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ABSTRACT 

 

Keywords: Colon Cancer, Microarray Gene expression profiling, Gene ontology 

enrichment analysis, MicroRNA, System Biology, Bioinformatics, Gene 

signature, Cross-Validation, Diagnostic and Prognostic.   

 

Colorectal cancer is the third most common cancer and the leading cause of 

cancer deaths in Western industrialised countries. Despite recent advances in the 

screening, diagnosis, and treatment of colorectal cancer, an estimated 608,000 

people die every year due to colon cancer. Our current knowledge of colorectal 

carcinogenesis indicates a multifactorial and multi-step process that involves 

various genetic alterations and several biological pathways. The identification of 

molecular markers with early diagnostic and precise clinical outcome in colon 

cancer is a challenging task because of tumour heterogeneity. 

 

This Ph.D.-thesis presents the molecular and cellular mechanisms leading to 

colorectal cancer. A systematical review of the literature is conducted on 

Microarray Gene expression profiling, gene ontology enrichment analysis, 

microRNA and system Biology and various bioinformatics tools.   

 

We aimed this study to stratify a colon tumour into molecular distinct subtypes, 

identification of novel diagnostic targets and prediction of reliable prognostic 

signatures for clinical practice using microarray expression datasets. We 
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performed an integrated analysis of gene expression data based on genetic, 

epigenetic and extensive clinical information using unsupervised learning, 

correlation and functional network analysis. As results, we identified 267-gene 

and 124-gene signatures that can distinguish normal, primary and metastatic 

tissues, and also involved in important regulatory functions such as immune-

response, lipid metabolism and peroxisome proliferator-activated receptors 

(PPARs) signalling pathways.  

 

For the first time, we also identify miRNAs that can differentiate between primary 

colon from metastatic and a prognostic signature of grade and stage levels, which 

can be a major contributor to complex transcriptional phenotypes in a colon 

tumour.  
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CHAPTER 1 INTRODUCTION 

1.1 Colon Cancer 

Colon cancer (CC) is the most common malignancies in the world and accounts 

for about 10% of all cancer deaths in both Europe and the USA. (Perez Villamil et 

al., 2012b). Regardless of advances in screening methods, diagnosis, and 

therapies, colorectal cancer is the third most common cancer and the fourth-

leading cause of cancer death worldwide (Greenlee et al., 2000). Till date, 

histopathological staging is the only prognostic classification method is used in 

clinical practices for the selection of patients for chemotherapy treatment. 

However, it has often occurred that cancer staging on the basis of pathological 

prognosis fails to predict recurrence accurately in many patients undergoing 

curative surgery for localized CC. In fact,  10%–20% of patients with stage II CC,  

and 30%–40% of those with stage III CC,  develop recurrence (Marisa et al., 

2013a). Extensive investigative studies on colon cancer for the discovery of 

molecular markers for characterization and prognosis revealed that microsatellite 

instability (MSI) is caused by defective function of the DNA mismatch repair 

(MMR) system and the only marker that was reproducibly found to be a 

significant prognostic factor in early CRC in both a meta-analysis and a 

prospective trial (Hutchins et al., 2011, Popat et al., 2005). Microarray gene 

expression profiling is a powerful tool for the identification of diagnostic and 

prognostic gene signatures. Supervised analysis of gene expression has been used 

to discover gene signatures to identify patients at risk of recurrence of colon 

cancer (Zlobec et al., 2010, Zhang, 2008, Yamasaki et al., 2007, Wang et al., 

2004, Tran et al., 2011). Therefore,  a number of studies have implemented 

microarray technology to investigate gene expression profiles (GEPs) in CC in 
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recent years,  but unfortunately none of the well-established gene signatures have 

been discovered that could be beneficial in clinical practice,  especially for 

predicting clinical outcome (O'Connell et al., 2010, Eschrich et al., 2005). For the 

precise drug targets, molecular homogeneity may be essential in order to identify 

specific biological pathways affected. Gene expression profiling based studies on 

CC have been only poorly reproducible largely because CC disease is composed 

of distinct molecular entities that may develop through multiple pathways on the 

basis of different molecular features (Kang, 2011, Jass, 2007, Marisa et al., 

2013a).  

1.2 Role of Microarray in Cancer Research 

Cancer is a clinically heterogeneous disease. During the past century, the clinical 

behaviour of various cancers was determined using histopathology analysis, a 

process that often lacks exact severity of cancers. Therefore,  the microscopic 

approach can only predict general categories of cancer and cannot reach high 

specificity and sensitivity prediction in clinical practice (Liotta and Petricoin, 

2000). So there is consistently need of novel methods and tools which can answer 

the heterogeneity of these tumours and complement histopathological evaluation 

to increase the specificity and sensitivity in cancer diagnosis and prognosis.  

The Central dogma of molecular biology elucidates that gene expression is a two-

step process in which genetic information is first transcribed into messenger RNA 

(mRNA) through transcription process followed by translation process into a fully 

functional form known as proteins, which are also a major structural component 

of the cell. There is strong understanding that all major cellular process is 

controlled by certain collective expressed genes,  therefore,  it is a great value to 
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analyse genome-wide mRNA level (Brown and Botstein, 1999). Advances in 

technology along with completion of Human Genome Sequence has offered new 

technology, DNA microarray technology. DNA microarrays have the ability to 

simultaneously analyse thousands of mRNA (gene expression level) genes in a 

given sample. The methodology used in this type of measurement generally 

known as gene expression profiling. The introduction of DNA microarray 

technology provided much-improved understanding of various cancers  and 

allowed researchers to analyse thousands of cancer genes along with their role in 

disease progression and their expression patterns linked to clinical phenotypes 

(Lonning et al., 2005). The DNA microarray technology also offers great benefits 

in terms of identification of gene signatures who have the ability to differentiate 

cancer from normal and metastatic tissues, capable of predicting outcomes and 

recurrence, and response to treatment. The technology also offers a great deal of 

potential for discovery of novel drug targets and improve our understanding of the 

disease causes and progression.    

1.2.1 DNA Microarray  

The idea behind DNA microarrays is a specific hybridization of complementary 

nucleic acid sequences between the two DNA fragments,  one is DNA 

microscopic spots attached to the solid surface and other is fluorescent labelled 

RNAs from target tissue (Southern et al., 1999). Generally, a DNA microarray 

consists of thousands number of DNA spots, known as probes or reporters or 

oligo, on a glass. The signal intensity of hybridization of each probe-target is 

quantified by detection of fluorophore should correlate to the abundance of 

mRNA in a target. There are generally two types of DNA microarrays based on 

the DNA fragment used in the constitution of arrays, oligonucleotide arrays and 
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complementary DNA (cDNA) arrays. In oligonucleotide arrays, probes are 

synthesizing directly on the surface of silicon water whereas cDNA array is 

prepared using polymerase chain reaction amplification of interesting genes from 

cDNA library.  

1.2.2 DNA Microarray Analysis   

A number of advance tools have been proposed recently for the analysis and 

interpretation of DNA microarrays data. These tools are commonly divided into 

two major categories, supervised learning (classification) and un-supervised 

(clustering) learning methods. The goal of supervised learning methods is to 

identify gene expression patters e.g. gene expression signature,  which can be used 

for the classification of unknown samples according to their biological or 

functional characteristics (Golub et al., 1999). So, supervised learning methods 

provides an opportunity to integrate knowledge of class label into analysis for the 

classification of samples. Hence, in a given microarray data set consisting of gene 

expression matrix and class label, a subset of most diagnostically discriminatory 

genes can be selected by building a predictive model, also known as classifiers 

e.g. SVM (support vector machine) and K-NN (K- nearest neighbours). The 

underlying concept of these classifiers is to take input expression matrix of the 

pre-selected set of genes of unknown samples as an input and predicts the class 

label of each sample. Supervised learning is largely used for two class problems 

e.g. cancer versus normal, or multi-class problems such as identifications of sub-

types of same cancer.  

In contrast,  unsupervised learning methods involve information of samples,  

genes or both into different clusters consist of similarities in gene expression 

values (Eisen et al., 1998). The fundamental goal of clustering is to divide 
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objected into groups with similar characteristics. Several clustering has been 

applied to microarray data analysis such as hierarchical clustering,  self-organising 

maps,  and K-means clustering (Quackenbush, 2001). The advantage of 

unsupervised learning is that this is method is unbiased and allows significant 

discoveries in complex data sets without any background information about the 

structure.  

1.3 DNA Microarray and its Role in Cancer Research 

DNA microarray technology has been extensively used in cancer research for the 

past numbers of years now,  specifically in search of gene expression signatures 

for the prediction of diagnostics and prognostics categories of cancer patients 

(Sørlie et al., 2001, Golub et al., 1999).  

1.3.1 Diagnostics Classification 

One of the most prevalent and challenging problem in cancer research is the 

histopathological identification and classification of various cancers. Similar 

morphological cancers may belong to distinct clinical subtypes despite the same 

origin. The ability to identify unknown cancer samples into particular subclasses 

may provide an edge for more efficient cancer diagnosis.  

The earliest study by Golub et al. (Golub et al., 1999) exploited the gene 

expression profiling technique for cancer diagnosis of 6, 817 genes in 72 human 

acute leukaemia tumour samples. They used unsupervised learning method and 

suggested two major clusters of leukaemia subtypes, acute myeloid leukaemia 

(AML) and lymphoblastic leukaemia (ALL). Followed by the clustering into 

subtypes, a weight gene classifier was build using supervised learning method for 

the classification of unknown samples into the correct class of AML and ALL. 
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The accuracy of the classifier was assessed using cross-validation on training set 

as well tested on the independent set of samples.  

A number of other studies have also used gene expression profiling techniques for 

the classification of various cancers (Bittner et al., 2000, Welsh et al., 2001, Perou 

et al., 2000, Bhattacharjee et al., 2001). Adding to that,  diagnostics classification 

studies have been performed on number of different cancers such as,  prostate 

cancer (Singh et al., 2002),  lung cancer (Bhattacharjee et al., 2001),  breast cancer 

(Perou et al., 2000),  bladder cancer (Dyrskjøt et al., 2003),  head and neck cancer 

(Belbin et al., 2002) and ovarian cancer (Ono et al., 2000). For the classification 

of multiple types of cancers,  several techniques of multiple tumour classifiers 

have been proposed by exploring the microarray gene expression data to 

discriminate different kind of cancer types based on their tissues of origin (Su et 

al., 2001, Ramaswamy et al., 2001). These methods includes classification tree 

(Giordano et al., 2001),  linear discriminatory analysis (LDA) (Shen et al., 2006),  

artificial neural network (ANN) (Bicciato et al., 2003),  nearest neighbour 

classifier (Li et al., 2001),  and support vector machine (Liu et al., 2005). 

Support vector machine is the most popular classifier applied in microarray data 

analysis of different cancers. The first application of support vector machine was 

achieved by Mukherjee et al. (Mukherjee et al., 1999) followed by the wide 

spread use in molecular classification of microarray expression data. Support 

vector machines classifier were largely designed for two binary classifications but 

can be customised for multiple tumour types.  



7 | P a g e  

 

1.3.2 Prognostic Classification  

One of the most intriguing and contributing applications of DNA microarrays in 

cancer research is the estimation of clinical outcome based on gene expression 

profiles. Unlike molecular diagnostics predication, clinical outcome prediction is 

not just dependent on gene expression profiles but mainly deals with a correlation 

of gene expression profiles and clinical outcome.  

The earliest study conducted by Alizadeh et al. (Alizadeh et al., 2000) in diffused 

B-cell lymphoma (DLBCL) samples,  and predicted the correlation between gene 

expression profiles and clinical outcome. This study uses unsupervised learning 

method on B-cell malignancies and identified two molecular forms of DLBCL 

which indicate different stages of B-cell. This study on DLBCL has led the 

identification of previously undetected subtypes.  

Another major focus of DNA microarray was a prognostic classification of Breast 

cancer. Studying lymph-node status at the time of diagnosis is one of the best 

indicators of future relapse and survival outcome of breast cancer patients. Earliest 

studies have also indicated that the systematic adjuvant chemotherapy reduces the 

risk of metastasis and also survive breast cancer long (Cole et al., 2001). A 

pioneering study in clinical outcome prediction was conducted by can't Veer et al. 

(van 't Veer et al., 2002),  applied microarray data analysis to primary tumours of 

117 patients samples of lymph-node-negative and identified 70-gene prognostic 

signature predictive of clinical outcome. The prognostics signature was further 

validated on independent data set of 295 patients samples with best discriminatory 

power currently observed in the breast cancer clinical prediction.  
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The successful validation of 70-gene prognostic signature has led the discovery of 

many other prognostic signatures of breast cancer (Naderi et al., 2007, Wang et 

al., 2005b, Sotiriou et al., 2006). Similarly outcome prediction based on gene 

expression profiles was expanded to many other cancer types such as,  lung cancer 

(Beer et al., 2002),  prostate cancer (Singh et al., 2002),  brain cancer (Pomeroy et 

al., 2002),  and renal cancer (Takahashi et al., 2001). Studies such as above 

highlights the great potential for gene expression profiling in the identification of 

prognostic signatures for predicting clinical outcome. However further validation 

of this gene signature is required.  

1.4 Microarray Data Integration  

Recent studies highlighted the discovery of DNA microarray provided powerful 

tools which accomplished meaningful insights in cancer research. Similarly other 

studies have also utilised this technology to identify vital gene signature that can 

discriminate between the diagnostic categories along with the prognosis of cancer 

patients (Sotiriou et al., 2006, Bittner et al., 2000, Sørlie et al., 2001, Eisen et al., 

1998, Golub et al., 1999, van 't Veer et al., 2002). However, microarray 

characteristic of high noise, cost and small patient samples size of individual study 

makes it difficult to identify reliable gene signature for diagnostics.  

Another interesting but anticipated evidence is that only a small overlap between 

the gene signatures have been observed from the studies of a different investigator 

of same cancer type, may be due to protocol differences. A recent study by Ein-

Dor et al. (Ein-Dor et al., 2005) question this disagreement on signature 

uniqueness is not just because of different platform,  sample scarcity and 

experiment protocol,  but the signature prediction is strongly influenced by a 
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subset of the patients used for the signature identification. Hence, the signature 

difference might be largely contributed by sample size in individual studies and 

suggested large sample cohort will produce more robust signatures.  

Considering the cost of performing DNA microarray analysis and scarcity of 

certain tumour samples such in our case (colon cancer), it is very difficult to 

performed large scale analysis. In addition to that, it is very hard to repeat 

expression reading from the valuable specimens. Therefore, accumulation of gene 

expression data achieved from various investigators, generated in different 

laboratories may address the question surrounding small sample size. Another 

advantage of this microarray data integration would be to identify gene features 

which might be covered by small samples size and experimental protocol. 

Successful integration might lead to the discovery of robust and accurate gene 

signature important for diagnostics classification and improve statistical 

correlation with clinical outcome. 

1.4.1 Types of Microarray Data Integration  

The rapid increase in microarray data has offered researcher to proposed novel 

integration methods which can effectively accumulate data generated by various 

investigators and from different laboratories. In principle, integration of multiple 

microarray platform data should produce more reliable results since the analyses 

are performed on large samples size and individual study biased is also reduced. 

Several methods have been proposed for inter-study microarray data integration at 

the different level of studies. But these methods can be divided into two major 

categories considering their level of integration: meta-analysis, which combined 

the results after the class comparison (e.g. t-test statistics) from individual data 

sets which also avoid direct comparison of expression matrixes, and direct 
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integration of individual expression data matrixes after performing quality control 

tests such as transformation and normalization. 

1.4.2 Problems in Data Integration 

In ideal condition, any gene expression experimental data obtained from any 

research laboratory, using any protocol, at any time, using microarray technology 

platform, should be comparable. However, this is unachievable in reality and often 

poses massive challenges due to lack of uniformity in standards to microarray data 

integration. Numerous problems have been identified when attempting to integrate 

microarray data generated by individual studies groups using multiple array 

platforms. 

Till now, several studies have shown that gene expression level measurements 

from different microarray platforms, such as spotted cDNA and oligonucleotide 

arrays, might have poor correlation and direct comparison might be meaningful 

(Tan et al., 2003, Mah et al., 2004, Kuo et al., 2002). The identifying divergence 

among the different arrays may be due to the differences in probe set used, 

platforms technologies, labelling and hybridizing protocols, as well as differences 

in data extraction techniques such as background correction, normalization, and 

calculation of expression values. Such as, the data obtained from cDNA 

microarray is usually defined by the ratio between the diseases (experimental) and 

the control expression values which cannot be directly compared with the 

oligonucleotide microarray data which is defined as expression values of disease 

samples.  

Along with the observed difference between the various microarrays platforms,  

comparison between the microarrays data obtained from multiple-laboratories 
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have demonstrated major differences in data from individual studies extracted 

using the same microarray platforms than that obtained in the same lab using 

different microarray platforms (Nimgaonkar et al., 2003, Wang et al., 2005a). This 

particular issue also suggests that data obtained from different laboratories could 

not be compared even though the data was extracted using same microarray 

platform.  

Another issue linked to microarrays is a broad lack of reproducibility among the 

generations. Commercially produced microarrays such as Affymetrix have several 

generations of microarrays in order to compete with the advances in gene 

sequencing. So any new discoveries related to novel genes and their representative 

composition is frequently shared and updated with new developments microarrays 

using the field of biotechnology. Consequently, any probe set data consisting of 

newly discovered genes are incorporated into new generations of commercially 

available microarrays and the existing probe sets are modified for better detection 

targeted gene sequences. A recently conducted study has highlighted the issue of 

reproducibility among the two different generations by analysing the 

reproducibility factor. They identify the Affymetrix are high reproducible with in 

one generation but reproducibility across the two different generation depend up 

on the degree of similarity among the probe sets and the expression levels 

(Nimgaonkar et al., 2003). This issues suggest even using the same microarray 

platform but having different generations would make direct integration difficult 

due miss-matching in the probe sets and duplicated spots. 

In addition to above-discussed issues, there is multiple factors which could make 

the direction comparison very difficult. Such as, variation among the data sets, the 

difference resulting from the technical variability, the difference in sample size, 
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preparation methods and experiments controls, array quality, RNA detecting 

methods and RNA quality further deepens the challenges to integrating data from 

individual’s studies. 

1.5 Thesis Overview 

The aim of this study is to performed microarray integrated analysis on high-

throughput colon cancer data for the prediction of novel diagnostic and prognostic 

signature identification. 

The main objective of this thesis was to propose novel diagnostic and prognostic 

signature gene which can address the issue of heterogeneity and accurately predict 

the clinical outcomes of patients when tested on the wider population. As we 

highlighted earlier that many attempts have been made for the prediction of colon 

cancer signatures that can precisely separate colon cancer from others and 

accurately predict the outcome in clinical practices. Chapter 3 presents the first 

independently study where we implemented tissue-based integration analysis and 

identified novel diagnostic and prognostic signatures by establishing workflow 

Independent of microarray data limitation of sample size, platform and other 

experimental protocols. We searched the PubMed database for the latest 

development in colon cancers applying the microarray tools and selected the high-

quality studies. We performed the tissue-based comparison for the selection of 

differentially expressed genes and the searched for the overlapping genes in all the 

comparison. We tested the diagnostic signature proposed from the normal versus 

primary colon comparison on cross-validation loop for their ability to discriminate 

colon tumours from normal colon among all the cohort data sets. We also tested 

prognostic signature generated from the comparison of normal versus metastatic 
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and primary colon versus metastatic colon using univariate cox proportional 

hazard analysis. 

In the second independent study, we performed integration analysis of two 

different data levels for the identification of factors which contribute the 

heterogeneity of colon cancers and for the identification of functional genes 

involved in the metastases of colon cancer. As we know, in order to understand 

the genetic basis of complex traits such as colon cancer has been a challenge for 

past few years now. But with the increase in expression data and advances in 

technology from multiple levels of biological systems has been a game changer. 

Various analytical approaches have been developed to identify the genetic 

variation that underlies complex traits. Such as variation in gene expression (using 

microarrays and RNA sequencing (RNA-seq)), epigenetic variation (by 

microRNAs, methylation arrays, methylation sequencing or chromatin 

immunoprecipitation followed by sequencing (ChIP–seq)) and protein variation. 

Therefore, in this study, we identified microRNA signature that can differentiate 

primary and metastatic tumours, its stages and tumour grades in patients with 

colorectal carcinoma. In an integrative model, we performed differential 

expression analysis between histopathological groups and identified significantly 

dysregulated miRNAs followed by the target prediction analysis to establish their 

tumour transcriptional phonotypes. Furthermore, we focused on the identification 

and evaluation of miRNAs potentially involved in prognosis and functional 

processes during metastatic progression. 
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CHAPTER 2 LITERATURE REVIEW  

2.1 Background of Colon Cancer 

Numerous of studies have confirmed the use of microarray data analysis role of 

expression profiling in the identification of novel diagnostic markers, drug targets 

for personalised medicine and tumour classifications into subtypes. In 2002, the 

earliest effort of an integrated analysis of data consisting of gene expression 

profiling and drug sensitivity have been used in the assessment of clinical tumours 

for the prediction of biomarkers that can predict therapeutic efficacy (Orr and 

Scherf, 2002). This technique of gene-drug correlation had been employed for 

selecting therapeutic options for tumours on the basis of their molecular 

characteristics. The main focus of this technique was sensitivity rather than 

actually focusing on molecular significances of therapy. Therefore, the earliest use 

of gene expression data in correlation with drug sensitivity database was a 

proposal of antimetabolite 5-FU gene-drug correlation, which was used for the 

treatment of breast and colon cancers by inhibiting both RNA processing and 

thymidylate synthesis. 

Another way of studying the development of any type of a tumour is by closely 

analysing the sequence of events. Studying this general model for colon cancers 

and all those sequences that lead formation of adenoma to carcinoma usually 

occur through genetic and epigenetic changes (Fearon, 2011). Similarly, various 

molecular phenotypes have been used to classify the colon cancers in the past 

(Sanchez et al., 2009). Such as phenotype based on microsatellite instability (MSI) 

(Iacopetta et al., 2010), phenotypes based on epigenetic changes were studying of 

methylation state of CpG islands (van Engeland et al., 2011), phenotypes based on 

the genetic aberrations were presence of genes such as KRAS or BRAF, and 
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phenotypes based on functional pathways were presence of Wnt/ß-catenin, TGF-

ß, MAPK, and PI3K signaling (Fearon, 2011). 

In the past, molecular studies mainly focused on individual gene targets rather 

than addressing the molecular heterogeneity of the disease. The introduction of 

DNA microarray technology offered an investigation of thousands of genes at the 

mRNA expression levels. Therefore, provided an alternate to single gene 

discovery to thousands of genes simultaneously in a single assay, thus offered 

solutions to address the problem of heterogeneity of complex diseases (Mohr et 

al., 2002, Bertucci et al., 2001).  Number of earlier publications based on gene 

expression profiling of colon cancers have performed comparison of normal 

versus tumour tissue samples or comparison among the histological stages (Alon 

et al., 1999, Backert et al., 1999, Hegde et al., 2001, Kitahara et al., 2001, 

Notterman et al., 2001, Agrawal et al., 2002, Birkenkamp-Demtroder et al., 2002a, 

Lin et al., 2002, Zou et al., 2002, Frederiksen et al., 2003b, Tureci et al., 2003, 

Williams et al., 2003) but none of them focused on the disease prognosis and MSI 

phenotype. Bertucci and colleagues (Bertucci et al., 0000) have used application 

of DNA microarray data analysis on 8,000 genes of 50 colon cancer tissues and 

identified several dysregulated genes among the normal and cancer samples along 

with the prediction of clinical outcomes and MSI phenotype. 

Molecular level similarities are essential in the identification of specific pathways 

affected in diseases, in the identification drug targets or achievement and 

designing of survival outcome classifiers.  
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In 1932 the British pathologist Cuthbert Dukes devised a classification system for 

colon cancer. Several different forms of the dukes’ classification were developed. 

Such as: 

Dukes'A: The cancer is in the inner linning of the bowel, it is slightly 

growing into the muscle layer.  

Dukas's: cancer has grown through the muscle layer of the bowel. 

Dukes’C: cancer has spread to at least 1 lymph node close to the bowel. 

Dukes’D: cancer has spread to another part of the body, such as liver, 

lungs or bones 

 

Previously, several attempts have been made to subdivide colon tumours into 

further sub-classes or to correlate gene expression with Dukes stages hasn’t been 

fruitful. Some of them successfully classify normal colon, Duke B and C but not 

Duke A and D (Frederiksen et al., 2003a), one of them has been able to classify 

Duke A in normal colon but not B, C and D (Birkenkamp-Demtroder et al., 

2002b). Other authors were unable to find the difference between stages of colon 

A, B and C (Kwong et al., 2005). Perez Villamil et al. proposed a novel method 

aiming to obtain more homogeneous groups of colon tumours for the discovery of 

molecular uniform subgroups that are more likely to discriminate patient with 

different clinical outcomes along with the better understanding of biological 

pathways forming different tumour subtypes (Perez Villamil et al., 2012a).    

In another study conducted by a group of Cancer Genome Atlas performed 

genome-scale analysis of 276 patients suffering from colon cancers (The Cancer 

Genome Atlas, 2012). In this multidimensional approach, the investigators divided 
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colon data into those with microsatellite instability (MSI) and those that are 

microsatellite-stable (MSS). In results, they observed a number of important genes 

and critical pathways required for the initiation and progression of colon cancers. 

Some of the significant findings from this study were the discovery of P53, PI3K, 

RAS-MAPK, TGF-β, WNT, and DNA mismatch repair pathways. In spite of such 

progress, there are still some unknown genetic and genomic changes which play a 

significant role in colon tumorigenesis. 

Gene expression profiling-based on colon cancers have been poor in terms of 

reproducibility largely due to involvement complex pathways and heterogeneity 

with in disease (Kang, 2011, Jass, 2007). As a result, several diagnostic and 

prognostic signatures have been proposed addressing the distinct gene features 

and pathways. Recently, gene expression profiling-based studies have integrated 

genetic and epigenetic analysis has identified three distinct molecular subtypes of 

colon cancers (2012, Jass, 2007, Salazar et al., 2011). Hence colon cancer should 

not be considered as one disease but a collection of sub-entities. However, there is 

urgent need of redefining molecular classification currently based on biomarkers 

such as MSI, CpG island methylator phenotype CIMP, chromosomal instability 

CIN, and BRAF and KRAS mutations (Shen et al., 2007, Kang, 2011).  

2.2 Review of Microarray Data Integration 

The fast pace increase in microarray data has forced the researcher to create and 

build effective methods to integrate data produced from disparate laboratories 

using different microarray technology platforms. There is a strong agreement in 

the integrating multiple data sets to produce more reliable and strictly valid 

results. This is largely due to the reasons that yield analyses are performed using a 
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larger number of samples and the effects of individual study-specific biases are 

reduced. Consequently, a number of methods have been introduced to integrated 

inter-study microarray data at different levels in microarrays (Warnat et al., 2005, 

Ghosh et al., 2003, Ramaswamy et al., 2003). These integration methods broadly 

fall into two categories: a meta-analysis, which combines the results (t-test 

statistics) from individual studies just to avoid the direct comparisons of 

expression values, and direct integration of expression values after some 

transformation methods such as normalization etc.  

Several studies have adopted this method of combining results of individual 

studies to increase the power of identifying significantly expressed genes across 

studies instead of integrating microarray gene expression values (Zhou et al., 

2005, Stevens and Doerge, 2005, Ghosh et al., 2003, Ramaswamy et al., 2003, 

Nimgaonkar et al., 2003).  One of the earliest efforts by Rhodes et al. (Rhodes et 

al., 2002) in which they exploited the meta-analysis method and proposed a 

statistical model for integrating four independent microarray data sets from two 

different microarray platforms, spotted cDNA arrays and Affymetrix arrays, 

respectively. Each of the identified gene in each study was treated as an 

independent hypothesis and significance value (p-value/q-value) was allocated to 

each gene in each study based on random permutations. Following to above step, 

the similarity of significance across studies was evaluated with meta-analysis 

methods combined with multiple inference statistical test for each possible 

combination of studies. Another study based on significantly dysregulated in 

prostate cancer; Choi et al. (Choi et al., 2003) proposed a new meta-analysis 

method,  which combines the results from an individual study in the form of effect 

size and has the ability to model the inter-study variation. The effect size was 
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calculated mean difference between cancer and normal samples in a microarray 

data set. Afterword, the author combined the individual study effect sizes from 

multiple microarray data sets to estimate the overall mean following by 

calculation of statistical significance using permutation test extended to multiple 

data sets. They successfully established that combining data using this method 

supported the discovery of small but consistent expression changes and may 

increase the sensitivity and reliability of analysis. Hu et al. (Hu et al., 2005) 

proposed an extended version of effect size model for the meta-analysis of 

microarray data.  

Multiple studies have reported success using meta-data analysis method for 

integration individual microarray studies but small sample size, coupling with 

divergences due to the difference in studies protocols have affected the final 

results of meta-analysis method. This is the main weakness of using this method 

reported till now. In addition to this, recently studies also highlighted that there is 

moderate overlap between the gene signature detected using individual studies 

using different platforms. So there are strong chances of losing important genes 

using this meta-analysis method (Mah et al., 2004).  
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CHAPTER 3 INTEGRATED ANALYSIS OF GENE EXPRESSION DATA 

FOR COLON CANCER BIOMARKER DISCOVERY 

3.1 Introduction 

Colon Cancer (CC) is a common malignancy affecting both women and men. 

Despite recent advances in the screening, diagnosis, and treatment of colorectal 

cancer, an estimated 608, 000 people die every year from this form of cancer. 

Pathological staging is the only prognostic classification used in clinical practice 

to select patients for adjuvant chemotherapy. However, pathological staging fails 

to predict recurrence accurately in many patients undergoing curative surgery for 

localized CRC. In fact,  10%-20% of patients with stage II CRC,  and 30% - 40% 

of those with stage III CRC  develop recurrence (Zhang et al., 2001).  

Among the molecular markers that have been extensively investigated for colon 

cancer (CC) characterization and prognosis. DNA mismatch repair (MMR) 

system,  is the only marker that was reproducibly found to be a significant 

prognostic factor in early CRC in both a meta-analysis and a prospective 

trial (Nannini et al., 2009, Zhang et al., 2001). Precise classification of the tumor 

is critically important for cancer diagnosis and treatment. During the past decade,  

efforts have been made to use gene expression profiles to improve the precision of 

classification,  with limited success (Cardoso et al., 2007). Many studies have 

exploited the use of microarray technology to investigate gene expression profiles 

(GEPs) for the diagnosis of colon cancer in recent years,  but no signature has 

been to be useful for clinical practice,  especially for predicting 

prognosis (Sagynaliev et al., 2005). It is shown that the reproducibility of GEP 

studies on colon cancer has not been sufficient for clinic practice,  possibly 

because colon cancer cells are composed of distinct molecular entities that may 
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develop through multiple pathways (Chan et al., 2008, Shih et al., 2005). 

Therefore, there may be several prognostic signatures for CRC, each 

corresponding to a different entity.  

Indeed, GEP studies, based on integrated analysis of genetic/epigenetic data 

including high-throughput methylene data (Nannini et al., 2009), have identified 

at least three distinct molecular subtypes of colon cancer. Therefore, colon cancer 

should no longer be considered as a homogeneous entity. However, the molecular 

classification of CC currently used, which is based on a few common DNA 

markers (MSI,  CpG island methylator phenotype [CIMP],  chromosomal 

instability [CIN],  and BRAF and KRAS mutations) (Kang, 2011, Jass, 2007),  

needs to be refined,  and a standard and reproducible molecular classification is 

still not available.  

In order for identifying more robust diagnostic gene signature of colon cancer, this 

Research thesis presents an investigated analysis of multiple latest competitive 

studies of various stages of colon cancer. We applied tissue-based differential 

expression followed by supervised machine learning approach for the discovery of 

diagnostic/prognostic gene signatures for the earlier and outcome identification of 

patients with colon cancers. We identified a 124-gene signature that can 

discriminate between the patients with good and poor outcomes, also provide 

evidence of functionally involved in immune response, lipid metabolism and 

PPAR signalling pathways.  
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Table 1. A summary cohort of studies involving Colon cancer. 

Author Studies Cohort Sample Size Platform Dataset 

Musella et al. 

(2013) 

Time course analysis 

of colon cancer 

samples 

Normal vs 

Tumor 

N=88,  T=84 

GPL6947 

Illumina 

HumanHT-12 

V3.0 expression 

bead chip 

GSE37182 

Shaffer et al. 

(2009) 

Expression data from 

colorectal cancer 

patients 

Normal vs 

Tumor vs Mets 

N=54,  

T=186,  

M=67 

Affymetrix 

Human 

Genome 

U133A Array 

GSE41258 

Agesen et al. 

(2013) 

Specific extracellular 

matrix remodelling 

signature of colon 

hepatic metastases 

Normal vs 

Tumor vs Mets 

N=18,  

T=20,  

M=19 

Affymetrix 

Human 

Genome 

U133A Array 

GSE49355 

This table is just showing the numbers of studies included in our analysis cohort. 

It can clearly be identified from the table that data sets were derived from different 

platforms of microarray studies. The first study comparing the normal versus 

tumour samples, and the other two studies comparison include expression from 

three different tissues including normal, primary and Mets. The dataset column 

includes the accession numbers of GEO expression data sets and general from 

starts from GSE followed by identification number.  

3.2 Method 

We performed two staged integrated analyses on the expression data sets on three 

lately developed studies based on gene expression analysis of colon cancer for the 

discovery of potential gene signature. In order to extract the biological 

information, we further performed gene ontology enrichment analysis in order to 
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identify the functional pathways involved in localised colon cancer as well as 

spread to other tissues. We searched studies involving applications of gene 

expression profiling on patients involving samples primary and metastatic tumour 

tissues. 

3.2.1 Data Collection 

The three microarray expression data sets were obtained using GEO query 

Bioconductor R package (Davis, 2013) from the Gene Expression Omnibus 

(GEO) database (http://www.ncbi.nlm.nih.gov/geo) (Table I). The expression data 

sets involve samples from normal, primary tumour and metastatic tissue samples. 

In order to identify tissue specific mRNA signatures, we performed comparisons 

of among three tissues to identify specific dysregulated mRNAs. 

3.2.2 Statistical Analysis 

Each of the extracted raw expression data sets was log-transformed and 

normalised by quantile method individually. Using R/Bioconductor, linear models 

for microarray data analysis were employed by forming contrast matrix 

comparisons for normal vs a primary tumour, normal vs Mets and primary tumour 

vs Mets. Significance value (P-Value < 0.05) and log scale (log FC > 1 | log FC < 

-1) was used to rank the genes of interest. Corrections for multiple comparisons 

were done using false discovery rate (FDR) method. NCBI’s original genome 

annotation was used to obtain gene symbols for probe sets id’s.  
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Venn diagram showing the common and unique genes of resulted gene lists after 

comparison between normal versus tumour samples. We found 267 genes 

signatures which are common in all three comparisons. Following the 

identification of dysregulated gene lists from the comparison of normal versus 

primary tumour tissues classes of each eligible study, we combined the resulted 

gene lists to form an inter-study signature gene set. In this case, we observed 267 

genes were common to three gene lists of normal versus primary tumour 

comparison of three investigated data sets. 
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Venn showing normal versus Mets comparison 

 

We focused our attention towards comparison of differentially expressed profiles 

among a tumour versus Mets tissues comparison and identified 124 genes were 

common between the resulted gene lists. We observed a number of notable genes 

were previously linked with metastases in colon cancer.  
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We further analysed identified signatures by performing meta-analysis among 

inter-study signature derived from individual comparisons of normal versus a 

tumour, normal versus Mets and tumour versus Mets tissues by comparing the 

similarities between them. We observed overlapping of 184 genes between normal 

versus a tumour and normal versus Mets gene lists. However, 64 genes of normal 

versus tumour comparison represents a strict tumour-specific (those genes which 

are not significantly dysregulated in another comparison) pool for which the 

functional analysis identified their targeted pathways involved.
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3.2.3 Functional Analysis 

We applied gene ontology enrichment analysis for the interpretation of gene 

signatures in order to identify potential biological processes, functional network 

and pathways. For this purpose,  we applied Functional Annotation Tool of 

DAVID Bioinformatics Resources 6.7 (Huang et al., 2009b) using default settings. 

We used gene symbols as input gene list for each derived signature by selecting 

the Homo sapiens as their population background. We used P-value < 0.05 as a 

cut-off value for the selection of DAVID terms and this reason for choosing this 

criterion so that its conclusions to be drawn about the statistical plausibility and 

clinical relevance of the study findings.  

3.2.4 Classification Performance Evaluation 

We applied supervised machine learning approach in order to study the reliability 

and robustness of inter-study signature. We estimated classification performance 

on each expression data sets by building a classifier using signature genes,  as a 

feature vector,  and their corresponding expression data from (Musella et al. 

(2013),  Shaffer et al. (2009),  Agesen et al. (2013)) using the cross-validation 

loop on support vector machine (SVM) (Mukherjee et al., 1999). We used 

standard leave one-out cross-validation (LOOCV) to estimate the accuracy of 

above classifier. Hence, for every sample xn in the training set S, we train the 

classifier by leaving one sample (N-1) and then classifying the left out sample to 

predict the label of xn.  

3.2.5 Survival Analysis 

We performed prognostics analysis for the 124-genes signature derived from the 

comparison of a tumour versus Mets tissues. For this purpose, we used 
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independent data set (GSE17538) from the study conducted by Smith et al. (Smith 

et al., 2010) derived from metastatic colon cancer. We tested 124-genes 

association with the clinical endpoints such as Overall survival (OS), Disease-

specific survival (DSS) and Disease-free survival (DFS) across all the grades 

(grade 1, 2 and 3) by building Cox proportional hazard (PH) model. We build 

classifiers using genes from signature genes and their corresponding values from 

the training set for the calculation of Wald score for each of the genes in the 

classifier. Log-rank tests P-Value were computed for both univariate and 

multivariate Cox model for OS, DSS and DFS. Similarly, Kaplan-Meier estimates 

were calculated for each endpoint. 

3.2.6 Validations  

For the validation of these studying findings, we applied two approaches: first we 

validated our proposed signature using in-silico cross validation and second 

approach we applied to the literature search of signature genes from previously 

published studies and curated cancer signature databases. Therefore, we searched 

gene signature database GeneSigDB (http://compbio.dfci.harvard.edu/) for the 

potential overlaps between the proposed signatures and previously published 

signatures.  

3.3 Results 

3.3.1 Gene Expression Analysis and Microarray Data Integration  

We performed differential expression analysis on each of the studies by 

comparing expression profiles of normal, tumour and metastatic tissues samples. 

We employed t-test statistics among the contrast matrix comparisons for the 

identification of dysregulated genes. 
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3.3.2 Expression in Normal and Primary Tumour Colon Tissues 

To investigate the difference in human colon cancer, we performed differential 

expression using normal versus tumour samples of each data set. We identified 

2358 dysregulated (2144 up-regulated and 214 down-regulated) genes consisting 

of 88 normal and 84 primary tumour samples of Musella et al. study. Similarly, 

we observed 2696 genes (724 up-regulated and 1972 down-regulated) and 1050 

genes (366 up-regulated and 684 down-regulated) from Agesen et al. and Shaffer 

et al. studies, respectively. We excluded all those probes set ids with no gene 

symbols for further analysis.  

Following the identification of dysregulated gene lists from the comparison of 

normal versus primary tumour tissues classes of each eligible study, we combined 

the resulted gene lists to form an inter-study signature gene set. In this case, we 

observed 267 genes were common to three gene lists of normal versus primary 

tumour comparison of three investigated data sets (Figure 1). 

The gene ontology functional analysis of 267-genes shows over-representation of 

signalling-related molecules in processes and networks (Fig 2). We also identified 

pathways significantly (P-value < 0.05) involved in various cancers such as 

bladder cancer and acute myeloid leukaemia. Known signalling and metabolic 

pathways also featured among the top ten regulatory identified pathways (Table 

2).
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Figure 1. Top-ten processes and molecular functions. 
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Table 2. Top 10 functional regulatory pathways. 

Pathways P-Value Genes 

Focal adhesion 6.82E-05 

CAV1,  MET,  FLNC,  COL5A2,  COL5A1,  

PRKCB,  MYL9,  CCND1,  VEGFA,  COL1A2,  

COL1A1,  COL11A1,  THBS2,  MYLK,  SPP1 

ECM-receptor interaction 8.12E-03 

COL1A2,  COL1A1,  COL5A2,  THBS2,  

COL11A1,  COL5A1,  SPP1 

Bladder cancer 1.12E-02 CCND1, MMP9, VEGFA, MYC, MMP1 

Nitrogen metabolism 1.18E-02 CA7, CA4, CA2, CA1 

Complement and coagulation 

cascades 

1.45E-02 C7, F12, CFB, SERPINE1, CFD, PLAU 

Cell cycle 1.57E-02 

CDK1, CCND1, E2F5, BUB1, MCM4, MYC, 

CDC25A, CDC25B 

Vascular smooth muscle 

contraction 

2.99E-02 

KCNMA1, ACTG2, MYH11, KCNMB1, 

MYLK, PRKCB, MYL9 

Acute myeloid leukemia 3.30E-02 CCND1, LEF1, ZBTB16, RUNX1, MYC 

Leukocyte transendothelial 

migration 

3.73E-02 

CLDN8, MMP9, CLDN1, CXCL12, PRKCB, 

THY1, MYL9 

Wnt signaling pathway 3.90E-02 

WNT5A, CCND1, SFRP1, MMP7, CHP2, 

LEF1, MYC, PRKCB 

 

In table 2 we identified pathways significantly (P-value < 0.05) involved in 

various cancers such as bladder cancer and acute myeloid leukaemia. Known 

signalling and metabolic pathways also featured among the top ten regulatory 

identified.
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In the second step of bioinformatics analytics, we investigated reliability and 

robustness of proposed 264-gene signature using each of the expression data sets 

generated from different platforms (Table 3). The 264-gene signature consistently 

achieved high classification accuracy ratios across all the data sets, classifying 

with 100%, 93.84% and 77.77 %, respectively.  

Table 3. Leave one out cross-validation classification of normal versus tumour signature (264-

genes). 

Author Expression Set 

No. of 

Samples 

Accuracy (%) Sensitivity (%) 

Specificity 

(%) 

Musella et al. (2013) GSE37182 N=88, T=84 100 100 100 

Shaffer et al. (2009) GSE41258 

N=54, T=186, 

M=67 

93.84 92.82 100 

Agesen et al. (2013) GSE49355 

N=18, T=20, 

M=19 

77.77 81.7 96.6 

We investigated reliability and robustness of proposed 264-gene signature using 

each of the expression data sets generated from different platforms. 

3.3.3 Expression in Metastasis Tissues 

Similarly, we carried out differential expression analysis for a subset of Shaffer et 

al. data set consist of 54 normal and 67 Mets samples and identified 1328 genes 

were significantly dysregulated. Among the total identified 1328 genes, 1310 have 

shown over-expression whereas 18 genes were under-expressed.  
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Table 4. Leave one out cross-validation classification of normal versus Mets signature (877-

genes). 

Author Expression Set 

No. of 

Samples 

Accuracy (%) Sensitivity (%) Specificity (%) 

Musella et al. 

(2013) 

GSE37182 

N=88, 

T=84 

100 100 100 

Shaffer et al. (2009) GSE41258 

N=54, T=186, 

M=67 

93.39 96.82 100 

Agesen et al. (2013) GSE49355 

N=18, T=20, 

M=19 

93.33 93.17 96.6 

Likewise, analysis using a subset of Musella et al. study consists of 18 normal and 

19 metastatic samples have shown deregulation of 3122 genes, mostly 3098 

showing over-expression (log FC > 1). We also focused our attention towards 

comparison of differentially expressed profiles among a tumour versus Mets 

tissues comparison and identified 124 genes were common between the resulted 

gene lists. We observed a number of notable genes were previously linked with 

metastases in colon cancer.  

Table 5. Leave one out cross-validation classification of a tumour versus Mets signature (124-

genes). 

Author Expression Set 

No. of 

Samples 

Accuracy (%) Sensitivity (%) Specificity (%) 

Musella et al. 

(2013) 

GSE37182 

N=88,  

T=84 

100 100 100 

Shaffer et al. (2009) GSE41258 

N=54, T=186, 

M=67 

72.96 72.82 95.53 

Agesen et al. (2013) GSE49355 

N=18, T=20, 

M=19 

76.86 80.39 96.6 
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3.3.4 124-gene metastatic signature identified patients associated with poor 

outcome in independent data set 

An independent human colon cancer gene expression and clinical data set was 

used to test the ability of 124-gene signature that discriminate between patient 

associated with cancer reoccurrence, overall survival and disease-specific 

survival. 238 patients with histopathological properties of age, gender, ethnicity, 

stage and grade were available for analysis. We observed, patients with higher 

grade (grade 3) across all the grades in independent set has significantly better OS 

(p=0.001, HR=2.61(CI 1.43-4.79); p=0.16, HR=1.42(CI 0.86-2.35), respectively) 

and DSS (p=0.00, HR=2.41(CI 1.28-4.53); p=0.25, HR=1.35(CI 0.80-2.28) 

compare to low grade patients. 

Similarly, we determine the relative risk of reoccurrence and cancer-related 

deaths. We observed a significant association of 124-gene signature with the risk 

of reoccurrence when analysed across all the tumour grades (p=0.0003, 

HR=1.74(CI 1.28-2.37)). We also analysed that the relative risk of reoccurrence 

has increased with the increase of tumour grade in patient samples (grade 3 

(p=0.0005, HR=2.94(CI 1.59-5.46))) (Figure 3).  

We performed prognostics analysis for the 124-genes signature derived from the 

comparison of tumour versus Mets tissues. For this purpose, we used independent 

data set (GSE17538) from the study conducted by Smith et al. (Smith et al., 2010) 

derived from metastatic colon cancer.  

We tested 124-genes association with the clinical endpoints such as Overall 

survival (OS), Disease-specific survival (DSS) and Disease-free survival (DFS) 

across all the grades (grade 1, 2 and 3) by building Cox proportional hazard (PH) 
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model. We build classifiers using genes from signature genes and their 

corresponding values from the training set for the calculation of Wald score for 

each of the genes in the classifier. Log-rank tests P-Value were computed for both 

univariate and multivariate Cox model for OS, DSS and DFS. Similarly, Kaplan-

Meier estimates were calculated for each endpoint. 
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Figure 2. The 124-gene classifier as tested in the independent data set across all grades. Kaplan–Meier estimates of overall and disease-specific survival in the 

test set. Expression data for probes corresponding to the 124-gene recurrence classifier were used to build the Cox proportional hazard model from patient data 

in the Vanderbilt dataset. Plots represent survival analyses in the independent patient data set (A) Overall survival, (B) disease-specific survival analyses and (C) 

disease-free survival 
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3.3.5 The Cancer-focused Genes  

We further analysed identified signatures by performing meta-analysis among 

inter-study signature derived from individual comparisons of normal versus 

tumour, normal versus Mets and tumour versus Mets tissues by comparing the 

similarities between them. We observed overlapping of 184 genes between normal 

versus tumour and normal versus Mets gene lists. However, 64 genes of normal 

versus tumour comparison represents a strict tumour-specific (those genes which 

are not significantly dysregulated in other comparison) pool for which the 

functional analysis identified their targeted pathways involved: cell cycle, acute 

myeloid leukemia, progesterone-mediated oocyte maturation, TGF-beta signaling 

pathway, role on ran in mitotic spindle regulation and G1-phase progression by 

my.  

Similarly, in normal versus Mets and tumour versus Mets, a total of 701 genes 

were differentially expressed among met tissues. We tracked the significant 

pathways involved: immune response, lipid metabolism and PPAR signalling 

pathway.  

3.4 Discussion  

The purpose of the present study to find possible marker gene sets for colorectal 

cancer by using a two-step bioinformatics analytics. We performed meta-analysis 

using publicly available GEO expression profiles of normal, tumour and 

metastatic tissues for the discovery of robust signature involving pathogenesis of 

colon cancer.  

We identified cross-study 267-gene signature from the comparison of normal 

versus primary tumour samples across all the data sets that may be vital for the 
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diagnosis of colon cancer. The functional analysis of 267-genes has revealed the 

involvement of cell cycle,  cell-signaling and metabolic regulated pathways as 

reported in the previous studies (Moreno and Sanz-Pamplona, 2015, Planutis et 

al., 2014). We further tested the robustness of gene signature using cross-

validation, which shows excellent 90.53% overall-average accuracy-rate across all 

the expression data sets. We also observed the Agesen et al. expression validated 

with higher error-rate compare too other two data sets in the validation cohort. A 

close examination of the cohort present possible to the explanation of these 

results; Agesen et al. study samples include stage IV tissues whereas Musella et 

al. and Shaffer et al. samples were derived from slightly earlier stages I-IV. 

However, we cannot rule out these variations are due to the difference in sample 

size and/or platform differences.  

For the Mets tissues analysis, we identified two gene sets of deregulated genes 

from the comparison of normal, tumour and mets tissues. Further analysis of 124-

genes deregulated among a tumour versus Mets tissues has shown involvement in 

key regulatory pathways such as complement cascade, the formation of the fibrin 

clot, extracellular matrix organization, collagen degradation and lipoprotein 

metabolism. Survival analysis of 124-gene signature using independent data sets 

has separated patients with high grades from lower grades when analysed for 

overall survival rate and disease-specific survival. The ability of 124-gene 

signature to discriminate between patient outcomes may be useful in patient 

prognosis, but further biological validation will be required. The prognostics 

results also show the positive correlation between the risk of reoccurrence and 

disease related deaths with the increase of tumour grade.    
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We also compared the similarities between the results of three signatures. The 

deregulated 64 genes were specific to normal versus primary tumour comparison 

have also shown significant linkages to cancer-related pathways. The other group 

of genes (701), strictly related to Mets tissues have also shown significantly 

involvement in pathways previously observed in colon cancer.  

In conclusion, this study shows the importance of integrated techniques of 

individually conducted gene expression studies and provide further insights into 

understanding of colon cancer data for clinical purposes. The cross-validation 

analysis of gene signature shows samples scarcity and different platform used for 

generation of expression remains challenging area. This study has also shown 

valuable knowledge and future direction for the treatment of colon cancers but a 

more robust approach using multiple biological stage data may answer a question 

related to molecular heterogeneity. 
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CHAPTER 4 GENOME-WIDE MICRORNA AND MRNA INTEGRATED 

ANALYSIS OF COLON CANCER 

4.1 Introduction 

The majority of deaths related to colon cancer are due to metastases in the primary 

tumour lesions,  and according to recent studies nearly half of the patients only 

survive for 5 years from the diagnosis of metastatic malignancy (Parkin et al., 

2005). Various studies have highlighted the first site on the onset of metastatic 

colon cancer is regional lymph nodes and then its spread to the liver. Pathological 

studies on colon cancer cannot precisely predict patients with metastatic 

vulnerability to local lymph nodes and/or to distant organs. 

The investigative studies on liver metastases have shown that it is often originated 

from colon cancers,  and there have been such practical evidence where metastasis 

reading is the first and only finding in patients with an unknown primary tumour 

site (Pavlidis et al., 2003),  and the discovery target sites can differentiate between 

primary hepatic lesions and liver metastasis from different possible origin sites 

can be therapeutic and prognostic value (Fernandez-Pineda et al., 2015). 

Therefore, there is an increasing urgency of novel diagnostic and prognostic 

biomarkers that could differentiate between the primary tumour and metastasis 

malignancies sites, as well as prediction of primary tumours having a tendency of 

metastasizing to other organs. Although, the association between colon cancer 

metastases and the mortality rate is very well studied the genomic mechanisms 

underlying tumour cell distribution and the primary tumour tendency for 

metastases is still poorly understood. However,  the discovery of new class RNAs 

(miRNAs) with the regulatory role may be integral in malignant processes (Su et 

al., 2010, Glud et al., 2010). 
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miRNAs (microRNAs), are small (19–25 nucleotides) on coding RNAs, that have 

the ability to regulate mRNA genes expression by suppressing mRNA translation 

during post translational modifications, and/or causing mRNA degradation. 

miRNAs are known to be involved in important regulatory processes by targeting 

translation sites of multiple mRNA genes (Bartel, 2004),  and are observed to 

expressed in tumour initiation and progression sites (Calin and Croce, 2006). c 

(Cho, 2007). The stimulating characteristics of miRNAs signatures being highly 

tissue-specific can be utilised to classify and investigate heterogeneous cancers 

and origin sites of colon metastases of unknown origin (Rosenfeld et al., 2008, 

Ramaswamy et al., 2001).  

 

The aim of our study was to identify a microRNA signature that can differentiate 

primary and metastatic tumours, its stages and tumour grades in patients with 

colorectal carcinoma. Furthermore, we focused on the identification and 

evaluation of miRNAs potentially involved in prognosis and functional processes 

during metastatic progression. For this purpose, we performed differential 

expression analysis between histopathological groups and identified significantly 

dysregulated miRNAs followed by the target prediction analysis to establish their 

tumour transcriptional phonotypes.    

4.2 Results  

4.2.1 Subtype-specific miRNAs 

In order to understand the impact of dysregulated miRNAs in the formation of a 

tumour transcriptional phenotypes, we investigated miRNA expression patterns 

across different histopathological tumour groups. We performed differential 
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expression analysis across tumour groups and identified approximately 70 highly 

dysregulated (p-value < 0.001) miRNAs (table 6).  

Table 6. Top differentially expressed miRNAs among histopathological groups.  

No. Differentially expressed miRNAs Gender Mets Grade Adjuvant chemotherapy Stages 

1 hsa-miR-378*-4373024 



   

2 hsa-miR-200c*-4395397 
   



3 hsa-miR-106b*-4395491 







 

4 hsa-let-7f-1*-4395528 

   



5 hsa-miR-15b*-4395284 







 

6 hsa-miR-424*-4395420 



 





7 hsa-miR-543-4395487 
   



8 hsa-miR-628-3p-4395545 

   



9 hsa-miR-769-5p-4395186 







 

10 hsa-miR-550-4395521 

 







11 hsa-miR-99b*-4395307 

   



12 hsa-miR-26b*-4395555 

   



13 hsa-miR-155-4395459 
 







14 hsa-miR-135a*-4395343 



 





15 hsa-miR-25-4373071 

   



16 hsa-miR-324-5p-4373052 

   



17 hsa-miR-27b-4373068 



 





18 hsa-miR-181c*-4395444 
   



19 hsa-miR-183*-4395381 

   



20 hsa-miR-335-4373045 



 





21 hsa-miR-26a-1*-4395554 



 





22 hsa-miR-143*-4395257 







 

23 hsa-miR-432-4373280 

  

 

24 hsa-miR-16-4373121 
   



25 hsa-miR-101-4395364 
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26 hsa-miR-505-4395200 

  





27 hsa-miR-938-4395292 

  





28 hsa-miR-193b-4395478 

  





29 hsa-miR-15a*-4395530 
  





30 hsa-miR-18a-4395533 

  





31 hsa-miR-526b*-4395494 

  





32 hsa-miR-376a-4373026 

  





33 hsa-miR-770-5p-4395189 

  





34 hsa-miR-10b-4395329 

  





35 hsa-miR-92a-4395169 
 



 

36 hsa-miR-146b-5p-4373178 

 



 

37 hsa-miR-31-4395390 

 



 

38 hsa-miR-19b-1*-4395536 

 



 

39 hsa-miR-672-4395438 

 



 

40 hsa-miR-875-3p-4395315 
 



 

41 hsa-miR-551b-4380945 

 



 

42 hsa-miR-149-4395366 

 



 

43 hsa-miR-92a-1*-4395248 

 



 

44 hsa-miR-549-4380921 

 



 

45 hsa-miR-550*-4380954 

 



 

46 hsa-miR-504-4395195 
 



 

47 hsa-miR-142-3p-4373136 

 



 

48 hsa-miR-330-5p-4395341 

 



 

49 hsa-miR-194*-4395490 

 



 

50 hsa-miR-148b*-4395271 

 



 

51 hsa-miR-221-4373077 
 



 

52 hsa-miR-194-4373106 

 



 

53 hsa-miR-339-3p-4395295 

 



 

54 hsa-miR-449a-4373207 
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55 hsa-miR-100*-4395253 

 



 

56 hsa-miR-146b-3p-4395472 

 



 

57 hsa-miR-378-4395354 

 



 

58 hsa-miR-93*-4395250 
 



 

59 hsa-miR-628-5p-4395544 

 



 

60 hsa-miR-486-5p-4378096 

 



 

61 hsa-miR-571-4381016 

 



 

62 hsa-miR-335*-4395296 





  

63 hsa-miR-323-3p-4395338 





  

64 hsa-miR-497-4373222 




  

65 hsa-miR-125a-3p-4395310 





  

66 hsa-miR-655-4381015 





  

67 hsa-miR-28-3p-4395557 





  

68 hsa-miR-636-4395199 





  

69 hsa-miR-923-4395264 

   

70 hsa-miR-518b-4373246 

   

We combine dysregulated miRNAs of all histopathological tumour groups in one 

table to differentiate between specific miRNAs which belong to the particular 

histopathological group. As we observed in above table there are 7miRNAs are 

which only exist in metastasis, 12 miRNAs in stages, 2 miRNAs in gender, 27 

miRNAs in grade and 9 miRNAs in Adjuvant chemotherapy. These miRNAs are 

specific only to histopathological groups. 

4.2.2 miRNAs differentiate primary and metastatic colon tissues  

In order to investigate miRNAs profile expression among the tissues classes, we 

performed differential expression analysis among the 47 primary and 18 

metastatic colon tissues and identified 17 miRNAs dysregulated among the 

patients, some of them have been reportedly associated with tumour activities in 
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colon cancer in the past. We observed up-regulation of 6 miRNAs (hsa-miR-636, 

logFC 1.57; hsa-miR-655, logFC 1.33; hsa-miR-135a*, logFC 1.28; hsa-miR-26a, 

logFC 1.25; hsa-miR-335*, logFC 0.89; hsa-miR-335, log FC 0.83) in primary 

tissue. Previously, hsa-miR-636 dysregulation has been reported in association 

with survival (Slattery et al., 2016) and down-regulation of hsa-miR-135a* linked 

to cell cycle regulation in colon adenoma cells (Schlormann et al., 2015). 

Similarly, up-regulation of hsa-miR-26a is associated with down regulation of 

CDK6 mRNA and induce apoptosis of colon cancer cells (Konishi et al., 2015). 

We observed up-regulation of two members of miR-335 family, previously 

involved in process of multiple tumorigeneses in colon tumours (Wang et al., 

2010).  

We also identified 11 up-regulated miRNAs (hsa-miR-769, hsa-miR-28, hsa-miR-

27b, hsa-miR-125a, hsa-miR-497, hsa-miR-424*, hsa-miR-378*, hsa-miR-323, 

hsa-miR-106b*, hsa-miR-15b*, and hsa-miR-143*) in metastatic tumors as 

compared to primary colon. Previously, down-regulation of hsa-miR-28 (Almeida 

et al., 2012) has been reportedly linked to reduced cell proliferation, migration and 

invasion in vitro, so the over-expression of hsa-miR-28 in our study indicate 

oncogenic effects on processes like cell proliferation and migration. Further 

studies based on dysregulation of hsa-miR-28 in colon cancers may provide 

reciprocate details of genes likely to involved in metastases. Higher expression of 

hsa-miR-27b has been associated with proof clinical response (Rasmussen et al., 

2013),  reportedly involved in suppressed tumour growth,  cell adhesion,  and 

invasion (Matsuyama et al., 2016). miRNAs hsa-miR-424* and hsa-miR-378*  

up-regulation reported being involved in lymph node metastases and poor 

prognosis (Wang et al., 2012, Wang et al., 2010). Other miRNAs with oncogenic 
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activities are hsa-miR-125a inhibit cell proliferation and induce apoptosis by 

targeting BCL2,  BCL2L12 and Mcl-1 (Tong et al., 2015) and miR-106b mediate 

inhibition of LT97 cell proliferation (Schlormann et al., 2015). 

 

Figure 3. Heatmap representation of miRNAs differentially expressed among primary and 

metastatic tissue classes.  

We identified 11 up-regulated miRNAs (hsa-miR-769, hsa-miR-28, hsa-miR 27b, 

hsa-miR-125a, hsa-miR-497, hsa-miR-424*, hsa-miR-378*, hsa-miR-323, hsa-

miR-106b*, hsa-miR-15b*, and hsa-miR-143*) in metastatic tumors as compared 

to primary colon. Previously, down-regulation of hsa-miR-28 (Almeida et al., 

2012) has been reportedly linked to reduced cell proliferation, migration and 

invasion in vitro, so the over-expression of hsa-miR-28 in our study indicate 

oncogenic effects on processes like cell proliferation and migration. 
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4.2.3 miRNAs differentially expressed among the stages 

Studies based on miRNAs specific to tumour stage and survival are vital for the 

understanding of tumour progression and origin sites (Slattery et al., 2015a). 

Therefore, we investigated miRNA expression across the different stages of colon 

cancer by performing univariate ANOVA analysis and identified 25 miRNAs 

differentially expressed (p-value 0.001) among the four stages. Of these, 11 

showed over-expression in stage I, 15 in stage II, 15 in stage III and 14 miRNAs 

in stage IV.  
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Figure 4. Heatmap representation of miRNAs differentially expressed among four stages of colon 

cancers.  

Surprisingly, none of the miRNA either showed continuous over-expression or 

under-expression from stage I to stage IV during the analysis which provides 

strong evidence of miRNAs ability of stage specificity. We observed similarities 

in the expression changes of miRNAs between stage I and II, and nearly the same 

numbers of miRNAs altered its expression from stage III to stage IV (heatmap). 

We also observed significantly decreased expression of miRNAs compare to stage 

III and IV in stage I and II tumours, suggests a shift in the pattern changes of 

miRNAs and can be differentiated in the presence of this signature. The overall 
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behaviour of miRNAs between primary stage I and II was same but upon 

evaluating individual miRNAs we observed a significant increase in expression of 

two miRNAs in stage II colon tumours (hsa-miR-200c*, logFC1.39 and hsa-miR-

181c*, log FC 1.06). Further analysis of these miRNAs could only reveal their 

ability to distinct between the stage I and II tumours along with their vulnerability 

to undergo metastases.     

Another interesting theme observed during analysis was that none of the miRNA 

expressed in primary stage I and II was associated with metastases, however, five 

significantly miRNAs (hsa-miR-15b*, hsa-miR-143*, hsa-miR-106b*, hsa-miR-

378* and hsa-miR-424*) over-expressed in stage III and IV. We further evaluated 

the relationship of these miRNAs for association with survival and their anti-

correlated impact on transcription sites of mRNA. 

4.2.4 Histological grades 

The investigation on expression patterns across the tumour grades shows 

significant (p-value 0.01) dysregulation of 34 miRNAs from well, moderate and 

poorly differentiations of colon tumour cells. Of these, 14 miRNAs showed over-

expression in well, 17 in moderate, and 21 in poorly differentiated tumour grades. 

As expected, we observed decreasing expression from well to poorly 

differentiated miRNAs.   
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Figure 5. Heatmap representation of miRNAs differentially expressed among three grades of colon 

cancer.  

 We have also investigated the association of tumour grades with primary and 

metastases colon tumour and observed nearly three miRNAs (hsa-miR-378*,  hsa-

miR-424*,  and hsa-miR-27b) have shown higher expression in poorly tumour 

differentiation as well as in metastatic colon tissues. However,  we observed over-

expression of two miRNAs (has-miR-135a*,  log FC 2.90 and hsa-miR-26a,  log 

FC 2.94) in well-differentiated tumour grades as well as also shown higher 

expression in primary tumour colons.    
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4.2.5 Adjuvant Chemotherapy 

Determining subset of high risks patient likely to get the benefit of chemotherapy 

could add valuable information to the clinical features in colon cancer metastasis 

potential and drug resistant (Li et al., 2016).  Genetic therapies treatments with 

miRNAs in a combination of chemotherapy and surgeries are essential for 

suppression of tumour growth in advanced-stage colon cancers (Okamoto et al., 

2016). Here we report dysregulation of 15 miRNAs after comparison of groups of 

patient served with adjuvant chemotherapy against comparing to who hasn’t. 

Among the 8 up-regulated miRNAs are (hsa-miR-15b*, logFC 2.59; hsa-miR-

143*, logFC 2.13; hsa-miR-106b*, logFC 1.92; hsa-miR-505, logFC 1.65; hsa-

miR-378*, logFC 1.36; hsa-miR-18a, logFC 0.75; hsa-miR-10b, 0.60; hsa-miR-

769, logFC 0.49). A closer look at the results shows that nearly five miRNAs have 

responded with high expression in patients served with chemotherapy also showed 

over-expression in metastatic tissues. Similarly, they have also shown correlation 

with at stage III and IV colon tumours.  
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Figure 6. Heatmap representation of miRNAs differentially expressed among histological groups 

of colon cancer patient who were treated with adjuvant chemotherapy versus who received no 

treatment.  
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Figure 7. Venn diagram summarising miRNAs dysregulated among five histological groups.   

 

We combine dysregulated miRNAs of all histopathological tumour groups on 

Venn diagram to differentiate between specific miRNAs which belong to the 

particular histopathological group. As we observed in above diagram there are 

7miRNAs are which only exist in metastasis, 12 miRNAs in stages, 2 miRNAs in 

gender, 27 miRNAs in grade and 9 miRNAs in Adjuvant chemotherapy. These 

miRNAs are specific only to histopathological groups. 

 

 

4.2.6 miRNA associated with prognosis in colon cancers 

We performed Cox-regression univariate analysis in order to identify miRNAs 

whose expression is associated with clinical outcome. Analysis was for conducted 

using all the colon tumour samples with respect to overall survival (OS) and 

disease-free survival (DFS) from the point of diagnosis till clinical end points 
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(death or recurrence of disease). As a result, we identified 10 miRNAs associated 

with clinical outcomes (table 7). Among these, 9 of them were significantly 

associated with OS and only one miRNA was linked to DFS. We further analyse 

these prognostic miRNAs by assessing their expression in different 

histopathological groups and found almost all the prognostic miRNAs were 

significantly dysregulated between them. For example, prognostic miRNAs (hsa-

miR-378* and hsa-miR-15b*) were dysregulated in metastatic patients, three 

grades (poorly, moderate and well differentiated), adjuvant chemotherapy (yes or 

no), and among the four stages of tumour progression. Similarly, we identified 

individual prognostic miRNAs which have shown dysregulation in one particular 

histology comparison such as, has-miR-183* uniquely expressed among the four 

stages of tumour samples, and two miRNAs (hsa-miR-92a-1* and hsa-miR-330-

5p) when we performed comparisons among the patient with different tumour 

grades.       

Table 7. Summary table of miRNAs associated with survival outcomes.  

 

miRNAs 

miRNAs significantly associated with prognosis 

No. HR Lower Higher P-value 

1 hsa-miR-378*-4373024 0.81 0.66 0.99 3.71E-02 

2 hsa-miR-15b*-4395284 0.81 0.69 0.95 5.56E-03 

3 hsa-miR-628-3p-4395545 1.3 1.04 1.62 1.95E-02 

4 hsa-miR-135a*-4395343 1.45 1.06 2 1.85E-02 

5 hsa-miR-183*-4395381 1.64 1.22 2.22 1.51E-03 

6 hsa-miR-330-5p-4395341 6.02 2.49 14.56 2.30E-11 

7 hsa-miR-323-3p-4395338 0.83 0.69 1 4.19E-02 

8 hsa-miR-125a-3p-4395310 0.56 0.33 0.97 3.69E-02 

9 hsa-miR-655-4381015 1.36 1.08 1.73 8.05E-03 
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10 hsa-miR-92a-1*-4395248 0.73 0.54 1 4.10E-02 

 

All the prognostic miRNAs were further divided into risk groups (high or low) 

according to their risk-score predictor. Prognostic miRNAs exhibiting Hazard 

Ratios less than one (HR < 1) were defined as “Protective” and miRNAs 

associated with Hazard Ratio greater than one (HR > 1) as “Risk-associated”. Five 

of the miRNAs associated with better prognosis (hsa-miR-378* (HR = 0.81, CI = 

0.66-0.99), hsa-miR-15b* (HR = 0.81, CI = 0.69-0.95), hsa-miR-323-3p (HR = 

0.83, CI = 0.69-1), hsa-miR-125a-3p (HR = 0.56, CI = 0.33-0.97), and hsa-miR-

92a-1* (HR = 0.73, CI = 0.54-1). Similarly, prognostic miRNAs such as hsa-miR-

628-3p (HR = 1.3, CI = 1.04-1.62), hsa-miR-135a* (HR = 1.45, CI = 1.06-2), hsa-

miR-183* (HR = 1.64, CI = 1.22- 2.22), hsa-miR-330-5p (HR = 6.02, CI = 

2.49-14.56), and hsa-miR-655 (HR = 1.36, CI = 1.08-1.73) were linked to worse 

prognosis. All of the risk-associated miRNAs were absent when we compared 

patients who have received adjuvant chemotherapy versus who hasn’t. A closer 

look at risk-associated miRNAs shows that high-risk hsa-miR-183* has shown 

higher expression in stage I and II compared to stage III and IV, could be used as 

a biomarker for early detection of colon cancer. We further performed Kaplan-

Meier analysis using prognostic miRNAs in order to calculate and illustrate 

survival curves.   

Further analyses were performed on prognostic factors by conducting univariate 

and multivariate analysis using histopathological information on its own (without 

the expression data). As a result, we found histological factor stage is significantly 

associated with prognosis of DFS (table 8) whereas histological factors such as 

stage, tissue type and use of adjuvant chemotherapy significantly associated with 
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OS prognosis (table 9). Following the cox regression analyses, we then assessed 

the quality of fitted models using analysis of deviance (-2 log likelihood) for the 

selection of co-variate which could impact on the association of prognostic factors 

with miRNA expression on the outcome prediction. The deviance-score analysis 

shows one-factors (stage level) model can be a best-suited model for DFS 

prognosis whereas, prognostic factors tissue type and stage level models for OS 

prognosis. Almost all the miRNAs exhibited their ability as an independent 

prognostic factors when evaluated using multivariate models for DFS and OS.   
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Table 8. Summary table of prognostic factors associated with DFS. 

Disease-free survival 

Histopathological factors 

 

Univariate Multivariate 

N(

n) 

HR %95 CI 

P-

Value 

HR %95 CI 

P-

Value 

Gender Female 25 1 

  

1 

  

 

Male 40 

0.96

86 

0.2591 

3.621 

0.962 

0.97

04 

0.25327-

3.718 

0.965 

Tissue Type Tumor 47 1 

  

1 

  

 

Mets 18 

2.89

3 

0.5843-

14.33 

0.193 

0.48

91 

0.03775-

6.337 

0.584 

Tumour Grade 

Continu

ous 

65 

1.03

2 

0.3754-

2.834 

0.952 

1.07

75 

0.35709-

3.251 

0.895 

Stage 

Continu

ous 

65 

2.46

4 

1.049- 

5.786 

0.038

45 

3.25

1 

0.64426-

16.405 

0.153 

Adjuvant 

Chemotherapy 

No 27 1 

  

1 

  

 

Yes 38 

2.55

8 

0.5244-

12.48 

0.245

4 

1.27

61 

0.22312-

7.298 

0.784 

 

Further analyses were performed on prognostic factors by conducting univariate 

and multivariate analysis using histopathological information on its own (without 

the expression data). As results, we found histological factor stage is significantly 

associated with prognosis of DFS in the table above.  
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Table 9. Summary table of prognostic factors associated with OS. 

Overall survival 

Histopathological factor 

 

Univariate Multivariate 

N(

n) 

HR %95 CI 

P-

Value 

HR %95 CI 

P-

Value 

Gender Female 25 1 

  

1 

  

 

Male 40 1.58 

0.682-

3.687 

0.28 

1.51

29 

0.63151-

3.6244 

0.352

99 

Tissue Type Tumor 47 1 

  

1 

  

 

Mets 18 

5.05

9 

2.243-

11.41 

0.0000

938 

1.26

36 

0.25292-

6.3128 

0.843

89 

Tumour Grade 

Continu

ous 

65 

0.62

56 

0.2618-

1.495 

0.291 

0.91

12 

0.36127-

2.2984 

0.775

61 

Stage 

Continu

ous 

65 

2.75

8 

1.646-

4.623 

0.0001

174 

3.47

53 

0.64426-

16.405 

0.015

4 

Adjuvant 

Chemotherapy 

No 27 1 

  

1 

  

 

Yes 38 0.72 

0.3285-

1.619 

0.43 

0.22

01 

1.26872-

9.5193 

0.001 

Histological factors such as stage, tissue type and use of adjuvant chemotherapy 

significantly associated with OS prognosis (table 9). Following the cox regression 

analyses, we then assessed the quality of fitted models using analysis of deviance 

(-2 log likelihood) for the selection of co-variate which could impact on the 

association of prognostic factors with miRNA expression on the outcome 

prediction. 
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4.2.7 miRNA, mRNA coupling analysis 

In order to established relation between miRNAs and their respective mRNA gene 

targets, we carried out target prediction analysis followed by Pearson correlation 

analysis. The main purpose of this proposed model is the biology of miRNA and 

the methods in prediction of gene targets. It has been widely known that the 

binding of miRNA during transcriptional activity degrade predicted targets, so 

only the anti-correlated predicted targets can prove to be the real ones. Second, the 

predicted targets are usually unreliable and cannot be implied in biological 

observation. Thirdly, only miRNAs showing the anti-correlation between its 

targets can and are more likely to play a role in functional activities.  

So for each prognostic miRNA, a list of putative candidate genes was extracted 

using five different predicting algorithms (table 10) followed by an independent 

correlation analysis. We focused on only anti-correlated miRNA, mRNA pairs 

according to the biology of miRNAs. The independent correlation analysis was 

performed among the pairs due to lack of correlation between the miRNAs and 

the predicted targets obtained from the five algorithms. For miRNA:mRNA pairs 

anti-correlation analysis, we isolated each miRNAs targets predicted by the five 

prediction algorithms and then extracted expression of the matching target genes 

from the mRNA expression sets. In total, we observed over-lapping of 1831 

(figure 9) genes among the predicted targets and the mRNAs genes differentially 

expressed among the colon subtypes. The top-anti correlated genes are highlighted 

in the table (table 11).     
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Table 10. Predicted targets of prognostic miRNAs.  

h
sa-m

iR
-6

5
5
 

APC, CDKN1C, DMD, FBN1, HK1, SGCB, MTM1, MYO5A, PTCH1, PAX6, EGR2, GPD2, APP, IFNG, LTBP1, HMGCR, IMPDH1, NR3C2, PPP3CA, ATP2B1, ATP2B4, SMAD5, PTER, 

GALK2, ZNF470, SIAH1, BRWD1, EI24, TULP4, ZDHHC9, CGGBP1, RBM33, TMEM64, CXCR4, EML1, FNIP1, MLLT10, ZCCHC11, PDLIM5, SEH1L, RFFL, SP3, GOPC, 
GOLGA8B, TNRC6B, TGFBR2, FNBP1L, CD47, NDEL1, ARFIP1, AHDC1, ARHGAP5, RHOBTB1, PPM1B, PHF12, CYFIP2, PDE4B, AGPAT3, USP9X, CDC42, PCDH17, WHSC1, 

SHPRH, HIPK3, ZNF436, WIPF1, KTN1, PAICS, VAV3, USP6NL, STRN3, CTBP2, TCF4, MEX3A, ACLY, XPO7, PHACTR2, SENP6, KDELR2, ZFAND5, RGS4, PCDH19, ZFYVE16, 

UBE4B, FBXO45, ADAM10, ADD3, ADM, ANK2, SLC25A5, ARHGAP6, CALU, CHD2, CHUK, CREBL2, DYRK1A, EP300, EPAS1, ESRRG, FOXC1, ING2, ATP2A2, BCL6, KLF5, 
CBFB, CDH2, CEBPG, COL4A1, COL11A1, GADD45A, DR1, EGR1, EIF4A2, EIF4E, GAS1, GNAI1, GNAQ, HOXB3, INHBB, ITGB1, ITGB8, KDR, MARCKS, MBD1, MEIS1, 

PPP1R12A, PDGFA, PIK3C2A, PLN, PNN, PPP1CB, PRKD1, MAPK1, MAPK9, PTPN1, PTX3, RAB5B, RDX, RGS1, SATB1, MAP2K4, SNAI2, SMARCE1, SNRPE, SNX1, SSB, 

RPS6KB1, UVRAG, VSNL1, WEE1, XPO1, YWHAZ, ZNF91, PTP4A1, FZD5, DYRK2, MAP4K3, GAS7, BCAS1, AGPS, CASK, TMEFF1, SLC25A12, PPAP2B, HSD17B6, NCOA1, 
EIF4G3, DYRK4, TRIM24, SOCS2, EIF2S2, SEMA5A, BTAF1, GMFB, RAB5A, PTTG1, SOCS6, JMJD1C, HOMER1, ACTL6A, BNIP2, DACH1, EPHA4, ETV5, ACSL3, ACSL4, BPTF, 

MLLT3, TSPAN7, CDK2AP1, ETF1, CCPG1, KIF3B, MAP4K4, ROCK2, SCAMP1, VPS4B, TMEM59, SPAG7, SEC22B, ETV1, JARID2, DNAJA3, CEBPB, GTF2H1, NFIL3, PPP1R3C, 

VEGFC, MAFB, RANBP9, LRRC32, KIF20A, YAF2, TOB1, SRRM1, SPRY1, IRX5, SMNDC1, MEOX2, NAB1, UCHL3, CD164, SEMA3A, SPON1, NEDD4, PBX3, GNAI3, EXOC5, 
DCTN6, CHL1, HSPH1, HOXA2, LMO4, CBX1, PNRC1, CALM1, RAC1, RBBP6, ZNF22, NR4A3, TLE4, WWP1, UBL3, WBP4, SEC63, RNF13, PAXIP1, CCT5, ZFPM2, MACF1, 

BACE1, CHIC2, CD2AP, FZD4, NT5C2, RAB3GAP1, RYBP, HEY2, KPNA6, MYO10, RAB3GAP2, SETDB1, ZNF281, BRD7, FLRT3, GREM1, AK2, BAZ2B, CLIC4, NRG1, SSX2IP, 

CHMP2B, TRPS1, SETD2, AP2A1, ZNF318, RNF11, DAPP1, SESN1, GOLIM4, NUP93, SERTAD2, EPM2AIP1, CEP350, UBAP2L, RNF44, WDR47, STK38L, MON2, WAPAL, ZNF423, 
TBC1D9, ZCCHC14, ANKRD28, LPHN3, AGTPBP1, SATB2, TRIM2, SASH1, DOCK9, LARP1, ADNP, ZNF521, KBTBD2, OPA1, WSB1, COL5A3, TRIM33, PHF20L1, UBE2J1, 

HECA, PACSIN3, BIRC6, FAM8A1, TUBE1, KLF2, TOB2, HSPA14, COPS7A, CTDSPL2, PHF20, KLF3, NKRF, RNF111, CDKN2AIP, FAM46A, ANKHD1, WHSC1L1, YTHDF1, Mar-

01, ECT2, TMEM30A, ASXL2, RSBN1, MBNL3, C17orf85, YOD1, ETNK1, ERRFI1, SLC38A2, ANKIB1, PLEKHA5, WDR44, ING3, NDFIP2, SLC39A10, EIF5A2, SMEK2, PELI1, 
USP31, HEG1, HACE1, WDFY1, KIAA1468, SH3RF1, LRCH2, CNTN3, GRAMD1A, NR2F2, RTN1, RAP2C, FAM60A, PELI2, GPBP1L1, TRIB2, SEC24A, XYLT1, RNF38, SLC30A5, 

REEP1, NADK, ATP13A3, FAM118B, SMC6, E2F8, PHC3, PGAP1, CEP135, FBXO11, NDFIP1, DICER1, DDHD1, SETD7, SGPP1, ANP32E, RNF146, COG3, CRISPLD1, ITCH, 

B3GNT5, FBXO30, TMEM117, KIAA1804, PCDH7, KBTBD8, FOXP1, GPR124, PURB, TP53INP1, TANC1, ABCC10, MAL2, CCND1, CCNE2, PHACTR3, DCBLD2, NIPBL, STXBP5, 
WDR20, FAM76B, ZNF23, PTPDC1, TMTC2, ARID2, UBE2E2, YTHDF3, PDIK1L, KBTBD6, AEBP2, USP43, CPNE8, NAP1L5, RDH10, RC3H1, AQP11,  SLC25A26, VKORC1L1, 

PAN3, SESTD1, MTDH, CMTM4, PIK3R1, CPEB2, SRPK2, CXorf23, PRICKLE2, SS18L1, KCTD1, QKI, IL18RAP, ALMS1, FANCL, SPTBN1, STON1, CEBPZ, ODC1, LSM14B, ZBP1, 

EYA2, SEMG1, SGK2, TGM2, RPN2 
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IGF2BP2, EXOC7, SHANK3, KIF2A, RGS4, E2F3, GCG, MBD1, PPP1CB, MAP2K1, SMARCA2, DACH1, RPS6KA3, TSC22D1, MAB21L2, MAN1A2, PKIA, RNF139, BRCA1, RYBP, 

EPB41L3, TRPS1, KLHL20, NLK, HP1BP3, BNC2, NDE1, CHFR, ETNK1, NUFIP2, CFL2, NDFIP1, ZNRF3, C1orf198, TMEM129, GPX1, IER5L, SMAD2, SNX21, IRF2BP2, GNAS, 

ADD3, ANK2, BCAT2, LDB2, DPYSL2, FOXC1, CAV1, CTGF, GNAI2, GALNT4, RNGTT, FAP, MAP1B, PGRMC2, TRIO, BACE1, RAB3GAP1, G3BP2, NPTN, SEC14L2, CNOT4, 
BAZ2A, NRG1, TNFRSF21, SLK, SIPA1L1, RAB4B, EVL, CTDSPL2, F11R, FAM46A, Sep-11, GATAD2B, SCUBE2, BTF3L4, NR4A3, GANAB, DHX57 

h
sa-m

iR
-3

2
3

-3
p
 

GJA1, HK2, MET, ATXN1, APP, ATRX, GAD1, ERBB2IP, IFRD1, BRWD1, CGGBP1, ENAH, MXI1, FNIP1, MLLT10, PPM1B, ARL5A, USP9X, ACTR3B, GLIS3, ZNF706, HIPK3, 

SENP7, PCBP2, TGFA, RAP1GDS1, TLE3, NRXN3, ACVR2A, KLF5, CCND2, CLCN4, PPP1CB, PRKAR1A, PTPRF, WEE1, AGPS, TNFSF11, CDKN1B, COL12A1, CREB1, DDX6, 
BPTF, DAPK1, EFNA3, FOS, TAF12, YAF2, MAN1A1, MAT2A, MAP3K5, NFYB, PBX3, PKN2, PGRMC2, MAP4K5, LRBA, WWP1, TMF1, ZIC2, ZFPM2,  APPL1, FBXL5, G3BP2, 

MYLIP, FLRT3, LRP12, RNF11, TMOD3, PHF14, EDEM1, SERTAD2, DNAJC6, MELK, AAK1, USP33, ATP11A, LARP1, NIPBL, CNOT6, ZZZ3, UTP11L, GOLT1B, NLK, CDKN2AIP, 

FAM46A, SUV420H1, ANKHD1, COMMD8, PRPF40A, SCYL2, IFT57, TMEM30A, RSBN1, UBAP2, YOD1, PLEKHA5, C11orf30, SMEK2, GALNT1, GATAD2B, SRGAP1, PTBP2, 
HSPA2, MARCKSL1, FRY, TBL1XR1, PHC3, PGAP1, CHD9, CPEB4, SETD7, PCDH7, DAB2IP, PURB, SLC44A1, SLC30A7, KCTD12, UBLCP1, MIER3, UHRF2, JAZF1, ZNF326, 

CREB3L2, C1orf52, NOTCH2NL, TIMP3, SMAD5, ATP1B1, RUNX1, MTUS1, SMAD2, OSBPL8, TFEC, GOLGA8B, ARFIP1, PHF12, PDE4B, STAG2, TCF4, PHACTR2, PDS5A, 

PDE4D, ACVR1, ANK2, CDC5L, CREBL2, ALCAM, ARF6, CPE, FMR1, GCLM, LAMC1, LBR, PIK3C2A, PPP1CC, PSMD10, SH3BGRL, SPTBN1, VSNL1, RNMT, EGR3, MED1, 
MAP4K4, ATF1, ROCK1, DNAJB6, ARL4C, RBM5, PSME3, TBX3, NR4A2, PLCL1, RBBP6, FBXO8, RYBP, TRPS1, MTCH2, GHITM, NEK6, ZNF516, KIAA0355, PJA2, TBC1D4, 

WAPAL, SMG1, CAMTA1, LPHN3, TMEM87A, TIPARP, AUTS2, MTMR2, AKAP11, RAPGEFL1, PHF20, BNC2, KIAA1598, CAND1, SLC38A2, RIN2, ANKRD50, ABHD6, CGN, 

LRRN1, RAB18, ZNF148, XYLT1, BCL11A, GPBP1, RNF128, SGPP1, SNX27, ZNF566, PPTC7, TMED6, LSM14B, ZNF564, RBM24, ARL5B, SPTY2D1, B3GALTL, NUP43 
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 ENG, ATXN1, GPD2, PAFAH1B1, RARG, ZDHHC9, BCAP29, BTBD11, FNDC3A, SHANK3, TCF4, XPO7, ITGA5, STC1, FZD5, TAGLN2, HRK, NR5A2, EGR3, EPHB3, ESRRA, 

ILF3, SNRPA, SLC27A4, TLN1, SOX12, SLC19A2, THBS3, BTBD3, METAP1, RCOR1, FAM53C, RFWD3, PAG1, GRIPAP1, LYRM2, MPP5, DGCR14, COPS7B, KCTD15, TBL1XR1, 
CBLL1, PVRL4, FAM107B, FBXL20, MAG, CHKB, MIER3, RALGPS2, ANKRD52, CMTM8, AUP1, ERBB2IP, C20orf194, VLDLR, NDEL1, CSNK1G3, SEC14L1, C4orf19, BCL2L1, 

DPYSL2, RHOA, CENPB, ITGA2, MAP1A, FGF18, DAG1, RPS6KA3, PRKAB2, MAP1B, MEOX2, PBX3, PKIA, SEC63, NRG1, VGLL4, CEP350, LARP1,  YBX2, NLK, KLF3, F11R, 

PPP3CB, BCL11B, LCOR, GLIS2, C9orf24, BTN2A1, CAPN12, NHS 
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NR3C1, CYP2B6, GOLGA7, PKP4, LPHN1, TTC7B, NCDN, KIAA0101, CSNK1G3, FRMD6, MIER1, KIAA0368, REPS2, TCF4, KIF2A, MRVI1, GNG4, PDE4D, ARHGAP6, ACVR2A, 
CLCN3, HBEGF, EGR1, LRP6, PLAGL2, PRKACB, PTPN4, RCN2, ROBO2, SLC6A6, STC1, CDK5R1, GMFB, HOMER1, ACVR1B, EPHA4, FOXA1, BUB3, ICA1, GTF2H1, RALA, 

YAF2, LHFPL2, CD164, SLC35A1, RGS14, MAP4K5, QKI, RAB35, DUSP10, XPOT, ZFPM2, AP3M1, RYBP, LIMD1, TRAM1, SESN1, BZW1, TOMM70A, ZHX2, STK38L, FRYL, 

ZDHHC17, ZFYVE26, CNOT6, RNF138, RAB8B, DPP8, PHF10, ING3, PLEKHA3, NUDT4, SCYL3, ARHGAP21, GPAM, NTN4, BACH2, ZDHHC6, WHSC1L1, TCF7L2, ARHGAP18, 
CYYR1, SLC44A1, FAM91A1, VPS37A, PLCB4, RORC, OSBPL8, NCK2, ERBB2IP, L3MBTL3, EI24, ZDHHC9, ENAH, TMPO, RHOBTB1, AMD1, SIRPA, TTC14, SLC25A36, CHD2, 

CTGF, HLF, IDH2, ITGB1, PFN2, PIM1, PLAG1, PPP2R2A, PRKCI, CX3CL1, SNX1, TCF12, UBE2V2, DCHS1, SOCS6, BNIP3L, RPS6KA3, MTMR6, MTA1, MED1, POLR2D, SEL1L, 

DMXL1, IRS1, MAP3K4, UNC13B, NFAT5, TLE4, MYO1B, SACS, ATP2C1, PDCD4, ZNF592, KIAA0355, SIN3A, AUTS2, YPEL5, LRRC1, AGPAT5, SMPD3, PLEKHA5, EML4, 
ANKRD50, GATAD2B, MBNL1, TSPYL4, GREM2, ANKRD13C, BRMS1L, PCGF5, FOXP1, MAL2, COLEC12, PPP1R14B, PRICKLE2 
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APC, GHR, GJA1, INSR, NPC1, COL5A2, ADRA2A, FKBP1A, RARA, RARB, SMAD2, EDA, SIAH1, SDCBP, IGF2BP2, CREB5, C6orf120, ARNTL, CSNK1G3, EXTL2, PPM1B, 

ATP6V1C2, PTPRD, ABCE1, CEP170, RRBP1, NET1, HIPK3, MEGF9, FOXN3, Sep-08, XPO7, ZFAND5, FBXO45, SLC25A5, TRIM23, CENPB, MEIS2, TNFRSF11B, P2RY2, PLCG1, 
PPP1CC, SMARCA2, SMARCE1, SSR1, TRPC1, PDHX, FZD1, NCOA1, USP13, EFNB2, ACVR1B, COL12A1, DAG1, DUSP8, B4GALT5, KIF3B, ARHGEF6, ROCK2, PGGT1B, 

PIK3R2, EPHA3, ROCK1, EOMES, BCAT1, EFS, DNAJA2, MAN1A1, PDE4A, LYPLA1, CAP2, SLC35A1, GNA13, TCFL5, RALBP1, PIM2, SHOC2, SIRT1, TBK1, MAPRE2, 

CORO1C, VGLL4, SERTAD2, ARHGAP11A, TBC1D4, JOSD1, CHSY1, STK38L, WAPAL, ZCCHC14, CAMTA1, KIAA1033, ARHGEF4, NBEA, CDC40, YBX2, RNF138, PHF20, 
KLF3, POGK, TRPM4, PALMD, PRPF40A, DET1, HMG20A, BRWD1, NDFIP2, SLC39A10, DOLPP1, INTS2, KIAA1468, LRRN1, ZFYVE28, ZDHHC6, SMURF2, BCL11A, BCL11B, 

SLC25A32, ANP32E, KCTD10, ARL6, LCOR, C1orf198, DIRC2, TRIM41, SLC44A1, SOCS4, PANK1, SP1, PPTC7, SLC39A13, LONRF1, ACOT4, MIER3, YTHDF3, DGKH, SLC9A9, 

IDH3G, UBR1, IL6ST, SPTBN1, MTDH, ATXN1, OTC, CACNA1D, NR3C2, SMAD5, PTER, MTUS1, GPM6B, GOLGA7, OSBPL8, SP3, VLDLR, TNRC6B, CD47, CSNK1A1, CD68, 
TMEM70, TTC14, MYO1C, PLAGL1, ZBTB34, RAP1GDS1, PCMTD2, ANK3, ARHGAP6, BACH1, PRDM1, LDB2, EMP1, HIF1A, ALCAM, ATP1B1, FRK, GNAQ, KPNA3, MAN2A1, 

PDGFA, PLAG1, PTPN1, RAB5B, SKI, RPS6KB1, ZKSCAN1, CNTNAP1, GAS7, KLF4, COX5A, DUSP5, ESRRA, TGFBR1, AKT3, PTK2, TOPORS, MAT2A, SEMA3A, TXNIP, API5, 

AHCYL1, CPLX1, QKI, TMED10, UTRN, ANGPTL2, BACE1, TLK1, TNPO2, BZW2, ORMDL2, CDR2L, RGL1, RCOR1, PSD3, GULP1, TMEM9, Mar-05, ZNF654, ST7, NUDT4, 
SMEK2, PELI1, CRAMP1L, PTBP2, PELI2, SNX16, NUCKS1, ELOVL6, SPSB1, SETD7, RAB1B, SEH1L, ZNRF3, SLITRK6, ASPH, PURB, CTTNBP2, MBD6, NAGS, AEBP2, 

FBXL16, FAM84B, CHMP4B, BCL9L, KCTD1, TSEN54, CAPN3 
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 BTK, PTEN, ATXN1, ATRX, IGF1R, PPP3CA, ZCCHC11, Sep-07, DCTD, BTBD11, CUL4B, MEX3A, PCDH19, CPD, MAPK6, TCF7, PIP5K1B, BPTF, DLG5, CCDC6, RBL2, YAF2, 

PAIP1, ZBTB6, TLK1, ZNF516, KIAA0922, KBTBD2, LSM14A, LUC7L2, NLK, CAMK2N1, EPB41L4B, SPIRE1, NUFIP2, PPP3CB, PTBP2, FAM60A, FRY, LSM12, MIER3, PAN3, 

CREM, AMPD3, SAMD13, TNRC6B, PLEKHG1, TFAP2A, PCDH17, CYLD, TRIM23, BPGM, CSNK1D, GCLM, HLF, ISL1, KPNA1, PPP2R1B, RPS6KB1, KIF3B, MAP4K4, GPM6A, 

SEC23A, ADAMTS1, CBX3, FBXL3, TRPS1, VAMP2, ZBTB11, ZBED4, SIN3A, TRIM33, UBE2J1, LIMA1, RSBN1, EML4, SLC39A10, DCUN1D1, SLAIN2, RNF38, SMC6, ITCH, 
CHKB, BTF3L4, MAMDC2, JAZF1, SUPT3H 
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ADRB2, CLCN5, FGFR2, INSR, MYO5A, PTCH1, PEX5, PAFAH1B1, APP, RARB, SMAD5, RFWD2, PLEKHA1, ACTR2, EDA, CTNNBIP1, TSC22D3, TMCC1, ZHX1, SERBP1, 

BCL7A, MINK1, AMMECR1, ARHGAP5, USP14, PCDH17, SIDT2, PTPRD, SLC9A6, SLC12A2, NCOR2, SHANK3, MYO1C, SCN3A, SMARCD2, TMEM100, PHACTR2, PID1, 
UBE4B, CALU, CAMK2G, CCNE1, CCNT2, CHEK1, CNN1, ESRRG, ACP2, CLCN3, E2F3, EIF5A, EZH1, GABPA, IHH, KDR, LAMC1, MAP1A, PIM1, PLAG1, PLRG1, PSMD7, 

PTPN3, PTPN4, CX3CL1, SSR1, STC1, TRPC1, CUL2, CBX4, PPAP2A, PPAP2B, CDK5R1, FUBP1, WASL, FASN, FKBP1B, FKBP5, COPS2, TRIP10, ARHGDIA, COL12A1, DACH1, 

DVL1, EGR3, ACSL4, HDGF, KIF5B, RPS6KA3, STX1A, AXIN2, KIF23, TBPL1, SPAG7, ETV1, CRKL, GLUD1, HAS2, PCMT1, HSPG2, IRS1, PDIA6, SMAD7, MAP3K4, MEOX2, 
CD164, RBM12, SEMA3A, USP15, SPTLC1, POLR3F, DYNLT3, USP3, EXOC5, BTG2, RBBP6, SLC2A3, SOS2, TAF5, WWP1, UBL3, NUP50, PXMP4, ACOT7, SHOC2, AP3M1, 

CHORDC1, LMOD1, EPB41L1, RYBP, HEY2, MAPRE1, MMD, NRBP1, NRG1, HSPA4L, CAPN6, TRAM1, SESN1, PDCD4, LRIG2, COBLL1, RAB11FIP2, DZIP1, WDR47, WAPAL, 

KIF1B, ARHGEF9, CAMSAP1, KBTBD2, LRIG1, UBE2J1, RAB4B, ACSL5, RNF138, PHF20, SLC22A17, APLN, SIX4, BAIAP2, KIF21A, CNNM2, TASP1, Mar-05, RNF125, CDCA4, 
IPO9, ZNF532, RSBN1, EPB41L4B, YOD1, ETNK1, ANKIB1, PLEKHA5, CYP26B1, FEM1C, CCDC47, SLC39A10, SALL4, GALNT1, DMTF1, RAP2C, BACH2, SEC24A, EGLN1, 

LPPR2, KLC2, BCL11B, CHAC1, ATP13A3, SLC25A22, DHDDS, DICER1, SLC41A2, SLITRK6, KIAA1804, RSPO3, MAP3K9, PURB, ARHGAP18, CDC42, AMOTL1, ZAK, ZNRF2, 

ANKRD13B, FAM81A, C9orf69, EED, PIK3R1, OGT, ARRDC4, CARM1, GHR, FKBP1A, GRIN1, HTR4, PDE3B, RARG, SIAH1, BRWD1, CSDE1, Sep-02, ENAH, LPHN1, ZC3H12B, 
FNTA, MYADM, TNRC6B, USP9X, DCUN1D4, CYLD, TTC14, PVRL2, ZNF436, IRF2BP2, FNDC3A, AATK, MYBL1, USP6NL, ZBTB34, PTAR1, HIGD1A, XPO7, PHF21A, ZBTB10, 

ADSS, ANK2, CDX2, CHD2, CPD, EIF4B, ACVR2A, CCND2, CLCN4, FGF2, GRB2, KPNA1, LRP6, PEX13, MAPK9, MAP2K1, PTPRR, SORT1, SALL1, ATXN2, SRPK1, RPS6KB1, 

TCF3, TGFBR3, WEE1, YWHAH, TAF15, DYRK2, PPM1D, CNTNAP1, AP1S2, BTAF1, SH2D2A, MAP7, SOCS6, ESRRA, MTMR4, MED1, KIF3B, JARID2, RELN, CBFA2T3, MYB, 
CCDC6, AKT3, DLL1, ABCF2, TSPAN5, RBM6, PURA, RTN3, SMYD5, YAP1, DYNC1LI2, PBX3, IVNS1ABP, GNAI3, SLC20A2, SYPL1, SPTBN2, TLE4, DNAJB4, WIF1, SUPT16H, 

WHSC1, BACE1, CD2AP, CLDN12, TLK1, PHLDA3, BAZ2A, SOCS5, AP2A1, CARD10, GCC2, HELZ, FRYL, SATB2, TRIM2, SYNE1, CCDC28A, TMEM87A, OSBPL3, PHF19, 

G0S2, GOLT1B, DCTN4, CAB39, RAPGEFL1, CRIM1, RAB8B, BFAR, GALNT7, RNF111, OTUB1, LRRFIP2, ZCCHC2, CHD7, CDC37L1, STX17, Sep-11, RCOR3, ARHGAP12, 
ZNF654, TBC1D19, TMEM55A, ASNSD1, CHPT1, CLDN2, DOLPP1, DCUN1D1, JPH1, GATAD2B, USP31, PPM1A, PPP3CB, FAM60A, PELI2, TGIF2, SAV1, SNX16, RNF38, CCNJL, 

HMBOX1, TBL1XR1, PHC3, KLHL18, C1orf21, SEH1L, GABARAPL1, SH3BGRL2, PHF20L1, PCGF5, SCOC, GPR124, SYDE1, RHPN2, CCND1, CDKN2B, SLC44A1, ZSWIM3, 

FAM91A1, SPRED1, PDIK1L, RBM24, N4BP1, AEBP2, ODF2, AQP11, C15orf37, CPEB2, RASSF5, ZNF326, KCTD1, E2F7, QKI, CAPN3 
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FANCA, NR3C1, PAFAH1B1, IGF1R, ATP2B4, GPM6B, FOXP4, ZHX1, PAPD5, GRSF1, KIF2A, Sep-08, RAP1GDS1, PDE4D, BMP2, TCF12, FZD5, FKBP5, CHST2, CALD1, XPR1, 
ABCF2, DYNC1LI2, RBM14, EXOC5, EPB41L3, RANBP6, DMXL2, AHCTF1, CAB39, CHD8, TRIB2, HSPA12A, PURB, GPT2, FMNL3, CREM, HIPK3, SLC7A6, IRF2BP2, SHANK3, 

DYRK1A, CELSR3, CENPB, GRB2, HOXB3, PLAG1, MAPK1, PDIA4, VAT1, ZFPM2, KPNA6, AAK1, CDC40, VANGL2, XPO5, NUFIP2, DHX36, KIAA1522, PAPOLA, DCBLD2, 

PDIK1L, ANKRD52, PTPLB, HDDC3 
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So for each prognostic miRNA, a list of putative candidate genes was extracted 

using five different predicting algorithms (table 10) followed by an independent 

correlation analysis. We focused on only anti-correlated miRNA, mRNA pairs 

according to the biology of miRNAs. The independent correlation analysis was 

performed among the pairs due to lack of correlation between the miRNAs and 

the predicted targets obtained from different algorithms. 

 

Table 11. Table of top anti-correlated miRNAs and their target genes.  

miRNAs Gene 

miRNA:mRNA 

Pearson correlation 

miRNAs Gene 

miRNA:mRNA 

Pearson correlation 

hsa-miR-

378*   

hsa-miR-

330-5p   

 

TMEM

171 

-0.05 

 

DNAJA3 -0.18 

 

ODC1 -0.03 

 

C16orf54 -0.08 

 

ACO2 -0.05 

 

TCF7 -0.11 

 

PAFAH

1B1 

-0.04 

 

NR0B2 -0.19 

 

PLOD1 -0.11 

 

CEP250 -0.04 

 

TGM2 -0.05 

 

TRPC4A

P 

-0.06 

 

CTBP2 -0.18 

 

CDK5R

AP1 

-0.12 

 

NR3C1 -0.02 

 

EPS8L3 -0.03 

 

UTP18 -0.15 

 

ZDHHC9 -0.17 

 

FANC

A 

-0.12 

 

FAM107

B 

-0.08 

 

TCN2 -0.05 

 

RCSD1 -0.03 
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EPB41

L3 

-0.09 

 

LCOR 0.00 

 

RPN2 -0.04 

 

SHD -0.11 

 

HMGB

2 

-0.13 

 

GLOD5 -0.15 

 

PTPLB -0.04 

hsa-miR-

323-3p   

 

KLC1 -0.02 

 

AGT -0.03 

 

PRKCD

BP 

-0.01 

 

E2F1 -0.03 

 

NAT10 -0.01 

 

HK2 0.00 

 

SIGLE

C1 

-0.13 

 

EXO1 -0.08 

 

SLC26

A6 

-0.05 

 

TTK -0.02 

 

UHRF1 -0.11 

 

DFFB -0.08 

 

ACSS2 -0.15 

 

SPC25 -0.05 

hsa-miR-

15b*    

OIP5 -0.08 

 

ARL6I

P5 

-0.16 

 

SELENB

P1 

-0.14 

 

PAFAH

1B1 

-0.08 

 

NUSAP1 -0.04 

 

PPT1 -0.04 

 

TIMM23 -0.01 

 

SMAR

CD2 

-0.10 

 

E2F8 -0.02 

 

TOMM

34 

-0.04 

 

SETD7 -0.07 

 

ADAM -0.04 

 

C9orf41 -0.04 
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12 

 

CD48 -0.05 

 

CMTM8 -0.18 

 

CXCL1

0 

-0.10 

hsa-miR-

125a-3p   

 

STC1 -0.07 

 

ETV4 -0.04 

 

ZW10 -0.05 

 

TSEN54 -0.07 

 

FKBP1

B 

-0.09 

 

AHCY -0.18 

 

NCOR2 -0.05 

 

CTBP2 -0.13 

 

SMYD

5 

-0.24 

 

TUBG1 -0.05 

 

GART -0.08 

 

POLE2 -0.05 

 

CHEK2 -0.16 

 

SLC26A

3 

-0.05 

 

OIP5 -0.07 

 

CEP250 -0.05 

 

TGIF2 -0.09 

 

FAP -0.01 

 

DUS1L -0.05 

 

TMEM9

7 

-0.06 

 

SRPRB -0.14 

 

DUSP7 -0.16 

 

FAM60

A 

-0.17 

 

CSGAL

NACT2 

-0.09 

 

SLC15

A4 

-0.19 

 

ZNF703 -0.20 

 

C10orf5

4 

-0.03 

 

MRRF -0.05 

 

ACSS2 -0.11 

 

ZNF511 -0.18 

hsa-miR-

628-3p    

ZNRF3 -0.31 

 

DNAJA -0.01 hsa-miR-
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3 655 

 

PKP4 -0.16 

 

DNAJA3 -0.14 

 

STK17

B 

-0.11 

 

SUV39H

2 

-0.08 

 

GPR19 -0.10 

 

AFG3L2 -0.14 

 

ASPM -0.13 

 

CALU -0.15 

 

FAM3

D 

-0.30 

 

WSB1 -0.02 

 

SAMD

13 

-0.24 

 

ETV5 -0.04 

 

MARV

ELD3 

-0.28 

 

CCNA2 -0.15 

hsa-miR-

135a*    

PTTG1 -0.23 

 

TSEN5

4 

-0.03 

 

BUB1B -0.04 

 

RRM1 -0.03 

 

MMP7 -0.20 

 

TNC -0.15 

 

TLE4 -0.08 

 

CHSY1 -0.01 

 

PLK4 -0.09 

 

DUSP4 -0.04 

 

CCNE2 -0.10 

 

IL6ST -0.03 

 

NR3C2 -0.14 

 

SRPX -0.11 

 

TNFAIP

6 

0.00 

 

TCP11

L1 

-0.04 

 

CHRNA

5 

-0.01 

 

CD36 -0.01 

 

RNF11 -0.16 

 

DUT -0.01 

 

SPON1 -0.02 

 

FAP -0.01 

 

AHCYL2 -0.16 

 

COL5A -0.03 

 

CCPG1 -0.14 
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2 

 

FAM10

7B 

-0.02 

 

SELENB

P1 

-0.10 

hsa-miR-

183*    

SLC38A

2 

-0.14 

 

TSEN5

4 

-0.01 

 

KIF20A -0.22 

 

ACO2 0.00 

 

HSPA14 -0.11 

 

EBNA1

BP2 

-0.08 

 

E2F8 -0.11 

 

NR3C1 -0.02 

 

FAM60A 0.00 

 

PKP4 -0.07 

 

A1CF -0.16 

 

KIAA0

101 

-0.01 

 

CENPK -0.18 

 

TARBP

1 

-0.08 

 

SH3RF1 -0.19 

 

PCK2 -0.17 

 

UHRF1 -0.18 

 

PHYH -0.08 

 

ANKRD

44 

-0.05 

 

DUSP4 -0.12 

hsa-miR-

92a-1*   

 

CXCL1

0 

-0.10 

 

TNC -0.10 

 

TLE4 -0.15 

 

RNASE1 -0.09 

 

LSM6 -0.10 

 

CLDN7 -0.04 

 

EPB41

L3 

-0.06 

 

KNTC1 -0.01 

 

PBXIP1 -0.03 

 

KLC1 -0.12 

 

HSD17 -0.10 

 

DUS1L -0.12 
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B11 

 

FAM10

7B 

-0.13 

 

EXOSC5 0.00 

 

CCND

BP1 

-0.06 

 

TMEM5

2 

-0.04 

 

GPR34 -0.02 
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In order to established relation between miRNAs and their respective mRNA gene 

targets, we carried out target prediction analysis followed by Pearson correlation 

analysis. The main purpose of this proposed model is the biology of miRNA and 

the methods in prediction of gene targets. It has been widely known that the 

binding of miRNA during transcriptional activity degrade predicted targets, so 

only the anti-correlated predicted targets can prove to be the real ones. Second, the 

predicted targets are usually unreliable and cannot be implied in biological 

observation. Thirdly, only miRNAs showing the anti-correlation between its 

targets can and are more likely to play a role in functional activities. 

We focused on only anti-correlated miRNA, mRNA pairs according to the biology 

of miRNAs. The independent correlation analysis was performed among the pairs 

due to lack of correlation between the miRNAs and the predicted targets obtained 

from the five algorithms. For miRNA:mRNA pairs anti-correlation analysis, we 

isolated each miRNAs targets predicted by the five prediction algorithms and then 

extracted expression of the matching target genes from the mRNA expression sets. 
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Figure 8. Venn diagram showing common genes among the predicted targets and mRNA 

expression set.  

 

In total, we observed over-lapping of 1831 (figure 9) genes among the predicted targets 

and the mRNAs genes differentially expressed among the colon subtypes. The top-anti 

correlated genes are highlighted in the table (table 11). 

 

4.2.8 Subtyping colon cancer and signatures in mRNA identified by gene 

expression data  

We performed integrated analysis in order to identify miRNAs whose expression 

is correlated with inverse expression of mRNA targets in primary colon 

expression set. Therefore, we performed mRNA expression profiling across 585 

primary colon samples and identified molecular signatures. In the first step, we 

performed unsupervised K-mean consensus clustering to uncover potential 

subtypes of colon tumour on the basis of the similarities of their gene expression 
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values of 10794 unique genes. We run K=2 to 6 in core K-mean clustering, two 

molecular subtypes could be identified when K=2 and the cluster consensus was 

0.81 and 0.87 for each subtype with 150 and 435 samples. When K=5 (figure 10), 

the unsupervised clustering reached the highest consensus 0.88 and 0.99. 

Therefore, we named these subtypes as C1 with 146 samples, C2 with 60 samples, 

C3 with 232 samples, C4 with 120 samples and C5 with 27 samples. 
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Figure 9. Results from unsupervised K-mean consensus clustering showing running value of K= 2 to 6. 
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We further carried out differential expression among the five predicted subtypes 

in order to identify the most discriminating genes among them. We performed 

ANOVA analysis among the predicted subtypes and selected 716 significant 

(adj.p.val < 0.001) genes for the two-dimensional average linkage hierarchical 

clustering. The clustering analysis divided differentially expressed genes into four 

large sub-groups with different expression subsets represented in the heatmap 

(figure 11).  We further performed gene ontology enrichment analysis for each 

identified subgroup in order to explore potential cellular processes, molecular 

functions and biological pathways. The DAVID analysis (table 12) showed that 

the Cluster I consist of 117 genes was significantly (p-value <0.01) enriched with 

lipid biosynthesis process, sodium channel regulatory activity, positive regulation 

of metabolic process, digestion, cellular respiration and inorganic anion transport 

GO terms. Hierarchical clustering analysis shows that majority of genes from this 

cluster were up-regulated in C2 and C4 subtypes of colon cancers. We also 

observed PPAR signalling and mitochondrial carnitine palmitoyltransferase (CPT) 

system pathways contributed by PPARA, HMGCS2, FABP1, PCK2, CPT1A and 

ACSS2 genes. Cluster II: is the largest clusters identified by hierarchical 

clustering consist of 348 genes and were up-regulated in a C5 subtype of colon 

cancers. We observed over-representation of cellular processes such as cell cycle, 

metabolic processes, cell division, DNA and RNA replication, cell cycle check 

points, chromosome organization, DNA repair, ATP binding, DNA and RNA 

processing, and signal transduction. The cluster genes also showed enrichment of 

cell cycle, mitotic, cell cycle, DNA replication, pyrimidine replication, DNA 

repair, CDC20 mediated degradation of Nek2A, the role of BRCA1, BRCA2 and 

ATR in cancer susceptibility and p53 signalling pathways.  
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Similarly, Cluster III genes were mostly up-regulated in C1 and C3 subtype of 

colon cancer. There were 121 genes enriched with intracellular cellular signalling, 

cellular response, and ion homeostasis GO terms. We also identified Fc Gamma 

R-mediated phagocytosis pathway with in this cluster. Cluster IV: is consist of 

134 highly dysregulated in C1 and C5 subtype of colon cancer. Enrichment 

analysis shows over-representation cellular processes such as extracellular matrix, 

biological adhesion, metabolic process, inflammatory response, cell proliferation 

and cell differentiation, and endopeptidase activity. We also observed ECM-

receptor interaction signalling and focal adhesion pathways within this cluster.     
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Figure 10. A heatmap showing two-dimensional average hierarchical clustering of five predicted 

colon subtypes.   

 

We further carried out differential expression among the five predicted subtypes 

in order to identify the most discriminating genes among them. We performed 

ANOVA analysis among the predicted subtypes and selected 716 significant 

(adj.p.val < 0.001) genes for the two-dimensional average linkage hierarchical 

clustering. The clustering analysis divided differentially expressed genes into four 

large sub-groups with different expression subsets represented in the heatmap 

(figure 11).  We further performed gene ontology enrichment analysis for each 
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identified subgroup in order to explore potential cellular processes, molecular 

functions and biological pathways. 

Table 12. Function analysis of four subgroups identified from unsupervised clustering analysis.   

Heatmap 

Clusters 
Go terms/pathways 

Cluster 1 

Lipid biosynthetic process 

Steroid binding 

Sodium channel regulator activity 

Secondary active sulfate transmembrane transporter activity 

Mitochondrion 

PPAR signaling pathway 

Mitochondrial membrane 

Sulfate transmembrane transporter activity 

Sulfate transport 

Mitochondrial envelope 

Excretion 

Positive regulation of fatty acid metabolic process 

Mitochondrial part 

Mitochondrial inner membrane 

Organelle envelope 

Envelope 

Steroid biosynthetic process 

Organelle membrane 

Organelle inner membrane 

Digestion 

Inorganic anion transport 

Aerobic respiration 

Cellular respiration 

Mitochondrial carnitine palmitoyltransferase (cpt) system pathway 

Inorganic anion transmembrane transporter activity 

Cluster 2 

Mitotic cell cycle 

Cell cycle 

Cell cycle phase 

Cell cycle process 

M phase 

Mitosis 

Nuclear division 

M phase of mitotic cell cycle 

Organelle fission 

Cell cycle, mitotic pathway 

Intracellular organelle lumen 

Membrane-enclosed lumen 

Organelle lumen 

Nuclear lumen 

Non-membrane-bounded organelle 

Intracellular non-membrane-bounded organelle 

DNA metabolic process 

Condensed chromosome 

Cell division 

Chromosome 

Spindle 

Chromosomal part 

Chromosome, centromeric region 

DNA replication 

Condensed chromosome, centromeric region 

Cell cycle pathway 



77 | P a g e  

 

Nucleolus 

Regulation of cell cycle 

Condensed chromosome kinetochore 

Response to DNA damage stimulus 

Nucleoplasm 

Spindle pole 

Microtubule cytoskeleton 

Chromosome segregation 

Kinetochore 

Cell cycle checkpoint 

Microtubule cytoskeleton organization 

Microtubule-based process 

DNA repair 

Mitotic sister chromatid segregation 

Sister chromatid segregation 

Chromosome organization 

Spindle microtubule 

Regulation of mitotic cell cycle 

Regulation of cell cycle process 

Cellular response to stress 

Mitotic cell cycle checkpoint 

DNA-dependent DNA replication 

Spindle organization 

Cell cycle checkpoints pathway 

Nuclear chromosome 

ATP binding 

Nucleoside binding 

Adenyl nucleotide binding 

Adenyl ribonucleotide binding 

Cytoskeletal part 

Purine nucleoside binding 

Interphase of mitotic cell cycle 

Interphase 

Macromolecular complex subunit organization 

DNA replication pathway 

Pyrimidine metabolism pathway 

Ribosome biogenesis 

Purine nucleotide binding 

DNA replication pathway 

Ribonucleotide binding 

Purine ribonucleotide binding 

Microtubule organizing center 

Ribonucleoprotein complex biogenesis 

NCRNA processing 

DNA integrity checkpoint 

DNA binding 

Nucleotide binding 

DNA packaging 

DNA strand elongation during DNA replication 

Microtubule 

RNA processing 

Meiotic cell cycle 

Macromolecular complex assembly 

Centrosome 

DNA strand elongation 

Condensed nuclear chromosome 

Regulation of organelle organization 

DNA damage checkpoint 

Regulation of ubiquitin-protein ligase activity during mitotic cell cycle 

Ncrna metabolic process 
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Protein targeting to mitochondrion 

Protein localization in mitochondrion 

Meiosis 

M phase of meiotic cell cycle 

tRNA processing 

Regulation of protein ubiquitination 

Regulation of nuclear division 

Regulation of mitosis 

Regulation of ubiquitin-protein ligase activity 

P53 signaling pathway 

Regulation of ligase activity 

Role of brca1, brca2 and atr in cancer susceptibility pathway 

Telomere maintenance pathway 

Cytoskeleton 

Lagging strand elongation 

Mitochondrion organization 

Chromosome condensation 

Cytoskeleton organization 

Phosphoinositide-mediated signaling 

Ribonucleoprotein complex 

Anaphase-promoting complex-dependent proteasomal ubiquitin-dependent 

protein catabolic process 

Negative regulation of ubiquitin-protein ligase activity during mitotic cell cycle 

Negative regulation of ligase activity 

Negative regulation of ubiquitin-protein ligase activity 

Oocyte meiosis pathway 

Mitotic chromosome condensation 

Spindle pole body 

Replication fork 

DNA repair pathway 

Chromatin 

Negative regulation of protein ubiquitination 

Establishment of chromosome localization 

Mitotic spindle organization 

Chromosome localization 

Protein complex assembly 

Protein complex biogenesis 

Microtubule organizing center part 

Kinetochore microtubule 

Cell proliferation 

DNA replication initiation 

Regulation of cyclin-dependent protein kinase activity 

Nucleotide-excision repair 

DNA damage response, signal transduction 

Apc-cdc20 mediated degradation of nek2a pathway 

Flap endonuclease activity 

Condensin complex 

Positive regulation of protein ubiquitination 

Nuclear chromosome part 

Mitochondrion 

Nucleotidyltransferase activity 

Nuclease activity 

Mitochondrial matrix 

Mitochondrial lumen 

Double-strand break repair 

RNA polymerase activity 

DNA-directed RNA polymerase activity 

TRNA metabolic process 

Protein serine/threonine kinase activity 

Nucleoplasm part 
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Cellular macromolecular complex subunit organization 

Negative regulation of protein modification process 

Protein targeting 

G2 phase of mitotic cell cycle 

G2 phase 

Organelle localization 

rRNA processing 

Regulation of microtubule cytoskeleton organization 

Microtubule binding 

Regulation of mitotic metaphase/anaphase transition 

Positive regulation of protein modification process 

Positive regulation of ubiquitin-protein ligase activity during mitotic cell cycle 

RRNA metabolic process 

Covalent chromatin modification 

Mitochondrial transport 

Establishment of organelle localization 

Biopolymer methylation 

Establishment of mitotic spindle localization 

Chromatin assembly or disassembly 

Positive regulation of ubiquitin-protein ligase activity 

Purine metabolism pathway 

Helicase activity 

Microtubule motor activity 

Brca1-dependent ub-ligase activity pathway 

Phospho-apc/c mediated degradation of cyclin a pathway 

Chromatin organization 

Protein import 

Positive regulation of cellular protein metabolic process 

Positive regulation of ligase activity 

Mitotic metaphase plate congression 

Proteasomal ubiquitin-dependent protein catabolic process 

Proteasomal protein catabolic process 

Structure-specific DNA binding 

RNA modification 

Regulation of microtubule-based process 

Methylation 

Base-excision repair 

Deoxyribonucleotide metabolic process 

Chromatin binding 

Protein kinase activity 

Spindle localization 

Establishment of spindle localization 

Positive regulation of protein metabolic process 

Nuclear matrix 

Centriole 

DNA-dependent atpase activity 

Cellular component disassembly 

Cajal body 

Mitotic cell cycle spindle assembly checkpoint 

Metaphase plate congression 

Negative regulation of mitotic metaphase/anaphase transition 

Base excision repair pathway 

One-carbon metabolic process 

Negative regulation of cellular protein metabolic process 

Positive regulation of organelle organization 

RNA binding 

Deoxyribonuclease activity 

Cellular protein localization 

Nuclear periphery 

Regulation of exit from mitosis 
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Negative regulation of nuclear division 

Negative regulation of mitosis 

Spindle checkpoint 

Pronucleus 

Cluster 3 

Di-, tri-valent inorganic cation homeostasis 

Cation homeostasis 

Cellular di-, tri-valent inorganic cation homeostasis 

Cellular cation homeostasis 

Intracellular signaling cascade 

Fc gamma r-mediated phagocytosis pathway 

Ion homeostasis 

Response to organic substance 

Cellular calcium ion homeostasis 

Calcium ion homeostasis 

Cellular metal ion homeostasis 

Cellular ion homeostasis 

Cellular chemical homeostasis 

Metal ion homeostasis 

Chemical homeostasis 

Response to wounding 

Cluster 4 

Proteinaceous extracellular matrix 

Extracellular matrix 

Extracellular region part 

Extracellular region 

Extracellular matrix part 

Response to wounding 

Collagen 

Cell adhesion 

Biological adhesion 

Extracellular space 

Calcium ion binding 

Collagen metabolic process 

Multicellular organismal macromolecule metabolic process 

Basement membrane 

Inflammatory response 

Multicellular organismal metabolic process 

Ecm-receptor interaction pathway 

Smad binding 

Protein dimerization activity 

Metalloendopeptidase activity 

Skeletal system development 

Blood vessel development 

Collagen catabolic process 

Vasculature development 

Regulation of cell proliferation 

Muscle cell differentiation 

Defense response 

Multicellular organismal catabolic process 

Collagen fibril organization 

Protein heterodimerization activity 

Focal adhesion pathway 

Endopeptidase activity 

 

The DAVID analysis (table 12) showed that the Cluster I consist of 117 genes was 

significantly (p-value <0.01) enriched with lipid biosynthesis process, sodium 

channel regulatory activity, positive regulation of metabolic process, digestion, 
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cellular respiration and inorganic anion transport GO terms. Hierarchical 

clustering analysis shows that majority of genes from this cluster were up-

regulated in C2 and C4 subtypes of colon cancers. We also observed PPAR 

signalling and mitochondrial carnitine palmitoyltransferase (cpt) system pathways 

contributed by PPARA, HMGCS2, FABP1, PCK2, CPT1A and ACSS2 genes. 

Cluster II: is the largest clusters identified by hierarchical clustering consist of 348 

genes and were up-regulated in a C5 subtype of colon cancers. We observed over-

representation of cellular processes such as cell cycle, metabolic processes, cell 

division, DNA and RNA replication, cell cycle check points, chromosome 

organization, DNA repair, ATP binding, DNA and RNA processing, and signal 

transduction. The cluster genes also showed enrichment of cell cycle, mitotic, cell 

cycle, DNA replication, pyrimidine replication, DNA repair, CDC20 mediated 

degradation of Nek2A, the role of BRCA1, BRCA2 and ATR in cancer 

susceptibility and p53 signalling pathways. 

 

4.2.9 Prognostic miRNAs and their impact on signatures of colon subtypes  

To gain further understanding into the biological impact of the identified 

prognostic miRNAs, we investigated their relationships with their putative targets 

and interaction pathways with in the mRNA expression data. We calculated the 

correlation between miRNA expression and their putative targets across all the 

tumour samples and identified top miRNA:mRNA pairs. In our results, we 

observed a clear separation between “protective” and “risk-associated” miRNAs 

and their associated target genes and their functional pathways.  

We identified five prognostic miRNAs (hsa-miR-628-3p, hsa-miR-135a*, hsa-

miR-183*, hsa-miR-330-5p, and hsa-miR-655) linked to “risk-associated” or 
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worse outcome target genes from C4 and C5 colon subtype. Enrichment analysis 

of genes in C4 and C5 subtypes have shown that unfavourable prognostic 

miRNAs are broadly related to cell cycle processes important for apoptosis and 

anti-proliferative activities such as DNA replication, DNA repair, DNA binding, 

ATP binding and pyrimidine binding. Other important pathways related to 

pyrimidine metabolism, oocyte meiosis, focal adhesion, ECM-receptor 

interaction, p53 signalling and telomere maintenance, a significant sub-pathway 

associated with colon cancer risk (Slattery et al., 2015b).  

Similarly, we observed five miRNAs (hsa-miR-378*, hsa-miR-15b*, hsa-miR-

323-3p, hsa-miR-125a-3p, and hsa-miR-92a-1*) associated with “protective” 

outcome have shown correlation with the up-regulatory genes of C5 and C2 

subtype of colon cancer. The biological theme positively correlated with 

favourable prognostics miRNAs were sodium channel regulatory activity, 

transmembrane transporter activity, cellular respiration, PPAR signalling pathway, 

cell division, DNA replication, DNA repair and metabolism.  

4.2.10 Subtype-specific miRNAs and their impact on transcriptional phenotypes 

We investigated the expression of miRNAs among the different types (primary 

tumour and metastatic) of colon cancer in order to understand the phenomenon 

behind the establishment of a tumour transcriptional phenotypes. As discussed 

above, among the 17 dysregulated miRNAs between primary colon tumour and 

metastatic, 11 miRNAs have shown highest expression among the metastatic 

tissues. Notably, four prognostic miRNAs (has- miR-15b*, hsa-miR-378*, hsa-

miR-323-3p, hsa-miR-125a-3p) were up-regulated among a metastatic tumour and 

observed with favourable prognosis. All four miRNAs targets genes from cluster I 
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and II, modulating important processes of transmembrane activity, PPAR 

signalling, DNA replication and DNA repair.     

Likewise, the two prognostic miRNAs (hsa-miR-135a*, hsa-miR-655) were 

highly up-regulated in primary colon tumours associated with worse prognosis, 

targets genes from cluster II and IV controlling important processes of cell cycle 

such as DNA replication, binding and repair, and p53 signalling pathway. 
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4.3 Discussion  

Prognostic stratification of the colon in clinical practice on the basis of gene 

expression has been proven unreliable to date largely due to the heterogeneity of 

colon cancer. Another challenging factor among colon cancers is to determine 

phenomenon behind molecular alterations of primary colon cells towards 

metastatic capability. In this study, we have performed robust classification of 

mRNA expression of a colon tumour on the basis of the transcriptome to improve 

existing stratification of colon cancers and identify subtype-specific signatures 

targeted by a new class of regulators known as miRNAs. We further investigated 

miRNAs association with the possible outcome, targeted molecular pathways and 

novel biological markers for chemotherapy.  

We first performed differential expression analysis on the entire cohort of miRNA 

colon tumour on the bases of histopathological groups in order to stratify the 

colon cancers. In results, we identify 70 highly dysregulated genes that can 

differentiate between the primary colon and metastatic tissue classes, colon cancer 

on the bases of tumour grades, colon cancer on the basis of stage and colon 

cancers with adjuvant chemotherapy. Subsequently, we identified 10-miRNA 

signature that can distinguish between the “protective” and “risk-associated” 

prognostic miRNAs, will required further validation on independent data set. For 

the primary tumour mRNA, we first sub-classify 585 colon tumours into five 

subtypes based on expression similarities and then clustered the most 

discriminatory genes into four signatures. Through, target prediction analysis, we 

identified that the prognostic miRNAs target genes of these four signatures and 

control their involvement in molecular processes of the cell cycle and signalling 

pathways.   
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4.3.1 The miRNAs expression in primary and metastatic colon cancer 

11 miRNAs upregulated in metastatic versus primary tissues strictly represent 

metastatic pool of colon cancers for which the publicly available software mirPath 

(Vlachos et al., 2012) identified number of known biomarkers genes and modulate 

important pathways such as Neurotrophin signaling, MAPK signaling, TGF-beta 

signaling, Axon guidance, PI3K-Akt signaling, mTOR signaling, ErbB signaling, 

Chronic myeloid leukemia, Insulin signaling, p53 signaling and Colorectal cancer 

pathways. Therefore, the observed association of metastatic miRNAs with a large 

number of signalling pathways confirms the presence of metastatic lymph node 

RNAs and provide strong evidence of their potential role in the development of 

metastases. Among the dysregulated miRNAs, hsa-miR-15b is an interesting one 

and highly upregulated in metastatic compared to primary tissues. We have 

observed an association of hsa-miR-15b with high-risk survival in this study, 

modulate p53 tumour suppressor signalling pathway important for high metastatic 

potential and metastatic relapse.    

Similarly, 6 other miRNAs upregulated in primary tissues target functional 

pathways such as PI3K-Akt signaling, Focal adhesion, Ubiquitin mediated 

proteolysis, Regulation of actin cytoskeleton, Prostate cancer, mTOR signaling, 

Pathways in cancer, Melanoma, TGF-beta signaling, and ErbB signaling related 

pathways and thus expected to be involved in promoting proliferation and 

inhibiting apoptosis, and also play an important role in tumour microenvironment 

(Qiu et al., 2016, Aminuddin and Ng, 2016). Most of the miRNAs dysregulated 

have shown log fold change > 0.5 and some of them have been previously 

observed in relation to colon cancers such as hsa-miR-135a*, hsa-miR-26a, and 
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hsa-miR-335. However, mostly miRNAs associated with survival and metastases 

were not found in association with colon cancer before.   

4.3.2 miRNAs as prognostic markers in colon cancer  

Using univariate and multivariate Cox analysis we examined the correlation of 

differentially expressed miRNAs in colon tumour samples with OS and DFS. As a 

result, we observed 10 miRNAs prognostic signature for OS and DFS with 

“protective” and risky outcomes. The correlation analysis of prognostic miRNAs 

with targeted pathways provides indirect (independent) evidence of their 

association with the biology of a colon tumour. One of the themes related to risk-

associated miRNAs were the appearance of functional pathways such as TFG-

beta, T cell, Wnt, mTOR and ErbB signalling pathways vital for cell cycle 

progression, proliferation, apoptosis, differentiation and migration (Oh et al., 

2016, Aminuddin and Ng, 2016). The other emerging theme related to protective 

roles of miRNAs were the presence of cell cycle and related processes important 

for inducing apoptosis, cell cycle arrest and inhibition of cell migration (Wu et al., 

2016, Hu et al., 2016).    

We then focused on individual miRNAs for their impact on colon tumour 

microenvironment. Risk-associated miRNAs such as hsa-miR-628-3p, previously 

reported in association with a diagnostic marker for low-stage pancreatic cancer 

(Li et al., 2013) is highly upregulated among the stages comparison particularly in 

early stages (Stage I and II) of a colon tumour in our study. Integrated analysis 

demonstrated that the top anti-correlated targets genes for hsa-miR-628-3p were 

DNAJA3, PKP4, STK17B, GPR19, ASPM, FAM3D, SAMD13, and 

MARVELD3, belongs to Cluster I and II functional subgroups and specifically 

upregulated in C2, C4 and C5 subtypes of colon cancer. These genes are 
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potentially involved in important regulatory processes such as intracellular 

organelle lumen, membrane-enclosed lumen, organelle lumen and pathways of 

p53 signalling, PPAR signalling pathway, cell cycle and DNA repair. hsa-miR-

323-3p previously reported in association with metastases in pancreatic (Wang et 

al., 2016) and cervical squamous cell carcinoma (Ding et al., 2014)  has also 

shown over-expression metastatic tissue. From the integrated analysis, we also 

predicted gene targets AGT, E2F1, HK2, EXO1, TTK, DFFB, SPC25, OIP5, 

SELENBP1, NUSAP1, TIMM23, E2F8, SETD7, C9orf41 and CMTM8, involved 

in important processes of apoptosis, cell cycle, metabolism and mismatch repair. 

The analysis shows downregulation of all these predicted target genes and 

upregulation of hsa-miR-323-3p in metastatic tissue explains its “protective” role; 

most of these target genes belong to a C5 subtype of colon cancer. Another 

microRNA, hsa-miR-125a-3p predicting OS is upregulated in metastatic tissue 

defined as “protective”. Till date, nothing has been reported of hsa-miR-125a-3p 

in association with colon cancer but has been involved in multiple abnormalities 

(Huat et al., 2015, Bi et al., 2015, Tang et al., 2015). However, hsa-miR-125a-3p 

have been involved in its protective functions by increased apoptosis (Ninio-Many 

et al., 2014) and a wide range of biological processes including regulation of 

Wnt/beta-catenin signalling pathway (Choi et al., 2011). The upregulation of hsa-

miR-655 in metastatic tissues linked to “risk associated” overall survival. hsa-

miR-655 has been reportedly involved in a number of tumorigenesis and drug 

resistance. hsa-miR-655 regulate TGF-β-induced epithelial-mesenchymal 

transition, a key element of cell invasion, migration, metastases and drug 

resistance. Anti-correlation analysis shows that patients with upregulation of hsa-

miR-655 and downregulation of its targets mRNA genes carry the risk of 



88 | P a g e  

 

metastases. The potential target genes of hsa-miR-655 belong to subtype C2, C4 

and C5 of colon cancer.  

Prognostic marker for DFS, hsa-miR-92a-1* dysregulated among the histological 

grades, particularly upregulated among poor grades defined as “protective” in 

action. hsa-miR-92a-1* has been previously reported in connection with colorectal 

cancer by consistent amplification of MIR17HG, CMYC, and ABCC4 genes 

(Molinari et al., 2016). The anti-correlation analysis shows that hsa-miR-92a-1* 

targets TNC, RNASE1, CLDN7, KNTC1, KLC1, DUS1L, EXOSC5, and 

TMEM52 of C5 subtype of colon cancer, involved in processes like cell adhesion, 

RNA degradation and ECM-receptor interaction.  

4.3.3 How miRNAs expressed in different pathological groups? 

We have observed 70 miRNAs differentially expressed among the histological 

groups. We observed the highest number of dysregulated genes when we 

compared expression data among the three different grades. As anticipated, we 

observed a theme that those miRNAs which have shown upregulation among the 

metastatic tissues tend to over-expressed among the poorly differentiated grades 

and higher stages (III and IV). Such as hsa-miR-378* miRNA have shown higher 

expression among the metastatic tissue compared to primary colon has also 

highest expression level among the poorly differentiated grades and Stage III & 

IV. Likewise, other miRNAs such as hsa-miR-424* has also shown similar trends. 

The identified findings from this study are in agreement with independent studies 

(Schneider and Langner, 2014, Derwinger and Gustavsson, 2008) therefore shows 

the validity of confirmed the validity of histological based feature selection. These 

finding also reinforced the idea of RNA based classification at the miRNA level.  
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We have also found some of the miRNAs expression level was very specific to 

one histological group, indicate histological based targeting of mRNA and 

oncogenic pathways. We have found 7 miRNAs specifically belongs to primary 

colon versus metastatic group and most of them have shown downregulation in 

metastatic tissues. Further investigation on individual miRNA may highlight 

factors behind metastases. Similarly, we identify 12 miRNAs specific to Stages 

comparison only and most of these miRNAs have shown over-expression among 

the early Stages (I and II) of colon tumours. Therefore, stage level based miRNA-

mRNA associations can be major contributors of different transcription 

phenotypes.  

In conclusion, we have performed miRNA, mRNA integration with pathological 

and clinical information of well-characterised cohorts of colon cancers. This study 

present advance histological based classification of miRNA expression data and 

their role in regulating subtype-specific transcriptional signatures. Furthermore, 

we have classified primary colon into five major subtypes on the bases of their 

RNA levels and also divided five subtypes and four functional groups on the basis 

of their involvement function pathways. We have also provided a dissection of 

aberrations at the miRNA level, their impact on targets and perturbations among 

functional pathways.                
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4.4 Methods 

4.4.1 Data collection and preprocessing 

Both expression data sets consist of miRNA and mRNA profiles were extracted 

from GEO (Gene Expression Omnibus). miRNA expression was extracted from 

FFPE colon tissues for microRNA array analysis using NIH Taqman Human 

MicroRNA Array v.2 platform can be found under the accession number 

GSE29622. The miRNA expression set consist of 47 primary and 18 metastatic 

colon cancers with patient follow-up and extensive histopathological information. 

Likewise, mRNA expression data set consists of 598 colon cancer samples 

analysed using Affymetrix U133plus2 chip profiles can be found under the 

Subseries accession number GSE39582. 

We applied functions of Bioconductor GEOquery package (Davis, 2013) for the 

extraction of raw expression data for both types of RNA sets. Various functions of 

Robust Multichip Analysis (RMA) methodology were applied for background 

correction followed by quantile normalisation for the correction of inter-arrays 

global differences. All the probes with Zero variance were filtered for further 

analysis. R, Hclust functions were used for the calculation of two-dimensional 

average-linkage hierarchical clustering and heatmaps were drawn using rows as 

scale.  

4.4.2 Statistical analysis 

We applied Cox-regression analysis for the calculation of association of miRNA 

level expression with disease-free survival (DFS) and overall-survival (OS) 

followed by adjustment of wald test p-values using multiple-testing using 

Benjamin-Hochberg method. We consider all those miRNAs were having 
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threshold value less than 0.05 associated with DFS and OS. Survival data were 

censored at the date of alive/death from any cause for OS and the evidence of 

recurrence or no recurrence for DFS. We applied different Cox-regression models 

for histopathological covariates, grouped as Gender (male or female), Tumour 

Type (a primary tumour versus metastatic), Grades (continuous), Stage 

(continuous) Adjuvant Chemotherapy (no or yes). Survival curves were calculated 

and drawn by Kaplan-Meier analysis using R analysis “survival” tools.  

4.4.3 Identification of dysregulated miRNAs linked to specific colon subtypes 

We applied ANOVA and on some instance Student’s t-test for the identification of 

differentially expressed miRNAs across the different histological groups such as 

(primary versus metastatic) (well versus moderate versus poorly grades), among 

the stages, and (adjuvant chemotherapy yes versus no). All the obtained p-values 

were adjusted for multiple testing using False Discovery Rate using threshold 

value (q-value < 0.01) for differentially expressed genes.  

4.4.4 Collection of miRNAs targets and independent correlation analysis 

In order to perform integration analysis, we collected candidate targets for each 

miRNAs using six different databases (TargetScan, TarBase, PicTar, mirBase, 

miRTarget2, miRanda) using R Bioconductor package “RmiR”. We performed 

independent correlation analysis among the miRNAs and their particular targets in 

order to evaluate the influence of each miRNA. We selected the top anti-

correlated miRNA-mRNA pairs for further analysis.  
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4.4.5 Classification of primary colon into subtypes and identification of functional 

signatures 

We performed unsupervised K-mean consensus clustering using 

‘ConsensusClustering’ package of R Bioconductor for the identification of 

potential subtypes of a colon tumour. We run values starting from K=2 to K=6 in 

core K-mean clustering. A highest consensus score was used for the selection of a 

number of classes followed by ANOVA analysis for the identification of 

dysregulated genes among the intrinsic subtypes. Again, p-values were adjusted 

using False Discovery Rate and mRNA genes exhibiting q-value less than 0.001 

termed as significant.  

4.4.6 Functional analysis  

In order to identify perturbed functional pathways of gene signatures, we applied 

functional classification tools of available databases such as KEGG (Kanehisa et 

al., 2016), Reactome (Fabregat et al., 2016) and DAVID (Huang et al., 2009a). 

Threshold p-value less than 0.001 was used for the selection of significant 

processes, molecular functions and pathways.  
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CHAPTER 5 CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

The main objective of this report is to discuss the latest development involving the 

application of DNA microarray on colon cancer and to address the key problems 

in precise and early targets for diagnosis, distinctive molecular classes and clinical 

outcome. The discovery of DNA microarray has offered tremendous tools such 

profiling of gene expression which expanded exponentially in the last decade. 

DNA microarray also showed enormous impact on the identification of gene 

expression signature vital for early predictions and clinical outcome of multiple 

cancer types. One of the major challenges in microarray data analysis is a small 

number of samples size in given study compare to a large number of driving 

variable of cancer. Small sample size not only made interpretation difficult but 

model development, considering the heterogeneous nature of cancer. So, it is not 

surprising that there is an only small convergence between the gene signatures 

from different investigators discussing colon cancer. 

In chapter 2 of the thesis, we highlighted major advancement in the area of colon 

cancer. We showed that number of studies have been conducted in order to 

classify colon tumours into subtypes and novel drug targets for the clinical use. 

We highlighted the earliest method used in the selection of therapeutic targets for 

colon cancer was the discovery of gene-drug correlation. We have also seen that 

colon cancer was subjected to classification on the basis of phenotypes based on 

microsatellite instability (MSI), phenotypes based on the genetic aberrations were 

presence of genes such as KRAS or BRAF, and phenotypes based on functional 

pathways were presence of Wnt/ß-catenin, TGF-ß, MAPK, and PI3K signaling. 
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We also discussed that most of the studies were conducted focusing on individual 

gene 

targets rather than covering all other aspects of heterogeneity. Some of the author 

in the past have utilised molecular level similarities in the identification of specific 

pathways affected in diseases, in the identification drug targets and designing of 

survival outcome classifiers. One of the major contribution offered by a group of 

Cancer Genome Atlas by performing genome-scale analysis of 276 patients. As 

result, they observed a number of important genes and critical pathways required 

for the initiation and progression of colon cancers. Some of the significant 

findings from this study was the discovery of P53, PI3K, RAS-MAPK, TGF-β, 

WNT, and DNA mismatch repair pathways. In spite of such progress, there are 

still some unknown genetic and genomic changes which play a significant role in 

colon tumorigenesis. 

In chapter 3 of the thesis, the identification of molecular markers with prognostic 

value in colorectal cancer is a challenging task that is needed to define therapeutic 

guidelines. Despite recent advances in the screening, diagnosis, and treatment of 

colorectal cancer, an estimated 608, 000 people die every year from this form of 

cancer, which is 8% of all cancer deaths. We performed two staged integrated 

bioinformatics analytics on gene expression data sets of three latest developed 

studies of colon cancer. We identified two groups of integrated signatures from 

the comparison of normal versus a tumour and tumour versus meets patient’s 

samples. Functional analysis of the diagnostics 267-genes shows over-

representation of signaling-related molecules and also significantly involved in 

cancers related regulatory pathways. The metastatic 124-gene signature shows 

functionally involved in immune-response, lipid metabolism and PPAR signalling 
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pathways. Kaplan-Meier estimates of 124-genes using independent data sets 

shows that higher grade/stage patients have significantly better overall-survival 

(p=0.001, 

HR=2.61(CI 1.43-4.79)) and disease-specific survival rate (p=0.00, HR=2.41(CI 

1.28-4.53)) compare to low grade patients. Further biological validation of genes 

identified in this study may provide vital biomarker targets for colon cancers. 

In chapter 4 of the thesis, we have performed miRNA, mRNA integration with 

pathological and clinical information of well-characterised cohorts of colon 

cancers. This study present advance histological based classification of miRNA 

expression data and their role in regulating subtype-specific transcriptional 

signatures. Furthermore, we have classified primary colon into five major 

subtypes on the bases of their RNA levels and also divided five subtypes and four 

functional groups on the basis of their involvement function pathways. We have 

also provided a dissection of aberrations at the miRNA level, their impact on 

targets and perturbations among functional pathways. 

In summary, we have identified robust and reliable signatures of miRNA and 

mRNA along with the identification of distinct subtypes of a colon tumour. 

Another advantage of this study is that we have uncovered genomic features 

which may have been remained undetected in individual studies and have an 

important role in tumour progression. 

5.2 Future Work 

The data integration models have produced promising results for the colon cancer 

diagnostic and prognostic signature identification. The two independent studies 

focusing on tissue-based integration method and integration of two different levels 
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have established workflow models which can be applied on any independent 

population. Our main focus was to identify diagnostic and prognostic signatures 

by integrated analysis without losing potential signature genes. 

In a complex disease such as colon cancer, there are the only limited amount of 

microarray data generated from some platform from different studies addressing a 

similar question. In this situation, we can have considered tissue-based integration 

method for different generations of the same microarray technology or for the data 

generated from multiple microarray platforms. The models proposed in this thesis 

can then be applied to the integrated data sets of the list of common genes to 

increase statistical power and to derive reliable gene signatures. In this way, we 

gain statistical power at the price of loss of potential signature genes. 

By using the miRNA-mRNA integrative analysis model, we can integrate two 

different Omics data levels with clinical and pathological data for the accurate 

prediction of phenotypic outcome. This could lead to improved cancer prognostic 

signatures which are mixtures of epigenetic factors, gene expression and clinical 

parameters. Furthermore, other high-throughput data, such as single nucleotide 

polymorphism, copy number variation, protein expression data, structural data and 

tissue microarray data, can be effectively combined into the integrated microarray 

data in similar manners to correlate changes in gene expression profiles with 

changes in proteomic or phenotypes. 

 



97 | P a g e  

 

REFERENCES 

1. Perez-Villamil, B., et al., Colon cancer molecular subtypes identified by expression 
profiling and associated to stroma, mucinous type and different clinical 
behaviour. BMC Cancer, 2012. 12(1): p. 260. 

2. Greenlee, R.T., et al., Cancer statistics, 2000. CA Cancer J Clin, 2000. 50(1): p. 7-
33. 

3. Marisa, L., et al., Gene expression classification of colon cancer into molecular 
subtypes: characterization, validation, and prognostic value. PLoS Med, 2013. 
10(5): p. e1001453. 

4. Hutchins, G., et al., Value of mismatch repair, KRAS, and BRAF mutations in 
predicting recurrence and benefits from chemotherapy in colorectal cancer. J Clin 
Oncol, 2011. 29(10): p. 1261-70. 

5. Popat, S., R. Hubner, and R.S. Houlston, Systematic review of microsatellite 
instability and colorectal cancer prognosis. J Clin Oncol, 2005. 23(3): p. 609-18. 

6. Zlobec, I., et al., Clinicopathological and protein characterization of BRAF- and K-
RAS-mutated colorectal cancer and implications for prognosis. Int J Cancer, 2010. 
127. 

7. Zhang, B., Targeting the stroma by T cells to limit tumour growth. Cancer Res, 
2008. 68(23): p. 9570-3. 

8. Yamasaki, M., et al., The gene expression profile represents the molecular nature 
of liver metastasis in colorectal cancer. Int J Oncol, 2007. 30. 

9. Wang, Y., et al., Gene expression profiles and molecular markers to predict 
recurrence of Dukes' B colon cancer. J Clin Oncol, 2004. 22(9): p. 1564-71. 

10. Tran, B., et al., Impact of BRAF mutation and microsatellite instability on the 
pattern of metastatic spread and prognosis in metastatic colorectal cancer, in 
Cancer. 2011. 

11. O'Connell, M.J., et al., Relationship between tumour gene expression and 
recurrence in four independent studies of patients with stage II/III colon cancer 
treated with surgery alone or surgery plus adjuvant fluorouracil plus leucovorin. J 
Clin Oncol, 2010. 28(25): p. 3937-44. 

12. Eschrich, S., et al., Molecular staging for survival prediction of colorectal cancer 
patients. J Clin Oncol, 2005. 23(15): p. 3526-35. 

13. Kang, G.H., Four molecular subtypes of colorectal cancer and their precursor 
lesions. Arch Pathol Lab Med, 2011. 135(6): p. 698-703. 

14. Jass, J.R., Classification of colorectal cancer based on correlation of clinical, 
morphological and molecular features. Histopathology, 2007. 50(1): p. 113-30. 

15. Liotta, L. and E. Petricoin, Molecular profiling of human cancer. Nat Rev Genet, 
2000. 1(1): p. 48-56. 

16. Brown, P.O. and D. Botstein, Exploring the new world of the genome with DNA 
microarrays. Nat Genet, 1999. 21(1 Suppl): p. 33-7. 

17. Lonning, P.E., T. Sorlie, and A.-L. Borresen-Dale, Genomics in breast 
cancer[mdash]therapeutic implications. Nat Clin Prac Oncol, 2005. 2(1): p. 26-33. 



98 | P a g e  

 

18. Southern, E., K. Mir, and M. Shchepinov, Molecular interactions on microarrays. 
Nat Genet, 1999. 21(1 Suppl): p. 5-9. 

19. Golub, T.R., et al., Molecular classification of cancer: class discovery and class 
prediction by gene expression monitoring. Science, 1999. 286(5439): p. 531-7. 

20. Eisen, M.B., et al., Cluster analysis and display of genome-wide expression 
patterns. Proc Natl Acad Sci U S A, 1998. 95(25): p. 14863-8. 

21. Quackenbush, J., Computational analysis of microarray data. Nat Rev Genet, 
2001. 2(6): p. 418-27. 

22. Sørlie, T., et al., Gene expression patterns of breast carcinomas distinguish 
tumour subclasses with clinical implications. Proc Natl Acad Sci U S A, 2001. 
98(19): p. 10869-74. 

23. Bittner, M., et al., Molecular classification of cutaneous malignant melanoma by 
gene expression profiling. Nature, 2000. 406(6795): p. 536-40. 

24. Welsh, J.B., et al., Analysis of gene expression profiles in normal and neoplastic 
ovarian tissue samples identifies candidate molecular markers of epithelial 
ovarian cancer. Proc Natl Acad Sci U S A, 2001. 98(3): p. 1176-81. 

25. Perou, C.M., et al., Molecular portraits of human breast tumours. Nature, 2000. 
406(6797): p. 747-52. 

26. Bhattacharjee, A., et al., Classification of human lung carcinomas by mRNA 
expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad 
Sci U S A, 2001. 98(24): p. 13790-5. 

27. Singh, D., et al., Gene expression correlates of clinical prostate cancer behavior. 
Cancer Cell, 2002. 1(2): p. 203-9. 

28. Dyrskjot, L., et al., Identifying distinct classes of bladder carcinoma using 
microarrays. Nat Genet, 2003. 33(1): p. 90-6. 

29. Belbin, T.J., et al., Molecular classification of head and neck squamous cell 
carcinoma using cDNA microarrays. Cancer Res, 2002. 62(4): p. 1184-90. 

30. Ono, K., et al., Identification by cDNA microarray of genes involved in ovarian 
carcinogenesis. Cancer Res, 2000. 60(18): p. 5007-11. 

31. Su, A.I., et al., Molecular classification of human carcinomas by use of gene 
expression signatures. Cancer Res, 2001. 61(20): p. 7388-93. 

32. Ramaswamy, S., et al., Multiclass cancer diagnosis using tumor gene expression 
signatures. Proc Natl Acad Sci U S A, 2001. 98(26): p. 15149-54. 

33. Giordano, T.J., et al., Organ-specific molecular classification of primary lung, 
colon, and ovarian adenocarcinomas using gene expression profiles. Am J Pathol, 
2001. 159(4): p. 1231-8. 

34. Shen, R., et al., Eigengene-based linear discriminant model for tumor 
classification using gene expression microarray data. Bioinformatics, 2006. 
22(21): p. 2635-42. 

35. Bicciato, S., et al., Pattern identification and classification in gene expression 
data using an autoassociative neural network model. Biotechnol Bioeng, 2003. 
81(5): p. 594-606. 



99 | P a g e  

 

36. Li, L., et al., Gene selection for sample classification based on gene expression 
data: study of sensitivity to choice of parameters of the GA/KNN method. 
Bioinformatics, 2001. 17(12): p. 1131-42. 

37. Liu, J.J., et al., Multiclass cancer classification and biomarker discovery using GA-
based algorithms. Bioinformatics, 2005. 21(11): p. 2691-7. 

38. Mukherjee, S., et al., Support vector machine classification of microarray data. 
1999. 

39. Alizadeh, A.A., et al., Distinct types of diffuse large B-cell lymphoma identified by 
gene expression profiling. Nature, 2000. 403(6769): p. 503-11. 

40. Cole, B.F., et al., Polychemotherapy for early breast cancer: an overview of the 
randomised clinical trials with quality-adjusted survival analysis. Lancet, 2001. 
358(9278): p. 277-86. 

41. van 't Veer, L.J., et al., Gene expression profiling predicts clinical outcome of 
breast cancer. Nature, 2002. 415(6871): p. 530-6. 

42. Naderi, A., et al., A gene-expression signature to predict survival in breast cancer 
across independent data sets. Oncogene, 2007. 26(10): p. 1507-16. 

43. Wang, Y., et al., Gene-expression profiles to predict distant metastasis of lymph-
node-negative primary breast cancer. Lancet, 2005. 365(9460): p. 671-9. 

44. Sotiriou, C., et al., Gene expression profiling in breast cancer: understanding the 
molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst, 
2006. 98(4): p. 262-72. 

45. Beer, D.G., et al., Gene-expression profiles predict survival of patients with lung 
adenocarcinoma. Nat Med, 2002. 8(8): p. 816-24. 

46. Pomeroy, S.L., et al., Prediction of central nervous system embryonal tumour 
outcome based on gene expression. Nature, 2002. 415(6870): p. 436-42. 

47. Takahashi, M., et al., Gene expression profiling of clear cell renal cell carcinoma: 
gene identification and prognostic classification. Proc Natl Acad Sci U S A, 2001. 
98(17): p. 9754-9. 

48. Ein-Dor, L., et al., Outcome signature genes in breast cancer: is there a unique 
set? Bioinformatics, 2005. 21(2): p. 171-8. 

49. Tan, P.K., et al., Evaluation of gene expression measurements from commercial 
microarray platforms. Nucleic Acids Res, 2003. 31(19): p. 5676-84. 

50. Mah, N., et al., A comparison of oligonucleotide and cDNA-based microarray 
systems. Physiol Genomics, 2004. 16(3): p. 361-70. 

51. Kuo, W.P., et al., Analysis of matched mRNA measurements from two different 
microarray technologies. Bioinformatics, 2002. 18(3): p. 405-12. 

52. Nimgaonkar, A., et al., Reproducibility of gene expression across generations of 
Affymetrix microarrays. BMC Bioinformatics, 2003. 4: p. 27. 

53. Wang, H., et al., A study of inter-lab and inter-platform agreement of DNA 
microarray data. BMC Genomics, 2005. 6: p. 71. 

54. Orr, M.S. and U. Scherf, Large-scale gene expression analysis in molecular target 
discovery. Leukemia, 2002. 16(4): p. 473-7. 



100 | P a g e  

 

55. Fearon, E.R., Molecular genetics of colorectal cancer. Annu Rev Pathol, 2011. 6: 
p. 479-507. 

56. Sanchez, J.A., et al., Genetic and epigenetic classifications define clinical 
phenotypes and determine patient outcomes in colorectal cancer. Br J Surg, 
2009. 96(10): p. 1196-204. 

57. Iacopetta, B., F. Grieu, and B. Amanuel, Microsatellite instability in colorectal 
cancer. Asia Pac J Clin Oncol, 2010. 6(4): p. 260-9. 

58. van Engeland, M., et al., Colorectal cancer epigenetics: complex simplicity. J Clin 
Oncol, 2011. 29(10): p. 1382-91. 

59. Mohr, S., et al., Microarrays as cancer keys: an array of possibilities. J Clin Oncol, 
2002. 20(14): p. 3165-75. 

60. Bertucci, F., et al., Gene expression profiling of cancer by use of DNA arrays: how 
far from the clinic? Lancet Oncol, 2001. 2(11): p. 674-82. 

61. Alon, U., et al., Broad patterns of gene expression revealed by clustering analysis 
of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. 
Acad. Sci. USA, 1999. 96: p. 6745-6750. 

62. Backert, S., et al., Differential gene expression in colon carcinoma cells and 
tissues detected with a cDNA array. Int J Cancer, 1999. 82(6): p. 868-74. 

63. Hegde, P., et al., Identification of tumor markers in models of human colorectal 
cancer using a 19,200-element complementary DNA microarray. Cancer Res., 
2001. 61: p. 7792-7797. 

64. Kitahara, O., et al., Alterations of gene expression during colorectal 
carcinogenesis revealed by cDNA microarrays after laser-capture microdissection 
of tumor tissues and normal epithelia. Cancer Res, 2001. 61(9): p. 3544-9. 

65. Notterman, D.A., et al., Transcriptional gene expression profiles of colorectal 
adenoma, adenocarcinoma, and normal tissue examined by oligonucleotide 
arrays. Cancer Res, 2001. 61(7): p. 3124-30. 

66. Agrawal, D., et al., Osteopontin Identified as Lead Marker of Colon Cancer 
Progression, Using Pooled Sample Expression Profiling. J. Natl. Cancer Inst., 2002. 
94: p. 513-521. 

67. Birkenkamp-Demtroder, K., et al., Gene expression in colorectal cancer. Cancer 
Res, 2002. 62(15): p. 4352-63. 

68. Lin, Y.M., et al., Molecular diagnosis of colorectal tumors by expression profiles 
of 50 genes expressed differentially in adenomas and carcinomas. Oncogene, 
2002. 21(26): p. 4120-8. 

69. Zou, T.T., et al., Application of cDNA microarrays to generate a molecular 
taxonomy capable of distinguishing between colon cancer and normal colon. 
Oncogene, 2002. 21: p. 4855-4862. 

70. Frederiksen, C.M., et al., Classification of Dukes' B and C colorectal cancers using 
expressionarrays. J Cancer Res Clin Oncol, 2003. 129. 

71. Tureci, O., et al., Computational dissection of tissue contamination for 
identification of colon cancer-specific expression profiles. FASEB J, 2003. 17(3): p. 
376-85. 



101 | P a g e  

 

72. Williams, N.S., et al., Identification and validation of genes involved in the 
pathogenesis of colorectal cancer using cDNA microarrays and RNA interference. 
Clin. Cancer Res., 2003. 9: p. 931-946. 

73. Bertucci, F., et al., Gene expression profiling of colon cancer by DNA microarrays 
and correlation with histoclinical parameters. Oncogene, 0000. 23(7): p. 1377-
1391. 

74. Frederiksen, C.M., et al., Classification of Dukes' B and C colorectal cancers using 
expression arrays. J Cancer Res Clin Oncol, 2003. 129(5): p. 263-71. 

75. Kwong, K.Y., et al., Synchronous global assessment of gene and protein 
expression in colorectal cancer progression. Genomics, 2005. 86(2): p. 142-58. 

76. Perez Villamil, B., et al., Colon cancer molecular subtypes identified by expression 
profiling and associated to stroma, mucinous type and different clinical behavior. 
BMC Cancer, 2012. 12: p. 260-260. 

77. Cancer Genome Atlas, N., Comprehensive molecular characterization of human 
colon and rectal cancer. Nature, 2012. 487(7407): p. 330-7. 

78. Salazar, R., et al., Gene expression signature to improve prognosis prediction of 
stage II and III colorectal cancer. J Clin Oncol, 2011. 29(1): p. 17-24. 

79. Shen, L., et al., Integrated genetic and epigenetic analysis identifies three 
different subclasses of colon cancer. Proc Natl Acad Sci U S A, 2007. 104(47): p. 
18654-9. 

80. Warnat, P., R. Eils, and B. Brors, Cross-platform analysis of cancer microarray 
data improves gene expression based classification of phenotypes. BMC 
Bioinformatics, 2005. 6: p. 265. 

81. Ghosh, D., et al., Statistical issues and methods for meta-analysis of microarray 
data: a case study in prostate cancer. Funct Integr Genomics, 2003. 3(4): p. 180-
8. 

82. Ramaswamy, S., et al., A molecular signature of metastasis in primary solid 
tumors. Nat Genet, 2003. 33(1): p. 49-54. 

83. Zhou, X.J., et al., Functional annotation and network reconstruction through 
cross-platform integration of microarray data. Nat Biotechnol, 2005. 23(2): p. 
238-43. 

84. Stevens, J.R. and R.W. Doerge, Combining Affymetrix microarray results. BMC 
Bioinformatics, 2005. 6: p. 57. 

85. Rhodes, D.R., et al., Meta-analysis of microarrays: interstudy validation of gene 
expression profiles reveals pathway dysregulation in prostate cancer. Cancer 
Res, 2002. 62(15): p. 4427-33. 

86. Choi, J.K., et al., Combining multiple microarray studies and modeling interstudy 
variation. Bioinformatics, 2003. 19 Suppl 1: p. i84-90. 

87. Hu, P., C.M. Greenwood, and J. Beyene, Integrative analysis of multiple gene 
expression profiles with quality-adjusted effect size models. BMC Bioinformatics, 
2005. 6: p. 128. 

88. Siegel, R., D. Naishadham, and A. Jemal, Cancer statistics, 2012. CA Cancer J Clin, 
2012. 62(1): p. 10-29. 



102 | P a g e  

 

89. Zhang, H., et al., Recursive partitioning for tumor classification with gene 
expression microarray data. Proc Natl Acad Sci U S A, 2001. 98(12): p. 6730-5. 

90. Nannini, M., et al., Gene expression profiling in colorectal cancer using 
microarray technologies: results and perspectives. Cancer Treat Rev, 2009. 35(3): 
p. 201-9. 

91. Cardoso, J., et al., Expression and genomic profiling of colorectal cancer. Biochim 
Biophys Acta, 2007. 1775(1): p. 103-37. 

92. Sagynaliev, E., et al., Web-based data warehouse on gene expression in human 
colorectal cancer. Proteomics, 2005. 5(12): p. 3066-78. 

93. Chan, S.K., et al., Meta-analysis of colorectal cancer gene expression profiling 
studies identifies consistently reported candidate biomarkers. Cancer Epidemiol 
Biomarkers Prev, 2008. 17(3): p. 543-52. 

94. Shih, W., R. Chetty, and M.S. Tsao, Expression profiling by microarrays in 
colorectal cancer (Review). Oncol Rep, 2005. 13(3): p. 517-24. 

95. Davis, S. GEOquery R package: Get data from NCBI Gene Expression omnibus 
(GEO). 2013  [cited 2012 February]; Release (2.12):[The NCBI Gene Expression 
Omnibus (GEO) is a public repository of microarray data. Given the rich and 
varied nature of this resource, it is only natural to want to apply BioConductor 
tools to these data. GEOquery is the bridge between GEO and BioConductor.]. 
Available from: 
http://www.bioconductor.org/packages/2.12/bioc/html/GEOquery.html. 

96. Huang, D.W., B.T. Sherman, and R.A. Lempicki, Systematic and integrative 
analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc, 
2009. 4(1): p. 44-57. 

97. Smith, J.J., et al., Experimentally derived metastasis gene expression profile 
predicts recurrence and death in patients with colon cancer. Gastroenterology, 
2010. 138(3): p. 958-68. 

98. Moreno, V. and R. Sanz-Pamplona, Altered pathways and colorectal cancer 
prognosis. BMC Med, 2015. 13: p. 76. 

99. Planutis, K., M. Planutiene, and R.F. Holcombe, A novel signaling pathway 
regulates colon cancer angiogenesis through Norrin. Sci. Rep., 2014. 4. 

100. Jemal, A., et al., Cancer statistics, 2010. CA Cancer J Clin, 2010. 60(5): p. 277-300. 

101. Parkin, D.M., et al., Global cancer statistics, 2002. CA Cancer J Clin, 2005. 55(2): 
p. 74-108. 

102. Salhab, M., N. Patani, and K. Mokbel, Sentinel lymph node micrometastasis in 
human breast cancer: an update. Surg Oncol, 2011. 20(4): p. e195-206. 

103. Eggermont, A.M., Adjuvant therapy of malignant melanoma and the role of 
sentinel node mapping. Recent Results Cancer Res, 2000. 157: p. 178-89. 

104. Pavlidis, N., et al., Diagnostic and therapeutic management of cancer of an 
unknown primary. Eur J Cancer, 2003. 39(14): p. 1990-2005. 

105. Fernandez-Pineda, I., J.A. Sandoval, and A.M. Davidoff, Hepatic metastatic 
disease in pediatric and adolescent solid tumors. World J Hepatol, 2015. 7(14): p. 
1807-17. 



103 | P a g e  

 

106. Su, X., et al., TAp63 suppresses metastasis through coordinate regulation of Dicer 
and miRNAs. Nature, 2010. 467(7318): p. 986-90. 

107. Glud, M., et al., Downregulation of miR-125b in metastatic cutaneous malignant 
melanoma. Melanoma Res, 2010. 20(6): p. 479-84. 

108. Bartel, D.P., MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 
2004. 116(2): p. 281-97. 

109. Calin, G.A. and C.M. Croce, MicroRNA signatures in human cancers. Nat Rev 
Cancer, 2006. 6(11): p. 857-66. 

110. Cho, W.C., OncomiRs: the discovery and progress of microRNAs in cancers. Mol 
Cancer, 2007. 6: p. 60. 

111. Rosenfeld, N., et al., MicroRNAs accurately identify cancer tissue origin. Nat 
Biotechnol, 2008. 26(4): p. 462-9. 

112. Slattery, M.L., et al., Colorectal tumor molecular phenotype and miRNA: 
expression profiles and prognosis. Mod Pathol, 2016. 29(8): p. 915-27. 

113. Schlormann, W., et al., Influence of miRNA-106b and miRNA-135a on butyrate-
regulated expression of p21 and Cyclin D2 in human colon adenoma cells. Genes 
Nutr, 2015. 10(6): p. 50. 

114. Konishi, H., et al., microRNA-26a and -584 inhibit the colorectal cancer 
progression through inhibition of the binding of hnRNP A1-CDK6 mRNA. Biochem 
Biophys Res Commun, 2015. 467(4): p. 847-52. 

115. Wang, Y.X., et al., Initial study of microRNA expression profiles of colonic cancer 
without lymph node metastasis. J Dig Dis, 2010. 11(1): p. 50-4. 

116. Almeida, M.I., et al., Strand-specific miR-28-5p and miR-28-3p have distinct 
effects in colorectal cancer cells. Gastroenterology, 2012. 142(4): p. 886-896 e9. 

117. Rasmussen, M.H., et al., High expression of microRNA-625-3p is associated with 
poor response to first-line oxaliplatin based treatment of metastatic colorectal 
cancer. Mol Oncol, 2013. 7(3): p. 637-46. 

118. Matsuyama, R., et al., MicroRNA-27b suppresses tumor progression by 
regulating ARFGEF1 and focal adhesion signaling. Cancer Sci, 2016. 107(1): p. 
28-35. 

119. Wang, X., et al., Downregulation of miR-195 correlates with lymph node 
metastasis and poor prognosis in colorectal cancer. Med Oncol, 2012. 29(2): p. 
919-27. 

120. Tong, Z., et al., miR-125a-5p inhibits cell proliferation and induces apoptosis in 
colon cancer via targeting BCL2, BCL2L12 and MCL1. Biomed Pharmacother, 
2015. 75: p. 129-36. 

121. Slattery, M.L., et al., An evaluation and replication of miRNAs with disease stage 
and colorectal cancer-specific mortality. Int J Cancer, 2015. 137(2): p. 428-38. 

122. Li, Q., et al., miR-139-5p Inhibits the Epithelial-Mesenchymal Transition and 
Enhances the Chemotherapeutic Sensitivity of Colorectal Cancer Cells by 
Downregulating BCL2. Sci Rep, 2016. 6: p. 27157. 

123. Okamoto, A., et al., Enhanced Efficacy of Doxorubicin by microRNA-499-
Mediated Improvement of Tumor Blood Flow. J Clin Med, 2016. 5(1). 



104 | P a g e  

 

124. Slattery, M.L., R.K. Wolff, and A. Lundgreen, A pathway approach to evaluating 
the association between the CHIEF pathway and risk of colorectal cancer. 
Carcinogenesis, 2015. 36(1): p. 49-59. 

125. Vlachos, I.S., et al., DIANA miRPath v.2.0: investigating the combinatorial effect 
of microRNAs in pathways. Nucleic Acids Res, 2012. 40(Web Server issue): p. 
W498-504. 

126. Qiu, C.Z., et al., Correlation of GOLPH3 Gene with Wnt Signaling Pathway in 
Human Colon Cancer Cells. J Cancer, 2016. 7(8): p. 928-34. 

127. Aminuddin, A. and P.Y. Ng, Promising Druggable Target in Head and Neck 
Squamous Cell Carcinoma: Wnt Signaling. Front Pharmacol, 2016. 7: p. 244. 

128. Oh, B.Y., et al., Twist1-induced epithelial-mesenchymal transition according to 
microsatellite instability status in colon cancer cells. Oncotarget, 2016. 7(35): p. 
57066-57076. 

129. Wu, Y., et al., Knockdown of FOXK1 alone or in combination with apoptosis-
inducing 5-FU inhibits cell growth in colorectal cancer. Oncol Rep, 2016. 36(4): p. 
2151-9. 

130. Hu, Y.L., et al., Germanicol induces selective growth inhibitory effects in human 
colon HCT-116 and HT29 cancer cells through induction of apoptosis, cell cycle 
arrest and inhibition of cell migration. J BUON, 2016. 21(3): p. 626-32. 

131. Li, A., et al., MicroRNA array analysis finds elevated serum miR-1290 accurately 
distinguishes patients with low-stage pancreatic cancer from healthy and disease 
controls. Clin Cancer Res, 2013. 19(13): p. 3600-10. 

132. Wang, C., et al., MicroRNA-323-3p inhibits cell invasion and metastasis in 
pancreatic ductal adenocarcinoma via direct suppression of SMAD2 and SMAD3. 
Oncotarget, 2016. 7(12): p. 14912-24. 

133. Ding, H., et al., Characterization of the microRNA expression profile of cervical 
squamous cell carcinoma metastases. Asian Pac J Cancer Prev, 2014. 15(4): p. 
1675-9. 

134. Huat, T.J., et al., MicroRNA Expression Profile of Neural Progenitor-Like Cells 
Derived from Rat Bone Marrow Mesenchymal Stem Cells under the Influence of 
IGF-1, bFGF and EGF. Int J Mol Sci, 2015. 16(5): p. 9693-718. 

135. Bi, C., et al., Genome-wide pharmacologic unmasking identifies tumor 
suppressive microRNAs in multiple myeloma. Oncotarget, 2015. 6(28): p. 26508-
18. 

136. Tang, H., et al., miR-125a inhibits the migration and invasion of liver cancer cells 
via suppression of the PI3K/AKT/mTOR signaling pathway. Oncol Lett, 2015. 
10(2): p. 681-686. 

137. Ninio-Many, L., et al., MicroRNA miR-125a-3p modulates molecular pathway of 
motility and migration in prostate cancer cells. Oncoscience, 2014. 1(4): p. 250-
261. 

138. Choi, J.S., et al., miRNA regulation of cytotoxic effects in mouse Sertoli cells 
exposed to nonylphenol. Reprod Biol Endocrinol, 2011. 9: p. 126. 



105 | P a g e  

 

139. Molinari, C., et al., miR-17-92a-1 cluster host gene (MIR17HG) evaluation and 
response to neoadjuvant chemoradiotherapy in rectal cancer. Onco Targets Ther, 
2016. 9: p. 2735-42. 

140. Schneider, N.I. and C. Langner, Prognostic stratification of colorectal cancer 
patients: current perspectives. Cancer Manag Res, 2014. 6: p. 291-300. 

141. Derwinger, K. and B. Gustavsson, A study of lymph node ratio in stage IV 
colorectal cancer. World J Surg Oncol, 2008. 6: p. 127. 

142. Kanehisa, M., et al., KEGG as a reference resource for gene and protein 
annotation. Nucleic Acids Res, 2016. 44(D1): p. D457-62. 

143. Fabregat, A., et al., The Reactome pathway Knowledgebase. Nucleic Acids Res, 
2016. 44(D1): p. D481-7. 

144. Huang da, W., B.T. Sherman, and R.A. Lempicki, Bioinformatics enrichment tools: 
paths toward the comprehensive functional analysis of large gene lists. Nucleic 
Acids Res, 2009. 37(1): p. 1-13. 

 

 


