web service can be
described as an interface that collects operations accessible over the network, and this access is possible
by sending standard XML messages [21]. In the second approach the web service is treated as the WSDL
(Web Service Description Language [34]) description of a group of operations, which are invoked over a
network using SOAP (Simple Object Access Protocol [33]) messages. These operations can be published
with UDDI (Universal Description, Discovery and Integration [28]) in a register.

The main advantage of the web services is their interoperability, which means that they allow commu-
nication and cooperation between software components, which are implemented in different programming
languages or deployed on different platforms. The web services technology achieves this by using the al-
ready mentioned set of standards as well as by relying on XML-based artifacts for describing, publishing
and invoking activities. Choosing XML as the underlying language is an important element of ensuring
the interoperability, because XML is machine and platform independent.

The next important attribute of web services is their composability (aggregation). Web services can be
aggregated (orchestrated or choreographed) to work together, in order to provide more complex functional-
ity. In most of the cases the goal of such composition is to model a business process, like supply-production
chains or planning services. There are two aspects in which a composition of web services can represent a
business process: orchestration and choreography [29]. Orchestration is an executable business process that
interacts with other web services, and is controlled by one party. Choreography is more collaborative, and
it allows involved parties to define their role in interaction, so it tracks sequences of exchanged messages.
For both types of modeling the BPEL (Business Process Execution Language) specification, which supports
both abstract and executable business processes [26], can be used. Other specifications that serve the same
purpose are Business Process Management Language (BPML) together with Web Services Choreography
Interface (WSCI) [29]. There are thus different ways that web services can be aggregated and can build
recursively other web services.

2.2 Faults and failures

A software failure is a result returned by a program that is not expected and deviates from specified
requirements [27]. A failure occurs, when an application is executed in particular conditions, and is caused
by a fault, which is understood as a defect in an implementation [27]. To deal with faults, there are two
general strategies: fault prevention and fault tolerance [2]. In the first strategy efforts are made to avoid
or to remove faults existing in an implementation by testing and analyzing a code. It is based on the
assumption that it is possible to predict all use cases of a program and all conditions of its execution. Such
assumption is however invalid if a software system consists of a larger number of components or modules.
Then the way to deal with faults is fault tolerance, which assumes that faults are present in software.
This inherent presence of faults in applications may result in failures, so the responsibility of fault tolerant
systems is to provide means to cope with encountered failures [2].

If components that are able to perform computations to achieve a goal of a software system are spread
over a network, the system is distributed. These components may be called processes [19] or servers
providing services [12]. The services are simply collections of operations, which are executed after receiving
defined inputs. There are many methods to specify the processes or services, however they must at least
identify a set of inputs and corresponding outputs. If after receiving an input, a server’s output or state
differs from a service’s specification, a failure occurs. We can distinguish four main categories of failures
in distributed systems [12]:

- omission failure - if a server omits a response,

- timing failure - if a response comes outside of a specified time interval (if a response is received after
this interval then this failure is called a performance failure),

89

- response failure - if a response comes on time, but its value is wrong or a server’s state after the
response is incorrect,

- crash failure - if a server fails to produce outputs for several subsequent inputs and it must be
restarted.

2.3 Overcoming faults and failures in web services

In the following sections we present the solutions to deal with faults and failures in web services. First
we show the methods used in standards (like WSDL or BPEL), and then other solutions present in the
literature.

2.3.1 Standards

The current set of standards, which provides means for describing, executing and composing web services,
to overcome failures proposes fault tolerance that bases on the exception handling concept.

The WSDL standard [34], which specifies a web service’s description, allows declaring, for each operation
available in the web service, a special fault message with its name and content. If the web service’s transport
protocol is SOAP [33], then at the execution time, the description of the fault message is transformed to
a special type of message, namely a SOAP fault. It contains information about a general type of a fault,
its name and details specified in a WSDL description. SOAP fault can be mapped to an exception in a
programming language (for example in Java) and handled there [33].

The BPEL language, which is considered the standard language for implementing compositions, offers
two mechanisms that are used to deal with failures: compensation and fault handlers [26]. Compensation
handlers are used to perform backward error recovery, so they allow defining procedures that can be invoked
to undo changes, which have been made prior to a failure’s occurrence. Fault handlers are used to forward
error recovery, so to successfully overcome failures. Both of the mentioned structures, compensation and
fault handlers, are defined for a scope, which is BPEL’s unit of processing [26].

2.3.2 Other solutions

Solutions for the problem of dealing with failures in web services that are not composed (atomic WS) are
based in most cases more or less on replication techniques. Deron et al. [13] propose to deploy the same
web service on many hosts. A description of the web service is then enhanced with the additional element
indicating locations of primary and backup servers. Each request to the web service is logged and stored,
thus in case of a failure (detected after a request), the next host is chosen to take over a primary server role,
and response to the request. Liu et al. [25] give a similar solution, but make the fault tolerance transparent
to requests. They split a web service into two layers: one is responsible for delivering its functionality
and the other for providing fault tolerance (by replication management, logging services and recovery
from logs). The replication mechanism is also used by Dobson [15], but he investigates the possibility
of using BPEL language to implement a fault tolerant web service. In his proposition BPEL serves as
an additional layer (previously realized by SOAP engines) for choosing atomic web service, according to
their accessibility status. When one host with a web service crashes then another is invoked, which is
implemented in compensation handler of the web service.

The concepts proposed to manage servers failures presented above are not suitable for composite web
services, because they are not considering the hierarchical structure of such web services. This issue is
addressed in the following approaches. Dialani et al. [14] designed an architecture that consists of an
application layer with a general fault manager and of the service layer that is enhanced with messaging
capabilities. Such distinction makes it possible to introduce local and global recovery mechanisms; the first
one is responsible for recovery of an individual web service, whereas the second one is used by the entire
application. Dialani et al. propose backward error recovery, so in case of a failure, the system goes back to

90

Authors Type of WS Type of failures Description

BPEL, Composite Declared Exception handling,
WSDL [26, 34] exceptions which is based on faulty messages.

Deron et al. [13] Atomic Crashes Replication of web services,
with an additional element in a WSDL
description for specifying locations
of primary and backup servers.

Liu et al. [25] Atomic Crashes Replication of web services
that is transparent for clients,
and uses two layers of WS.

Dobson [15] Atomic Omission failures, Using BPEL’s compensation handlers
crashes to manage replication of WS.

Dialani et al. [14] Composite Crashes Informing cooperating web services
about failures, assumes control
over atomic web services.

Ardissono et al. [3, 4] Composite Exceptions Reasoning about possible cause
of an exception, assumes knowledge
about atomic web services.

Issarny et al. [22] Composite Exceptions thrown Concept of Coordinated Atomic (CA)
in parallel execution actions adapted to web services

(gathering all cooperating web services
and perform recovery procedures).

Chafle et al. [10, 9] Decentralized Exceptions Inserting handlers into each part
composition of a distributed composition.

Table 1: The summary of solutions for overcoming faults and failures in web services.

the previous valid state, and all services that might be affected are notified. This solution assumes that an
application that composes atomic web services can control them, unfortunately in most CWS it is invalid.

The work of Ardissono et al. [3, 4] does not assume any control over composed web services. Their
framework reasons about possible causes of an exception and chooses the best fault handler for it. Their
main concept is to use local diagnosers with each web service, so in case of an exception the diagnoser
produce local hypotheses about its cause. They are verified by the global diagnoser, which has knowledge
about the whole composition and can generate global diagnostic hypotheses. Ardissono et al. use a model-
based diagnosis, which allows modeling a composition as a set of components, which store exchanged
variables. Although in this work the control over web services is not assumed, this framework still requires
a substantial amount of knowledge about the behavior of individual web services to build the diagnostic
model.

The next two solutions consider slightly different problems and explore specific approaches to the
composition of web services. Issarny et al. [22] solve the problem of how to perform forward error recovery
if individual web services are invoked in a composition in parallel. They adapt the concept of Coordinated
Atomic (CA) actions used in decentralized systems. The CA actions are used to control cooperative
concurrency and exception handling, by gathering all interacting threads and synchronizing their initial
and final states [30]. In the web services domain this works similarly, and web services are participants of a
CA action. In case of a failure there are procedures that deal with global results of concurrently executed
services [22]. Chafle et al. [10] propose decentralized mechanism of composing web services in opposition to
centralized one defined in BPEL. Although decentralization may improve performance, it makes the fault
handling more complex, because all parts of decentralized composition can throw exceptions. To overcome
this handlers are inserted into each part and then, according to the type of the part, appropriate data are
gathered and sent to related nodes [9].

All solutions presented above are gathered and compared in Table 1. It can be concluded from this

91

summary that solutions for composite web services are based on the assumption of having control or
knowledge about used WS. Such assumption is in conflict with the interoperability paradigm, because it
requires additional dependency between components.

3 The algorithm for overcoming failures in CWS

In this paper we present a model-driven approach to overcome failures encountered by CWS during inter-
actions with other web services. We focus on omission failures of one or more components, thus on the
case if they are not responding. However, since a missing response from a web service may result in a fault
message, we treat such message (if it is not a part of the WS description) as an indication of problems with
the web service.

To deal with these problems we use a model of a composite web service and check if it is possible
to execute it successfully without one or more external web services. The underlying idea is to model
a composite web service, then analyze it and prepare alternatives, one of which is chosen according to
states of used web services and then executed. Hence there are two general phases: the analysis and the
execution. The first phase requires representing the CWS in order to analyze whether it is possible to
”skip” any interactions with external web services. In the second phase a version of CWS must be chosen,
the basis for this choice are current states of used external web services.

There are many approaches how to model or represent CWS and with which formalism. Here are some
of them:

- state transitions models that are used to capture protocols for conversations between web services [6],

- finite state guarded automata with queues for incoming messages [18],

- process algebras [17],

- Petri Nets [20] and hierarchical colored Petri Nets [37].

All these proposition use models for the purpose of CWS verification and, except for the process algebra
approach, transform already existing compositions. In the approach presented here the primary goal is to
provide means to indicate alternative execution paths. So the concepts presented above are not very well
suited to meet such requirements. Although we use one of the already mentioned formalism, the colored
Petri Nets, it is used in a different way.

We chose the colored Petri Nets modeling language [23] to model CWS for three reasons. First, colored
Petri Nets can model hierarchies, which are very useful to represent interactions with other web services,
because they encapsulate these interactions in separate routines. Second, colored Petri Nets introduce the
notion of types of variables, so types of messages can be represented. Finally, colored Petri Nets have a
graphical representation, and they are also based on solid mathematical foundations. Besides these this
modeling language offers different formal verification methods like occurrence graphs [24], used in our
approach to analyze reachability of successful CWS execution.

The general algorithm for overcoming failures is presented in Figure 2. In the analysis phase CWS
are modeled with hierarchical colored Petri Nets and their occurrence graphs are constructed. From the
graphs, by means of the reachability analysis, it is inferred whether the CWS can be executed if one or
more web services are not working. Then versions of CWS are implemented: one which invokes all external
WS and, if the successful execution of CWS is possible, without one or more interactions. Hence additional
versions just skip one or more invocations to the external WS. The analysis phase is performed once and
its complexity is proportional to the complexity of the modeled CWS. The result from this phase is a set
of implemented versions of the CWS, each containing also the condition when each version should be use.
In the execution phase states of the external web services are checked, and the appropriate for the set of
currently working external WS alternative of the CWS is chosen and executed. This step is performed

92

Figure 2: The algorithm for overcoming failures in CWS.

every time there is a new request to the CWS, and its complexity is proportional to the number of used
WS (to check states and find the appropriate version) and to the complexity of the implemented CWS.

What is not shown on Figure 2 is what is the source of information about states of external WS and
how its is maintained. In our approach we assume that:

- there is an additional WS (for each CWS), which stores the information about states of external WS
and it also performs the choice of the version to execute (it acts as a proxy for requests, thus the
version selection is not visible to clients of the CWS),

- each execution of the CWS is the source of data about the current state of external WS: if while
executing the CWS an external WS does not respond its state is ”not working”,

- each ”not working” state expires after a predefined period of time, and then the external WS is
invoked again.

The simplicity of the model for states of external WS used in our approach is sufficient to illustrate the
idea, but it can be inaccurate (especially if states are changing frequently). The algorithm in Figure 2 is
only a general approach, so it is also possible to use it with other methods, which can more accurately
anticipate states of remotely deployed components.

The idea described in this section has several advantages:

- only information from a model of a CWS is used,

- it doesn’t require any knowledge or control over used components,

- interactions with not working components, which may be slow, are avoided (however the successful
execution of the CWS may be possible even if they are invoked),

- failures are not propagated in the hierarchy of WS,

- overloaded servers with web services do not receive any new requests, thus they might recover faster.

In the following sections we describe how to model CWS with colored Petri Nets and then how to prepare
occurrence graphs for them. After that we present an example with more details about the execution phase
of CWS.

93

4 The model of CWS

This section presents how in our approach we model a CWS with the colored Petri Nets modeling language.
The modeling of CWS is supported only by CPN Tools [11], so there are not used any specific tools to
perform the steps presented below: modeling interaction with other WS and modeling CWS.

4.1 Interactions with other web services

During its execution a CWS can interact with external web services, which means that it sends an input
data and gets in turn required information. Thus we can represent each such interaction as a function
output = externalWS(query). In colored Petri Nets this function can be modeled as a transition which
has an input arc with a color from the query color set and has an output arc with a color from the output
color set. But, according to Section 2, to invoke external WS and to get results we need XML messages,
and because of the distributed nature of WS we need also to deal for example with omission failures. That
is why the simple transition is enough only at the high abstraction level, to make interactions with external
WS more realistic we need to take into account also above details.

One of the features of colored Petri Nets is the possibility to model hierarchies of nets [23]. In the
context of modeling composite web services the hierarchies allow us to define in a separate routine details
of interactions with other web services. So each call to an external web service is represented in a separate
net by substituting an appropriate transition and its surrounding arcs. The set of all nets that model CWS
is a set of pages [23], whereas in each page there is a non-hierarchical net. Hence there is a main page with
a general model of CWS and additional pages for each interaction with an external web service.

In this work we assume that the details about external web services used by CWS are based on infor-
mation from WSDL descriptions [34]. Each such description contains definitions of operations gathered by
a web service, its bindings and protocols [34]. We don’t need implementation details (bindings, protocols)
in the model of a CWS, thus we limit the WSDL description to a definition of a single operation. We
consider then an operation as an external web service. Hence in order to model a web service we need to
provide the following data:

- the name of a web service,

- contents of the XML message sent to the external WS (types and names of arguments),

- contents of the response XML message from the external WS (types and names of arguments),

- exceptions for the web service.

All of the above pieces of information are specified in a net that describes an interaction with WS.
To invoke a web service and to get a result we intercept XML messages, which contain names and values

of input parameters or responses. To model these XML messages in colored Petri Nets appropriate color
sets have to be declared. We do it with a record type, because it enables mapping names and values as
defined in a WSDL description of messages. An example of how a WSDL message’s description is mapped
to a color set is shown in Figure 3. The figure also presents an example of an initial value (a token with a
color) for the declared color set. Color sets of the records type can also use other record types as fields, so
we are able to map more complex and compound types of messages. The mapping between types in XML
Schema [35] and default color sets is rather straightforward, so it is omitted here.

Each correct, synchronous interaction with an external web service returns a response message: either
described in a WSDL message with a result or a fault message (defining in WSDL fault messages for
operations is optional) [34]. Moreover, because a CWS interacts with remotely deployed components, it is
possible that there is no response at all (omission failures described in the previous points) or there is fault
message different then described in a WSDL. All these possibilities are taken into account while modeling
an interaction. So there are 3 possible types of output from an external web service:

94

I n p u t M s gW S _ i n p u t 1 ` { i = 1 , b = t r u e , s = " a b c " }
c o l o r I n p u t M s g = r e c o r d i : I N T * b : B O O L * s : S T R I N G ;1 1 ` { i = 1 , b = t r u e , s = " a b c " }

Figure 3: A color set in CPN (with a place and its initial values) and an appropriate WSDL description of
a message.

1
()

r e t o u t p u t M s g _ W S _ 1
o u t p u t M s g _ W S _ 1

i f r e t u r n T y p e = N ot h e n 1 ` ()e l s e e m p t yi f r e t u r n T y p e = E x ct h e n 1 ` " E x c e p t i o n "e l s e e m p t yi f r e t u r n T y p e = O kt h e n 1 ` o u t p u t M s g _ W S _ 1e l s e e m p t y

i n M s g
{ a 1 = q u e r y }

q u e r y

C r e a t e e m p t y r e s u l tC r e a t e r e s u l t

C r e a t e m e s s a g e

I n v o k e _ W S _ 1

O u t p u t _ W S _ 1 _ N oU N I TO u t p u t _ W S _ 1 _ E x c E x c e p t i o nO u t p u t _ W S _ 1 _ M s gO u t p u t _ W S 1 _ M s g

I n p u t _ W S _ 1 _ M s g I n p u t _ W S 1 _ M s g

O u t p u t _ W S _ 1O u t I n t e g e r

I n p u t _ W S _ 1I n I n t e g e rI n

O u t
Figure 4: An example net that specifies details of an interaction with an external web service.

- a response message with a result as specified in a WSDL description of a web service,

- an optional fault message also specified in the description,

- no response message or fault message other than specified - it indicates failure of a web service.

For the last two types of output we either define a routine to specify how we deal with them, or we do
not define anything if nothing can be done. If in a WSDL description there are no fault messages for the
modeled operation there are only 2 types of output : correct value and no response.

Figure 4 presents the Petri Net’s page that models an interaction with a web service. Places with
inscriptions ”In” and ”Out”, which refer to port nodes, are the part of a CWS that invokes this web
service. In the example the CWS uses an integer value for the input and output, thus a conversion from
and to format of web service’s messages must be made. The input message has only 1 parameter and is

95

i n M s g
{ a 1 = q u e r y }

q u e r y

()

C r e a t e m e s s a g e

S e n d _ W S _ 1
I n p u t _ W S _ 1 _ M s g I n p u t _ W S 1 _ M s g

. . .O u t U N I T

I n p u t _ W S _ 1I n I n t e g e rI n

O u t

o u t p u t M s g _ W S _ 1
r e t o u t p u t M s g _ W S _ 1

i f r e t u r n T y p e = N ot h e n 1 ` ()e l s e e m p t yi f r e t u r n T y p e = E x ct h e n 1 ` " E x c e p t i o n "e l s e e m p t yi f r e t u r n T y p e = O kt h e n 1 ` o u t p u t M s g _ W S _ 1e l s e e m p t y
()

C r e a t e r e s u l t

R e c e i v e _ W S _ 1
O u t p u t _ W S _ 1 _ N o U N I TO u t p u t _ W S _ 1 _ E x c E x c e p t i o nO u t p u t _ W S _ 1 _ M s g O u t p u t _ W S 1 _ M s g

. . .I n U N I T

O u t p u t _ W S _ 1O u t I n t e g e rO u t

I n

Figure 5: Example nets that represent an asynchronous type of an interaction with WS. On the left there
is a send operation, and on the right a receive operation.

modeled by a record type with only one field ”a1”. The transition ”Create message” creates new variable
of that type and assigns to it data from the ”main” CWS. Then a web service is invoked and three types
of possible output are shown, with a variable ”returnType”’ to represent them. After the call the output
in format required by the CWS is created: it is the contents of the return message, or value 1 if there is no
response (it also represents an unknown fault message). If an exception from the web service’s description
is a response, nothing is specified afterward, which means that there is no routine to deal with it.

The interaction presented in Figure 4 assumes that the call is synchronous. However it is also possible
to invoke a web service’s operation in an asynchronous mode: first send a message and then request a
response. Moreover it is also possible that only a message is sent, without requesting a response, thus an
external WS is only notified. To model this kind of interaction we define 2 additional operations: send and
receive. The first one is to create a message and send it to a web service, the second is to get a response
and transform its contents to a format required by a CWS. In the latter operation all three possible types
of output (correct response, declared fault message if any, no response) must be considered. An example
of two nets that represent an asynchronous call are shown in Figure 5. They are similar to the interaction
from Figure 4, however there is no routine to deal with the no response type of output.

The approach and examples presented in this section are a proposition of how to model with the colored
Petri Nets language interactions of CWS with external web services. We define 3 types of interactions:
invoke, send and receive. In the colored Petri nets they are modeled as transitions, thus we have 3 subsets
of all transitions to represent those operations: TinvokeWS , TsendWS and TreceiveWS . A transition t that
represents an invoke operation can be defined:

t ∈ TinvokeWS iff (t ∈ T) ∧ (size(In(t)) = 1) ∧ (size(Out(t)) >= 2) ∧
(∃p ∈ In(t) : C(p) ≈ inMsg) ∧ (∃p1 ∈ Out(t) : C(p1) ≈ outMsg) ∧
(∃p2 ∈ Out(t) : C(p2) = UNIT)

96

where:

- T is a set of all transitions in a net,

- In and Out are functions that map a node to its input and output nodes, respectively,

- size is a size of a set,

- C maps a place into its color set,

- ≈ maps WSDL messages (XMLSchema) into record types,

- inMsg and outMsg represent accordingly all input and all output messages (XMLSchema) defined
in a WSDL description for a web service.

According to this definition we require that a transition that models an invoke operation has one input
place with the color set that is mapped from a WSDL input message, and it has at least two output places:
one with the color set that is mapped from a WSDL output message and one with the unit color set (it
represents ”no response” type of output). The size of the set of output places can be bigger than 2, because
we can have fault messages in WSDL description, each of which is modeled as an output place.

A send operation is a transition which:

t ∈ TsendWS iff (t ∈ T) ∧ (size(In(t)) = 1) ∧ (size(Out(t)) = 1) ∧
(∃p ∈ In(t) : C(p) ≈ inMsg) ∧ (∃p1 ∈ Out(t) : C(p1) = UNIT)

Here the difference is that we do not have different output types but only the unit color set. Finally a
receive operation is a transition which:

t ∈ TreceiveWS iff (t ∈ T) ∧ (size(In(t)) = 1) ∧ (size(Out(t)) >= 2) ∧
(∃p ∈ In(t) : C(p) = UNIT) ∧ (∃p1 ∈ Out(t) : C(p1) ≈ outMsg) ∧
(∃p2 ∈ Out(t) : C(p2) = UNIT)

The difference between this definition and the invoke is that for input there is the unit color set, so we do
not model an input message. We can also define the set of all interactions for CWS:

TWS = TinvokeWS ∪ TsendWS ∪ TreceiveWS

4.2 Modeling CWS

Representing details of interactions with external web services on separate nets is only one part of modeling
them. These interactions (without any details) are also a part of a more abstract CWS specification, which
is modeled on a main page. Two examples of such pages are presented in Figure 6. They are main pages
of CWS which model only interactions presented in Figure 4 and Figure 5, and they call external web
services in synchronous and asynchronous mode, accordingly. The transitions that model interactions with
external WS (named ”Invoke WS 1”, ”Send WS 1” and ”Receive WS 1”) are substituted with previously
shown nets. The hierarchy of pages makes it possible to model CWS in abstract way on the main page
and to deal with details of interactions on additional nets. In turn the general model of CWS, which is
on the main page, operates only on variables and colors required by it without transformations to record
types (for the net from Figure 6 it is color set ”Integer” and variables ”query” and ”result”).

Interactions with external web services are not the only operations that a CWS can contain. We also
model operations on data, various control operations (for example if statements, while loops) or others.
All of these can be represented in colored Petri Nets. The examples of different possible structures can be
found in workflow patterns [31]. It is also possible that a CWS and its colored Petri Nets model can be
used to represent complex workflows, the details of this kind of modeling can be found in [32]

Although we can model many different CWS, we need to add some restrictions on the main page of
CWS:

97

()
r e s u l t

q u e r y
()

I n v o k e _ W S _ 1I n v o k e _ W S _ 1

.
E n d U N I T

O u t p u t _ W S _ 1 I n t e g e r
I n p u t _ W S _ 1I n t e g e r

S t a r t ()U N I T

I n v o k e _ W S _ 1 ()r e s u l t

()()
5
()

. . .

R e c e i v e _ W S _ 1R e c e i v e _ W S _ 1
S e n d _ W S _ 1S e n d _ W S _ 1

. . .
. . .

E n d U N I T

. . . U N I T

. . . U N I T

O u t p u t _ W S _ 1 I n t e g e r
I n p u t _ W S _ 1 I n t e g e r

S t a r t ()U N I T

S e n d _ W S _ 1
R e c e i v e _ W S _ 1

Figure 6: Example nets that present the main pages of CWS. On the left there is CWS with invoke
operation and on the right there is CWS with send and receive operations.

- the place that represents the beginning of CWS should not contain input arcs, and the color of this
place determines what are input parameters to this CWS,

- the place that represents the end of CWS should not contain output arcs, and the color of this place
determines output from this CWS,

- transitions that represent the interactions with external WS have 1 input and 1 output arc (the
interactions are functions),

- to allow faster identification of markings, which is used in the analysis of occurrence graphs, we
should name the end place with ”End” and the transitions for the interactions with the name of used
WS.

5 Analysis of CWS

One of the Petri Nets analysis methods are occurrence graphs [24]. In this work we use them to analyze
composite web services to find out how failures of required WS may influence the overall CWS execution.
An occurrence graph is a graph, which has a node for each reachable marking (a distribution of tokens
between places) and an arc for a transition and its binding (called binding elements) [24]. This graph is
the basis for checking whether CWS can be executed successfully even if one or more used web services
do not respond, which as described in Section 4 is modeled as a ”No response” type of output and in the
colored Petri Nets as an output place of an interaction with the unit color set. To perform such checking
we must infer the reachability of a marking that represents a success of CWS execution from markings
that represent different outputs from external web services.

Occurrence graphs are a very useful tool for our purpose, the only problem is that even for simple CWS
they may become very large. This happens because we model interactions with external components and
we do not know what is the actual result of this interaction. For example for interaction from Figure 4
there can be as many different results as there are elements in the color set ”Integer”. If this interaction is
the part of the CWS modeled in Figure 6 and the Integer color set consists of 100 elements, the occurrence

98

graph has 404 nodes and 30401 arcs. These values become greater if we have more parameters or more
complex results from external web services. At some point the analysis may even be intractable.

To overcome the problem of very big occurrence graphs we use occurrence graphs with equivalence
classes (OE-graphs) [24], which can reduce the number of nodes and make the state space analysis more
tractable. An equivalence specification is a pair (≈M ,≈BE), where ≈M is equivalence relation on markings
and ≈BE is an equivalence relation on binding elements [24]. In the context of modeling CWS we define
those equivalence relations on results from used web services, according to how the results are used in
CWS. Hence we can assume that all the results from the web service are equal, or we can define several
classes of them. The equivalence for markings is:

M1 ≈M M2 ⇒ ∀p∈P : (M1(p) = M2(p) ∨ (p ∈ (X(TWS) ∪ PN) ∧ M1(p) ≈result M2(p)))

where:

- P is a set of all places,

- PN is a set of port nodes (places between pages in a hierarchy),

- TWS is a transition that represents call to an external web service (as defined in the previous point),

- X is function that maps a node to a set of its surrounding nodes,

- ≈result is an equivalence relation on results from the web service.

From the above definition two markings are the same if the only places they differ are the input or
output from an interaction page or places surrounding a transition for an interaction with an external WS.
Additionally colors for those places are equal as we defined for the WS’s results. The binding elements
equivalence is:

BE1 ≈BE BE2 ⇒ (t(BE1) = t(BE2) ∧ (∀v∈V ar(t(BE1)) (b(BE1)(v) ≈result b(BE2)(v))))

where:

- t maps BE to its transition,

- b maps BE to its binding,

- V ar(t) is set of variables for transition t,

- ≈result is the same as previously.

From the definition two binding elements are equivalent if they are for the same transition and the bindings
for variables are equivalent according to the relation defined for the WS’s results.

For the CWS from Figure 4 and Figure 6 we can assume that all results from the web service are equal.
Figure 7 presents an occurrence graph with equivalence classes for this CWS. Each node is specified with
a name of place that is not empty in a marking, binding elements (arcs) are omitted, because they are
straightforward for this example. By the specification of equivalence relationships we reduced the number
of nodes from 404 to 8, and the number of arcs from 30401 also to 8.

To use an OE-graph to check an influence of failures of other web services on CWS we need to check
reachability of successful execution of CWS. A marking that represents this state is the one that contains
token element only in a place named ”End”, thus m is Msuccess iff:

((m ∈ M) ∧ (m(pEnd) 6= empty) ∧ (∀p6=pEnd
m(p) = empty))

where:

99

81 : 0E n dE n d72 : 1O u t p u t _ W S _ 1O u t p u t _ W S _ 141 : 1O u t p u t _ W S _ 1 _ N oO u t p u t _ W S _ 1 _ N o
51 : 0O u t p u t _ W S _ 1 _ E x cO u t p u t _ W S _ 1 _ E x c

61 : 1O u t p u t _ W S _ 1 _ M s gO u t p u t _ W S _ 1 _ M s g
31 : 3I n p u t _ W S _ 1 _ M s gI n p u t _ W S _ 1 _ M s g21 : 1I n p u t _ W S _ 1I n p u t _ W S _ 110 : 1S t a r tS t a r t

Figure 7: An example of an occurrence graph with equivalence classes (nodes are identified by names of
non-empty places).

Figure 8: The preparation and analysis of an occurrence graph.

- M is a set of all markings in an OE-graph,

- pEnd is a place named ”End”.

Analogously we can identify nodes and markings in an OE-graph that represent exceptional or no response
types of output for each used external web service. Then we check the reachability of Msuccess from all
those states. If the success is reachable we can execute CWS even if there is an exception or no response,
otherwise in case of a failure of a component we cannot execute CWS successfully. In the OE-graph in
Figure 7 the successful marking is represented by a node 8. It can be concluded that even if the external
web services is not responding (node 4) we can use it, but we cannot overcome exceptional messages (node
5).

The summary of the analysis of occurrence graphs in colored Petri Nets used in our approach is shown
in Figure 8. The analysis consists of 2 main steps: preparation of OE-graphs and their usage. In the first
step appropriate classes of equivalence are defined and then an OE-graph is constructed. In the second
phase we first find a node in the graph that represents the successful state of execution and then nodes

100

d e s td e s t
d e s t

{ f l i g h t = f l i g h t , a t t r a c t i o n s = a t t r }
a t t rf l i g h t

I n v o k e _ F i n d A t t r a c t i o n sI n v o k e _ F i n d A t t r a c t i o n sI n v o k e _ F i n d F l i g h tI n v o k e _ F i n d F l i g h t

F l o w

C r e a t e p l a n

F i n d A t t r a c t i o n s _ I n p u t D e s t i n a t i o nF i n d F l i g h t _ I n p u t D e s t i n a t i o n

F i n d F l i g h t _ O u t p u tF l i g h t N o F i n d A t t r a c t i o n s _ O u t p u t A t t r a c t i o n s

E n d P l a n

S t a r t 1 ` " A A A "D e s t i n a t i o n

I n v o k e _ F i n d F l i g h t I n v o k e _ F i n d A t t r a c t i o n s

Figure 9: An example of CWS and WSDL descriptions for used operations

that represent each used web service’s failure or exception. We perform on those nodes the reachability
analysis. The result of the analysis is the answer to question whether CWS can be executed if one or more
external WS fail.

6 An execution of CWS

The result of the analysis phase is used to prepare different versions of CWS and then choose an appropriate
version according to states of external WS. In our approach a source of information about those states are
subsequent executions of the CWS. Thus if a web service returns a failure (fault message) we assume that
it is not working and it is not used in the next execution of CWS. The main gain of this solution is that
CWS avoids, if it is possible, usage of WS that are not responding.

To illustrate this idea we present a CWS that prepares a simplified plan for a vacation. Given a
destination name it should find a flight and attractions that are available at the destination. The main
page of this CWS, as well as a part of WSDL descriptions are shown in Figure 9. Both of the external web
services do not define exceptional messages, and input and output messages contain only string values. The
response from such a CWS is a token that will be in the place End after execution. Pages with detailed
interactions are not shown, however it is assumed that if the FindAttractions web service does not answer

101

”From” marking ”To” marking Reachable
Output FindAttractions No + Output FindFlight Msg End Yes
Output FindAttractions Msg + Output FindFlight No End No

Table 2: The results of the analysis of the Vacation planner composite web service.

then a default data is returned.
According to Figure 8 an analysis starts with the definition of equivalence classes for results from

external WS. In this example both WS return only 1 type of the correct response, thus all markings and
binding elements that represent results from the FindFlight or the FindAttractions are equal. It is enough
to create an OE-graph. This kind of graphs are not supported by the CPN Tools [11], so to construct
them we just limit all input and results color sets to the sets with one color each (or more, according to
the defined equality for WS results). Using the CPN Tools and a model of the CWS with color sets limited
to 1 color, we constructed the OE-graph, and in the case of the Vacation planner CWS there are 27 nodes
(we omitted here its graphical representation). We now use the graph to analyze the reachability of the
successful Vacation planner execution. There are 2 used WS, without any defined exception so only two
possible paths must be examined: one from the marking that represents the failure of the FindFlight web
service and one from the FindAttractions failure. The results of this analysis are shown in the Table 2.
The first line describes the marking that has a token in a place in which the FindAttractions returns a
failure and the FindFlight returns a correct message, the second line is the opposite. Because the success
(a marking with a token in the End place) is reachable from a marking that represents the FindAttractions
failure, we can execute the Vacation planner even if this WS is not working properly or is not available.
Unfortunately if we cannot find a flight the whole CWS cannot be successfully executed.

The above results are used to prepare 2 versions of the Vacation planner: with and without a call
to the FindAttractions. Both of them are implemented in BPEL [26], and the implementation of the
version without the FindAttractions just omits the call to it. We need also an additional web service
that stores the results of calls to the FindFlight and the FindAttractiions and in case of a failure switches
between the versions. In order to store the results the additional (”reasoning”) WS offers operations used
in the Vacation planner to inform about exceptions or failures that are encountered during calls. The
communication between components used for the deployment is shown in Figure 10. First the Vacation
planner decides which version invoke, then appropriate WS are called. If during execution of the CWS a
failure of one of used components is encountered, then the general CWS is invoked and informed about the
failure. If it is the FindAttractions web service, then the next execution will use the VacationPlanner v2
(the version without the FindAttractions).

To test the Vacation planner CWS (presented in Figure 10) all components were deployed as shown
in Figure 11. Both versions of the CWS are executed on an ActiveBPEL 2.1 [1] engine and both atomic
WS (the FindFlight and the FindAttractions) as well as the additional CWS (Java implementation) on an
Axis 1.4 [5] engine. For this configuration the FindAttractions web service was returning a fault message
with a server exception, which simulates this web service’s failure. Because for this model it is possible to
successfully execute the CWS without the FindAttraction, the successful execution was possible, however
for the next execution the VacationPlanner v2 was chosen, thus interaction with the faulty component was
avoided. This is important because such interaction may take longer time, so the whole CWS is executed
longer. The other advantage of avoiding interactions with not working web services is that servers can be
overloaded, so when requests are not sent, then server will recover faster.

7 Conclusions and future work

The solution presented in this paper is the model-driven approach to deal with failures encountered during
an execution of CWS. Our proposition focuses on omission failures and uses the colored Petri Nets modeling

102

Figure 10: Communication between components in the Vacation planner CWS.

Figure 11: The deployment of the Vacation planner components.

103

language to infer about alternative paths to execute CWS. The main advantage of our solution is that we
avoid interactions with components that are not working. This goal is achieved without reducing the
autonomy of used components, which is very important in CWS and makes our proposition different from
the others.

The main drawback of this concept is that alternatives must be prepared before execution can start,
and the number of them may become high. For n used WS we can have as many as 2n versions, because
we may need a version for working and not working case of every WS. Because each version must be
translated into BPEL and deployed on server, complex CWS may require substantial computation power
and memory. To overcome this disadvantage we propose to use the Petri Nets model as an execution basis
and perform the reachability analysis during execution. This was (partially) done by implementing an
engine to execute CWS, based on the colored Petri Nets models. The implementation is a plugin to the
BRITNeY tool [8], which allows us to add to the nets the code that invokes external WS (they are deployed
on Axis 1.4 server) and which uses a simulation as the basis for executing CWS. Within this engine we
can perform dynamically the reachability analysis using OE-graphs, which are built for every loaded CPN
model of CWS. In this way we can avoid storing many versions of CWS and decide whether external WS
should be invoked at the time of executing CWS.

The other problem of our proposition is the very limited number of solutions to overcome failures of
used WS. e use only one way to do it: not to invoke the faulty WS. The result is that in case when the faulty
web service is compulsory to execute successfully CWS (like FindFlight in the example) we are unable to
overcome it. To make it possible, at the level of CWS, we can only try to find other web service that can
perform requested operation. This can be done by maintaining a register of equivalent web services or if
we use a dynamic discovery of the same WS. Another approach may be to use the semantic web services
[16], thus find services that are semantically compatible.

The solution for overcoming failures of external web services presented above is based on the knowledge
that the composite web services have during their definition and execution. It was shown that this solution
is feasible to implement in the current standards (BPEL [26] and [34]), however we are still investigating
possibilities of improving it.

References

[1] ActiveEndpoints. ActiveBPEL open source BPEL engine. http:// www.active-endpoints.com/ active-
bpel-engine-overview.htm.

[2] Tom Anderson. Fault tolerance, principles and practice. Prentice Hall International, Englewood Cliffs,
N.J., 1981.

[3] L. Ardissono, L. Console, A. Goy, G. Petrone, C. Picardi, M. Segnan, and D. T. Dupre. Advanced
fault analysis in web service composition. In WWW ’05: Special interest tracks and posters of the
14th international conference on World Wide Web, pages 1090–1091, New York, NY, USA, 2005.
ACM Press.

[4] L. Ardissono, R. Furnari, A. Goy, G. Petrone, and M. Segnan. Fault tolerant web service orchestration
by means of diagnosis. In Software Architecture. Third European Workshop, EWSA, volume 4344 of
Lecture Notes in Computer Science, pages 2–16, Nantes, France, 2006. Springer-Verlag.

[5] Apache Project Axis v1.4. http://ws.apache.org/axis/.

[6] B. Benatallah, F. Casati, and F. Toumani. Analysis and management of web service protocols. In
Conceptual Modeling - ER 2004. 23rd International Conference on Conceptual Modeling. Proceedings,
8-12 Nov. 2004, pages 524–41, Shanghai, China, 2004. Springer-Verlag.

[7] K. P. Birman. Reliable Distributed Systems. Springer-Verlag, New York, 2005.

104

[8] Basic Real-time Interactive Tool for Net-based animation BRITNeY Suite. http://
wiki.daimi.au.dk/britney britney.wiki.

[9] G. Chafle, S. Chandra, P. Kankar, and V. Mann. Handling faults in decentralized orchestration of
composite web services. In Service-Oriented Computing - ICSOC 2005. Third International Confer-
ence. Proceedings, 12-15 Dec. 2005, volume 3826 of Lecture Notes in Computer Science, pages 410–23,
Amsterdam, Netherlands, 2005. Springer-Verlag.

[10] G. Chafle, S. Chandra, V. Mann, and M. Nanda. Decentralized orchestration of composite web services.
In WWW Alt. ’04: Proceedings of the 13th international World Wide Web conference on Alternate
track papers & posters, pages 134–143, New York, NY, USA, 2004. ACM Press.

[11] CPN Tools. CPN Group University of Aarhus. Denmark. http://wiki.daimi.au.dk/ cpn-
tools/cpntools.wiki.

[12] F. Cristian. Understanding fault-tolerant distributed systems. Communications of the ACM, 34(2):56–
78, 02 1991.

[13] L. Deron, F. Chen-Liang, C. Chyouhwa, and L. Fengyi. Fault tolerant web service. In Tenth Asia-
Pacific Software Engineering Conference, 2003.

[14] V. Dialani, S. Miles, L. Moreau, D. De Roure, and M. Luck. Transparent fault tolerance for web services
based architectures. In Euro-Par 2002 Parallel Processing. 8th International Euro-Par Conference.
Proceedings, 27-30 Aug. 2002, volume 2400 of Lecture Notes in Computer Science, pages 889–98,
Paderborn, Germany, 2002. Springer-Verlag.

[15] G. Dobson. Using ws-bpel to implement software fault tolerance for web services. In Proceedings.
32nd Euromicro Conference on Software Engineering and Advanced Applications (SEAA), 29 Aug.-1
Sept. 2006, page 8. IEEE Comput. Soc, 2006.

[16] D. Fensel, H. Lausen, A. Polleres, J. de Bruijn, M. Stollberg, D. Roman, and J. Domingue. Enabling
Semantic Web Services. The Web Service Modeling Ontology. Berlin, Springer-Verlag, 2007.

[17] A. Ferrara. Web services: a process algebra approach. In ICSOC ’04: Proceedings of the 2nd inter-
national conference on Service oriented computing, pages 242–251, New York, NY, USA, 2004. ACM
Press.

[18] X. Fu, T. Bultan, and J. Su. Analysis of interacting bpel web services. In WWW ’04: Proceedings
of the 13th international conference on World Wide Web, pages 621–630, New York, NY, USA, 2004.
ACM Press.

[19] R. Guerraoui and R. Rodrigues. Introduction to Reliable Distributed Programming. Springer-Verlag,
2006.

[20] R. Hamadi and B. Benatallah. A petri net-based model for web service composition. In ADC ’03:
Proceedings of the fourteenth Australasian database conference, pages 191–200, Darlinghurst, Australia,
Australia, 2003. Australian Computer Society, Inc.

[21] Definition of WS. IBM. http:// www-128.ibm.com/ developerworks/ webservices/ newto/ web-
svc.html.

[22] V. Issarny, F. Tartanoglu, A. Romanovsky, and N. Levy. Coordinated forward error recovery for
composite web services. In Proceedings 22nd International Symposium on Reliable Distributed Systems,
6-18 Oct. 2003, pages 167–76, Florence, Italy, 2003. IEEE Comput. Soc.

105

[23] K. Jensen. Coloured Petri nets :basic concepts, analysis methods, and practical use, v.1, volume 1.
Springer-Verlag, Berlin, c1992.

[24] K. Jensen. Coloured Petri nets :basic concepts, analysis methods, and practical use, v.2, volume 2.
Springer-Verlag, Berlin, c1992.

[25] L. Liu, Y. Meng, B. Zhou, and Q. Wu. A fault-tolerant web services architecture. In Advanced Web
and Network Technologies, and Applications. APWeb 2006 International Workshops: XRA, IWSN,
MEGA, and ICSE. Proceedings, 16-18 Jan. 2006, volume 3842, pages 664–71, Harbin, China, 2006.
Springer-Verlag.

[26] Business process execution language BPEL v.1.1. Microsoft BEA IBM. http://www-128.ibm.com/
developerworks/ library/ specification/ws-bpel/.

[27] John D. Musa. Software reliability :measurement, prediction, application. McGraw-Hill, New York,
1990.

[28] Universal Description Discovery & Integration (UDDI) OASIS. http://www.uddi.org/.

[29] C. Peltz. Web services orchestration and choreography. Computer, 36(10):46–52, 10/ 2003.

[30] B. Randell. Fault tolerance in decentralized systems. In Autonomous Decentralized Systems, 1999.
Integration of Heterogeneous Systems. Proceedings. The Fourth International Symposium on, pages
174–179, 21-23 March 1999.

[31] W.M.P. Van Der Aalst, A.H.M. Ter Hofstede, B. Kiepuszewski, and A.P. Barros. Workflow patterns.
Distributed and Parallel Databases, 14(1):5 – 51, 2003/07.

[32] W.M.P. Van Der Aalst and K. M. Van Hee. Workflow management: models, methods, and systems.
MIT Press, Cambridge, Mass., 2004.

[33] Simple object access protocol (SOAP) 1.2 W3C. http://www.w3.org/TR/soap12-part1/.

[34] Web Services Description Language (WSDL) v. 1.1 W3C. http://www.w3.org/TR/wsdl.

[35] XML Schema W3C Recommendation W3C. http://www.w3.org/XML/Schema.

[36] S. Weerawarana. Web Services Platform Architecture SOAP, WSDL, WS-Policy, WS-Addressing,
WS-BPEL, WS-Reliable Messaging, and More. Upper Saddle River, NJ: Prentice Hall PTR,, 2005.

[37] Y. Yang, Q. Tan, and Y. Xiao. Verifying web services composition based on hierarchical colored petri
nets. In IHIS ’05: Proceedings of the first international workshop on Interoperability of heterogeneous
information systems, pages 47–54, New York, NY, USA, 2005. ACM Press.

[38] L. Zhang. Challenges and opportunities for web services research. International Journal of Web
Services Research, 1(1):vii–xiii, 2004/01 2004.

106

newYAWL: Specifying a Work�ow Reference

Language using Coloured Petri Nets?

Nick Russell1, Arthur H.M. ter Hofstede2 and Wil M.P. van der Aalst1,2

1Eindhoven University of Technology,
PO Box 513, 5600MB, Eindhoven, The Netherlands

{n.c.russell,w.m.p.v.d.aalst}@tue.nl
2Queensland University of Technology,
PO Box 2434, QLD, 4001, Australia

a.terhofstede@qut.edu.au

Abstract. newYAWL is a business process modelling language founded on
the work�ow patterns. It radically extends the YAWL o�ering to provide
holistic support for the control-�ow, data and resource perspectives and al-
lows business processes to be captured in su�cient detail that they can be
directly enacted. In order to ensure that business processes are executed in
a deterministic way, newYAWL is based on formal foundations. This pa-
per describes the approach taken to specifying the operational semantics for
newYAWL based on Coloured Petri Nets. It discusses the development of the
semantic model for newYAWL, which was undertaken using CPN Tools, and
the experiences associated with developing a complete operational design for
an o�ering of this scale using formal techniques.

1 Introduction

Over recent years the concept of the business process has garnered increasing in-
terest as organisations seek to better understand what they do and how they can
do it more e�ciently. Business processes are increasingly viewed as corporate assets
which companies must manage and maintain if they are to continue to operate ef-
fectively. In response to the rising demand for �exible means of automating parts
of (or even entire) business processes, the �eld of work�ow technology underwent
explosive growth during the 1980s and 1990s as organisations sought con�gurable
forms of process support.

As with many early stage technologies, individual work�ow o�erings provided a
distinct approach to modelling the processes that they sought to automate, thus obvi-
ating any potential for standardising the representation and enactment of processes
or integrating processes based on distinct o�erings. Attempts by industry bodies
such as the Work�ow Management Coalition (WfMC) (e.g. [Wor95]) to resolve this
impasse have only been marginally successful in establishing broadly adopted mod-
elling formalisms. Consequently the majority of guidance in this area has come from

? This research is conducted in the context of the Patterns for Process-Aware Informa-
tion Systems (P4PAIS) project which is supported by the Netherlands Organisation for
Scienti�c Research (NWO). It is also receives partial support from the Australian Re-
search Council under the Discovery Grant Expressiveness Comparison and Interchange
Facilitation between Business Process Execution Languages.

107

one of two sources: (1) individual work�ow o�erings or models, such as MOBILE,
WIDE and XPDL 2.0, that support a comprehensive range of concepts that gener-
alise well to other work�ow initiatives and (2) the enterprise modelling �eld, which
includes techniques such as the Zachmann framework, EKD, IDEF, CIMOSA and
ARIS, that seek to characterise the range of concepts that are relevant to modelling
an organisation and its constituent processes and provide integrated approaches to
capturing this information. Whilst there is general agreement across most of these of-
ferings that a comprehensive business process model should include consideration of
(at least) the control-�ow, data and resource (or organisational) aspects of a business
process, there is a wide variation in the range of concepts that individual techniques
support for each perspective. Moreover, none of the popular modelling notations are
based on a formalised model, thus leaving open the potential for ambiguity when
capturing and enacting a business process.

An alternate approach to identifying the range of constructs that should be sup-
ported in a business process modelling language can be pursued which is based on
patterns. By de�nition, patterns identify meaningful constructs that exist in a given
problem domain. The Work�ow Patterns Initiative1 has established a catalogue of
patterns that are relevant to the domain of business process modelling and enact-
ment through a comprehensive evaluation of work�ow and case handling systems,
business process modelling and execution languages and web service composition
standards. Proposed by van der Aalst et. al [AHKB03] in an e�ort to characterise
the desirable properties of work�ow languages, this research initially focussed on
the control-�ow perspective and identi�ed 20 patterns which described �generic, re-
curring constructs� [RZ96]. The ubiquity of the patterns was soon recognised and
catalogues of patterns have also been developed for the data [RHEA05] and resource
[RAHE05] perspectives.

In this paper we propose newYAWL, a comprehensive work�ow reference lan-
guage based on formal foundations. newYAWL is founded on the work�ow pat-
terns ensuring that it recognises current practice in the process technology �eld
and supports the capture and enactment of a wide range of work�ow constructs
in a deterministic way. The formalisation of newYAWL is based on Coloured Petri
Nets [Jen97] thus providing a precise de�nition of the operational semantics of the
newYAWL language that can be directly executed. The complete formalisation of a
comprehensive work�ow language encompassing multiple perspectives is a complex
activity as demonstrated by the resultant size of the semantic model for newYAWL
which incorporates 55 distinct pages of CPN diagrams and encompasses 480 places,
138 transitions and in excess of 1500 lines of ML code. Nevertheless, the development
of the semantic model e�ectively demonstrates that with the correct speci�cation
tools, it is possible to formally de�ne languages of this scale.

The paper proceeds as follows: Section 2 introduces the various constructs that
make up the newYAWL work�ow language. Section 3 describes the content of the
newYAWL business process language and the manner in which it is captured and
operationalised. Section 4 overviews related work. Section 5 discusses the experiences
associated with the formalisation of newYAWL and concludes the paper.

1 Further details on the work�ow patterns, including detailed de�nitions, product evalu-
ations, animations, vendor feedback and an assessment of their overall impact can be
found at www.workflowpatterns.com.

108

2 newYAWL: A patterns-based work�ow language

The work�ow patterns triggered the development of YAWL [AH05] � an acronym
for Yet Another Work�ow Language. Unlike other e�orts in the BPM area, YAWL
sought to provide a comprehensive modelling language for business processes based
on formal foundations. The content of the YAWL language is an adaptation of Petri
Nets informed by the work�ow patterns. One of its major aims was to show that
a relatively small set of constructs could be used to directly support most of the
work�ow patterns identi�ed. It also sought to illustrate that they could coexist
within a common framework. In order to validate that the language was capable of
direct enactment, the YAWL System2 was developed, which serves as a reference
implementation of the language. Over time, the YAWL language and the YAWL
System have increasingly become synonymous and have garnered widespread interest
from both practitioners and the academic community alike3.

Initial versions of the YAWL System focussed on the control-�ow perspective and
provided a complete implementation of 19 of the original 20 patterns. Subsequent re-
leases incorporated limited support for selected data and resource patterns, however
this e�ort was hampered by the lack of a complete formal description of the pat-
terns in these perspectives. Moreover, a recent review [RHAM06] of the control-�ow
perspective identi�ed 23 additional patterns which illustrate a number of commonly
used control-�ow constructs, many of which YAWL is unable to provide direct sup-
port for, including the partial join, transient and persistent triggers, iteration and
recursion.

In an e�ort to manage the conceptual shortcomings of YAWL with respect to the
range of work�ow patterns that have now been identi�ed, a substantial revision of the
language is proposed � termed newYAWL � which aims to support the broadest
range of the work�ow patterns in the control-�ow, data and resource perspectives.
newYAWL provides a comprehensive formal description of the work�ow patterns,
which to date have only partially been formalised. It has a complete abstract syntax
which identi�es the characteristics of each of the language elements. Associated with
this is an executable, semantic model for newYAWL � presented in the form of a
Coloured Petri Net � which de�nes the runtime semantics of each of the language
constructs. The following sections provide an overview of the features of newYAWL
in the control-�ow, data and resource perspectives.

2.1 Control-�ow perspective

Figure 1 identi�es the complete set of language elements which comprise the control-
�ow perspective of newYAWL. All of the language elements in YAWL have been
retained and perform the same functions. A more detailed discussion of YAWL can
be found in [AH05]. Several new constructs have been added based on the full range
of work�ow patterns that have now been identi�ed. These are:

2 See http://www.yawl-system.com for further details of the YAWL System and to down-
load the latest version of the software.

3 Hereafter in this paper, we refer to the collective group of YAWL o�erings developed
to date � both the YAWL language as de�ned in [AH05] and also more recent YAWL
System implementations of the language based on the original de�nition (up to and
including release Beta 8.1) � as YAWL.

109

NEW CONSTRUCTS

Persistent trigger task

Transient trigger task

Completion region

Blocking region

EXISTING CONSTRUCTS

Disablement arc

#

#

Composite task

Multiple instances of
an atomic task

Multiple instances of
a composite task

Atomic taskCondition

Input condition

Output condition

AND−join task

XOR−join task

OR−join task

AND−split task

XOR−split task

OR−split task

Thread split task

Thread merge task

Partial−join task

Repetitive task (while/repeat)

Cancellation region

Fig. 1. newYAWL symbology

� the Thread split and Thread merge constructs, which allow the thread of control
to be split into multiple concurrent threads or several distinct threads to be
merged into a single thread of control respectively. The number of threads being
created/merged is speci�ed for the construct in the design-time model. Figure
2(a) illustrates these constructs. After the make box task, twelve threads of
control are created ensuring that the �ll bottle task runs 12 times before the
pack box task can run (merging these threads before it commences);

� the Partial join (also known as the m-out-of-n join) allows a series of incoming
branches to be merged such that the thread of control is passed to the subsequent
branch when m of the incoming n branches are enabled. In Figure 2(b), the
cancel booking task has a 1-out-of-3 join associated with it. If any of the incoming
branches are enabled, then the cancel booking task is enabled (and any preceding
tasks that are still executing in the associated cancellation region are withdrawn);

� the Structured loop (which supports while, repeat and combination loops) allows
a task (or a sequence of tasks in the form of a subprocess) to execute repeatedly
based on conditional tests at the beginning and/or end of each iteration. The
loop is structured in form and it has a single entry and exit point. Figure 2(c)
illustrates a repeat loop for the check backup task which executes repeatedly
until all backups have been veri�ed (i.e. it is a post-tested repeat loop);

110

1 box = 12 bottles

call for
papers

deadline

prepare
proc’gs

paper
accept

book
flight

car
book

hotel
book

issue
tickets

cancel
booking

file

car

flight
booked

flight
failure

hotel

hotel
failure

booked

booked

failure
car

fill
#

bottle

#
make

box
pack

box

(c)

(b)

(a)

(d)

initiate

review
backup

backup
check

report

issue
review

test
full

recov’ry

Fig. 2. Examples of newYAWL control-�ow constructs

� the Completion region supports the forced completion of tasks which it encom-
passes. In Figure 2(c) the test full recovery task is forcibly completed once (all
iterations of) the check backup task has �nished. This allows the issue review

report task to be immediately enabled;
� Persistent triggers and Transient triggers support the enablement of a task being
contingent on a trigger being received from the operating environment. They
are durable or transient in form respectively. Figure 2(d) illustrates a persistent
trigger (assumedly associated with some form of alarm) which allows the deadline
task to be enabled when it is received. As this trigger is durable in form, it is
retained for future use if it is received before the thread of control arrives at the
deadline task;

� the Disablement arc allows a dynamic multiple instance task to be prevented
from creating further instances but allows for each of the currently executing
instances to complete normally. Figure 2(d) has a disablement arc associated
with the deadline task which prevents any further papers from being accepted
once it has completed.

2.2 Data perspective

Whilst the control-�ow perspective has received considerable focus in many work�ow
initiatives, the data perspective is often only minimally supported with issues such
as persistence, concurrency management and complex data manipulation often being
outsourced to third party products. In an e�ort to characterise the required range
of data facilities in a work�ow language, newYAWL incorporates a series of features
derived from the data patterns. These include:

111

� Support for a variety of distinct scopes to which data elements can be bound.
This allows the visibility and use of data elements to be restricted. The range
of data scopes recognised include: global (available to all elements of all process
instances), folder (available to the elements of process instances to which the
folder is currently assigned), case (available to all elements in a given process
instance), block (available to all elements of a speci�c process or subprocess de�-
nition for a given process instance), scope (available to a subset of the elements in
a speci�c top-level process or subprocess de�nition for a given process instance),
task (available to a given instance of a task) and multiple-instance (available to
a speci�c instance of a multiple instance task);

� Formal parameters for specifying how data elements are transferred between
process constructs (e.g. block to task, composite task to subprocess decomposi-
tion, block to multiple instance task). These parameters take a function-based
approach to data transfer, thus providing the ability to support inline format-
ting of data elements and setting of default values. Parameters can be associated
with tasks, blocks and processes;

� Link conditions for specifying conditions on outgoing arcs from OR-splits and
XOR-splits that allow the determination of whether these branches should be
activated;

� Preconditions and postconditions for tasks and processes. They are evaluated
at the enablement or completion of the task or process with which they are
associated. Unless they evaluate to true, the task or process instance with which
they are associated cannot commence or complete execution; and

� Locks which allows tasks to specify data elements that they require exclusive
access to (within a given process instance) in order to commence. Once these
data elements are available, the associated task instance retains a lock on them
until it has completed execution preventing any other task instances from using
them concurrently. The lock is relinquished once the task instance completes.

2.3 Resource perspective

The resource perspective in newYAWL provides a variety of means of controlling and
optimising the way in which work is distributed to users and the manner in which
it is progressed through to ultimate completion. For each task, a speci�c interaction
strategy can be speci�ed which precisely describes the way in which the work item
will be communicated to the user, how their commitment to executing it will be
established and how the time of its commencement will be determined. Similarly,
a detailed routing strategy can be de�ned which determines the range of potential
users that can undertake the work item. The routing strategy can nominate the
potential users in a variety of ways � they can be directly speci�ed by name, in
terms of roles that they perform or the decision as to possible users can be deferred to
runtime. There is also provision for determining the range of potential users based on
capabilities that individual users possess, the organisational structure in which the
process operates or the results of preceding execution history. The routing strategy
can be further re�ned through the use of constraints that restrict the potential user
population. Indicative constraints may include: retain familiar (i.e. route to a user
that undertook a previous work item), four eyes principle (i.e. route to a di�erent
user than one who undertook a previous work item), random allocation (route to a
user at random from the range of potential users), round robin allocation (route to a

112

user from the potential population on an equitable basis such that all users receive
the same number of work items over time) and shortest queue allocation (route the
work item to the user with the shortest work queue).

newYAWL also supports two advanced operating modes that are designed to
expedite the throughput of work by imposing a de�ned protocol on the way in
which the user interacts with the system and work items are allocated to them.
These modes are: piled execution where all work items corresponding to a given task
are routed to the same user and chained execution where subsequent work items in
a process instance are routed to the same user once they have completed a preceding
work item. Finally, there is also provision for specifying a range of user privileges,
both at process and individual task level, that restrict or augment the range of
interactions that they can have with the process engine when they are undertaking
work items.

3 Mapping newYAWL to Coloured Petri Nets

The language design for newYAWL is made up of two distinct components: (1) an
abstract syntax that characterises the various constructs of which the language is
comprised and the relationships between them, hence facilitating the capture of a
newYAWL business process model from static perspective, and (2) a semantic model

which describes the enactment of a newYAWL business process model.

− tasks, conditions
− flow relation

− pre/postconditions etc.
− arc conditions
− joins, splits

new

− task interaction strategy

Work distribution model

− task routing
− constraints
− privileges

var− parameters

Data passing model

− task

− process
− subprocess

1:1

n:1

1:1

1:n
1:n

newYAWL specification

− global objects
− nets, scopes, tasks etc.

− variables
− decomposition hierarchy

− organisational structure
− users
− roles

− capabilities
− groups
− jobs

Organisational model

YAWL net

− net definition

Fig. 3. Schema de�nition comprising the newYAWL abstract syntax

The newYAWL abstract syntax is composed of �ve distinct schemas that capture
various aspects of a business process model. Each of these schemas is speci�ed on
a set-theoretic basis. Figure 3 summarises the content captured by each of the in-
dividual schemas and the relationships between them. Each process captured using
the newYAWL abstract syntax has a single instance of the newYAWL speci�cation
associated with it. This de�nes elements that are common to all of the schemas
and also captures the decomposition hierarchy. Each newYAWL speci�cation is as-
sociated with an instance of the organisational model that describes which users
are available to undertake tasks that comprise the process and the organisational
context in which they operate.

113

A newYAWL process can be made up of a series of distinct subprocesses (where
each subprocess speci�es the manner in which a composite task is implemented)
together with the top-level process. For each of these (sub)processes, there is an
instance of the newYAWL net which describes the structure of the (sub)process in
detail in terms of the tasks that it comprises and the sequence in which they occur.
Associated with each newYAWL net is a data passing model which de�nes the way in
which data is passed between elements in the process in terms of formal parameters
operating between these elements. There is also a work distribution model that
de�nes how each task will be routed to users for execution, any constraints associated
with this activity and privileges that speci�c users may have assigned to them.
The collective group of schemas for a speci�c process model is termed a complete

newYAWL speci�cation.

select

start

abort

management
intervention

process
start request

suspension
resumption

route manual
allocation

completion
process process

deallocation

exit
work item

start work
item instance

complete work

reject reoffer route manual
offers

reallocation
reject

reallocation
route process manual

immediate start

reject offer

state oriented
reallocation

process
distribution

failure

autonomous
completion

route allocationroute offers

work item
routing

autonomous
initiation

process
selection
request

logonandlogoff complete

skipsuspend

deallocate halt instance

stateless
reallocate

manipulate
worklist allocate

reallocate
stateful

delegate

complete
work item

fail
work item

cancel
work item

interrupt
processing

end casestart caseadd
work item

process

management
data

work item
distribution

immediate
route

start
manual

distribution

route
delegation

route reoffers

terminate block
item instance &

p:40 t:4 p:11 t:4 p:12 t:1 p:10 t:1 p:8 t:1

p:12 t:3

p:15 t:3

p:6 t:3 p:7 t:4

p:7 t:2p:7 t:1

p:5 t:1 p:2 t:1 p:2 t:1

p:4 t:1

p:4 t:1 p:12 t:3

p:12 t:3

p:5 t:1p:3 t:1

p:2 t:1 p:7 t:6 p:2 t:1

p:5 t:1
start

immediate

p:13 t:9 p:39 t:33

p:20 t:2 p:8 t:1 p:7 t:2

p:4 t:2

p:5 t:3

p:4 t:1

p:4 t:1

p:4 t:1 p:3 t:1

p:10 t:1

p:4 t:1

p:4 t:1

p:5 t:1 p:11 t:1

p:5 t:1

p:3 t:1

p:2 t:1

p:8 t:1

p:3 t:1

p:4 t:1

p:5 t:2

p:6 t:1

p:21 t:1 p:3 t:1

p:2 t:1

p:2 t:1

worklist
handler

(see Figure 8)
p:25 t:15

workenter
work item

(see Figure 6)
p:17 t:1

p:22 t:9

execution
(see Figure 5)

(see Figure 7)
distribution

Fig. 4. newYAWL CPN model hierarchy (top-level in Figure 4)

The semantics of newYAWL are de�ned in terms of a series of interrelated
Coloured Petri Nets developed using the CPN Tools environment. This approach
to formalising the language o�ers the dual bene�ts of establishing a precise de�ni-
tion of the operation of each of the constructs which comprise newYAWL and also
providing a means by which an instance of a newYAWL speci�cation can be directly
executed. There are 55 distinct CPNs which make up the semantic model. These are
illustrated in Figure 4 along with the relationships between them. An indication of
the complexity of individual nets is illustrated by the p and t values included for
each of them which indicate the number of places and transitions that they contain.
It is not possible to discuss the operation of all of these nets in the con�nes of this
paper, however several of them (indicated by the shaded boxes and cross-references)
are discussed in further detail in subsequent sections. A comprehensive description
of the 55 CPNs which comprise the semantic model together with details of how it
is initialised in order to facilitate the execution of a given newYAWL process model
can be found in [RHEA07].

114

3.1 Overview of the semantic model

The semantic model logically divides into two main parts: (1) the control-�ow and
data sections and (2) the work distribution, organisational model and resource
management sections. These roughly correspond to the newYAWL speci�cation,
newYAWL net and Data passing model, and the Organisational model and Work
distribution model illustrated in Figure 3 respectively, which in turn seek to capture
the majority of control-�ow, data and resource patterns.

Figure 5, which is the topmost net in the semantic model, provides a useful sum-
mary of the major components and their interrelationship. The various aspects of
control-�ow, data management and work distribution information from the static
newYAWL speci�cation are encoded into the CPN model as tokens in individual
places. The top level view of the lifecycle of a process instance is indicated by the
transitions in this diagram connected by the thick black line. First a new process
instance is started, then there are a succession of enter→start→complete →exit

transitions which �re as individual task instances are enabled, the work items as-
sociated with them are started and completed and the task instances are �nalised
before triggering subsequent tasks in the process model. Each atomic work item
needs to be distributed to a suitable resource for execution, an act which occurs via
the work distribution transition. This cycle repeats until the last task instance in
the process is completed. At this point, the process instance is terminated via the
end case transition. There is provision for data interchange between the process
instance and the environment via the data management transition. Finally where a
process model supports task concurrency via multiple work item instances, there is
provision for the dynamic addition of work items via the add transition.

The major data items shared between the activities which facilitate the process
execution lifecycle are shown as shared places in this diagram. Not surprisingly, this
includes both static elements which describe characteristics of individual processes
such as the �ow relation, task details, variable declarations, parameter mappings,
preconditions, postconditions, scope mappings and the hierarchy of processes and
subprocesses which make up an overall process model, all of which remain unchanged
during the execution of particular instances of the process. It also includes dynamic

elements which describe how an individual process instance is being enacted at any
given time. These elements are commonly known as the state of a process instance
and include items such as the current marking of the place in the �ow relation,
variable instances and their associated values, locks which restrict concurrent access
to data elements, details of subprocesses currently being enacted, folder mappings
(identifying shared data folders assigned to a process instance) and the current
execution state of individual work items (e.g. enabled, started or completed).

There is relatively tight coupling between the places and transitions in Figure 5,
illustrating the close integration that is necessary between the various aspects of the
control-�ow and data perspectives in order to enact a process model. The coupling
between these places and the work distribution transition however is much looser.
There are no static aspects of the process that are shared with other transitions in
the model (i.e. the transitions underpinning work distribution) and other than
the places which serve to communicate work items being distributed to resources
for execution (and being started, completed or cancelled), the variable instances

place is the only aspect of dynamic data that is shared with the work distribution

115

end
case

end-case

start
case

start-case

work distribution

work-distribution

data
management

data-management

add

add-work-item

complete and
terminate block

complete-work-item-instance-and-terminate-block

start

start-work-item-instance

exit

exit-work-item

enter

enter-work-item

postconditions

iPost

PostConds

preconditions

iPre

PreConds

parameter
mappings

iPM

Params

scope
mappings

iSM

ScopeMaps

folder
mappings

[]

FolderMaps

newcase
identity

iNewCase

ProcessIDxCID

assigned
folders

iFA

FolderAssigns

wi to be
cancelled

WI

wi completed
by resource

[]

WIs

started
work items

[]

UWIs

active
nets

[]

SubProcs

process
hierarchy

iWH

Map

flow
relation

iFR

FlowRel

process
state

[]

Marking

assign wi
to resource

[]

WIs

variable
instances

[]

VarInsts

variable
declarations

iVD

VarDecls

lock
register

[]

LOCKS

task
details

iVarDet

TaskDetails

mi_e

[]

WIs

mi_a

[]

WCTINTs

mi_c

[]

WIs

exec

[]

WIs

enter-work-item exit-work-item

start-work-item-instance complete-work-item-instance-and-terminate-block

add-work-item

data-management

work-distribution

start-case

end-case

Fig. 5. Overview of the newYAWL semantic model

116

subprocess. The following sections focus on the two main parts of the newYAWL
semantic model: (1) control-�ow and data handling and (2) work distribution.

3.2 Control-�ow and data handling

The actions comprising the control-�ow and data handling processes are extremely
complex both in terms of the range of concepts that they involve and the interrela-
tionship between them. It is not possible to describe all aspects of these processes in
the con�nes of this paper hence in this section we focus on one speci�c aspect of the
overall work item lifecycle: task instance enablement and work item creation. Task
instance enablement is the �rst step in work item execution. It is depicted by the
enter transition in Figure 6. The �rst step in determining whether a task instance
can be enabled is to examine the marking of the input places to the task. There are
four possible scenarios:

� If the task has no joins associated with it, then the input condition to the task
simply needs to contain a token;

� If the task has an AND-join associated with it, each input condition needs to
contain a token with the same ProcessID×CID combination, where these two
attributes uniquely identify a process and process instance (or case) respectively;

� If the task has an XOR-join associated with it, one of the input conditions needs
to contain a token; and

� If the task has an OR-join associated with it, one (or more) of the input con-
ditions needs to contain a token and a determination needs to be made as to
whether in any future possible state of the process instance, the currently marked
input conditions can retain at least one token and another input condition can
also receive a token. If this can occur, the task is not enabled, otherwise it is
enabled. This issue has been subject to rigorous analysis and an algorithm has
been proposed [WEAH05] for determining exactly when an OR-join can �re.
The newYAWL semantic model implements this algorithm.

Depending on the form of task that is being enabled (singular or multiple-instance),
one or more work items may be created for it. If the task is atomic, the work item(s)
is created in the same block as the task to which it corresponds. If the task is
composite, then the situation is slightly more complicated and two things occur: (1)
a �virtual� work item is created in the same block for each instance of the task that
will be initiated (this enables later determination of whether the composite task is
in progress or has completed) and (2) a new subprocess decomposition (or a new
block) is started for each task instance. This involves the placement of a token in the
input place to the subprocess decomposition which has a distinct subprocess CID.
Table 1 indicates the potential range of work items that may be created for a given
task instance. In order for a task to be enabled, all prerequisites associated with the
task must be satis�ed. There are �ve prerequisites for the enter transition to be
able to �re:

� The precondition associated with the task must evaluate to true;
� All data elements which are inputs to mandatory input parameters must exist
and have a de�ned value;

� All mandatory input parameters must evaluate to de�ned values;

117

widescs

pressmaps

fmaps

wis

rls

inpars

tds
wmap

handletaskinvars(p,c,fmaps,smaps,
sids,vdecls,ivs,wmap,t,tasktype,
ic,tn,subpids,inpars,tds)

remwti(p,t,wtis)
^^[(p,t,ic)]

ls ^^reqlock(p,c,t,rls)

ls

resourcealloc(p,c,t,ic,tn,tasktype)^^wis

wtis

remmk(cm,p,marked(cm,p,
 presett(p,t,ils),c),c)

(p,c,t,ic,tn,dynamic)::widescs

mkenters(p,c,t,ic,tn,tasktype,subpids)
 ^^mi_es

js

(ils,ols)

cm

mi_es

vdecls

ivs

enter

[activity_ready_to_enable(cm,ils,js,
 ivs,ls,rls,pres,inpars,smaps,fmaps,tds)]

input (cm,ils,js,vdecls,ivs,pres,wtis,ls,wmap,
 inpars,rls,smaps,fmaps,tds);
output (p,c,sids,t,ic,tn,tasktype,subpids);
action
(let val (p,c,sids,t) =
 pick(enter_work_item(cm,ils,js,ivs,ls,
 rls,pres,inpars,smaps,fmaps,tds))
 val ic = getnextic(p,t,wtis)
 val tasktype = gettasktype(p,t,tds)
 val tn = instancestostart(p,c,fmaps,sids,ivs,t,
 tasktype,ic,inpars,tds)
 val subpids = subproids(p,c,cm,tn)
in (p,c,sids,t,ic,tn,tasktype,subpids) end);

scope
mappings

I/O
ScopeMaps

folder
mappings

I/O

FolderMaps

required
locks

iRL

ReqLocks

parameter
mappings

I/O
Params

mi tasks

I/O
TaskDetails

process
hierarchy

I/O
Map

lock
register

I/O
LOCKS

task instance
count

[]

WTIs

joins

iJoins

Joins

flow
relation

I/O
FlowRel

process
state

I/O
Marking

preconditions

I/O
PreConds

mi_e

I/O
WIs

variable
definitions

I/O
VarDecls

mi_a

I/O
WCTINTs

variable
instances

I/O
VarInsts

assign wi
to resource

I/O
WIs

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O I/O

I/O

I/O

I/O

Fig. 6. Enter work item transition

� All locks which are required for data elements that will be used by the work
items associated with the task must be available; and

� If the task is a multiple instance task, the multiple instance parameter when eval-
uated must yield a number of rows that is between the minimum and maximum
number of instances required for the task to be initiated.

Once these prerequisites are satis�ed, task enablement can occur. This involves:

1. Removing the tokens marking input conditions to the task corresponding to the
instance enabled. The exact number of tokens removed depends on whether there
is a join associated with the task or not and occurs as follows:

� No join: one token corresponding to the ProcessID×CID combination that
triggered the task is removed from the input condition to the task;

� AND-join: one token corresponding to the triggering ProcessID×CID com-
bination is removed from each of the input conditions to the task;

� XOR-join: one token corresponding to the triggering ProcessID×CID com-
bination is removed from one of the input conditions to the task; and

� OR-join: one token corresponding to the triggering ProcessID×CID com-
bination is removed from any of the input conditions to the task which
currently contain tokens of this form.

2. Determining which instance of the task this is. The instance identi�er (which
corresponds to the Inst attribute) must be unique for each task instance and
all work items and data elements associated with this task instance in order to

118

ensure that they can be uniquely identi�ed. A record is kept of the next available
instance for a task in the task instance count place.

3. Determining how many work item instances should be created. For a singular
task (i.e. an atomic or composite task), this will always be a single work item,
however for a multiple instance task (i.e. an atomic or composite multiple in-
stance task), the actual number started will be determined from the evaluation
of the multiple instance parameter which will return a composite result contain-
ing a number of rows of data. The number of rows returned indicates the number
of instances to be started. In all of these situations, individual work items are
created which share the same ProcessID, CID, TaskID and Inst values, however
the TaskNr value is unique for each work item and is in the range 1...number of

work items created ;

4. For all work items corresponding to composite tasks, distinct subprocess CIDs
need to be determined to ensure that any variables created for subprocesses are
correctly identi�ed and can be accessed by the work items for the subprocesses
that will subsequently be triggered;

5. Creating variable instances for data elements associated with the task. This
varies depending on the task type and the number of work items created for the
task:

� For atomic tasks which only have a single instance, this will involve the
creation of relevant task variables.

� For atomic multiple instance tasks, this will involve the creation of both task
variables and multiple instance variables for each task instance. The required
multiple instance variables are indicated by the output data elements listed
for the multiple instance parameter. and this set of variables is created for
each new work item.

� For composite tasks that only have a single instance, any required task vari-
ables are created in the subprocess decomposition that is instantiated for
the task. Also, there may be block and scope variables associated with the
subprocess decomposition that need to be created; and

� For composite multiple instance tasks, any required block, scope, task vari-
ables and multiple instance variables are created for each subprocess decom-
position that is initiated for the task.

6. Mapping the results of any input parameters for the task instance to the relevant
output data elements. For multiple instance parameters, this can be quite a
complex activity;

7. Recording any variable locks that are required for the execution of the task
instance;

8. For all work items corresponding to atomic tasks (other than for automatic
tasks which can be initiated without distribution to a resource), requests for
work item distribution need to be created. These are routed to the assign wi

to resource place and are subsequently dealt with by the work distribution

transition; and

9. Finally, work items with an enabled status need to be created for this task
instance and added to the mi_e place (which identi�es work items corresponding
to enabled but not yet started tasks) in accordance with the details outlined in
Table 1.

119

Table 1. Task instance enablement in newYAWL

Task Type Instances Initiated at Commencement

Singular Multiple Instances

Atomic Single work item created in the
same block.

Multiple work items created in the
same block, each with a distinct
TaskNr.

Composite Single �virtual� work item created in
the same block and a new
subprocess is initiated for the block
assigned as the task decomposition.

Multiple �virtual� work items
created in the same block.
Additionally a distinct subprocess is
initiated for each work item created,
each with a distinct subprocess CID
and TaskNr.

The work distribution process in newYAWL provides an interesting contrast to the
control-�ow and data handling. Unlike the latter process which is comprised of a
limited number of transitions which must coordinate state changes involving a large
number of places with complex guard conditions, the work distribution process is
much more di�use. It involves multiple places which describe alternate states for a
work item that is currently in progress and supports a variety of distinct transitions
between these states. The work distribution process is discussed in the next section.

3.3 Work distribution

The main motivation for work�ow systems is achieving more e�ective and controlled
distribution of work. Hence the actual distribution and management of work items
are of particular importance. The process of distributing work items is summarized
by Figure 7. It comprises four main components4:

� the work item distribution transition, which handles the overall management
of work items though the distribution and execution process;

� the worklist handler, which corresponds to the user-facing client software that
advises users of work items requiring execution and manages their interactions
with the main work item distribution transition in regard to committing to
execute speci�c work items, starting and completing them;

� the management intervention transition, that provides the ability for a process
administrator to intervene in the work distribution process and manually
reassign work items to users where required; and

� the interrupt handler transition that supports the cancellation, forced com-
pletion and forced failure of work items as may be triggered by other components
of the process engine (e.g. the control-�ow process, exception handlers).

Work items that are to be distributed through this process are added to the work

items for distribution place. This then prompts the work item distribution

transition to determine how they should be routed for execution. This may involve
the services of the process administrator in which case they are sent to the man-
agement intervention transition or alternatively they may be sent directly to one or

4 Note that the high-level structure of the work distribution process is in�uenced by the
earlier work of Pesic and van der Aalst [PA07].

120

interrupt
handler

interrupt-processing

work item
distribution

work-item-distribution

management
intervention

management-intervention

worklist
handler

worklist-handler

variable
instances

I/O
VarInsts

distributed
work items

[]

WIxUsersList

fail
work item

WI

complete
work item

WI

cancel
work item

In
WI

autonomous
work item finish

WI

autonomous
work item start

WI

failed
work items

WI

piled exec
users

[]

UserTasks

chained
exec users

[]

Users

completed
work items

I/O
WIs

work items
for distribution

I/O
WIs

manual
immediate start

WI

create
immediate start

WIxUser

started

UWI

stop
execution

UWI

started
work items

I/O

UWIs

create
allocation

WIxUser

create
offers

WIxUsers

allocated
work items

[]

UWIs

offered
work items

[]

UWIs

deallocation

UWI

delegation

UWI

stateless
reallocation

UWI

stateful
reallocation

UWI

immediate
start

UWI

allocation

UWI

reallocation

WIxUser

reoffer

WIxUsers

manual
allocation

WI

manual
offer

WI

resumption

UWI

suspension

UWI

start

UWI

completion

UWI

rejected

UWI

selected

UWI

selection

UWI

withdraw
offer

UWI

offer

UWI

I/O

I/O

I/O

In

I/O

worklist-handler
management-intervention

work-item-distribution interrupt-processing

Fig. 7. Top level view of the main work distribution process

more users via the worklist handler transition. The various places between these
three activities correspond to the range of requests that �ow between them. In the
situation where a work item corresponds to an automatic task, it is sent directly to
the autonomous work item start place and no further distribution activities take
place. An automatic task is considered complete when a token is inserted in the
autonomous work item finish place.

A common view of work items in progress is maintained between the work item

distribution, worklist handler and management intervention transitions via
the offered work items, allocated work items and started work items places.
There is also shared information about users in advanced operating modes that is
recorded in the piled exec users and chained exec users places. Although there
is signi�cant provision for shared information about the state of work items, the de-
termination of when a work item is actually complete rests with the work item

distribution transition and when this occurs, it inserts a token in the completed

121

uwi

allocate

allocate

manipulate
worklist

manipulate-worklist

abort

abort

stateless
reallocate

stateless-reallocate

stateful
reallocate

stateful-reallocate

immediate
start

immediate-start

halt
instance

halt-instance

deallocate

deallocate

delegate

delegate

skip

skip

suspend

suspend

start
work item

start

complete
 work item

complete

logon and off

logonandoff

select
work item

select

piled exec
users

I/O
UserTasks

chained
exec users

I/O
Users

started
work items

I/O

UWIs

allocated
work items

I/O
UWIs

offered
work items

I/O
UWIs

started

In
UWI

stop
execution

In
UWI

stateless
reallocate

Out
UWI

stateful
reallocate

Out
UWI

delegate

Out
UWI

deallocate

Out
UWI

immediate
start

In
UWI

resume

Out
UWI

suspend

Out
UWI

start

Out
UWI

allocation

In
UWI

allocation
requested

[]

UWIs

in progress

[]

UWIs

logged on
users

User

withdraw
offer

In
UWI

offer

In
UWI

select

Out
UWI

selected

In
UWI

complete

Out
UWI

rejected

In
UWI

In

Out

In

Out

In

In

In

Out

Out

Out

In

Out

Out

Out

Out

In

In

I/O I/O I/O I/O I/O

select

logonandoff

complete

start

suspend

skip

delegate

deallocate

halt-instance

immediate-start

stateful-reallocate

stateless-reallocate

abort

manipulate-worklist

allocate

Fig. 8. Worklist handler process

work items place. Similarly, work item failures are noti�ed via the failed work

items place. The only exception to these arrangements are for work items that are
subject to some form of interrupt (e.g. an exception being detected and handled).
The interrupt handler transition is responsible for managing these occurrences
on the basis of cancellation, forced completion and failure requests received in the
cancel work item, complete work item and fail work item places respectively.
All of the activities in the work distribution process are illustrated by substitu-
tion transitions indicating that each of them are de�ned in terms of signi�cantly
more complex subprocesses. It is not possible to present each of them in this pa-
per, hence we focus on one of the more signi�cant: the worklist handler process.
The worklist handler is illustrated in Figure 8 and describes how the user-facing
process interface (typically a worklist handler software client) operates and interacts
with the work item distribution process. As previously, the main path through
this process is indicated by the thick black arcs. There are various transitions that
make up the process, these correspond to actions that individual users can request

122

in order to alter the current state of a work item to more closely re�ect their cur-
rent handling of it. These actions may simply be requests to start or complete it
or they may be �detour� requests to reroute it to other users e.g. via delegation

or deallocation. The manner in which these requests operate is illustrated by the
shared places in Figure 7.

4 Related work

There have been numerous papers advocating approaches to work�ow and business
process modelling based on Petri Nets (cf. [Aal98],[EN93],[AAH98],[MR03]), how-
ever these tend to either focus on a single aspect of the domain (e.g. the control-�ow
perspective) or they are based on a relatively simplistic language. There have also
been attempts to provide formal semantics using Petri Nets for many of the more
widely used approaches to business process modelling including EPCs [Aal99], UML
2.0 Activity Diagrams [SH05] and BPMN [DDO07], although in each case arriving at
a complete semantics has been hampered by inherent ambiguities in the informal de-
scriptions for each of the formalisms. There has been minimal work on formalisation
of the other work�ow perspectives, one exception is [PA07] which investigates mech-
anisms for work distribution in work�ows and presents CPN models for a number
of the work�ow resource patterns.

Historically, the modelling and enactment of processes have often been treated
distinctly and it is not unusual for separate design and runtime models to be utilised
by systems. Approaches to managing the potential disparities between these models
have included the derivation of executable process descriptions from design-time
models [DNLS+02] and the direct animation of design-time models for requirements
validation [MLO+07]. The latter of these approaches which uses a strategy based
on Coloured Petri Nets [Jen97] and CPN Tools [JKW07] as an enablement vehicle
is one of a number of initiatives that have successfully used the CPN Tools o�ering
as a means of executing various design-time modelling formalisms including Protos
models [GAJVV06], Sequence diagrams [RF06] and task descriptions [JLA06].

5 Experiences and conclusions

The newYAWL semantic model5 incorporates 55 distinct pages of CPN diagrams
and encompasses 480 places, 138 transitions and in excess of 1500 lines of ML code.
It took approximately six months to develop. The size of the model gives an in-
dication of the relative complexity of formally specifying a comprehensive business
process modelling language such as newYAWL. Indeed, it is only with the aid of an
interactive modelling environment such as CPN Tools that developing a formalisa-
tion of this scale actually becomes viable. One of the major advantages of pursuing
this approach to software development is that it provides a design that is executable.
This allows fundamental design decisions to be evaluated and tested much earlier
than would ordinarily be the case during the development process. Where subopti-
mal design decisions are revealed, the cost of rectifying them is signi�cantly less than
it would be later in the development lifecycle. There is also the opportunity to test
alternate solutions to design issues with minimal overhead before a �nal decision is

5 This model is available at www.yawl-system.com/newYAWL.

123

settled on. A particular bene�t a�orded by this approach to formalisation is that
the CPN hierarchy established during the design process provides an excellent basis
on which to make subsequent architectural and development decisions.

The original motivations for this research initiative were twofold: (1) to establish
a fully formalised business process modelling language based on the synthesis of the
work�ow patterns and (2) to demonstrate that the language was not only suitable
for conceptual modelling of business processes but that it also contained su�cient
detail for candidate models to be directly enacted. newYAWL achieves both of these
objectives and directly supports 118 of the 126 work�ow patterns that have been
identi�ed. It is interesting to note however that whilst the development of a model of
this scale o�ers some extremely bene�cial insights into the overall problem domain
and provides a software design that can be readily utilised as the basis for subsequent
programming activities, it also has its limitations. Perhaps the most signi�cant of
these is that the scale and complexity of the model obviates any serious attempts
at veri�cation. Even on a relatively capable machine (P4 1.6Ghz, 512Mb RAM),
the model takes over 8 minutes to load. Moreover the potentially in�nite range of
business process models that the semantic model can encode, rules out the use of
techniques such as state space analysis. This raises the question as to how models
of this scale can be comprehensively tested and veri�ed.

Notwithstanding these considerations however, the development of the semantic

model delivered some salient insights into areas of newYAWL that needed further

consideration during the formalisation activity. These included:

� recognition of the fact that at runtime the completion region construct can only
bring a�ected work items to the point at which they should complete. It cannot
force the completion to occur;

� recognition that when a self-cancelling task completes: (1) it should process the
cancellation of itself last of all in order to prevent the situation where it cancels
itself before all other cancellations have been completed and (2) it needs to
establish whether it is cancelling itself before it can make the decision to put
tokens in any relevant output places associated with the task;

� introduction of a consistent approach for handling the evaluation of any functions
associated with a newYAWL speci�cation e.g. for outgoing links in a XOR-split,
pre/postconditions, pre/post tests for iterative tasks etc. This issue was ulti-
mately addressed by mapping any necessary function calls to ML functions and
establishing a standard approach to encoding the invocation of these functions
and the passing of any necessary parameters and the return of associated results;

� adoption of a standard strategy for characterising parameters to functions in
order to ensure that they could be passed in a uniform way to the associated
ML functions that evaluated them;

� the establishment of a coherence protocol to ensure that reallocation of work
items to alternate resources either by users or the process administrator are
handled in a consistent manner in order to ensure that potential race conditions
arising during reallocation do not result in the process engine, process adminis-
trator or the initiating user having di�ering views of the current state of work
item allocations; and

� recognition that the current approach to privilege speci�cation for users and
tasks (where privileges need to be individually speci�ed) is likely to be intractable
for any large scale implementation of newYAWL.

124

There were also some learnings in regard to the CPN Tools o�ering during the course

of this research. Whilst extremely powerful, there are several aspects of the CPN Tools

environment that would bene�t from the inclusion of additional capabilities. In partic-
ular, the ability to incrementally wind back the execution state of a given execution
would be useful, as would the ability to save an execution state for later execution
and analysis. The interaction facilities for the CPN model are particularly e�ective,
however there are less features provided for tracing and altering the execution of
ML code segments that form part of a CPN model. The inclusion of features such
as these in future CPN Tools releases would be extremely bene�cial.

The newYAWL semantic model will serve as the design blueprint for the next
major version of the open-source YAWL System o�ering. This is currently being
developed by the BPM Group at QUT.

References

[AAH98] N.R. Adam, V. Atluri, and W.K. Huang. Modeling and analysis of work�ows
using Petri nets. Journal of Intelligent Information Systems, 10(2):131�158,
1998.

[Aal98] W.M.P. van der Aalst. The application of Petri nets to work�ow management.
Journal of Circuits, Systems and Computers, 8(1):21�66, 1998.

[Aal99] W.M.P. van der Aalst. Formalization and veri�cation of event-driven process
chains. Information and Software Technology, 41(10):639�650, 1999.

[AH05] W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet another work�ow
language. Information Systems, 30(4):245�275, 2005.

[AHKB03] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Work�ow patterns. Distributed and Parallel Databases, 14(3):5�51, 2003.

[DDO07] R.M. Dijkman, M. Dumas, and C. Ouyang. Formal semantics and automated
analysis of BPMN process models. Technical Report 5969, Queensland Uni-
versity of Technology, Brisbane, Australia, 2007. http://eprints.qut.edu.

au/archive/00005969/.
[DNLS+02] E. Di Nitto, L. Lavazza, M. Schiavoni, E. Tracanella, and M. Trombetta. De-

riving executable process descriptions from UML. In ICSE '02: Proceedings
of the 24th International Conference on Software Engineering, pages 155�165,
New York, NY, USA, 2002. ACM Press.

[EN93] C.A. Ellis and G.J. Nutt. Modelling and enactment of work�ow systems. In
M. Ajmone Marsan, editor, Proceedings of the 14th International Conference on
Application and Theory of Petri Nets, volume 691 of Lecture Notes in Computer
Science, pages 1�16, Chicago, IL, USA, 1993. Springer.

[GAJVV06] F. Gottschalk, W.M.P. van der Aalst, M.H. Jansen-Vullers, and H.M.V. Ver-
beek. Protos2CPN: Using colored Petri nets for con�guring and testing busi-
ness processes. In K. Jensen, editor, Proceedings of the 7th Workshop and
Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools, volume
PB-579 of Daimi Reports, pages 137�155, Aarhus, Denmark, 2006.

[Jen97] K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Prac-
tical Use. Volume 1, Basic Concepts. Monographs in Theoretical Computer
Science. Springer-Verlag, Berlin, Germany, 1997.

[JKW07] K. Jensen, L.M. Kristensen, and L. Wells. Coloured Petri nets and CPN Tools
for modelling and validation of concurrent systems. International Journal of
Software Tools for Technology Transfer, 9(3):213�254, 2007.

[JLA06] J.B. Jørgensen, K.B. Lassen, and W.M.P. van der Aalst. From task descriptions
via coloured Petri nets towards an implementation of a new electronic patient

125

record. In K. Jensen, editor, Proceedings of the 7th Workshop and Tutorial on
Practical Use of Coloured Petri Nets and the CPN Tools, volume PB-579 of
Daimi Reports, pages 137�155, Aarhus, Denmark, 2006.

[MLO+07] R.J. Machado, K.B. Lassen, S. Oliveira, M. Couto, and P. Pinto. Requirements
validation: Execution of UML models with CPN Tools. International Journal
on Software Tools for Technology Transfer, 9(3):353�369, 2007.

[MR03] Daniel Moldt and Heiko Rölke. Pattern based work�ow design using Ref-
erence nets. In W.M.P. van der Aalst, A.H.M. ter Hofstede, and M. Weske,
editors, Proceedings of the Business Process Management Conference 2003, vol-
ume 2678 of Lecture Notes in Computer Science, pages 246�260, Eindhoven,
The Netherlands, 2003. Springer.

[PA07] M. Pesic and W.M.P. van der Aalst. Modelling work distribution mechanisms
using colored Petri nets. International Journal on Software Tools for Technol-
ogy Transfer, 9(3):327�352, 2007.

[RAHE05] N. Russell, W.M.P. van der Aalst, A.H.M. ter Hofstede, and D. Edmond.
Work�ow resource patterns: Identi�cation, representation and tool support.
In O. Pastor and J. Falcão e Cunha, editors, Proceedings of the 17th Confer-
ence on Advanced Information Systems Engineering (CAiSE'05), volume 3520
of Lecture Notes in Computer Science, pages 216�232, Porto, Portugal, 2005.
Springer.

[RF06] O.R. Ribeiro and J.M. Fernandes. Some rules to transform sequence diagrams
into coloured Petri nets. In K. Jensen, editor, Proceedings of the 7th Workshop
and Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools,
volume PB-579 of Daimi Reports, pages 137�155, Aarhus, Denmark, 2006.

[RHAM06] N. Russell, A.H.M. ter Hofstede, W.M.P. van der Aalst, and N. Mulyar. Work-
�ow control-�ow patterns: A revised view. Technical Report BPM-06-22, 2006.
http://www.BPMcenter.org.

[RHEA05] N. Russell, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Work-
�ow data patterns: Identi�cation, representation and tool support. In L. Del-
cambre, C. Kop, H.C. Mayr, J. Mylopoulos, and O. Pastor, editors, Proceedings
of the 24th International Conference on Conceptual Modeling (ER 2005), vol-
ume 3716 of Lecture Notes in Computer Science, pages 353�368, Klagenfurt,
Austria, 2005. Springer.

[RHEA07] N. Russell, A.H.M. ter Hofstede, D. Edmond, and W.M.P van der Aalst.
newYAWL: achieving comprehensive patterns support in work�ow for the
control-�ow, data and resource perspectives. Technical Report BPM-07-05,
2007. http://www.BPMcenter.org.

[RZ96] D. Riehle and H. Züllighoven. Understanding and using patterns in software
development. Theory and Practice of Object Systems, 2(1):3�13, 1996.

[SH05] H. Störrle and J.H. Hausmann. Towards a formal semantics of UML 2.0 activ-
ities. In P. Liggesmeyer, K. Pohl, and M. Goedicke, editors, Proceedings of the
Software Engineering 2005, Fachtagung des GI-Fachbereichs Softwaretechnik,
volume 64 of Lecture Notes in Informatics, pages 117�128, Essen, Germany,
2005. Gesellschaft fur Informatik.

[WEAH05] M.T. Wynn, D. Edmond, W.M.P. van der Aalst, and A.H.M. ter Hofstede.
Achieving a general, formal and decidable approach to the OR-join in work�ow
using Reset nets. In G. Ciardo and P. Darondeau, editors, Proceedings of the
26th International Conference on Application and Theory of Petri nets and
Other Models of Concurrency (Petri Nets 2005), volume 3536 of Lecture Notes
in Computer Science, pages 423�443, Miami, USA, 2005. Springer-Verlag.

[Wor95] Work�ow Management Coalition. Reference model � the work�ow reference
model. Technical Report WFMC-TC-1003, 19-Jan-95, 1.1, 1995. http://www.
wfmc.org/standards/docs/tc003v11.pdf.

126

Translating Colored Control Flow Nets into Readable Java via
Annotated Java Workflow Nets

Kristian Bisgaard Lassen and Simon Tjell

Department of Computer Science, University of Aarhus,
IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark.

{k.b.lassen,tjell}@daimi.au.dk

Abstract. In this paper, we present a method for developing Java applications from Colored Control
Flow Nets (CCFNs), which is a special kind of Colored Petri Nets (CPNs) that we introduce. CCFN
makes an explicit distinction between the representation of: The system, the environment of the system,
and the interface between the system and the environment. Our translation maps CCFNs into Anno-
tated Java Workflow Nets (AJWNs) as an intermediate step, and these AJWNs are finally mapped
to Java. CCFN is intended to enforce the modeler to describe the system in an imperative manner
which makes the subsequent translation to Java easier to define. The translation to Java preserves data
dependencies and control-flow aspects of the source CCFN. This paper contributes to the model-driven
software development paradigm, by showing how to model a system, environment, and their interface,
as a CCFN and presenting a fully automatic translation of CCFNs to readable Java code.

1 Introduction

In this paper, we document an approach to automatic generation of executable Java programs based on
Colored Petri Net [13, 14] (CPN) models with a clear distinction between the environment and system
domains [19]. We will define these restricted CPNs as Colored Control Flow Nets (CCFNs).

The approach that this paper presents is intended to contribute to the model-driven software paradigm
by allowing the user to build, simulate, and analyze CCFN models in tools such as CPN Tools [9, 14], and
later to automatically translate the CCFN models into Java code. The purpose of the code generation we
present in this paper is not to produce the end product - i.e. the final implementation - but rather to take a
step in the direction of tool-based support for generating rapid prototypes.

CPN models are useful for expressing functional requirements for reactive systems by representing re-
quired behavior at a high level of abstraction [10, 11]. Reactive systems [20] are a special class of computer
systems that are characterized by a close coupling with the surrounding environment through an interface of
sensors and actuators. Typical examples of reactive systems include vending machines, elevator controllers,
and cruise controllers.

When a reactive system is modeled it is also necessary to model the parts of the environment interacting
with the reactive system. The reactive system interacts in a predictive manner with its environment by
exchanging observable events and state changes. The reason why it is generally necessary to model both the
system and the environment is that a model of the system alone would be inactive without the simulation
of incoming stimuli from the environment to which the system can react. This property is common to all
reactive systems: No spontaneous behavior is exhibited. When we use the models for abstract representation
of behavior, we want to be able to execute scenarios of interaction between the environment and system
domains and this is why both domains must be represented in the model.

Our intention is that the translation generates readable Java. By readable, we mean that the generated
Java should be readable in the sense that the translation builds a Java program, where behavioral constructs
such as sequence, choice, or parallelism, are implemented in the same way as a programmer would have done.
It should therefore be more easy to understand, edit, and maintain the generated Java code.

We do not map CCFNs directly to Java, but instead map CCFNs to Annotated Java Workflow Nets
(AJWN) (we define AJWN later in this paper), and map AJWNs to Java as shown by the translations T0

127

CCFN AJWN JavaT0 T1

Fig. 1. Two-phase approach for mapping CCFN to Java.

and T1 in Figure 1. T0 maps the control-flow of the CCFN to a AJWN, which is essentially a Workflow
net [1] (WF-net) where each transition is associated with a Java statement. The focus of this step is to map
construct in the CCFN to Java statements, since the translation of the control-flow is straight-forward by
the way CCFN is defined. T1 focus on mapping various behavioral constructs in the AJWN control-flow to
a Java code. We found that this division of concerns made the translation more smooth and extensible, than
if we had mapped CCFN directly to Java.

Our definition of CCFN will encourage and force the modeler to build models that behave like imperative
programs. Transitions will correspond to statements and what the statements can do is to route the control-
flow, and either update the state by setting the value of a variable, read an event, or write an event. In
this paper, when we refer to the imperative paradigm, we talk about a situation where only those statement
types are possible and control-flow is composed of statements.

Besides making a translation from CCFN to Java we have made a translation that is extensible with
respect to the collection of Java statements and Java control-flow constructs you want to be able to map to.
In this paper, we have chosen a sensible subset of Java to map to, but it is possible to extend either T0 or
T1 to handle an even bigger subset of Java statements and control-flow constructs, as we discuss throughout
paper.

The paper is structured as follows: in Section 2 we introduce and define the class of CPNs called CCFNs
that we use for modeling reactive systems and their environments; Section 3 presents the intermediate
language AJWN used in the translation; Sections 4 and 5 describe and define the translation algorithm
respectively from CCFNs to AJWNs and AJWNs to Java code; in Sections 6 we discuss related work; and
finally in Section 7 we conclude and present future work.

2 Modeling Reactive Systems with CPNs

In this section we describe how we model reactive systems, and how we represent these using CPNs. In
Section 2.1 we motivate and explain how we wish to model reactive systems using CPNs and in Section 2.2
we introduce CCFNs that we will use for modeling reactive systems.

2.1 Colored Petri Nets and Reactive Systems

In Figure 2(a) we show a simple way to model reactive systems in CPNs. There are basically three parts:
An environment modeled; a system; and finally some interface modeled as places. In the Figure 2(a) the
interface is simply a single place where the tokens represent messages. In reactive systems there is often
a clear distinction between events sent to the system and events sent to the environment. This distinction
is reflected in the model by dividing the interface place in Figure 2(a) into two places that model each of
these aspects as shown in Figure 2(b). In this paper, we will use CCFN to model both the environment and
system, so that the environment and its interface is a CCFN model and the system and its interface is a
CCFN model.

We generalize the idea of Figure 2(b) to include more than one kind of environment and system, by adding
more substitution transitions; see Figure 2(c). This generalization allows a part of a model to represent both
a system and an environment - i.e. the model of an environment may itself represent a system connected to
yet another environment and so forth. In our approach we allow the modeler to model a reactive system as
shown in Figure 2(c), and we are then able to translate each model of environment/system into Java code.

128

It should be noted that while we require that the parts of a model that are to be translated into Java
code should be expressed by means of CCFN, it is still possible to express other parts using the full CPN
language. For example, it would be possible to express the environment domain as a traditional CPN model
and the system as a CCFN model. The only requirement in this context is that the interaction between these
two domains should be performed through interface places as specified by CCFN.

Environment Interface System

(a) Simple interface.

Events

Events
Environment System

(b) Extended interface.

Events

EventsEnvironment
/

System

Environment
/

System Events

Events Environment
/

System

(c) Generalization of Figure 2(b).

Fig. 2. Different ways to model reactive systems using CPNs.

2.2 Colored Control Flow Nets

CCFNs is designed to facilitate two design aspects: (1) Reactive systems support, as well as (2) support for
building models in an imperative fashion. The reactive system design support that CCFNs offer is the same
as what is presented in Figure 2(c), i.e. we allow the user to model multiple environments/systems and link
them together using places to model events going in and out of the environment/system.

The reason why the second aspect of building imperative models is so important is that it makes the
translation from CCFN to readable Java code (Java is imperative) more manageable. If we did not consider
this aspect, we would have to map CPNs that contain non-imperative constructions to imperative construc-
tions in Java, which is outside the scope of our research. It is through our definition of CCFNs, which we
will come to shortly, that we allow the modeler to model reactive systems, while we enforce that he use an
imperative style of modeling.

Before we give a formal definition of CCFN, let us look at the small example in Figure 3; notice it is
not important to know exactly what the arc inscriptions mean. The CCFN models a small process that will
read an event “input” and assign the value associated with “input” to the variable y; do an operation square
on y and assign the result to x; and finally, generate an “output” event associated with the value of x until
x>=10. When x reaches this value the process transition Quit becomes enabled and Receive disabled. The
access to the variable x is performed through a function (get) that returns the value of a specific variable
found in a STATE value. Each CCFN has a single place with the color set STATE and we will simply refer
to this place as the state place. Two examples of operators lt (<) and gte (≥) are used to evaluate the value
of the variable in the guards. Later we will see that we distinguish between five types of transitions: Enter
process and Leave process are a special kinds of transitions that are used to set up the CCFN so that it has

129

(pid,confs)

(pid,confs)

("input",value)

("output",get("x",confs))

pid

pid

pid

pid

pid

pid

(pid,assign("x",square "y",confs))

(pid,confs)

(pid,
 assignValue("y",value,confs))

(pid,confs)

(pid,confs)

(pid,[("x",INT 0),("y",INT 0)])

pid

pid

pid

pid

pid

Send

Quit

[get("x",confs) gte (INT 10)]

Leave
process

Enter
process

Operation

Receive

[get("x",confs) lt (INT 10)]

Out
Events

OUT_EVENT

In
Events

IN_EVENT

p3

PID

p4

PID

Start

0

PID

State

STATE

p2

PID

p1

PID

pid
End

PID

Fig. 3. Small example of a CCFN.

single entry and exit points; Operation and Quit we call state update transitions, since they access the state
place; Receive is called a read event transition since it reads a value from an IN EVENT place and write the
result to the state place; Send is a write event transition since it reads a value from the state place and
puts it on a OUT EVENT place; and, finally there is a transition type that is not in this example, and it is
called a silent step transition, and it simply a place that is only connected to places of type PID. silent step
transition do not update the state place or read or write events, it is simply a silent step in the execution of
the process; hence the name.

Before we define CCFN, we first introduce the allowed place types in a CCFN in Definition 1, and later
the allowed arc inscriptions in Definition 2.

Definition 1 (CCFN place types). A place may either have the color set type PID (a process id), STATE,
IN EVENT, or OUT EVENT, which are defined as follows:

colset PID = INTEGER
colset STATE = product PID * CONFIGURATION LIST
colset IN EVENT = CONFIGURATION
colset OUT EVENT = CONFIGURATION

where

colset IDENTIFIER = STRING
colset VALUE = union STRING:STRING + INT:INT + BOOL:BOOL + VOID
colset CONFIGURATION = product IDENTIFIER * VALUE
colset CONFIGURATION LIST = list CONFIGURATION

130

Notice that CONFIGURATION LIST is similar to the concept of environment in a program execution,
however, we choose not to use this term, in order to avoid confusion with the term environment used in the
context of reactive systems. Another important point is that it is possible to define two different variables
with the same identifier in a CONFIGURATION LIST. It is up to modeler to ensure that this does not happen,
either by hand or by formal analysis. The intentions of the place types are the following: PID will be used to
model the control flow of a CCFN; STATE is for modeling the state of a process - i.e. the state of either the
system or the environment - expressed in CCFN; IN EVENT and OUT EVENT are used to model incoming
and outgoing events for the respective CCFN.

Definition 1 states that a place can only contain a process identifier, which is simply an integer; a state,
which is a pair that binds a process identifier to a configuration; or, either an input or output event that is
represented as a pair of identifier and value. Examples of process identifiers are 0, 1, 2, . . . ; states are (29,
[(”x”, INT(399)), (”y”, BOOL(false)), (”z”, STRING(”foo”))]), meaning that the process with identifier 29 is
in a configuration list with three declared variables x, y, and z that are assigned values integer 399, boolean
false, and string ”foo”; and finally, an input or output event (”event1”,VOID) for the event ”event1” and no
value, and (”event2”,INT 4) for the event ”event2” with the integer value 4.

In the following, we will write [X] to denote any expression where Type([X]) = X, B the boolean type, and
S for the string type. We are now ready to introduce the allowed arc inscriptions in a CCFN. The definition
will be followed by a more detailed description of its elements.

Definition 2 (Allowed arc inscriptions in CCFNs). The only allowed arc inscriptions in a CCFN are

(i) pid (used to describe a process id); color set PID.
(ii) (pid,confs) (used to describe a process and its configuration confs); color set STATE.
(iii) (pid,assign([IDENTIFIER],function,confs)) (a pid and an assign expression that evaluates to an updated

configuration, where the variable specified by the identifier is assigned the result of calling the function);
color set STATE. If variable is the empty string the result of the evaluation is not assigned to anything
in the configuration.

(iv) (pid,assignValue([IDENTIFIER],[VALUE],confs)) (a variation of (iii) that simply assign the variable speci-
fied by the identifier to the value in the configuration).

(v) ([IDENTIFIER],value) (an identifier for a named event, and value has type VALUE); color set EVENT.
(vi) ([IDENTIFIER],[VALUE]) (an identifier for a named event, and an expression with type VALUE); color

set EVENT.
(vii) ([IDENTIFIER],get([IDENTIFIER],confs) (an identifier for a named event, get is a function that returns

that value of the variable specified by an identifier); color set EVENT.

The reason why it is necessary to restrict the allowed arc inscriptions is to ease the translation of the
CCFN as we will see later. Another consequence of the definition is that we only allow the modeler to update
the token values by using imperative constructions, such as assign, assignValue (a special case of assign), and
get.

The signature of the function assign is IDENTIFIER * (α → CONFIGURATION LIST → VALUE) * CON-
FIGURATION LIST → CONFIGURATION LIST; i.e. assign takes a triple: the name of a variable; a function
that when applied to a value with type α and a configuration list, then calculates a value; and, the current
configuration list, so that assign returns the updated configuration. The signature of the function assign-
Value is IDENTIFIER * VALUE * CONFIGURATION LIST → CONFIGURATION LIST. The signature of get
is IDENTIFIER * CONFIGURATION LIST → VALUE). Examples of arc inscriptions are: pid, (pid,confs), as-
sign(”x”,negate,confs), (”button pressed”,[(”isOn”,BOOLEAN(false))]), and get(”x”,confs).

We are now ready to define CCFNs in Definition 3. For the sake of readability, we have omitted the
arguments to get, assign, assignValue where used. See Definition 2 for a definition of these. In this paper,
we refer to the preset and preset of a node x ∈ P ∪ T as •x = {y ∈ P ∪ T |(y, x) ∈ N(A)} and x• = {y ∈
P ∪ T |(x, y) ∈ N(A)}.

Definition 3 (Colored Control Flow Nets (CCFNs)). A non-hierarchical Colored Petri Net is a tuple
CPN = (Σ, P, T,A, N, C,G, E, I) satisfying [13, Definition 2.5]. CPN is a Colored Control Flow Net (CCFN)
iff

131

(i) (Color sets) Σ = {PID ,STATE , IN EVENT ,OUT EVENT} . These color sets are defined in Definition
1.

(ii) (Places) P = {pstart, pend} ∪ Ppid ∪ {pstate} ∪ Pin event ∪ Pout event, where
• ∀A,B ∈ {{pstart, pend}, Ppid, {pstate}, Pin event, Pout event} : A 6= B ⇒ A ∩B = ∅.
• |Ppid| ≥ 1.

(iii) (Transitions) T = {tstart, tend} ∪ Tregular, where
• {tstart, tend} ∩ Tregular = ∅.

(iv) (Arcs and node function) N(A) = {(pstart, tstart), (tstart, pstate), (pstate, tend), (tend, pend)} ∪ F , where
• {(pstart, tstart), (tstart, pstate), (pstate, tend), (tend, pend)} ∩ F = ∅.
• ∀a1, a2 ∈ A : a1 6= a2 ⇒ N(a1) 6= N(a2) (N is injective).
• ∀(x, y) ∈ F : x /∈ {pstart, tend, pend} ∧ y /∈ {pstart, tstart, pend}.
• ∀(pstate, t) ∈ F : (t, pstate) ∈ F .
• ∀pin ∈ Pin events,∀pout ∈ Pout events, 6 ∃t ∈ T : (pin, t), (t, pout) ∈ F .

(v) (Color function) C(p) =

PID if p ∈ {pstart, pend} ∪ Ppid

STATE if p = pstate

IN EVENT if p ∈ Pin event

OUT EVENT if p ∈ Pout event

(vi) (Guard function) G(t) =
{

get R v , R is a boolean operator ∧ Type(v) = VALUE if • t = {p} ∧ |p • | > 1
true otherwise

(vii) (Arc expression function) In the restriction of E we assume that pid and confs are declared variables
where Type(pid) = PID, Type(confs) = CONFIGURATION LIST, and Type(value) = VALUE.

E(a) =

pid if N(a) ∈ P ′ × T ∪ T × P ′,Type(P ′) = PID
(pid , confs) if N(a) = (pstate, tend) ∨N(a) = (t, pstate), t ∈ Tregular

(pid, [CONFIGURATION]) if N(a) = (tstart, pstate)
(pid , assignValue) if N(a) = (t, pstate) ∧ (p, t) ∈ Pin event × Tregular

(pid , assign) if N(a) = (t, pstate)
(S, value) if N(a) ∈ Pin event × Tregular

(S, [VALUE]) if N(a) ∈ Tregular × Pout event

(S, get) if N(a) ∈ Tregular × Pout event

(viii) (Initialization function) I(p) =
{

[PIDms] , p = pstart

∅ , otherwise

In the following, we will explain each part in the definition. (i) It is possible to use four different kinds of
color sets in a CCFN and these are as in Definition 1.

(ii) We say that there are five sets of places. Notice that there are only one start, one end and one state
place. The single start and end places are to describe that the control-flow starts in a single point, and ends
in a single point. The single state place describe that each CCFN has a global state that is stored on the
place pstate. A CCFN must have at least one PID place to route the control-flow and any number of in and
out event places.

(iii) There are two kinds of transition: Those that we use to initiate and end the process, and a set of
transition Tregular which we will refer to as regular transitions.

(iv) The arcs consists of two parts where the first is used to setup the CCFN process so the start place is
linked to the start transition and so on. Then we state that it is not possible to have two arcs between the
same pair of nodes to simplify the function N ; this means the function N is now injective and especially that
N−1 is always uniquely defined. Next we require that it is not possible to make arcs from regular transitions
to one of the place pstart and transition tstart and it is not possible to have an arc going away from the
transition tend, except an arc to pend. Next we say that if there is an arc going from pstate to a transition t
there must be an arc going back from the same t. And, finally if there is an arc from IN EVENT place to a
transition t there may not be an arc to a OUT EVENT and vice versa. Figure 4 gives four examples of how
regular transition may be used in a CCFN, and we will use the terms silent step, state update, read event,
and write event to refer to each of these. Definition 4 formalizes these four possibilities.

132

pid pid

pid
pidpid

t

p5

PID

p4

PID

p3

PID

p2

PID

p1

PID

(a) Silent step.

(pid,assign("x",F,confs))

(pid,confs)

pid pid

pid
pidpid

t s

STATE

p5

PID

p4

PID

p3

PID

p2

PID

p1

PID

(b) State update.

(pid,assignValue("x",value,confs))

("event",value)

(pid,confs)

pid pid

pid
pidpid

tin

IN_EVENT

s

STATE

p5

PID

p4

PID

p3

PID

p2

PID

p1

PID

(c) Read event.

("event",get("x",confs)) (pid,confs)

pid pid

pid
pidpid

tout

OUT_EVENT

s

STATE

p5

PID

p4

PID

p3

PID

p2

PID

p1

PID

(d) Write event.

Fig. 4. Examples of how a regular transition can be used in a CCFN model.

(v) As we explained after Definition 1 the places are given place types corresponding to how we intend
them to be used.

(vi) Transitions that are part of a free choice may have a boolean expression as guard; others have the
guard true.

(vii) Figure 4 shows examples of the different cases for the arc expression function. Definition 2 explains
the intention of these.

(viii) We initialize the CCFN by adding some multiset of PID on the place pstart.

Definition 4 (Transitions in CCFNs). Let be CCFN = (Σ, P, T,A, N,C,G, E, I) be a Colored Control
Flow Net as in Definition 3. Definition 3 states that there are four distinct sets of transitions that we name
as follows:

Silent step: {t ∈ T |∀(pin, t), (t, pout) ∈ N(A) : C(pin) = C(pout) = PID}.
State update: {t ∈ T |∃(t, pstate), (pstate, t) ∈ N(A),

∀(pin, t), (t, pout) ∈ N(A) \ {(t, pstate), (pstate, t)} : C(pin) = C(pout) = PID}.
Read event: {t ∈ T |∃(t, pstate), (pstate, t), (pin event, t) ∈ N(A) : C(pin event) = IN EV ENT,

∀(pin, t), (t, pout) ∈ N(A) \ {(t, pstate), (pstate, t), (pin event, t)} : C(pin) = C(pout) = PID}.
Write event: {t ∈ T |∃(t, pstate), (pstate, t), (t, pout event) ∈ N(A) : C(pout event) = OUT EV ENT,

∀(pin, t), (t, pout) ∈ N(A) \ {(t, pstate), (pstate, t), (pout event, t)} : C(pin) = C(pout) = PID}.

A CCFN where all places of type STATE, IN EVENT, and OUT EVENT are removed should correspond
to a Sound Workflow Net (sound WF-net) as defined in [2]; we refer to this version of CCFN as CCFNPID .
Although WF-nets have been defined for classical Petri nets it is easy to generalize the definition to CPN
as discussed in [3, 4]. The basic requirement is that there is one source place and one sink place and all
other nodes (places and transitions) are on a path from source to sink. We can test soundness of CCFN by
testing the net CCFN PID. CCFN PID is constructed from CCFN by removing all places with types IN EVENT,

133

OUT EVENT, and STATE, and by adding a new transition t and add two arcs from the end place to t, and
from t to the start place, and finally settings the arc expression of the two arcs to pid. Moreover, we set all
guard expressions to true. If all transitions in CCFNPID are live and if all places are bounded then we say
that the CCFN is sound. Moreover, if all places have multi-set upper bounds ++

∑
pid∈PID pid we say that

the CCFN is safe. In the translation of CCFN, we will assume that the input CCFN is safe and sound in
the sense described here.

3 Annotated Java Workflow Nets

In our translation we will need to transform CCFNs to an intermediate form. This form is expressed in a
special kind of Petri nets that we call Annotated Java Workflow Nets (AJWNs); see Definition 5. Note that
the framework for translating annotated WF-nets was introduced in [7], we refer to Section 6 on a discussion
on how our approach related to what was done in [7].

Definition 5 (Annotated Java Workflow Nets). An Annotated Java Workflow Net is a tuple AJWN =
(P, T, F, τ, τG, Γ, Π), where

– P is the set of places.
– T is the set of transitions.
– F = (P × T) ∪ (T × P) is a flow relation.
– τ : T → JS, where JS is the set of Java statements.
– τG : T → BE, where BE is a boolean expression.
– Γ = {(id1, type1, value1), . . . , (idn, typen, valuen)} is an initial configuration.
– Π = ({channel in1 , . . . , channel inn }, {channelout

1 , . . . , channelout
m }) a pair of in and out channels that carry

events.
– A single input place ps exists s.t. •ps = ∅ - i.e. a transition with no input transitions.
– A single output place pe exists s.t. pe• = ∅ - i.e. a transition with no output transitions.
– ∀x ∈ P ∪ T : (x, pend) ∈ F ∗ (F ∗ is the transitive closure of F).
– The Workflow net (P,T,F) is safe and sound [1].

In Figure 5 we see a small example of an AJWN. As we will see later the example is actually a translation
that we define later of the CCFN of Figure 3.

4 Translation of Colored Control Flow Nets to Annotated Java Workflow Nets

In our approach we map CCFNs to AJFNs, and map the AJFNs to Java. In Definition 6 we give a translation
of the first step from CCFNs to AJFNs. An explanation is given after the definition. For an application of
the definition we refer to Figure 5, where the AJWN there is a translation of the CCFN in Figure 3.

Definition 6 (Translation of CCFNs to AJFNs). Let CCFN = (Σ, PC , TC , A, N,C,G, E, I) be a safe
and sound Colored Control Flow Net. We define the corresponding Annotated Java Flow Net ACFN =
(P, T, F, τ, τG, Γ, Π) as follows:

(i) P (places): P := {p ∈ PC |C(p) = PID}.
(ii) T (transitions): T := TC .
(iii) F (flow relation): F := {(p, t), (t′, p′) ∈ N(A)|C(p) = C(p′) = PID ∧ t, t′ ∈ TC}.
(iv) τ (Java annotations): See Definition 4 for a definition of the four possible ways a transition can be used

in a CCFN.

τ(t) =

”; ” if silent step
”x = F (x1, . . . , xn); ” if state update ∧ E(N−1(t, pstate)) = (pid , assign(”x”, F (x1, . . . , xn), confs))
”F (x1, . . . , xn); ” if state update ∧ E(N−1(t, pstate)) = (pid , assign(””, F (x1, . . . , xn), confs))
”x = value; ” if state update ∧ E(N−1(t, pstate)) = (pid , assignValue(”x”, value, confs))
”x = read(”e”, pin); ” if read event ∧ E(N−1(pin, t)) = (”e”, value))
”write(”e”, x, pout); ” if write event ∧ E(N−1(t, pout)) = (”e”, get(”x”, confs))
”write(”e”, value, pout); ” if write event ∧ E(N−1(t, pout)) = (”e”, value)

134

Fig. 5. AJWN of the CCFN in Figure 3.

(v) τG (Guards):

τG(t) =
{

x R [VALUE], R is a boolean operator if G(t) = get(”x”,confs) R [VALUE]
true otherwise

(vi) Γ (Initial environment): The initial configuration in a CCFN model is specified on the arc (tstart, pstate)
and it is on the form [(id1, value1), . . . , (idn, valuen)] (see Definition 3). For each pair (id,value) in the
initial environment of CCFN, set Γ (id) = value.

(vii) Π (Streams): Π = ({java in stream(p)|p ∈ Pin events}, {java out stream(p)|p ∈ Pout events}), where
java in stream and java out stream are streams that implement the InputStream and OutputStream in-
terfaces in Java.

The translation is rather straightforward if we look at places and transitions in steps (i) and (ii). In (iii)
we map the arcs of the CCFN, where we map all arcs that are not connected to the place pstate or any of
the in and out event places. (iv) We generate the Java annotations for each transition, by looking at what
type of transition it is, and then by looking at the sort of arc expressions used on arcs around it: silent step
transitions correspond to doing nothing and it is simply translated into the empty statement ”; ”; state update
transitions read the current state from the state place and update a value in the current state either by a
constant or by calling a function, therefore the statement is either ”x = F (x1, . . . , xn); ” , for some variable
x and function F with input x1, . . . , xn, or the statement ”x = C; ” for some variable x and constant C;
read event and write event transitions are handled in a similar fashion as the two preceding types. (v) There
are two allowed guard expressions in a CCFN: true, and expression on the form get([IDENTIFIER],confs) R
value (examples of such an expression is get(”x”,confs)). (vi) and (vii) simply tell us how to find the initial
configuration and which streams are defined. In (vii) we assume that some stream types are defined in the
Java code already, so we do not assume they are of type java.io.FileInputStream or other specific types of
streams. All we assume is that the input streams are blocking - i.e. a reading call would block if no data is
available for reading through the stream and will continue to block until data becomes available.

135

The time complexity of the translation in Definition 6 is O(|P ∪ T |). It simply does a linear sweep of the
nodes in the CCFN in mapping to AJWN.

5 Translation of Annotated Java Workflow Nets to Readable Java

Before we describe the translation let us first introduce some definitions. Definition 7 defines how we under-
stand the union of two functions and when a union is possible. This definition is important for the definition
of projection in Definition 8.

Definition 7 (Union of two functions). Let F : A1 → B,G : A2 → B,A1, A2 ⊆ A and require that
∀x ∈ A1 ∩A2 : F (x) = G(x). Then we define the union of F and G as

(F ∪G)(x) =
{

F (x), x ∈ A1 \A2;
G(x), otherwise. ,∀x ∈ dom(F) ∪ dom(G)

Definition 8 states what we mean by a projection, i.e. a restriction, of a AJWN. It simply defines a
projection as the subnet you get by selecting a set of nodes, and then include all the arcs that have source
and target in that set. The annotation functions of the AJWN are restricted in a similar fashion.

Definition 8 (Projection). Let AJWN = (P, T, F, τ, τG, Γ, Π) and AJWN ′ = (P ′, T ′, F ′, τ ′, τ ′G, Γ ′,Π ′)
be Annotated Java Workflow Nets and X ⊆ P ∪ T a set of nodes. AJWN |X = (P ∩ X, T ∩ X, F ∩ (X ×
X), τ |X , τG|X , Γ |X ,Π|X) is the projection of AJWN onto X. AJWN ∪AJWN ′ = (P ∪P ′, T ∪T ′, F ∪F ′, τ ∪
τ ′, τG ∪ τG′ , Γ ∪ Γ ′,Π ∪Π ′) is the union of AJWN and AJWN ′.

A component as in Definition 9 is a special kind of projection. It is a set of nodes in a AJWN that contain
a source and a sink and where all nodes in the component are on a path between source and sink in the
AJWN.

Definition 9 (Component). Let AJWN = (P, T, F, τ, τG, Γ, Π) be an Annotated Java Workflow Net. C
is a component of AJWN if and only if

(i) C ⊆ P ∪ T ,
(ii) there exist different source and sink nodes iC , oC ∈ C such that

- •(C \ {iC}) ⊆ C \ {oC},
- (C \ {oC})• ⊆ C \ {iC}, and
- (oC , iC) 6∈ F .

Definition 10 (Component notations). Let AJWN = (P, T, F, τ, τG, Γ, Π) be an Annotated Java Work-
flow Net and let C be a component of AJWN with source iC and sink oC . We introduce the following
notations and terminology:

– C is a PP-component if iC ∈ P and oC ∈ P ,
– C is a TT-component if iC ∈ T and oC ∈ T ,
– C is a PT-component if iC ∈ P and oC ∈ T ,
– C is a TP-component if iC ∈ T and oC ∈ P ,
– C = C \ {iC , oC},
– PN ||C =

• PN |C if iC ∈ P and oC ∈ P ,
• PN |C ∪ ({p(i,C)}, {iC}, {p(i,C), iC}) ∪ ({p(o,C)}, {oC}, {oC , p(o,C)}) if iC ∈ T and oC ∈ T ,1

• PN |C ∪ ({p(o,C)}, {oC}, {oC , p(o,C)}) if iC ∈ P and oC ∈ T ,
• PN |C ∪ ({p(i,C)}, {iC}, {p(i,C), iC}) if iC ∈ T and oC ∈ P .

1 Note that p(i,C) and p(o,C) are the (fresh) identifiers of the places added to make a transition bordered component
place-bordered.

136

– [PN] is the set of non-trivial components of PN , i.e., all components containing two or more transitions.

Definition 10 introduces some terminology that is useful in the context of components, such as the
projection PN ||C . This projection is similar to PN |C in Definition 8, where a component is padded with
places if it is a TT-, PT-, or a TP-component, so that the new projection always yields a AJWN that
is bordered by places. It also introduces the concept of non-trivial component denoted [AJWN] for some
AJWN .

Definition 11 shows how a component may be removed from an AJWN and replaced by a single transition.
In [7], we show that a similar kind of folding yields a sound and safe AJWN if the original AJWN was sound
and safe.

Definition 11 (Fold). Let AJWN = (P, T, F, τ, τG, Γ, Π) be an Annotated Java Workflow Net and let C
be a non trivial component of AJWN (i.e., C ∈ [AJWN]). Function fold replaces C in AJWN by a single
transition tC , i.e., fold(AJWN , C) = (P ′, T ′, F ′, τ ′, τ ′G, Γ ′,Π ′) with:

– P ′ = P \ C,
– T ′ = (T \ C) ∪ {tC},
– F ′ = (F ∩ ((P ′ × T ′) ∪ (T ′ × P ′))) ∪ {(p, tC)|p ∈ P ∩ ({iC} ∪ •iC)} ∪ {(tC , p)|p ∈ P ∩ ({oC} ∪ oC•)}.
– τ ′ = τ [tC := translate(C)] (translate generates Java code from C; for more information on how

translate works see Section 5.1).
– τ ′G = τG.
– Γ ′ = Γ
– Π = Π

We are now ready to define the algorithm by which we will translate AJWFs. We will explain the steps
of the algorithm in detail after the definition. The overall idea behind the algorithm is to take a safe and
sound AJWN and reduce it by matching a component, replacing the component by a transition using fold
that also extends the annotation function by the translation of the component. The predefined components
referred to in the algorithm are defined in the next section along with a description of how they are defined.

Definition 12 (Algorithm). Let AJWN = (P, T, F, τ, τG, Γ, Π) be a safe and sound Annotated Java Work-
flow Net.

(i) X := AJWN
(ii) while [X] 6= ∅ (i.e., X contains a non-trivial component)2

(iii) If there is a predefined component C ∈ [X], select it and goto (vi).
(iv) If there is a component C ∈ [X] that appears in the component library, select it and goto (vi).
(v) Select a component C ∈ [X] to be manually mapped into Java and add it to the component library.
(vi) X := fold(AJWN , C) and return to (ii).

(vii) Output the Java code attached to the transition in X.

In the next section, we will introduce the predefined component types and these are: SEQUENCE,
CHOICE, WHILE, and PARALLEL. The sequence by which the component types are listed is also the
precedence that the algorithm use when selecting a predefined algorithm. If the algorithm cannot find any
SEQUENCE-component it will look for CHOICE-component, and so on.

If we do not match one of these general predefined components we look in a component library, which
is basically a collection of pairs consisting of one AJWN and one matching Java translation. If we find a
component in the AJWN that matches the AJWN part of an existing library component, we translate the
component based on the translation information found in the library - i.e. we use the Java translation of the
component as the annotation for the transition used to replace the component in the AJWN. If no library
component can be found, after testing predefined component, the algorithm terminates, since no component
in the net could be reduced.
2 Note that this is the case as long as X is not reduced to a WF-net with just a single transition.

137

This algorithm can be extended by adding or removing types of predefined and library components,
and changing the priority by which the algorithm selects components. For example, the algorithm could be
extended to test for PARALLEL-components before SEQUENCE-components.

The time complexity of the algorithm in Definition 12 is O(|T | · 2|P∪T |), because the matching of library
components may need to compare any combination of nodes in the library component with the nodes input
AJWN; O(·2|P∪T |). This is the most complex operation. We may need to do the operation in each iteration of
the loop, which in worst case may need to run O(|T |) times if we match a component in each iteration. This
may seem discouraging at first, but in [16] we did a practical investigation on matching library components for
real-world WF-nets, and we found that even with a library that had more than 100 components, processing
and matching all components took under one second. This was also partly due to an optimized version of
subgraph isomorphism for WF-nets that also would apply in this scenario.

5.1 Component Types and Their Translations

This subsection is devoted to describing component we have chosen to translate the function translate that
was used in the Definition 11 of fold. We have chosen some component types that many people know, but as
we discussed earlier the algorithm for translating AJWN to Java is extensible by which component translate,
so it is possible to add even more components then the ones we present here.

In Figure 6 we show examples of the different component types that we translate. Later on in this section
we give formal definitions of these component types and present a translation of them.

(a) Sequence. (b) Choice. (c) While.

(d) Parallel.

Fig. 6. Different component types.

Definition 13 (MAXIMAL SEQUENCE-component). Let AJWN be a safe and sound Annotated
Java Workflow Net, C be a component of AJWN and let AJWN |C = (P, T, F, τ, τG, Γ, Π) .

– C is a SEQUENCE-component iff ∀x ∈ P ∪ T : | • x| ≤ 1 ∧ |x • | ≤ 1.
– C is a MAXIMAL SEQUENCE-component is a component that is not contained in any other SEQUENCE-

components.

138

We translate a SEQUENCE-component in a straightforward manner: we sort the transitions in T in a
list [t1, . . . , tn], where ti is before tj iff (ti, tj) ∈ F ∗. Next, we simply translate the sequence into the Java
code: τ(t1); . . . ; τ(tn);.

Definition 14 (CHOICE-component). Let AJWN be a safe and sound Annotated Java Workflow Net,
C a component of AJWN, and AJWN |C = (P, T, F, τ, τG, Γ, Π).

– C is a CHOICE-component iff P = {pi, po}, T = pi• = •po, and ∀t ∈ pi• : t• = {po}.

We translate a CHOICE-component with transitions t1, . . . , tn by translating AJWN |C to the Java code:
if (τG(t1)) {τ(t1);} else if (τG(t2)) {τ(t2);} . . . else {τ(tn);}.

Definition 15 (WHILE-component). Let AJWN be a safe and sound Annotated Java Workflow Net,
C a component of AJWN, and AJWN |C = (P, T, F, τ, τG, Γ, Π).

– C is a WHILE-component iff P = {p}, T = {ti, t, to} and F = {(ti, p), (p, t), (t, p), (p, to)}.

We translate a WHILE-component with transitions and places given in Definition 15 as the Java code:
τ(ti); while(τG(t) ∧ ¬τG(to)) {τ(t);} τ(to);.

Definition 16 (MAXIMAL PARALLEL-component). Let AJWN be a safe and sound Annotated
Java Workflow Net, C a component of AJWN, and AJWN |C = (P, T, F, τ, τG, Γ, Π).

– C is a PARALLEL-component iff it is an acyclic marked graph; i.e. ∀p ∈ P : | • p| ≤ 1 ∧ |p • | ≤ 1 and
∀x ∈ P ∪ T : (x, x) /∈ F ∗.

– C is a MAXIMAL PARALLEL-component is a PARALLEL-component that is not contained in a larger
PARALLEL-component.

To translate a PARALLEL-component we need to introduce the concept of a clean synchronization and
branches in Definition 17. For an example of PARALLEL-components with clean and unclean synchronization
please refer to Figure 7.

C1 C2 C3

(a) Clean synchronization
with three branches.

C1 C2 C3

(b) Unclean synchronization;
here we do not say that there
are any branches.

Fig. 7. Two examples of a PARALLEL-components.

139

Definition 17 (Clean Synchronization and Branches). Let AJWN be a safe and sound Annotated
Java Workflow Net, C a component of AJWN, and AJWN |C = (P, T, F, τ, τG, Γ, Π). Assume with no loss
of generality that C is a TT-component and that the source and sink are ti, to ∈ T . If for each pi ∈ ti• we
can find a po ∈ •to, such that pi and po are source and sink of a component and pi, po are only used in a
single component, then we say that the PARALLEL-component has clean synchronization.

We call the components we find between ti and to branches of AJWN |C , and we say that they are disjoint.

A MAXIMAL PARALLEL-component that only has clean synchronization is easy to translate to Java
since it corresponds to a split in the WF-net that is later synchronized and no synchronization happens before
this final synchronization. This simply corresponds to starting n Java threads in parallel and waiting for all of
them to finish. However, clean synchronization is not always the case in MAXIMAL PARALLEL-component,
which is why the following translation become more verbose.

When we translate a MAXIMAL PARALLEL-component, we assume without loss of generality that it
has source and sink ti, to ∈ T .

We split the translation of MAXIMAL PARALLEL-component AJWN |C in two cases: First we look at
AJWN |C with clean synchronization (see Figure 7(a)), and later on we take the other case. In this case
AJWN |C has n branches C1, . . . , Cn. Here we generate the following Java code:�

1 τ(ti) ;
2 Thread tC1 = new Thread () {public void run () { translate (C1) ;}}
3 . . . ;
4 Thread tCn

= new Thread () {public void run () { translate (Cn) ;}}
5 tC1 . start () ; . . . ; tCn

. start () ;
6 τ(to) ;�
 	

In case the AJWN |C does not have clean synchronization (see Figure 7(b)), we have to do something
a little more complicated. Before we begin to explain the steps, let us define two functions σ : T → T
and κ : T → P(T) that we will use to define relations between two transitions, σ, a function ρ : T →
legal Java identifier to relate transitions to Java thread identifiers and a function ϕ : T → Java code to
relate transitions to some Java code. The five steps to translate AJWN |C are the following:

1. For each join transition t (| • t| > 1) we look at p1 and p2, where {p1, p2} ∈ •t. We introduce fresh
place pf , and fresh transitions tf1 , tf2 and update C by setting P := P ∪ {pf}, T := T ∪ {tf1 , tf2}, and
F := (F ∪ {(p1, tf1), (p2, tf2), (tf2 , pf), (pf , t)}) \ {(p1, t)}. Moreover we set σ(tf2) = tf1 . We continue
doing this until all join transitions are removed. This step removes all synchronization point and this
means that C is converted to a tree where ti is the root.

2. For each split transition t, we find all reachable transitions t1, . . . , tn. Set κ(t) = {t1, . . . , tn}. This step
determines which threads will generated in the Java code.

3. Now we generate identifiers for each thread in the Java code. For each t ∈ dom(κ) generate a fresh
identifier idt and set ρ(t) = id t.

4. In this step we need to map each transition in C to some Java code. For the original members of C we
have τ that carry the Java code of those, but for the new transitions that we added in step 1 we need to
do something else. For this reason we introduce the extended annotation function τext that we define as
follows:

τext(t) =

 τ(t), if t ∈ C;
join(σ(t)), if t ∈ dom(σ);
; otherwise.

join(t) is a short hand for synchronizing a perhaps not yet scheduled thread. We can write it as ”while
(t.getState()==Thread.State.NEW) {try {wait();}catch (InteruptedException ie) {} t.join();”.
Each member t ∈ dom(κ) is a tree that starts with a sequence and either ends in that sequence or in a
split by a split transition. In the first case, assume that the sequence of transitions is t1, . . . , tn and set
ϕ(t) = τext(t1); . . . ; τext(tn);. If the tree from t is not just a sequence but contains a split, then the tree

140

p1

t

p2

(a) Before.

p1

tf2

p2

tf1

t

pf
s

(b) After.

Fig. 8. Example of how step 1 in the MAXIMAL PARALLEL-component translation works.

t1

t2

t3 t6

t5

t4id1 id2

id3

id4

id5

Fig. 9. Illustration of step 2 and 3 in the MAXIMAL PARALLEL-component translation.

will be a sequence with transition t1, . . . , tn followed by a transition split ts where κ(ts) = {ts1 , . . . , tsn}.
In this case we set ϕ(t) = ”τext(t1); . . . ; τext(t1); ρ(ts1).start(); . . . ρ(tsn).start(); ”.

5. At this point assume dom(κ) = {t1, . . . , tn}. We now generate the Java code. The code first declares all
threads that we need and then starts the initial thread:�

1 Thread ρ(t1) = new Thread () {public void run () {ϕ(t1) ; } }) ;
2 . . . ;
3 Thread ρ(tn) = new Thread () {public void run () {ϕ(tn);}}) ;
4 ρ(ti) . start () ;�
 	

In step 1 we remove all joins in AJWN |C and an example of this is found in Figure 8, which shows
how a single join transition is transformed. Figure 9 illustrates the steps 2 and 3. In this figure κ(t1) =
{t2, t3, t4, t5, t6}, κ(t2) = {t4, t5}, κ(t3) = {t6}, κ(t4) = κ(t5) = κ(t6) = ∅.

This final translation of acyclic marked graphs concludes the algorithm. Next we will show a small
example of translating AJWNs to Java.

141

5.2 Example of the Translation of Annotated Java Workflow Net to Java

In this section we will look at a small generic example of an application of translation algorithm presented
in the previous section. The example in Figure 10 focuses on the translation of the structural parts of the
AJWN, so we do not consider the annotations of the AJWN since they do not affect the algorithm; we set the
annotations of transition tN to τ(tN) = ”tN (); ” and τG(tN) = gN , where gN is some boolean expression. In
the figure, all components are boxed and named in order to make it easier to see how the algorithm matches
components. Our algorithm reduces the net by folding components in the following order:

1. Match MAXIMAL SEQUENCE-component C1 {p4, p5, p9, p13, t3, t8, t10}, replace with transition
tC1, and extend τ so that τ(tC1) = translate(C1).

2. Match MAXIMAL SEQUENCE-component C2 {p8, t6, t14}, replace with transition tC2, and extend τ
so that τ(tC2) = translate(C2).

3. Match CHOICE-component C3 {p2, p6, t4, t5}, replace with transition tC3, and extend τ so that
τ(tC3) = translate(C3).

4. Match WHILE-component C4 {p8, t2, t7, tC2} and replace with transition tC4, and extend τ so that
τ(tC4) = translate(C4).

5. Match MAXIMAL PARALLEL-COMPONENT C5 containing the rest of the net, replace with transition
tC5, and extend τ so that τ(tC5) = translate(C5).

We map the AJWN into the Java code in Listing 1.1 and we have marked the start and end of the
translation of each component.

6 Related Work

In [20], Wieringa describes his perception of a reactive system. Our approach matches well with this view
on reactive systems as a part of the approach to describing the behavior of such systems. CCFN fit in the
behavioral descriptions category in a tool box for reactive systems, where Wieringa uses state charts for that
purpose. Other tools include E/R-diagrams to model the contents of the messages passed from the system to
the environment and vice versa, and use communication diagrams, a variant of data flow charts, to describe
the channels, processes, and storage in order to show how the system is structured internally and how it
communicates with its environment.

It is fair to compare the class of CCFN to Colored Workflow Nets (CWNs) as defined and used in [6,15]
in the sense that it was developed to mirror an underlying computational paradigm: CCFN is intended to
be used for modeling systems in an imperative manner, whereas CWNs are aimed at developing models
representing resources, tasks, and case perspectives in the domain of workflow systems. This was enforced
by the definition of CWN. CWNs were used as a starting point for mapping CWNs to annotated WF-nets,
and these WF-nets were mapped to BPEL.

In [7], we mapped a special kind of annotated WF-net to BPEL. This is similar to what we did in Section 5
where we focused on a different sort of annotated WF-net and other component types, although some types
are the same. The translations from the WF-net to BPEL and from CPN to Java are different, since BPEL
is a language that directly supports many of the structural component types, whereas the imperative nature
of Java complicates the translation.

Philippi [18] outlines three methods for translating high-level Petri nets (such as CPNs) to imperative
code: structural-, simulation-, and reachability-based. He dismisses a structural approach as we propose in this
paper, since he feels that high-level Petri net cover more behavioral constructs than what common imperative
languages such as Java provide, so he thinks that such a translation is not possible. Instead he proposes a
simulation-based approach which means that he translates the high-level Petri nets to an interpreter that
interprets the state of the high-level Petri net. In other words, he constructs an interpreter that describe
how transitions fire by calculating binding elements, what tokens are consumed and generated, and other
Petri net related parts. This means that the code he generates is difficult to read since e.g. a sequence of
transitions are not mapped to a sequence of statements, but instead a high-level CPN interpreter.

142

p1

t1

p2 p3 p4

t2

p7

t7

t3

t6

p5

t8

p9

t10

p13t12

p11p10

t5t4

p6

t11 p14 p15t13

p16

p8

t14

MAXIMAL PARALLEL

CHOICE

MAXIMAL SEQUENCE

M
AXIM

AL SEQ
UENCE

WHILE

t9

p12

Fig. 10. AJWN to be folded using Definition 12. Notice that all the components of the AJWN are shown along with
the type of the component.

Mortensen [17] translates CPNs to executable code. His method is a simulation-based one in which he
takes the simulation image of a running CPN and extract the code it was build from (CPNs in his paper are
compiled to Standard ML code), and maps this code to some implementation platform, including Java. He
is also able to simply execute the simulation image in a Standard ML environment. In contrast to Philipi,
Mortensen’s approach is simply technical since he does not provide a generation process for the interpreter,
but simply extracts it from already generated code from Design/CPN. In the paper, he mentions that he
does not have any experience with the compilation to Java, but expects that it will be very slow. By his
approach, Mortensen will not have any control over how the generated Java code will look like and does
therefore not have any possibility to tweak the appearance of the generated code, as we are able to in our
approach.

7 Conclusion and Future Work

The translation of this paper is intended as a move to bridge the gap between CPNs and Java and we feel
that this is a step in the right direction. We think that translating any CPN to Java is not feasible, so we

143

Listing 1.1. Translation of the AJWN in Figure 10�
1 // Star t : MAXIMAL PARALLEL
2 final Thread t1 = new Thread (new Runnable ()
3 {public void run () {
4 if (g1) {t4 () ; } // Star t : CHOICE
5 else {t5 () ; } // End : CHOICE
6 }}) ;
7 final Thread t2 = new Thread (new Runnable ()
8 {public void run () {t11 () ; } }) ;
9 final Thread t3 = new Thread (new Runnable ()

10 {public void run () {}}) ;
11 final Thread t4 = new Thread (new Runnable ()
12 {public void run () {
13 t2 () ; // Star t : WHILE
14 while (g2) {
15 t6 () ; // Star t : MAXIMAL SEQUENCE
16 t14 () ; // End : MAXIMAL SEQUENCE
17 }
18 t7 () ; // End : WHILE
19 while (t1 . getState () == Thread . State . NEW)
20 try{wait () ; }
21 catch (InteruptedException ie) {}
22 t1 . join () ;
23 t9 () ;
24 t3 . start () ;
25 }}) ;
26 final Thread t5 = new Thread (new Runnable ()
27 {public void run () {
28 t3 () ; // Star t : MAXIMAL SEQUENCE
29 t8 () ;
30 t10 () ; // End : MAXIMAL SEQUENCE
31 while (t4 . getState () == Thread . State . NEW)
32 try{wait () ; }
33 catch (InteruptedException ie) {}
34 t4 . join () ;
35 t12 () ;
36 }}) ;
37 t1 () ;
38 t1 . start () ; t4 . start () ; t5 . start () ;
39 while (t2 . getState () == Thread . State . NEW)
40 try{wait () ; }
41 catch (InteruptedException ie) {}
42 t2 . join () ; t5 . join () ;
43 t13 () ; // End : MAXIMAL PARALLEL�
 	

introduced CCFN as a restriction of CPN, to get a subset of CPN that could be mapped into readable Java.
Although CCFN is simple in many ways, we think it is powerful enough to express many of the control-flows
used in Java programs.

144

To help the translation to Java we introduced AJWN. Besides making the translation more smooth, we
think it make the overall translation more extensible in two ways: (1) In Definition 4 we describe the four
ways we allow a transition to occur in a CCFN and we were later able to present translations into Java
statements of these ways. If anyone can find more ways to map transitions to Java statements they just
have to change the definition of CCFN and the translation of these changes into Java statements, and leave
the rest unchanged. (2) On the other hand, if someone has a better translations for component types or
other component types, they can simply change the second part of the translation, and leave the first part
unchanged. The algorithm in this paper is described in such a way that it is possible to implement this in a
compiler.

The time complexity for the translation equals the sum two measures: (1) the complexity of the translation
from CCFN to AJWN, which is O(|P ∪T |) (P and T places and transition in CCFN), and (2) the complexity
of the translation from AJWN to Java, which is O(|T | · 2|P∪T |). In total, the complexity is O(|T | · 2|P∪T |).
However, as discussed in the end of Section 5, this is not an issue, since it is possible to find algorithms
that, although they do not change the time complexity, they are so effective that translating CCFNs is not
a problem in practice.

In this paper, we have introduced an algorithm for transforming CCFNs to Java code. There are, however,
many things that would be sensible extension to the algorithm, but also areas where it would be interesting
to test the applicability of the approach. In this section we will discuss both of these issues.

Extensions to Translation: Hierarchy The modeler should be able to modularize CCFN to keep models
manageable. To do this, Definition 3 needs to be changed to allow for hierarchical constructs. Obviously,
this will change the way we need to map the CCFN. Mapping could be handled in one of two ways: (1)
mapping flattens the CCFN process definition into one net with no substitution transitions, and uses the
translation algorithm that we have presented in this paper, or; (2) each page in the CCFN hierarchy is
separately mapped to a Java class. The last proposal is the most complicated one since we have to give a
Java translation of how and when control is transfered from a super page to a subpage and vice versa.

Extensions to Translation: Better Reactive System Support CCFNs were partly designed to be easy to map to
Java, but also to support certain elements in the reactive systems terminology as described by Wieringa [20].
We have places for input and output events that in the sense of Wieringa model named events. It would be
desirable to enable the modeling of interaction through shared states existing in the interface between the
system and the environment. Such a shared state would be readable by both parties while only one party
would be able to change (/control) the state. For example, a state representing a thermometer can be altered
by the environment and read by the system. This extension can be done by extending Definition 3 in order
to allow a CCFN to contain such places. The type of the place could simply be a CONFIGURATION LIST.

Extensions to Translation: State machines Since a program written in an imperative language without
parallelism is best described as a state machine, it would be desirable to be able to map components of
AJWNs that are state machines - i.e. to be able to recognize components with the structural properties
of state machines. [8, 12] describe algorithms to compile a goto graph into code consisting of loops and
alternations. A state machine in a Petri net can be viewed as a goto graph, so it should be possible to adapt
their theory to handle state machines in AJWNs as well.

Uses of the Translation: Model-driven Software Development It would be interesting to use this translation
approach in a model-driven software development projects such as those presented in [6,15]. The goal of the
system should then be some reactive system.

Uses of the Translation: Library Components In the algorithm presented in Definition 12 we allow the user
to provide library components if none of the standard components could be matched. This introduces an
area we have not touched much in this paper: Not all AJWNs may be reducible. In fact, in [16] 100 models
were reduced using the same component definition and folding technique as the one presented in this paper,
and 76 unique non-reducible components were found. The models were designed by graduate students and

145

they were encouraged to implement advanced workflow patterns [5]. Although, the models were generally
more complicated than what could be expected, it still shows that using this method for translating a graph,
you must anticipate that some manual work is needed. It would therefore be interesting to study which
non-reducible components that are typically found in the area of reactive system design.

References

1. W.M.P. van der Aalst. Verification of Workflow Nets. In P. Azéma and G. Balbo, editors, Application and Theory
of Petri Nets 1997, volume 1248 of Lecture Notes in Computer Science, pages 407–426. Springer-Verlag, Berlin,
1997.

2. W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management. The Journal of Circuits, Systems
and Computers, 8(1):21–66, 1998.

3. W.M.P. van der Aalst. Business Process Management Demystified: A Tutorial on Models, Systems and Standards
for Workflow Management. In J. Desel, W. Reisig, and G. Rozenberg, editors, Lectures on Concurrency and Petri
Nets, volume 3098 of Lecture Notes in Computer Science, pages 1–65. Springer-Verlag, Berlin, 2004.

4. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods, and Systems. MIT press,
Cambridge, MA, 2004.

5. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros. Workflow Patterns. Distributed
and Parallel Databases, 14(1):5–51, 2003.

6. W.M.P. van der Aalst, J.B. Jørgensen, and K.B. Lassen. Let’s Go All the Way: From Requirements via Colored
Workflow Nets to a BPEL Implementation of a New Bank System Paper. In R. Meersman and Z. Tari et al.,
editors, On the Move to Meaningful Internet Systems 2005: CoopIS, DOA, and ODBASE: OTM Confederated
International Conferences, CoopIS, DOA, and ODBASE 2005, volume 3760 of Lecture Notes in Computer Science,
pages 22–39. Springer-Verlag, Berlin, 2005.

7. W.M.P. van der Aalst and K.B. Lassen. Translating Unstructured Workflow Processes to Readable BPEL: Theory
and Implementation. Information and Software Technology, 2006.

8. Zahira Ammarguellat. A Control-Flow Normalization Algorithm and its Complexity. IEEE Trans. Softw. Eng.,
18(3):237–251, 1992.

9. CPN Tools. www.daimi.au.dk/CPNTools.
10. João Miguel Fernandes, Jens Bæk Jørgensen, and Simon Tjell. Designing Tool Support for Translating Use Cases

and UML 2.0 Sequence Diagrams into a Coloured Petri Net. In Proc. of 6th International Workshop on Scenarios
and State Machines (SCESM) at ICSE 2007, 2007.

11. João Miguel Fernandes, Simon Tjell, and Jens Bæk Jørgensen. Requirements Engineering for Reactive Systems:
Coloured Petri Nets for an Elevator Controller. In Proc. of 14th Asia-Pacific Software Engineering Conference
(APSEC), 2007.

12. Rainer Hauser and Jana Koehler. Compiling process graphs into executable code. In Gabor Karsai and Eelco
Visser, editors, GPCE, volume 3286 of Lecture Notes in Computer Science, pages 317–336. Springer, 2004.

13. K. Jensen. Coloured Petri Nets – Basic Concepts, Analysis Methods and Practical Use. Vol. 1, Basic Concepts.
Monographs in Theoretical Computer Science. An EATCS Series. Springer, 1992.

14. Kurt Jensen, Lars Michael Kristensen, and Lisa Wells. Coloured Petri Nets and CPN Tools for modelling and
validation of concurrent systems. International Journal on Software Tools for Technology Transfer (STTT), 2007.

15. Jens Bæk Jørgensen, Kristian Bisgaard Lassen, and Wil M.P. van der Aalst. From Task Descriptions via Coloured
Petri Nets Towards an Implementation of a New Electronic Patient Record. Software Tools for Technology
Transfer, 2007.

16. Kristian Bisgaard Lassen and Wil M.P. van der Aalst. WorkflowNet2BPEL4WS: A Tool for Translating Unstruc-
tured Workflow Processes to Readable BPEL. In R. Meersman and Z.Tari, editors, CoopIS/DOA/ODBASE, 2006.

17. K. H. Mortensen. Automatic code generation from coloured petri nets for an access control system. In Kurt
Jensen (ed.): Second Workshop on Practical Use of Coloured Petri Nets and Design/CPN, Aarhus, Denmark,
pages 41–58, October 1999. InternalNote: Submitted by: khm@daimi.au.dk.

18. Stephan Philippi. Automatic code generation from high-level petri-nets for model driven systems engineering.
Journal of Systems and Software, 79(10):1444–1455, 2006.

19. Simon Tjell. Distinguishing Environment and System in Coloured Petri Net Models of Reactive Systems. In
IEEE Second International Symposium on Industrial Embedded Systems, 2007.

20. R. J. Wieringa. Design Methods for Software Systems: YOURDON, Statemate and UML. Science & Technology
Books, 2002.

146

CPNunf: A tool for McMillan’s Unfolding of
Coloured Petri Nets

Visar Januzaj

Technische Universität München
Fakultät für Informatik

85748 Garching, Germany
visar.januzaj@in.tum.de

October 4, 2007

Abstract. In [11, 12], the branching processes and unfoldings of high-
level Petri nets in general have been defined. We adopt this approach, in
order to define branching processes of Coloured Petri Nets (CPNs). Fur-
ther, we implement the approach, using McMillan’s unfolding algorithm
[15]. The experimental results demonstrate that our implementation suc-
cessfully unfolds CPNs and thus alleviates the state space explosion,
which can occur when generating the state space, e.g., by applying the
state space generation methods [8] used in CPN Tools [17].

1 Introduction

In this paper, we will focus on McMillan’s Petri net unfolding technique [15].
McMillan’s approach, proposed to alleviate the well known state space explosion
problem, is based on partial order semantics for Petri nets, so-called branching
processes. A branching process, or an unfolding of a Petri net, is in fact a partic-
ular simple acyclic Petri net (occurrence net) which can be used to investigate
the behaviour properties of a system (modelled as a Petri net), since it contains
all information about the state space. However, the unfoldings can be infinitely
long and thus not very useful for analysis. Nonetheless, McMillan introduced an
approach to construct a finite initial part of the unfolding of a system, which
still would represent all information about the state space. Such an initial part
is called the finite complete prefix. A prefix is in fact much smaller than the state
space and will never get larger (for a precise statement see [1]).
McMillan’s approach not only attracted other research on the unfolding tech-
nique, that led to further improvements of his initial unfolding approach (such
as [1, 4, 13]), but more importantly also led to the development of prefix-based
model checkers, which are successfully used for the verification of distributed
and concurrent systems (see, e.g., [2, 3, 11, 15, 16]).
Petri nets are in fact a powerful tool for modelling and analysis of distributed
and concurrent systems, and depending on their modelling and expression power,
they are classified in low-level and high-level Petri nets. The unfolding technique
[15], together with its improvements mentioned above, can be applied only on
the low-level family of Petri nets. This is due to the fact, that high-level Petri

147

nets have a more complex compound, e.g., the tokens are distinguishable, i.e,
they can represent different values and/or data structures.
A naive way of unfolding high-level Petri nets is, to first transform high-level
Petri nets into low-level ones and then apply the unfolding algorithm. The dis-
advantage of this approach is that the intermediate low-level Petri net (after the
transformation) can become very large. Further, it can contain a huge number
of places that never will get marked and transitions that will never fire.
However, in [11, 12] the branching processes of high-level Petri nets (in gen-
eral) have been defined, i.e., high-level Petri nets are unfolded directly and no
transformation is needed. Further, a relation between low-level and high-level
branching processes has been established. This relation allows, as stated in [11,
12], "to import results proven for branching processes of low-level nets rather
than re-prove them".
We will adopt the definitions of branching processes of high-level Petri nets pre-
sented in [11, 12] and introduce in this paper the branching processes of Coloured
Petri Nets [5–7]. Furthermore, we implement a tool for investigating the unfold-
ing of Coloured Petri Nets.
In [11, 12], the definitions of high-level branching processes are described by
means of M-nets [11, 12], a family of high-level Petri nets. Therefor, we need to
modify these definitions in order to define the branching processes of Coloured
Petri Nets. In fact, only some modest modification need to take place.
We will informally introduce an algorithm for unfolding Coloured Petri Nets,
as a combination of McMillan’s unfolding algorithm [15] for low-level Petri nets
and the Coloured Petri Nets transformation rules [5]. This will make it easier
to understand the modified definitions of branching processes of Coloured Petri
Nets.
We have to add here, that in [14] the unfoldings of n-safe Coloured Petri Nets,
allowing only finite sets of colours, have been presented. Though, we have de-
cided to rely on the approach presented in [11, 12], since it is superior (it allows
infinite sets of colours), is more compact and easier to understand.
This paper is organised as follows: Section 2 handles the unfolding of low-level
Petri nets and in Section 3 we discuss the unfolding of Coloured Petri Nets.
Our implementation is briefly discussed in Section 4. We show our experimental
results in Section 5 and we give some conclusions and directions for future work
in Section 6.

2 Basic Notation

We assume that the reader is familiar with definitions and notations of Petri nets,
as well as Coloured Petri Nets (CPNs, CP-nets) in particular, such as, marking,
enabling, reachability, preset, postset, initial marking, binding elements, token
elements, multi-sets etc. We will use the definitions and notations of Petri nets as
described in [1]. For the definitions and notations of Coloured Petri Nets we will
rely on [5–7]. In the following we will introduce McMillan’s unfolding technique.

148

2.1 McMillan’s Unfolding

McMillan’s unfolding approach is based on partial order semantics for Petri nets,
i.e., the states of a system are represented implicitly, using branching processes,
which are in fact labelled acyclic Petri nets (occurrence nets).
The idea of McMillan’s unfolding algorithm [15], roughly described bellow, is
very simple: for each token in the initial marking of a given Petri net, make a
copy b of the place p on which it resides and label it with p, and then carry out
the following steps:

– Choose a transition t from the given Petri net.
– For each place p connected to t (those with arcs directed to t) find a copy b,

labelled with p, and mark it with a token. If no such a copy can be found,
then go to the first step. Note: for a given t, do not choose the same subset
of places twice.

– If, for any two places a and b of the marked places, there is a path leading
from one place to the other or there exists a place c containing different
paths leading to a and b, while exiting c by different arcs, go to the first
step.

– Make a copy e of t and label it with t. From each of the marked copies b
draw an arc to e. Erase the tokens.

– For each place p, that t has an arc pointing to it, make a copy b, label it
with p and draw an arc from e to b.

Following these steps one can easily unfold the Petri net presented in Fig.2(a). Its
unfoldings are shown in Fig.2(b) and (c), i.e., unfoldings can have different sizes,
depending on how long we proceed with it. And, depending on the behaviour of
Petri nets, an unfolding can get infinitely long and as such not very useful for
analysis.
Let us briefly introduce in the following the unfoldings of low-level Petri nets
more formally and finally define the algorithm for generating the finite complete
prefix, which can be used for verification.
The relations between any two distinct nodes of a Petri net, x, y ∈ P ∪ T (with
P representing the set of places and T the set of transitions), are defined as
follows:

– x and y are in causal-relation, if there exist a path in the net with at least
one arc leading from x to y or from y to x, denoted y < x and x < y,
respectively.

– x and y are in conflict-relation, denoted x#y, if
∃ t1, t2 ∈ T, t1 �= t2 ∧ •t1 ∩ •t21 �= ∅ : (t1 < x ∧ t2 < y), i.e., there exists a
place containing different paths leading to x and y.

– x and y are in concurrency-relation, denoted x co y, if
¬(x < y) ∧ ¬(y < x) ∧ ¬(x#y) = true, i.e., x and y are neither in causal-
relation nor in conflict-relation.

1 •x represents the preset of x and x• represents the postset of x.

149

Let us consider the branching process in Fig.2(b) regarding the relations de-
scribed above, one can easily get some information about the behaviour of the
original Petri net (Fig.2(a)), e.g., the nodes b1 and e5 are in causal-relation, i.e.,
the action t1 occurs after the state th1. e3 and e4 are in conflict-relation, i.e.,
the actions t2 and t4 cannot take place in parallel. b1 and b4 are in concurrency-
relation, i.e., the states th1 and th2 do not influence each other.
Having introduced the relations above, we can now define the occurrence nets
and the branching processes for low-level Petri nets.
An occurrence net is an acyclic Petri net O = (B, E, F), where B is the set of
conditions (places), E is the set of events (transitions) and F is a flow relation,
satisfying the following:

– ∀ b ∈ B, |•b| ≤ 1, i.e., a condition has only one or none event in its preset,
– ∀ x ∈ (B ∪ E) : |{y ∈ (B ∪ E)|y < x}| < ∞, i.e., each node has a finite set

of nodes being in casual-relation with, and
– ∀ y ∈ B ∪E,¬(y#y), i.e., the nodes are not in self-conflict, thus, no two (or

more) disjunctive paths starting at a condition are allowed to merge into a
single node.

Definition 1. A branching process of a Petri net system Σ = (P, T, F,M0)
is the pair β = (O, p), where O is an occurrence net and p a labelling function
satisfying the following properties:

(i) p(B) ⊆ P and p(E) ⊆ T , i.e., conditions are mapped to places and events to
transitions.

(ii) ∀e ∈ E, the restriction of p to •e is a bijection between •e (in Σ) and •p(e)
(in β), similarly for e• and p(e)•, i.e., transition environments are preserved.

(iii) the restriction of p to the set of conditions that have an empty preset, denoted
Min(O), is a bijection between Min(O) and M0, i.e., β starts at M0.

(iv) ∀ e1, e2 ∈ E : (•e1 = •e2 ∧ p(e1) = p(e2)) ⇒ (e1 = e2), i.e., there is no
redundancy.

p represents the homomorphism from O to Σ.

As mentioned, depending on how long we unfold, we get different sizes of branch-
ing processes, i.e., a branching process can be a prefix of some other branching
process. For example, the branching process in Fig.2(c) is a prefix of the branch-
ing process in Fig.2(b).
A branching process β′ = (O′, p′) is a prefix of another branching process
β = (O, p), denoted β′ β, if O′ is a subnet of O satisfying:

– Min(O) belongs to O′, i.e., both β and β′ start at the same set of conditions,
– if a condition b belongs to O′, then its input event e ∈ •b in O also belongs

to O′ (if it exists), and
– if an event e belongs to O′, then its input and output conditions, •e∧ e•, in

O also belong to O′.

150

There exists a unique, up to isomorphism, maximal (w.r.t.) branching process
βmax for any given Petri net system Σ, called the unfolding of Σ (see [1, 11–13]).
The unfolding of the Petri net in Fig.2(a) is infinite.
In order be able to define the finite complete prefix of an unfolding, we will
introduce in the following some more definitions. These will also contribute on
building a stronger connection between branching processes and their original
Petri nets.
A set of events C ⊆ E is called a configuration if the following is satisfied:

– ∀ e, e′ ∈ C : ¬(e#e′), i.e., C is conflict-free, and
– ∀ e ∈ C : e′ ≤ e ⇒ e′ ∈ C, i.e., C is causally-closed.

The local configuration of an event e of a branching process, denoted [e], repre-
sents the set of events E′, such that e′ ≤ e,∀e′ ∈ E′.
The set of events {e1, e3, e5, e6} is a configuration, as well as the local configu-
ration of e6. The sets C ′ = {e1, e2, e4} and C ′′ = {e1, e3, e6} are not. C ′ satisfies
the second configuration-property but not the first, i.e., e1 is in conflict with
both other events. C ′′ satisfies the first property but not the second, because the
event e5 is missing.
Further, a set of conditions B′ ⊆ B is called a co-set, iff for all b, b′ ∈ B′ : ¬(b <
b′ ∨ b′ < b ∨ b#b′), i.e., b and b′ are neither reachable from each other nor are
they in conflict with each other. A maximal co-set B′ ⊆ B is called a cut.
The set of conditions B′ = {b1, b2, b3} is a co-set, and adding b4 to B′, B′∪{b4},
we get a cut, i.e., there is no other condition that can be added to B′ without
destroying the co-set property, thus, B′ is maximal.
For a given finite configuration C the co-set Cut(C) = (Min(O) ∪ C•)\•C is a
cut. In addition, the set of places Mark(C) = p(Cut(C)) is a reachable marking
in the original Petri net. Thus, a cut represents a reachable marking.
Let C = {e1, e3, e5, e6} be a configuration of the branching process in Fig.2(b)
and Min(O) = {b1, b2, b3, b4} represent the set of conditions with an empty pre-
set, we get the cut Cut(C) = (Min(O) ∪ C•)\•C = {b4, b14, b15, b16}, which
represents the reachable marking Mark(C) = p(Cut(C)) = {th1, th2, f1, f2}.
One can conclude that, a marking M of a Petri net system Σ is represented
in a branching process β of Σ iff β contains a finite configuration C such that
Mark(C) = M . Further, every reachable marking of a Petri net system is rep-
resented in its unfolding, and every marking represented in a branching process
is reachable in the original Petri net system, see [1, 11–13].
There are certain rules, during unfolding, that one has to follow, in order to find
extensions of already built branching processes. These extensions that come into
consideration are called possible extensions and are defined as follows:

Definition 2. A possible extension of a branching process β of a Petri net
system Σ is a pair (t,X)2 such that:

(i) p(X) = •t, and
(ii) (t,X) is not a part of β.

2 X is a co-set of conditions of β, and t a transition of Σ

151

Finite Prefix Algorithm:

input: Σ = (N, M0)
3 — an n-safe net system

output: a finite complete prefix Fin of Σ

Fin := {(s1, ∅), . . . , (sn, ∅)}
pe := PE(Fin)
cut-off := ∅

while pe �= ∅ do
choose an event e = (t, X) in pe such that [e] is minimal w.r.t. ≺
if [e]∩ cut-off = ∅ then

add to Fin e and a condition (s, e) for every output place s to t
pe := PE(Fin)
if e is a cut-off event of Fin then

cut-off := cut-off ∪{e}
pe := pe − {e}

Fig. 1. The finite complete prefix algorithm.

The set of all possible extensions of β is denoted PE(β).

A possible extension of the branching process in Fig.2(c) would be the pair
(t1, {b7, b8, b9}), which is already represented in Fig.2(b).
When dealing with Petri nets that have an infinite unfolding, e.g., like the one
in Fig.2(a), the number of possible extensions is infinite as well. However, our
aim is the construction of a finite complete prefix of an unfolding. In order to
achieve this, we will introduce in the following two other core components of the
prefix generation process, namely the adequate order and cut-off event.
A partial order ≺ on the finite configurations of the unfolding of a net system

is an adequate order if:

– ≺ is well-founded,
– C1 ⊂ C2 ⇒ C1 ≺ C2, and
– ≺ is preserved by finite extensions, i.e., if C1 ≺ C2 and Mark(C1) =

Mark(C2), then the isomorphism I4 satisfies C1 ⊕ E ≺ C2 ⊕ I(E) for all
finite extensions C1 ⊕ E of C1.

Let ≺ be an adequate order on the configurations of the unfolding of a net
system, and let β be a prefix of the unfolding containing an event e. The event
e is a cut-off event of β (w.r.t. ≺) if β contains a local configuration [e′] such
that:

– Mark([e]) = Mark([e′]), and
– [e′] ≺ [e].

4 I is a mapping from the finite extensions of C1 onto the finite extensions of C2. A
configuration C and a set of events E is called an extension of C, denoted C ⊕E, if
C ∪ E is a configuration such that C ∩ E = ∅.

152

(a)

(b)

(c)

cut-off

b1

th1

b2

f1

b3

f2

b4

th2

b5
e1 b6

e2

b7th1 b8 f1 b9 f2 b12

th2

b10

f1

b11

f2

b13
e1

b14

th1

b15

f1

b16

f2

e1t1 e2 t3

e3 t2 e4 t4

e5 t1

e6 t2

b1

th1

b2

f1

b3

f2

b4

th2

b5
e1 b6

e2

b7

th1

b8

f1

b9

f2

b12

th2

b10

f1

b11

f2

e1t1 e2 t3

e3 t2 e4 t4

f1 f2

th2
e2

t3

t4

th1
e1

t1

t2

Fig. 2. A Petri net (a), one of its branching process (b) and its prefix (c).

The conditions e3 and e4 build the cut-off events set of the net in Fig.2(a). The
dashed line through the events e3 and e4 in Fig.2 (b) represents the cut-off -point
of these events, i.e., further construction is stopped, and the already constructed
part (up to the dashed line) represents the finite complete prefix. It is easy to see
that the part after these two events repeats itself, and thus the prefix contains
all the necessary information about the reachable states. A branching process
β = (O, p) of a Petri net system Σ = (P, T, F,M0) is complete iff for every
reachable marking M in Σ there exists a configuration C in β, not containing
any cut-off event, such that:

– Mark(C) = M , indicating that M is represented in β, and
– ∀t ∈ T enabled in M there exists a configuration C ∪ {e} : e /∈ C ∧ p(e) = t.

Further, the number of events in the complete prefix can never exceed the number
of reachable states of a Petri net, see [1, 11–13]. Thus, the size of the prefix is
never larger than the corresponding state space graph.
Now we can put all these definitions together and define the finite complete
prefix algorithm, which is shown in Fig.1. The correctness of the algorithm, Fin
is finite and Fin is complete, is proved in [1], and thus omitted.

3 Unfoldings of Coloured Petri Nets

There exist two ways of unfolding CPNs: unfolding per transformation, i.e., CPNs
are first transformed into low-level Petri nets and then the unfolding technique

153

is applied, and direct unfolding, i.e., CPNs are unfolded directly from their high-
level state.
In the following we will discuss both approaches and we will define the branching
processes of Coloured Petri Nets.

3.1 Unfolding per transformation

In [5] the rules for transforming CPNs into low-level Petri nets are defined. These
rules are shown below.

Definition 3. Let a (non-hierarchical) CP-net Ω = (P, T,A,Σ, V,C, G, E, I)
be given. Then we define the equivalent low-level Petri net as LLPn =
(P ′, T ′, A′, E′, I ′) where:

1. P ′ = TE(p), ∀p ∈ P , i.e., for each possible token element of a CPN place a
low-level Petri net place is generated.

2. T ′ = BE(t), ∀t ∈ T , i.e., for each possible binding element5 of a CPN
transition a low-level Petri net transition is generated.

3. A′ = {((p, c), (t, b)) ∈ P ′ × T ′|(E(p, t) < b >)(c) �= 0} ∪
{((t, b), (p, c)) ∈ T ′ × P ′|(E(t, p) < b >)(c) �= 0},

i.e., we have an arc iff an occurrence of t with a binding b removes/adds at
least one c-token from/to p.

4. ∀((p, c), (t, b)) ∈ A′ ∩ (P ′ × T ′) : E′((p, c), (t, b)) = (E(p, t) < b >)(c) and
∀((t, b), (p, c)) ∈ A′ ∩ (T ′ × P ′) : E′((t, b), (p, c)) = (E(t, p) < b >)(c),
i.e., we weight the arcs with the number of c-tokens which an occurrence of
t with the binding b removes from/adds to p.

5. ∀(p, c) ∈ P ′ : I ′(p, c) = (I(p))(c), i.e., the number of c-tokens in I(p).

The proof about the equivalency of (non-hierarchical) CPNs and their transfor-
mations (low-level Petri nets) is carried out in [5] and, being beyond the scope
of this work, it is omitted.
Following the rules defined above one can transform a (non-hierarchical) CP-net
into a low-level Petri net. Then by applying the unfolding algorithm, introduced
in the previous section, the finite complete prefix is generated. The prefix can
be used to analyse the properties of the original CP-net.
Nonetheless, considering the first transformation rule, it is not possible to trans-
form CPNs allowing infinite sets of colours. This is due to the fact, that CPN
places of types of infinite sets of colours produce during the transformation (1.
rule) an infinite number of low-level Petri net places. This means, we cannot
generate a low-level Petri net with a finite set of places and transitions. Further,
a finite complete prefix cannot be constructed.
Another disadvantage of this approach is that, even if we use only finite sets of
colours, the transformation may generate a huge number of low-level Petri net
places and transitions, that will never get marked and will never get enabled,
respectively.
5 All elements of B(t) automatically satisfy the guard G(t).

154

Let us consider the CP-net Ω in Fig.3, allowing only finite sets of colours6, and
its transformation in Fig.4(a). The transformation contains 13 places and 8 tran-
sitions, which number can grow for larger colour sets and still have only 4 places
that can get marked and 2 transitions that are enabled (considering the current
initial marking). The place names of the form Xy represent a place X holding
the colour y, and the transition names of the form Xij represent a transition X
and the binding of variables n and k to values i and j, respectively. Note: In
Fig.4(a) for the transition T ′

10
, where j = 0, means that variable k is not bound,

since it does not appear on the arcs of transition T ′.
The unfolding of Ω is shown in Fig.4(b), which has a relatively small size con-
sidering the transformation of Ω.
Similar results are observed in [11, 12], where this issue is discussed more detailed,
and the experiments show that especially data-based high-level Petri nets can
generate large intermediate low-level Petri nets.
However, we want to allow infinite sets of colours, since this allows us to analyse
a broader family of CPNs and, as they write in [11, 12], "it is often convenient to
assign to a place the type N rather than {0,...,n}, since n might be not known
in advance". Further, we want to prevent the generation of unnecessary large
intermediate low-level Petri nets.
In the following we will discuss a different approach, which allows the use of
infinite sets of colours.

3.2 Direct unfolding

In this section, we informally introduce an approach for unfolding CPNs, allowing
finite as well as infinite sets of colours, directly from their high-level state, i.e.,
no trasformation needs to take place. This approach is a combination of the
transformation rules introduced in the previous section and McMillan’s unfolding
description represented in Section 2.1:

0: Similar to the first transformation rule (Definition 3.1.), transform each token
element (p, c) of the current marking into a condition b and label it with (p, c).

1: Choose a transition t.
2: For each place p ∈ •t, find all possible copies of p in the occurrence net, i.e.,

all conditions b labelled by (p, c), and mark them with c. If no such copy can
be found, go to step 1. Note: for a chosen t, do not choose the same subset
of places in the occurrence net twice.

3: For each possible binding bp of B(t)7, regarding the current marking, create
a binding element (t, bp) and apply the following:
(a) similar to the second transformation rule (Definition 3.2.), transform

(t, bp) into an event e and label it with t,
(b) for each M(p), p ∈ t•, generated after the occurrence of the actual bind-

ing element (t, bp), apply step 0,
6 The allowed colour sets are, as defined on the top right corner in Fig.3, sets of

integers: {1..2}, {1..3} and {2..5}.
7 B(t) represents the set of all bindings of t.

155

2*n

nn

n+k

kn

T'T

D INT25C INT25

B

1`1

INT12A

1`1

INT13

colset INT12 = int with 1..2;
colset INT13 = int with 1..3;
colset INT25 = int with 2..5;
var n, k : INT;

Fig. 3. A simple Coloured Petri Net model.

(a) (b)

b0A1 b1 B1

e0T11
e1 T ′

10

b2C2 b3 D2

A1 A2 A3 B1 B2

C2 C3 C4 C5 D2 D3 D4 D5

T11 T21 T31 T21 T22 T23 T ′
10 T ′

20

Fig. 4. The low-level Petri net representation (a) of the transformed CP-net in Fig.3
and its unfolding (b).

(c) connect e to its pre- and postset accordingly, similiar to the third trans-
fomation rule (Definition 3.3.).8

4: Go to step 1.

If we follow the steps of our above roughly sketched unfolding approach, we can
easily unfold the CP-net shown in Fig.3. Apart from step 0 and 4, in an optimal
case, one would run the steps 1 - 3 only twice. The resulting unfolding is the
same as the one shown in Fig.4(b), where the transformation took place first, i.e.,
it is possible to unfold CPNs directly from their high-level state. One can easily
notice, that the conditions represent a subset of all token elements, denoted TE,
and the events a subset of all binding elements, denoted BE, of the CP-net Ω.
8 It is very important to note that each binding element (t, b) must satisfy the guard

G(t), and the preset of each event e must be a co-set, otherwise e should not be
generated.

156

This leads to the definition of branching processes for high-level Petri nets as
introduced in [11, 12], which we will discuss in the following.

3.3 Branching processes

Since the branching processes in [11, 12] were presented based on a certain family
of high-level Petri nets, the so called M-nets [11, 12], we will introduce these here
by means of Coloured Petri Nets. In fact, the only changes that need to take
place are the notions "legal place instances" and "legal firings" (see [11, 12]),
which correspond to the for CPNs users well known notions "token elements"
and "binding elements", respectively. Being only a matter of different notions
meaning the same thing, we do not think that some explicit proof is neccessary
to show the equivalency of those notions.

Definition 4. A homomorphism from an occurrence net O = (B,E, F) to a
CP-net Ω is a mapping h : B ∪ E → TE ∪ BE such that:

– h(B) ⊆ TE and h(E) ⊆ BE (conditions are mapped to token elements and
events to binding elements).

– ∀e ∈ E, h(•e)MS = •h(e) and h(e•)MS = h(e)• (the environments of binding
elements are preserved).

– h(Min(O))MS = M0 (conditions with empty preset are mapped to the initial
marking).

– ∀e1, e2 ∈ E: (•e1 = •e2 ∧ h(e1) = h(e2)) ⇒ (e1 = e2) (there is no redun-
dancy).

A branching process of a Coloured Petri Net Ω is a pair β = (O, h) such that O
is an occurrence net and h is a homomorphism from O to Ω.

Relying on the results presented in [11, 12], most of the definitions and results
proven for branching processes of low-level Petri nets, can be easily imported for
branching processes of Coloured Petri Nets, and for each CP-net Ω there exists
a unique, up to isomorphism, maximal branching process βmax of Ω, called the
unfolding of Ω, for a precise statement see [11, 12].
Since unfolding might be infinite, we are interested on finite complete prefixes
of Coloured Petri Nets, which can be gained by using one of the existing finite
complete prefix generating algorithms, e.g., [15, 13, 1]. We will use in this work
McMillan’s algorithm, as introduced in [15]. It is important to add, that different
algorithms, e.g., [1, 13], perform better than the one we use here.
Similarly we can define the possible extensions of branching processes of Coloured
Petri Nets, which is the only thing that needs to be modified, in order to use the
unfolding algorithm presented in Fig.1 to unfold CP-nets. These modifications
affect in fact only the function PE(), which we will not discuss here. More on
this, see, e.g., [12, 11, 1, 3].

Definition 5. A possible extension of a branching process β = (O, h) of a CP-
net Ω is a pair ((t, b),X), where X is a co-set in β and (t, b) ∈ BE(t) is an
enabled binding element, such that:

157

CPN
Tools

.cpn
file

.hl_net
file

Model data

Unfolded CPN

CPNunf

�load

�save

�write

�read

�
McMillan’s
Unfolding

�
write
PEP

Fig. 5. CPNunf ’s structure.

(i) h(XMS) = •t, and
(ii) ((t, b),X) is not a part of β.

4 Implementation

In this section, we will not go into details of our implementation, denoted CP-
Nunf, but rather highlight the restrictions of CPNunf and the representation of
the generated prefix in CPN Tools.
CPNunf is realised using the programming language JAVA. We use the Java Ar-
chitecture for XML Binding [18] to load the contents of the .cpn - XML files into
Java-Object-Trees, as well as for writing it back in such a .cpn - file format. This
process is represented by the arcs read and write in Fig.5, where the structure
of CPNunf is shown. The box Model data represents the data of a CPN model,
which is used as an input for the unfolding process. An unfolded CPN model
(box Unfolded CPN) is then written in a .cpn file, so that it can be loaded into
CPN Tools. Furthermore, CPNunf can convert CPN models into the .hl_net
- file format, accepted by the PEP9 tool [19] and other existing unfolders, such
as PUNF [10], which is able to unfold high-level Petri nets (M-nets [11, 12]). We
used this feature to check the correctness of our tool, by comparing our results
with those of PUNF.

4.1 Restrictions

We restrict ourself to non-hierarchical and non-timed CPNs. Further, we assume
that the CPNs we use are finite and n-safe, for n ≥ 1.
However, we allow the use of infinite and finite colour sets of integers. We think
that for the first step it is most important to show that the theory of unfold-
ing Coloured Petri Nets, presented in the previous section, can be successfully
applied, than implementing an unfolding engine that allows all possible colour
sets. Further, once the essence of the unfolding technique for Coloured Petri Nets
9 PEP is a tool for modelling, compilation, simulation and verification of high-

level/low-level Petri nets.

158

p2

INT

p4

INT

p6

INT

p8

INT

p1

INT

1‘9

p3

INT

1‘3

p5

INT

1‘5

p7

INT

1‘7

p9

INT

1‘1

t1 t2 t3 t4

n 1‘1

n n n n

n+1 n+k

k

Fig. 6. Restrictions.

has been implemented, one can easily extend its features. In fact, there is only a
small number of things one has to modify, e.g., the evaluation of more complex
arc expressions and the calculation of corresponding binding elements.
Let us look at some other restrictions we make. In the following, we informally
present the arc expressions that the CP-nets in this small family can have:

– P → T : the allowed expression on arcs from places to transitions
• <var>

– T → P : the allowed expressions on arcs from transitions to places
• <var>
• <var op var>
• <var op const> (or <const op var>)
• <1‘const>

var denotes the variables which are of integer type, const is a constant, i.e., an
integer value, and op denotes the operation that are allowed, namely, addition,
subtraction and multiplication.
In Fig.6 one can see how the restrictions introduced above can be used in a CPN
model. As it is easy to see, the arcs are not allowed to carry more than one token
colour. In other words the arcs have weight 1.

4.2 Prefix representation in CPN Tools

Since the finite complete prefixes are represented by occurrence nets, they offer
the possibility of running simulations on them, e.g., when one wants to visually
see how and where a deadlock can occur. To make this possible for the con-
structed prefixes of CPNs, we represent the prefixes in a CPN format, i.e., in a
.cpn XML file format, so that it can be loaded in CPN Tools.
We have chosen the colour set E = {e} to be the type of the conditions of the
prefix. Since e is the only colour in the colour set E and it represents a token
that does not carry any data, thus empty, it makes the perfect neutral represen-
tative of token elements in the original CP-net. For the arc expressions we write:

159

e
ee

e

e e

e e

e
e

e
e

e0 e1

e2 e3

b0: (Thinking)_1
b1: (Thinking)_2
b2: (Forks)_12
b3: (Eating)_1
b4: (Eating)_2
b5: (Thinking)_1
b6: (Forks)_12
b7: (Thinking)_2
b8: (Forks)_12
e0: (Start eating)
e1: (Start eating)
e2[cut-off]: (Start thinking)
e3[cut-off]: (Start thinking)

b0

E

b1

E

b2

E

b3

E

b4

E

b5

E

b6

E

b7

E

b8

E

Fig. 7. The CPN-like representation of a finite complete prefix.

E(a) = e,∀a ∈ A, i.e., all arcs are labelled by e.
To easier know which condition and event belong to which place and transition,
respectively, we add some text (as Auxiliary) holding this information.
A representation of a prefix as a CP-net is shown in Fig.7. In fact this prefix
belongs to a slightly modified version of the CP-net in Fig.8(b) representing the
Dining Philosophers problem. In the text on the left side in Fig.7 the names of
the conditions and events are listed. Besides the names of the conditions we see
the names of places, representing the token elements, i.e., (Thinking)_1 repre-
sents the pair (Thinking, 1) ∈ TE. Near the names of events we see the names
of transitions. We do not represent the binding elements, since this information
can be extracted from the token elements shown near the names of conditions
the event is connected to. We cannot know exactly which variable was bound
to which value, but we know which token colours are consumed and which are
produces when a transition in a certain marking occurs. Further, we mark the
events that represent the cut-off events, e.g., e2[cut-off] indicates that e2 is a
cut-off event. Through this we can see which parts of the net repeat itself.
To run simulations on such prefix representations one can initialise the places
(conditions) with the empty colour e, i.e., those places(conditions) that have an
empty preset, which represent the unfolding of the initial marking in the original
CP-net, namely Min(O), e.g., in Fig.7 such conditions are b0, b1 and b2.

160

P1

INT

P1’

INT

1‘1

P2

INT

P2’

INT

1‘1

Pn

INT

Pn’

INT

1‘1

T2T1 T3 Tn T(n+1)

n

nn

n n n

nn

n n

nn

(a) A Buffer of size n.

Thinking

INT

1‘1++1‘2++1‘3

Eating

INT

Forks

INT

1‘1++1‘2++1‘3

Start
eating

Start
thinking

nn

n

nn

n

(b) n = 3 "freestyle" Dining
Philosophers.

Fig. 8. Concurrent CPNs.

5 Experimental results

All the experiments were conducted on a PC with a Pentium� 4/2.66 GHz
processor and 512MB main memory.
The experiments represent the performance of CPNunf when unfolding CPNs,
and that of CPN Tools’ state space methods [8] used for constructing the state
space. We used for our experiments CPN Tools version 1.4.
We present only some of the more representative experiments we conducted dur-
ing this work. The CP-nets we have chosen (see Appendix) can be divided in two
classes: CP-nets involving a lot of concurrency and those without concurrency at
all. In each of these classes we have CP-nets that grow on the number of token
colours and those that grow on the size, i.e. the number of places and transitions.
We have to add here, that it is not possible to compare CPNunf’s performance
with other unfolding tools, since non of the existing unfolders can unfold n-safe
CP-nets allowing infinite (as well as finite) sets of colours. The first known high-
level Petri net unfolder, PUNF [10], which is as a result of the work in [11, 12],
supports only (strictly) 1-safe M-nets (see [11, 12]) and thus not possible to com-
pare its performance with that of CPNunf in all of the conducted experiments.
However, we used PUNF to check the correctness of CPNunf for small 1-safe
examples. This was done by the conversion of CP-nets into the from PUNF ac-
cepted file format .hl_net, using one of the extra features of CPNunf.

5.1 Concurrent CPNs

For our experiments in this class of CP-nets we use the CPN models presented
in figures 8(a) and 8(b) in the Appendix.
In Fig.8(a) (Buff(n)) we present a CP-net modelling a buffer of size n. In Fig.8(b)
(FreeStyle(n)) we present a CP-net modelling the freestyle Dining Philosophers,
where we allow the philosophers to eat and think as they want, i.e., they can eat
by only using one of the forks. In this case each fork belongs to a philosopher
which can be used only by this philosopher.

161

p1

INT

1‘1

p2

INT

p3

INT

p4

INT

p5

INT

p6

INT

p7

INT

t1 t2

t3 t4 t5 t6

n n

nn

n n n n

nnnn

(a) Transition pairs in
conflict with each other.

Ready

INT

Item

INT

WaitFor

INT

1‘1

Desk

INT

NextItem

INT

1‘1

Items

INT

1‘1++1‘2++1‘3

deliver receive consumeproduce

n

n n

n

n

n

n+1

n+1

n

n

n

(b) A Producer/Consumer exam-
ple with n = 3 items to produce.

Fig. 9. Non-Concurrent CPNs.

The experimental results for the unfolding and the state space of these two CP-
nets are represented in Table 1 (see Appendix). Reading from the left to the right,
in the first column is the number n which represents, e.g., the number of freestyle
philosophers (Fig.8(b)) and the number of buffer cells (Fig.8(a)). The second
column represents the number of places |P |, and the third column represents
the number of transitions |T | of a CP-net. The size of the state space (graph)
generated by CPN Tools is shown in the fourth and fifth column, representing
the number of states/nodes |N | and the number of arcs |A|, respectively. The
sixth, seventh and eighth column represents the size of the prefix generated by
CPNunf: |B| = the number of conditions, |E| = the number of events, and
|Ecut| = the number of cut-off events. We have to add here that E represents
all events together with the cut-off events in Ecut. B represents all conditions as
well as all conditions in the postset of each cut-off event in Ecut. The last two
columns represent the time (in seconds) that CPN Tools and CPNunf need for
the generation of the state space and of the finite complete prefix, respectively.
In both examples, Buff(n) and FreeStyle(n), the size of the state space grows
exponentially, i.e., 2n. The time for constructing the state space (graph) increases
as well, as can be seen in Table 1. While during the unfolding the number of
non-cut-off events grows linear to n, i.e., for Buff(n) we have

∑n
i=1

i non cut-
off events, and for FreeStyle(n) we have 2 · n. For the case n = 20 the test for
constructing the state space has been interrupted after 16 hours. The size of the
state space |N | and the number of arcs |A|, for n = 20, as shown in Table 1,
have been calculated by hand according to the previous results for n < 20.

5.2 Non Concurrent CPNs

In this class of experiments we have chosen the CP-nets in Fig.9(a) and Fig.9(b)
(see Appendix). In the following we will discuss the results for each of the CP-
nets.

162

Conflict pairs The CP-net Conflict(n) in Fig.9(a) represents a CPN model
with places on which transition pairs are in conflict with each other, i.e., n is
the number of such places where transition pairs are in conflict. The results
are similar for both approaches, state space and unfolding, see Table 1. We
did though not construct any larger CP-net, i.e., for n > 31, because it was
challenging enough to keep the overview over the CP-net for n = 31, involving
63 places, 62 transitions and 124 arcs. Especially, when constructing it by hand,
as we did. Nonetheless, we think that for such nets, even for greater n, both
approaches would perform similarly, since these kind of CP-nets are neither
complex nor challenging enough. The sizes of the prefix and the state space
grow linear to the size of the CP-net, in fact, the state space and the prefix have
exactly the same size as the original CP-net.

Sequential We will discuss here the CP-net in Fig.9(b), which models a Pro-
ducer/Consumer with n-items. It is a net where only the number of token colours
grows, i.e., the number of items to produce and consume. We can observe from
the results in Table 1 that for n = 1..20 the times for constructing the state space
and the prefix are relatively similar. Beginning with n > 20 the performance of
CPNunf starts to let go, and for n = 130 CPNunf needs 2.65 seconds for the
construction of the prefix, whereas CPN Tools needs only 0.54 seconds for the
state space construction.
Remark: Every time a place p is unfolded, the transitions in the postset of this
place are marked (or promoted) as possible extension candidates, and when such
a transition is chosen, then the possible correct co-sets are calculated out of all
the copies of p, i.e., (p,c) token elements in the occurrence net, and the unfolding
is extended accordingly.
In our example, the place NextItem is unfolded sequentially, holding different
colours, and each time it gets unfolded it promotes transition produce, i.e., each
time produce is chosen, we calculate all possible co-sets out of 130 instances
(conditions in the unfolding) of the place Items and n ≤ 130 instances of Nex-
tItem, depending on how far we have proceeded with the unfolding. We do this,
in order not to forget any possible co-set. The problem here is, that each time
produce is chosen only one co-set can be built and thus extend the unfolding.
The calculation of co-sets is time consuming, especially when a large number
of conditions in the unfolding has to be considered, and this affects the perfor-
mance of CPNunf. Thus, CPNunf has a drawback, when a transition has a large
number of promoters out of which only one co-set at a time can be built. Prob-
ably by saving the information about the already calculated co-sets, one would
get better performance. One may ask though, why the performance of CPNunf
is still good in the example in Fig.8(b), even though the transition Start eating
has a large number of promoters? Start eating has indeed a large number of
promoters, though it gets promoted only once, namely at the beginning when
the initial marking is unfolded.
Unfortunately, it was not possible to compare the CPNunf results with PUNF
for the Producer/Consumer example, since, as mentioned, PUNF does not ac-

163

cept n-safe nets, for n > 1. Nonetheless, the number of non-cut-off events does
not exceed the number of reachable states, and as in the previous example the
state space and the prefix grow linear to each other.

6 Conclusions

We have introduced in this paper the branching processes of Coloured Petri
Nets, adopted from the approach presented in [11, 12]. In addition we briefly
presented our tool, CPNunf, for unfolding finite and n-safe Coloured Petri Nets
allowing finite and infinite sets of colours. The experiments show that CPNunf
can successfully be used for the prefix generation of Coloured Petri Nets, and that
it performs better than CPN Tools’ state space methods [8], when dealing with
CPNs with a lot of concurrency, and thus alleviate the state space explosion
problem. Nonetheless, CPNunf has its weak points, as was the case with the
Producer/Consumer(n) example. This drawback is caused by transitions which
have a large number of promoters, since we calculate the co-sets all over again,
each time a transition is promoted. Keeping track of the already built co-sets,
i.e., not to calculate them each time from the beginning, would probably solve
this problem.
The generated prefixes can be used to investigate the behaviour properties of
CPNs by applying prefix-based model checkers. We conducted some experiments,
which we did not show here, and the results were promising, e.g., we could check
the liveness properties for the CP-net Buff(20), whereas with CPN Tools we
could not even generate the state space graph.
We think that by extending CPNunf, i.e., to allow other colour sets than INT,
and by developing advanced prefix-based model checkers, one can investigate
even more efficiently behaviour properties of CPNs.

Acknowledgments

I would like to thank Bernd Finkbeiner at the University of Saarland and Lars
M. Kristensen at the University of Aarhus for their valuable advice and support.
My thanks go to Maciej Koutny and Victor Khomenko at the University of
Newcastle upon Tyne for their valuable comments and helpful advice on the
unfolding technique.

References

1. J. Esparza, S. Römer and W. Vogler: An Improvement of McMillan’s Unfolding
Algorithm. Formal Methods in System Design 20(3) (2002) 285-310.

2. J. Esparza and C. Schröter: Unfolding Based Algorithm for the Reachability Prob-
lem. Fundamenta Informaticae 46 (2001) 1-17.

3. K. Heljanko: Deadlock and Reachability Checking with Finite Complete Prefixes.
Research Reports 56. Helsinki University of Technology (1999).

164

4. K. Heljanko: Minimizing finite complete prefixes. In Proceedings of the Workshop
Concurrency, Specification and Programming (1999) 83-95.

5. K. Jensen (1992) Coloured Petri Nets. Basic Concepts, Analysis Methods and Prac-
tical Use. EATCS Monographs on Theoretical Computer Science.

6. K. Jensen and L. M. Kristensen: Coloured Petri Nets - Modelling and Verification
of distributed systems. Draft Manuscript (January 2005).

7. K. Jensen and L. M. Kristensen: Coloured Petri Nets - Modelling and Validation
of Concurrent Systems. Lecture Notes (January 2006).

8. K. Jensen, S. Christensen and L. M. Kristensen: CPN Tools State Space Manual.
Manual (2006).

9. V. Khomenko: CLP Documentation and User Guide. Version 6.01. Manual (2002).
10. V. Khomenko: PUNF Documentation and User Guide. Version 3.01β. Manual

(2002).
11. V. Khomenko: Model Checking Based on Prefixes of Petri Net Unfoldings. PhD

thesis. University of Newcastle upon Tyne (2003).
12. V. Khomenko and M. Koutny: Branching Processes of High-Level Petri Nets. In

Proceedings of the 9th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS 2003) (2003).

13. V. Khomenko, M. Koutny and W. Vogler: Canonical Prefixes of Petri Net Unfold-
ings. In Proceedings of the Conference on Computer-Aided Verification (CAV’02)
(2002).

14. V. E. Kozura: Unfoldings of Colored Petri Nets. In Perspectives of System Infor-
matics. 4th International Andrei Ershov Memorial Conference (PSI 2001) (2001)
268-278.

15. K. L. McMillan: A Technique of State Space Search Based on Unfolding. Formal
Methods in System Design 6(1) (1995) 45-65.

16. S. Melzer and S. Römer: Deadlock checking using net unfoldings. In Proceedings
of the Conference on Computer-Aided Verification (CAV’97) (1997).

17. http://wiki.daimi.au.dk/cpntools
18. http://java.sun.com/xml/jaxb/about.html
19. http://theoretica.informatik.uni-oldenburg.de/˜pep/

165

Appendix
Buffer(n)

CP − net StateSpaceGraph Unfolding T ime in seconds
n |P | |T | |N| |A| |B| |E| |Ecut| CP N T ools CP Nunf

1 2 2 2 2 3 2 1 0.00 0.00
2 4 3 4 5 5 4 1 0.00 0.00
3 6 4 8 12 13 7 1 0.00 0.00
4 8 5 16 28 21 11 1 0.00 0.00
5 10 6 32 64 31 16 1 0.01 0.01
6 12 7 64 144 43 22 1 0.03 0.01
7 14 8 128 320 57 29 1 0.06 0.01
8 16 9 256 704 73 37 1 0.18 0.01
9 18 10 512 1536 91 46 1 0.35 0.03
10 20 11 1024 3328 111 56 1 1.57 0.03
11 22 12 2048 7168 133 67 1 2.64 0.04
12 24 13 4096 15360 157 79 1 8.09 0.06
13 26 14 8192 32768 183 92 1 22.85 0.07
14 28 15 16384 69632 211 106 1 84.76 0.09
15 30 16 32768 147456 241 121 1 335.60 0.12
16 32 17 65536 311296 273 137 1 1250 0.15
17 34 18 131072 655360 307 154 1 5011 0.20
20 40 21 220 220· 5.75 421 211 1 - 0.37

FreeStyle(n)
CP − net StateSpaceGraph Unfolding T ime in seconds

n |P | |T | |N| |A| |B| |E| |Ecut| CP N T ools CP Nunf

1 3 2 2 2 5 2 1 0.01 0.00
2 3 2 4 8 10 4 2 0.01 0.00
3 3 2 8 24 15 6 3 0.03 0.00
4 3 2 16 64 20 8 4 0.03 0.00
5 3 2 32 160 25 10 5 0.03 0.00
6 3 2 64 384 30 12 6 0.06 0.00
7 3 2 128 896 35 14 7 0.12 0.01
8 3 2 256 2048 40 16 8 0.40 0.01
9 3 2 512 4608 45 18 9 1.29 0.01
10 3 2 1024 10240 50 20 10 3.82 0.01
11 3 2 2048 22528 55 22 11 17.26 0.01
12 3 2 4096 49152 60 24 12 71.53 0.01
13 3 2 8192 106496 65 26 13 291.54 0.01
130 3 2 2130 2130· 130 650 260 130 - 0.48

Conflict(n)
CP − net StateSpaceGraph Unfolding T ime in seconds

n |P | |T | |N| |A| |B| |E| |Ecut| CP N T ools CP Nunf

1 3 2 3 2 3 2 0 0.00 0.00
3 7 6 7 6 7 6 0 0.00 0.00
7 15 14 15 14 15 14 0 0.01 0.01
15 31 30 31 30 31 30 0 0.01 0.01
31 63 62 63 62 63 62 0 0.10 0.01

Producer/Consumer(n)
CP − net StateSpaceGraph Unfolding T ime in seconds

n |P | |T | |N| |A| |B| |E| |Ecut| CP N T ools CP Nunf

1 6 4 5 4 8 4 0 0.00 0.00
2 6 4 9 8 14 8 0 0.00 0.00
3 6 4 13 12 20 12 0 0.01 0.00
4 6 4 17 16 26 16 0 0.01 0.00
5 6 4 21 20 32 20 0 0.01 0.00
6 6 4 25 24 38 24 0 0.01 0.01
7 6 4 29 28 44 28 0 0.01 0.01
8 6 4 33 32 50 32 0 0.01 0.01
9 6 4 37 36 56 36 0 0.01 0.01
10 6 4 41 40 62 40 0 0.03 0.01
20 6 4 81 80 122 80 0 0.03 0.04
30 6 4 121 120 182 120 0 0.04 0.11
40 6 4 161 160 242 160 0 0.04 0.17
50 6 4 201 200 302 200 0 0.07 0.21
60 6 4 241 240 362 240 0 0.10 0.27
70 6 4 281 280 422 280 0 0.12 0.42
80 6 4 321 320 482 320 0 0.17 0.56
90 6 4 361 360 542 360 0 0.23 0.83
100 6 4 401 400 602 400 0 0.26 1.27
110 6 4 441 440 662 440 0 0.29 1.52
120 6 4 481 480 722 480 0 0.37 2.03
130 6 4 521 520 782 520 0 0.54 2.65

Table 1. State space graph vs. Unfolding.

166

Designing coloured Petri net models: a method

Christine Choppy1, Laure Petrucci1, and Gianna Reggio2

1 LIPN, Institut Galilée - Université Paris XIII, France
2 DISI, Università di Genova, Italy

Abstract. When designing a complex system with critical requirements
(e.g. for safety issues), formal models are often used for analysis prior
to costly hardware/software implementation. However, writing the for-
mal specification starting from the textual description is not easy. An
approach to this problem has been developed in the context of algebraic
specifications [5]. Here, we present a similar method, giving precise and
detailed guidelines for writing coloured Petri nets.

Keywords: specification method, modelling method, coloured Petri net

1 Introduction

While formal specifications are well advocated when a good basis for further
development is required, they remain difficult to write in general. Among the
problems are the complexity of the system to be developed, and the use of a
formal language. Hence, some help is required to start designing the specification,
and then some guidelines are needed to remind some essential features to be
described. [5] proposes a method, providing detailed and precise guidelines, for
the development of specifications written using Casl [1], the Common Algebraic
Specification Language, and Casl-Ltl [13], an extension for dynamic systems
specification, as target languages. However, this method could be used with quite
a variety of target languages.

Petri nets have been successfully used for concurrent systems specification.
Among their attractive features, is the combination of a graphical language and
an effective formal model that may be used for formal verification. Expressiveness
of Petri nets is dramatically increased by the use of high-level/coloured Petri
nets, and also by the addition of modularity features allowing for quite large
case studies.

While the use of Petri nets becomes much easier with the availability of
high quality environments and tools, to our knowledge, little work has been
devoted to a specification method for Petri nets. The aim of this work is to
provide guidelines for coloured Petri net specification on the grounds of the
aforementioned specification method. An initial approach was presented in [2].
In this paper, further work is achieved in different directions. We show how the
relevant items can be identified in the description. We adapted in detail the
method so as to encompass the coloured Petri net target, and achieved a full
treatment of properties.

167

It is important to mention some facts about this work. First, the example
developed here (which is classical for Petri nets) was designed by the authors
of the paper who are not specialists in Petri nets. Hence, they had no prior
knowledge of the usual coloured net modelling the problem, and were only given
a textual description of the problem. Actually, the model obtained is slightly
different from the usual one. Second, they have also tried out other examples,
starting with place/transition nets. The other author did validate their approach
afterwards. Third, this approach was successfully used by our master students.
Therefore, its application to a large category of problems seems rather promising.
It can however still be refined, so as to take into account more detailed features
such as hierarchy/modularity, as mentioned in our conclusions.

The paper is structured as follows. The different steps of our method (finding
events and state observers, looking for properties, modelling with a coloured net,
checking the properties) are explained and illustrated on a case study, in sections
3, 4, 5 and 6 respectively. Finally, section 7 concludes and indicates issues for
future work.

2 The method

The goal of the proposed method is to obtain a
coloured Petri net modelling a given system here-
after denoted by the System. The general approach
is described in Fig. 1.
The proposed method is based on two key ingre-
dients (or constituent features, using the termi-
nology of [5]) that are events and state observers.
Events are, as usual, something happening in the
life of the System (e.g. an action of some com-
ponent, or a change in some part of the System

or in the value of a condition) and are consid-
ered as atomic, with zero-duration, and no two
events may happen simultaneously (thus, in the
case two actions are happening together, there will
be a unique event). A state observer instead de-
fines something that may be observed on the states

Fig. 1: Design methodof the System, defined by the values of some type.

A first step consists in deriving the state observers and the events characterising
the System from its textual description (Sect. 3). Associated properties are then
determined and expressed, leading to possible modifications of state observers
and events (Sect. 4). When reaching a stable set of events, state observers and
properties, the coloured net can be built (Sect. 5) and the properties checked
(Sect. 6). This analysis may lead to modifications of the model, in which case
the process should be repeated.

168

3 Identifying events and state observers

3.1 Guidelines to find events and state observers

The first task of the proposed method is then to find the events and the state
observers that are relevant for the System. We propose a standard technique to
perform this activity: a grammar-based analysis of an informal description of
the System, as advocated by classical object-oriented methods (see e.g. [6]).

More precisely, the starting point should be a processing narrative, as used in
[12], for the System, that is a text in natural language describing its behaviour.
If the informal description does not completely present the behaviour of the

System, but, for example, motivates the need for building the System or just
justifies some of its features, then it should be modified both eliminating and
adding new parts.

The text should then be examined, and the verbs, the nouns (or better the
verbal and the noun phrases), and the adjectives should be outlined. Unless the
same words are used for different meanings, phrases are outlined only once.

This may be achieved on two copies of the text, one where the verb phrases
are outlined, and the other for the noun phrases. To save space in this paper we
used only one copy of our case study, using two different compatible styles, and
this lead us to note that verb phrases and noun phrases can be nested.

In general, the outlined verbs (or verbal phrases) should lead to find out the
events, while the outlined nouns and adjectives should lead to find out the state
observers and the datatypes. The style used has an influence, e.g. the use of
active/passive forms. Since events are also changes in parts of the System, and
some actions may not be explicit (e.g. the water reaches the maximum level, or
the engine is broken), a careful attention should be paid to verbs like “to be”, “to
become”, “to reach”, etc. Thus all outlined verbs are listed, grouping together
the synonyms or different phrases refering to the same concept, and each one
is examined in order to decide whether it should yield an event. Each event
should then be given a name (an identifier), and should be accompanied by a
short sentence describing it. If two events are always simultaneous, they should
be joined into a unique event. Similarly, the outlined nouns and adjectives are
listed, grouping synonyms, and examined in order to decide whether they yield
datatypes or state observers.

Some potential cases are given below:

– if the noun denotes an active subpart of the System, it should not become
a state observer, however it may be the case that the state of this subpart
should be observed (e.g. if there is a user sending messages, check if the state
of the user is relevant)

– similarly, for names of structural parts (or passive subparts) of the System

(e.g. if two processes communicate by means of a channel, check if the status
of the channel is relevant, for example, if it matters that it may be broken)

– the noun denotes data, it may be that it refers to some aspect of the System,
and thus there should be an associated state observer.

169

– if the adjective refers to the System or to part of it, it should become a state
observer of the form “is the adjective applicable to the System/its part?”

Each outlined state observer should then be given a name (an identifier)
and a type, and should be accompanied by a short sentence describing what it
observes in the System.

All the datatypes needed to type the state observers should be listed apart,
together with a (chosen) name and if possible a definition or some operations.

Note 1. It may be quite helpful to group the events and the state observers, and,
if these lists are not short, to add a title to these groups (e.g. events concerning
the sender, or the receiver). These groupings are of course adopted in the above
lists, and should be kept in further tables and formulas, so as to facilitate reading,
eye-checking, and future modifications.

Note 2. To have to decide if a verbal phrase should be an event, and a noun
phrase a state observer may lead to ask questions about the behaviour of the
system (e.g. to decide if two actions are simultaneous).

Three lists are resulting from this step: (i) events, (ii) state observers, (iii)
datatypes.

3.2 Case study: identifying events and state observers

The distributed database is a small example taken from [10] (vol. 1, pp. 21–
25) which describes the communication among a set of database managers in
a distributed system. The managers are supposed to keep their databases as
identical as possible. Hence, each update must be followed by broadcasting the
update to all the other managers, asking them to perform a similar update.

Even though this well-known example is small, it is complex enough to show
how our method could help to specify it and obtain a coloured net model.

The informal description of this case study is given below with emphasis on
verbal phrases, noun phrases, or both (when nested).

Informal description This example describes a very simple distributed database

with n different sites (n is a positive integer, which is assumed to be greater than

or equal to 2). Each site maintains its own copy of the whole database. On
each site, a local database manager handles all operations.

Each manager is allowed to update its own copy of the database.
Then, in order to keep subsequent consistency among all copies, it must
send a message to all the other managers (so that they can perform the

same update on their own copy of the database). In this example we are not
interested in the actual update data.

Hence the messages sent on the network to ensure the cooperation be-
tween the different database managers require to keep track only of the

header information, i.e. the sender and the receiver that are two dif-

ferent database managers. When a database manager makes an update, it

170

must then inform (by sending a message) all other (n−1) managers. Be-

fore a similar operation can take place again, all the updates should be

finished. Therefore, the manager who has asked for an update has to wait

until all other managers have sent back an acknowledgement . When a

database manager is informed of a new update, it must achieve the cor-

responding update on its local copy and send back an ackowledgement.

Informal description analysis The first task to achieve is to analyse the tex-
tual description (as described in Sect. 3.1) so as to find out relevant elements
about the events, the state of the system (expressed in terms of state observers),
and the data involved (either directly mentioned in the text, or returned by the
state observers). We first list the verb phrases and the noun phrases and dis-
cuss for each whether it leads to relevant information. Redundant texts (that
describe the same thing) are grouped together. Then, the events, state observers
and datatypes lists are extracted.

Verbs (verbal phrases)

– maintains its own copy ⇒ no event (a qualification of site)

– handles all operations ⇒ no event (a qualification of database manager)

– allowed to update its own copy of the database ⇒ no event (a quali-
fication of database manager)

– keep subsequent consistency ⇒ no event (a motivation of some actions)

– for the following verbal phrases

• send a message to all the other managers

• inform (by sending a message) all other (n − 1) managers

• has asked for an update

⇒ the inform EVENT is to inform that an initial update was done and that
a manager has asked for an update (corresponding to the one it just did)

– perform the same update ⇒ the corrUpd EVENT is that a similar update
(corresponding to the new one) is achieved

– to ensure the cooperation between the different database managers

⇒ no event (a motivation of some actions)

– keep track only of the header information, i.e. the sender and the

receiver ⇒ this qualifies what is considered in the messages

– Before a similar operation can take place again, all the updates

should be finished ⇒ two EVENTs here,

one (allUpd) is that all updates are finished, and the other (update) is to
perform an initial update (referred to by similar operation)

– wait until all other managers have sent back an acknowledgement

⇒ wait cannot be associated with an event

– all other managers have sent back an acknowledgement ⇒ recAllAck

EVENT

– a database manager is informed of an initial update ⇒ informed

EVENT

171

– it must achieve the corresponding update ⇒ the corrUpd EVENT is
that a database manager achieves the update corresponding to the initial
one made (already mentioned)

– and send back an ackowledgement ⇒ the updAck EVENT is that a
local database manager sends back an acknowledgement

List of events

– inform: a database manager informs (by sending a message) all other (n − 1)
managers that an initial update was made

– allUpd: all updates are finished

– update: a database manager performs an initial update

– recAllAck: all other managers have sent back an acknowledgement, thus all
acknowledgements are received

– informed: a database manager is informed of an initial update

– corrUpd: a database manager achieves the update corresponding to the initial
one made

– updAck: a database manager sends back an acknowledgement

Note that since communication is asynchronous, to inform and to be informed
are two different events. The issue whether there should be a distinction between
events allUpd and recAllAck should be solved.

Nouns (noun phrases)

– distributed database with n different sites ⇒ this refers to the whole system,
so it does not apply to a state observer or data

– n is a positive integer, greater than or equal to 2 ⇒ a constant value of type
integer (or natural)

– sites of the distributed database and the local managers

• site ⇒ this is a “structural part”, each site is referred to by its identi-
fier (that is a datatype), and a question is whether its state should be
characterised

• local database manager ⇒ associated with each site, and a question is
whether its state should be characterised

• its local copy ⇒ it is managed by the local database manager

– several parts of the description mention messages, and will lead to the defi-
nition of the MESSAGE datatype

• message . . . so that they can perform the same update ⇒ a datatype
for messages requiring an update;

• messages sent on the network ⇒ one question is whether the commu-
nication is synchronous or not, and it is decided in this case that it is
asynchronous. Therefore, a state observer provides the messages sent in
the network.

• the header information, i.e. the sender and the receiver ⇒ the message
datatype should include the sender and the receiver

• acknowledgement ⇒ a datatype for another kind of messages

172

List of state observers

– inTransit: Set(MESSAGE) returns the messages in transit in the network
Let us note that, given the study of the noun phrases reported above, we have

only one state observer at this point which is not much. More state observers
will emerge from the next step when working on properties.
List of datatypes

– DBM: identities of the sites
– INT: integers, with a constant value n greater than 2
– MESSAGE: messages that are either update requests or acknowledgements, and
provide only the sender and the receiver of the message. At this stage, we can
provide a provisional definition for this type:

MESSAGE::= Req (DBM,DBM) | Ack (DBM,DBM)

4 Finding the properties

4.1 Guidelines to find the properties

Let us assume that we have the three lists (events, state observers and datatypes)
produced in the previous step. Now we consider the task of finding the most
relevant/characteristic properties of the System and of its behaviour, and to
express them in terms of the identified events and state observers (using also the
identified datatypes). Our method helps to find out these properties by providing
precise guidelines (inspired by [5]) for the net designer to examine all relevant
relationships among events and state observers, and all aspects of events and
state observers.

The behaviour of the System can be seen as the set of all its possible “lives”,
where a life is a sequence of states and events

s0 e1 s1 e2 . . . sn−1 en sn en+1 sn+1 . . .

where each state si defines the values of the state observers, and s0 is an initial
state.

For each state observer SO returning a value of type DT (declared as SO:
DT), we look for:
– properties on the values returned by SO (e.g. assuming DT = INT, SO should

always return positive values);
– properties relating the values observed by SO with those returned by other

state observers (e.g. the value returned by SO is greater than the value
returned by state observer SO1).

For each event EV we look for pre and postconditions and there may be other
properties (e.g. liveness and incompatibility between events).

precondition is what must hold before EV happens, i.e. a condition on the
state observers such that if s is a state of the System in which EV happens,
then this condition holds on s

postcondition is what must hold after EV happened, i.e. a condition on the
state observers such that if s is a state of the System after EV happened,
then this condition holds on s

173

more properties Consider a life of the System where EV happens
s0 e1 s1 e2 . . . sn−1 en sn EV s′

1
e′
1

s′
2

e′
2

. . .

s0 e1 s1 e2 . . . sn−1 en sn is a possible past of EV, whereas s′
1

e′
1

s′
2

e′
2

. . .

is a possible future of EV.
on the past properties on the possible pasts of EV (e.g. the System was in

a state such that the values returned by the state observers satisfy some
condition, or a given event happened)

on the future properties on the possible futures of EV (e.g. the System

will reach a state such that the values returned by the state observers
satisfy some condition, or a given event will happen)

vitality when it should be possible for EV to happen (e.g. if state s satis-
fies some condition, then EV may happen in s, if state s satisfies some
condition, then eventually EV will happen, . . .)

incompatibility the events EV1 such that there cannot exist a state of the

System in which both EV and EV1 may happen

Obviously, there may be some conditions fulfilled by the possible initial states
of the System. Conversely, we propose to characterise the final states when rele-
vant.

initial condition a property about state observers that must hold in any initial
state of the System.

final condition a property about state observers that must hold in any final
state of the System (irrelevant if the System never terminates).

While writing the properties it may happen that:

– we discover the need for operations over the datatypes, or that their defini-
tion should be made more precise and detailed ⇒ modify the definition of
the data types accordingly

– we need new state observers and perhaps new datatypes to express what
they observe (e.g. to express some property about an event) ⇒ add them

– we need new events, or an event has to be split into several other ones, or
different events turn out to be the same ⇒ add/split/identify the events as
required.

4.2 How to find the properties: case study

The text analysis did not bring much in terms of state observers, therefore event
properties are first expressed in natural language, and once the properties are
identified, the corresponding state observers will emerge. The only event lead-
ing to properties other than the pre/postconditions is update. When expressing
properties, we use primed notations for the value of state observers after an event
has taken place. Recall that - and + denote deletion and addition of an element
to a set or to a multiset.

Event properties

update: (a database manager d performs an initial update)

174

precondition no update is taking place (thus we introduce the state ob-
server updating: BOOL) and d is inactive, i.e. in the inactive state (thus
we introduce the state observer inactive: Set(DBM)):
updating = false ∧ d ∈ inactive

postcondition d performed an update (thus we introduce the state observer
updated: DBM+, where the values of datatype DBM+ are those of DBM

plus None), d is not inactive anymore, and an update is taking place:
inactive’ = inactive - d ∧ updated’ = d ∧ updating’ = true

more it should always be eventually possible to make an initial update
inform: (a database manager d informs, by sending a message, all other man-

agers that an initial update was performed)
precondition d performed an initial update:

updated = d

postcondition d is waiting for the other sites to perform the subsequent
updates (thus we introduce the state observer waiting: DBM+), and the
messages sent to require the subsequent updates are in transit on the
network. Moreover, we add to the datatype DBM an operation AllUp-

dReq producing all update request messages:
updated’ = None ∧ waiting’ = d ∧ inTransit’ = inTransit + AllUpdReq (d)

informed: (a database manager d is informed of an initial update)
precondition there is a message in transit requiring d to make a subsequent

update from the site d1, and site d is inactive:
Req (d1,d) ∈ inTransit ∧ d ∈ inactive

postcondition the request message is received by site d, i.e. it is included
in the received messages, thus we introduce the state observer recMsg:
Set(MESSAGE), and d is performing the required update, i.e. it is in
the performing state, thus we introduce the state observer performing:
Set(DBM):
inTransit’ = inTransit - Req (d1,d) ∧ inactive’ = inactive - d ∧

performing’ = performing + d ∧ recMsg’ = recMsg + Req (d1,d)
corrUpd: (a database manager makes the update corresponding to the initial

one)
The occurrence of this event corresponds to a database manager reaching
the state performing, thus it is useless and we drop it from the events list.

updAck: (a database manager d sends back an acknowledgement)
precondition the database manager d performed the update, so it was in

the performing state, and has received a request message from some d1:
d ∈ performing ∧ Req (d1,d) ∈ recMsg

postcondition the database manager d is now in the inactive state, and an
acknowledgement message is in transit on the network:
performing’ = performing - d ∧ inactive’ = inactive + d ∧

recMsg’ = recMsg- Req (d1,d) ∧ inTransit’ = inTransit + Ack (d ,d1)
allUpd: (all subsequent updates are finished)

This is the same as recAllAck, since an acknowledgement is sent when an
update is done. Thus this event will be removed form the event list.

recAllAck: (all acknowledgements are received by database manager d)

175

precondition d is waiting for the acknowledgments, and all acknowledge-
ment messages are in transit on the network (we assume that they are
all received together):
waiting = d ∧ AllAcks (d) ⊆ inTransit

postcondition d is not waiting, the update acknowlegment messages are
not in transit on the network anymore, and no update is taking place.
waiting’ = undefined ∧ updating = false ∧

inTransit’ = inTransit- AllAcks (d) ∧ inactive’ = inactive + d

Thus, while expressing the properties of the events, we have identified the
following new state observers:

(New) List of state observers

inTransit: Set(MESSAGE) returns the messages in transit on the network

inactive: Set(DBM) returns the set of the inactive database managers.

updated: DBM+ returns the database manager that did the initial update, or
None

waiting: DBM+ returns the database manager that is waiting, after having in-
formed the others that a subsequent update is required, or None.

performing: Set(DBM) returns the database managers performing the subse-
quent updates

recMsg: Set(MESSAGE) returns the update request messages received by the
database managers

updating: BOOL returns true if an update is taking place, and false otherwise.

(New) datatypes and operations over the DBM datatype

– DBM+::= : DBM | None

– AllUpdReq: DBM → Set(MESSAGE)
AllUpdReq (d)= { Req (d,d1) | d1:DBM, d 6= d1 }

– AllAcks: DBM → Set(MESSAGE)
AllAcks (d)= { Ack (d1,d) | d1:DBM, d 6= d1 }

State observers properties

inTransit: Set(MESSAGE) (returns the messages in transit on the network)

– Requests from two different database managers are not in transit simulta-
neously:

Req(d1, d1′) ∈ inTransit ∧ Req(d2, d2′) ∈ inTransit =⇒ d1 = d2

– Acknowledgements to two different database managers are not in transit
simultaneously:

Ack(d1, d1′) ∈ inTransit ∧ Ack(d2, d2′) ∈ inTransit =⇒ d1′ = d2′

– There are messages in transit on the the network iff an update is taking
place:

inTransit 6= ∅ ≡ updating = true

176

inactive: Set(DBM) (returns the set of the inactive database managers)

– An inactive database manager is neither waiting nor performing nor did
an update:

d ∈ inactive =⇒ (d 6= waiting ∧ d 6∈ performing ∧ d 6= updated)

– A database manager is either inactive, performing, waiting or just did an
initial update:

d ∈ inactive ∨ d ∈ performing ∨ d = waiting ∨ d = updated

updated: DBM+ (returns the database manager that did the initial update, or
None)

– A database manager that did the initial update is neither waiting nor
performing nor inactive:

updated 6= None =⇒
(updated 6= waiting ∧ updated 6∈ performing ∧ updated 6∈ inactive)

– If there is a database manager that did the initial update then no other
one is waiting, and vice versa

¬(updated 6= None ∧ waiting 6= None)

waiting: DBM+ (returns the database manager that is waiting, after having
informed the others that a subsequent update is required, or None)

– A database manager that is waiting neither just did an initial update nor
is performing nor is inactive:

waiting 6= None =⇒
(waiting 6= updated ∧ waiting 6∈ performing ∧ waiting 6∈ inactive)

performing: Set(DBM) (returns the database managers performing the subse-
quent updates)

– A performing database manager is neither waiting, nor inactive nor just
did an initial update:

d ∈ performing =⇒ (d 6= waiting ∧ d 6∈ inactive ∧ d 6= updated)

recMsg: Set(MESSAGE) (returns the update request messages received by the
database managers)

– A message cannot be received and in transit on the network simultaneously:

recMsg ∩ inTransit = ∅

updating: BOOL (returns true if an update is taking place, and false otherwise)

If an update is taking place, not all database managers are inactive, and if
one of them is waiting then there are messages travelling on the network or
received:

updating = true =⇒
(∃d.d 6∈ inactive) ∧ (waiting 6= None =⇒ inTransit ∪ recMsg 6= ∅)

initial state Initially all database managers are inactive, no update is taking
place, and there is no message in transit on the network nor received

[(∀d.d ∈ inactive) ∧ waiting = None ∧ updated = None ∧ performing = ∅] ∧
updating = false ∧ inTransit = ∅ ∧ recMsg = ∅

final state There should not be any final state, since the distributed database
system will never terminate.

177

5 Modelling using coloured Petri nets

5.1 Building the Coloured Petri Net

At this point, we can assume that we have the list of state observers and events
(plus the list of used dataypes with their operations) resulting from the previous
steps, and that for each event the pre/postconditions have been expressed. Recall
that we have collected also other properties about the state observers and the
events, that will be checked in the last step of the method, once the net is built.

We now show how starting from the
above elements, derived from the analysis of
the System, we can build a coloured Petri net
modelling the System itself. Obviously, the
net cannot be built in all cases, so we present
a canonical form for events, state observers
and pre/postconditions that allow the pro-
cedure to result in a coloured net. Whenever
the form is not canonical, it is possible to
do some refactoring replacing the used state
observers, events, and datatypes with other Fig. 2: Deriving the coloured net

ones able to model the System in an equivalent way; analogously it is possible to
replace the pre/postconditions with equivalent formulae. This scheme is sketched
in Fig 2. We present later various patterns showing how to do the refactoring in
some quite common cases.

The canonical form requires that:

1. each state observer has type MSet(T) for some type T;
2. the pre/postconditions have the following form 1

pre (∧i=1,...,n expi ≤ SOi) ∧ (∧j=n+1,...,m expj ≤ SOj) ∧ cond,
post (∧i=1,...,n SO′

i = SOi − expi + exp′i) ∧ (∧j=n+1,...,m SO′

j = SOj − expj)∧

(∧h=m+1,...,r SO′

h = SOh + exp′h) ∧ cond′,
where

– SOl (l = 1, . . . , r) are all distinct,
– the free variables occurring in expl and exp′l (l = 1, . . . , r) may occur in

cond and in cond′,
– no state observer occurs in cond, cond′, expl and exp′l (l = 1, . . . , r),
– and cond and cond′ are first order formulae.

The pre/postconditions on event EV in canonical form require that:
- before EV occurs some values are contained in SO1, . . . , SOn and that such

values are deleted and that other values are added when EV occurs;
- before EV occurs some values are contained in SOn+1, . . . , SOm and that

such values are deleted when EV occurs, but nothing is added;
- some values are added to SOm+1, . . . , SOr when EV occurs.

1 ≤, + and − denote respectively the inclusion, union and the difference between
multisets.

178

. . .S O 1 S O ne x p 1 e x p n . . .S O n + 1 S O me x p n + 1 e x p m
. . .S O m + 1 S O r

e x p ' 1 e x p 'ne x p 'n + 1 e x p 'mE V c o n d / \ c o n d '
Fig. 3. Deriving arcs from pre/post-conditions

– whereas cond expresses some condition over exp1,. . . ,expm, and cond′ some
condition over exp′

1
,. . . ,exp′r.

Thus it will be possible to realise the behaviour of EV described by these
pre/postconditions by the flowing of valued tokens throughout the places of a
coloured net.

Assume that all elements are in the canonical form. The coloured Petri net
is defined as follows. The state observers and the events determine the places
and the transitions, while the pre/postconditions determine the arcs. Each state
observer SO : MSet(T) becomes a place named SO coloured by T, and each event
EV becomes a transition, named EV. If the pre/postconditions of an event EV

have the same form as in (2), then the set of arcs is as pictured in Fig. 3.

Petri net design patterns The method proposed in this paper offers various
patterns that may help to refactorise the state observers, the events and the
pre/postconditions to reach a canonical form, and thus to be able to generate
a coloured Petri net. Similar to design patterns in [8] in a specific case several
patterns may be applicable. In this subsection we present the two patterns that
will be applied in the case study.

Black-Box Value Pattern This pattern may be applied whenever we want to
reflect in the Petri net that a state observer SO : T observes values considered
as black-blox, that is we are not interested in exploiting the structure (if any) of
the observed values, i.e. of T.

Assume we have a state observer SO : T where SO appears in the pre/
postconditions only in atoms having either the form SO = exp or SO′ = exp′,
and SO does not appear in exp nor exp′.2

2 This is not restrictive at all, since a complex formula cond in which SO appears can
always be transformed into an equivalent one SO = exp ∧ cond[exp/SO].

179

The logical specification of the System may be refactorised by replacing SO

with SO : MSet(T), while the pre/postconditions should be transformed as fol-
lows:

– pre: SO = exp ∧ cond post: SO′ = exp′ ∧ cond′ should become:
pre: exp ≤ SO ∧ cond post: SO′ = SO − exp + exp′ ∧ cond′

– pre: SO = exp ∧ cond post: cond′ where SO does not appear, should
become:
pre: exp ≤ SO ∧ cond post: SO′ = SO − exp ∧ cond′

– pre: cond where SO does not appear, post: SO′ = exp′ ∧ cond′ should
become:
pre: X ≤ SO∧ cond (X having type T) post: SO′ = SO−X + exp′ ∧ cond′

We can prove that if initially SO = exp, and thus SO = {exp}, then always
size(SO) = 1 (thus we are sure that SO is correctly realised to return in each
state a unique value).

Set Value Pattern This pattern may be applied to a state observer SO : Set(T)
whenever we want the elements of the observed sets to be realised as tokens
typed by T flowing in the Petri net.

Assume we have the state observer SO : Set(T), and that the pre/postcondtion
have the form:

pre: (exp1 ∪ exp2) ⊆ SO ∧ cond post: SO′ = (SO − exp2) ∪ exp3 ∧ cond′

where exp1, exp2 and exp3 are sets (also empty), and SO does not appear in
exp1, exp2, exp3, cond and cond′.

The precondition requires that SO includes the elements in exp1 ∪ exp2,
whereas the occurrence of EV requires that only the elements in exp2 are removed
from SO, and that the elements of exp3 are newley added to SO.

The logical specification of the System may be refactorised by replacing SO

with SO : MSet(T), and transforming the pre/postconditions as follows:
pre: (exp1 + exp2) ≤ SO ∧ cond

post: SO′ = SO− (exp1 + exp2) + (exp1 + exp3)∧ cond′ Note that to get the
canonical form exp1 should first be deleted and then added again to SO.

Unfortunately this refactoring does not guarantee that SO always returns a
set, thus we should add the following property to the System, to be checked at a
later stage:

¬∃x . {x, x} ≤ SO (i.e. SO is a set).

5.2 Modelling with coloured Petri nets: Case study

In Tab. 1 and 2, we summarise the events, their pre/postconditions, the state
observers and the datatypes used to model the distributed database system.

The logical specification of the database system produced up to now is not
in the canonical form that allows to generate a coloured Petri net, first of all
because it uses state observers not typed by multisets. Hence, we now apply the
patterns proposed in Section 5.1. For the sake of simplicity, we use the same

180

Events State Observers Datatypes

update inTransit: Set(MESSAGE) DBM

inform inactive: Set(DBM) MESSAGE::=
Req(DBM, DBM) | Ack(DBM, DBM)

informed updated: DBM+ DBM+::= : DBM | None

updAck waiting: DBM+ BOOL::= true | false

recAllAck performing: Set(DBM)
recMsg: Set(MESSAGE)
updating: BOOL

Table 1. Elements of the distributed database specification

Event pre post

update updating = false ∧ updating′ = true ∧
d ∈ inactive inactive′ = inactive − {d} ∧

updated′ = d

inform updated = d updated′ = None ∧ waiting′ = d ∧
inTransit′ = inTransit ∪ AllUpdReq(d)

informed Req(d1, d) ∈ inTransit ∧ inTransit′ = inTransit − {Req(d1, d)} ∧
d ∈ inactive inactive′ = inactive − {d} ∧

performing′ = performing ∪ {d} ∧
recMsg′ = recMsg ∪ {Req(d1, d)}

updAck d ∈ performing ∧ performing′ = performing − {d} ∧
Req(d1, d) ∈ recMsg recMsg′ = recMsg − {Req(d1, d)} ∧

inactive′ = inactive ∪ {d} ∧
inTransit′ = inTransit ∪ Ack(d, d1)

recAllAck waiting = d ∧ waiting′ = None ∧ updating = false ∧
AllAcks(d) ⊆ inTransit inTransit′ = inTransit − AllAcks(d) ∧

inactive′ = inactive ∪ {d}

Table 2. Pre/postconditions of the distributed database specification

names for the new state observers introduced by the refactoring. In Tab. 3 and 4
present the resulting events, state observers, datatypes and pre/postconditions.
Note that the datatypes are unchanged.

The coloured net derived from this canonical form is presented in Fig. 4.
We used the coloured Petri nets tool CPNtools [7], and its associated CPNml

language. The declarations are shown in Fig. 5. The DBM+ colour set is declared
DBMP as a union of database managers (man:DBM) and value None.

6 Checking the properties

6.1 Checking the properties of the System

The previous steps of our design method did exhibit several properties which
must be satisfied by the System. These properties should be expressed accord-

181

Events State Observers Datatypes

update inTransit: MSet(MESSAGE) DBM

inform inactive: MSet(DBM) MESSAGE::=
Req(DBM, DBM) | Ack(DBM, DBM)

informed updated: MSet(DBM+) DBM+::= : DBM | None

updAck waiting: MSet(DBM+) BOOL::= true | false

recAllAck performing: MSet(DBM)
recMsg: MSet(MESSAGE)
updating: MSet(BOOL)

Table 3. Elements of the distributed database specification, in canonical form

Event pre post

update false ≤ updating ∧ updating′ = updating − false + true ∧
d ≤ inactive ∧ inactive′ = inactive − d ∧
X ≤ updated updated′ = updated − X + d

inform d ≤ updated ∧ updated′ = updated − d + None ∧
X ≤ waiting waiting′ = waiting − X + d ∧

inTransit′ = inTransit + AllUpdReq(d)

informed Req(d1, d) ≤ inTransit ∧ inTransit′ = inTransit − Req(d1, d) ∧
d ≤ inactive inactive′ = inactive − d ∧

performing′ = performing + d ∧
recMsg′ = recMsg + Req(d1, d)

updAck d ≤ performing ∧ performing′ = performing − d ∧
Req(d1, d) ≤ recMsg recMsg′ = recMsg − Req(d1, d) ∧

inactive′ = inactive + d ∧
inTransit′ = inTransit + Ack(d, d1)

recAllAck d ≤ waiting ∧ waiting′ = waiting − d + None ∧
AllAcks(d) ≤ inTransit ∧ inTransit′ = inTransit − AllAcks(d) ∧
X ≤ updating updating′ = updating − X + false ∧

inactive′ = inactive + d

Table 4. Pre/postconditions of the canonical distributed database specification

ing to the language accepted by the coloured Petri nets tool to be used. Then
the properties should be checked using the tool. One possibility is to build the
occurrence graph and check that all states generated satisfy the properties.

In case some properties do not hold, the designer should look up for the causes
of the problem by e.g. closely examining the states not satisfying the property
and the paths leading to these states. This will give insight to locate the source
of the problem. The model will then have to be modified accordingly, and the
properties check repeated until all properties hold. It might also be the case
that some properties derived from the informal specification are not correctly
expressed. Then the properties should be changed and the new ones checked.

182

None

None

d

d

man(d)

Ack(d.d1)

d

d

d

Req(d1.d)

Req(d1.d)

d

RecAllAcks

update UpdAck

informed

waiting

None DBMP

updated

DBMP

performing

DBM

recMsg

MESSAGE

updating

false

BOOL

inactive

DBM.all()

DBM

inTransit

MESSAGE

AllAcks(d) Req(d1.d)

false

man(d)

false

b

inform
AllUpdReq(d)

true

X

man(d)

man(d)

XNone

1 1`None

1 1`None

1 1`false

3
1`D(1)++
1`D(2)++
1`D(3)

Fig. 4. Distributed database coloured Petri net

val nbdbm=3;
colset DBM=index D with 1..nbdbm;
colset DBMP=union man:DBM + None;
colset PAIRDBM = product DBM * DBM;
colset MESSAGE=union Req:PAIRDBM + Ack:PAIRDBM;
var d,d1:DBM;
var X: DBMP;
var b:BOOL;
fun AllUpdReq d = filter (fn Req(x,y) => (x<>y) andalso (x=d) | Ack(_,_) => false)

(MESSAGE.all());
fun AllAcks d = filter (fn Req(_,_) => false | Ack(x,y) => (x<>y) andalso (y=d))

(MESSAGE.all());

Fig. 5. Declared types and functions for the distributed database Petri net

6.2 Checking the properties of the case study

The various properties were checked on the state space graph. For most of them,
it boils down to checking that the set of graph nodes satisfying the negated
property is empty. We now explain a representative excerpt of the properties,
the others are given in [4], together with a picture of the analysis page.

The property of Fig. 6 is part of the state observers properties. It states that
a database manager is either inactive, performing, waiting or just did an initial

update:
d ∈ inactive ∨ d ∈ performing ∨ d = waiting ∨ d = updated

DBM.all() is the set of database managers, thus the union (denoted ++) of the
places (inactive, performing, updated and waiting) database manager multisets
should be equal (negated by <><>) to DBM.all(). Note that places waiting and
updated may contain value None and this value should not be considered, and
this is taken care of by function RemoveNone().

183

fun RemoveNone dbms =
ext_col (fn man db => db) (filter (fn None => false | _ => true) dbms);

fun alldbmsonce() = PredAllNodes(fn n =>
Mark.Database’inactive 1 n ++
Mark.Database’performing 1 n ++
RemoveNone(Mark.Database’updated 1 n) ++
RemoveNone(Mark.Database’waiting 1 n) <><> DBM.all());

Fig. 6. Property: state of all database managers

The following property refers to one of the properties brought up by the
description analysis. There is at most one site waiting or that did an initial

update (updated):
¬(updated 6= None ∧ waiting 6= None)
To check this property, we find the maximum number of tokens in places

waiting and updated together, without considering the None value. This is done
by checking this number for each state in the graph and taking the maximum
of the previous result and the value for the current state, using the function
in Fig. 7. After examining all states, the result is 1, therefore the property is
satisfied.

fun maxupdate () = SearchAllNodes(fn _ => true,
fn n => size(RemoveNone(Mark.Database’waiting 1 n)) +

size(RemoveNone(Mark.Database’updated 1 n)),
0, Int.max);

Fig. 7. Property: only one database manager did an initial update

Finally, if an update is taking place, not all database managers are inactive,

and if one of them is waiting then there are messages travelling on the network

or received :
updating = true =⇒ (∃d.d 6∈ inactive) ∧ (waiting 6= None =⇒ inTransit ∪

recMsg 6= ∅)
This property, expressed in Fig. 8 is split into two functions: upd1() to check

the first part concerning the database managers, and upd2() to check the second
part concerning the messages on the network.

7 Conclusion

Designing a formal specification has proved to be important to check properties
of a system prior to hardware and software costly implementation. However,
even if such an approach reduces both the costs and the experimenting time,
designing a formal model is difficult in general for an engineer.

As mentioned in the introduction, to our knowledge little work was devoted
to a specification method for Petri nets. However, we would like to mention
some work done by M. Heiner and M. Heisel in [9] to combine place/transition

184

fun upd1() = PredAllNodes(fn n =>
if (Mark.Database’updating 1 n == 1‘true andalso

Mark.Database’waiting 1 n <><> 1‘None)
then (Mark.Database’inTransit 1 n ++

Mark.Database’recMsg 1 n == empty)
else false);

fun upd2() = PredAllNodes(fn n =>
if (Mark.Database’updating 1 n == 1‘true)
then (Mark.Database’inactive 1 n == DBM.all())
else false);

Fig. 8. Property: an update is taking place

nets with Z specifications so as to reduce the net complexity. In [11], another
approach is to rely on problem frames concepts to structure the problem before
developing the Petri net.

This paper gives guidelines to help with the design process. It has proven
successful with people who are not used to model with Petri nets, hence a positive
point w.r.t. the applicability of the design methodology.

The main idea is to derive key features from the textual description of the
problem to model, in a rather guided manner so as to deduce the important enti-
ties handled, and then to transform all this into Petri net elements. At the same
time, some properties inherent to the system appear, that are also formalised
and should be proven valid on the model at an early stage. When a coloured net
is obtained, with these properties satisfied, further analysis can be carried out,
leading to possible changes in the specification.

Our method is inspired by the one developed in [5] for simple dynamic sys-
tems specification with the Casl-Ltl algebraic specification language, which
also requires to look for state observers, events (or rather elementary interac-
tions), and datatypes, but in addition provides an extensive list of potential
properties one should look for. This way of handling properties has the advan-
tage of giving ideas on the potential properties, with the drawback of systematic
long lists.

While in [2], the initial approach presented kept these properties list, here
we adapted the method so as to guide the search for properties in a ”light” way.

In [3], we developed this method for place/transition nets with several ex-
amples. Place/transition nets could easily be used when the involved datatypes
are boolean or natural numbers (and of course if the size and complexity of the
problem is reasonable). Since this is a simpler case (tokens do not have a value,
and the matching mechanism with the arc labels is very simple), we could de-
velop a more systematic guidance of the specification development. In [4], we
address also the issue of the choice of the appropriate family of Petri nets that
may be hinted by the datatypes needed in a case study.

In this paper, we have used the classical distributed database problem as a
running example so as to explain the design methodology step by step.

For this case study we present a choice for state observers that take the whole
state of the system as an argument. We could have taken another option, to have

185

a function yielding, for any database manager site, its state, and clearly the way
to the coloured net would have been less straight. Future work will detail even
more the different ways to transform a state observer into a place.

In this work, we have stuck to commonly used datatypes, but a designer
could write his own complex types and functions to be used by his coloured net.
Reflecting them in the net is then more complex and must be done in a rigorous
way so as to ensure the applicability and the success of the approach.

Moreover, a large specification is often designed in a modular way. This is
not tackled here, but including such features, e.g. hierarchies in coloured nets,
is an important issue that we plan to address in the future. For instance, if
repeated patterns are found in the Petri net, then they can be put in subnets,
and a hierarchy may be introduced. If the net exhibits some symmetries, some
folding may occur, and the appropriate colors are introduced. An evaluation of
the method will be carried out in the near future.

Acknowledgements We thank the anonymous referees for their careful reading
and fruitful comments.

References

1. M. Bidoit and P. Mosses. CASL User Manual, Introduction to Using the Common
Algebraic Specification Language. LNCS 2900. Springer-Verlag, 2004.

2. C. Choppy and L. Petrucci. Towards a methodology for modelling with Petri nets.
In Proc. Workshop on Practical Use of Coloured Petri Nets, Aarhus, Denmark,
pages 39–56, Oct. 2004. Report DAIMI-PB 570, Aarhus, DK.

3. C. Choppy, L. Petrucci, and G. Reggio. A method for modelling with
place/transitions nets. Technical report, Université Paris 13, 2006.

4. C. Choppy, L. Petrucci, and G. Reggio. A method for modelling with coloured
nets. Technical report, Université Paris 13, 2007.

5. C. Choppy and G. Reggio. A formally grounded software specification method.
Journal of Logic and Algebraic Programming, 67(1-2):52–86, 2006.

6. P. Coad and E. Yourdon. Object-Oriented Analysis. Prentice-Hall, Englewood
Cliffs, N.J., 1991.

7. The CPN Tools Homepage. http://www.daimi.au.dk/CPNtools.
8. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, 1995.
9. M. Heiner and M. Heisel. Modelling Safety-Critical Systems with Z and Petri Nets.

In Proc. SafeComp ’99, LNCS 1698, pages 361 – 374. Springer-Verlag, 1999.
10. K. Jensen. Coloured Petri nets: basic concepts, analysis methods and practical use,

vol. 1, vol. 2 et vol. 3. Monographs in Theoretical Computer Science, Springer-
Verlag, London, UK, 1995.

11. J. Jorgensen. Addressing Problem Frame Concerns Using Coloured Petri Nets and
Graphical Animation. In International Workshop on Advances and Applications
of Problem Frames, 2006.

12. R. S. Pressman. Software Engineering: A Practitioner’s Approach, 6th edition.
McGraw-Hill, 2005.

13. G. Reggio, E. Astesiano, and C. Choppy. Casl-Ltl : A Casl Extension for Dy-
namic Reactive Systems Version 1.0– Summary. Technical Report DISI-TR-03-36,
DISI – Università di Genova, Italy, 2003. Available at ftp://ftp.disi.unige.it/
person/ReggioG/ReggioEtAll03b.pdf.

186

From Requirements via Colored Workflow Nets to an
Implementation in Several Workflow Systems

R.S. Mans1, W.M.P. van der Aalst1, P.J.M. Bakker2, A.J. Moleman2, K.B. Lassen3 and J.B. Jørgensen3

1 Department of Information Systems, Eindhoven University of Technology, P.O. Box 513, NL-5600 MB, Eindhoven,
The Netherlands. {r.s.mans,w.m.p.v.d.aalst}@tue.nl

2 Academic Medical Center, University of Amsterdam, Department of Innovation and Process Management,
Amsterdam, The Netherlands. {p.j.bakker,a.j.moleman}@amc.uva.nl

3 Department of Computer Science, University of Aarhus, IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark.
{krell,jbj}@daimi.au.dk

Abstract. Care organizations, such as hospitals, need to support complex and dynamic workflows. More-
over, many disciplines are involved. This makes it important to avoid the typical disconnect between
requirements and the actual implementation of the system. This paper proposes an approach where an
Executable Use Case (EUC) and Colored Workflow Net (CWN) are used to close the gap between the
given requirements specification and the realization of these requirements with the help of a workflow
system. This paper describes a large case study where the diagnostic trajectory of the gynaecological
oncology care process of the Academic Medical Center (AMC) hospital is used as reference process. The
process consists of hundreds of activities. These have been modeled and analyzed using an EUC and a
CWN. Moreover, based on the CWN, the process has been implemented using four different workflow
systems. This shows the applicability of our approach and allows for an evaluation of different approaches
towards flexibility in workflow systems.

1 Introduction

For some time now, especially in academic hospitals, there has been a need for support in controlling and
monitoring health care processes for patients [29]. In general, there is the need to support the diagnostic and
therapeutic trajectory of health care processes.

One of the objectives of hospitals is to increase the quality of care for patients [16]. However, what we also
see is that on the governmental side and on the side of the health insurance companies, more and more pressure
is put on hospitals to work in the most efficient way as possible. Moreover, in the future, an increase in the
demand for care is expected.

Workflow technology can be seen as an interesting vehicle for the support and monitoring of health care
processes. Workflow Management Systems (WfMS) support processes by managing the flow of work such that
the work is done at the right time by the proper person [3]. Advantages of successfully applying workflow
technology are that processes supported by workflow systems can be executed faster and more efficiently. In
addition, processes can be monitored, which has also as consequence that processes can be executed faster.

The difficulties that hospitals have to cope with when they want to support their health care processes, and
the need for supporting their health care processes emerges from the fact that healthcare processes are diverse,
flexible and that several specialties can be involved in the treatment process. So, what we find is that, for
example, for a group of patients with the same diagnosis, the number of different examinations and treatments
can be high and the order in which they are done can vary greatly. Also, because of intermediary results of
diagnostic examinations, the way a patient reacts to the offered treatment, and the condition of the patient
itself, it may be necessary to continuously adapt the care process for a particular patient [14].

Actually, there is a large gap between a running hospital process and its implementation in different workflow
systems. The main focus of this paper is to present the steps we took to bridge this gap. Moreover, we will also
explicitly focus on how and when we used the formal modeling language Colored Petri Nets (CPNs)[20, 27] in
the steps that we took.

187

Real world
(healthcare process)

Interviews with users

Requirements model

Executable Use Cases (EUCs)
(CPN + animation)

Specification model

Colored Workflow Net (CWN)
(CPN)

YAWL

FLOWer

ADEPT1

Declare

Implementation

focus on context (processes, resources,
data, systems, decisions)

focus on realization (system and
software)

insights

insights

insights

analysis

insights

insights

insights

Fig. 1. Overall approach

The steps that we took for bridging the gap between a running hospital process and its implementation in
different workflow systems are given in Figure 1. First of all, the healthcare process under consideration is the
diagnostic trajectory of patients visiting the gynaecological oncology outpatient clinic in the AMC hospital,
a large academic hospital in the Netherlands. This process covers what can happen from the moment that a
patient is referred to the AMC hospital for treatment till the patient is eventually diagnosed or dismissed. As
can be seen in Figure 1, we first had interviews with people involved in the healthcare process and made a CPN
model out of it. This involved creating an Executable Use Case (EUC) [23], which is a CPN model augmented
with a graphical animation. EUCs are formal and executable representations of work processes to be supported
by a new IT system and can be used in a prototyping fashion to specify, validate, and elicit requirements. We
will present the EUC that has been created and elaborate on how it has been used. Afterwards, we converted
the EUC into a Colored Workflow Net (CWN), which is closer to an implementation of the healthcare process
in a workflow system. Finally, the CWN serves as a basis for implementation of the healthcare process in four
different workflow systems. Also, as the CWN is a formal model of the workflow to be executed and serves
as input for implementation of the process in different workflow systems we will, in Section 5, focus on the
analysis of the CWN to ensure that a correct CWN had been made.

Moreover, an additional goal of implementing a hospital process in different workflow systems is that we
wanted to identify the requirements that have to be fulfilled by workflow systems, in order to be successfully
applied in an hospital environment. To this end, we choose to implement the healthcare process in workflow
systems which already provide a certain kind of flexibility. As a consequence, as workflow management systems,
we choose YAWL [4], FLOWer [11], ADEPT1 [37] and Declare [34]. However, in this paper we will not elaborate
on the requirements identified.

The approach described above is closely related to the approach described in [7, 24]. In [7, 24], EUCs and a
CWN have been used to go from an informal description of a real world process to an implementation of the
same process in a certain workflow system. However, we studied an existing healthcare process of a hospital in
detail, whereas in [7, 24] rather small cases are used. To give an idea about the size of the healthcare process,
it needs to be indicated that the EUC consists of 689 transitions, 601 places and 1648 arcs and that the CWN
consists of 324 transitions, 522 places and 1221 arcs. Moreover, we made an implementation in four different
workflow systems instead of only one workflow system and systematically collected feedback from the care
organization (AMC). Furthermore, in [7] there was only user involvement in the EUC phase, whereas in [24]
there has not been any user involvement.

2

188

This paper is structured as follows: Section 2 introduces the approach followed. Section 3 introduces the
EUC and the gynaecological oncology healthcare process of the AMC hospital that we studied. In Section
4, Colored Workflow Nets are introduced and used to model the selected process. This is followed by the
implementation of the healthcare process in four different workflow systems, in Section 6. In Section 5, we will
focus on the analysis of the CWN. Related work is given in Section 7. The paper finishes with the conclusions
in Section 8.

2 Approach

In this section, we will first elaborate in general on the approach that has been followed, to go from a real-
life process to the implementation of this in several workflow systems. Afterwards, the separate steps will be
considered in more detail. The steps followed in the approach were already shown in Figure 1. So, we started
with a real-life case, and for which we created a EUC, a CPN model augmented with a graphical animation.
Afterwards, the EUC is converted into a CWN, which is also a CPN model. The CWN is then used as basis for
the implementation of the healthcare process in four different workflow systems; namely YAWL [4], FLOWer
[11], ADEPT1 [37], Declare [34].

We will now elaborate in more detail on the steps that have been followed, especially on the second and third
step that has been followed. As can be seen in Figure 1, the model used in the second and third step are CPN
models. CPNs have been chosen because they provide a well-established and well-proven language suitable for
describing the behavior of systems with characteristics like concurrency, resource sharing, and synchronization.
In this way, they are well-suited for modeling workflows or work processes [3]. The CPN language itself, is
supported by CPN Tools [13]. CPN Tools has been used to create, simulate, and analyze the CPN models that
are presented in this paper.

As can be seen in Figure 1, our approach started with interviewing users. The users were involved in the
diagnostic trajectory of the gynaecological oncology healthcare process of the AMC hospital in Amsterdam. In
these interviews we focussed on identifying the work processes which could then be modeled as a EUC. The
EUC consists of a CPN model, which describes the real-life process, and an animation layer on top of it, which
can be shown to the users of which we modeled the process.

In the CPN model, any concepts and entities deemed relevant can be used. So, we can use the CPN language
in an unrestricted manner which means that tokens, places and transitions may refer to any concept or entity,
i.e. also concepts which are not directly part of the process but still relevant from the users point of view.

Remember that, according to the definition given in [23], that EUCs are formal and executable represen-
tations of work processes to be supported by a new IT system and can be used in a prototyping fashion to
specify, validate, and elicit requirements. Actually, we have used the model part of the EUC for modeling the
healthcare process and have used the animation layer as a vehicle for validating the model. In other words, we
used EUCs for checking together with the users involved, whether we modeled their work processes correctly,
instead of specifying, validating and eliciting requirements. Only the animations have been shown to the user
whereby the CPN model, which is lying beneath the animation layer, remains hidden for the user. This has been
the main reason for using EUCs. As we were modeling the work processes of doctors and nurses, we assumed
that they were not able to understand the CPN model themselves. Therefore, we used animations which are
understandable for end users and in this way provided a suitable opportunity for validating our model.

Furthermore, EUCs have to ability to “talk back to the user”, which is not possible with a static CPN model.
As EUCs provide executable descriptions of a work process, they can be used in a trial-and-error fashion. When
users remark that something is wrong or missing, the EUC can easily be adapted and again shown to the user.

After we validated our model, we took the underlying CPN model of the EUC and translated it into
a workflow model. By making this workflow model we restricted ourselves to the workflow domain. More
specifically, by making the workflow model, we restricted ourselves to concepts and entities which are common
in workflow languages. Compared to the EUC model, we now only used a fixed library of concepts and entities,
whereas in the EUC any concept or entity deemed relevant may be used. In addition, the workflow model

3

189

contains actions that will be supported by the new system in interaction with human users, and it also contains
actions that are to be fully automated by the new system. Actions that are not going to be supported by the
new system, are left out.

More specifically, as workflow model we used a, so called, Colored Workflow Net (CWN) as modeling
language. A CWN is a CPN model restricted to the workflow domain and can be seen as a high-level version
of the traditional Workflow Nets (WF-nets) [1].

When the CWN model had been finished, we used it as a basis for the process models used to configure each
of the four workflow systems. This way we implemented four systems to support the gynaecological oncology
healthcare process. As workflow systems, YAWL, FLOWer, ADEPT1 and Declare have been chosen. All these
four workflow systems provide a certain kind of flexibility, which in this context is deemed relevant. The reason
for this is that we want to support a healthcare process and for supporting healthcare processes it is obvious
that a certain kind of flexibility is needed, and which needs to be provided by a workflow system. In Section
6, we will elaborate more on these systems and discuss which kind of flexibility is exactly provided by each
system.

As is indicated in Figure 1, during the construction of the EUC and the CWN and the implementation in
the different workflow systems, additional insights can be obtained about previous phases. So, there can be
often iterations back and forth between the components in the figure. However, we only had feedback from
the people involved in the process during the interview, EUC and CWN phase. In other words, during and
after finishing the implementation in the four workflow systems, we did not have any feedback from the people
involved in the process. Although this could have given us valuable feedback about the process, we think we
already clearly identified the process during the construction of the EUC and CWN.

In Figure 1, we see that there exists a dashed line between the first two blocks and the last two blocks.
This dashed line represents a shift of focus when going from the left side of the line to the right side of the
line. At the left side of the dashed line the focus is on the context, whereas at the right side the focus is on the
realization. So, with context we mean that the focus is on processes, resources, data, systems and decisions and
with realization we mean that the focus is on the system and software itself. Within this shift of focus, the CPN
modeling language, which has been used for the EUC and the workflow model, provides a smooth transition
between the two foci. In addition, we believe this addresses the classical “disconnect” which exists beween
business processes and IT. Furthermore, as on the left side of the dashed line one of the foci on processes,
this means that the approach via an EUC and CWN only works in case we are dealing with process oriented
systems, like document handling systems. This can also be derived from the fact that both the EUC and CWN
are process models.

It is important to mention that all the models and translations between models have been done manually.
In the end, this leads to a full implementation of a complete healthcare process in four different workflow
systems. Because of the specific nature of the EUC model and the CWN, it is obvious that the CWN cannot be
generated automatically from the EUC. This is because a decision needs to be made between what needs to be
supported by the workflow system and what not, and which needs to be reflected within the CWN. However, in
principle, a (semi-) automatic translation from the CWN to each of the workflow systems is possible. In [7, 24],
it has been demonstrated that it is possible to (semi-) automatically generate BPEL code or a YAWL model
from a CWN model.

We already indicated that we studied a large healthcare process; the EUC consists of 689 transitions and
the CWN consists of 324 transitions. Moreover, for creating the EUC and the CWN more than 100 man hours
were needed for each model. As we also needed to get acquainted with the workflow systems used, configuring
each workflow system also took more than 80 man hours per system. Additionally, around 60 man hours were
needed for interviewing and getting feedback from the people involved in the process.

3 Executable Use Case for the Gynaecological Oncology Healthcare Process

In this section, we first introduce the gynaecological oncology healthcare process which we studied. After that,
we will consider one part of the healthcare process in more detail and for this part we will elaborate on how the

4

190

animations have been set-up within the EUC. In other words, for the selected part of the model, we elaborate
on what is shown in the EUC and explain how still the routing within the model can be influenced. Finally,
we will elaborate on the obtained experiences. Note that given the size of the CPN model of the EUC (689
transitions, 601 places, 1648 arcs and 2 colorsets) it is only possible to show a small fragment of the overall
model.

() ()

p

p

p

p

pp

p

p

p

p

p

p

p

p

p

p

p

pp

p

p

start Prepare pathology
and radiology meeting

prepare pathology and radiology meeting

end
system

start
system

input ();
output ();
action
(let
val _ = setupAnimation()
in () end);

consultation
via

telephone

consultation via telephone

MDO
meeting

MDO meeting

visit
outpatient

clinic

visit outpatient clinic

Examination
under

anesthethics
examination under anesthethics

X ray

X ray

CT

CT

MRI

MRI

radiology
meeting

radiology meeting

pathology
meeting

pathology meeting

pre-
assessment

pre- assessment

first
visit

first visit

pathology

pathology

referral patient
and preparations

for first visit

referral patient and preparations for first visit

lab

lab

MDO

UNIT

start
meetings

UNIT

UNIT

end radiology
meeting

UNITra
start ra

UNIT

pa
start pa

UNIT

gyn onc
start ra

UNIT

gyn onc
start pa

UNIT

prepare

UNIT

START

1`1

PATIENT

MRI
needed

PATIENT

subsequent
visits

PATIENT

pathology
needed

PATIENT

END

PATIENT

eua
needed

PATIENT

CT
needed

PATIENT

pre-ass
needed

PATIENT

lab
needed

PATIENT

x ray
needed

PATIENT

start first
visit

PATIENT

start
gyn onc

PATIENT
referral patient and preparations for first visit

pathology

radiology meeting

X ray

consultation via telephone visit outpatient clinic

end pathology
meeting

first visit

lab

MDO meeting

pathology meeting

prepare pathology and radiology meeting

pre- assessment examination under anesthethics

CT

MRI

Fig. 2. General overview of the gynaecological oncology healthcare process.

In Figure 2, the topmost page of the CPN model of the EUC is shown, which gives a general overview of the
diagnostic trajectory of the gynaecologic oncology healthcare process in the AMC hospital. In the remainder of
this paper, we will simply refer to the gynaecological oncology healthcare process itself, instead of the diagnostic
trajectory of the gynaecological oncology healthcare process.

Actually, as can be seen in Figure 2, two different processes have been modeled which are relevant for
the gynaecological oncology healthcare process. The first process, which is modeled in the lower part of the
picture, deals with the diagnostic trajectory that is followed by a patient when referred to the AMC hospital
for treatment, till the patient is diagnosed. In the first part of the process we have that already some diagnostic
examinations can be ordered, before actually the patient visits the hospital for the first time, like a MRI or a
CT-scan. Moreover, also some administrative activities are already done before the patient visits the hospital
for the first time. Later on, in this section, we will elaborate on more detail on this specific part of the process.

During the first visit of the patient to the hospital, the doctor examines the patient and decides whether
he/she is confident with the already ordered examinations or that some new examinations need to be ordered.

5

191

In addition, the doctor decides about the next appointment(s) he want to have with a patient. Afterwards, the
nurse is responsible for the arrangement of the dates of the additional examinations and the next appointment(s)
with the doctor which can be either again a visit to the outpatient clinic or an appointment by telephone. These
appointments are made together with the patient. Furthermore, also some administrative activities are done,
like giving additional information about the treatment and handing over some folders.

As already indicated, the next appointment of the doctor with the patient can be either via telephone,
or again a visit to the outpatient clinic. In general, at these appointments, the doctor decides about which
examinations need to be ordered, canceled or replaced. The same holds for appointments of the doctor with a
patient. In addition, some administrative activities need to be done, mostly by the nurse.

Actually, the doctor can order a lot of different examinations, and also at different specialties. For example,
at the radiology department he can order an X-ray or a CT-scan or at the anaesthesiology department he can
order a pre-assessment. The interactions with these specialties and also the process within these specialties are
modeled at the bottom of Figure 2.

The second part of the process, which is modeled in the upper part of the picture in Figure 2, deals with the
weekly organized meetings, on Monday afternoon, for discussing the status of patients and what needs to be
done in the future for these patients. These three different meetings are called “radiology meeting”, “pathology
meeting” and “MDO” and respectively people from radiology, pathology and people involved in the therapeutic
trajectory are involved, as well as doctors from the gynaecological oncology itself.

Remark that some connections exist between the two processes. However, as we only focussed on the
activities and ordering of activities within one process, we did not put any effort in making these connections
explicit.

Now, after introducing the gynaecological oncology process in general, we want to focus on a specific part
of the process. More specifically, we focus on the very beginning of the process (transition “referral patient
and preparation for first visit”), in which a doctor of a referring hospital calls a nurse or doctor of the AMC
and after which an appointment is made for the first visit of the patient and some appointments for diagnostic
examinations are already made. The appointment making part of the process is shown in the upper part of
Figure 3. For example, we see that the first visit of the patient needs to be planned and that it is possible to
make appointments for an “MRI”, “CT” or “pre-assessment”.

In Figure 3, we see how the CPN model and the animation layer are related within the EUC. At the top,
we see the CPN model that is executed in CPN Tools. At the bottom we see the animation that is provided
within the BRITNeY tool [12], the animation facility of CPN Tools. The CPN model and the animation layer
are connected by adding animation drawing primitives to transitions in the CPN model, which update the
animation. The animation layer shows for the last executed activity in the CPN model, which resources, data
and systems are involved in executing the activities and it also shows which decisions are made at the activity.
This allows for focusing on what happens in the context of the process. In addition, for the last executed activity
in the model, a separate panel is shown which indicates which activities are enabled and may be executed.
One of the enabled activities in the panel can be selected and executed, which changes the state of the process
and in this way, we can directly influence the routing within a process. Remark, that in BRITNeY already
functionality is available for showing a panel with enabled bindings, but we slightly adapted it to our needs, so
that only the enabled activities are shown instead.

In this way, the animation layer provides a view on the current state of the process and shows which next
activities may be executed. When an activity is executed in the CPN model it is reflected by updates to the
animation layer. Consequently, the CPN model and the animation layer remain synchronized.

In the snapshot shown in Figure 3, the animation visualizes activity “make document and stickers”. In
addition, the panel at the top right side of the snapshot in Figure 3, shows which activities can be executed
after that activity “make document and stickers” has been executed. Moreover, in the animation we see that a
nurse of the outpatient clinic is responsible for executing the “make document and stickers” activity and that
no decisions need to be made. We also see that a computer is needed for executing the activity. Moreover, the
panel at the top right side shows that, amongst others, the activities “plan MRI” and “send fax to pathology”
may be executed now.

6

192

Fig. 3. Animation belonging to the “make document and stickers” activity. In addition, the panel at the top right side
shows which activities are enabled now.

We have shown the animations to the people that were involved in the gynaecological oncology process.
Before starting with the animations, we explicitly asked the people whether they wanted to indicate whether
something was wrong, missing, or superfluous, with regard to the animation shown, and the enabled activities
shown in the panel. In general, the people where very positive and indicated that in this way, they were able
to check whether the process modeled in the EUC corresponded with their workprocess. Also, they gave useful
feedback about activities that had not been modeled or were placed in the wrong order, and whether the
information which was shown for each activity, was correct or not. However, it needs to be indicated that later

7

193

on, when making the CWN model, we found out that some activities where missing and which we did not
discover with the EUC approach. But in general, we can say that the EUC approach was really helpful in
validating the model and we believe that better results have been obtained than when we would have shown
the plain CPN models or process schemas of a workflow management system to the people involved.

4 Colored Workflow Net for the Gynaecological Oncology Healthcare Process

In this section, we first introduce the Colored Workflow Net (CWN) that has been made for the gynaecological
oncology healthcare process and shortly discuss the differences between EUCs and CWNs. After that, we will
consider the same part of the CWN in detail as we considered in detail for the EUC. For the selected part of the
CWN, we elaborate on what is shown regarding the different perspectives of the CWN. Finally, the differences
with the corresponding part of the EUC are discussed. Note that also in this case, given the size of the CWN
model (324 transitions, 522 places and 1221 arcs and 53 colorsets) it is only possible to show a small fragment
of the overall model.

As can be seen in Figure 1, both the EUC and CWN are CPN models. Remember that a CWN is a workflow
model in which we restricted ourselves to concepts and entities which are common in workflow languages,
whereas in the EUC any concept or entity deemed relevant may be used. Furthermore, as can be seen in Figure
1, the focus of the CWN is on the realization, which means that the CWN only contains activities which will
by be supported by the workflow system. Moreover, as workflow systems also cover the resource and data
perspective, it is clear that in addition to the EUC, which only covers the control-flow perspective, the CWN
should also cover the resource, data and operation 4 perspective. Moreover, the resource, data and operation
perspective are covered by the CWN by using ML-functions, where the animation in the EUC only textually
showed resources, data, and systems.

The syntactical and semantical requirements for a CWN have been defined in [7]. Moreover, a CWN abstracts
from implementation details and language/application specific issues. According to [7], a CWN should be a
CPN with only places of type Case, Resource or CxR. Tokens in a place of type Case refer only to a case and
the corresponding attributes (e.g. name patient, patient id), and tokens in a place of type Resource refer only
to resources. Finally, tokens in a place of type CxR refer to both a case and a resource. There are some subtle
differences between the conventions in [7] and the conventions we have used to construct the CWN, and of
which we mention only the two most important ones. First of all, the data attributes of the original CWNs
in [7] may only be name-value pairs of the string type. In this way, we consider its use as quite limited as in
practice also often lists are used, and therefore we decided to also allow list types for the value part of the
name-value pair. For example, patients which need to be discussed during the weekly pathology meeting are
put on a, so called “pathology list”. To this end, in the CWN model, we need to have a data attribute with
name “pathology list” and where the value part is of a list type. Furthermore, we decided to separate the case
data from the case, so that case data can be accessed everywhere in the model. For this we use the concept of
a fusion place in CPN Tools.

In Figure 4, we see the CWN for the EUC CPN which has been shown in Figure 3. In Figure 4, there
exist some connections between transitions and places of the type Resource and CaseData. In addition, by using
guards, which belong to a transition, explicit references are made to the resource and data perspective. Places
of the type Resource contain information about the availability of different kinds of resources and places of the
type CaseData contain information about the case data belonging to a case and is a product of a case identifier
and the data belonging to that case. Note that tokens in places of type CaseID contain unique identifiers for
each case and that tokens in places of type CaseData are a product of a case identifier and case data. In this
way, activities can inspect or change case data for a certain case. Furthermore, tokens in a place of type CidxR
refer to both a case id and a resource.

For example, in Figure 4, we see that the activity “enter patient data into system” need to be performed by
a nurse, and which is indicated by the guard at the top right side of the activity. Furthermore, activity “send
4 The operation perspective describes the elementary operations performed by resources and applications.

8

194

Fig. 4. CWN for the EUC shown in Figure 3.

fax to pathology” may only be performed if the pathology slides of the referring hospital need to be sent to
the AMC, and which is specified by the guard with the texts “slides” and “needed” in it. From this guard, it
also becomes clear that we need to have a data attribute with name slides, but in the model we may also have
other data attributes like name, patient id, or pathology list.

If we compare the CWN of Figure 4 with the EUC CPN of Figure 3, we see that there exist some differences.
First of all, some activities which are shown in the EUC CPN do not appear in the CWN, as they are not
supported by the workflow system. The activities of the CWN in Figure 4 which can be directly mapped to
activities of the EUC in Figure 3 are colored green. In other words, they are preserved. For example, we see
that activities “enter patient data into system” and “plan MRI” are both in the EUC and CWN, so they are
preserved. The activities of the EUC which are not supported by the workflow system, and as a consequence do
not pop up in the CWN, are colored purple. For example, the activities “send signal to nurse” and “communicate
diagnosis to nurse” of Figure 3 are not supported by the workflow system.

Moreover, the places “Resources1” and “Resources2”, which are colored red, are only present in the CWN as
it contains information about the availability of resources and which is needed for the organizational perspective
of the CWN. Also, the place “Case global”, which is colored blue, is only present in the CWN as it contains

9

195

the corresponding data attributes for each case instance and which is needed for the data perspective of the
CWN. Furthermore, the guards belonging to transitions explicitly reference the resource and data perspective.

When we compare the EUC and CWN with each other it is clear that both cover the control flow perspective.
However, the CWN also covers the resource, data and operation perspective. As these perspectives are also
covered by workflow systems it is clear that the CWN, when compared to the EUC, is the next and also useful
step towards the implementation of a process in a certain workflow system.

5 Analysis

In this section, we will focus on the analysis of the CWN model. Within CPN Tools there are two possibilities
for the analysis of the CWN model, namely; simulation / animation and state space analysis [21]. Simulation
can be used to investigate different scenarios and explore the behaviors of the model. Moreover, simulation also
allows for performance analysis. However, performing several simulations does not guarantee that there are no
errors within the model and in this way does not hold as a proof for correctness of the model. Therefore, state
space analysis needs to be used for verification as it ensures that all possible executions are covered. In other
words, with a state space analysis, the full state space of a CPN model is computed which makes it possible to
verify, in the mathematical sense of the word, that the model possesses a certain formally specified property.
The state space analysis of CPN Tools can handle state spaces up to 200.000 nodes and 2.000.000 arcs [22] and
provides, amongst others, visual inspection and query functions for investigating (behavioral) properties of the
model.

Since we are dealing with workflows we are interested in the so-called soundness property. Soundness for
workflow nets is defined in [1] as: for any case, the procedure will terminate eventually and the moment the
procedure terminates there is a token in the sink place (i.e. a place with no outgoing arcs) and all the other
places are empty. Moreover, there should be no dead transitions. To check for soundness of the CWN, we need
to abstract from resources. Moreover, as the CWN is exceptionally large (324 transitions, 522 places and 1221
arcs and 53 colorsets) we also need to simplify the colorsets and verify things in a hierarchical manner. To be
more precise, for each transition on the top page of the CWN which was linked to a subnet, we checked the
soundness of the subnet. Note that such a subnet can also contain subnets. Checking the soundness of such
a subnet has been done according to the following procedure. First, we only focussed on the subnet itself by
removing all nodes and subnets from the cpn file which did not belong to the subnet being considered. In other
words, only the subnet being considered was kept in the CPN file. Second, we removed all colorsets and all data
attributes which were not relevant for the subnet being considered. A data attribute was not considered relevant
when there was not any function in the subnet which actually accessed the data attribute. After finishing the
two preceding pre-processing steps, we were actually ready to check whether the subnet was sound. For the
actual check for soundness we added an extra transition t∗ in the subnet which connects the only output place
with the only input place and is also called short-circuited net [1]. According to [1], if the short-circuited net
is live and bounded, then the original net is sound. If some error had been found, the subnet was adapted and
again checked for its soundness. This last step has been repeated till the subnet was sound. Afterwards, if some
errors had been found, the CWN model had been adapted in the same way. A limitation of the approach is
that a subnet which is checked for its soundness should not be too large and / or have many colorsets.

For example, for the CWN, shown in Figure 4, we originally found out that for the activities “skip plan MRI”
and “skip plan CT” no double-headed arc had been used between these transition and place “CaseGlobal”.
This could be concluded from the liveness properties of the state space report of the short-circuited net which
are shown in Figure 5. In Figure 5, it can be seen that there are no live transition instances whereas for the
short-circuited net all transitions had to be live and all places had to be bounded in order for the original net
to be sound. From one of the dead markings the errors could be located and easily be fixed. So, For the CWN
shown in Figure 4 all transitions are live and all places are bounded for the short-circuited net which means
that it is sound. Moreover, for this sound CWN, it took 1901 seconds to calculate the full state space which
consists of 39808 nodes and 156800 arcs.

10

196

Fig. 5. Liveness Properties section of the state space report generated for the erroneous CWN.

In general, for each subnet we found around one or two errors, but we also had subnets which were error-
free. Furthermore, although there are more interesting structural properties which can be checked for, we only
checked for soundness.

6 Realization of the system in different workflow systems

In this section, we will focus on the realization of the system in four different workflow systems. As workflow
systems, the systems YAWL, FLOWer, ADEPT1 and Declare have been chosen. All these workflow systems
provide a certain kind of flexibility, which in the context of implementing a healthcare process in different
workflow systems, is deemed relevant. It is clear that for supporting healthcare processes some flexibility needs
to be provided by the workflow system. Moreover, these workflow systems have been chosen as we wanted to
identify the requirements that have to be fulfilled by workflow systems, in order to be successfully applied in an
hospital environment. However, in this paper we will not elaborate on the requirements identified. Furthermore,
we could easily obtain each of these systems.

For each of the four workflow systems that provide flexibility, we will discuss the kind of flexibility which is
provided.

As input for the implementation, the CWN will be used. For each system, we will exemplify how the CWN
model is mapped to the modeling language used in the workflow system itself. This is done by manually mapping
the CWN of Figure 4 to the modeling language used in the workflow system itself. Differences are compared
and, in this way, also an impression of the workflow system itself is obtained.

At the end of this section we will elaborate on the applicability of a CWN for implementation of a process
in a workflow system.

6.1 YAWL / Worklets

YAWL (Yet Another Workflow Language) [4] is an open source workflow management system5, which is based
on the well-known workflow patterns6 [5] and is more expressive than any of the other languages available today.
Moreover, instead of only supporting the control-flow perspective and data perspective, YAWL also supports
the resource perspective.

YAWL supports the modeling, analysis and enactment of flexible processes by, so called, worklets [9] and
which can be seen as a kind of process fragments. Specific activities in a process are linked to a repertoire of
possible actions. Based on the properties of the case and other context information, the right action is chosen.
The selection process is based on a set of rules. Also, during enactment it is possible to add new actions to the
repertoire.
5 YAWL can freely be downloaded from www.yawl-system.com
6 More information about the workflow patterns can be found on www.workflowpatterns.com

11

197

Fig. 6. Screenshot of the YAWL editor.

In Figure 6, we see how the CWN of Figure 4 is mapped onto the YAWL language. Given the fact that
YAWL can be seen as a superset of CWNs, it was easy to translate the CWN of Figure 4 in YAWL. So, it
was possible to directly translate the transitions into YAWL tasks. The places of the CWN model can also be
directly translated into YAWL conditions, but due to syntactical sugaring there is no need to add all places
as conditions to the YAWL model. For example, the “make document and stickers” activity in YAWL is an
OR-split, which has as meaning that one or more of the outgoing paths may be followed, which means that it
is optionally to follow the paths to, for example, the “plan MRI” and “plan CT” activities. In this way, the
skip activities which appear in the CWN are not needed in the YAWL model.

Finally, the YAWL model consists of 231 nodes and 282 arcs and for which it took around 120 hours to
construct a model that could be executed by the YAWL workflow engine.

6.2 FLOWer

FLOWer is a commercial workflow management system provided by Pallas Athena, the Netherlands7. FLOWer
is a case-handling product [8]. Case-handling adds flexibility by focussing on the data aspect rather than on the
control-flow aspect. Case-handling offers four core features [8]. The first one is that all information available
within a case is available (i.e., present the case as a whole rather than showing just bits and pieces), which avoids
“context tunneling”. Second, the decision of which activities are enabled is based on the information which
is available within the case, instead of the activities which are already executed. Third, work distribution is
separated from authorization. This allows for having additional types of roles, like skipping or redoing activities
in the process. In this way, many more (implicit) scenarios are possible within the process. Moreover, a fourth
distinguishing feature of Flower is that workers are allowed to view and add/modify data before or after the
corresponding activities have been executed.

In Figure 7, we see how the CWN of Figure 4 is mapped onto the FLOWer language. In this case, it was
also quite easy to translate the CWN in FLOWer. Namely, it was possible to directly translate the transitions

7 http://www.pallas-athena.com/

12

198

Fig. 7. Screenshot of the FLOWer editor.

into FLOWer activities and also the causal relationships could be taken into account. In Figure 7, all nodes are
activities except the node with name “choice tel contact”. This node represents the deferred choice which needs
to be made in the beginning of the process, as can be seen in Figure 4. So, in the beginning of the process,
either the “ask information from doctor referring hospital” activity can be chosen or the “write down data
patient and make decision” activity can be chosen, but not both.

Finally, the FLOWer model consists of 236 nodes and 190 arcs and for which it took around 100 hours to
construct a model that could be executed by the FLOWer workflow engine.

6.3 ADEPT1

ADEPT1 is an academic prototype workflow system [37], developed at University of Ulm, Germany. ADEPT1
supports dynamic change which means that the process of one individual case can be adapted. So, it is allowed
to deviate from the pre-modeled process template (skipping of steps, going back to previous steps, inserting
new steps, etc.) in a secure and safe way. That is, the system guarantees that all consistency constraints (e.g.,
no cycles, no missing input data when a task program will be invoked) which have been ensured prior to the
dynamic (ad hoc) modification of the process instance are also ensured after the modification.

In Figure 8, we see how the first part of the CWN of Figure 4 is mapped onto the ADEPT language. In the
ADEPT language, the activities are represented by rectangles. However, as in the ADEPT language we only
have an XOR and an AND split and join, we need to introduce activities which are empty, i.e they are not
executed by users. For example, the “make stickers and document” activity in ADEPT is an AND-split which
is followed by several empty XOR-splits in order that several activities, like “plan MRI” or “plan CT” can be
performed or skipped.

13

199

Fig. 8. Screenshot of the ADEPT1 editor. AND-splits/joins are represented by a black rectangle in a node and XOR-
splits/joins are represented by a black triangle in a node.

Finally, the ADEPT model consists of 40 nodes and 53 arcs and for which it took around 8 hours to construct
a model that could be executed by the ADEPT1 workflow engine.

6.4 Declare

Declare is an academic prototype workflow system [34], developed at Eindhoven University of Technology, the
Netherlands8. In Declare the language used for specifying processes, which is called ConDec, is a declarative
process modeling language, which means that it is specified what should be done. Imperative process modeling
languages, like YAWL and FLOWer, specify how it should be done, which leads to over-specified processes. By
using a declarative rather than an imperative / procedural approach, ConDec aims at an under-specification
of the process where workers have room to “maneuver”.

The ConDec language allows for modeling and enacting dynamic processes and is based on Linear Temporal
Logic (LTL) [25]. In this way, it can be specified which behavior is forbidden. Moreover, within Declare it is very
important to mention that it is assumed that users already know what should be done. The users can execute
activities in any order and as often as they want, but they are bound to certain rules, which are specified in
the ConDec language.

Furthermore, Declare also supports dynamic change, so that the process of individual cases can be adapted.
In terms of Declare, this means that it is allowed to deviate from the pre-modeled process template by adding
or removing activities or constraints. Also, model correctness is guaranteed, which means that it is checked by
Declare whether the changes are allowed or not for the cases for which the changes are intended to be applied.

In Figure 9, we see how the CWN of Figure 4 is mapped onto the ConDec language. In the ConDec language,
the activities are represented by rectangles. Moreover, each different LTL formula, which can be used in the
model, is represented by a different template, and can be applied to one or more activities, dependent on the
arity of the LTL formula which is used. Note that the language is extendible, i.e., it is easy to add a new
construct by selecting its graphical representation and specifying its semantics in terms of LTL.

The activities of the CWN model could easily be translated to activities in the ConDec language. However,
as the ConDec language is a declarative process modeling language, and not an imperative language, the causal
relationships of the CWN model could not easily be translated to the ConDec model. Moreover, we also had
8 http://is.tm.tue.nl/staff/mpesic/declare.htm

14

200

Fig. 9. Screenshot of the Declare editor.

to take into account that within Declare it is assumed that users already know what should be done. To this
end, we made the ConDec model, in such a way, that we ruled out forbidden behavior and that the users know
as early as possible what should be done, and from that moment on, the user itself is responsible for deciding
which activities should be done and in which order.

In Figure 9, we see that after activity “enter patient data into system” a lot of subsequent activities need
to be done, and which is indicated by a response arc going from the “enter patient data into system” activity
to these activities, like “plan ct” and “plan mri”. However, it is only modeled that these activities need to be
done afterwards, but not in which order. Also, during runtime, it is indicated to the user which activities need
to done and then the user himself can decide in which order he wants to execute the activities and how often.
Moreover, with ConDec it is also easy to model that the execution of one activity rules out the execution of
another activity, and the other way around. For example, the “not-coexistence” arc between activities “plan
mri” and “plan ct” specifies that only one of these activities may be executed, but not both.

For Declare we did not implement the full healthcare process as in Declare there is only support for scalar
data types, like integer and boolean, but not for more advanced data types like lists, etc. We only implemented
the process which is depicted in Figure 4 and which consists of only 10 percent of the whole CWN model.
Nevertheless, the model that we made in Declare still consists of 23 nodes and 44 LTL formulae and for which
it took around 12 hours to construct a model that could be executed by the Declare workflow engine.

6.5 Applicability of CWNs for implementation of the system in different workflow systems

To conclude this section, we will elaborate on the applicability of CWNs for implementing the healthcare
process into the four different workflow systems. In other words, we try to answer the question of how easy is

15

201

it to implement the CWN in a workflow system. We demonstrate how CWNs can be used as a starting point
for implementation in a workflow system and evaluate the different systems. To this end, we use five different
criteria, which are listed in the top row of table 1. The different workflow systems are given in the first column.

As first criterion, we have the number of nodes and arcs. For all the first tree workflow systems considered,
the nodes in the CWN which referred to activities could directly be translated to activities into the workflow
language of the workflow systems and also only these nodes needed to be copied. However, for ADEPT1 we
had to use artificial nodes as only XOR and AND split and joins are possible.

As indicated in [7], a CWN covers the control flow, resource and data perspective. Furthermore, as for
the transitions in our CWN it is also required to manipulate the data attributes of a case, the CWN also
covers the operation perspective[1]. For these last four criteria, we indicated how much effort in man hours it
took to specify each perspective in each workflow system. Please remember that for all systems, we created
a model which could be executed by the systems workflow engine. However, within Declare and ADEPT1 we
only defined 10 percent of the model that we had within YAWL and FLOWer.

With regard to the second criterion, effort required for the control flow perspective, it was easy to translate
the control flow perspective of the CWN to the YAWL, FLOWer and ADEPT1 workflow language, as they are
all imperative languages as is also the case for the CWN. As the ConDec language of Declare is an declarative
process modeling language and that in Declare it is also assumed that the users already know what should
be done, it is clear that the control flow perspective of the CWN could not directly be translated to the
ConDec language and which also took quite some effort. This can also be derived when we have a look at the
normalized man hour values for the second criterion. From these normalized values we see that it takes more
time to implement the control flow perspective in Declare compared to the other systems and also compared
to the total implementation time within Declare 9.

With regard to the third criterion, effort required for the organizational perspective, the resource related
parts of the CWN could easily be translated. All workflow systems considered supported the possibility to
define roles which could be linked to activities.

The data perspective, the fourth criterion, could easily be translated to the workflow language of YAWL,
FLOWer as these systems support directly or indirectly the same data types as defined in the CWN. As both
Declare and ADEPT1 only support scalar data types, the data attributes of the CWN which uses lists could not
be covered by both languages. As it is more time consuming to define advanced data types compared to simple
scalar types, this explains why in Declare and ADEPT1, when looking to the normalized values, relatively less
time was needed for implementation of the data perspective compared to the other workflow systems.

With regard to the fifth criterion, effort required for the operation perspective, we see in the table that
the operation perspective of the CWN was hardly useful for defining the operation perspective in the different
workflow systems. The reason for this is, that each workflow language has its own specific way/language for
defining, for example, guards and how data attributes need to be manipulated. Furthermore, specifying the
operational perspective in the CWN itself was also quite difficult. Also, as in Declare and in ADEPT1 we only
had to deal with simple scalar types within the operation perspective, this explains why in Declare, when looking
to the normalized values, less time was needed for implementation of the operation perspective compared to
the other workflow systems.

To conclude, we can say that the CWN is of help for the implementation of a certain process in a workflow
system. Furthermore, building a EUC and a CWN allows for a separation of concerns. More specifically, EUCs
are good for capturing the requirements of a process, without thinking of how it is realized. CWNs, on its
turn, are good because the control-flow, resource, data and operation perspectives are defined. As an EUC has
captured the requirements of a process it is a valuable input for a CWN. Using this development process, we
are sure that these concerns are dealt with at the right time as we have to deal with them anyways. The only
disadvantage is that the operational perspective of the CWN cannot be translated to the different workflow
systems. Furthermore, for Declare and ADEPT1 we used normalized values for the last four criteria. We think

9 As in ADEPT1 and Declare only 10 percent of the model has been defined, normalization for these systems is done
by multiplying the hour values by 10.

16

202

these normalized values are still representative, as for the implementation of the other 90 percent indeed a better
insight into the system will be obtained, but on the other hand, parts of the process need to be implemented
in another way than other parts. In this way, we assume that these two facts compensate each other.

Table 1. Translation of the CWN into the workflow languages of YAWL, FLOWer and Declare. Please remember that
within Declare and ADEPT1 we only defined 10 percent of the model that we had within YAWL and FLOWer.

number of effort effort effort effort

nodes control flow organizational data operation

/ arcs perspective perspective perspective perspective

(hours) (hours) (hours) (hours)

YAWL 231 / 282 20 5 30 65

FLOWer 236 / 190 20 5 20 55

ADEPT1 40 / 53 2 1 1 4

Declare 23 / 44 6 1 1 4

Furthermore, in principle, a (semi-) automatic translation from the CWN to each of the workflow systems
is possible. More specifically, the control flow and resource perspective are subject to an automatic translation.
With regard to the data perspective, also data attributes which are name-value pairs of the string type are
subject to automatic translation. However, for the operation perspective and for name-value pairs for which
a list type has been used, more carefulness is needed. For both of them, a semi-automatic translation will be
needed.

7 Related Work

From literature, it can be derived that workflow systems are not applicable for the healthcare domain [10, 28].
The current generation of workflow systems adequately supports administrative and production workflows but
they are less adequate for healthcare processes which have more complex requirements [10]. In addition, in [35,
36], it has been indicated that so called “careflow systems”, systems for supporting care processes in hospitals,
have special demands with regard to workflow technology. One of these requirements is that flexibility needs
to be provided by the workflow system [31, 40]. Unfortunately, current WfMS are falling short with regard
to providing flexibility, which is also seen as an important problem in literature [6, 8, 9, 15, 26, 38]. Also, once
a workflow-based application has been configured on the basis of explicit process models, the execution of
related process instances tends to be rather inflexible [2, 37, 39, 43]. Consequently, the lack of flexibility has
significantly limited the application of workflow technology. The workflow systems that we chose in this paper
(YAWL, FLOWer, ADEPT1 and Declare) allow for more flexibility than classical workflow systems.

Moreover, with regard to the requirements for applying workflow technology in the healthcare domain, in
[18] it is indicated that real time patient monitoring, detection of adverse events, and adaptive responses to
breakdown in normal processes is needed. As adaptive workflow systems are rarely implemented, this makes
current workflow implementations inappropriate for healthcare [41]. Also, [14, 16, 32, 31, 40] stress that work-
flow systems have to support dynamic adaptation of running workflows to handle the flexibility of healthcare
(therapy) processes. In case of breakdowns, managing exceptions is unavoidable [17]. Furthermore, in a real
clinical setting, it is a critical challenge for any workflow management system how capable it is to respond
effectively when exceptions occur [33].

Furthermore, what is lacking is that no support is provided for the multidisciplinary nature of health-
care processes. In [42, 19, 30], the processes for only one department in a hospital are supported by a work-
flow management system. So, a requirement is that support needs to be provided for the support of cross-
departmental healthcare processes which is stressed in [29, 14, 40]. Finally, a completely different requirement

17

203

is that autonomous, independently developed applications needs to be integrated which is risky, costly and
time-consuming [28].

This paper uses the approach initially proposed in [7, 24] where also an EUC and CWN have been used to
go from an informal inscription of a real world process to an implementation of the same process in a certain
workflow system. For [24], an electronic patient record system has been implemented in the YAWL system and
is, in this way, related to the healthcare domain. However, for both papers, it holds that rather small cases
have been used and that only an implementation has been done in one workflow system. Furthermore, in [7]
there was only user involvement in the EUC phase, whereas in [24] there has not been any user involvement.
In our case, we modeled a much larger and real healthcare process of a hospital using four different workflow
systems. Moreover, the approach was evaluated by the people involved in the process.

The use of EUCs has also been inspired by the work done in [23], in which EUCs where used to prototype
an electronic patient record system for hospitals in Aarhus, Denmark.

8 Conclusions

In this paper, we have focussed on the implementation of a large hospital process consisting of hundreds
of activities, into different workflow systems. To ease the implementation process, we have first made an
EUC, followed by a CWN. This CWN was used as input for configuring the different workflow systems. The
approach followed has been described in Figure 1. As the approach to go from a EUC to a CWN and finally
an implementation in different workflow systems, nicely bridges the gap between the modeling of a real-world
process and the implementation of the process in a workflow system, three other important lessons have been
learned.

The first lesson is that EUCs are a great help for validating the modeled real-world process used in this
paper. Instead of showing the model itself to the people involved in the process, which is very difficult to
understand for these people, we have used the EUC for showing to the people involved how we modeled their
workprocess. Within the EUC, we focussed on animating relevant information about the last executed activity
to the user and we also focussed on showing the activities, which can be executed afterwards. In this way,
the people involved could easily check whether the process modeled in the EUC corresponded to their actual
workprocess, which was also confirmed by the people themselves.

The second lesson learned is that the CWN helps on elaborating how the process considered, needs to be
made ready for implementation in a workflow system. As the CWN is a workflow model, we had to restrict
ourselves to concepts and entities that are common in workflow languages. So, activities that will not be sup-
ported by the workflow system are left out in the CWN and also the resource, data and operational perspective
needs to be handled in a structured / uniform way.

Furthermore, it is clear that the CWN is also helpful for implementations of the process in a workflow system.
The nodes of the CWN referring to activities can be directly translated and also the control flow, resource and
data perspective of the CWN can easily be translated to the workflow language of a workflow system. This
does not hold for the operation perspective of the CWN and, together with the previous observations, forms
the third lesson learned.

Additionally, EUCs and CWNs are useful as they respectively capture the requirements of a process and
define the control-flow, resource, data and operation perspective. With regard to man hours needed for our
approach, interviewing and getting feedback from the people involved in the process took around 60 hours, and
creating the EUC and CWN took more than 100 man hours for each model. Finally, the configuration of the
workflow systems took around 240 hours.

A direction for future research is to develop animations specific for CWN. In this way, before a process will
be supported by a workflow system, the people can already become acquainted with how their process will
be supported by a workflow system and already start experimenting. Moreover, the case study also provided
valuable insights into the requirements for workflow technology in care organizations. Besides the need for
flexibility, it revealed the need for a better integration of the patient flow with the planning of appointments
and peripheral systems supporting small and loosely coupled workflows (e.g. lab tests).

18

204

Acknowledgements

We would like to thank Lisa Wells and Kurt Jensen for their support in using CPN Tools. Also, we would like
to thank Michael Westergaard for his support in using the BRITnEY tool. Furthermore, we also want to thank
the people of the gynaecological oncology, radiology, pathology and anesthetics department, and especially
prof. Burger of the gynaecological oncology department for the time spent, on explaining the gynaecological
oncology healthcare process.

References

1. W.M.P. van der Aalst. Business Process Management Demystified: A Tutorial on Models, Systems and Standards
for Workflow Management. In J. Desel, W. Reisig, and G. Rozenberg, editors, Lectures on Concurrency and Petri
Nets, volume 3098 of Lecture Notes in Computer Science, pages 1–65. Springer-Verlag, Berlin, 2004.

2. W.M.P. van der Aalst, P. Barthelmess, C.A. Ellis, and J. Wainer. Workflow Modeling using Proclets. In O. Etzion
and P. Scheuermann, editors, 7th International Conference on Cooperative Information Systems (CoopIS 2000),
volume 1901 of Lecture Notes in Computer Science, pages 198–209. Springer-Verlag, Berlin, 2000.

3. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods, and Systems. MIT press,
Cambridge, MA, 2002.

4. W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another Workflow Language. Information Systems,
30(4):245–275, 2005.

5. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros. Workflow Patterns. Distributed and
Parallel Databases, 14(1):5–51, 2003.

6. W.M.P. van der Aalst and S. Jablonski. Dealing with Workflow Change: Identification of Issues and Solutions.
International Journal of Computer Systems, Science, and Engineering, 15(5):267–276, 2000.

7. W.M.P. van der Aalst, J.B. Jørgensen, and K.B. Lassen. Let’s Go All the Way: From Requirements via Colored
Workflow Nets to a BPEL Implementation of a New Bank System Paper. In R. Meersman and Z. Tari et al., editors,
On the Move to Meaningful Internet Systems 2005: CoopIS, DOA, and ODBASE: OTM Confederated International
Conferences, CoopIS, DOA, and ODBASE 2005, volume 3760 of Lecture Notes in Computer Science, pages 22–39.
Springer-Verlag, Berlin, 2005.

8. W.M.P. van der Aalst, M. Weske, and D. Grünbauer. Case Handling: A New Paradigm for Business Process Support.
Data and Knowledge Engineering, 53(2):129–162, 2005.

9. M. Adams, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Facilitating Flexibility and Dynamic
Exception Handling in Workflows. In O. Belo, J. Eder, O. Pastor, and J. Falcao e Cunha, editors, Proceedings of
the CAiSE’05 Forum, pages 45–50. FEUP, Porto, Portugal, 2005.

10. K. Anyanwu, A. Sheth, J. Cardoso, J. Miller, and K. Kochut. Healthcare Enterprise Process Development and
Integration. Journal of Research and Practice in Information Technology, 35(2):83–98, May 2003.

11. Pallas Athena. Case Handling with FLOWer: Beyond workflow. Pallas Athena BV, Apeldoorn, The Netherlands,
2002.

12. CPN Group, University of Aarhus, Denmark. BRITNeY Suite Home Page.
http://wiki.daimi.au.dk/britney/britney.wiki.

13. CPN Group, University of Aarhus, Denmark. CPN Tools Home Page. http://wiki.daimi.au.dk/cpntools/.
14. P. Dadam, M. Reichert, and K. Kuhn. Clinical Workflows - The Killer Application for Process-oriented Information

Systems? In W. Abramowicz and M.E. Orlowska, editors, BIS2000 - Proc. of the 4th International Conference on
Business Information Systems, pages 36–59, Poznan, Poland, April 2000. Springer-Verlag.

15. C.A. Ellis, K. Keddara, and G. Rozenberg. Dynamic change within workflow systems. In N. Comstock, C. El-
lis, R. Kling, J. Mylopoulos, and S. Kaplan, editors, Proceedings of the Conference on Organizational Computing
Systems, pages 10 – 21, Milpitas, California, August 1995. ACM SIGOIS, ACM Press, New York.

16. U. Greiner, J. Ramsch, B. Heller, M. Löffler, R. Müller, and E. Rahm. Adaptive Guideline-based Treatment
Workflows with AdaptFlow. In K. Kaiser, S. Miksch, and S.W. Tu, editors, Proceedings of the Symposium on
Computerized Guidelines and Protocols (CGP 2004), Computer-based Support for Clinical Guidelines and Protocols,
pages 113–117, Prague, 2004. IOS Press.

17. M. Han, T. Thiery, and X. Song. Managing Excpetions in the Medical Workflow Systems. In Proceeding of the 28th
international conference on Software engineering , pages 741 – 750, Shanghai, China, 2006. ACM Press.

19

205

18. Y. Han, A. Sheth, and C. Bussler. A taxonomy of adaptive workflow management. 1998.
19. T. Wendler J. von Berg, J. Schmidt. Business Process Integration for Distributed Applications in Radiology. In

Third International Symposium on Distributed Objects and Applications (DOA’01), pages 10–19, Rome, Italy, 2001.
20. K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use. Volume 1. EATCS monographs

on Theoretical Computer Science. Springer-Verlag, Berlin, 1997.
21. K. Jensen, L.M. Kristensen, and L. Wells. Coloured Petri Nets and CPN Tools for Modelling and Validation of

Concurrent Systems. International Journal on Software Tools for Technology Transfer, 9(3-4):213–254, 2007.
22. K. Jenssen, S. Christensen, and L.M. Kristensen. CPN Tools State Space Manual. Department of Computer Science,

Univerisity of Aarhus, January 2006.
23. J.B. Jørgensen and C. Bossen. Executable Use Cases: Requirements for a Pervasive Health Care System. IEEE

Software, 21(2):34–41, 2004.
24. J.B. Jørgensen, K.B. Lassen, and W.M.P. van der Aalst. From Task Descriptions via Coloured Petri Nets Towards

an Implementation of a New Electronic Patient Record. In Proceedings of the Seventh Workshop on the Practical
Use of Coloured Petri Nets and CPN Tools (CPN 2006), volume 579, pages 17–36. University of Aarhus, 2006.

25. E.M. Clarke Jr., O. Grumberg, and D.A. Peled. Model Checking. The MIT Press, Cambridge, Massachusetts and
London, UK, 1999.

26. M. Klein, C. Dellarocas, and A. Bernstein, editors. Adaptive Workflow Systems, Special Issue of Computer Supported
Cooperative Work, 2000.

27. L.M. Kristensen, S. Christensen, and K. Jensen. The Practitioner’s Guide to Coloured Petri Nets. International
Journal on Software Tools for Technology Transfer, 2(2):98–132, 1998.

28. R. Lenz, T. Elstner, H. Siegele, and K. Kuhn. A Practical Approach to Process Support in Health Information
Systems. Journal of the American Medical Informatics Association, 9(6):571–585, December 2002.

29. R. Lenz and M. Reichert. IT Support for Healthcare Processes - Premises, Challenges, Perspectives. Data and
Knowledge Engineering, 61:49–58, 2007.

30. T. Greiser R. Röhrig M. Meister M. Sedlmayr, T. Rose and A. Michel-Backofen. Automating Standard Operating
Procedures in Intensive Care. Accepted for CaiSE2007.

31. L. Maruster, W.M.P. van der Aalst, A.J.M.M. Weijters, A. van den Bosch, and W. Daelemans. Automated Discovery
of Workflow Models from Hospital Data. In C. Dousson, F. Höppner, and R. Quiniou, editors, Proceedings of the
ECAI Workshop on Knowledge Discovery and Spatial Data, pages 32–36, 2002.

32. S. Miksch, R. Kosara, and A. Seyfang. Is Workflow Management Appropriate for Therapy Planning? In Proceedings
of EWGLP 2000, pages 53–69, Amsterdam, 2000. IOS Press.

33. S. Panzarasa and M. Stefanelli. Workflow management systems for guideline implementation. Neurological Sciences,
27:245–249, June 2006.

34. M. Pesic and W.M.P. van der Aalst. A declarative approach for flexible business processes management. In J. Eder
and S. Dustdar, editors, Business Process Management Workshops (Proceedings BPM 2006 International Workshops,
volume 4103 of Lecture Notes in Computer Science, pages 169–180, Vienna, Austria, September4-7 2006. Springer.

35. S. Quaglini, M. Stefanelli, A. Cavallini, G. Micieli, C. Fassino, and C. Mossa. Guideline-based Careflow Systems.
Artificial Intelligence in Medicine, 20(1):5–22, 2000.

36. S. Quaglini, M. Stefanelli, G. Lanzola, V. Caporusso, and S. Panzarasa. Flexible Guideline-based Patient Careflow
Systems. Artificial Intelligence in Medicine, 22(1):65–80, 2001.

37. M. Reichert and P. Dadam. ADEPTflex - Supporting Dynamic Changes of Workflows Without Loosing Control.
Journal of Intelligent Information Systems, 10(2):93–129, 1998.

38. S. Rinderle, M. Reichert, and P. Dadam. Correctness Criteria For Dynamic Changes in Workflow Systems: A Survey.
Data and Knowledge Engineering, 50(1):9–34, 2004.

39. S. Sadiq, O. Marjanovic, and M.E. Orlowska. Managing Change and Time in Dynamic Workflow Processes. Inter-
national Journal of Cooperative Information Systems, 9(1-2):93–116, 2000.

40. M. Stefanelli. Knowledge and Process Management in Health Care Organizations. Methods Inf Med, 43:525–535,
2004.

41. J. Sutherland and W.-J. van den Heuvel. Towards an intelligent hospital environment: Adaptive workflow in the or
of the future. 2006.

42. T. Wendler, K. Meetz, and J. Schmidt. Workflow Automation in Radiology. In H.U. Lemke, editor, Proceedings of
Computer Assisted Radiology and Surgery (CAR98), pages 364–369. Elsevier, 1998.

43. M. Weske. Formal Foundation and Conceptual Design of Dynamic Adaptations in a Workflow Management System.
In R. Sprague, editor, Proceedings of the Thirty-Fourth Annual Hawaii International Conference on System Science
(HICSS-34). IEEE Computer Society Press, Los Alamitos, California, 2001.

20

206

Requirements Engineering for Reactive Systems
with Coloured Petri Nets: the Gas Pump

Controller Example?

João M. Fernandes1, Simon Tjell2, and Jens Bæk Jørgensen2

1 Dept. of Informatics, Universidade do Minho, Braga, Portugal
2 Dept. of Computer Science, University of Aarhus, Aarhus, Denmark

jmf@di.uminho.pt, tjell@daimi.au.dk, jbj@daimi.au.dk

Abstract. The contribution of this paper is to present a model-based
approach to requirements engineering for reactive systems, and more
specifically to controllers. The approach suggests the creation of a CPN
model based on several diagrams, for validating the functional require-
ments of the system under development. An automatic gas pump con-
troller is used as case study. We propose a generic structure for the CPN
model to address the modelling of the controller, the physical entities
which the controller interacts with, and the human users that operate
the system. The CPN modules for modelling the behaviour of the human
users and the controller are instances of a generic module that is able to
interpret scenario descriptions specified in CPN ML.

1 Introduction

A reactive system is “a system that is able to create desired effects in its environ-
ment by enabling, enforcing, or preventing events in the environment” [9]. This
characterisation implies that in requirements engineering for reactive systems it
is useful, and often necessary, to describe not only the system itself, but also the
environment in which the system must operate [1].

In this paper, we are particularly interested in controllers, i.e., a type of reac-
tive systems that control, guide or direct their environment. This work assumes
that a controller (to be developed) and its surrounding environment are linked
by a set of physical entities, as depicted in fig. 1. This structure clearly identifies
two interfaces A and B that are relevant to two different groups of stakeholders,
users and developers, in the task of requirements analysis.

From the user’s or client’s point of view, the system is composed of the
controller and the physical entities. Typically, the users are not aware of this
separation; they see a device and they need only to follow the rules imposed by
interface B to use it. In fact, they may not even know that there is a computer-
based system controlling the system they interact with.
? This research work was conducted while J.M. Fernandes was on a sabbatical leave

at DAIMI, University of Aarhus and was partly supported by project SOFTAS
(POSC/EIA/60189/2004).

207

From the developer’s point of view, the environment is also divided in two
parts with different behavioural properties; the physical entities have predictable
behaviour while the human actors may exhibit disobidience with respect to their
expected behaviour. Thus, the description of the behaviour of the environment
must consider the physical entities (usually called sensors and actuators) which
the system interacts with through interface A. In some cases, these physical
entities are given, and software engineers cannot change or affect them during
the development process, but need to know how they operate. Additionally, some
relevant behaviour of the human users that interact with the system through
interface B must be taken into consideration and actually reflected in the CPN
model.

environment

usersphysical
entitiescontroller

system

A B

Fig. 1. A controller and its environment.

This paper presents a model-based approach to requirements engineering for re-
active systems, and more specifically to controllers. The approach aims at obtain-
ing a CPN model that describes the requirements through scenarios combined
with a description of the behaviour of the physical entities which the controller
interacts with. We propose a generic structure for the CPN model to hold two
important properties: (1) controller-and-environment-partitioned, which means
that it constitutes a description of both the controller and its environment, and
that it distinguishes between these two domains and between desired and as-
sumed behaviour; (2) scenario-based, meaning that it was constructed on the
basis of the behaviours described in scenario descriptions. Our proposal contin-
ues the results presented in [8, 3, 2] and is illustrated in the development of a gas
pump controller, which is a well-known example in the literature [4].

The paper is structured as follows. Sect. 2 introduces the Automatic Gas
Pump case study that is used in this paper. In sect. 3, we present the main
requirement models, in the form of use case diagrams and sequence diagrams,
that were created for the case study. The CPN model for the case study, obtained
with our approach, is discussed in sect. 4. We make some conclusions in sect. 5.

2 Case Study

As case study, we consider an Automatic Gas Pump, which is a computer-based
system that permits customers to buy fuel in a self-served way. There exists
one storage tank for each type of fuel (diesel, gasoline 92 octane, and gasoline
95 octane). The pump must be deactivated for a given type of fuel, when the

208

quantity of fuel in the associated tank is less than a given threshold (to be
defined). There are also three different nozzles, one for each type of fuel.

To fill a car’s tank with fuel, first the customer must insert a credit card
and introduce the PIN code. If the card is valid and the introduced PIN code
is correct, the customer may start to fill the car’s tank with fuel, by picking a
nozzle. When a given nozzle is picked by the customer, the price per litre of the
respective type of fuel is shown in the display. While the fuel is being pumped,
the pump must show in real-time the quantity pumped and the respective price.

After the nozzle has been returned to the holster, the credit card company
is contacted and requested to withdraw from the customer’s account an amount
equal to the price of the fuel that has been tanked and to credit it to the station’s
account (the credit card company retains a fixed percentage of the transaction
that is deduced to the station). The customer may also get a printed receipt, if
the same credit card is reinserted in the pump, no later than five minutes after
returning the nozzle.

Based on the general structure of a reactive system (fig. 1), our approach
suggests the development to be started by creating a so-called entity diagram,
that depicts the controller system to be developed and all the entities in its
environment.

This entity model, which can be seen like a context diagram as proposed by
several software methods, has an important role in the approach, since it defines
without ambiguities the scope of the controller and identifies the entities that
exist in its environment. This clear separation between controller and environ-
ment must be preserved in the subsequent models, since our aim is to obtain a
CPN model that is controller-and-environment-partitioned.

Fig. 2 shows the entity diagram for the case study. It clearly identifies the
name and direction of each message that flow in interfaces A or B. This diagram
serves as a reference for the development process and in the next sections for each
diagram proposed we identify which parts of the entity model is being addressed.

3 Use Cases and Scenarios for the Case study

In this section, we show the artefacts (models and diagrams) that we suggest to
use before constructing the CPN model. These artefacts allow the developers to
formalise the user requirements and serve as a basis for obtaining a CPN model.
The artefacts are shown here in a specific (ideal) order, but in an engineering
development context it is expected that an iterative process must be followed.

The use case diagram for the automatic gas pump controller is depicted in
fig. 3. With respect to fig. 1, the use case diagram covers interface B (between
the users and the system), and identifies the functionalities provided by the
controller.

The use cases are briefly described below:

– UC1 buy fuel permits the customer to fill the car’s tank with the chosen
type of fuel.

209

keyboard

card
reader

nozzle
detector

fuel valve

fuel
measurer

tank-level
sensor

receipt
printer

display

gas pump
controller

PINcode

show

nozzleInPlace

quantity reset

open
close

level

cardNumber
cardStatus

pullCard
validateCard
validatePIN

transferMoney

print

lock

activate
deactivate

physical
entities

operator

customer

lock
unlock

card

key

showPrice
showPrice&Qtty

getReceipt

pickNozzle
triggerNozzle
returnNozzle

in
te

rfa
ce

 A

in
te

rfa
ce

 B

Fig. 2. An entity diagram for the Automatic Gas Pump, with a clear identification
of the messages that flow in interfaces A (between the Gas Pump Controller and the
Physical Entities) and B (between the Physical Entities and the Users).

– UC2 initiate payment validates if the customer has a valid credit card
and if its PIN code is correctly entered in the keyboard. If this is the case,
the pump is unblocked to allow fuel to be pumped.

– UC3 get receipt prints a receipt, if the customer reinserts the credit card
no later than five minutes after returning the nozzle to its resting position.

– UC4 de/activate pump activates or deactivates the pump. The state of
the pump must be easily visible to the customer.

As usual, the use case diagram identifies and names the use cases that the gas
pump controller must support, and shows the external actors participating in
the use cases. The actors in the use case diagram are the humans, customers and
operators, that use the gas pump.

To describe the individual use cases in detail, their textual descriptions can
be supplemented with sequence diagrams that specify some behavioural scenar-
ios accommodated by the use cases. The scenarios describe desired behaviour
of the gas pump controller in its interaction with the human actors and cover
interface B with respect to fig. 1. These scenarios are thus adequate to be dis-
cussed with the client and also the final users of the system, since they permit a
graphical and easy-to-understand representation of the user requirements, and
omit design and implementation issues.

210

UC2
initiate

payment

Customer Operator

UC1
buy fuel

UC3
get receipt

UC4
de/activate

pump

gas pump
controller

«in
clu

de»

Fig. 3. Use case diagram for the Automatic Gas Pump controller.

As an example, the description of the main scenario for UC1 is presented
next, including references to the sequence diagram that is depicted in fig. 4(a):

1. The customer starts the payment by introducing a valid credit card and
typing the corresponding PIN code;

2. If the credit card is valid and the PIN code correct, the customer picks the
nozzle of the wanted type of fuel;

3. The system shows the information related to the selected type of fuel (price
per litre) and “0” as the number of litres pumped;

4. While the nozzle is being used, the customer can pump fuel to the car’s tank
and the system updates the display showing the volume of pumped fuel and
its respective price;

5. When the customer finishes pumping fuel, he returns the nozzle to its rest
position (in the holster);

6. The system withdraws the amount corresponding to the price of the pumped
fuel from the customer’s account, retains its commission, and credits the rest
to the station’s account.

Alternative scenarios for a use case can be created, namely when it is sufficiently
rich and complex. Fig. 4(b) shows an alternative scenario for UC1 that describes
a situation where the user initially introduces a valid credit card, types its correct
PIN code, picks a nozzle, but cancels the transaction by returning the nozzle to
the holster (i.e., without putting fuel in the car’s tank). Therefore, at the end,
the system does not transfer money from the customer’s account to the account
of the station.

Similar textual descriptions and sequence diagrams exist for the other use
cases. There is a dependency relationships between UC1 and UC2, meaning that
to complete its execution, UC1 needs the functionalities provided by UC2. This
dependency is specified in the use case diagram by an include relation and in
the sequence diagrams by ref operators.

The next step in the modelling process is to refine the scenario descriptions, to
introduce more detailed information in order to permit further development tasks
to be conducted. In our approach, this entails two different things. Firstly, it is
important to refine the user-level sequence diagrams by indicating the particular
physical entity with which the users do exchange messages at each point in time.

211

pick nozzle

system

[nozzle is being used]

{UC2} initiate payment

loop

return nozzle

transfer money

show information

customer

ref

[valid card and correct PIN]opt

show information

trigger nozzle

pick nozzle

system

{UC2} initiate payment

return nozzle

show information

customer

ref

[valid card and correct PIN]opt

(a) (b)

Fig. 4. Sequence diagram at the user level for UC1: (a) the main scenario, and (b) an
alternative scenario.

The sequence diagram depicted in fig. 5 is an example of a scenario that details
the exchange of messages in interface B. This can be seen in contrast to the
diagram in fig. 4, where the user exchanges messages with the whole system,
seen as a monolithic structure.

pick nozzle (95)

display

{UC2} initiate payment

loop

return nozzle (95)

show price & quantity

customer

ref

show price

trigger nozzle (95)

nozzle
detector

Fig. 5. The behaviour of the customer and the physical entities, during the main
scenario of UC1.

Secondly, the messages that flow in interface A need also to be considered in our
approach. This permits developers to introduce details about how the controller
actually reacts to stimuli from the physical entities, that were supposedly initi-
ated by the user. These refined scenario descriptions can be considered as part of
the system requirements. The sequence diagram depicted in fig. 6 is an example

212

of a scenario that details the exchange of messages in interface B. This diagram
is used to specify the behaviour of the gas pump controller, and more particu-
larly the interaction of the controller with the physical entities. Therefore, the
controller must be considered as the central element of that sequence diagram.

In summary, sequence diagrams as the one shown in fig. 5 describe require-
ments expressed as scenarios for the use cases, while sequence diagrams like
the one in fig. 6 should be considered as specifications for a given scenario of a
use case. This distinction assumes that “a requirement is a desired relationship
among phenomena of the environment of a system, to be brought about by the
hardware/software machine that will be constructed and installed in the envi-
ronment, while a specification describes machine behaviour sufficient to achieve
the requirement” [6].

not nozzle in place (type)

nozzle
detector

loop

transfer money

ref

reset (type)

close (type)

fuel
measurer

card
reader display fuel valvepump

controller

{UC2} initiate payment

open (type)

show (type)

show (quantity & price)

quantity

Fig. 6. The behaviour of the gas pump controller when interacting with the physical
entities, during the main scenario of UC1.

4 The CPN model for the case study

The next development step is to construct a CPN model that represents all the
behaviours described by the collection of considered sequence diagrams. The
CPN modelling language was chosen, since CPN models are executable and
formal, can provide a good balance between graphical and textual constructs,
can address both the behaviour and the data of the system, and handle modelling
aspects such as concurrency and locality in a graceful manner [7].

The construction of the CPN model is based on scenarios, which is important
to guarantee that the model reflects all the partial behaviours identified and dis-
cussed with the clients and users of the system under development. Additionally,
the CPN model must be structured in such a way that the separation between
the controller and the environment, as expressed in fig. 1, is preserved and easy

213

to identify. Therefore, the approach ensures that the CPN is constructed to be
controller-and-environment-partitioned and scenario-based.

4.1 Top-level Module

Fig. 7 shows the topmost module of the hierarchical CPN model for the case
study, constructed from the sequence diagrams and following the structuring
principles proposed in this paper. The module contains three substitution tran-
sitions: Human Actors, Physical Entities, and Controller. These three substitution
transitions represent different domains and are used for modelling the functional
requirements, the behavioural domain knowledge, and the behaviour of the con-
troller, respectively.

Physical
Entities

Physical Entities

Human Actors

SD Interpreter

Controller

SD Interpreter

Scenarios 1

UC1_controller
SD

Private
Phenomena 1

State

Local
Objects 1

["pump controller"]

ObjectIDs

Local
Objects 2

["customer"]

ObjectIDs

Scenarios 2

UC1_customer
SD

B2

Phenomenon

B1

b1

Phenomenon

A2

a2

Phenomenon

A1

Phenomenon

Private
Phenomena 2

State

SD Interpreter SD Interpreter
Physical Entities

Fig. 7. The topmost module of the CPN model

The structure in fig. 7 is generic to reactive systems with a close interaction with
the physical environment and operated by human actors. The structure embod-
ies the guidelines that we are proposing for the modelling of such systems, their
requirements, and their environment. The basic idea of the structure is to assist
the modeller in maintaining a proper separation between the three modelling
domains. The structure allows the description of scenarios for the behaviour of
human actors and for the behaviour of the controller at an abstract level, both
by means of high-level sequence diagrams, which are translated into a textual
form for interpretation and execution by the Human Actors and Controller mod-
ules, respectively. Additionally, we use a regular CPN module (Physical Entities)
for describing the behavioural properties of the physical entities through which
the customer and the controller interact. By “regular”, we mean a CPN that
directly uses the graphical constructs (places, transitions, arcs, etc.) to describe
the behaviour of the considered domain.

The three domains interact through a collection of shared phenomena [5]. A
shared phenomenon is a state or an event that is observable by both domains
while being controlled by only one domain. In contrast, a private phenomenon
is only observable within the controlling domain (not to be confused with the
controller domain). The controlling domain is the domain that is able to affect

214

a shared phenomenon, i.e., to cause changes to a shared state or to generate
a shared event. An observing domain is able to react on, but not affect, an
observed phenomenon. No external domains are able to observe and thereby
react on phenomena that are private to other domains. The shared phenomena
perspective helps in the task of identifying the interfaces through which the
domains are interacting. This allows us to enforce a strict partitioning of the
representations of each of the domains in the CPN model, in order to make
it useful for requirements engineering. In the top module of the CPN model
(fig. 7), the interfaces of shared phenomena are emphasized as black places, each
one denoted by a letter and a number:

A1: Shared phenomena between the controller and the physical entities, and
controlled by the controller.

A2: Shared phenomena between the controller and the physical entities, and
controlled by the physical entities.

B1: Shared phenomena between the physical entities and the human actors, and
controlled by the physical entities.

B2: Shared phenomena between the physical entities and the human actors, and
controlled by the human actors.

4.2 Physical Entities Module

The customer does not interact directly with the pump controller. In fact, he
might not even be aware of the existence of a pump controller, i.e., a computer-
based system controlling the system he interacts with. Instead, the customer
does interact with the physical entities. The Physical Entities module is used
for describing the behaviour of the actuators and the sensors that connect the
controller with its physical environment. This behaviour is also referred to as
the indicative (or given) properties of the environment; the physical entities
have given behaviour patterns, which serve as a framework for the operation of
the controller. These patterns of behaviour must be taken into account when the
controller itself is designed, because they form part of the resulting behaviour of
the environment when the controller is deployed. Furthermore, we consider that
the physical entities are not integrated parts of the controller itself and this is
the reason why they are explicitly modelled as a separate domain.

Fig. 8 shows the internals of the Physical Entities module (with just a subset
of the entities). Each physical entity is represented by a substitution transition.
Two internal states (the white places Nozzle Triggered and Fuel Valves) are used
for modelling phenomena that are private to the physical entities; i.e., they are
hidden from both the customer and the pump controller. The black and grey
places are connected to the black places in the top module. A simple colour
coding scheme is applied: black places hold locally controlled shared phenomena,
while grey places hold remotely controlled shared phenomena.

Each substitution transition in the Physical Entities module encapsulates the
behaviour of one particular physical entity; as an example, fig. 9 depicts the

215

Display

Display

Fuel
Valve

Fuel Valve

Fuel
Measurer

Fuel Measurer

Nozzle detector

Nozzle Detector

Nozzle
Triggered

INT

Fuel Valves

1`(92,Closed)++
1`(95,Closed)

FuelValve

B1
I/O

Phenomenon

B2
I/O

Phenomenon

A2
I/O

Phenomenon

A1
I/O

Phenomenon

I/O I/O

I/O

Nozzle Detector

Fuel Measurer

Fuel Valve

Display

I/O

Fig. 8. The Physical Entities module.

module for the Fuel Measurer. The description is restricted by the fact that com-
munication is performed exclusively through the interface of shared phenomena.
The result is a collection of descriptions of the indicative behavioural properties
of the physical environment. This part of the environment differs significantly
from the part of the environment containing human actors (modelled in the Hu-
man Actors module) by the lack of free will and by the resulting deterministic
nature. The physical entities exhibit strict reactive behaviour and do not gen-
erate events or change states in a spontaneous manner. Once the behavioural
properties of the physical entities have been described, the descriptions can be
maintained for executing various scenarios and for experiments with various
possible design specifications for the pump controller.

A2
Out
Phenomenon
Out

Phenomenon

Nozzle
Triggered
In

INT
In

Measurements

FuelMeasurement

1`(92,0)++
1`(95,0)

Fuel
Valves

I/O
FuelValve

I/O

Measure

Reset

fuel_type

(fuel_type,q)

(fuel_type,0)

Event("quantity",fuel_type,q+1)

(fuel_type,Open)

A1
InIn

Event("reset",
fuel_type,epar)

(fuel_type,q+1) (fuel_type,q)

Fig. 9. The Fuel Measurer module.

In the approach to requirements engineering of reactive systems that we suggest
in this paper, the modeller is only expected to specify CPN model structure,
when the behaviour of the physical entities is being described. Everything else
(i.e., controller and human users) is modelled by parameterizing a generic CPN
module.

216

4.3 Controller and Human Actors Modules

Both the controller and the human actors are represented in fig. 7 by substitution
transitions that refer to the SD Interpreter module. This generic module acts as
an interpreter for textual CPN ML representations of the basic elements of UML
2.0 sequence diagrams. This module is utilized both for executing scenarios in
which the user interacts with the system and for representing the behaviour of
the controller.

As shown in fig. 7, the instances of the SD Interpreter module are parame-
terized through three places: one place specifies which objects (as found in the
sequence diagram) are local to the instance (Local Objects 1 and 2), another
place specifies possible private phenomena to the domain (Private Phenomena
1 and 2), and a third place specifies the behaviour as a scenario in the form
of a sequence diagram (Scenarios 1 and 2). Each instance communicates with
the physical entities through its set of shared phenomena. The communication
consists of messages about the occurrence of events or changes to shared states.
Furthermore, shared states can be part of the predicates used in the sequence
diagrams.

Fig. 10 shows the internals of the SD Interpreter module. This module is basi-
cally the specification of a machine, which is able to execute sequence diagrams
specified in CPN ML. The execution may be affected by incoming events and
state changes and may itself cause state changes and generate events through
the interface of shared phenomena. When a sequence diagram is executed, the
modeller needs to specify which objects are local. All communication between
local and non-local objects is performed through shared phenomena.

Pick
Element

Pick Element

ALT

ALT

OPT

OPT

LOOP

LOOP

Label

Label

Message

Message

State

Behavior

I/O
SD

Phenomenon

Phenomenon

Counter

0

INT

Current
Element

[]

Elements

I/O

Message

Label

LOOP

OPT

ALT

Pick Element

Remotely Controlled
Shared Phenomena

I/OI/O

Locally Controlled
Shared Phenomena

I/OI/O

Internal
States

I/O

Local
Objects

I/OI/O
I/O

ObjectIDs

Fig. 10. The SD Interpreter module.

Fig. 11 illustrates the CPN ML representation of the sequence diagram in fig. 5 (a
similar representation exists for the sequence diagram in fig. 6). This sequence

217

diagram specifies a scenario of UC1 as seen by the customers through their
interaction with the physical entities. Here, it has been translated into a list
value, which is placed (as a token) in the place Scenarios 2 and interpreted by
the Human Actors substitution transition.

A simple language has been developed to represent the basic features of
UML 2.0 sequence diagrams, such as optionals (OPT), alternatives (ALT), loops
(LOOP), and messages (arcs). Each of these features is handled by a separate
substitution transition in the SD Interpreter module. The interpreter utilises the
parameterised knowledge about local objects (and the derived implicit knowledge
about remote objects) to determine the direction of messages (events or state
changes) during the execution of the list representation of a sequence diagram.

If a message is outgoing (i.e., generated by a local object), this is reflected by
the interpreter altering a local phenomenon, either by generating a new event
token or by modifying the value of a state token in the place called Locally Con-
trolled Shared Phenomena. Alternatively, if a message is incoming (i.e., generated
by a remote object), the interpreter halts until this message is detected in the
place called Remotely Controlled Shared Phenomena. This is the basic mechanism
for the synchronisation of the instances of sequence diagram interpreters with
the physical entities modelled in regular CPN modules. In the example of fig. 5,
the customer object is local to the Human Actors instance, while the physical
entities are remote. The ALT, LOOP, and OPT operators do not involve any
exchange of messages, but rely on the interface of shared places in order to eval-
uate predicates that may involve shared states. When the interpreter encounters
a predicate in one of these operators, the current value of a relevant shared state
is investigated to evaluate the predicate.

The basic operation of executing the CPN ML representation of a sequence
diagram as performed by the SD Interpreter module can be described as fol-
lows: The interpreter traverses the CPN ML list one element at a time. This is
controlled by a counter (maintained in the place Counter) that somehow resem-
bles a program counter. The substitution transition Pick Element picks out the
next element of the list based on the current state of the counter found in the
single token value found in the Counter place. A single element is produced in
the Current Element place and from here it is consumed and handled by one of
these substitution transitions based on its type: Message, ALT, LOOP, OPT, or
LABEL. As an example of how specific elements are handled, Fig 12 shows the
contents of the LOOP substitution transitions that handles the elements used
for representing loop structures of arbitrary levels of depth found in sequence
diagrams. In can be seen how shared phenomena are evaluated through access to
the interface places described earlier (Remotely Controlled Shared Phenomena and
Locally Controlled Shared Phenoma). This makes it possible for the interpreter to
evaluate the predicates that may exist in the definition of a specific loop in order
to determine when to enter and leave the loop based on shared phenomena.

Fig. 13 documents the collection of colour sets that are used through out the
model.

218

val UC1 customer =
UC2 customer ˆˆ
[
Message ((” customer” , ” nozz l e de t e c to r ”) ,
EventOccurrence (” p ick nozz l e ” ,95 , EventParameter (0))) ,

Message ((” d i sp l ay ” , ” customer”) ,
StateChange (” d i sp l ay ” , 0 , AnyStateParameter)) ,

LOOP HEAD(1 , INT (5) , NoPredicate , ”a” , ”b”) ,
Label (”a”) ,
Message ((” customer” , ” nozz l e de t e c to r ”) ,
EventOccurrence (” t r i g g e r nozz l e ” , 95 , EventParameter (0))) ,

Message ((” d i sp l ay ” , ” customer”) ,
StateChange (” d i sp l ay ” ,95 , AnyStateParameter)) ,

LOOP TAIL() ,
Label (”b”) ,
Message ((” customer” , ” nozz l e de t e c to r ”) ,
EventOccurrence (” re turn nozz l e ” ,95 , EventParameter (0)))

] ;

Fig. 11. The CPN ML representation of the sequence diagram found in fig. 5

Counter

I/O

INT

0
I/O

Current
Element

I/O
Elements

[]

I/O

Loop
Stack

LoopStack

[]

Phenomenon

Phenomenon

Loop Stack
Element

LoopStackElement

Behavior

I/O
SD

I/O

Controllable
State

Evaluate PredicateEvaluate Predicate

LOOP_TAIL
-jump to

head

LOOP_TAILLOOP_TAIL

LOOP_HEAD
-perform evaluation

and push head
if positive

LOOP_HEADLOOP_HEAD

Observable
State

Evaluate PredicateEvaluate Predicate

No
Predicate

No PredicateNo Predicate

Locally Controlled
Shared Phenomena

I/OI/O

Remotely Controlled
Shared Phenomena

I/OI/O

Fig. 12. The LOOP module.

219

c o l s e t ObjectID = STRING;
c o l s e t ObjectIDs = l i s t ObjectID ;
c o l s e t EventID = STRING;
c o l s e t D i r e c t i on = product ObjectID ∗ ObjectID ;
c o l s e t EventParameter = INT ;
c o l s e t OptionalEventParameter =

union EventParameter : EventParameter + AnyEventParameter ;
c o l s e t EventIndex = INT ;
c o l s e t StateID = STRING;
c o l s e t Event = product EventID ∗ EventIndex ∗ EventParameter ;
c o l s e t StateIndex = INT ;
c o l s e t StateParameter = INT ;
c o l s e t OptionalStateParameter =

union StateParameter : StateParameter + AnyStateParameter ;
c o l s e t StateChange = product StateID∗StateIndex ∗ OptionalStateParameter ;
c o l s e t EventOccurrence =

product EventID ∗ EventIndex ∗ OptionalEventParameter ;
c o l s e t State = product StateID ∗ StateIndex ∗ StateParameter ;
c o l s e t PredicateType =with NEQ | EQ | GT | LT | GTE | LTE;
c o l s e t StateChangeOrEvent =

union EventOccurrence : EventOccurrence + StateChange : StateChange ;
c o l s e t Message = product D i r e c t i on ∗ StateChangeOrEvent ;
c o l s e t Pred i cate =

product StateID ∗ StateIndex ∗ PredicateType ∗ StateParameter ;
c o l s e t Opt iona lPred icate =

union Pred icate : Pred i cate + NoPredicate + NonDeterminist ic ;
c o l s e t Label = STRING;
c o l s e t Phenomenon = union State : State + Event : Event ;
c o l s e t OPT HEAD = product Opt iona lPred icate ∗ Label ∗ Label ;
c o l s e t INTorINF = union INT : INT + INF ;
c o l s e t LOOP HEAD =

product INT ∗ INTorINF ∗ Opt iona lPred icate ∗ Label ∗ Label ;
c o l s e t LOOP TAIL = UNIT;
c o l s e t ALT ELEMENT = product Pred i cate ∗ Label ∗ Label ;
c o l s e t ALT ELEMENT ELSE = product Label ∗ Label ;
c o l s e t ALT HEAD = Label ;
c o l s e t ALT TAIL = UNIT;
c o l s e t AltStackElement = product ALT HEAD ∗ BOOL;
c o l s e t AltStack = l i s t AltStackElement ;
c o l s e t Element = union Message : Message + Label : Label +

OPT HEAD:OPT HEAD + LOOP HEAD:LOOP HEAD +
LOOP TAIL :LOOP TAIL + ALT HEAD:ALT HEAD +
ALT ELEMENT:ALT ELEMENT + ALT ELEMENT ELSE:ALT ELEMENT ELSE +
ALT TAIL :ALT TAIL ;

c o l s e t LoopStackElement = product LOOP HEAD ∗ INT ∗ INT ;
c o l s e t LoopStack = l i s t LoopStackElement ;
c o l s e t Elements = l i s t Element ;
c o l s e t SD = Elements ;
c o l s e t Lst = l i s t INT ;
c o l s e t SCState = State ;
c o l s e t OptionalEvent = union Event : Event + NoEvent ;
c o l s e t SCTransit ion =

product SCState ∗ OptionalEvent ∗
Opt iona lPred icate ∗ SCState ∗ OptionalEvent ;

c o l s e t SCStates = l i s t SCState ;
c o l s e t SCTransit ions = l i s t SCTransit ion ;
c o l s e t SC = product ObjectID ∗ SCState ∗ SCStates ∗ SCTransit ions ;
c o l s e t FuelValveState = union Open + Closed ;
c o l s e t FuelValve = product INT ∗ FuelValveState ;
c o l s e t FuelMeasurement = product INT ∗ INT ;

Fig. 13. The colour sets used in the model

220

4.4 Discussion

The reflections behind the work presented in this paper are inspired by the work
of Jackson and particularly by his work on Problem Frames [5]. The reactive
system we deal with in this paper fits well in the Commanded Behaviour Problem
Frame specified in [5] but our approach from the Problem Frames approach in
a central point: we explicitly model the human actors observing the states and
events of the domain of physical entities. This is necessary in order to synchronise
the execution of scenarios between the human actors and the physical entities
(and the system as a whole).

The main purpose of the CPN model we present in this paper is to provide
the modeller of a reactive system with a generic structure that can be used as
a starting point for capturing functional requirements and knowledge about the
physical environment in a sensible way.

The requirements are specified as a collection of scenarios describing use cases
in which the final system must be able to interact according to the expected
behaviour. To validate the scenarios, the CPN model suggests the behaviour of
the controller to be specified at a relatively-high abstract level. This permits to
base a prototypical design of the controller on sequence diagrams that describe
scenarios of use cases. At the same time, different sequence diagrams are used to
describe scenarios of the behaviour of the human actors; and thereby required
behaviour of the entire system consisting of the physical entities in combination
with the controller.

The specification of the behaviour of the controller is relatively abstract,
since it does not necessarily include descriptions of any internal components of
the controller. At a later point in the development process, such components
may be introduced by refining the sequence diagrams used to describe the con-
troller behaviour (as the one found in fig. 6). The abstract description of the
controller behaviour is necessary to permit the modeller to execute the scenarios
specified for the human actors in a simulated environment with responses from
the system. This is as an important property of the modelling approach, since it
may be helpful in the complex task of specifying and validating the functional
requirements.

5 Conclusions

The contribution of this paper is a model-based approach to requirements en-
gineering for reactive systems. Its application is illustrated in an automatic gas
pump controller. The approach suggests the creation of a CPN model based on
the requirements expressed as use cases and sequence diagrams, for validating
the functional requirements of the system under development.

A generic structure is proposed for the CPN model, so that it is possible to
address the modelling of the controller, the physical entities which the controller
interacts with, and the human users that operate the system. We suggest the
CPN modules for modelling the behaviour of the human users and the controller

221

to be instances of a generic module that is able to interpret scenario descriptions
specified in CPN ML. This proves to be a good solution, since the size of the CPN
module remains the same independently of the number of considered scenarios.

In contrast, for modelling the behaviour of the physical entities (actuators
and sensors) we use regular CPN modules, i.e., modules that directly use the
graphical constructs of the CPN language (places, transitions, arcs, etc.), to
model behaviour.

The CPN language is a good choice for modelling these two types of modules,
since it allows the complexity of the model to be split between graphical and
textual constructs, and also between the data and the control perspectives.

As future work, we plan to extend the SD Interpreter module to handle all
UML 2.0 sequence diagrams constructs, and also to apply our approach to other
types of reactive systems, like for example interactive systems, workflow systems,
and robotic systems.

References

1. J. Desel, V. Milijic, and C. Neumair. Model Validation in Controller Design. In
Lectures on Concurrency and Petri Nets, volume 3098 of LNCS, pages 467–95.
Springer, 2004.

2. J.M. Fernandes, S. Tjell, and J.B. Jørgensen. Requirements Engineering for Reactive
Systems: Coloured Petri Nets for an Elevator Controller. Technical report, DAIMI,
University of Aarhus, Denmark, July 2007.

3. J.M. Fernandes, S. Tjell, J.B. Jørgensen, and O. Ribeiro. Designing Tool Support
for Translating Use Cases and UML 2.0 Sequence Diagrams into a Coloured Petri
Net. In 6th Int. Workshop on Scenarios and State Machines (SCESM 2007), at
ICSE 2007. IEEE CS Press, 2007.

4. D. Heimbold and D. Luckham. Debugging Ada Tasking Programs. IEEE Software,
2(2):47–57, 1985.

5. M. Jackson. Problem Frames — Analyzing and Structuring Software Development
Problems. Addison-Wesley, 2001.

6. Michael Jackson and Pamela Zave. Deriving Specifications from Requirements: an
Example. In 17th International Conference on Software Engineering (ICSE ’95)),
pages 15–24, New York, NY, USA, 1995. ACM Press.

7. K. Jensen, L.M. Kristensen, and L. Wells. Coloured Petri Nets and CPN Tools for
Modelling and Validation of Concurrent Systems. Software Tools for Technology
Transfer, 2007. In Press. DOI: 10.1007/s10009-007-0038-x.

8. O. R. Ribeiro and J. M. Fernandes. Some Rules to Transform Sequence Diagrams
into Coloured Petri Nets. In 7th Workshop and Tutorial on Practical Use of Coloured
Petri Nets and the CPN Tools (CPN 2006), pages 237–56, 2006.

9. R.J. Wieringa. Design Methods for Reactive Systems: Yourdon, Statemate, and the
UML. Morgan Kaufmann, 2003.

222

On the Use of Coloured Petri Nets
for Visual Animation ?

Óscar R. Ribeiro João M. Fernandes

Dep. Informática / CCTC, Universidade do Minho, Braga, Portugal

Abstract. This paper reports on an exercise on constructing a visual
animation layer for a behaviourally-intensive reactive system. We assume
that the requirements of the system under consideration are described by
use cases, and the behaviour of each use case is detailed by a collection of
scenario descriptions. These use cases and scenarios are translated into a
Coloured Petri Net (CPN) model, which is subsequently complemented
with animation-specific elements. We describe how the CPN model must
be structured to facilitate the animation process, and we present the
supporting tools for creating the animation. We consider an elevator
controller system as a case study, to demonstrate that a CPN model
complemented with a visual animation layer constitutes a solid basis
for addressing behavioural issues in an early phase of the development
process, namely during the validation task.

1 Introduction

Validation consists on checking if a system or a model satisfies the user expecta-
tions. One of the key issues to have a successful validation is to adopt a process
where users can actively discuss the requirements of the system under develop-
ment. To accomplish the validation task, one can use a visual animation [1] that
employs domain-specific vocabulary, since it allows users and developers to be
confident that the right system is being built.

When developing a reactive system [2], which usually has an intensive be-
haviour and a rich set of interactions with its environment, requirements valida-
tion is an important task to accomplish before deciding any design and imple-
mentation issues.

The Unified Modeling Language (UML) is currently the standard notation
adopted in industry to model software systems. This work uses two UML dia-
grams: Use Case Diagrams and Sequence Diagrams. Use cases specify the set
of functionalities presented by a system as seen by its users, and permit, due
to their simplicity, the dialogue between clients and developers. A sequence dia-
gram is used to capture a behavioural scenario of a given system, which can be
seen as a sequence of steps describing interactions between the actors and that
system. We suggest each use case to be described by a set of sequence diagrams.
? This work has been supported by the grant with reference SFRH/BD/19718/2004

from “Fundação para a Ciência e Tecnologia”.

223

Coloured Petri Net (CPNs) [3] constitute a graphical modelling language
appropriate to describe the behaviour of systems with characteristics like con-
currency, resource sharing, and synchronization. The CPN Tools [4, 5] is a well
established tool supporting the CPN modelling language and allowing the exe-
cution of animations in accordance with the CPN model.

This paper describes the construction of a visual animation layer for the
problem domain of the elevator controller case study. The visual animation can
be used during the validation to facilitate the dialogue between the system de-
velopers and the clients. This animation layer described in this work is intended
to be controlled by an executable CPN model. We give some guidelines to create
the CPN model from the sequence diagrams present in the requirements of the
system under development. We also introduce a tool to support the development
of the animation layer.

This paper is structured as follows. Section 2 describes the elevator controller
case study to be considered in this paper. In Section 3, we present the develop-
ment of an animation layer for the elevator controller. We introduce also some
tools to support this development. Section 4 introduces some guidelines to con-
struct a CPN model for animation purposes. The conclusions are presented in
Section 5.

2 Case Study

In this section we introduce the case study used in this paper, an elevator con-
troller. We consider that this controller manages an elevator system with two
cars in a building with six floors. This case study is an adaptation from the
description presented in the technical report [6].

Fig. 1 depicts the context diagram for the elevator controller, where the main
sensors and actuators present in the considered top-most entities (Floor and Car)
are shown. Each Floor contains two Location Sensors, one for each car, to detect
when the respective car is at or is arriving to the floor. In each Floor there are Hall
Buttons to allow the passengers to call an elevator car indicating the direction
(up or down) he wishes to travel. Obviously, the first and the last floors have
only one button to select the unique direction that is possible to travel (up for
the first floor and down for the top-most floor). There is a Floor Door in each
floor to protect the car’s shaft, and the doors only open when the corresponding
car is stopped at the floor.

Each of the two Cars has one Car Motor to move up or down along the floors.
Each car has a Door which has: (1) a Door Timer to automatically close the door
after a given amount of time; (2) a Door Sensor to detect if there is something
obstructing the door during closure; (3) a Door Motor to open/close the door of
the elevator; and (4) a Car Door, which includes two sensors, to indicate either
if the door is closed or totally opened. The Car Door is mechanically linked with
the Door Motor, and also with the corresponding door in each floor.

Inside the car a passenger can find a Floor Indicator that shows the current
floor of the car, a Direction Indicator that shows the direction being followed by

224

Car (x2)

Door

Car Motor

Floor (x6)

Location

Sensor (x2)

Hall

Button (x2 or x1)

Floor

Door (x2)

Interior

Control Panel

Open Door

Button

Floor

Button (x6)

Direction

Indicator

Floor

Indicator (x6)

Elevator

Controller

Door Timer

Door Sensor

Door Motor

Car Door

Fig. 1. Context Diagram for the Elevator Controller

the car, and a Control Panel that contains an Open Door Button to open the
doors and six Floor Buttons to select the destination floor.

The behaviour of the elevator controller is triggered by the passengers’ ac-
tions. The elevator controller has the responsibility of managing the movements
of the cars in accordance to the requests of the passengers through pushing on
the buttons.

Our approach proposes the usage of a use case diagram to depict the main
functionalities provided by the system to its users. In this paper, with the purpose
of illustrating the suggested approach, we just consider the use case “Service
Floor”. This use case is responsible for moving an elevator car from an origin floor
to a destination floor, by request of a passenger either in one of the building’s
hall or inside an elevator car.

Fig. 2 depicts the sequence diagram with the main scenario of the “Service
Floor” use case. This sequence diagram uses some high-level operators present
in the UML 2.0, namely the opt, and the loop operators. These operators permit
the description of several scenarios in a unique sequence diagram. In order to
abstract from the scenarios presented in the sequence diagram, there are along
the left-hand side of the diagram some textual annotations where some variables
being used in the messages (and guards) are informally declared. For example,
the diagram in Fig. 2 abstracts from the car, and the origin and destination
floors. With the textual annotation “Elevator car c is at Floor Fo, and the next
requested floor is the Fd”, we are declaring the variables c, Fo (origin floor) and

225

opt

 loop

Elevator

Controller
Direction

 Indicator

Car Door Car Motor Floor

Indicator

lightDirInd(c,d)

start(c,d)

Location

Sensor

close(c)

Door Motor

lightFloorInd(c,f)

isArrivingFloor(c,f)

stop(c)

isAtFloor(c,f)

opt

slowDown(c)

[f = Fd]

d=up, if Fd>Fo;

d=down, if Fd<Fo;

Elevator car c is at floor Fo, and

the next requested floor is the Fd

Fi=Fo+1, if d=up;

Fi=Fo-1, if d=down;

[for each f between Fi and Fd]

[CarDoor.isOpen(c)]

Fig. 2. Sequence Diagram describing the “Service Floor” use case.

Fd (destination floor), to be used as parameters for the scenario present in the
diagram. With these variables, we are able to define variable d that represents
the direction followed by the car, in the textual annotation “d=up, if Fd>Fo;
d=down, if Fd<Fo”. The textual annotation “Fi=Fo+1, if d=up; Fi=Fo-1, if
d=down;” defines the variable Fi, representing the next floor from the origin
floor.

The scenario presented in Fig. 2 describes the following behaviour:

1. The passenger in the current floor is notified about the direction the car will
take (message lightDirInd);

2. If the car door is open (high-level operator opt)
(a) The car door is closed (message close)

3. The car is moved in direction to the destination floor (message start);
4. While the destination floor is not reached (high-level operator loop):

226

(a) The location sensor informs the elevator controller that the car is arriving
to the next floor (message isArrivingFloor);

(b) The Floor Indicator corresponding to the next floor is activated (message
lightFloorInd);

(c) The Car Door must slow down its speed, when the next floor is the
destination floor (message slowDown);

(d) The location sensor informs the elevator controller that the car is at the
next floor (message isAtFloor);

5. The car stops (message stop).

In this main scenario of the “Service Floor” use case, we are assuming that
during its execution there are no other interaction from the passengers with
the buttons. These situations could origin some other variations to this main
scenario, but in this work we will consider only the main scenario of the use
case.

3 Building an Animation to the Case Study

In this section, we present the development of an animation layer for the elevator
controller introduced in the previous section. We describe also how to use the
animation, and which tools are involved in its deployment.

3.1 Initial Considerations

The visual animation to be built is intended to reproduce the behaviour of the
elevator controller, specified by the considered collection of sequence diagrams.
It can be used during the validation to facilitate the dialogue between the system
developers and the clients, which is a critical facility to ensure that both parts
agree on what is to be developed.

One can start the construction of a visual animation, after some initial work
on the analysis task has been accomplished. For this purpose, it is useful to have
the context diagram, since it enumerates the main entities of the environment
with which the controller interacts. Typically, these entities are strong candidates
to be represented in the animation, since the system’s behaviour depends on
them.

It is also important to have the use case descriptions, together with their
corresponding sequence diagrams, since they describe which messages are re-
ceived by the elements in the environment, and how these elements react on
those messages. These artefacts specify the behaviour that must be covered by
the animation layer.

The construction of the animation must be synchronised with the activity of
creating the CPN model, because the CPN model must include some elements
which are specific to control the animation as explained in next section.

The animation has been created using the SceneBeans tool [7, 8], which is a
framework for creating and controlling animations, using the Java programming

227

language. There is a XML-based file format to define animations and a parser
to translate those XML files into animation objects for SceneBeans.

In the SceneBeans architecture there are as basic elements scene graphs,
behaviours and animations. A scene graph is implemented in JavaBeans by a
direct acyclic graph, which draws a two-dimensional image. In the leaf nodes of
a scene graph there are primitive shapes (such as circles, ellipses, rectangles). An
intermediate node either combines or transforms its subgraphs. The combination
can be done in two ways: putting one subgraph on the top of another; or choosing
one from the set of subgraphs. In a transform node it is possible to apply a linear
transformation followed by a translation to its subgraphs (for example rotation,
scaling or translation) or to change the way that its subgraphs are rendered (for
example, changing the colour in which a node is drawn).

Associated to each graphic element in the animation, there are some be-
haviours (not to be confused with the behaviour of the controller) to animate
some of the properties of the element. A behaviour in SceneBeans is implemented
by a Java bean that controls a time value, and when the value changes it an-
nounces an event. This permits the animation of the visual appearance of the
scene graph. Notice that there is a so-called animation thread that manages the
frame rate of the overall animation signals the passage of time. There is also the
possibility to define commands to call the execution of a set of behaviours and
to announce an event when they finish.

3.2 Static part of the animation

The behaviour of the elevator controller, as the behaviour of reactive systems in
general, lies in the interaction with its environment, by sending messages to the
environment, which in response can also send messages in the opposite direction
(i.e., to the controller). In this work we consider the elements in the environment
as the actors of the elevator controller system. The actors for the “Service Floor”
use case are the ones that participate in the sequence diagram in Fig. 2.

An elevator can be visually represented by a picture with the floors and the
cars, where the cars can go up/down across the floors. While the cars are moving,
the elevator controller must update the information shown in the panels inside
each elevator car and attend the requests from the passengers.

For the elevator controller, only a subset of the entities of the environment
are relevant for animation, since the passenger is not aware of (or does not
interact with) all of them. This means that the animation layer only includes the
relevant entities. In contrast, the CPN model does specify all the environment’s
entities. In the elevator controller, the passenger interacts only with the following
six entities: Hall Button, Car Door, Direction Indicator, Floor Indicator, Open
Door Button, and the Floor Button. The validation focuses essentially on the
reactions of the controller to requests made by the passengers. If some flaw on
the behaviour of the elevator is detected during validation, the developer may
also need to analyse all the entities of the environment (even those that do not
appear in the visual animation), to identify and understand the cause of the
error.

228

Fig. 3. An animation of the elevator system.

Fig. 3 shows a screenshot obtained from the animation of the elevator con-
troller. On the left part of the figure, there is a representation of each floor with
the buttons to call an elevator. We can also see the two elevator cars in Fig. 3:
the left-hand side elevator is at the second floor with its door open, and the
right-hand side elevator is at the fifth floor with its door closed.

On the right part of the figure, the interior of both cars are depicted. Each
car has a floor indicator, which has one light for each floor, and only the light of
the current floor is on. There are also two lights, one to indicate the up direction
and another one to indicate the down direction, showing the direction being
followed by the car. Fig. 3 shows that the left-hand side car has the light with
the number two in yellow indicating that this light is on, and thus that the car is
currently at the second floor. The left-hand side car currently has no direction,
and the light direction of the right-hand side car indicates that the car is going
down.

The structure of the animation is essentially based on importing some icons
to represent an element of the system or on drawing a geometric artefact using a
XML tag. This structure is present in the leaf nodes of the scene graph, and for
example to include the image door.png we use the XML tag primitive, as follows:

229

1 <primitive type="sprite">
2 <param name="src" value="./images/door.png"/>
3 </primitive>

3.3 Dynamic part of the animation

In this subsection we show how to define the dynamic part of an animation in
the SceneBeans XML-based format.

As we said before, in the leaf nodes of a scene graph there are primitive
shapes and in the intermediate nodes either combination or transformation of
its subgraphs using a set of parameters. Each parameter can be associated to
a behaviour that needs to be previously defined. To allow the user to control
the existing behaviours, there are commands, and each one includes a sequence
of behaviour invocations. Thus, calling a command results on the animation of
some of the parameters present in the intermediate nodes.

With respect to the animation of our case study, let us consider how to
specify in the XML-based format the animation of the Direction Indicator entity
and, in particular, how the message lightDirInd is handled. This message allows
the Direction Indicator to change its state, among its possible values (up, down,
and idle). The Direction Indicator is composed of two triangular lights. If the car
is going up (down), the top light “4” is on (off) and the bottom light “5” is off
(on). If the car is stopped, the idle direction is represented by delighting both
lights.

For example, to indicate that the car is going up, we use the following XML
code, whose XML tags param in lines 2-4 are used to set the parameters from,
to and duration of the behaviour:

1 <behaviour algorithm="move" event="ldi" id="showlightDirInd(rightCar,up)">
2 <param name="from" value="-1000"/>
3 <param name="to" value="750"/>
4 <param name="duration" value="0.0001"/>
5 </behaviour>

This block of code defines a behaviour that is based on a specific movement
of an animation icon from a given point (‘from’) to another point (‘to’) during a
given time (‘duration’). This behaviour will be associated to the parameters in
the nodes of the scene graph.

To indicate, during the animation, that the car is going up, it is needed to
put an icon (showing the top light on, and the bottom light off) at the position
of the Direction Indicator entity in the animation picture. This is achieved by the
following XML code:

1 <transform type="translate">
2 <param name="translation" value="(-1000,50)"/>
3 <animate param="x" behaviour="showlightDirInd(rightCar,up)"/>
4 <animate param="x" behaviour="hidelightDirInd(rightCar,up)"/>
5 <primitive type="sprite">
6 <param name="src" value="./images/direction_indicator_up.png"/>
7 </primitive>
8 </transform>

230

In lines 3 and 4, behaviours showlightDirInd (presented in the previous block
of code) and hidelightDirInd are associated to the parameter “x” of the transfor-
mation node, in order to change the x-axis position of the icon, i.e., they move
the icon horizontally in the animation picture. These behaviours are invoked
through their inclusion in a command definition as we present in the next block
of code.

There is one icon to represent each state of the Direction Indicator entity,
and showlightDirInd behaviour moves the respective icon to a visible part of
the animation, and the hidelightDirInd behaviour moves the respective icon to a
non-visible part of the animation. Thus, the change to a new state is animated
showing the icon of the new state and hiding the other two icons.

To allow the external invocation of these behaviours in order to animate the
changing of the direction indicator in the car on the right-hand side to indicate the
up direction, the following command announces an event with the same name.

1 <command name="lightDirInd(rightCar,up)">
2 <start behaviour="hidelightDirInd(rightCar,down)"/>
3 <start behaviour="hidelightDirInd(rightCar,idle)"/>
4 <start behaviour="showlightDirInd(rightCar,up)"/>
5 <announce event="lightDirInd(rightCar,up)"/>
6 </command>

There are similar code blocks for the other two possible directions and for
the other car.

3.4 Scripting Language

We have created a script to facilitate the manipulation of the XML tags in the
XML-file that specify the animation. Ruby [9, 10] is a scripting language that
follows the principles of object-oriented programming. The Ruby script uses
components from the library REXML [11].

With Ruby we can easily manipulate the XML to be generated, namely when
repetitive parts of the XML code follow a given pattern. To generate the XML
code for the animation, a Ruby script was created. Next we show part of that
script that generates the XML code for the animation of the Direction Indicator.

1 require ’builder’
2 require ’sbXMLgen.rb’

3 xmlBuilder = Builder::XmlMarkup.new(:target => $stdout, :indent => 3)

4 xmlBuilder.instruct! :xml, :version => "1.0"
5 xmlBuilder.animation("width" =>"800", "height" => "600"){
6 carIds = ["left","right"]
7 carInteriorCoord = {"left" => Tuple.new(420,20), "right" => Tuple.new(610,20)}
8 lstBhLightDI = Hash.new()

9 lstCommands = Hash.new()
10 carIds.each{ |carId|
11 bhparams = Hash.new()
12 durQuick = 0.0001
13 xHide = -1000

231

14 xVisible = carInteriorCoord[carId].getX+7*20
15 bhparams["show"] = BehaviourParams.new(xHide,xVisible,durQuick)
16 bhparams["hide"] = BehaviourParams.new(xVisible,xHide,durQuick)
17 directions = ["up", "down", "idle"]
18 movs = ["show", "hide"]
19 bh = Hash.new()
20 movs.each{ |m| bh[m] = Hash.new() }
21 lstBhLightDI[carId] = {"up"=>[], "down"=>[], "idle"=>[]}
22 mkCmdStrDI= lambda{|mov, cId, dir| "#{mov}lightDirInd(#{cId}Car,#{dir})"}

23 directions.each{ |d|
24 movs.each{ |mov|
25 cmdStrDI = mkCmdStrDI.call(mov,carId,d)
26 bh[mov][d] = Behaviour.new(cmdStrDI, "move", bhparams[mov], "xpto")
27 bh[mov][d].toXML(xmlBuilder)
28 lstBhLightDI[carId][d].push(Tuple.new("x", cmdStrDI))
29 if (mov=="show") then
30 d_tmp = directions.dup
31 d_tmp.delete(d)
32 lstBhToStart = Array.new()
33 lstBhToStart.push(cmdStrDI)
34 d_tmp.each{ |od|
35 cmdStrDIod = mkCmdStrDI.call("hide",carId,od)
36 lstBhToStart.push(cmdStrDIod)
37 }
38 cmdStrDIname = mkCmdStrDI.call("",carId,d)
39 lstCommands[cmdStrDIname] = lstBhToStart.dup

40 end
41 } }
42 }
43 lstCommands.each{ |k,v| make_command(xmlBuilder, k , v) }
44 xmlBuilder.draw {
45 carIds.each{ |carId|
46 draw_DirectionIndicator(xmlBuilder, carInteriorCoord[carId],
47 lstBhLightDI[carId])}
48 }

In line 1, the package from the REXML library to build XML tags is included.
When we define an object as a Builder (see line 3 where we define the variable
xmlBuilder) we are able to generate a XML tag by using the name of the tag to
be generated as as a method for the object, for example in line 5 is created the
following XML structure:

1 <animation height="600" width="800">
2 ...
3 </animation>

Inside the tag animation it is included the XML code generated by the lines 6-47
of the Ruby script.

In line 6, the variable carIds is defined as an array with the car identifiers. It
is possible to create an iteration over this variable, as is shown in line 10. This
permits an easy integration of new similar cars in the animation, because we
have a dynamic structure based on the elements into the array carIds.

Line 2 includes some code from file “sbXMLgen.rb” created by us, in order
to save some functions to be used on the generation of XML for animations,
independently from the case being considered. For example, the code in line 26
creates an object of the class Behaviour which has the following definition:

232

1 class Behaviour
2 def initialize(id, algorithm, params, event, announce = "no")
3 @id = id
4 @algorithm = algorithm
5 @params = params # class BehaviourParams
6 @event = event
7 @toBeAnnounced = announce
8 end
9 def toXML(xb)

10 xb.behaviour("id" =>@id, "algorithm"=> @algorithm , "event" => @event){
11 @params.toXML(xb)
12 }
13 end
14 end

This a simple definition of a Ruby class, where we can find the same param-
eters as the behaviour XML tag, and the definition of the method toXML to
generate the corresponding XML code. The advantage is that we can use this
class to have a less verbose (i.e., easier to read by humans) code to specify a
behaviour. Consequently, if we repeat this process for all other XML tags present
in the SceneBeans XML-based format, we obtain a less verbose way to define an
animation layer.

We believe that this Ruby Script constitutes an abstract way to deal with
the XML-based stuff, in particular it is an easy way to work with parameteris-
ing in the visualizations. When comparing it with the forall construct we think
that the Ruby script is a more flexible and user-friendly way to manipulate the
parameters. The forall construct has the advantage that it is defined in the same
XML-file as the rest of the animation definitions.

4 Coloured Petri Net Models

In this section, we describe some guidelines that we suggest to be taken into
account when creating a CPN model for animation purposes. These guidelines
are discussed and are exemplified with respect to the case study.

The CPN model that is constructed from a set of scenario descriptions is an
executable model that can drive a graphical animation layer showing elements
and concepts from the problem domain. Additionally, the CPN model needs to
include a mechanism to manage how animation events are handled. The anima-
tion layer, in the SceneBeans XML-based format for the case study considered
in this work, is presented in the previous section.

The BRITNeY suite [12, 13] animation tool is used to connect the execution
of the CPN model in the CPN tools with the SceneBeans objects corresponding
to the animation specified in XML-based file. We use the SceneBeans plug-
in present in the BRITNeY suite to display and interact with a SceneBeans
animation.

As stated before, we consider that the requirements process includes the
creation of a set of use cases. The behaviour of each use case is detailed by a col-
lection of scenario descriptions, which can be represented by sequence diagrams.
In version 2.0 of UML, sequence diagrams have many high-level flow operators.

233

The translation from these sequence diagrams to a CPN model is based on the
general principles described in [14], which associate a transition on the CPN
model for each message in the sequence diagram and define some mechanisms
in the CPN model to represent the high-level operators present in the sequence
diagrams.

We describe the construction of a CPN model to execute the scenarios de-
scribed by the sequence diagram in Fig. 2, and also the changes that need to
be accomplished to allow the obtained CPN model to regulate the animation
introduced in the previous section.

4.1 Mapping sequence diagrams into a CPN model

Firstly, we suggest that each sequence diagram is translated to a CPN model
where there is a substitution transition for each message or high-level operator
in the sequence diagram. The places between substitution transitions guarantee
the order between the messages in the sequence diagram, and their colour set
needs to include the necessary information to allow the parallel execution of
many scenarios.

Fig. 4 shows a CPN model that was obtained from the sequence diagram
in Fig. 2, where messages, and high-level operators in the sequence diagram
are represented by substitution transitions in the CPN model. For example, the
message lightDirInd is represented by the substitution transition with the same
name, and the first opt operator in the sequence diagram is represented by the
substitution transition “opt (Is car door open?)”. The messages inside the opt
operator are present inside the corresponding subpage. The subpages contain
the necessary details to animate the messages in the sequence diagram.

Places in the CPN of Fig. 4 have the colour set ScenarioUC2, which pro-
vides the necessary information to execute a scenario of “Service Floor” use
case, namely the origin and destination floors and the car being used. In other
words, the definition of the colour set ScenarioUC2 comes from the textual an-
notation “Elevator car c is at floor Fo, and the next requested floor is the Fd”,
from the sequence diagram in Fig. 2, where the variables c, Fo and Fd are in-
formally declared. These implicit and informal declarations of variables by a
textual annotation allow for the usage of the same sequence diagram in different
situations, by using the variables as a parameter in messages, or even in other
textual annotations. The definition of the colour set ScenarioUC2 in the CPN
ML programming language has the following code:

1 colset ScenarioUC2tmp = record
2 c: CarId *
3 fo: FloorNumber *
4 fd: FloorNumber ;

5 fun hasDiffFloors(s:ScenarioUC2tmp)= (#fo s) <> (#fd s) ;

6 colset ScenarioUC2 = subset ScenarioUC2tmp by hasDiffFloors;

CarId and FloorNumber are defined as integers to identify a car and a floor,
respectively. The colour set ScenarioUC2tmp is created essentially to be used in

234

stop

msg stop

opt
(Is car door open?)

opt1

lightDirInd

msg lightDirInd

start motor
of a car

msg start

car stopped

car is at Fd

ScenarioUC2

car motor is
started

begin of UC2

Initial ScenarioUC2

car door
is closed

ScenarioUC2

light direction
actualized

ScenarioUC2

Initial ScenarioUC2

msg start

msg lightDirInd

opt1

msg stop

ScenarioUC2

ScenarioUC2

ScenarioUC2

loop
current floor

 between Fo and Fd

looploop

Fig. 4. CPN model representing the sequence diagram of UC2.

the definition of the colour set ScenarioUC2. When executing an instance of the
“Service Floor” use case, it is implicit that the origin and destination floors are
different. This is specified using the predicate hasDiffFloors to restrict the colour
set ScenarioUC2tmp to obtain the colour set ScenarioUC2, whose elements are
guaranteed to have different origin and destination floors.

The colour set ScenarioUC2 is used to distinguish between parallel executions
of the use case, and thus the colour set must identify the car, the origin floor, and
the destination floor. To start the execution of the CPN model it is necessary to
define the input parameters using the place begin of UC2, where several tokens
can be put to allow the parallel execution of different UC2 instances.

The places in the CPN model of Fig. 4 ensures that the order between mes-
sages in the sequence diagram is maintained when firing the transitions in the
CPN model. Each token in the place begin of UC2 means that a “Service Floor”
has been requested to be executed, i.e., a given car must travel from a origin to
a destination floor. It is assumed that the environment is in conditions to allow
the execution of this scenario, provided by other use cases (not considered in this

235

paper). The conditions to permit the execution of an instance of the “Service
Floor” use case are that the selected car must be at the origin floor, with its
motor stopped.

A token in the place light direction actualized means that the direction indi-
cator light is now indicating the direction that the car is taking to go from the
origin to the destination floor, and allows the next transition to be enabled.

4.2 Data representation for the environment

Secondly, it is important to define a data representation of the main elements
in the environment of the system under development. This data description is
used to represent the behaviour of each message in the sequence diagram.

To obtain a description of the system’s environment, its elements are specified
as data in the CPN model using the CPN ML programming language, defining
a colour set for each element in the environment. In our case study, the cars
and the floors are the top-most entities of the environment. For example, the
colour set Car is a record with an identification of the car, the door of the car,
the motor to move the car, and the sensors and actuators inside the car.

1 colset Car = record
2 id : CarId *
3 motor : CarMotor *
4 door : CarDoor *
5 interior : CarInterior ;

Where the CarId colour set is an integer, the CarMotor colour set is a tuple
containing its moving speed and the direction being followed. The CarDoor colour
set is defined as a record stating if the door is open or closed, and representing
also the motor, the sensor and the timer of the door.

1 colset CarDoor = record
2 door : Door *
3 doorMotor : DoorMotor *
4 doorSensor: DoorSensor*
5 doorTimer : DoorTimer ;

Similarly, the entities inside a car are defined by the colour set CarInterior
and they include the lights to indicate the direction being followed by the car,
the lights to indicate the current floor (there is a light for each floor), and a
control panel where we can find a button to open the door, and buttons to allow
the passenger to select one of the existing floors.

1 colset CarInterior = record
2 directionIndicator : Direction *
3 floorIndicator : FloorNumber *
4 controlPanel : ControlPanel;

We consider that the components in the car are part of the colour set, such
as the car door, the door motor, the door sensor, the door timer and the car
motor.

236

The textual annotation “d = up, if Fd > Fo; d = down, if Fd < Fo;” in
the sequence diagram of Fig. 2 is represented by the function calcDirection which
takes a ScenarioUC2 colour set and gives a direction based on the origin and des-
tination floors, and is defined as follows:

1 colset Direction = with up | down | idle ;

2 fun calcDirection(a:ScenarioUC2) =
3 case (Int.compare(#fo p,#fd p)) of
4 LESS => up
5 |GREATER => down
6 |EQUAL => idle ;

Some of the messages in the sequence diagram have the parameter direction,
which can be calculated using the values of the ScenarioUC2. For example, the
message lightDirInd uses the parameter direction.

4.3 Animation of messages in the sequence diagrams

Thirdly, one must detail how the execution of each substitute transition in the
CPN model representing a message in the sequence diagram is animated in the
SceneBeans animation.

The communication between the CPN model and the SceneBeans animation
is done using an animation object which can be used in the code segments
of CPN model to invoke some commands to be executed in the SceneBeans
animation. The CPN model contains the following declaration of the ”anim” as
a SceneBeans object:

1 structure anim = SceneBeans(val name = "Elevator Controller Animation");

Fig. 5 shows the subpage associated to the message lightDirInd. The animation
of a message in the sequence diagram is divided in two transitions of the CPN
model: the first one (lightDirInd) to invoke the command in the animation, and
the second one (ack lightDirInd) to wait for the feedback from the animation,
informing that the command has been executed. Thus, a token in the place
waiting for lightDirInd event means that the animation is updating the appearance
of the direction indicator in the animation. This mechanism, that waits for the
event from the animation, ensures the synchronization between the animation
and the execution of the CPN model.

To ask for an execution of a command in the SceneBeans animation we use the
“invokeCommand” method which can be used for an object with an SceneBeans
animation. The parameter for this method is a string which must correspond to
a command in the animation. The command lightDirInd is used to animate the
Direction Indicator, as defined in the previous section, and has two parameters:
(1) the name of the car, and (2) the direction that the car is taking. To ease the
creation of the command identifier, the following function can be created:

237

aCar

sUC2
let
 val ev = mkEvent_lightDirInd(aCar,sUC2)
in filterEvent(ev,events) end

events

sUC2

setCar_lightDirInd(aCar, sUC2)

aCar

sUC2

sUC2

ack lightDirInd

[isThisCar(aCar,sUC2),
(let
 val ev = mkEvent_lightDirInd(aCar,sUC2)
 in existEvent(ev, events) end)]

lightDirInd

[isThisCar(aCar,sUC2)]

input (aCar, sUC2);
output ();
action
 let
 val cmd = mkCmd_lightDirInd(aCar, sUC2)
 in anim.invokeCommand(cmd)
 end;

Fusion Car

Car

lightDirInd msg is
completly executed

Out
ScenarioUC2

Incoming
Events

event

1`[]

EVENTS

Fusion Car
Car

waiting for
lightDirInd event

ScenarioUC2

ready to send
lightDirInd msg

In
ScenarioUC2

In

Fusion Car

event

Out

Fusion Car

Fig. 5. CPN model for the execution of the message lightDirInd.

1 fun mkCmd_lightDirInd(aCar:Car, sUC2: ScenarioUC2) =
2 let
3 val sc = carName(aCar)
4 val strd = showDir(calcDirection(#floors sUC2))
5 in "lightDirInd("ˆsc ˆ"Car,"ˆ strd ˆ")" end

To verify the incoming of the corresponding event of the command lightDirInd
it is necessary to test if the event is in the list of incoming events. Our CPN model
is constantly aware of the events being generated by the animation through the
module in Fig. 6. The running fusion place is used to test if the animation is
already started.

4.4 Initial conditions for scenario execution

Fourthly, we suggest to add a module to the CPN model where the initial con-
ditions for the scenario execution and the selection of the SceneBeans XML file
to used are introduced.

The CPN model in Fig. 7 analyses the initial conditions of the environment
that the user wants to simulate and subsequently initialises the animation. The
initial conditions are introduced in the pre-places (in green) of transition Ini-
tialise. The firing of the Initialise transition invokes the necessary commands to
start running the animation according to the specified conditions. The Fig. 7
constitutes a top page of the CPN model where for each scenario a separated

238

e

if event = ""
then events
else events ^^ [event]events

Capture
Event input ();

output (event);
action
(if anim.hasMoreEvents ()
then anim.getNextEvent()
else "");

Running

run
E

Incoming
Events

event

1`[]

EVENTS
event

run

Fig. 6. Subpage of CPN model to capture events from the SceneBeans animation.

subpage exists and for which the start place can be found in Fig. 7 thought a
fusion place. The running place is used to allow the execution of CPN model
in subpage in Fig.6. There are also fusion places to connect the places with the
initial values with places that represent the environment values in the subpages.

ssUC2

ssUC2
theFloors

theFloors theCars

theCars

e
Initialise

[{car=1, fo=2, fd=6},
 {car=2, fo=2, fd=1}]

ScenariosUC2

Initial ScenarioUC2

ScenarioUC2

Fusion floor

Floor

Floors

1`allFloors

Floors

Cars

[leftCar, rightCar]

Cars

Fusion Car

Car

Running

run
E

run

Fusion CarFusion floor Initial ScenarioUC2

Initial
Scenario

input (theCars, theFloors);
output ();
action
(anim.setAnimation("C:/AnimElevator.xml");
setInitialAnimation(theCars, theFloors);())

Fig. 7. CPN-model to initialise the environment values and the SceneBeans animation.

Let us see now how to change the CPN model to allow the consideration of
a different numbers of cars and floors in the animation. To do this we need to
adapt both the CPN model and the ruby file presented in page 9.

The changes in the CPN model are done in the topmost page presented in
Fig. 7, changing the initial marking of the pre-places for Initialise transition. It
is also necessary to change the value of a constant that represents the number
of floors and another that represents the number of cars. These changes must be
complemented with the corresponding changes in the Ruby file namely in what

239

concerns with the variables that represent the available cars and the available
floors. And also the position of different elements in the graphic animation.

Supposing that we want to introduce a new car in the middle of the other two
existing cars we define a constant, e.g. centerCar, with its data representation,
to be included in the list of initial marking in place “Cars” of Fig. 7, which
results in the list [leftCar, centerCar, rightCar]. If we want to execute a scenario
related to this new car we need to add the scenario description to the list of
initial scenarios to be executed. Now we will refer to the Ruby script code listed
in page 9. Firstly in line 5, it is necessary to increase the height of the animation
to have some space to introduce the icon for the additional car. In line 6 we add
the identification label that we want to use for the identification of the new car,
and in line 7 we add to the hash table the coordinates for the new car. As we
can see in line 10, the code contains a loop over the identifiers of the cars.

5 Conclusions

In this paper we have described the creation of an animation layer for an elevator
controller system case study. We consider that the animation layer is controlled
by a CPN model, which has some additional elements that are specific to control
the animation layer. The created animation is used during the validation task.

The idea of use an animation of a CPN model for the requirements validation
is not new, for example Machado et al. present an approach to support the
validation of workflow requirements for the interaction between people for a
case study from a real project where animation were used [15]. Although these
authors also consider that the CPN models are obtained from sequence diagrams,
with this work we want to improve the mapping from sequence diagrams into
the CPN model in order to support the parallel execution of many scenarios.
We consider that the case study of Elevator controller is an example where the
parallel execution of many scenarios is useful.

The CPN model is obtained from sequences diagrams that represents a set of
scenario descriptions present in the use case behaviour. This CPN model explic-
itly model the entities on the environment that are important for the animation
of the elevator controller system. It is possible to execute a given scenario in
the CPN model for an initial state of the environment selected by the user. The
mechanisms that were added to the CPN model to manipulate the animation
are easily identified, thus it can be eliminated from the CPN model allowing the
reuse of the CPN model in other tasks of the development process.

The animation layer consists on a representation of the problem domain in
a user-friendly language, where the relevant entities of the system under devel-
opment have a graphic representation with associated animations to represent
the different behaviour of the entity. We use the SceneBeans tool to create the
animation layer, which is defined using a XML-based file format. To assist on the
management of XML-based code we present a script that permits an abstraction
from the details associated to the usage of XML tags.

240

References

1. Dulac, N., Viguier, T., Leveson, N., Storey, M.A.: On the use of visualization in for-
mal requirements specification. In: Proc. of IEEE Joint Int. Conf. on Requirements
Engineering. (2002) 71–80

2. Wieringa, R.J.: Design Methods for Reactive Systems: Yourdon, Statemate, and
the UML. Morgan Kaufmann (2003)

3. Jensen, K.: Coloured Petri Nets — Basic Concepts, Analysis Methods and Practical
Use. Volume 1-3. Monographs in Theoretical Computer Science. EATCS Series.
Springer (1992-97)

4. Jensen, K., Kristensen, L.M., Wells, L.: Coloured Petri Nets and CPN Tools for
Modelling and Validation of Concurrent Systems. Int. Journal on Software Tools
for Technology Transfer (STTT) 9(3-4) (June 2007) 213–54

5. CPN Tools. Online: www.daimi.au.dk/CPNtools.
6. Blanco, R.M.: Requirements Specification for an Elevator Controller. Technical

report, School of Computer Science, University of Waterloo, Canada (2005)
7. SceneBeans. Online: www-dse.doc.ic.ac.uk/Software/SceneBeans/.
8. Magee, J., Pryce, N., Giannakopoulou, D., Kramer, J.: Graphical animation of

behavior models. In: Proc. of the 22nd Int. Conference on Software Engineering
(ICSE’00), New York, NY, USA, ACM Press (2000) 499–508

9. Thomas, D., Fowler, C., Hunt, A.: Programming Ruby: The Pragmatic Program-
mers’ Guide, Second Edition. Pragmatic Bookshelf (October 2004)

10. Ruby Programming Language. Online: www.ruby-lang.org/en/.
11. Ruby: REXML. Online: www.germane-software.com/software/rexml/.
12. Westergaard, M., Lassen, K.B.: The BRITNeY Suite Animation Tool. In Springer-

Verlag, ed.: Proc. of 27th Int. Conference on Applications and Theory of Petri Nets
(ICATPN’06). Volume 4024 of LNCS. (2006) 331–40

13. Westergaard, M.: The BRITNeY Suite: A Platform for Experiments. In: 7th
Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN
Tools (CPN 2006). (2006)

14. Ribeiro, O.R., Fernandes, J.M.: Some Rules to Transform Sequence Diagrams into
Coloured Petri Nets. In: 7th Workshop and Tutorial on Practical Use of Coloured
Petri Nets and the CPN Tools (CPN 2006). (2006)

15. Machado, R.J., Lassen, K.B., Oliveira, S., Couto, M., Pinto, P.: Requirements
Validation: Execution of UML Models with CPN Tools. Int. Journal on Software
Tools for Technology Transfer (STTT) 9(3-4) (June 2007) 353–369

241

242

Towards Modelling and Validation of the DYMO Routing
Protocol for Mobile Ad-hoc Networks⋆

Kristian L. Espensen, Mads K. Kjeldsen, and Lars M. Kristensen

Department of Computer Science, University of Aarhus
IT-parken, Aabogade 34, DK-8200 Aarhus N, DENMARK,

{espensen,keblov,kris}@daimi.au.dk

Abstract When mobile devices come within physical range of one another it is possible for
them to form a mobile ad-hoc network (MANET). Messages in MANETs are routed between
the devices and can thereby reach further than the range of a single device. To facilitate multi-
hop communication between nodes in a MANET, a routing protocol is needed. In this paper we
consider the Dynamic MANET On-demand (DYMO) routing protocol and focus on the route
establishment procedures of the protocol. The DYMO protocol is currently under development
by the Internet Engineering Task Force (IETF). The aim of our project is to use Coloured Petri
Nets to construct a complete model of the DYMO protocol, to formally verify key properties
using state spaces, and use the constructed CPN model via gradual refinement for the actual
implementation of the DYMO protocol. The CPN model presented in this paper contains the
basic parts of the protocol and we are currently working on a full model of the DYMO protocol.
We also present results from an initial state space analysis of the constructed model. By using
different scenarios we validate the protocols ability to establish routes and judge the usefulness
of the routing information contained in the routing messages.

1 Introduction

There are basically two types of mobile networks — infrastructured and infrastructureless.
In an infrastructured wireless networks (such as GSM networks and WLANs), mobile nodes
connect to a base station which functions as a gateway to a fixed infrastructure. In an infras-
tructureless wireless network, known as a mobile ad hoc network (MANET) [15], there are
no fixed routers or base stations. All nodes can move around in the network and they can
connect in an arbitrary way. MANETs are often characterised by nodes entering and leav-
ing the network at a high rate and sometimes the link between two nodes is unidirectional
(asymmetric). The link could become bidirectional over time, but the nature of asymmetric
networks is something to keep in mind when designing routing protocols. Since there are no
dedicated routers in the network the nodes must function as routers themselves. A typical
application of MANETs is emergency search-and-rescue operations in remote areas where no
preexisting communication infrastructure is available.

There are two main approaches to routing protocols in MANETs: proactive and reactive

[17]. The proactive protocols are table driven and each node maintains a route to every other
node in the MANET. In MANETs, the nodes often have limited memory, processing power,
and battery capacity. A reactive routing protocol is therefore often more suitable since it
creates routes on-demand which generates less traffic than proactive protocols. The Ad hoc
On-demand Distance Vector routing protocol (AODV) [14] and the Dynamic Source Rout-
ing protocol (DSR) [10] are well-known examples of reactive routing protocols. AODV only
supports bidirectional links, whereas DSR also supports unidirectional links. The Dynamic

⋆ Supported by the Danish National Research Council for Technology and Production.

243

MANET On-demand (DYMO) [2] routing protocol is currently being developed by the IETF
MANET working group [11] and builds upon the AODV and DSR protocols. The DYMO
protocol specification [2] is currently an Internet-draft in its 10th revision and is expected to
become a Request for Comments (RFC) document in the near future.

The recent discussions on the mailing list [12] of the MANET working group have revealed
several complicated issues in the DYMO protocol specification, in particular related to the
processing of routing messages and the handling of sequence numbers. This combined with
the experiences of our research group with implementing the DYMO protocol [18,19] and con-
ducting initial modelling the DYMO protocol [6] has motivated us to initiate a project aiming
at constructing a Coloured Petri Net (CPN) model [8,9] of the complete DYMO protocol
specification with the goal of validating the correctness of the protocol using state space anal-
ysis, and via a set of refinement steps to use the CPN model (preferably via automatic code
generation) as a basis for implementing the DYMO protocol. This paper presents our initial
work on this project. We present a CPN model of the basic route establishment procedures of
the DYMO protocol. In addition to modelling DYMO, the modelling of the wireless mobile
network itself is aimed at being generally applicable for modelling MANET protocols. Finally,
we present our initial state space analysis results concerning the establishment of routes and
processing of routing messages.

The modelling and validation of routing protocols for MANETs has also been considered
by other researchers. The AODV protocol has been considered in [20,21]. An abstract CPN
model of routing in MANETs focusing on the DSDV protocol was presented in [22] and the
WARP Routing Protocol was modelled and verified using the SPIN model checker [7] in [3].
The LUNAR routing protocol was modelled and verified using the UPPAAL tool [16] in [13]
and the RIP and AODV protocols were verified in [1] using a combination of the SPIN model
checker and the HOL theorem prover [5]. Closest to our work is the modelling of the DYMO
protocol presented in [23]. A main difference between our modelling approach and the work
of [23] is that [23] presents a highly compact CPN model of the DYMO protocol consisting of
just a single module aimed at conducting state space analysis. Our aim is to eventually use
the CPN model as a basis for implementing the DYMO protocol, and we we have therefore
decided on a more verbose modelling approach which includes organising the CPN model into
several modules to break up the complexity of modelling the complete DYMO protocol and
which makes it easier to later refine parts of the CPN model as required. Furthermore, [23]
uses simulation to investigate properties of the protocol whereas we presents some initial state
space analysis results. On the other hand, [23] models a larger subset of the DYMO protocol,
including the route maintenance procedures and intermediate nodes appending information
to the routing messages and report on several problematic issues in the specification of the
DYMO protocol. Compared to [23] we have chosen an explicit approach for modelling node
mobility and the topology of the MANET. At the end of this paper we give a more detailed
discussions comparing our CPN model to the CPN model of [23].

The rest of this paper is structured as follows. Section 2 gives an overview of the DYMO
protocol and its basic operation. Section 3 presents the CPN model and provides additional
details about the DYMO protocol. In Sect. 4 we present our initial investigations of the
behaviour of the DYMO protocol using state space analysis. Finally, in Sect. 5 we summarise
our initial findings and discuss future work. The reader is assumed to be familiar with the
CPN modelling language [9] and the basic ideas of state space analysis.

244

2 Overview of the DYMO protocol

The operation of the DYMO protocol can be divided into two parts: route discovery and
route maintenance. The route discovery part is used to establish routes between nodes in the
network when required for communication between two nodes. A route discovery begins with
an originator node multicasting a Route Request (RREQ) to all nodes in its immediate range.
The RREQ has a sequence number to enable other nodes in the network to judge the freshness
of the route request. The network is then flooded with RREQs until the request reaches its
target node (provided that there exists a path from the originating node to the target node).
The target node then replies with a Route Reply (RREP) unicasted hop-by-hop back to the
originating node. The route discovery procedure is requested by the IP network layer on a node
when it receives an IP packet for transmission and does not have a route to the destination.
The IP packet will then be queued in the network layer waiting for DYMO to establish the
route and inform the IP layer that a route has been discovered.

A small example scenario illustrating route discovery is shown in figure 1. The scenario
consists of six nodes numbered 1–6. A edge between to nodes indicates that the two nodes are
within transmission range of each other. As an example, node 1 is within transmission range
of nodes 2 and 3.

3 6

2 5

1

4

Node 2 Node 3 Node 4 Node 5 Node 6Node 1

RREQ

RREQ

RREQ

RREQ

RREQ

RREP

RREP

(1,1) (1,1) (1,2) (1,2) (1,3)
(6,3) (6,6)

Figure 1. A simple MANET topology with six nodes (left) and MSC for route discovery process (right).

The message sequence chart (MSC) shown in Fig. 1 (right) depicts one possible exchange
of messages in the DYMO protocol when the originating node 1 establishes a route to target
node 6. Solid arcs represent multicast and dashed arcs represent unicast. In the MSC, node 1
multicasts a RREQ which is received by nodes 2 and 3. When receiving the RREQ from the
node 1, nodes 2 and 3 will create an entry in their routing table specifying a route back to the
originator node 1. Since nodes 2 and 3 are not the target of the RREQ they both multicast
the received RREQ to their neighbours (nodes 1, 4 and 5, and nodes 1 and 6, respectively).
Node 1 will discard these messages as it was the originator of the RREQ. When nodes 4 and 5
receive the RREQ they will add an entry to their routing table specifying that the originator
node 1 can be reached via node 2. When node 6 receives the RREQ from node 3 it will discover
that it is the target node of the RREQ, add an entry to its routing table specifying that node
1 can be reached via node 3, and unicast a RREP back to node 3. When node 3 receives the
RREP it will add an entry to its routing table stating that node 6 is within direct range, and

245

use its entry in the routing table that was created when the RREQ was received to unicast
the RREP to node 1. Upon receiving the RREP from node 3, node 1 will add an entry to its
routing table specifying that node 6 can be reached using node 3 as a next hop. The RREQ
will also be multicasted by node 4, but when node 2 receives it it will discard it as it will be
considered inferior. Node 5 also multicasts the RREQ, but nodes 2 and 6 will also consider the
RREQ to be inferior and therefore discard the RREQ message. The two last lines in the MSC
specifies the entries in the routing table of the individual nodes as a pair (target, nexthop).
The first line specifies the entries that was created as a result of receiving the RREQ and the
second line specifies entries created as a result of receiving the corresponding RREP. It can be
seen that a bidirectional route has been discovered and established between node 1 and node
6 using node 3 as an intermediate hop. The routing table entries in the other nodes pointing
back to the originator node 1 will eventually timeout as no RREP are being received from the
target node.

As illustrated above, RREQ and RREP messages are used to perform route discovery.
These messages contain among other things information about the originator of the message,
which node is the target, the hop count between the nodes, and a sequence number. The
intermediate nodes on the forwarding route extract information about the other nodes from
both RREQ and RREP. This information is used to maintain a routing table held by each node.
It is important that the routing table is updated correctly to avoid old routing information and
routes with possible loops to be propagated in the network. The protocol specifies how to judge
the quality of new incoming routing information. The new routing information is compared
with the information held in the routing table and is classified as stale, loop-possible, inferior

or superior. Only superior routing information is used to update the routing table and only
messages with superior routing information are processed further.

Nodes in a MANET are continuously entering and leaving. Because of this, routes need to
be maintained and a node therefore monitors the nodes it is directly connected to. The DYMO
protocol has a mechanism to notify nodes about a broken route. This is done by sending a
Route Error (RERR), thereby informing nodes using the route that a new route discovery is
needed.

The CPN model presented in this paper does not model all operations specified in the
DYMO specification. We have not modelled timeouts, i.e., route table entry timeouts (cf. [2],
Sect. 5.2.3), setting timeouts when creating and updating routing entries with new routing
information (cf. [2], Sect. 5.2.2) and updating route lifetime during packet forwarding (cf. [2],
Sect. 5.5.2.). Actions to be taken if a node looses its sequence number, e.g., as a result of a
reboot or crash (cf. [2], Sect. 5.1.4) is not in our model since this operation depends on the
timeout concept. Active link monitoring (cf. [2], Sect. 5.5.1) is used to detect broken links
and is a subject for future work. Furthermore, the following optional DYMO operations are
not in our current version of the model: intermediate DYMO Router RREP creation (cf. [2],
Sect. 5.3.3), adding additional routing information to a RM (cf. [2], Sect. 5.3.5) and simple
internet attachment and gatewaying (cf. [2], Sect. 5.8).

3 The DYMO CPN model

The CPN model is a hierarchical model organised in 12 modules. Figure 2 shows the mod-
ule hierarchy of the CPN model. Each node in Fig. 2 corresponds to a module and System

represents the top-level module of the CPN model. An arc leading from one module to an-
other module means that the latter module is a submodule of the former module. It can be

246

System

DYMO Protocol Mobile Wireless Network

Wireless Packet Transmission

Mobility

HandleRouteRequest

Receive Routing Messages

Receive Error Message

Process Incoming Messages

Process RREQ

Process RERR

Process RREP

Figure 2. Module hierarchy for the DYMO CPN model.

seen that the model has been organised into two main parts: a DYMO Protocol part and a
MobileWirelessNetwork part. This has been done to separate the parts of the model that are
specific to DYMO which are all submodules of the DYMOProtocol module and the parts that
are independent from the DYMO protocol which are all submodules of the MobileWirelessNet-

work module. This means that the parts modelling the mobile wireless network over which
DYMO operates can be reused for modelling other MANET protocols. We have adopted the
convention that a substitution transition and its associated submodule have the same name.
Furthermore, to the extent possible we have structured the CPN model into modules such
that it corresponds to the structure of the DYMO specification [2]. This makes it easier to
understand the relationship between the DYMO specification and the CPN model, and it
makes it easier to maintain the CPN model as the DYMO specification is being revised.

The top-level module System is shown in Fig. 3 and is used to connect the two main parts
of the model. The DYMO protocol logic is modelled in the submodules of the DYMOProtocol

substitution transition. The submodules of the MobileWirelessNetwork substitution transition
is an abstract model of the mobile wireless network over which DYMO operates. It models
unreliable one-hop wireless transmission of network packets over a network with mobile nodes.
It represents operation of the IP network layer down to the physical transmission over the
wireless medium.

The two socket places DYMOToNetwork and NetworkToDYMO are used to model the in-
teraction between the DYMO protocol and the underlying protocol layers as represented by
the submodules of the MobileWirelessNetwork substitution transition. When DYMO sends a
message, it will appear as a token representing a network packet on place DYMOToNetwork.
Similarly, a network packet to be received by the DYMO protocol module will appear as a
token on the NetworkToDYMO place. The colour set NetworkPacket is defined as follows:

247

DYMO Protocol
DYMO Protocol

Mobile Wireless
Network

Mobile Wireless Network

Network
To DYMO

NetworkPacket

DYMO To
Network

NetworkPacket

DYMO
Response

DYMOResponse

DYMO
Request

DYMORequest

Mobile Wireless Network

DYMO Protocol

Figure 3. Top-level System module of the CPN model.

colset Node = int with 0 .. N;

colset IPAddr = union UNICAST : Node +
LL_MANET_ROUTERS;

colset NetworkPacket = record src : IPAddr *
dest : IPAddr *
data : DYMOMessage;

We have used a record colour set for representing the network packets transmitted over the
mobile wireless network. A network packet consists of a source, a destination, and some data
(payload). The DYMO messages are carried in the data part and will be explained in de-
tail later. DYMO messages are designed to be carried in UDP datagrams transmitted over
IP networks. This means that our network packets are abstract representations of IP/UDP
datagrams. We have abstracted from all fields in the IP and UDP datagrams (except source
and destination fields) as these do not impact the DYMO protocol logic. The source and des-
tination of a network packet are modelled by the IPAddr colour set. There are two kinds of
IP addresses: UNICAST addresses and the LL_MANET_ROUTERS multicast address. The multicast
address is used, e.g., in route discovery when a node is sending a RREQ to all its neighbouring
nodes. Unicast addresses are used as source of network packets and, e.g., as destinations in
RREP messages. A unicast address is represented using an integer from the colour set Node.
Hence, the model abstracts from real IP addresses and identify nodes using integers in the
interval [1;N] where N is a model parameter specifying the number of nodes in the MANET.

The two places DYMORequest and DYMOResponse are used to interact with the service
provided by the DYMO protocol. A route discovery for a specific destination is requested
via the DYMORequest place and a DYMO response to a route discovery is then provided by
DYMO via the DYMOResponse place. The colour sets DYMORequest and DYMOResponse are
defined as follows:

colset RouteRequest = record originator : Node *
target : Node;

248

colset DYMORequest = union ROUTEREQUEST : RouteRequest;

colset RouteResponse = record originator : Node *
target : Node *
status : BOOL;

colset DYMOResponse = union ROUTERESPONSE : RouteResponse;

A DYMORequest specifies the identity of the originator node requesting the route and the iden-
tity of the target node to which a route is to be discovered. Similarly, a DYMOResponse contains
a specification of the originator, the target, and a boolean status specifying whether the route
discovery was successful. The colour sets DYMORequest and DYMOResponse are defined as union
types to make it easy to later extend the model with additional request and responses. This
will be needed when we later refine the CPN model to more explicitly specify the interaction
between the DYMO protocol module and the IP network layer module. By setting the initial
marking of the place DYMORequest, it can be controlled which route requests are to be made.
We have not modelled the actual transmission of messages containing payload from appli-
cations as our focus is on the route establishment and maintenance of the DYMO protocol.
In the following we present the submodules of the DYMOProtocol and MobileWirelessNetwork

substitution transitions in more detail.

3.1 The DYMO Protocol Module

The highest abstraction level for the DYMO protocol part of the CPN model is the DYMO-

Protocol module shown in Fig. 4. The module has four substitution transitions modelling the
handling of route request from a user (HandleRouteRequest), the reception of routing mes-
sages ReceiveRoutingMessages which are RREQ and RREP messages, the reception of RERRs
(ReceiveErrorMessages), and the processing of incoming messages (ProcessIncomingMessages).

All modules of the substitution transitions in Fig. 4 creates and manipulates DYMO mes-
sages which are represented by the colour set DYMOMessage defined as follows:

colset SeqNum = int;
colset NodexSeqNum = product Node * SeqNum;
colset NodexSeqNumList = list NodexSeqNum;

colset RERRMessage = record HopLimit : NO *
UnreachableNodes : NodexSeqNumList;

colset RoutingMessage = record TargetAddr : Nodes *
OrigAddr : Nodes *
OrigSeqNum : SeqNum *
HopLimit : INT *
Dist : INT;

colset DYMOMessage = union RREQ : RoutingMessage +
RREP : RoutingMessage +
RERR : RERRMessage;

The definition of the colour sets used for modelling the DYMO messages is a direct translation
of the description of DYMO messages as found in Sect 4.4.2 and Sect.4.2.3 of [2] modulo the
parts of DYMO that we are currently not modelling. In particular we use the same names of

249

DYMO
Request

In
DYMORequest

In

DYMO
Response

Out
DYMOResponse

Out

DYMO To
Network

Out
NetworkPacket

Out

Network
To DYMO

In
NetworkPacket

In

Incoming
Messages

NodexDYMOMessage

Routing
Table

Routing Table

NodexRouteTable

initRT ()

Routing Table

OwnSeqNum

OwnSeqNum
NodexSeqNum

initOwnSeqNum ()

OwnSeqNum

Receive Routing
Messages

Receive Routing MessagesReceive Routing Messages

Process
Incoming
Messages

Process Incoming MessagesProcess Incoming Messages
Receive Error

Messages

Receive Error MessagesReceive Error Messages

Handle
Route Request

Handle Route RequestHandle Route Request

Figure 4. The DYMOProtocol module.

message fields as in [2]. In the modelling of DYMO messages packets, we have have abstracted
from the specific layout as specified by the packetbb format [4]. This is done to ease the
readability of the CPN model, and the packet layout is not important when considering only
the functional operation of the DYMO protocol.

The submodules of the DYMOProtocol module also access the routing table and the se-
quence number maintained by each mobile node. The routing table and the sequence number
are global data structures within each node. To reflect this and reduce the number of arcs in
the modules, we decided to represent the routing table and the node sequence numbers using
fusion places. The place OwnSeqNum contains a token for each node specifying the current
sequence number of the node and the place RoutingTable contains a token for each node speci-
fying a routing table. The colour set SeqNum used to represent the sequence number of a node
was defined above and the colour RouteTable used to represent the routing table of a node is
defined as follows:

colset RouteTableEntry = record Address : IPAddr *
SeqNum : SeqNum *
NextHopAddress : IPAddr *
Broken : BOOL *
Dist : INT;

colset RouteTable = list RouteTableEntry;
colset NodexRouteTable = product Node * RouteTable;

A routing table is represented as a list of RouteTableEntry. To allow each node to have its
own routing table, we use the colour set NodexRouteTable for representing the set of routing t
ables such that the first component of a pair belonging to this colour set specifies the identity
of the node to which the routing table in the second component is associated. The definition
of the colour RouteTableEntry is a direct translation of routing table entries as described in
Sect. 4.1 of [2]. In addition to the mandatory fields, we have included the optional Dist field as

250

OwnSeqNum

OwnSeqNum

NodexSeqNum

initOwnSeqNum ()

OwnSeqNum

Processing

NodexRCxRouteRequest

Routing
Table

Routing Table NodexRouteTable

initRT ()

Routing Table

DYMO To
Network

Out
NetworkPacket

Out

DYMO
Request

In
DYMORequest

In

DYMO
Response

Out
DYMOResponse

Out

Create RREQ

[not (hasRoute
 (#target rreq, rt)),
 rc < RREQ_TRIES]

Process
Route Request

RREQ_TRIES
Reached

[rc = RREQ_TRIES]

Route
Established

[hasRoute (#target rreq, rt)]

(n, incSeqNum(seqnum))

(n, rc, rreq)

(n, rc, rreq)

(n, rc, rreq)

(n, rt)

(#originator rreq,
0, rreq)

(n, seqnum)
(n, rt)

createRREQ (#target rreq, n, seqnum)

ROUTEREQUEST rreq

createRouteResponse
(rreq, true)

createRouteResponse
(rreq, false)

(n, rc + 1, rreq)

Figure 5. The Handle Route Request module.

this is used in non-trivial ways in the reception of routing messages. We wanted to investigate
this operation in more detail as part of the state space analysis and we have therefore included
it in the modelling.

Handle Route Request Module. Figure 5 shows the HandleRouteRequest module. When
a route request arrives via the DYMORequest input port the ProcessRouteRequest transition
is enabled and when it occurs it will initialise the processing of the route request by putting a
token on place Processing. A route request being processed is represented by a token over the
colour set NodexRCxRouteRequest which is a product type where the first component specifies
the node processing the route request (i.e., the originator), the second component specifies how
many times the RREQ has been retransmitted, and the third component specifies the route
request. If the node does not have a route to the target and the retransmit limit RREQ_TRIES
for RREQs has not been reached (as specified by the guard of the CreateRREQ transition),
then a RREQ messsage can be transmitted with the current sequence number of the node.
Upon sending a RREQ, the sequence number of the node is incremented and so is the counter
specifying how many times the RREQ has been transmitted. If a route becomes established
(i.e., the originator receives a RREP on the RREQ), the RouteEstablished transition becomes
enabled and a token can be put on place DYMOResponse indicating that the requested route
has been successfully established. If the retranmission limit for RREQs is reached (before a
RREP is received), the RREQ_TRIES transition becomes enabled and a token can be put on
place DYMOResponse indicating that the requested route could not be established.

Receive Routing Messages Module. When a routing message arrives at the DYMO
protocol module the first task is to compare the routing information in the received message
with the information contained in the routing table of the receiving node. Judging the routing

251

information contained in a routing message is handled by the ReceiveRoutingMessages module
shown in Fig. 6. The receiver of the message is found in the dest field of the incoming network
packet bound to np. This way we know which node is the current node and thereby which
routing table to access. Section 5.2.1 of [2] specifies how routing information is divided into
four classes. Each class has a boolean expression specifying when routing information falls into
the given class. In the model each class is represented by a accordingly named transition with
a guard which is true exactly when the boolean expression corresponding to that class is true.

Network
To DYMO

In

NetworkPacket

In

Routing
Table

Routing Table

NodexRouteTable

initRT ()

Routing Table

Incoming
Messages

Out

NodexDYMOMessage

Out

Superior

[#dest np = UNICAST(n),
 isSuperior (np, rt)]

Inferior

[#dest np = UNICAST(n),
 isInferior (np, rt)]

Loop
Possible

[#dest np = UNICAST(n),
 isLoopPossible (np, rt)]

Stale

[#dest np = UNICAST(n),
 isStale (np, rt)]

New Route

[#dest np = UNICAST(n),
 isNewRoute (np, rt)]

Discard own
messages

[isOwnMessage np,
 isRM (#data np)]

np

(n, rt)

(n, #data np)

np

np

(n, rt)

(n, rt)
np

np

(n ,rt)

(n, rt)

updateRT (np, n ,rt)

newRouteEntry (np, n, rt)

(n, #data np)

np

Figure 6. The Receive Routing Message module.

The first class Stale is routing information which is considered outdated and therefore
not suitable for updating the routing table. The second class is LoopPossible which is routing
information where using it to update the routing table may introduce routing loops. New
information falls into the class Inferior if we already have a better route to the node. Given a
network packet np and the routing table rt, the function isInferior returns true if and only
if the routing information in the packet is inferior to that in the routing table. Section 5.2.1
in [2] specifies the following boolean expression for routing information to be inferior where
Node is the new information and Route is extracted from the routing table:

((Node.SeqNum == Route.SeqNum) AND
((Node.Dist > Route.Dist) OR
((Node.Dist == Route.Dist) AND
(RM is RREQ) AND (Route.Broken == false))))

252

This expression is what is implemented in the function isInferior. The function isInferior

used in the guard of the Inferior transition first checks whether the originating node is already
known. If so the routing information is extracted from the routing table and compared with
the information in the network packet according to the expression shown above.

The last of the four classes is Superior routing information. This is routing information
which is considered better than the information present in the routing table and is therefore
used to update the entry to the originating node using the function updateRT. If there is no
entry to the originating node, the transition NewRoute is enabled and when it occurs adds
a new entry is made with the function newRouteEntry which conforms to Sect. 5.2.2 of [2].
Network packets originating from the current node are discarded so that only network packets
with superior or new routing information are passed from the ReceiveRoutingMessage module
to the place IncomingMessages for further processing.

Process Incoming Messages. The module ProcessIncomingMessages shown in Fig. 7(left)
is responsible for processing the messages that went through the update routing table module
as specified by the ReceiveIncomingMessages module described above. The module consists of
three substitution transition corresponding to the three types of DYMO messages.

DYMO To
Network

Out

NetworkPacket

Out

Incoming
Messages

In

NodexDYMOMessage

In
Process
RREQ

Process RREQProcess RREQ

Process
RREP

Process RREPProcess RREP

Process
RERR

Process RERRProcess RERR

DYMO To
Network

Out
NetworkPacket

Out

Incoming
Messages

In

NodexDYMOMessage

In

Routing
Table

Routing Table
NodexRouteTable

initRT ()

Routing Table

OwnSeqNum

OwnSeqNum
NodexSeqNum

initOwnSeqNum ()

OwnSeqNum

RREQ
Target

[isRREQ dm,
 isTarget (n, dm)]

RREQ
Forward

[isRREQ dm,
 not (isTarget (n, dm))]

createRREP(n, dm, rt, seqnum) (n, dm)

(n, rt)

(n, seqnum+1)

(n, dm)forwardRREQ (n, dm)

(n, seqnum)

(n, seqnum)

Figure 7. The ProcessIncomingMessages module (left) and ProcessRREQ module (right).

As a representative example of a submodule associated with these substitution transitions
in Fig. 7, we consider the ProcessRREQ module shown in Fig. 7(right) which specifies the
processsing of RREQ messages. The submodules specifying the processing of RREP and RERR
are similar.

There are basically two cases in processing a RREQ: either the receiving node is the target
for the RREQ or not. If the node is not the target node, the transition RREQForward is
enabled. The function forwardRREQ placed on the outgoing arc conforms to Sect. 5.3.4 of [2],
and works in the following way. If the HopLimit is greater than or equal to one, the RREQ
message has to be forwarded. This is done by creating a new network packet with dest set to
the LL_MANET_ROUTERS multicast address and src set to the current node. The TargetAddr,
OrigAddr, and OrigSeqNum in the message is not changed but HopLimit is decreased by one
and Dist is increased by one. If the HopLimit is one, the function simply returns the empty
multi-set, i.e., the message is discarded.

253

If the current node is the target of the request the transition RREQTarget is enabled. The
function createRREP creates a RREP message where the dest field is set to the nextHopAddress
for the originating node given in the routing table. The src is set to the current node, Targe-

tAddr is set to the originator of the RREQ and OrigAddr is set to the current node.

3.2 Mobile Wireless Network

The MobileWirelessNetwork module shown in Fig. 8 is an abstract representation of the MANET
that DYMO is designed to operate over. It consists of two parts: a part modelling the transmis-
sion of network packets represented by the substitution transition WirelessPacketTransmission,
and a part modelling the mobility of the nodes represented by the Mobility substitution tran-
sition. The transmission of network packets is done relative to the current topology of the
MANET which are explicitly represented via the current marking of the Topology place. The
current topology of MANET is represented using the colour set Topology defined as follows:

colset NodeList = list Nodes;
colset Topology = product Node * NodeList;

The idea is that each node has an adjacency list of nodes that it can reach in one hop, i.e.,
its neighbouring nodes. This adjacency list is then consulted when a network packet is being
transmitted from the node to determine the set of nodes that can receive the network packet.
In this way, we can model a mobile network where the topology is dynamic by simply adding
or removing nodes from the adjacency lists.

DYMO To
Network

In

NetworkPacket

In

Network
To DYMO

Out

NetworkPacket

Out

Topology

Topology

Wireless Packet Transmission

Wireless Packet TransmissionWireless Packet Transmission

Mobility

MobilityMobility

Figure 8. The Mobile Wireless Network module.

The WirelessPacketTransmission module models the actual transmission of packets and is
shown in Fig. 9. In this module, network packets are transmitted via the physical network
from one node to its neighbours. Packets are transmitted over the network using the function
transmit defined as follows:

254

fun transmit (adjlist, {src, dest, data}, success) =
if success then

if (dest = LL_MANET_ROUTERS)
then List.map (fn n => {src=src, dest=UNICAST(n), data=data}) adjlist
else

if (List.exists (fn d => (UNICAST(d) = dest)) adjlist)
then 1‘{src=src, dest=dest, data=data}
else empty

else empty;

Topology

I/O
Topology

I/O

DYMO To
Network

In
NetworkPacket

In

Network
To DYMO

Out
NetworkPacket

Out

BOOL

BOOL.all()

Transmit

[#src np = UNICAST(n)]

(n, adjlist)

np
transmit (adjlist, np, success)

success

Reliability

Figure 9. The Wireless Packet Transmission module.

The transmit function starts out by checking if the success argument is true and if
not, the packet is discarded. This corresponds to modelling a simple unreliable network. If the
packet is to be successfully sent and the destination address is the multicast address, the packet
is sent to each of the nodes in the adjacency list of the transmitting node. If the destination
address is a unicast address and the address exists in adjacency list of the transmitting node,
i.e., the destination node is within range then the packet is forwarded. It should be noted that
in reality a transmission could be received by any subset of the neighbouring nodes because of,
e.g., signal interference. We only model that either all of the neighbouring nodes receives the
packet or none receives it. This is sufficient because our modelling of the dynamic topology
means that a node can move out of reach of the transmitting node immediately before the
transmission occurs which has exactly the same effect as a signal interference in that the node
does not receive the packet. Hence, signal interference and similar phenomena implying that
a node does not receive a packet is in our model equivalent to the node moving out of reach
of the transmitting node.

The dynamic changes in the topology of the MANET is modelled in the Mobility module
shown in Fig. 10. The module consists of two transitions. The transition AddLink creates a
link between two nodes n1 and n2 in the network. This is done by creating an entry in the
adjacency list of the two nodes. The transition RemoveLink removes a link between the two
nodes. This is done by removing the entry in the adjacency lists of the two nodes that specifies
the link.

255

Topology

I/O

Topology

I/O

Topology
Changes Topology Changes

TopologyChanges

Topology Changes

Add Link

[not (linkExists((n1, adj1), (n2, adj2), lt))]

Remove Link

[linkExists((n1, adj1), (n2, adj2), lt)]

1`(n1, adj1) ++
1`(n2, adj2)

1`(n1, adj1) ++
1`(n2, adj2)

(n1, n2, UP, lt) :: tc

(n1, n2, DOWN, lt) :: tc

addLink((n1, adj1), (n2, adj2), lt)

removeLink((n1, adj1), (n2, adj2), lt) tc

tc

Figure 10. The Mobility module.

The marking of place TopologyChange is used to specify the mobility scenario considered,
i.e., the sequences of link changes that are possible in the scenario. The definition of the colour
set TopologyChanges is as follows:

colset LinkType = with SYMMETRIC | ASYMMETRIC;
colset LinkStatus = with UP | DOWN;

colset NodexNodexLinkStatusxLinkType = product Nodes * Nodes *
LinkStatus * LinkType;

colset TopologyChanges = list NodexNodexLinkStatusxLinkType;

A change in the topology is modelled by the colour set NodexNodexLinkStatusxLinkType.
The first two components in a colour of this colour set are the two nodes between which a
link change is to occur. The third component specifies whether the link should go UP or DOWN.
The fourth component is used to model whether it is a symmetric or asymmetric link change.
The initial marking of place TopologyChanges then describes possible link changes that can
occur, and this allows us to control the mobility scenarios. The reason for having this topology
control is that there are 2

1

2
N

2

possible topologies in a MANET with N nodes and symmetric
links. Hence, this will make state space analysis impossible for dynamic topologies because
of state explosion. By having explicit topology control we can limit the number of possible
combinations and consider different mobility scenarios one at a time. The model can capture
a fully dynamic topology by placing a token on TopologyChanges for each pair of nodes, and
we can capture the static scenario with no topology changes by not having any tokens in
TopologyChanges.

4 Initial State Space Analysis

In this section we present our initial state space analysis conducted on the DYMO protocol
model in a number of scenarios. A scenario is defined by specifying the route discoveries to
be made, the initial topology, and the possible topology changes. In the initial analysis we
consider only scenarious with a static topology and with symmetric links. The reason for
only considering symmetric links is that DYMO requires symmetric links, and since we do

256

not yet have link monitoring represented in the CPN model, the protocol cannot distinguish
between asymmetric and symmetric links. Furthermore, we consider a reliable network, i.e.,
a network that cannot lose network packets and we consider only scenarios with one route
request. These scenarios allows us to generate state spaces of a reasonable size, but still focus
on the correctness of the protocol. By the latter we mean that if some strange behaviour is
observed in these simple scenarios, it is due to the protocol and not because of network packet
loss or a change in the topology.

To initialise the CPN model according to a specific scenario, we use the symbolic constants
DYMORequestScenario, topologyScenario, and RREQ_TRIES. The scenario in Fig. 11(left) is
represented as follows:

val DYMORequestScenario = ROUTEREQUEST {originator=1, target=3}
val topologyScenario = 1‘(1, [2]) ++ 1‘(2, [1, 3]) ++ 1‘(3, [2]);
val RREQ_TRIES = 1;

The symbolic constant DYMORequestScenario is used as initial marking of the DYMORe-

quest place (see Fig. 3) and hence the above puts a single token on the place DYMORequest

with a request which has originator set to node 1 and target set to node 3. The symbolic
constant topologyScenario is used as initial marking of the Topology place (see Fig. 8) and
hence in this case we get three tokens on the place Topology – one for each node specifying
which other nodes this node can reach in one-hop. Setting RREQ_TRIES to one has the effect
that only a single RREQ will be sent. Since we consider only static topologies, we have no
tokens on place TopologyChanges (see Fig. 10) in the initial marking.

When considering which scenarios to investigate, we observed that some scenarios can be
considered equivalent (symmetric). As an example consider the example scenario depicted in
Fig. 11 (left). The figure shows a topology with three nodes where node 1 is connected to
node 2 via a symmetric link and similar for node 2 and 3. The arrow represents a request
for a route discovery where the source node is the originator node and the destination node
of the arrow is the target node. In this case node 1 is requesting a route to node 3. But if
we permute the identity of node 1 and 3, we have exactly the same scenario as in Fig. 11
(right). We will call such scenarios equivalent and only explore one representative scenario
from each such equivalence class. It is important to notice that equivalence is both with
respect to topology and the originator and target of routes request. Hence, two scenarios can
be considered equivalent if one can be obtained from the other by a permutation of node
identities. In this way, we can reduce the number of scenarios that needs to be considered.

21 3 21 3

Figure 11. Example scenario with three nodes and one route request.

For scenarios containing two nodes we only have a single equivalence class. Looking at
scenarios with three nodes we have four equivalence classes, and with four nodes we have 19
equivalence classes. In the following we consider representatives for each equivalence class in
scenarios with two and three nodes. For each representative scenario, we also explore the state
space when RREQ_TRIES is incresed from 1 to 2. Additionally, we look at two representative
scenarios for equivalence classes of scenarios with four nodes. All scenarios were analysed using

257

state space by first generating the full state space, then generating SCC-graph, and finally
generating the state space report. The analysis focussed on the dead markings which represents
states where the protocol has terminated.

In addition to considering the dead markings, we also investigated the properties of the
protocol with respect to judging the incoming routing information against the information
in the routing table. Just by looking at the boolean expressions for the four classes (inferior,
superior, loop possible, and stale) it is hard to tell if it is always the case that new routing
information only falls into one of the classes, i.e., the enabling of the corresponding transition
in Fig. 6 is exclusive in the sense that only one of them is enabled for a given incoming
network packet. Using the state space we want to investigate if there are cases where routing
information falls into more than one class. For this purpose we implemented the following
query which is explained in more detal below.

(* --- get network packet np from a binding element --- *)
fun getnp (Bind.Receive_Routing_Messages’Stale (1,{np,...})) = SOME np
| getnp (Bind.Receive_Routing_Messages’Loop_Possible (1,{np,...})) = SOME np
| getnp (Bind.Receive_Routing_Messages’Inferior (1,{np,...})) = SOME np
| getnp (Bind.Receive_Routing_Messages’Superior (1,{np,...})) = SOME np
| getnp (Bind.Receive_Routing_Messages’New_Route (1,{np,...})) = SOME np
| getnp _ = NONE;

(* --- get binding in node n related to network packet np --- *)
fun getBindings (n,np) =

List.mapPartial (fn a => let
val be = ArcToBE a

in
case (getnp be) of
SOME np’ => if np=np’ then (SOME be) else NONE

| NONE => NONE
end) (OutArcs n);

(* --- check whether bindings of the five transitions in a given node n
are exclusive for a given packet np --- *)

fun BindingsExclusive (n,np) =
let

val bes = getBindings (n,np)
in

List.length bes <= 1
end;

(* --- check whether bindings of the five transition are exclusive --- *)
fun Exclusive n =

let
val nps = remDupl (Mark.Receive_Routing_Messages’Network_To_DYMO 1 n)

in
List.all (fn np => BindingsExclusive (n,np)) nps

end;

(* --- search and report nodes where the transitions are not exclusive --- *)
fun CheckExclusive () = PredAllNodes (fn n => not (Exclusive n));

The function CheckExclusive uses the standard query function PredAllNodes to find
all nodes n in the state space that do not satisfy the Exclusive predicate. The function
Exclusive check whether the transitions are exclusive by considering each network packet

258

np on place NetworkToDYMO (see Fig. 6) in turn. The function remDupl is a utility function
(not shown) which removes duplicates from a list. The function Exclusive uses the function
BindingExclusive which get the enabled bindings of the five transitions in a node n for a
given network packet np and check whether there is at most one such binding. This is done
by means of the function getBindings and getnp.

We have evaluated the function CheckExclusive on all the scenarios in the Table 1. On all
- except the second from bottom scenario - the function returned the empty list indicating that
no marking was found in which one packet could bind in more than one of the five transitions
mentioned. But in the second from bottom scenario the function returned a list of markings
in which more than one of the transitions was enabled. By manual inspection we could see
that it was possible for one packet to be both loop-possible and inferior. Since network packets
containing such routing information is discarded this is not a problem. A subject for future
work is to construct larger scenarios and try to find other situations where routing information
do not fall exclusively into a single class.

Table 1 summaries the state space results for the scenarios considered. In the first column
is a graphical representation of the scenario considered. The second column shows the value of
RREQ_TRIES, and the third and fourth column list the number of nodes and arcs in the state
space, respectively. The last column shows the dead markings found in the state space. In the
first four scenarios, we can see that with RREQ_TRIES set to 1 we get two dead markings. The
first dead marking is the state where RREQ_TRIESReached (see Fig. 5) has occured before a
RREP for the RREQ was received and the routing table updated. The second dead marking
is the state where RREQ_TRIESReached did not occur and RouteEstablished occurred after
the routing table had been updated. By transferring the dead marking into the simulator, we
inspected the marking and observed these are desired terminal state of the protocol i.e. states
where the requested route was established.

The five dead markings we get when RREQ_TRIES is set to 2 is caused by the same sequence
of occurrences as above but here we also have overtaking on the network causing routing
information to become stale and therefore a different sequence number is put in the routing
table which results in a different markings.

Common for all scenarios we have listed in Table 1 is that manual inspection of the dead
markings showed that the model had reached a state where the requested route had actually
been established. By a route being established we mean that the originator of a request has a
route entry to the target node of the request and if we follow the NextHopAddress hop-by-hop
we can get from the originating node to the target node and vice versa. Another common
result for all scenarios is that the SCC graph has the same number of nodes and arcs as the
state space graph. This means that there are only trivial SSCs and this implies that there are
no cycles in the state space and the protocol will therefore always terminate.

5 Discussion and Future Work

In this paper we have presented an initial CPN model of the DYMO protocol. In the con-
struction of the model, we got familiar with the protocol and how the different mechanisms
interact with one another. We have used simulation in CPN Tools to build confidence in the
correctness of the model and thereby also in the correctness of the protocol. Using state space
analysis we have formally verified properties of the behaviour of the protocol in some specific
scenarios. Standard state space analysis was used to verify that the protocol terminates cor-
rectly. We have formally verified that in all scenarios with up to three nodes the judging of

259

Table 1. Summary of state space analysis results.

Scenario RREQ_TRIES Nodes Arcs Dead markings

1 18 24 [17,18]
2 145 307 [50,118,119,142,143]
1 18 24 [17,18]
2 145 307 [50,118,119,142,143]
1 50 90 [49,50]
2 1,260 3,875 [372,704,705,1219,1220]
1 74 156 [73,74]
2 2,785 10,203 [868,2435,2436,2760,2761]

1 446 1,172 [444,443,404,403,231,...] (6)

2 166,411 804,394 [8321,69663,69662,69136,69135,...] (23)

1 1,098 3,976 [852,851,551,550,1096,...] (6)

1 558 1,606 [555,556,557,558]

routing information in our subset is consistent. We have also analysed some scenarios with
four nodes, and found that even with loop possible routes the judging of routing information
is consistent.

In the process of constructing the CPN model and simulating in it we have discovered
several issues and ambiguities in the specification. The most important ones were:

– When processing a routing message, a DYMO router may respond with a RREQ flood,
i.e., a RREQ addressed to oneself, when the node are target for a RREQ message (cf.
[2], Sect. 5.3.4). It is not clear which information to put in the RREQ message, i.e., the
originator address, hop limit, and sequence number of the RREQ.

– When judging the usefulness of routing information, the target node is not considered.
This means that a new request with a higher sequence number can make an older request
for an other node stale since the sequence number in the old message is smaller than the
sequence number found in the routing table.

– When creating a RREQ message the distance field in the message is set to zero. This means
that for a given node n an entry in the routing table of a node n’ connected directly to n

may have a distance to n which is 0. Distance is a metric indicating the distance traversed
before reaching n, and we believe that the distance between two directly connected nodes
should be one.

– In the description of the data structure route table entry (cf. [2], Sect. 4.1) it is suggested
that the address field can contain more than one node. It is not clear why this is the case.

– When processing RERR messages (cf. [2], Sect. 5.5.4) it is not specified whether hop limit
shall be decremented. We believe that it should be decremented to limit the amount of
network traffic.

– When retransmitting a RREQ message (cf. [2], Sect. 5.4), it is not explicitly stated whether
the node sequence number is increased.

– The DYMO draft 10th revision (which is the version considering in this paper) introduced
the concept of distance instead of hop count. The idea is that distance is a more general

260

metric, but in the routing message processing (cf. [2], Sect. 5.3.4) it is incremented by
one. We believe it should be up to the implementers how much distance is incremented
depending on the metric used.

As discussed in the introduction, the work presented in this paper is closely related to the
work presented in [23]. The work of [23] considered the 5th revision of the DYMO specification
which was the most recent at that time. The main differences between our work and the work
in [23] is the following:

– [23] models a larger subset of the DYMO protocol than we do, including route maintenance
procedures. The work of [23] also considers appending additional routing information on
messages, but we do not model this as it is an optional part of the specification. On the
other hand, we present some initial state space analysis results of the DYMO protocol in
this paper, whereas [23] considers simulation analysis.

– Our modelling approach relies on structuring the CPN model into a set of modules reflect-
ing the DYMO specification, whereas [23] present a highly compact CPN model containing
only a single module. A main reason for our choice of a more verbose modelling is that
we aim at using the CPN model as a basis for implementation in which case we need a
CPN model which is easier to gradually refine. The work of [23] appears to aim at state
space analysis, which is why it is beneficial to have a compact CPN model to reduce the
effect of state explosion. This is an often encountered trade-off between state space size
and compactness of the CPN model.

– A main difference is also in the modelling of the MANET topology. Both papers considers
a dynamic topology, but we have the current topology explicitly represented in the mark-
ing and have explicit control of the possible topology changes that can occur. The main
motivation for this is to make a scenario based state space analysis possible as illustrated
in this paper. The approach of [23] relies on an abstract and implicit modelling of the
topology where a transmitted network packet is either received by a single node or by no
nodes. As the authors state in the conclusion of [23], they should extent this such that
any number of nodes can receive a transmitted message. It still remains to be investigated
which of the two approaches to modelling the dynamic topology is most appropriate for
state space analysis in practice, and perhaps a combination of the two approaches can be
developed.

Near future work is to complete the modelling of the DYMO specification such that it
covers all non-optional parts of the specification. The most important parts not currently
modelled are the timeout mechanisms and the link monitoring to detect broken links. With
this included in the CPN model, we can extend our state space analysis to also include route
error processing, route maintenance, and dynamic topologies. For the state space analysis,
we plan to continue work on the idea of exploiting symmetry in the scenarios to reduce the
number of cases that needs to be considered. We hope to be able to apply this approach
also for dynamic topologies. This work will include the application of advanced state space
methods in order to alleviate the impact of the state explosion problem and extending the set
of behavioural properties considered in the analysis.

The next step will then be refine the CPN model such that the interaction between the
IP network layer and the DYMO protocol module becomes explicit. Currently, in its only
modelled in a very simple way with request and response related to route discovery. In a real
implementation interaction between the DYMO module and the IP network layer module is

261

also required to, e.g., update the IP routing table. This refinement of the CPN model will
make the interaction between DYMO and its environment explicit which is required in order
to use the CPN model as a basis for implementing the DYMO protocol which is the long term
goal of the project.

Acknowledgements. The authors wish to thank the anonymous reviewers for their constructive
comments and suggestions that have helped us to improve the CPN model and paper.

References

1. K. Bhargavan, D. Obradovic, and C.A. Gunter. Formal Verification of Standards for Distance Vector
Routing Protocols. Journal of the ACM, 49(4):538–576, 2002.

2. I.D. Chakeres and C.E. Perkins. Dynamic MANET On-demand (DYMO) Routing.
http://www.ietf.org/internet-drafts/draft-ietf-manet-dymo-10.txt, July 2007. Internet-Draft. Work in
Progress.

3. R. de Renesse and A.H. Aghvami. Formal Verification of Ad-Hoc Routing Protocols using SPIN Model
Checker. In Proc. of IEEE MELECON, pages 1177–1182, 2005.

4. T. Clausen et. al. Generalized MANET Packet/Message Format. Internet-draft, 2007. Work in Progress.
5. M. J. C. Gordon and T. F. Melham. Introduction to HOL: A Theorem Proving Environment fo Higher

Order Logic. Combridge University Press, 1993.
6. S. Hansen. Modelling and Validation of the Dynamic On-Demand Routing (DYMO) Protocol. Master’s

thesis, Department of Computer Science, University of Aarhus, February 2007. (in danish).
7. G. J. Holzmann. The SPIN Model Checker. Addison-Wesley, 2003.
8. K. Jensen, L.M. Kristensen, and L. Wells. Coloured Petri Nets and CPN Tools for Modelling and Validation

of Concurrent Systems. International Journal on Software Tools for Technology Transfer (STTT), 9(3-
4):213–254, 2007.

9. Kurt Jensen and Lars M. Kristensen. Coloured Perti Nets Modelling and Validation of Concurrent Systems
(draft manuscript). Springer, 2007.

10. D. Johnson, Y. Hu, and D. Maltz. The Dynamic Source Routing Protocol (DSR). RFC 4728, 2007.
11. IETF MANET Working Group. http://www.ietf.org/html.charters/manet-charter.html.
12. IETF Mobile Ad-hoc Networks Discussion Archive.

http://www1.ietf.org/mail-archive/web/manet/current/index.html.
13. Wibling O, J. Parrow, and A. Pears. Automatized Verification of Ad Hoc Routing Protocols. In Proc. of

FORTE, volume 3235 of LNCS, pages 343–358. Springer-Verlag, 2004.
14. C. Perkins, E. Belding-Royer, and S. Das. Ad hoc On Demand Distance Vector (AODV) Routing. RFC

3561, 2003.
15. C. E. Perkins. Ad Hoc Networking. Addison-Wesley, 2001.
16. K. G. Larsen P. Petterson and W. Yi. UppAal in a Nutshell. International Journal on Software Tools for

Technology Transfer, 1(1+2):134–152, 1997.
17. E.M. Royer and C.-K. Toh. A Review of Current Routing Protocols for Ad Hoc Mobile Wireless Networks.

IEEE Personal Communication, pages 46 – 55, April 1999.
18. R. Thorup. Implementation and Evaluation of the Dynamic On-Demand Routing (DYMO) Protocol.

Master’s thesis, Department of Computer Science, University of Aarhus, February 2007.
19. R. Thouvenin. Implementation of the Dynamic MANET On-Demand Routing Protocol on the TinyOS

Platform. Master’s thesis, Department of Computer Science, University of Aarhus, July 2007.
20. C. Xiong, T. Murata, and J. Leigh. An Approach to Verifying Routing Protocols in Mobile Ad Hoc

Networks Using Petri Nets. In Proceedings. of IEEE 6th CAS Symposium on Emerging Technologies:
Frontiers of Mobile and Wireless Communication, pages 537–540, 2004.

21. C. Xiong, T. Murata, and J. Tsai. Modeling and Simulation of Routing Protocol for Mobile Ad Hoc
networks Using Colored Petri Nets. In Research and Practice in Information Technology, volume 12, pages
145–153. Australian Computer Society, 2002.

22. C. Yuan and J. Billington. An Abstract Model of Routing in Mobile Ad Hoc Networks. In Proc. of
CPN’05, pages 137–156. DAIMI PB-576, 2005.

23. C. Yuan and J. Billington. A Coloured Petri Net Model of the Dynamic MANET On-demand Routing
Protocol. In Proc. of CPN’06, pages 37–56. DAIMI PB-579, 2006.

262

