
Validation of Scenario-based Business Requirements
with Coloured Petri Nets

Óscar R. Ribeiro João M. Fernandes

Dep. Informática / CCTC, Universidade do Minho, Braga, Portugal
{orribeiro, jmf}@di.uminho.pt

Abstract

A scenario can be used to describe a possible instantiation
of a given business use case and can be expressed for
example as a list of steps written in natural language, or
by an interaction diagram. This paper discusses how a
collection of scenarios, all expressed as UML2 sequence
diagrams, can be described for validation purposes by a
single model, written in the Coloured Petri Nets (CPN)
modelling language. Due to the support for parallelism given
by the CPN language, the obtained CPN model can: (1) si-
multaneously execute several scenarios; and (2) elegantly
represent the parallel activities inside a scenario. This two-
level parallelism is crucial during validation, since it allows
one to detect problems that are only evident when several
scenarios are in simultaneous execution and may affect each
other. We exemplify our approach in a system that has a rich
set of interactions with its users.

Keywords – Business Requirements, Scenarios, Validation,
Coloured Petri Nets.

1. Introduction
Use cases are a well-known technique used to specify

the set of functionalities presented by a system as seen

by its users. They facilitate the dialogue between clients

and developers, due to their simplicity and informal nature.

Scenarios can be used to describe possible instantiations of a

given use case. Each scenario describes a specific sequence

of actions and interactions between the users and the system.

Among other alternatives, scenarios can be expressed either

as a list of steps written in natural language, or by a UML

interaction diagram.

CPNs [8] are a graphical modelling language adequate

to describe the behaviour of systems with characteristics

like concurrency, resource sharing, and synchronization. The

CPN modelling language is supported by CPN Tools [8]

which is a tool that allows the execution of animations in

accordance with the CPN model.

In this paper, we propose the description of the behaviour

of each business use case to be detailed by a collection

of UML2 sequence diagrams. Those sequence diagrams

describe the interactions among the actors and the system.

Each sequence diagram can describe more than one ele-

mentary scenario, because it can use high-level operators.

To complement the initial steps of the analysis phase, it is

critical to validate that the elicited requirements are indeed

those needed by the stakeholders [12]. Our approach consists

of expressing a set of sequence diagrams by a CPN model

that can be used to animate and simulate, and consequently

validate the behaviour of the system under consideration.

Since the CPN modelling language naturally supports paral-

lelism and concurrency, the obtained CPN model is able to:

(1) execute in an interleaved way several scenarios (either

instances of the same or different use cases); and (2) directly

represent the parallel activities inside a given scenario.

This parallelism at two different levels (intra-scenario and

inter-scenario) is essential during validation, since it allows

the analysts and the users to detect problems that emerge

only when several scenarios that may affect each other are

executed simultaneously. We exemplify our approach with a

revised version of a system taken from [16].

This paper is structured as follows. Section 2 introduces

the system used in this paper to exemplify our approach.

Section 3 describes our approach to express a set of sequence

diagrams by a CPN model. We describe, in Section 4, how

the obtained CPN model could be used in the validation of

requirements. Section 5 discusses related work. Conclusions

and future work are presented in Section 6.

2. Check-in System
This section describes a check-in system in an interna-

tional airport [16], which is used in this paper to exemplify

the application of our approach.

The main stakeholder in this system is the so called

“check-in agent” that interacts with the passenger in order

to execute the check-in of the passenger. The sequence

of steps performed by the check-in agent during the main

scenario of the “check-in passenger” business use case is the

following [16]:

1) Get the passenger’s ticket or record locator;

2) Confirm passenger, flight, and destination;

3) Check the passport is valid;

4) Record the frequent-flyer (FF) number;

5) Find a seat;

2009 Fourth International Conference on Software Engineering Advances

978-0-7695-3777-1/09 $26.00 © 2009 IEEE
DOI 10.1109/ICSEA.2009.45

250

2009 Fourth International Conference on Software Engineering Advances

978-0-7695-3777-1/09 $26.00 © 2009 IEEE
DOI 10.1109/ICSEA.2009.45

250

2009 Fourth International Conference on Software Engineering Advances

978-0-7695-3777-1/09 $26.00 © 2009 IEEE
DOI 10.1109/ICSEA.2009.45

250

2009 Fourth International Conference on Software Engineering Advances

978-0-7695-3777-1/09 $26.00 © 2009 IEEE
DOI 10.1109/ICSEA.2009.45

250

Authorized licensed use limited to: UNIVERSIDADE DO MINHO. Downloaded on January 13, 2010 at 07:53 from IEEE Xplore. Restrictions apply.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55611736?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

6) Ask security questions;

7) Check the baggage onto the flight;

8) Print and hand over the boarding pass;

9) Wish the passenger a pleasant flight.

The main scenario is modelled by the UML2 sequence

diagram illustrated in Fig. 1(a), where we can observe a

parallel operator that represents the fact that steps 4 and 5

(“record the FF number” and “find a seat” respectively) can

be accomplished in any order.

Each step in the scenario is represented by a message

in the sequence diagram. The sender and the receiver of

a message are extracted from the step’s description, and

the order between these messages is the same as the order

introduced by the numbers of the corresponding steps in the

textual descriptions.

(a) (b)

Figure 1. Sequence diagrams for the “check-in passen-
ger” business use case: (a) the main scenario; (b) some
alternatives and exceptions.

Some alternative and exception scenarios can be added to

the main scenario. For example, three alternatives for step 4

were identified:

A4.1 Allow the FF number to be changed to that of a

partner airline;

A4.2 Allow the FF number to be changed to that of a

family member; or

A4.3 Allow the mileage of the flight to be donated to a

charity of the passenger’s choice.

The “A4” prefix in the previous items is used to indicate

that the items constitute an alternative for the step 4 of the

main scenario, and each alternative item is also enumerated.

In the case the passenger has an invalid passport, an ex-

ception to the main scenario is introduced and the execution

of the scenario must be ended.

The behaviour present in the main scenario, with the

alternatives listed above together with the exception for the

invalid passport can be expressed by the sequence diagram

in Fig. 1(b). This sequence diagram describes a set of

elementary scenarios, since three high-level operators are

used.

3. Expressing Scenarios by a CPN Model
To illustrate our approach we show how it can be applied

to the “check-in passenger” business use case. This section

explains the manual transformation of UML2 sequence

diagrams, describing scenarios, into a CPN model. After

explaining how to obtain the CPN model for the main

scenario, we show how to add alternative and exception

scenarios, and how to enrich the CPN model with some

possible behaviours performed by the passengers. The inter-

ested reader is referred to [15], for details on how to obtain

a CPN model from a set of sequence diagrams.

3.1. Expressing the Main Scenario
The main scenario of the use case described by the

sequence diagram in Fig. 1(a) gives rise to the part of the

CPN model in Fig. 2 that is inside the dashed line.

The initial state for the considered scenario is modelled

by the tokens inside the two places at the top of Fig. 2. The

place ready to check-in passengers contains the tokens

that represent the passengers that are ready to proceed with

the check-in, and the place available agents contains the to-

kens that represent the available check-in agents. These two

places are used as input places to the transition getTicket,
which represents the step in the scenario where the passenger

gives the ticket to the agent. After this trigger, the passenger

and the agent must proceed together to complete the steps

of the scenario. There are places between transitions to

save the information related to the considered passenger

and agent along the scenario execution and to preserve the

order between the transitions (according to the order given

in the sequence diagram). The input arcs for getTicket have

the inscriptions p and a that are variables representing a

passenger and an agent, respectively.

The execution of each instance of the scenario termi-

nates when the considered passenger is checked-out, which

implies that the agent is available again to start a new

check-in procedure. The place checked-out passengers
at the bottom of Fig. 2 is used to contain the tokens

of the passengers that were successfully checked-out. In

Subsection 3.4 the details about the colour sets used in the

CPN model are presented.

3.2. Adding Alternatives and Exceptions
This subsection details how alternatives and exceptions

can be integrated in the CPN model obtained for the main

scenario. As explained in Section 2, in the case study being

considered in this paper there is one exception introduced

251251251251

Authorized licensed use limited to: UNIVERSIDADE DO MINHO. Downloaded on January 13, 2010 at 07:53 from IEEE Xplore. Restrictions apply.

Figure 2. CPN module to express the “check-in passen-
ger” business use case.

s

change the FF to
a family member

record FF
number

S4
Out

S3.aIn

donate mileage
to a charity

change the FF to
a partner airline

s

ScenarioInfo

s

In ScenarioInfo

Out

s s s

ss

Figure 3. altenativesFF CPN module.

by the usage of an invalid passport; and there are two

alternatives introduced by the possibility to either save the

flight in a FF number of a partner airline, save the flight in a

FF number of a family member or donate the mileage. The

resulting behaviour is described by the sequence diagram in

Fig. 1(b), where we can find opt and alt operators.

The transitions recordFF and checkPassport are sub-

stitution transitions that represent the behaviour introduced

by these high-level operators. The substitution transition

recordFF is connected to the CPN module presented in

Fig. 3, where there is an alternative execution among the

four presented transitions. In the common input place S3.a
there is only one token for each scenario instance, which in

this case is represented by a passenger and a check-in agent.

The substitution transition checkPassport is connected

to the module in Fig. 4, where there are two alternative

transitions: one for the case when the passport is valid, and

another one when the passport is invalid. The use of an

#agent s

s s

#passenger s

ss

passport
is invalid

passport
is valid

available
agents

Out Agent

S3.a
Out

ScenarioInfo

S3.b
Out

ScenarioInfo

idle
passengers

Out
Passenger

S2
In

ScenarioInfo
In

Out

OutOut

Out

Figure 4. check passport CPN module.

p

pp

p

give up
waiting

go to
waiting line

idle
passengers

I/O
Passenger

ready to
check-in

passengers
I/O PassengerI/O

I/O

Figure 5. The CPN module to capture some behaviours
of the passenger.

invalid passport is considered an exception, implying that

the execution of the scenario must terminate. The end of

the scenario execution moves the token representing the

passenger participating in the scenario to the place idle
passengers, and the token representing the agent to the

place available agents.

3.3. Adding the Behaviour of Actors
We assume, as explained in [7], that passengers have

free will and might behave in unexpected ways. Check-in

agents also have free will, but they are more biddable, so

they are expected to behave in a more constrained way.

Therefore, in this paper we enrich our CPN models with

alternative scenarios triggered by possible abnormal or unex-

pected behaviours of the passengers, which may include, for

example, ignorance, insubordination or malevolence. This is

an important issue to make the CPN models more useful

for animation and validation purposes, since they address a

richer set of scenarios of usage.

In the context of the “check-in passenger” business use

case, three explicit states were identified for passengers. In

the main scenario we have identified the state (to begin

the scenario) when the passenger is ready to check-in, and

another state to finish the scenario when the passenger is

checked-out. These two states are represented in the obtained

CPN module in fig. 2 by the places ready to check-in
passengers (at the top of the figure) and checked-out
passengers (at the bottom of the figure). When considering

alternatives and exceptions to the main scenario a third state

was identified to capture the fact that the passenger is idle.

For example, when the agent verifies that the passenger’s

passport is invalid the check-in scenario ends and this pas-

senger is considered to be idle. The CPN module presented

in Fig. 2 has a place idle passengers to contain the tokens

corresponding to passengers that are idle.

To capture some of the abnormal behaviours introduced

during the execution of a scenario we can enrich the

252252252252

Authorized licensed use limited to: UNIVERSIDADE DO MINHO. Downloaded on January 13, 2010 at 07:53 from IEEE Xplore. Restrictions apply.

passenger
behaviour

passenger behaviour

check-in
Passenger

check-in passenger

idle
passengers

[{name="Mary", passport="862794",
ticket={flight="4452", kind=normal}},
{name = "Ann", passport ="882528",
ticket={flight="4452", kind=normal}}]

Passenger

checked-out
passengers

Passenger

available
agents

Agent

ready to
check-in

passengers

Passenger

check-in passenger

passenger behaviour

{name="Jim"}

2

1`{name="Ann",passport="882528",
ticket={flight="4452",kind=normal}}
++
1`{name="Mary",passport="862794"
,ticket={flight="4452",kind=normal}}

1

1`{name="Jim"}

Figure 6. The top-most CPN module.

CPN model with a specific module. The CPN module that

expresses the considered behaviours of the passenger is

presented in Fig. 5. We consider that an idle passenger can

go for the waiting line for proceeding with the check-in

(transition go to waiting line in Fig. 5). A passenger in the

waiting line can decide to abandon the area, becoming idle

again (transition give up waiting in Fig. 5).

We model the cancellation of the check-in process by the

passenger after the confirmation of the ticket information,

or after the passenger being asked about the security issues.

These two execution points are represented by the places S2
and S5 in Fig. 2. The substitution transitions “Passenger
Cancel Check-in S2” and “Passenger Cancel Check-in
S5” in Fig. 2 introduce the cancellation in the two cor-

responding execution points. These substitution transitions

stand for the module “cancel passenger” that consists

on a transition taking a ScenarioInfo token and puts a

token with the part of the passenger information into the

place “idle passengers”, and a token with the part of

the agent information into the place “available agents”.

After the cancellation, the passenger can start again from

the beginning of check-in process.

3.4. Generalizing the CPN Model
We explain here how a CPN model can be generalized

in order to allow more use cases and their scenarios to be

executed in parallel. Therefore we describe the role of colour

sets used in the places of the CPN models and how the usage

of multiple tokens in the places of a CPN model allows the

parallel and concurrent execution of scenarios.

The top-most CPN module is presented in Fig. 6. This

module integrates, using substitution transitions, all the CPN

modules presented previously, namely those for the main

scenario of the “check-in passenger” business use case in

Fig. 2 and its exceptions and alternatives, and the ones for

the behaviour of passengers in Fig. 5.

We have defined a colour set to represent each actor of

the system that appears in the use case. The passengers and

the check-in agents are the actors for this system, and their

colour sets are listed in Fig. 7.

For the passenger, we consider that it is relevant to have

her name, her passport number, and her ticket information.

For the agents, only the name is used. As explained above

1 colset Passenger =
2 record name: STRING*
3 passport: INT*
4 ticket: TICKET;
5 colset Agent =
6 record name: STRING;
7 colset ScenarioInfo =
8 record passenger: Passenger*
9 agent: Agent;

Figure 7. Declaration of the colour sets.

the check-in of a given passenger is triggered when she

shows her ticket to one of the available check-in agents.

To save the information about the scenario being executed,

we use a colour set based on a record with the information of

a passenger and an agent, called ScenarioInfo (see Fig. 7).

The CPN module in Fig. 6 has two tokens in the place idle
passengers and one token in the place available agents.

Near to each place, there is a rectangle where the values of

its tokens are specified.

In the specific case shown in Fig. 6, no more than one

passenger can simultaneously do the check-in, because there

is only one available agent (called Jim). The introduction of

an additional agent (adding one token with her identifica-

tion to the place available agents) potentially allows two

passengers to concurrently perform the check-in operation.

4. Validation of Scenario
This section explains how the obtained CPN model can be

used to help on the validation of the initial scenarios for the

system under consideration. We consider that the validation

task is based on the animation of the obtained CPN model,

following the ideas to animate formal specifications [5],

[11], and to improve the quality of requirements using

animations [18]

To build this animation, developers and users must share

a common understanding of the concepts and terms used

in the problem domain. The usage of a CPN model for

animation purposes implies that it must include elements and

constructs that are animation-specific. Since we envision the

CPN model to be also useful in later development phases,

it is important to clearly separate which parts of the CPN

model are animation-specific, and which ones are related to

the problem logic.

The CPN models are enriched with animation-specific

characteristics to connect the execution of the CPN model

in the CPN Tools with an animation layer. The connection is

guaranteed by the BRITNeY suite animation tool [20], which

allows some animation-specific code to be added to a CPN

model in order to be interpreted by an animation running

separately. For the construction of the animation layer, the

SceneBeans tool [11] was considered, which allows the

specification of an animation in a specific XML-file format.

We use the SceneBeans plug-in available in the BRITNeY
suite to display and interact with a SceneBeans animation.

The development of an animation layer using these tools is

detailed in [14].

253253253253

Authorized licensed use limited to: UNIVERSIDADE DO MINHO. Downloaded on January 13, 2010 at 07:53 from IEEE Xplore. Restrictions apply.

The usage of CPNs for validating requirements through

animation was already reported to be successful for work-

flow systems [9] and for pervasive systems [10].

5. Related Work
We have already presented and discussed some ideas on

how to transform use cases and their associated scenarios

into a CPN model in [3], [4]. These previous works address

the development of embedded systems, and focus on mod-

elling the behaviour associated with the interaction between

the system’s controller and the elements in the environment

(actuators and sensors). This technological perspective im-

plies that the possible behaviours of the human users were

only considered, in a very limited and indirect way, in the

environment.

In the present work, we tackle the systems at the business

level and therefore we can directly reflect the behaviour of

the human users in the CPN model, after analysing all the

considered scenarios. This allows us to take a broader vision

and to potentially consider some erratic or unpredictable

situations, where the user behaves in unexpected ways. This

proves to be crucial in aiding the analyst on the requirements

validation process, since it allows an executable model at the

business-level to be created and discussed with the relevant

stakeholders.

Research in scenario-based modelling is receiving a con-

siderable attention in the last years. For example, Somé

presents an approach to requirements engineering where use

cases and scenarios are used to complement each other,

namely it uses scenarios to validate use cases [19]. This

differs from our approach because we intend that for each

use case there is a set of scenarios (that can have alternative

branches), and based on these scenarios a global state-based

behaviour model is created, where the concurrency between

steps are explicitly specified. They consider use cases are

related to the system (contrasting with our view in terms of

business), together with a more complex scenario’s structure

than the one considered by us.

Campos and Merseguer integrate performance modelling

within software development process, based on the transla-

tion of almost all UML behavioural models into Generalised

Stochastic PNs [1]. In particular they explain how to ob-

tain from sequence diagrams and statecharts a performance

model representing an execution of the system.

Shatz and other colleagues propose a mapping from UML

statecharts and collaboration diagrams into CPNs [17], [6].

Firstly, statecharts are converted to flat state machines, which

are next translated into Object PNs (OPNs). Collaboration

diagrams are used to connect these OPN models and to

derive a CPN model for the considered system, which can

be analysed by rigorous techniques or simulated to infer

properties some of its behavioural properties.

Pettit and Gomaa describe how CPNs can be integrated

with object-oriented designs captured by UML communica-

tion diagrams [13]. Their method translates a UML software

architecture design into a CPN model, using pre-defined

CPN templates based on object behavioural roles.

Eichner at al. introduce a formal semantics for the major-

ity of the concepts of UML 2.0 sequence diagrams by means

of PNs [2]. The approach concentrates on capturing, simu-

lating and visualizing behaviour. An animation environment

is reported to be under development, to allow the objects

to be animated, using the PN as the main driver. Their

work has some similarities with ours, namely on the usage

of sequence diagrams, but uses a different PN language

(M-nets) and is oriented towards sequence diagrams that

describe the behaviour of a set of objects.

6. Conclusion and Future Work

In this paper, we have presented an approach that allows

a CPN model to be obtained from a set of scenarios,

expressed as UML2 sequence diagrams. The natural support

to parallelism and concurrency given by the CPN modelling

language permits the CPN model to be considered for simul-

taneous execution of several scenarios (either of the same

use case or of different use cases) and also to represent the

parallel activities inside a scenario. Thus, the CPN models

support two types of parallelism (intra-scenario and inter-

scenario), which means that they can be made rich enough to

explore, during animation, situations where several scenarios

that might affect each other are executed simultaneously. Our

approach also supports the modelling of the human users,

namely some possible unexpected behaviours. This feature

is important to address more cases in the animation, and

thus better validate the requirements with the stakeholders.

Our approach scales up since a CPN model distributes the

system’s complexity among its graphical and textual parts.

For example, in the considered system, the introduction

of more passengers and check-in agents does not change

the structure of the CPN model; we only need to add

extra tokens to some well-identified places. Additionally,

we propose scenarios to be reflected in the CPN model

in an iterative way. This implies that when, for example,

the first alternative scenario is being considered, we should

update the CPN model obtained for the main scenario with

the extra behaviour introduced by the alternative scenario.

Typically, one expects the extra features to be much smaller

than all behaviour, since there are some overlapping parts in

the scenarios (of the same use case).

As future work, we plan to use our approach in industrial

contexts and to evaluate how useful it proves to be for

practitioners. Additionally, we expect to provide some tool

support for the automatic transformation from scenarios into

CPN models.

254254254254

Authorized licensed use limited to: UNIVERSIDADE DO MINHO. Downloaded on January 13, 2010 at 07:53 from IEEE Xplore. Restrictions apply.

Acknowledgments

This work was partially supported by Fundação

para a Ciência e Tecnologia (FCT), under grant

SFRH/BD/19718/2004, and by “AMADEUS: Aspects and

Compiler Optimizations for Matlab System Development”,

Programa FCT (PTDC/EIA/70271/2006).

References

[1] J. Campos and J. Merseguer, “On the Integration of UML and
Petri Nets in Software Development,” in 27th Int. Conf. on
Applications and Theory of Petri Nets and Other Models of
Concurrency (Petri Nets 2006), ser. LNCS 4024. Springer,
2006, pp. 19–36.

[2] C. Eichner, H. Fleischhack, R. Meyer, U. Schrimpf, and
C. Stehno, “Compositional Semantics for UML 2.0 Sequence
Diagrams Using Petri Nets,” in Model Driven Systems Design
(SDL 2005), ser. LNCS 3530. Springer, 2005, pp. 133–48.

[3] J. M. Fernandes, J. B. Jørgensen, and S. Tjell, “Requirements
Engineering for Reactive Systems: Coloured Petri Nets for an
Elevator Controller,” in 14th Asia-Pacific Software Engineer-
ing Conference (APSEC 2007). IEEE CS Press, 2007, pp.
294–301.

[4] J. M. Fernandes, S. Tjell, and J. B. Jørgensen, and O. R.
Ribeiro, “Designing Tool Support for Translating Use Cases
and UML 2.0 Sequence Diagrams into a Coloured Petri
Net,” in 6th International Workshop on Scenarios and State
Machines (SCESM 2007: ICSE Workshops 2007), 2007.

[5] A. Gravell and P. Henderson, “Executing Formal
Specifications need not be Harmful,” Software Engineering
Journal, IEEE, vol. 11, no. 2, pp. 104–10, 1996.

[6] Z. Hu and S. M. Shatz, “Mapping UML Diagrams to a
Petri Net Notation for System Simulation,” in Int. Conf. on
Software Engineering and Knowledge Engineering (SEKE
2004), 2004, pp. 213–9.

[7] M. Jackson, Problem Frames: Analysing & Structuring Soft-
ware Development Problems. ACM Press, 2001.

[8] K. Jensen, L. M. Kristensen, and L. Wells, “Coloured Petri
Nets and CPN Tools for Modelling and Validation of Concur-
rent Systems,” Int. Journal on Software Tools for Technology
Transfer, Springer, vol. 9, no. 3-4, pp. 213–54, 2007.

[9] J. Jørgensen and C. Bossen, “Requirements Engineering
for a Pervasive Health Care System,” in 11th IEEE Int.
Requirements Engineering Conf. (RE 2003). IEEE CS
Press, 2003, pp. 55–64.

[10] R. J. Machado, K. B. Lassen, S. Oliveira, M. Couto,
and P. Pinto, “Requirements Validation: Execution of UML
Models with CPN Tools,” International Journal on Software
Tools for Technology Transfer, Springer, vol. 9, no. 3-4, pp.
353–69, 2007.

[11] J. Magee, N. Pryce, D. Giannakopoulou, and J. Kramer,
“Graphical Animation of Behavior Models,” in 22nd Int.
Conf. on Software Engineering (ICSE 2000). ACM Press,
2000, pp. 499–508.

[12] B. Nuseibeh and S. Easterbrook, “Requirements Engineering:
a Roadmap,” in Proceedings of the 2000 Future of Software
Engineering (FOSE 2000) at Int. Conf. on Software Engi-
neering. ACM Press, 2000, pp. 35–46.

[13] R. G. Pettit and H. Gomaa, “Modeling Behavioral Design Pat-
terns of Concurrent Objects,” in 28th Int. Conf. on Software
Engineering (ICSE 2006). ACM Press, 2006, pp. 202–11.

[14] O. R. Ribeiro and J. M. Fernandes, “On the Use of Coloured
Petri Nets for Visual Animation,” in 8th Workshop and
Tutorial on Practical Use of Coloured Petri Nets and the
CPN Tools (CPN 2007), 2007, pp. 237–56.

[15] O. R. Ribeiro and J. M. Fernandes, “Some Rules to
Transform Sequence Diagrams into Coloured Petri Nets,” in
7th Workshop and Tutorial on Practical Use of Coloured
Petri Nets and the CPN Tools (CPN 2006), 2006, pp.
227–41.

[16] S. Robertson and J. Robertson, Mastering the Requirements
Process, 2nd ed. Addison Wesley, 2006.

[17] J. Saldhana and S. M. Shatz, “UML Diagrams to Object Petri
Net Models: An Approach for Modeling and Analysis,” in Int.
Conf. on Software Engineering and Knowledge Engineering
(SEKE 2000), 2000, pp. 103–10.

[18] J. I. Siddiqi, I. C. Morrey, C. R. Roast, and M. B. Ozcan,
“Towards Quality Requirements via Animated Formal
Specifications,” Annals of Software Engineering, vol. 3, pp.
131–55, 1997.

[19] S. S. Somé, “Use Cases Based Requirements Validation with
Scenarios,” in 13th IEEE Int. Requirements Engineering Conf.
(RE 2005). IEEE CS Press, 2005, pp. 465–6.

[20] M. Westergaard and K. B. Lassen, “The BRITNeY Suite
Animation Tool,” in Proceedings of the 27th Int. Conf. on
Applications and Theory of Petri Nets and Other Models of
Concurrency (ICATPN 2006), ser. LNCS 4024. Springer,
2006.

255255255255

Authorized licensed use limited to: UNIVERSIDADE DO MINHO. Downloaded on January 13, 2010 at 07:53 from IEEE Xplore. Restrictions apply.

