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a b s t r a c t 

Image segmentation is the process of partitioning a digital image into a set of homogeneous regions (ac- 

cording to some homogeneity criterion) to facilitate a subsequent higher-level analysis. In this context, 

the present paper proposes an unsupervised and graph-based method of image segmentation, which is 

driven by an application goal, namely, the generation of image segments associated with a user-defined 

and application-specific goal. A graph, together with a random grid of source elements, is defined on 

top of the input image. From each source satisfying a goal-driven predicate, called seed, a propagation 

algorithm assigns a cost to each pixel on the basis of similarity and topological connectivity, measuring 

the degree of association with the reference seed. Then, the set of most significant regions is automati- 

cally extracted and used to estimate a statistical model for each region. Finally, the segmentation prob- 

lem is expressed in a Bayesian framework in terms of probabilistic Markov random field (MRF) graphical 

modeling. An ad hoc energy function is defined based on parametric models, a seed-specific spatial fea- 

ture, a background-specific potential, and local-contextual information. This energy function is minimized 

through graph cuts and, more specifically, the alpha-beta swap algorithm, yielding the final goal-driven 

segmentation based on the maximum a posteriori (MAP) decision rule. The proposed method does not 

require deep a priori knowledge (e.g., labelled datasets), as it only requires the choice of a goal-driven 

predicate and a suited parametric model for the data. In the experimental validation with both magnetic 

resonance (MR) and synthetic aperture radar (SAR) images, the method demonstrates robustness, versa- 

tility, and applicability to different domains, thus allowing for further analyses guided by the generated 

products. 

© 2022 The Author(s). Published by Elsevier Ltd. 
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. Introduction 

The analysis and interpretation of digital images is consistently 

ided by their partition into homogeneous areas, which possibly 

orrespond to meaningful regions of interest (ROIs) in the scene. 

his partition process is called image segmentation. In particular, 

ccording to its classical definition [ 1 ], the segmentation result is 

he partition of an image into disjoint, non-empty, and connected 

ubregions, for which some predicate of homogeneity is satisfied. 

n addition, the same predicate of homogeneity must not be valid 

or the union of any such subregions. As a natural development 

f such a definition, the purpose of segmentation can often be ori- 

nted to the detection of image regions that are meaningful within 

 particular application domain. 
∗ Corresponding author. 
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In applicative domains such as the medical field [ 2 ], this funda- 

ental activity is often performed manually, resulting in time con- 

uming endeavors. Indeed, spurred by the recent growth in data 

vailability, automatic image segmentation techniques occupy an 

mportant time-saving role in the image processing domain [ 3 ]. 

State-of-the-art segmentation techniques can be divided into 

wo types of models, deformable and parametric. The methods in 

oth categories have many advantages in terms of usability, as they 

an be completely unsupervised or they may not require a large 

mount of data. 

Deformable models originate from [ 4 ] and [ 5 ] and are defined

y curves or surfaces that move under the influence of internal 

orces coming from within the model itself and external forces 

omputed from the image data. Later in the development, an en- 

emble of their geometrical features gave birth to models such as 

 6 ]. They are still commonly used in multiple domains, such as in 

he biomedical field [ 7 ] and in remote sensing [ 8 ]. 
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Conversely, when dealing with parametric models, the segmen- 

ation problem is often formulated in terms of a Bayesian prob- 

bilistic graphical model [ 9 ]. The Bayesian statistical framework 

llows for exploiting data and prior distributions [ 10 ], and aims 

t linking image segmentation with ROI detection and fostering 

eakly supervised or interactive approaches [ 11 ]. In such a con- 

ext, Markovian modeling is often adopted as a spatial regulariza- 

ion approach [ 12–14 ]. 

In addition to the aforementioned techniques, the availability of 

ide varieties of image datasets and the recent developments doc- 

mented in the deep learning literature have produced effective 

dvancements for semantic segmentation [ 15,16 ]. These advance- 

ents are actually different with respect to the image segmenta- 

ion addressed in this manuscript, because semantic segmentation 

ims to partition the image to obtain class labeling with the use of 

 training set. 

The proposed method combines the parametric framework with 

 graph-based formulation. Indeed, graph-based approaches have 

een widely used in the signal processing context [ 17 ]. For in- 

tance, images (and volumes) can be associated with weighted 

raphs via the one-to-one correspondence between the pixels (and 

oxels) and the nodes of the graphs. Relations and similarity dis- 

ances between pixels are generally expressed in terms of the 

inimum-length path between nodes. As an example, the method 

escribed in [ 18 ] starts from a set of points, called seeds, and it

ooks for maximally connected paths and assigns a cost to each 

ixel related to each seed. Such a procedure is equivalent to the 

uzzy connectivity computation proposed in [19] , which integrates 

ntensity similarity with topological connectedness. In [ 18 ], a graph 

ut is performed after the cost-computation phase to obtain the 

egmentation. One might prove that such a method can be for- 

ally described in terms of the image-foresting transform (IFT) ap- 

roach [ 20 ]. In [ 21 ], the IFT was shown to be equivalent to the

inimum-spanning forest (MSF) cuts constrained by seeds; hence, 

ome analogies between the graph-cut in [ 18 ] and other methods, 

.g., the threshold in the watershed hierarchy in [ 22 ], might be in-

estigated. 

A graph-based approach was also proposed in [ 23 ], where the 

FT transform was extended to support superpixel computations. 

owever, according to the work in [ 24 ], the generation of super- 

ixels is the result of an over-segmentation of the input image. 

s a consequence, the predicate of homogeneity is also satisfied 

y the union of subregions, in contrast with the image segmen- 

ation definition. Indeed, the detection of meaningful image parts 

equires a further merging step. 

In the present work, the definition of image segmentation is 

quipped with a goal-oriented component, which is included in 

he predicate of homogeneity that the desired segments are meant 

o satisfy. Three operational phases can be identified (see Fig. 1 ). 

hey combine the mapping of the images into a weighted graph 

ith the definition of a Bayesian probabilistic graphical framework. 

hase 1 refers to the cost-computation process and takes into con- 

ideration the numerical/homogeneity and topological/connectivity 

roperties of the nodes with respect to the chosen seeds. Such a 

tep is also responsible for defining the predicate of homogene- 

ty with the intent of integrating the application-specific and user- 

efined goal into the segmentation process. However, actual seg- 

entation is not performed at this step. Conversely, the set of the 

ost significant regions of interest is automatically identified on 

he basis of their homogeneity and geometric properties, so that 

 probabilistic model can be fitted on them. Then, in Phase 2, the 

arameters of the probabilistic model are estimated on the sam- 

les identified in Phase 1. The only a priori knowledge required 

n Phase 2 is related to the type of data under analysis, which af- 

ects the choice of the parametric model to be fitted on the data. 

inally, in Phase 3, a Markov random field (MRF) model [ 25,26 ] 
2 
s defined together with a suitable energy function, whose mini- 

ization yields the segmentation. A graph-cut algorithm is applied 

n this third phase. Thanks to the contextual information brought 

bout by Markovian modeling, no merge step is necessary as a 

ost-processing operation before generating the final product. 

The goal-oriented characteristic proposed here determines one 

f the novel contributions of the proposed approach. Indeed, the 

omogeneity predicate is conditioned by the application domain 

nd allows for splitting the image into ROIs and background (i.e., 

eject regions), rather than finding the complete image partition- 

ng. In addition, in standard graph-based approaches, the cost com- 

utation and the graph-cut are strictly linked, yielding the final re- 

ult. Conversely, the three phases proposed here separate the cost 

omputation used for finding ROI samples from the final MRF for- 

ulation associated with the graph cut by using an intermediate 

tatistical procedure. As a result, the presented graph-based ap- 

roach addresses numerical, syntactic, and contextual phases, thus 

apturing the topological, statistical, and goal-related properties of 

he input images. Hence, the first phase is data-driven, and ex- 

loits the informative content of the image; the second phase is 

oal-driven and discloses the information of the application do- 

ain in which the method is applied; and the third phase collects 

nd combines the information from the previous steps to obtain 

he final result. Furthermore, in the MRF formulation, two novel 

ontributions are included in the pixelwise term, which enclose 

he topological information and distinguish ROIs and background 

ccording to the goal-driven objective. 

In particular, two different versions of the method are pro- 

osed, which differ in the definition of the goal-oriented predi- 

ate and correspond to images with additive Gaussian noise (e.g., 

assive cameras and magnetic resonance imaging) and with multi- 

licative speckle (e.g., synthetic aperture radar, sonar systems, and 

ltrasound imaging). These two cases encompass a variety of sce- 

arios associated with data collected by both active coherent and 

assive imaging instruments. Among these scenarios, the experi- 

ental results achieved by the proposed method are analyzed in 

wo specific contexts, i.e., biomedical and remote sensing imagery. 

n particular, applications for low-intensity field magnetic reso- 

ance (MR) images of wrist bones from the dataset in [ 2 ] and syn-

hetic aperture radar (SAR) images acquired by both the TerraSAR- 

 and COSMO-SkyMed satellite missions are described. The pro- 

osed method is proven to be effective in such frameworks, re- 

ardless of the possible issues that typically affect the considered 

ypes of image data, e.g., MRI artifacts [ 27 ] and speckle in the radar

magery [ 28 ]. In addition, it is remarkable that recent works in 

hese contexts prove the interest towards methods that can help 

hen the amount of annotated data is insufficient [ 29,30 ]. 

In summary, the novelties of the present work are: (i) the def- 

nition of a method that combines graph-based processing and 

arkov random fields to integrate local and global properties of 

he image based on a specific a priori task to be fulfilled; (ii) an 

xperimental analysis showing the effectiveness and versatility of 

he proposed method, whose applicability has been examined with 

espect to two different domains and in comparison with multiple 

tate-of-the-art solutions; and (iii) the development of an unsuper- 

ised formulation not requiring any labeled dataset. 

The paper is organized as follows. Section 2 gives an overview 

f the proposed methodological framework and introduces the 

ovel definition of goal-driven image segmentation. In particu- 

ar, Section 2.3 describes the graph construction procedure, while 

ection 2.4 describes the included parametric models, together 

ith the parameter estimation strategies, and Section 2.5 presents 

oth the Markovian framework and the adopted energy minimiza- 

ion strategy. Finally, Section 3 reports the experimental analy- 

is, with details about the performances achieved by the pro- 

osed method in two different application domains and compar- 
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Fig. 1. Method flow chart. 
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sons with state-of-the-art solutions. In addition, for the sake of 

larity and ease of reading, appendix Appendix A contains a ta- 

le summarizing the entire set of notations adopted within the 

anuscript. 

. The proposed method 

.1. The goal-driven approach to segmentation 

The present section is devoted to the definition of the goal- 

riven formulation of image segmentation that is adopted here. 

et I ⊂ Z 

2 be the pixel lattice, let X = { x i } i ∈ I be the collection of

he observed pixel intensities, and let the image be formally repre- 

ented as X = I × X . With this formalization, each individual pixel 

s conveniently associated with the pair (i, x i ) so that both the spa-

ial location i ∈ I within the imaged area and the intensity x i are 

pecified. 

According to the classical definition [ 1 ], the region segmenta- 

ion of an image X into disjoint non-empty subregions X 1 , . . . , X M 

as to satisfy the following requirements: 

i) 

M ⋃ 

j=1 

X j = X; 

ii) X j is connected for all j = 1 , . . . , M; 

ii) P (X j ) = true for all j = 1 , . . . , M; 

v) P (X j ∪ X k ) = false for all j � = k , 

here P is a predicate of homogeneity. To focus the aforemen- 

ioned classical definition with particular emphasis on the goal to 

e achieved, one can consider a goal-driven definition of image 

egmentation, which is aimed at extracting some ROIs that are in- 

eresting for the application itself. Here, instead of searching for an 

mage partition, the goal is to split the image X into a finite collec- 

ion of disjoint ROIs X 1 , . . . , X M 

and a background (also denoted as

eject-region) B = 

( 

M ⋃ 

j=1 

X j 

) c 

, where (·) c denotes the complemen- 

ary set. Therefore, each ROI has to satisfy the following require- 

ents: 

i) 

M ⋃ 

j=1 

X j = X \ B ; 
ii) X j is connected for all j = 1 , . . . , M; 

ii) P (X j ) = true for all j = 1 , . . . , M; 

v) P (X j ∪ X k ) = false for all j � = k ; 
v) P (B ) = false , R

3 
here P is again a goal-driven predicate of homogeneity, while the 

ackground B does not satisfy this homogeneity predicate (when 

 is not connected, all the partitions do not satisfy the predicate). 

ere, the goal-driven predicate P encompasses the information re- 

ated to the topological, morphological, and statistical properties of 

ata, and depends on the user-defined goal to be achieved. 

The predicate is defined by the user and reflects their exper- 

ise (e.g., a medical doctor, a photointerpreter, an ultrasound tech- 

ician, etc.). Indeed, as in actual practice, it is important to de- 

ne what is the aim of the segmentation procedure. The pre- 

ented method aims to emulate such an approach by including 

ome prior-knowledge expressed in terms of the application goal 

o be achieved. Such a goal is formally expressed in mathematical 

erms and is deployed by coding the corresponding control func- 

ions. 

Within the goal-driven definition of image segmentation, the 

unction P drives the processing, as described in Section 2.2 . In par- 

icular, the goal is defined as a collection of properties that are de- 

ired for the ROIs and not for the background. These properties are 

etermined by the application for which the segmentation task is 

ddressed. Among the possible options, in this paper, two proper- 

ies are always deployed. They refer to the intensity and the distri- 

ution of the pixels within each ROI. Indeed, the former is related 

o some visual features of the regions to detect (e.g., bright or dark 

arget structures), while the latter is aimed at properly modeling 

he distribution of the data within the regions taking into account 

he type of data under analysis (e.g., modeling the type of noise af- 

ecting the available acquisition). In addition, other properties, in- 

luding positional, topological, or geometric properties, can be in- 

egrated in the proposed framework as well. In the following, the 

mage is modeled as a realization of a two-dimensional stochastic 

rocess. 

To formally define the aforementioned predicate P , let h g and 

 s be two predicates that are used to represent the desired pixel- 

ntensity and statistical properties. Namely, denoting as 2 X the 

ower set of X (i.e., the collection of all subsets of X), they are 

oolean-valued functions h g , h s : 2 
X → { true , false } . 

Specifically, let A ⊆ X; the predicate h g is defined as: 

 g ( A ) = true ⇐⇒ E { x i } ∈ J m 

∧ Var { x i } ∈ J v ∀ ( i, x i ) ∈ A, 

(1) 

here J m 

and J v are two intervals that specify the values of the 

ean and the variance that the user deems feasible for their target 

OIs, and where ∧ indicates a logical “and.”
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Then, the predicate h s addresses the statistical properties of the 

OIs. Indeed, h s holds true on a set A ⊆ X if the intensities x i of

he pixels in A , when conditioned to their membership in the same 

egion, are independent and identically distributed (i.i.d.) and their 

robability density function (pdf) belongs to a given parametric pdf 

amily f (e.g., Gaussian, Gamma). 

In addition, other properties that may be considered can be 

imilarly taken into account. For instance, a positional property can 

e considered if the application requires that the target regions are 

ocated roughly in a certain area of the image (e.g., in the center 

f the image). For this purpose, let h p be a further predicate such 

hat: 

 p (A ) = true ⇐⇒ i ∈ Ī , ∀ (i, x i ) ∈ A, (2)

here Ī ⊂ I indicates the area of the imaged scene where the target 

OIs are supposed to be located (e.g., the central area of the image, 

ithout a border of a predefined size). 

Now, let H be the finite collection of predicates involved: 

 = { h g , h s , h other } , (3) 

ith h other collectively indicating possible optional predicates (e.g., 

 p ) encoding further desired properties specified by the user. Then, 

he predicate P : 2 X → { true , false } is defined as: 

 (A ) = 

∧ 

h ∈ H 
h (A ) . (4) 

In the proposed approach, the predicate and its components 

re used to guide the behavior of the presented segmentation 

ethod. Yet, it is not necessarily ensured that the output segmen- 

ation result will satisfy all the related Boolean conditions. Never- 

heless, P drives the computation, i.e., it is used to encode the goal 

ithin the processing steps, and it is applied for specific opera- 

ional needs. In particular, due to the seed-growing nature of the 

roposed approach, the predicate will be conveniently applied to 

ither the seed points or the ROI samples. 

.2. Overview of the proposed approach 

The proposed segmentation method 

1 is aimed at extracting, in 

n unsupervised fashion, elements of interest from 2-D images, 

aking into consideration the user-defined goal and the application 

omain which it is applied to. 

The resulting output would be a label image L = { l i } , i ∈ I , de-

ned over the same (pixel) lattice, whose pixels are associated 

ith labels identifying a particular element, i.e. l i ∈ �, with � = 

 0 , 1 , 2 , . . . , M} and M being the number of different elements, i.e.,

f the different ROIs, and the label l i = 0 standing for a background

ixel. 

The rationale of the method is to combine weighted graphs, 

arametric density modeling, and Markov random fields to ben- 

fit from both the topological and the statistical properties of the 

nput image in the generation of an output map made of the re- 

ions of interest to the application. The flowchart is presented in 

ig. 1 and highlights three different phases. It is worth noting that 

he proposed method acts driven by the predicate P defined in the 

revious section. Indeed, the predicate, and thus the goal-driven 

hilosophy of the segmentation method, come into play in differ- 

nt parts of the processing pipeline summarized in Fig. 1 . 

In the first phase, an initial set of seeds is placed within the 

ixel lattice I. More in details, a random grid is defined over the 

ixel lattice, whose vertices are randomly shifted in the vertical 

nd horizontal directions according to a uniform distribution (note 

hat the maximum amount of shift is set equal to half the size of 
1 The Python code of the proposed method along with a demo test is available at 

ttps://github.com/DavidSolarna/Goal- Driven- Segmentation . 

f

U

4 
he grid in each direction). The resulting vertices correspond to the 

upernumerary initial set of seeds S 0 . 

Following the goal-driven philosophy of the method, the seeds 

n such an initial set are filtered according to the predicate. Specif- 

cally, the predicates of H referring to the seed-selection phase are 

erified for each seed s ∈ S 0 , and s is retained if and only if they

re true . In particular, the predicate h g prevents the selection of 

n isolated noisy pixel as one of the seed points; it is applied to 
˜ 
 s , with s being a candidate seed point and 

˜ X s being a small re- 

ion around s identified via a windowing operator. The choice of 

he window size does not critically affect the method. Neverthe- 

ess, for the experiments in this paper, it is set equal to 5 × 5 . In

ontrast, h p may force the seeds to be placed in a specific region 

f interest (e.g., to discard seeds randomly placed on the border). 

n the following, the subset S ⊂ S 0 of the original set of seeds that 

re selected according to P is denoted as S = { s n } , n = 1 , 2 , . . . , N. 

The spacing of the grid can be considered a hyperparameter de- 

ending on the size of the object of interest. On the one hand, 

 small spacing ensures that a seed is placed in each object but 

ields many computations. On the other hand, a large spacing 

ay lead to neglecting some objects within the region. Since the 

eed selection process deletes redundant seeds, small spacings are 

enerally preferable to large spacings. In the experimental phase, 

ased on the size of the ROIs, such a hyperparameter was assumed 

o be the 10% of the image width. Small changes in the spacing did 

ot change the final output from a visual point of view. 

Then, the propagation algorithm in [ 31 ] is used to compute a 

et of cost functions F = { F n } , with n identifying each of the seeds

 n ∈ S . Each cost function is defined over the entire image such 

hat F n : I → R (Phase 1). In contrast to the graph-based methods 

entioned in the introduction [ 18,20–23 ], no graph-cut is actu- 

lly performed at this level. Hence, no segmentation is obtained 

n the first phase. For additional details, the reader is referred to 

ection 2.3 . 

On the contrary, a set of samples X n ⊂ X , defining a region as- 

ociated with the particular seed s n , is extracted from the image 

ased on each cost function F n , n = 1 , 2 , . . . , N. They can be consid-

red fuzzy syntactic primitives, whose properties depend on the 

pplication domain and that influence the homogeneity predicate. 

he complementary region (i.e. the set of image pixels not as- 

igned to any set of samples X n ) is defined as the initial back- 

round B 0 = X \ {∪ 

N 
n =1 

X n } . Moreover, according to the graph-based 

rocessing, it is not forbidden for the same pixel to be assigned to 

ultiple sets (e.g., when two random seeds are close and inside 

he same region). Nevertheless, the Markovian framework charac- 

erizing the further processing steps is aimed at taking care of such 

 situation. 

Finally, a set of parametric models, each associated with each 

eed s n ∈ S, is estimated using the samples collected in the regions 

 n (Phase 2), as described in detail in Section 2.4 . 

The segmentation problem is then formulated in a Bayesian 

robabilistic graphical framework by defining a Markov random 

eld (MRF) model. Accordingly, the maximum a posteriori (MAP) 

ecision rule is formulated as the minimization of a suitable en- 

rgy function [ 26 ]. The energy function is composed of two terms, 

 unary term D i (·) and a pairwise term V (·) (see Eq. (5) ). The

nary pixelwise contribution is related to: i) the parametric model 

ssociated with the set of samples corresponding to each seed; ii) 

 background-specific potential associated with the set of samples 

n the initial background B 0 ; and iii) a spatial feature related to the 

istance, in the image lattice, between the location of a given pixel 

nd the location of each seed. Conversely, the pairwise contribu- 

ion brings about local-contextual information. Indeed, the energy 

unction is defined as: 

(L | X ) = 

∑ 

i ∈ I 
D i (x i | l i ) + β

∑ 

i ∼ j 

V (l i , l j ) , (5) 

https://github.com/DavidSolarna/Goal-Driven-Segmentation
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Fig. 2. Schematic representation of the flooding process starting from the seed 

node (blue circle) and using a 4-connected neighborhood model (for interpretation 

of the references to color in this figure legend, the reader is referred to the web 

version of this article). 
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here i ∼ j denotes pixels i and j being neighbors according to a 

rst-order neighborhood system, i, j ∈ I (Phase 3). 

These final steps of the processing pipeline are again driven 

y the application goal through the predicate h s . It is directly re- 

ated to the chosen model (i.e., the pdf density function used to 

odel the set of samples X n ⊂ X extracted via the graph-based 

omputation). In contrast to the selection of the seeds, the choice 

f the pdf does not directly imply the elimination of some candi- 

ate ROIs in the proposed method. Nevertheless, the samples that 

oorly fit the chosen model will provide a negligible contribution 

o the energy function of the Markovian formulation of the prob- 

em, influencing the removal of the candidate ROI from the final 

ap. 

Because of the Bayesian formulation of the problem, it is pos- 

ible that the final label map L does not contain all the labels 

rom the seeds list. It is worth recalling that each seed is asso- 

iated with a particular label from the preliminary set of labels 
′ = { 0 , 1 , 2 , . . . , N} . Indeed, this filtering behavior is actually ben-

ficial, as it allows the proposed method to autonomously remove, 

n the output result, the contributions of spurious seeds (i.e. those 

eeds that do not correspond to well-defined regions). Additionally, 

uch a Bayesian formulation also solves possible conflicts, such as 

he cases where multiple seeds are placed inside the same region. 

he minimization process assigns a unique label to such a region. 

n other words, it allows the method to automatically determine 

he number of most relevant regions, whereas N plays the role of 

n upper bound on such number. For additional details on the en- 

rgy function and the energy minimization problem the reader is 

eferred to Section 2.5 . 

To conclude, according to the novel definition of goal-driven 

egmentation in Section 2.2 , the resulting final map L is composed 

f the extracted ROIs X j ( j = 1 , 2 , . . . , M) and the background B . 

As a final remark, since the method is mainly composed of 

hree steps (i.e., the graph-based processing, the estimation of 

he parametric models, and the Markovian modelling), the over- 

ll computational complexity can be expressed as the sequential 

ombination of the complexities of the three parts. Anticipating 

hat the input image is represented with a graph G (I, E) , with

being the vertices and E being the edges (for the details re- 

er to Section 2.3 ), the computational complexity of the first step 

s O (n _ seeds × I) , with the flood filling applied for each seed and

ach operation involving the need to traverse the whole graph 

nce. Then, the computational complexity of the second process- 

ng step is O (I) . Indeed, the estimation of the model parameters 

equires the computation of the moments of the image (refer to 

ection 2.4 ). Such moments are computed in parallel while visit- 

ng all the nodes in the graph. Finally, the final step is related to 

he minimization of the Markovian energy function via graph-cuts 

nd the alpha-beta swap technique. As reported in [ 32 ], in case 

f binary classification problems, the computational complexity of 

his step is O (EI 2 ) . In the multiclass case, a set of binary classifica-

ion problems are solved sequentially until convergence is reached. 

oreover, [ 33 ] shows that the complexity scale linearly with the 

umber of labels. 

.3. Graph-based cost computation 

The graph-based approach proposed here is an extension of the 

ethod described in [ 31 ] and is based on the computation of the

et of cost functions F = { F n } , each associated with a specific seed

 n ∈ S . 

For the sake of simplicity and ease of notation, this section de- 

cribes the cost computation process focusing on a specific seed, 

ssuming that the extension to the case of multiple seeds is 

traightforward and only requires replicating the process for each 

eed. Therefore, only the index n will be reported, without spec- 
5 
fying n = 1 , 2 , . . . , N. In addition, the input image is assumed to

e a scalar value, while the extension to vector valued images is 

traightforward and only requires a minor mathematical adjust- 

ent. 

Let the image X be mapped into a non-empty, fully-connected, 

ndirected and vertex-weighted graph G = ( I, E ) , where I is the set 

f vertices representing the pixels in the image (as already spec- 

fied in Section 2.2 ) and E ⊆ { (i, j) ∈ I × I | i � = j} is the set of

dges. The goal of this section is thus to describe the computation 

f F n (i ) , ∀ i ∈ I, given the seed s n ∈ S. 

For each pair of nodes i and j, let w be a difference function 

uch that: 

 : I × I → R , w (i, j) = | x i − x j | , (6)

he function in Eq. (6) represents the difference between each pair 

f vertices i and j. The higher the value of w (i, j) , the more differ-

nt the two nodes are in terms of gray level. 

By fixing a specific node s n in the graph (i.e., the seed), each 

oint in the image, and thus each node in the graph, can be asso- 

iated with a value representing its dissimilarity with respect to s n . 

ndeed, it is possible to compute the difference function with re- 

pect to the seed according to w n (i ) = w (i, s n ) ∀ i ∈ I. The proposed

ost computation process is based on the computation of w n (i ) 

or each node in the graph and according to a flooding scheme 

 18 ]. 

At the beginning, all of the nodes are in the unvisited status 

xcept for the seed, whose cost is zero. A set T , initially contain-

ng only the seed node, is defined to keep track of all the vis- 

ted nodes. Then, the flooding process is started from the seed 

nd toward the connected neighbors (a 4-connected neighborhood 

odel is chosen). Among the neighboring nodes, the one provid- 

ng the minimum value of w n is chosen and added to T . Conse-

uently, the value of the cost function associated with the consid- 

red node is computed. Then, the flooding process is iterated until 

he set T of visited nodes coincides with the entire set of nodes I

see Fig. 2 ). 
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Fig. 3. Assignment of the cost values to the nodes in the graph. The figures from left to right and from top to bottom show the assignment of such costs following the order 

sorting of the pixels. 
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Concerning the computation of the cost function, at each iter- 

tion two nodes are taken into consideration: i) the node i being 

onsidered; and ii) its father node i −, which is the node that, ac-

ording to the flooding scheme, led to i . In particular, if the weight

 n (i ) of i with respect to the seed is larger than the cost of i −,

hen the cost associated with i is set equal to w n (i ) ; otherwise,

he cost value of w n (i −) is inherited (see Eq. (7) ). In this way, the

ost function never decreases with the flooding scheme: 

 n (i ) = 

{
w n (i ) if w n (i ) > F n (i −) , 
F n (i −) if w n (i ) ≤ F n (i −) . 

(7) 

Leveraging such a propagation algorithm, a cost value is as- 

igned to all nodes and the process defines an optimal path from 

he seed to each vertex. To better understand the process, Fig. 3 

hows the assignment of these cost values to all the nodes of the 

raph built on top of a magnetic resonance image. Looking at the 

mages from left to right and from top to bottom, it is possible 

o appreciate the pixel sorting order during the process of cost 

alue assignment, starting from a given seed point. As an example, 

 limited number of steps of the iterative process are depicted. At 

ach step, the nodes already assigned with a cost value are painted 

lack; moving away from the seed, the evaluated cost values are 

lways increasing. Such a procedure yields the set of region sam- 

les X n associated with the n th seed. In particular, the cost func- 

ion is thresholded according to the method in [ 31 ]. The set of pix-

ls associated with costs lower than such a threshold are assigned 

o the set X n . The resulting region is not disjoint due to the non-

ecreasing formulation of the cost function F n . 

As mentioned at the beginning of this section, repeating the 

rocess for each seed s n yields the set of region samples { X n } , n ∈
 1 , 2 , . . . , N} . Indeed, due to the definition of the graph and the cost

unction in Eq. (7) , such regions are characterized by homogeneity 

nd low granularity. Consistent with the discussion in Section 2.2 , 

he set of regions { X n } , n ∈ { 1 , 2 , . . . , N} obtained from the present

hase of the method generally does not cover the entire image, i.e., 

t leaves out the initial background defined as B . 
0 

6 
.4. Parametric model estimation 

This section presents the different model estimation strategies 

dopted in the proposed method for the observations in each set of 

amples X n , n ∈ { 1 , 2 , . . . , N} . Here, the focus is on the radiometric

nformation contained in X , and not on the entire image X conve- 

iently defined as observations and pixel locations. Therefore, this 

ection will refer to the set X n , which is the collection of the pixel

ntensities contained in the region X n . 

Similar to the format adopted in Section 2.3 , the estimation 

trategies are described here without considering the various re- 

ions X n ⊂ X , but taking into consideration a generic random vari- 

ble Z and a set Z = { z i } q i =1 
of independent and identically dis- 

ributed (i.i.d.) samples drawn from Z. In the proposed method, 

he approach described here is separately applied to each region 

btained in the previous phase from the n th seed by using Z =
 n , n ∈ { 1 , 2 , . . . , N} . 

Due to the possibility of applying the proposed method in dif- 

erent domains, depending on the user-defined goal, different para- 

etric models may be embodied in the technique based on prior 

nformation on the characteristics of the considered image data. 

n general, any parametric model for which a corresponding pa- 

ameter estimation approach is available can be integrated in the 

roposed approach. In the following, two specific models are con- 

idered that encompass a significant number of image processing 

pplications. 

First, leveraging the fact that the proposed methodology is 

imed at isolating homogeneous and low-granularity regions, the 

ase of a Gaussian model was taken into consideration. Such a 

odel is known to be well suited for modeling, as examples, im- 

ges collected by passive cameras, for which additive Gaussian 

oise is usually an appropriate model, as well as MRI instru- 

ents [ 34,35 ]. In this case, the estimation of the underlying pa- 

ameters is addressed, in a maximum-likelihood fashion, via the 

ample mean and the sample variance. 

Second, the case of images affected by a multiplicative noise- 

ike component is addressed. This is a situation that intrinsically 
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ccurs when active radar or sonar instruments are used because 

f the speckle phenomenon. A variety of parametric models have 

een explored in the literature, including Gamma, Weibull, log- 

ormal, K, symmetric α-stable, G 0 , generalized Gaussian-Rayleigh, 

isher, and generalized Gamma distributions [ 36,37 ]. 

It is worth noting that the models characterized by more than 

wo parameters (Fisher, K, generalized Gamma, etc.) have been 

ostly designed for modeling non-homogeneous regions, where 

exture or granularity phenomena are highly visible. Here, the 

amma distribution has been considered, leveraging again the ho- 

ogeneity and low granularity of the regions identified by the pre- 

ious phase of the proposed methodology. Such a distribution is a 

ell-known model for the statistics of homogeneous non-textured 

egions of image data affected by multiplicative speckle, such as 

n radar imagery [ 28 ], sonar systems [ 38 ], and ultrasound imagery

 39 ], and its PDF is supported on (0 , + ∞ ) : 

p Z (z) = 

1 

�(α) 

(
α

u 

)α

z α−1 exp 

(
−αz 

u 

)
, (8) 

here u is the mean of the distribution and α is its shape param- 

ter ( α, u > 0 ). 

Parameter estimation is performed via the method of log- 

umulants (MoLC) [ 40,41 ], which is a technique developed in the 

AR literature for distributions of positive-valued data character- 

zed by multiplicative components (such as the aforementioned 

peckle) [ 42–44 ]. MoLC estimation follows a principle similar to 

he well-known method of moments (MoM), which makes use of 

he Laplace transform (in terms of moment generating function) 

o define relations between the moments and the parameters of 

he underlying distribution. In the case of MoLC, the Mellin trans- 

orm is used to relate the parameters of the distribution to its log- 

rithmic cumulants [ 43 ]. In the application to several of the afore- 

entioned distributions, MoLC has led to advantages over MoM in 

erms of lower estimation variance and over maximum likelihood 

n terms of easier analytical or numerical solution [ 40 ]. 

In particular, if Z is a positive-valued random variable, the first- 

nd second-order log-cumulants κ1 and κ2 can be proven equiva- 

ent to the logarithmic mean and variance of the distribution of Z: 

κ1 = E { ln Z} , 
κ2 = E { [ ln Z − κ1 ] 

2 } . (9) 

Leveraging the use of the Mellin transforms and the definition 

f the Gamma distribution (see Eq. (8) ), these logarithmic cumu- 

ants can be related to their parameters [ u, α] through the follow- 

ng MoLC equations [ 45 ]: 

κ1 = �(0 , α) − ln u − ln α, 

κ2 = �(1 , α) , 
(10) 

here �(0 , α) is the digamma function (i.e., the logarithmic 

erivative of the Gamma function) and �(1 , ·) is the first order 

olygamma function (i.e., the derivative of �(0 , α) ) [ 46 ]. 

Given the i.i.d. samples in Z , the sample estimates of κ1 and κ2 

an be obtained as: 

ˆ κ1 = 

1 
q 

q ∑ 

i =1 

ln z i , 

ˆ κ2 = 

1 
q 

q ∑ 

i =1 

[ ln z i − ˆ κ1 ] 
2 . 

(11) 

Then, substituting the sample estimates into Eq. (10) , it is pos- 

ible to write the MoLC equations for the Gamma distribution in- 

orporating the MoLC estimated parameters ˆ u and ˆ α to ˆ κ1 and ˆ κ2 : 

ˆ κ1 = �(0 , ˆ α) − ln 

ˆ u − ln ˆ α, 

ˆ κ2 = �(1 , ˆ α) , 
(12) 
s

7 
The parameter ˆ α is first obtained by numerically solving the 

econd equation via the Newton-Raphson method [ 47 ], and then 

ˆ  is retrieved from the first equation by substituting ˆ α. The former 

olution step is numerically simple thanks to the strict monotonic- 

ty of �(1 , ·) . 

.5. Energy minimization through graph cut 

In the proposed method, the energy function in Eq. (5) is com- 

osed of a unary term and a pairwise term. The unary pixel- 

ise term D i (x i | l i ) is defined differently in case it refers to the

eed-specific labels (i.e., l i = 1 , . . . , N ) or to the background B 0 (i.e., 

 i = 0 ). In the former case, it is related to the seed-specific para-

etric models and to a term measuring the distance between the 

onsidered pixel x i and the seeds. Conversely, in the latter case, 

t is related to a piecewise constant background-specific potential. 

he pairwise potential is defined as the Potts model [ 26 ]. Indeed, 

he two terms are as follows: 

D i (x | n ) = 

{ 

d i (x | n ) n = 1 , 2 , . . . , N 

c 1 n = 0 , i ∈ B 0 

c 2 n = 0 , i ∈ I − B 0 

V (n, m ) = 1 − δ(n, m ) , 

(13) 

here δ(v , w ) represents the Kronecker delta, whose value is 1 if 

nd only if v equals w , and zero otherwise, d i (x | n ) is the seed-

pecific potential, and c 1 and c 2 are the values of the piecewise 

onstant background-specific potential. 

Concerning the seed-specific potential, let ˆ p (·| n ) be the PDF es- 

imate obtained as described in the previous section from the set 

f samples X n , n ∈ { 1 , 2 , . . . , N} and according to either a Gaussian

r a Gamma model. Then, the potential can be written as: 

 i (x | n ) = − ln 

ˆ p (x | n ) − γ [ 
( i, s n ) ] 
−1 

, (14) 

here 
(a, b) is the Euclidean distance between pixel locations a 

nd b in the image plane ( a, b ∈ I), and γ is a positive coefficient

alancing the two contributions. 

Concerning the piecewise-constant background potential, the 

wo values c 1 and c 2 are automatically chosen according to the pth 

nd (1 − p) th percentiles of the distribution of the seed-specific 

otentials d i (x | n ) . The rationale is to balance the background- 

pecific and the seed-specific potentials to favor the goal-driven 

esult while also not censoring any possible outcome in the out- 

ut label map Y . Both the parameters γ ( Eq. (14) ) and β ( Eq. (5) )

re determined via a trial-and-error procedure. 

In particular, the term 
(i, s l i ) represents the spatial distance 

etween the location of the pixel i ∈ I in the image lattice and the 

ocation of the seed s l i that corresponds to its label l i . While the

rst component of the unary potential is traditionally related to 

he likelihood of the data, the integration of the second contribu- 

ion in the unary term is inherited from a family of segmentation 

ethods that explicitly integrate a spatial feature in the formula- 

ion of the unary term [ 48 ]. To the best of the authors’ knowledge,

he integration between the MRF model and the seed location is 

roposed for the first time in the present manuscript. This integra- 

ion is also responsible for linking the intermediate statistical pro- 

edure with the initial topological cost computation and the final 

ut yielding the results. 

The minimization of a Markovian energy function, such as the 

ne defined in Eq. (5) , has been dealt with using several techniques 

n the last few decades. A major difference between such tech- 

iques resides in the trade-off between computational complexity 

nd optimality of the solution, with deterministic methods, such 

s iterated conditional mode (ICM) [ 49 ], requiring a short conver- 

ence time but reaching only local minima, and stochastic meth- 

ds, such as simulated annealing [ 25 ], providing more effective re- 

ults but requiring a very long time to converge to global minima. 
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Fig. 4. Carpal bones in MR: 4a original data; 4b ground truth [ 2 ]; 4c results ob- 

tained by the proposed method; 4d results obtained by the baseline graph-based 

method in [ 31 ]; 4f results obtained by the classical formulation of MRF models; 

4e results obtained by the method in [ 51 ]; 4g results obtained by the method in 

[ 23 ] (for interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article). 
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Here, the graph cut approach [ 33 ] is used, which is based on

he reformulation of the energy minimization problem as a max- 

ow/min-cut problem over a suitable graph. In the case of binary 

abeling, graph cut approaches are also proven to converge in poly- 

omial time to the global minimum. In the case of more than two 

abels, ad hoc techniques have been formulated. Here, the cho- 

en technique is the alpha-beta swap technique, which reformu- 

ates the problem as a sequence of binary subproblems and, for 

ach subproblem, a global energy minimum is reached through the 

ax-flow/min-cut formulation. Convergence to a local minimum 

ith strong optimality properties is guaranteed in this case [ 33 ]. 

. Experimental results 

This section presents and discusses the results obtained by the 

roposed method in three real case scenarios. The first is related 

o the biomedical field and, more specifically, the segmentation of 

he wrist bones in an MR image. The other cases deal with SAR 

ata and are related to the segmentation of rural areas and an oil 

lick in the Mediterranean Sea. According to the above considera- 

ions and to Section 2.4 , in the former case, the adopted paramet- 

ic model is the Gaussian distribution, while in the other cases, the 

dopted parametric model is the Gamma distribution. In the case 

f the experiments with SoA methods, the SAR data has been pre- 

rocessed with the SRAD filter [ 50 ] in order to reduce the impact

f speckle noise. The declared goal in the former case is to detect 

he wrist bones, which appear as bright and compact regions. Con- 

ersely, in the case of SAR images, the goal is to segment dark and

right agricultural fields and the dark oil spilled in the sea. 

The experimental analysis, together with the selected accu- 

acy figures, is designed to address the capability of the proposed 

ethod to partition the image in homogeneous regions. Moreover, 

o quantitatively assess the achieved accuracy, the segmentation 

esults are also compared with ground truth data related to spe- 

ific objects of interest in the scene (e.g., the wrist bones and the 

gricultural fields or the oil slick). 

Finally, for the sake of completeness, all the experiments have 

een run on a desktop computer equipped with an Intel® Core TM 

7-4790 CPU, working at a frequency of 3.60GHz, and 24GB of RAM 

emory. Also, the programming language used in all the experi- 

ents is Python. 

.1. Magnetic resonance image 

The proposed method was tested on ten MR T1-weighted im- 

ges from the database in [ 2 ]. They are images of the wrist dis-

rict depicting seven carpal bones (i.e. capitate, hamate, lunate, 

caphoid, trapezium, trapezoid, and triquetrum), in the coronal 

lane. The acquisition was performed via the 0.2 Tesla Artoscan 

Esaote Spa, Genova, Italy). The dimension of each image is 80 ×
00 pixels, the maximum gray-level is 255, and the ground truth 

egmentation was performed by medical operators with exten- 

ive experience in rheumatoid artritis evaluations. The goal to be 

chieved is the detection of bright regions corresponding to the 

rabecular part of the wrist bones. 

Specifically: 

 g ( X n ) = true ⇐⇒ E { x i } ∈ ( m MR , M MR ) ∧ 

Var { x i } ∈ ( 0 , v MR ) ∀ ( i, x i ) ∈ 

∼
X s n , (15) 

ith E {·} and Var {·} being the sample mean and sample variance, 

nd m MR , M MR , and v MR being thresholds that can be set either

irectly by the user (e.g., the expert selecting those values based 

n prior knowledge) or automatically, e.g., in a supervised fashion. 

ere, the former strategy has been adopted, with the values as- 

igned as m = 100 , M = 255 , v = 25 . 
MR MR MR 

8 
Then, the pdf adopted for h s is a Gaussian distribution. Finally 

 p (X n ) = true ⇐⇒ i ∈ Ī , ∀ (i, x i ) ∈ X n , (16)

here Ī ⊂ I indicates the central area of the imaged scene where 

he target ROIs are supposed to be located. Here, it corresponds 

o the imaged area I without the border whose size was chosen 

s the 10% of the smallest image size. Finally, the weight coeffi- 

ients related to the Markovian modeling have been set equal to 

= 5 , γ = 1 . 

Fig. 4 shows one of the original images, the corresponding 

round truth, and the segmentation maps obtained by the pro- 

osed method and by four other state-of-the-art techniques. 

Based on the ground truth in [ 2 ], the results are compared with

hose obtained by the methods in [ 51 ], in [ 31 ], in [ 23 ], and with a
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Table 1 

DICE score comparison. MRI experiment involving the image reported in Fig. 4 . 

Proposed Method Graph-based method [ 31 ] Classic MRF [ 26 ] Active contours [ 51 ] ISF [ 23 ] 

Capitate 0.903 ±0.032 0.826 ± 0.043 0.877 ± 0.036 0.878 ± 0.045 0.830 ± 0.078 

Hamate 0.875 ±0.037 0.785 ± 0.049 0.843 ± 0.078 0.874 ± 0.046 0.850 ± 0.049 

Lunate 0.850 ±0.050 0.765 ± 0.061 0.819 ± 0.039 0.826 ± 0.057 0.737 ± 0.117 

Scaphoid 0.877 ±0.027 0.789 ± 0.030 0.842 ± 0.034 0.857 ± 0.034 0.805 ± 0.084 

Trapezium 0.880 ±0.037 0.832 ± 0.086 0.735 ± 0.174 0.854 ± 0.068 0.482 ± 0.289 

Trapezoid 0.799 ± 0.086 0.813 ±0.069 0.740 ± 0.067 0.792 ± 0.062 0.614 ± 0.295 

Triquetrum 0.911 ±0.031 0.695 ± 0.038 0.864 ± 0.031 0.900 ± 0.037 0.665 ± 0.296 

Total 0.871 0.786 0.817 0.854 0.712 

Table 2 

Performance comparison on the three available SAR dataset. For each method, the number of identified fields and the average 

dice score computed on such fields are reported. The three dataset correspond to the images shown in Fig. 5 , 6 , and 7 . 

Dataset Proposed Graph-based [ 31 ] Classic MRF [ 26 ] Active contours [ 51 ] ISF [ 23 ] RSLC [ 56 ] 

Case 1 Fields 9 6 3 4 6 9 

DICE 0.910 0.548 0.816 0.600 0.501 0.785 

Case 2 Fields 14 7 4 3 5 14 

DICE 0.879 0.424 0.421 0.320 0.517 0.734 

Case 3 Fields 6 6 6 5 4 6 

DICE 0.787 0.203 0.663 0.340 0.357 0.782 
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lassical MRF model (i.e., without the term [
(i, s l i )] −1 in Eq. (14) ),

aking into account the dice score as a performance indicator [ 52 ]. 

The dice score is one of the most frequently used metrics in the 

valuation of image segmentation results [ 53,54 ]. Let S GT be the 

round truth segmentation and S res be the output of a segmenta- 

ion method, then the dice score is computed as: 

SC = 

2(S GT ∪ S res ) 

| S GT | + | S res | (17) 

here | · | computes the number of pixels in the segmentation. 

herefore, the dice score is twice the area of the overlap between 

 GT and S res divided by the total number of pixels in the two seg- 

entation. The range of values is between 0 and 1, with the former 

ndicating the worst-case scenario (no overlap), and the latter in- 

icating a perfect overlap between the obtained segmentation and 

he ground truth. 

The dice score is highly correlated with another frequently used 

etric, the Jaccard index [ 55 ], whose definition and computation 

re very similar to the dice score. Indeed, the Jaccard index is com- 

uted as the intersection of S GT and S res over their union. Due to 

heir similarity and based on the result of the research, only the 

ice score is reported in the experimental analysis. Furthermore, it 

s more intuitive to interpret, as it can be seen as the percentage 

f overlap between the two sets. 

As mentioned in Section 2.3 , the method in [ 31 ] is the base-

ine for the current work. Both the graph-based approach and the 

ropagation mechanism are present, but no Bayesian formulation 

s included. As a consequence, each ROI is extracted one at a time, 

r an optimal criterion for seed placement has to be defined. In 

articular, the segmented bones are smaller than those obtained 

ia the proposed method; the false negative pixels are reduced 

hrough the developed approach. 

The other starting point for the proposed method is an MRF 

odel in its classical formulation, i.e., without the distance term, 

hich is present in Eq. (13) . Here, not only the carpal bones but

lso other regions are extracted. Furthermore, one can notice how 

he distance term in Eq. (13) allows labeling each bone with a dif- 

erent label, meaning that each ROI is represented by a different 

eed. 

Then, the method in [ 51 ] is an example of a deformable model.

t consists of a flexible active contour model that makes use of 

hresholding or gradient-based methods. Even though it is widely 

sed in the medical field, in this case, the shapes of the segmented 
9 
OIs are less regular and compact than those obtained by the pro- 

osed method. Moreover, the method in [ 51 ] also provides a sig- 

ificant number of false positive pixels, resulting in a set of small 

nd spurious ROIs. 

Finally, the method presented in [ 23 ] is designed for super- 

ixel computation, and hence, it results in an over-segmentation of 

he image. Indeed, in many cases, the bones were oversegmented. 

hus, to enable the comparison with the proposed method, the 

utput superpixels have been manually merged. In some cases, the 

ethod in [ 23 ] was not able to detect some of the carpal bones,

hus affecting the final mean scores. For a quantitative comparison, 

he accuracy measured by using such a method does not mirror its 

ctual capability. Indeed, the performances are positively biased by 

he manual merging operations that have been performed on the 

utput segmentation to allow the comparison. 

The performance measures reported in Table 1 , together with 

he qualitative results reported in Fig. 4 , demonstrate the capabil- 

ty of the proposed method to provide a segmentation result char- 

cterized by regular shapes, achieving effective performances that 

re also consistent across the different bones, and avoiding spuri- 

us and noisy ROIs in the output map. The regularization of the 

R artifacts and noise is guaranteed by the MRF model, which al- 

ows segmenting all of the bones that are present in the considered 

mage as connected components that can be easily extracted and 

dentified. 

.2. Synthetic aperture radar image 

The second domain in which the method was tested is the 

ase of radar remote sensing image segmentation. In particular, 

our SAR intensity images were considered. The first three images 

ere acquired by COSMO-SkyMed in the HH polarization and de- 

ict rural areas in the northern Italy, while the fourth image is 

 TerraSAR-X image, SC mode, acquired in the Mediterranean Sea 

ear the French coast. The COSMO-SkyMed image sizes are 361 ×
71 , 504 × 458 , and 619 × 417 pixels, respectively; all of them are

t a spatial resolution of 5m, while the size of the TerraSAR-X im- 

ge is 1500 × 2700 pixels at a resolution of 18m. 

Concerning the first images, the visible agricultural fields were 

ainly of three types, corresponding to the lower, higher, and in- 

ermediate values of the backscattering coefficient and do not ex- 

ibit appreciable texture. The proposed segmentation method was 

pplied with the purpose of segmenting the two types of field 
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Table 3 

DICE score comparison. SAR experiment in- 

volving the image reported in Fig. 5 (Case 1). 

Proposed Method RSLC [ 56 ] 

Field 1 0.925 0.862 

Field 2 0.922 0.818 

Field 3 0.921 0.586 

Field 4 0.902 0.921 

Field 5 0.901 0.894 

Field 6 0.898 0.386 

Field 7 0.903 0.944 

Field 8 0.913 0.837 

Field 9 0.906 0.819 

Total 0.910 0.785 
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Fig. 5. Agricultural field segmentation in SAR imagery, Case 1. Original image, 

ground truth with corresponding enumeration, the result obtained via the proposed 

method, and via the RSLC method in [ 56 ] (for interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article). 
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orresponding to brighter and darker areas (i.e., higher and lower 

ackscattering). In this case, two kinds of h g conditions were de- 

loyed to consider the seeds in both the bright and dark regions. 

In particular: 

 g ( X n ) = true ⇐⇒ E { x i } ∈ ( m SAR , M SAR ) ∧ 

Var { x i } ∈ ( 0 , v SAR ) ∀ ( i, x i ) ∈ 

∼
X s n , (18) 

here, analogously to the medical application, m SAR , M SAR , and 

 SAR are thresholds that can be set either directly by the user 

r automatically. Here, the former strategy has been adopted. In 

he case of bright fields, the parameters have been chosen ac- 

ording to m SAR = 140 , M SAR = 220 , v SAR = 35 . Conversely, in case of

ark fields, the parameters have been chosen according to m SAR = 

 , M SAR = 120 , v SAR = 25 . 

Then, the pdf adopted for h s is a Gamma distribution, while the 

RF-related parameters have been set equal to the previous case. 

The proposed method was compared with a state-of-the-art 

pproach for SAR image segmentation [ 56 ], which will be here- 

nafter referred to as RSLC (i.e., region smoothing and label cor- 

ection), and with the previously introduced segmentation meth- 

ds. However, the results of such methods are not as effective as 

he proposed and the RSLC methods, despite the SRAD-based pre- 

rocessing step aimed at reducing the impact of the speckle noise. 

oreover, the resulting segmentation maps did not include all the 

elds, with some of them being fused into regions associated to 

he background, and some being merged into a single region. The 

eason is twofold, with the residual speckle noise on one side and 

he not well-defined borders in the SAR data with respect to the 

RI images above. Nevertheless, a performance indicator has been 

omputed also in the case of such methods by averaging the dice 

cores obtained on the fields that were correctly identified and 

ot considering the ones that were merged or not detected at all. 

able 2 reports a summary of such analysis and indicates, for each 

ethod, the number of fields being identified and the average dice 

core on such fields. In the following, the thorough analysis of the 

erformances, with details on the single fields and on the resulting 

egmentation maps, will take into consideration the best perform- 

ng methods, being the proposed one and the RSLC. 

Figs. 5, 6 , and 7 show the original images, the available and 

anually annotated ground truth data, and the segmentation re- 

ults obtained via the two aforementioned cases in the considered 

rials. In addition, Tables 3, 4 , and 5 summarize the performance 

f the methods by showing the dice score. It is worth mentioning 

hat when referring to RSLC, the ROIs included in the ground truth 

ave been manually selected in the final segmentation map (i.e., 

y merging oversegmented areas) to enable a quantitative com- 

arison. This emphasizes once more the novelty of the proposed 

ethod to provide a goal-driven result, which is not possible by 

he compared solution. 

Similar to the case of the MR images, the use of the MRF model 

llowed to achieve spatial regularization in the segmentation map. 
10 
ndeed, the polygonal shapes of the fields are preserved, despite 

he speckle [ 28 ] that may lead to errors in identifying the borders. 

As described in Section 2.4 , the adopted parametric model for 

AR imagery is the Gamma distribution. Fig. 8 depicts the gray 

evel histogram of one of the ROIs in the COSMO-SkyMed dataset 

nd the corresponding MoLC-fitted Gamma distribution. On the 

ne hand, the figure shows the accuracy of the MoLC estimation 

or the parameters of the Gamma distribution, and on the other 

and, it also visually confirms the Gamma distribution to be a valid 

odel for the statistics of the pixel intensities in the regions de- 

ected by the proposed method when applied to this type of image. 
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Fig. 6. Agricultural field segmentation in SAR imagery, Case 2. Original image, ground truth with corresponding enumeration, the result obtained via the proposed method, 

and via the RSLC method in [ 56 ] (for interpretation of the references to color in this figure legend, the reader is referred to the web version of this article). 

Table 4 

DICE score comparison. SAR experiment involv- 

ing the image reported in Fig. 6 (Case 2). ∗When 

referring to the RSLC method in [ 56 ], fields 11 

and 12 are merged. 

Proposed Method RSLC [ 56 ] 

Field 1 0.881 0.901 

Field 2 0.931 0.712 

Field 3 0.893 0.674 

Field 4 0.928 0.924 

Field 5 0.757 0 

Field 6 0.840 0.869 

Field 7 0.923 0.907 

Field 8 0.952 0.940 

Field 9 0.819 0.866 

Field 10 0.852 0.742 

Field 11 ∗ 0.871 0.645 

Field 12 ∗ 0.765 0.335 

Field 13 0.969 0.907 

Field 14 0.923 0.853 

Total 0.879 0.734 

T

o

w

w

Table 5 

DICE score comparison. SAR experiment in- 

volving the image reported in Fig. 7 (Case 3). 

Proposed Method RSLC [ 56 ] 

Field 1 0.916 0.890 

Field 2 0.892 0.865 

Field 3 0.576 0.715 

Field 4 0.887 0.787 

Field 5 0.825 0.814 

Field 6 0.629 0.622 

Total 0.787 0.782 
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h

he same comment holds with regard to the statistics conditioned 

n other regions in the image. 

Fig. 9 shows an oil slick located in the Mediterranean Sea, along 

ith the segmentation results. The goal is to detect the oil spill, 

hich appears as a dark region over a bright background, to en- 
11 
ble the quantification of its spread. In contrast to the previous 

ase, no ground truth was available in this case study. However, 

ualitative results are provided in order to give a visual feedback 

n the performances achieved by the proposed method in this new 

cenario. Indeed, even though the comparison is not quantitative, 

t gives an intuition on the behaviors of the two solutions and al- 

ows to choose the best option with respect to the application at 

and. 

The goal specifications are: 

 g ( X n ) = true ⇐⇒ E { x i } ∈ ( m Oil , M Oil ) ∧ 

Var { x i } ∈ ( 0 , v Oil ) ∀ ( i, x i ) ∈ 

∼
X s n , (19) 
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Fig. 7. Agricultural field segmentation in SAR imagery, Case 3. Original image, ground truth with corresponding enumeration, the result obtained via the proposed method, 

and via the RSLC method in [ 56 ] (for interpretation of the references to color in this figure legend, the reader is referred to the web version of this article). 

Fig. 8. Gray level histogram of one of the ROIs in the SAR image depicting the 

agricultural fields and the MoLC-fitted gamma distribution. 
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Fig. 9. Oil spill segmentation in SAR images: original image, segmented ROIs ob- 

tained by the proposed method, and the result obtained via the RSLC method 

[ 56 ] (for interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article). 
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here m Oil , M Oil , and v Oil are set in the same fashion as in the dark

eld segmentation task (i.e., m Oil = 0 , M Oil = 120 , v Oil = 25 ; the pdf

dopted for h s is a Gamma distribution, and the parameters inside 

he Markovian energy function are set equal to the previous cases. 

Also in this case, the segmentation method was able to achieve 

atisfactory results. In particular, the segmentation was able to sep- 

rate the homogeneous regions characterized by the oil spill from 
12 
he surrounding area, yet the fine details of the oil spill in the up- 

er left part of the images were not identified. This is due to the 

andom grid strategy in the seed placement step. Due to the thin 

hape of such details, none of the seeds was placed inside the re- 

ion of interest, and as a consequence, such fine details were not 

ssigned to the homogeneous region associated with the oil spill. 

he reader may also notice the difference with respect to the out- 

ut of method [ 56 ], where no particular ROI is actually visible. 

In addition, the method was also compared with two tech- 

iques based on deep learning that are presented in [ 16 ]. The 
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Fig. 10. Visual comparison with the supervised methods reported in [ 16 ]. 

Table 6 

Results from the comparison with respect to the methods re- 

ported in [ 16 ]. 

Black Fields White Fields Kappa 

Proposed Method 0.965 0.998 0.929 

CWNN [ 16 ] 0.905 0.955 0.935 

CNN [ 16 ] 0.853 0.960 0.895 
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Table 7 

Computation times needed by the proposed method 

to generate the segmentation maps with two datasets 

while varying the step size of the random grid, and 

hence the number of seeds. 

Step Size [w x h] Seeds Time [m] 

MRI 4 84 x 75 67 02:21 

5 44 01:00 

6 28 00:24 

8 18 00:10 

SAR 20 498 x 442 74 12:33 

25 54 05:50 

30 37 02:29 

35 30 01:45 

40 21 00:58 

Fig. 11. Results from the steps of the post processing operations. They are required 

to obtain an output similar to the proposed goal-driven method (for interpretation 

of the references to color in this figure legend, the reader is referred to the web 

version of this article). 
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ata used for such experiments are provided by the authors (i.e., 

he publicly released “Noerdlinger Ries” dataset), as well as the 

dopted performance metrics, i.e., the percentage of pixels that are 

orrectly segmented with respect to the considered classes, and 

he Kappa coefficient, computed from the confusion matrix. Fig. 10 

nd Table 6 report the qualitative and quantitative results. With 

espect to the qualitative results, all the methods are effective in 

iscriminating the two types of field, with the proposed method 

roducing the least noisy maps, and the method based on a con- 

olutional neural network and on the wavelet transform being able 

o better discriminate the boundaries between elements. The lat- 

er was the most effective in terms of Kappa coefficient, while the 

roposed method outperformed the others with respect to the per- 

entage of correctly classified pixels. The method based on the sole 

NN was the least effective with respect to the quantitative analy- 

is. This result is indeed very promising for the proposed method, 
13 
s the two DL-based solutions required a labeled training set and 

 training procedure to produce the maps reported in Fig. 10 and 

valuated in Table 6 . In detail, the full “Noerdlinger Ries” dataset 

as split into a set of patches, 60% of which were used for train- 

ng the two neural networks. Conversely, the proposed method re- 

uired no training data and was directly applied to the image at 

and. 

Finally, Table 7 reports an analysis on the computation time 

eeded by the proposed method to generate the segmentation 

ap. Such an analysis involves two different datasets: (i) the MR 

mage reported in Fig. 4 ; and (ii) the SAR image of Fig. 10 . The

nalysis correlates the step size used for placing the initial set of 

eeds in the image, and thus the number of seeds used in the 

rocessing, with the time needed by the method to generate the 

aps. Moreover, it is possible to appreciate the impact of the num- 

er of seeds on the computational requirements of the method. 

inally, such a comparison is also intended as a sensitivity anal- 

sis, as the experiments reported in the table resulted in accura- 

ies comparable with those reported in the previous tables (i.e., 

able 1 for the MR image and Table 5 for the SAR image). Using a

arger and a smaller step size than the ones reported caused the 

ethod to reduce the accuracy due to an over-segmentation of the 

OIs or due to the impossibility of identifying all the elements, re- 

pectively. 

.3. The advantage of the goal-driven formulation 

Since classical segmentation methods (i.e., satisfying the first 

efinition of Section 2.2 ) are aimed at partitioning the whole im- 

ge into disjoint subregions, their outputs often require some post 

rocessing to enable comparisons with the one presented here. 

ence, the aim of the present section is to underline the post pro- 

essing steps that can be avoided by leveraging the goal-driven for- 

ulation of the presented approach. For the sake of simplicity, an 

xample of the post processing procedure with respect to the sec- 

nd SAR image is provided. 
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Fig. 11 a depicts the output of the method presented in [ 56 ],

hich is denoted as Step 0 of the post processing procedure. 

ather than the extraction of some particular regions, here, the 

nal map is a segmentation map in the classical sense. Hence, 

he regions to be considered need to be selected and separated 

even manually). For the present purpose, several operations may 

e required, including binarization (in favor of connected compo- 

ent extraction), manual correction (e.g., for properly separating 

bjects of interest), and morphological operations (for regularizing 

he shape of the extracted regions). The result of the present pro- 

ess (Step 1) is shown in Fig. 11 b. Finally, the obtained ROIs are

abeled (Step 2), producing the final map in Fig. 11 c. 

All of these operations yield the final output, which is simi- 

ar to the one produced by the novel method presented above. 

urthermore, these steps are necessary to have a final map that 

an be evaluated with respect to the available ground truth. How- 

ver, these post processing steps result in a time-consuming task 

hat must be adapted to the specific output of the segmentation 

ethod being considered. 

Conversely, the goal-driven formulation encompasses the task 

o be fulfilled, thus avoiding further post processing endeavors, 

hich represents an advantage in terms of usability with respect 

o the compared methods. Within the proposed method, some user 

nteraction/user expertise is still needed in the definition of the 

oal. However, fewer operations are required for such a phase than 

n the post processing described above. Moreover, the definition of 

he goal is generally done once for each application domain. Once 

he goal is well defined, no interaction is required for the proposed 

ethod to run in an end-to-end fashion. 

. Conclusion 

This paper presents a novel goal-driven unsupervised image 

egmentation method that, thanks to a novel definition of image 

egmentation taking into consideration a user-defined goal, is ca- 

able of partitioning the input image into a set of homogeneous 

egions of interest and a background area. By combining weighted 

raphs, parametric density modeling, and Markov random field 

odeling, the proposed method has been experimentally demon- 

trated to be effective in two different domains of applicability, i.e. 

edical magnetic resonance images and remote-sensing SAR im- 

gery. 

The proposed method has been experimentally evaluated with 

espect to other state-of-the-art solutions. Indeed, the experimen- 

al comparisons highlighted the capability of the proposed solution 

o take advantage of the user-defined goal and produce an accurate 

egmentation map that is able to discriminate the objects of inter- 

st from the background. Hence, the comparison with the previous 

ethods was carried out by manually post-processing the results 

btained by the existing methods, as the separation of the ROIs 

rom the background in a goal-driven fashion is not typical of stan- 

ard segmentation scenarios. 

Moreover, thanks to the possibility of being integrated with 

ultiple parametric models, the proposed method was effective in 

ifferent applicability domains. Indeed, the experimental analysis 

as carried out with respect to MR and SAR images. In the for- 

er case, the adopted model was the Gaussian distribution, and 

he underlying parameter estimation strategy was addressed in a 

aximum-likelihood fashion via the sample mean and the sample 

ariance. Conversely, in the latter case of active radar imagery, usu- 

lly affected by a multiplicative noise-like component due to the 

peckle phenomenon, the Gamma distribution was chosen as an 

ppropriate parametric model, and the parameter estimation was 

erformed via the method of logarithmic cumulants. 

Because of the definition of an underlying graph and the for- 

ulation of a Bayesian probabilistic graphical model using Markov 
14 
andom field modeling, the proposed method was proven able to 

ntegrate the local and global properties of the image, preventing 

rtifacts either due to the intrinsic noise of the input image, or due 

o spurious regions relative to misplaced seeds, so that no merge 

tep was necessary for generating the output segmentation. More- 

ver, the experiments conducted with two different application- 

pecific scenarios associated with image data, with different sta- 

istical and noise characteristics, highlighted the effectiveness and 

ersatility of the proposed method, which was also enriched by the 

nsupervised formulation not requiring any labeled dataset. 

However, of course, the proposed method presents some limi- 

ations. The most relevant one is that it is likely to fail when ROIs 

re very similar and close, such as in the case of the dataset “No- 

rdlinger Ries”. Here, the dark fields and the city are very close 

nd similar in terms of gray levels, and indeed, in such an area, 

he method performs poorly. In addition, in this situation, streets 

re not distinguishable from other regions; thus, they may be in- 

luded in the fields. 

Among the possible future developments, the proposed method 

ould be reformulated to work with volumetric data [ 57 ]. Indeed, 

t would be necessary to reformulate the graph-based processing, 

ogether with the Markov random field model, to take into account 

he geometry of such 3D input data. In this case, the MR wrist 

one dataset could be segmented by considering the entire volume 

t once and not each single slice sequentially. Moreover, the exper- 

mentation could be expanded to other data types, and therefore to 

ifferent domains and user-defined goals. Therefore, to deal with 

hese different sources, additional parametric models with appro- 

riate parameter estimation strategies could be integrated in the 

roposed framework. 

Additionally, the proposed segmentation method was specifi- 

ally designed to identify homogeneous and non-granular regions. 

ndeed, in the experimental analysis, the Gaussian and the Gamma 

istributions were the adopted parametric model. Therefore, an- 

ther possible development could be the extension to the case of 

extured and granular regions. In these cases, possible parametric 

odels would be mixture models of the aforementioned distribu- 

ions. Indeed, the model fitting phase would require solutions such 

s the expectation-maximization (EM) algorithm [ 58 ]. This could 

lso fix the issue raised in the case of very similar and close ROIs. 

Finally, a further interesting future development could be the 

ntegration of graph-based and MRF formulations with deep learn- 

ng techniques. Such an hybrid methodology could indeed balance 

he weaknesses of the two approaches when used on their own. 

n the recent literature, some work dealing with possible combina- 

ions between the two approaches can be found in [ 59 ]. In fact, the

roposed approach could also be combined with supervised meth- 

ds and semantic segmentation, to be used, for instance, in a pre- 

rocessing phase. Indeed, semantic information is usually manu- 

lly delivered by medical experts, thus being affected by intra-rater 

nd inter-rater variability and by the experience of annotators. As 

 result, semantic segmentation would significantly benefit from 

tarting from unsupervised image segmentation; for instance, al- 

owing the expert to focus on peculiar areas where they could use 

heir knowledge in the labeling phase. The deployment of the pro- 

osed approach, which not only acts in an unsupervised fashion 

ut also encompasses the information related to the application 

ontext and the goal, could help for this purpose. It would make 

anual work easier for the experts, reduce raters variability, and 

ridge the experience gap among several experts. 
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ppendix A. Table of Notation 

Symbol Meaning 

I Pixel lattice over which an intensity image X is defined. 

X Intensity image, i.e., the collection of the observed pixel intensities. 

X Two-dimensional image defined as X = I × X . 

i Pixel location on the image lattice I. 

x i Single pixel of an intensity image X , with i ∈ I. 
X 1 , . . . , X M M disjoint, non-empty, connected subregions of an image X (ROIs). 

M Number of ROIs composing the image X . 

P Predicate of homogeneity. 

B Background of an image X . 

h g Pixel intensity-related predicate. 

h s Statistical property-related predicate. 

A General subset of the image X , A ⊆ X . 

J m Feasible values interval for the mean in h g . 

J v Feasible values interval for the variance in h g . 

f Feasible probability density function. 

h p Position-related predicate. 

Ī Area of the imaged scene where the target ROIs are supposed to be 

located. 

H Collection of all the involved predicates. 

h other Term collectively indicating possible optional predicates. 

Bool Boolean set. 

L Label image composed of the M ROIs and the background B . 

l i Single pixel of a label image L , with i ∈ I. 
� Set of labels assigned to the M subregions of X . � = { 0 , 1 , 2 , . . . , M} , 

with the value 0 indicating the background. 

S 0 Initial set of seeds. 

s Single seed belonging to the set S 0 (i.e., s ∈ S 0 ) and located inside 

the image X . 
˜ X s Small circular region of the image X around the seed s . 

S Filtered set of seeds. 

N Number of seeds belonging to the filtered set S. 

s n Single seed belonging to the set S = { s n } , n ∈ { 1 , 2 , . . . , N} and 

located inside the image X . 

F Set of cost functions, each associated with a seed in S. 

F n Single cost function belonging to the set F = { F n } , with n 

identifying one of the seeds s n ∈ S. It is defined over the whole 

image X such that F n : I → R . 

X n A region of the image X associated with the seed s n and extracted 

via the function F n . 

B 0 The initial background. The set of image pixels not assigned to any 

region X n , i.e., B 0 = X \ {∪ N n =1 X n } . 
U(·) Markovian energy function. 

U(L | X ) Markovian energy function associated with the posterior 

distribution of the label map L conditioned on the image X . 

D i (x i | l i ) Pixelwise energy term composing the Markovian energy function 

U(·) and corresponding to the pixel i . 

i ∼ j Notation for the pixels i and j being neighbors according to a 

first-order neighboring system. 

V (l i , l j ) Pairwise energy term composing the Markovian energy function 

U(·) and corresponding to the pixels i and j, with i ∼ j. 

β Positive coefficient weighting the pixelwise and pairwise terms 

inside the Markovian energy function. 

�′ Preliminary set of labels �′ = { 0 , 1 , 2 , . . . , N} . The value 0 is 

associated with the background, and the values from 1 to N are 

associated with each of the N seeds. 

G = (I, E) Non-empty, fully-connected, undirected, and vertex-weighted 

graph onto which the image X is mapped. I is the set of vertices 

(i.e., the pixel lattice of the image), while E is the set of edges 

connecting neighboring nodes. 

( continued on next page ) 
15 
Symbol Meaning 

w (i, j) Difference function defined as w : I × I → R , w (i, j) = | x i − x j | . 
w n (i ) It is equivalent to w (i, s n ) , ∀ i ∈ I. 
T Set of all the visited nodes. 

i − Father node of i according to a flooding scheme. 

F n (i ) Value of the cost function F n for a generic seed s n and applied to 

the pixel i . 

Z Positive-valued random variable. 

Z Set of independent and identically distributed (i.i.d.) samples 

drawn from Z. 

z i An i.i.d. sample drawn from Z and belonging to the set Z . 

p Z (z) Probability density function of the random variable Z modeled 

according to the Gamma distribution. 

� Gamma function. 

u Mean of the Gamma distribution p Z (z) . 

α Shape of the Gamma distribution p Z (z) . 

κi i th order logarithmic cumulant of Z. 

�(0 , α) Digamma function, i.e., the logarithmic derivative of the Gamma 

function. 

�(1 , ·) First-order polygamma function, i.e., the derivative of �(0 , α) . 

ˆ κi Sample estimate of the i th order logarithmic cumulant κi . 

ˆ u MoLC estimate of u . 

ˆ α MoLC estimate of α. 

d i (x | n ) Pixelwise potential corresponding to one of the seeds. 

c 1 , c 2 Values of the piecewise constant background-specific potential. 

They are automatically chosen according to the pth and (1 − p) th 

percentiles of the distribution of the seed-specific potentials 

d i (x | n ) . 
ˆ p (x | n ) Estimate of the Gamma probability density function modeling the 

set of samples X n . 


(i, s n ) Euclidean distance between the position of the pixel i and the 

position of the seed s n within the pixel lattice I. 

γ Positive coefficient weighting the two terms composing the 

pixelwise potential d i (x | n ) . 
m MR Threshold used in the pixel intensity predicate for the MR imagery 

application. 

M MR Threshold used in the pixel intensity predicate for the MR imagery 

application. 

v MR Threshold used in the pixel intensity predicate for the MR imagery 

application. 

m SAR Threshold used in the pixel intensity predicate for the SAR imagery 

applied to field segmentation. 

M SAR Threshold used in the pixel intensity predicate for the SAR imagery 

applied to field segmentation. 

v SAR Threshold used in the pixel intensity predicate for the SAR imagery 

applied to field segmentation. 

m Oil Threshold used in the pixel intensity predicate for the SAR imagery 

applied to oil spill segmentation. 

M Oil Threshold used in the pixel intensity predicate for the SAR imagery 

applied to oil spill segmentation. 

v Oil Threshold used in the pixel intensity predicate for the SAR imagery 

applied to oil spill segmentation. 
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