176 research outputs found

    Inversion pour image texturée : déconvolution myope non supervisée, choix de modèles, déconvolution-segmentation

    Get PDF
    This thesis is addressing a series of inverse problems of major importance in the fieldof image processing (image segmentation, model choice, parameter estimation, deconvolution)in the context of textured images. In all of the aforementioned problems theobservations are indirect, i.e., the textured images are affected by a blur and by noise. Thecontributions of this work belong to three main classes: modeling, methodological andalgorithmic. From the modeling standpoint, the contribution consists in the development of a newnon-Gaussian model for textures. The Fourier coefficients of the textured images are modeledby a Scale Mixture of Gaussians Random Field. The Power Spectral Density of thetexture has a parametric form, driven by a set of parameters that encode the texture characteristics.The methodological contribution is threefold and consists in solving three image processingproblems that have not been tackled so far in the context of indirect observationsof textured images. All the proposed methods are Bayesian and are based on the exploitingthe information encoded in the a posteriori law. The first method that is proposed is devotedto the myopic deconvolution of a textured image and the estimation of its parameters.The second method achieves joint model selection and model parameters estimation froman indirect observation of a textured image. Finally, the third method addresses the problemof joint deconvolution and segmentation of an image composed of several texturedregions, while estimating at the same time the parameters of each constituent texture.Last, but not least, the algorithmic contribution is represented by the development ofa new efficient version of the Metropolis Hastings algorithm, with a directional componentof the proposal function based on the”Newton direction” and the Fisher informationmatrix. This particular directional component allows for an efficient exploration of theparameter space and, consequently, increases the convergence speed of the algorithm.To summarize, this work presents a series of methods to solve three image processingproblems in the context of blurry and noisy textured images. Moreover, we present twoconnected contributions, one regarding the texture models andone meant to enhance theperformances of the samplers employed for all of the three methods.Ce travail est dédié à la résolution de plusieurs problèmes de grand intérêt en traitement d’images : segmentation, choix de modèle et estimation de paramètres, pour le cas spécifique d’images texturées indirectement observées (convoluées et bruitées). Dans ce contexte, les contributions de cette thèse portent sur trois plans différents : modéle, méthode et algorithmique.Du point de vue modélisation de la texture, un nouveaumodèle non-gaussien est proposé. Ce modèle est défini dans le domaine de Fourier et consiste en un mélange de Gaussiennes avec une Densité Spectrale de Puissance paramétrique.Du point de vueméthodologique, la contribution est triple –troisméthodes Bayésiennes pour résoudre de manière :–optimale–non-supervisée–des problèmes inverses en imagerie dans le contexte d’images texturées ndirectement observées, problèmes pas abordés dans la littérature jusqu’à présent.Plus spécifiquement,1. la première méthode réalise la déconvolution myope non-supervisée et l’estimation des paramètres de la texture,2. la deuxième méthode est dédiée à la déconvolution non-supervisée, le choix de modèle et l’estimation des paramètres de la texture et, finalement,3. la troisième méthode déconvolue et segmente une image composée de plusieurs régions texturées, en estimant au même temps les hyperparamètres (niveau du signal et niveau du bruit) et les paramètres de chaque texture.La contribution sur le plan algorithmique est représentée par une nouvelle version rapide de l’algorithme Metropolis-Hastings. Cet algorithme est basé sur une loi de proposition directionnelle contenant le terme de la ”direction de Newton”. Ce terme permet une exploration rapide et efficace de l’espace des paramètres et, de ce fait, accélère la convergence

    Hierarchical Multiple Markov Chain Model for Unsupervised Texture Segmentation

    Full text link

    A goal-driven unsupervised image segmentation method combining graph-based processing and Markov random fields

    Get PDF
    Image segmentation is the process of partitioning a digital image into a set of homogeneous regions (according to some homogeneity criterion) to facilitate a subsequent higher-level analysis. In this context, the present paper proposes an unsupervised and graph-based method of image segmentation, which is driven by an application goal, namely, the generation of image segments associated with a user-defined and application-specific goal. A graph, together with a random grid of source elements, is defined on top of the input image. From each source satisfying a goal-driven predicate, called seed, a propagation algorithm assigns a cost to each pixel on the basis of similarity and topological connectivity, measuring the degree of association with the reference seed. Then, the set of most significant regions is automatically extracted and used to estimate a statistical model for each region. Finally, the segmentation problem is expressed in a Bayesian framework in terms of probabilistic Markov random field (MRF) graphical modeling. An ad hoc energy function is defined based on parametric models, a seed-specific spatial feature, a background-specific potential, and local-contextual information. This energy function is minimized through graph cuts and, more specifically, the alpha-beta swap algorithm, yielding the final goal-driven segmentation based on the maximum a posteriori (MAP) decision rule. The proposed method does not require deep a priori knowledge (e.g., labelled datasets), as it only requires the choice of a goal-driven predicate and a suited parametric model for the data. In the experimental validation with both magnetic resonance (MR) and synthetic aperture radar (SAR) images, the method demonstrates robustness, versatility, and applicability to different domains, thus allowing for further analyses guided by the generated product

    A markovian approach to unsupervised change detection with multiresolution and multimodality SAR data

    Get PDF
    In the framework of synthetic aperture radar (SAR) systems, current satellite missions make it possible to acquire images at very high and multiple spatial resolutions with short revisit times. This scenario conveys a remarkable potential in applications to, for instance, environmental monitoring and natural disaster recovery. In this context, data fusion and change detection methodologies play major roles. This paper proposes an unsupervised change detection algorithmfor the challenging case of multimodal SAR data collected by sensors operating atmultiple spatial resolutions. The method is based on Markovian probabilistic graphical models, graph cuts, linear mixtures, generalized Gaussian distributions, Gram-Charlier approximations, maximum likelihood and minimum mean squared error estimation. It benefits from the SAR images acquired at multiple spatial resolutions and with possibly different modalities on the considered acquisition times to generate an output change map at the finest observed resolution. This is accomplished by modeling the statistics of the data at the various spatial scales through appropriate generalized Gaussian distributions and by iteratively estimating a set of virtual images that are defined on the pixel grid at the finest resolution and would be collected if all the sensors could work at that resolution. A Markov random field framework is adopted to address the detection problem by defining an appropriate multimodal energy function that is minimized using graph cuts

    Hierarchical Multiple Markov Chain Model for Unsupervised Texture Segmentation

    Get PDF
    International audienceIn this work, we present a novel multiscale texture model, and a related algorithm for the unsupervised segmentation of color images. Elementary textures are characterized by their spatial interactions with neighboring regions along selected directions. Such interactions are modeled in turn by means of a set of Markov chains, one for each direction, whose parameters are collected in a feature vector that synthetically describes the texture. Based on the feature vectors, the texture are then recursively merged, giving rise to larger and more complex textures, which appear at different scales of observation: accordingly, the model is named Hierarchical Multiple Markov Chain (H-MMC). The Texture Fragmentation and Reconstruction (TFR) algorithm, addresses the unsupervised segmen- tation problem based on the H-MMC model. The “fragmentation” step allows one to find the elementary textures of the model, while the “reconstruction” step defines the hierarchical image segmentation based on a probabilistic measure (texture score) which takes into account both region scale and inter-region interactions. The performance of the proposed method was assessed through the Prague segmentation benchmark, based on mosaics of real natural textures, and also tested on real-world natural and remote sensing images

    Synthetic Aperture Radar Image Segmentation with Quantum Annealing

    Full text link
    In image processing, image segmentation is the process of partitioning a digital image into multiple image segment. Among state-of-the-art methods, Markov Random Fields (MRF) can be used to model dependencies between pixels, and achieve a segmentation by minimizing an associated cost function. Currently, finding the optimal set of segments for a given image modeled as a MRF appears to be NP-hard. In this paper, we aim to take advantage of the exponential scalability of quantum computing to speed up the segmentation of Synthetic Aperture Radar images. For that purpose, we propose an hybrid quantum annealing classical optimization Expectation Maximization algorithm to obtain optimal sets of segments. After proposing suitable formulations, we discuss the performances and the scalability of our approach on the D-Wave quantum computer. We also propose a short study of optimal computation parameters to enlighten the limits and potential of the adiabatic quantum computation to solve large instances of combinatorial optimization problems.Comment: 13 pages, 6 figures, to be published in IET Radar, Sonar and Navigatio

    Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches

    Get PDF
    Imaging spectrometers measure electromagnetic energy scattered in their instantaneous field view in hundreds or thousands of spectral channels with higher spectral resolution than multispectral cameras. Imaging spectrometers are therefore often referred to as hyperspectral cameras (HSCs). Higher spectral resolution enables material identification via spectroscopic analysis, which facilitates countless applications that require identifying materials in scenarios unsuitable for classical spectroscopic analysis. Due to low spatial resolution of HSCs, microscopic material mixing, and multiple scattering, spectra measured by HSCs are mixtures of spectra of materials in a scene. Thus, accurate estimation requires unmixing. Pixels are assumed to be mixtures of a few materials, called endmembers. Unmixing involves estimating all or some of: the number of endmembers, their spectral signatures, and their abundances at each pixel. Unmixing is a challenging, ill-posed inverse problem because of model inaccuracies, observation noise, environmental conditions, endmember variability, and data set size. Researchers have devised and investigated many models searching for robust, stable, tractable, and accurate unmixing algorithms. This paper presents an overview of unmixing methods from the time of Keshava and Mustard's unmixing tutorial [1] to the present. Mixing models are first discussed. Signal-subspace, geometrical, statistical, sparsity-based, and spatial-contextual unmixing algorithms are described. Mathematical problems and potential solutions are described. Algorithm characteristics are illustrated experimentally.Comment: This work has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensin
    corecore