5,637 research outputs found

    Regression of experimental NIS-expressing breast cancer brain metastases in response to radioiodide/gemcitabine dual therapy.

    Get PDF
    Treating breast cancer brain metastases (BCBMs) is challenging. Na+/I- symporter (NIS) expression in BCBMs would permit their selective targeting with radioiodide (131I-). We show impressive enhancement of tumor response by combining131I- with gemcitabine (GEM), a cytotoxic radiosensitizer. Nude mice mammary fat-pad (MFP) tumors and BCBMs were generated with braintropic MDA-MB-231Br cells transduced with bicistronically-linked NIS and firefly luciferase cDNAs. Response was monitored in vivo via bioluminescent imaging and NIS tumor expression.131I-/GEM therapy inhibited MFP tumor growth more effectively than either agent alone. BCBMs were treated with: high or low-dose GEM (58 or 14.5 mg/Kg×4); 131I- (1mCi or 2×0.5 mCi 7 days apart); and 131I-/GEM therapy. By post-injection day (PID) 25, 82-86% of controls and 78-83% of 131I--treated BCBM grew, whereas 17% low-dose and 36% high-dose GEM regressed. The latter tumors were smaller than the controls with comparable NIS expression (~20% of cells). High and low-dose 131I-/ GEM combinations caused 89% and 57% tumor regression, respectively. High-dose GEM/131I- delayed tumor growth: tumors increased 5-fold in size by PID45 (controls by PID18). Although fewer than 25% of cells expressed NIS, GEM/131I- caused dramatic tumor regression in NIS-transduced BCBMs. This effect was synergistic, and supports the hypothesis that GEM radiosensitizes cells to 131I-

    p63 is an alternative p53 repressor in melanoma that confers chemoresistance and a poor prognosis.

    Get PDF
    The role of apoptosis in melanoma pathogenesis and chemoresistance is poorly characterized. Mutations in TP53 occur infrequently, yet the TP53 apoptotic pathway is often abrogated. This may result from alterations in TP53 family members, including the TP53 homologue TP63. Here we demonstrate that TP63 has an antiapoptotic role in melanoma and is responsible for mediating chemoresistance. Although p63 was not expressed in primary melanocytes, up-regulation of p63 mRNA and protein was observed in melanoma cell lines and clinical samples, providing the first evidence of significant p63 expression in this lineage. Upon genotoxic stress, endogenous p63 isoforms were stabilized in both nuclear and mitochondrial subcellular compartments. Our data provide evidence of a physiological interaction between p63 with p53 whereby translocation of p63 to the mitochondria occurred through a codependent process with p53, whereas accumulation of p53 in the nucleus was prevented by p63. Using RNA interference technology, both isoforms of p63 (TA and ΔNp63) were demonstrated to confer chemoresistance, revealing a novel oncogenic role for p63 in melanoma cells. Furthermore, expression of p63 in both primary and metastatic melanoma clinical samples significantly correlated with melanoma-specific deaths in these patients. Ultimately, these observations provide a possible explanation for abrogation of the p53-mediated apoptotic pathway in melanoma, implicating novel approaches aimed at sensitizing melanoma to therapeutic agents

    FRP1 Expression is Inversely Associated With Metastasis Formation in Canine Mammary Tumours

    Get PDF
    Background Canine mammary tumours (CMTs) are the most frequent tumours in intact female dogs and show strong similarities with human breast cancer. In contrast to the human disease there are no standardised diagnostic or prognostic biomarkers available to guide treatment. We recently identified a prognostic 18-gene RNA signature that could stratify human breast cancer patients into groups with significantly different risk of distant metastasis formation. Here, we assessed whether expression patterns of these RNAs were also associated with canine tumour progression. Method A sequential forward feature selection process was performed on a previously published microarray dataset of 27 CMTs with and without lymph node (LN) metastases to identify RNAs with significantly differential expression to identify prognostic genes within the 18-gene signature. Using an independent set of 33 newly identified archival CMTs, we compared expression of the identified prognostic subset on RNA and protein basis using RT-qPCR and immunohistochemistry on FFPE-tissue sections. Results While the 18-gene signature as a whole did not have any prognostic power, a subset of three RNAs: Col13a1, Spock2, and Sfrp1, together completely separated CMTs with and without LN metastasis in the microarray set. However, in the new independent set assessed by RT-qPCR, only the Wnt-antagonist Sfrp1 showed significantly increased mRNA abundance in CMTs without LN metastases on its own (p = 0.013) in logistic regression analysis. This correlated with stronger SFRP1 protein staining intensity of the myoepithelium and/or stroma (p < 0.001). SFRP1 staining, as well as β-catenin membrane staining, was significantly associated with negative LN status (p = 0.010 and 0.014 respectively). However, SFRP1 did not correlate with β-catenin membrane staining (p = 0.14). Conclusion The study identified SFRP1 as a potential biomarker for metastasis formation in CMTs, but lack of SFRP1 was not associated with reduced membrane-localisation of β-catenin in CMTs

    Investigating the Mechanisms of Breast Cancer Metastasis Using Multimodality Molecular Imaging

    Get PDF
    Introduction: Breast cancer recurrence continues to be a significant challenge in the clinic. Despite successful removal and/or treatment of the original tumour, many patients experience relapse in the breast or at distant sites. Furthermore, the diagnosis of metastatic disease often occurs too late for effective treatment. Methods: In this thesis, we combine iron-based cellular MRI and longitudinal BLI to noninvasively track the fate of cancer cells into overt tumours in the mouse brain. We then apply this imaging model to study the effect of a primary breast tumour on the growth of secondary metastases in an immune competent mouse model. Finally, we utilized dual-luciferase BLI to investigate the potential of self-homing circulating tumour cells (CTCs) as a novel cancer theranostic in both orthotopic and metastatic models of breast cancer. Results: BLI complemented our cellular MRI technologies well by providing longitudinal measures of cancer cell viability. Using in vivo BLI/MRI, we demonstrated the presence of a 4T1 primary tumour significantly enhances total brain tumour burden. Finally, using dual-luciferase BLI, we demonstrated the ability of experimental CTCs to home to and treat primary tumours and disseminated breast cancer lesions. Conclusion: MRI and BLI are complementary technologies to noninvasively study the fate of breast cancer cells, as well as the mechanisms contributing to metastasis including CTR/CTE and tumour self-homing. Furthermore, we provide evidence that CTCs are a novel theranostic platform for the visualization and treatment of pre-established tumour sites throughout the body
    corecore