427 research outputs found

    Land cover classification using fuzzy rules and aggregation of contextual information through evidence theory

    Full text link
    Land cover classification using multispectral satellite image is a very challenging task with numerous practical applications. We propose a multi-stage classifier that involves fuzzy rule extraction from the training data and then generation of a possibilistic label vector for each pixel using the fuzzy rule base. To exploit the spatial correlation of land cover types we propose four different information aggregation methods which use the possibilistic class label of a pixel and those of its eight spatial neighbors for making the final classification decision. Three of the aggregation methods use Dempster-Shafer theory of evidence while the remaining one is modeled after the fuzzy k-NN rule. The proposed methods are tested with two benchmark seven channel satellite images and the results are found to be quite satisfactory. They are also compared with a Markov random field (MRF) model-based contextual classification method and found to perform consistently better.Comment: 14 pages, 2 figure

    ARKTOS: An Intelligent System for Satellite Sea Ice Image Analysis

    Get PDF
    We present an intelligent system for satellite sea ice image analysis named ARKTOS (Advanced Reasoning using Knowledge for Typing Of Sea ice). The underlying methodology of ARKTOS is to perform fully automated analysis of sea ice images by mimicking the reasoning process of sea ice experts and photo-interpreters. Hence, our approach is feature-based, rule-based classification supported by multisource data fusion and knowledge bases. A feature can be an ice floe, for example. ARKTOS computes a host of descriptors for that feature and then applies expert rules to classify the floe into one of several ice classes. ARKTOS also incorporates information derived from other sources, fusing different data towards more accurate classification. This modular, flexible, and extensible approach allows ARKTOS be refined and evaluated by expert users. As a software package, ARKTOS comprises components in image processing, rule-based classification, multisource data fusion, and GUI-based knowledge engineering and modification. As a research project over the past 10 years, ARKTOS has undergone phases such as knowledge acquisition, prototyping, refinement, evaluation and deployment, and finally operationalization at the National Ice Center (NIC). In this paper, we will focus on the methodology of ARKTOS

    Combination of Evidence in Dempster-Shafer Theory

    Full text link

    Dynamic Occupancy Grid Prediction for Urban Autonomous Driving: A Deep Learning Approach with Fully Automatic Labeling

    Full text link
    Long-term situation prediction plays a crucial role in the development of intelligent vehicles. A major challenge still to overcome is the prediction of complex downtown scenarios with multiple road users, e.g., pedestrians, bikes, and motor vehicles, interacting with each other. This contribution tackles this challenge by combining a Bayesian filtering technique for environment representation, and machine learning as long-term predictor. More specifically, a dynamic occupancy grid map is utilized as input to a deep convolutional neural network. This yields the advantage of using spatially distributed velocity estimates from a single time step for prediction, rather than a raw data sequence, alleviating common problems dealing with input time series of multiple sensors. Furthermore, convolutional neural networks have the inherent characteristic of using context information, enabling the implicit modeling of road user interaction. Pixel-wise balancing is applied in the loss function counteracting the extreme imbalance between static and dynamic cells. One of the major advantages is the unsupervised learning character due to fully automatic label generation. The presented algorithm is trained and evaluated on multiple hours of recorded sensor data and compared to Monte-Carlo simulation

    A method of classification for multisource data in remote sensing based on interval-valued probabilities

    Get PDF
    An axiomatic approach to intervalued (IV) probabilities is presented, where the IV probability is defined by a pair of set-theoretic functions which satisfy some pre-specified axioms. On the basis of this approach representation of statistical evidence and combination of multiple bodies of evidence are emphasized. Although IV probabilities provide an innovative means for the representation and combination of evidential information, they make the decision process rather complicated. It entails more intelligent strategies for making decisions. The development of decision rules over IV probabilities is discussed from the viewpoint of statistical pattern recognition. The proposed method, so called evidential reasoning method, is applied to the ground-cover classification of a multisource data set consisting of Multispectral Scanner (MSS) data, Synthetic Aperture Radar (SAR) data, and digital terrain data such as elevation, slope, and aspect. By treating the data sources separately, the method is able to capture both parametric and nonparametric information and to combine them. Then the method is applied to two separate cases of classifying multiband data obtained by a single sensor. In each case a set of multiple sources is obtained by dividing the dimensionally huge data into smaller and more manageable pieces based on the global statistical correlation information. By a divide-and-combine process, the method is able to utilize more features than the conventional maximum likelihood method

    Modeling Boundaries of Influence among Positional Uncertainty Fields

    Get PDF
    Within a CIS environment, the proper use of information requires the identification of the uncertainty associated with it. As such, there has been a substantial amount of research dedicated to describing and quantifying spatial data uncertainty. Recent advances in sensor technology and image analysis techniques are making image-derived geospatial data increasingly popular. Along with development in sensor and image analysis technologies have come departures from conventional point-by-point measurements. Current advancements support the transition from traditional point measures to novel techniques that allow the extraction of complex objects as single entities (e.g., road outlines, buildings). As the methods of data extraction advance, so too must the methods of estimating the uncertainty associated with the data. Not only will object uncertainties be modeled, but the connections between these uncertainties will also be estimated. The current methods for determining spatial accuracy for lines and areas typically involve defining a zone of uncertainty around the measured line, within which the actual line exists with some probability. Yet within the research community, the proper shape of this \u27uncertainty band\u27 is a topic with much dissent. Less contemplated is the manner in which such areas of uncertainty interact and influence one another. The development of positional error models, from the epsilon band and error band to the rigorous G-band, has focused on statistical models for estimating independent line features. Yet these models are not suited to model the interactions between uncertainty fields of adjacent features. At some point, these distributed areas of uncertainty around the features will intersect and overlap one another. In such instances, a feature\u27s uncertainty zone is defined not only by its measurement, but also by the uncertainty associated with neighboring features. It is therefore useful to understand and model the interactions between adjacent uncertainty fields. This thesis presents an analysis of estimation and modeling techniques of spatial uncertainty, focusing on the interactions among fields of positional uncertainty for image-derived linear features. Such interactions are assumed to occur between linear features derived from varying methods and sources, allowing the application of an independent error model. A synthetic uncertainty map is derived for a set of linear and aerial features, containing distributed fields of uncertainty for individual features. These uncertainty fields are shown to be advantageous for communication and user understanding, as well as being conducive to a variety of image processing techniques. Such image techniques can combine overlapping uncertainty fields to model the interaction between them. Deformable contour models are used to extract sets of continuous uncertainty boundaries for linear features, and are subsequently applied to extract a boundary of influence shared by two uncertainty fields. These methods are then applied to a complex scene of uncertainties, modeling the interactions of multiple objects within the scene. The resulting boundary uncertainty representations are unique from the previous independent error models which do not take neighboring influences into account. By modeling the boundary of interaction among the uncertainties of neighboring features, a more integrated approach to error modeling and analysis can be developed for complex spatial scenes and datasets

    Informational Paradigm, management of uncertainty and theoretical formalisms in the clustering framework: A review

    Get PDF
    Fifty years have gone by since the publication of the first paper on clustering based on fuzzy sets theory. In 1965, L.A. Zadeh had published “Fuzzy Sets” [335]. After only one year, the first effects of this seminal paper began to emerge, with the pioneering paper on clustering by Bellman, Kalaba, Zadeh [33], in which they proposed a prototypal of clustering algorithm based on the fuzzy sets theory

    An Information Systems Security Risk Assessment Model Under Dempster- Schafer Theory of Belief Functions

    Get PDF
    This is the author's final draft. The publisher's official version is available from:.This study develops an alternative methodology for the risk analysis of information systems security (ISS), an evidential reasoning approach under the Dempster-Shafer theory of belief functions. The approach has the following important dimensions. First, the evidential reasoning approach provides a rigorous, structured manner to incorporate relevant ISS risk factors, related counter measures and their interrelationships when estimating ISS risk. Secondly, the methodology employs the belief function definition of risk, that is, ISS risk is the plausibility of information system security failures. The proposed approach has other appealing features, such as facilitating cost-benefit analyses to help promote efficient ISS risk management. The paper both elaborates the theoretical concepts and provides operational guidance for implementing the method. The method is illustrated using a hypothetical example from the perspective of management and a real-world example from the perspective of external assurance providers. Sensitivity analyses are performed to evaluate the impact of important parameters on the model’s results
    • …
    corecore