4,818 research outputs found

    Representing and analysing molecular and cellular function in the computer

    Get PDF
    Determining the biological function of a myriad of genes, and understanding how they interact to yield a living cell, is the major challenge of the post genome-sequencing era. The complexity of biological systems is such that this cannot be envisaged without the help of powerful computer systems capable of representing and analysing the intricate networks of physical and functional interactions between the different cellular components. In this review we try to provide the reader with an appreciation of where we stand in this regard. We discuss some of the inherent problems in describing the different facets of biological function, give an overview of how information on function is currently represented in the major biological databases, and describe different systems for organising and categorising the functions of gene products. In a second part, we present a new general data model, currently under development, which describes information on molecular function and cellular processes in a rigorous manner. The model is capable of representing a large variety of biochemical processes, including metabolic pathways, regulation of gene expression and signal transduction. It also incorporates taxonomies for categorising molecular entities, interactions and processes, and it offers means of viewing the information at different levels of resolution, and dealing with incomplete knowledge. The data model has been implemented in the database on protein function and cellular processes 'aMAZE' (http://www.ebi.ac.uk/research/pfbp/), which presently covers metabolic pathways and their regulation. Several tools for querying, displaying, and performing analyses on such pathways are briefly described in order to illustrate the practical applications enabled by the model

    MicroRNA-129-1 acts as tumour suppressor and induces cell cycle arrest of GBM cancer cells through targeting IGF2BP3 and MAPK1

    Get PDF
    Background MicroRNA-129-1 (miR-129-1) seems to behave as a tumour suppressor since its decreased expression is associated with different tumours such as glioblastoma multiforme (GBM). GBM is the most common form of brain tumours originating from glial cells. The impact of miR-129-1 downregulation on GBM pathogenesis has yet to be elucidated. Methods MiR-129-1 was overexpressed in GBM cells, and its effect on proliferation was investigated by cell cycle assay. MiR-129-1 predicted targets (CDK6, IGF1, HDAC2, IGF2BP3 and MAPK1) were also evaluated by western blot and luciferase assay. Results Restoration of miR-129-1 reduced cell proliferation and induced G1 accumulation, significantly. Several functional assays confirmed IGF2BP3, MAPK1 and CDK6 as targets of miR-129-1. Despite the fact that IGF1 expression can be suppressed by miR-129-1, through 30-untranslated region complementary sequence, we could not find any association between IGF1 expression and GBM. MiR-129-1 expression inversely correlates with CDK6, IGF2BP3 and MAPK1 in primary clinical samples. Conclusion This is the first study to propose miR129-1 as a negative regulator of IGF2BP3 and MAPK1 and also a cell cycle arrest inducer in GBM cells. Our data suggests miR-129-1 as a potential tumour suppressor and presents a rationale for the use of miR-129-1 as a novel strategy to improve treatment response in GBM

    Uniformly curated signaling pathways reveal tissue-specific cross-talks and support drug target discovery

    Full text link
    Motivation: Signaling pathways control a large variety of cellular processes. However, currently, even within the same database signaling pathways are often curated at different levels of detail. This makes comparative and cross-talk analyses difficult. Results: We present SignaLink, a database containing 8 major signaling pathways from Caenorhabditis elegans, Drosophila melanogaster, and humans. Based on 170 review and approx. 800 research articles, we have compiled pathways with semi-automatic searches and uniform, well-documented curation rules. We found that in humans any two of the 8 pathways can cross-talk. We quantified the possible tissue- and cancer-specific activity of cross-talks and found pathway-specific expression profiles. In addition, we identified 327 proteins relevant for drug target discovery. Conclusions: We provide a novel resource for comparative and cross-talk analyses of signaling pathways. The identified multi-pathway and tissue-specific cross-talks contribute to the understanding of the signaling complexity in health and disease and underscore its importance in network-based drug target selection. Availability: http://SignaLink.orgComment: 9 pages, 4 figures, 2 tables and a supplementary info with 5 Figures and 13 Table

    Evaluation of the current knowledge limitations in breast cancer research: a gap analysis

    Get PDF
    BACKGROUND A gap analysis was conducted to determine which areas of breast cancer research, if targeted by researchers and funding bodies, could produce the greatest impact on patients. METHODS Fifty-six Breast Cancer Campaign grant holders and prominent UK breast cancer researchers participated in a gap analysis of current breast cancer research. Before, during and following the meeting, groups in seven key research areas participated in cycles of presentation, literature review and discussion. Summary papers were prepared by each group and collated into this position paper highlighting the research gaps, with recommendations for action. RESULTS Gaps were identified in all seven themes. General barriers to progress were lack of financial and practical resources, and poor collaboration between disciplines. Critical gaps in each theme included: (1) genetics (knowledge of genetic changes, their effects and interactions); (2) initiation of breast cancer (how developmental signalling pathways cause ductal elongation and branching at the cellular level and influence stem cell dynamics, and how their disruption initiates tumour formation); (3) progression of breast cancer (deciphering the intracellular and extracellular regulators of early progression, tumour growth, angiogenesis and metastasis); (4) therapies and targets (understanding who develops advanced disease); (5) disease markers (incorporating intelligent trial design into all studies to ensure new treatments are tested in patient groups stratified using biomarkers); (6) prevention (strategies to prevent oestrogen-receptor negative tumours and the long-term effects of chemoprevention for oestrogen-receptor positive tumours); (7) psychosocial aspects of cancer (the use of appropriate psychosocial interventions, and the personal impact of all stages of the disease among patients from a range of ethnic and demographic backgrounds). CONCLUSION Through recommendations to address these gaps with future research, the long-term benefits to patients will include: better estimation of risk in families with breast cancer and strategies to reduce risk; better prediction of drug response and patient prognosis; improved tailoring of treatments to patient subgroups and development of new therapeutic approaches; earlier initiation of treatment; more effective use of resources for screening populations; and an enhanced experience for people with or at risk of breast cancer and their families. The challenge to funding bodies and researchers in all disciplines is to focus on these gaps and to drive advances in knowledge into improvements in patient care

    Science, medicine, and the future. Prospecting for gold in the human genome

    Get PDF
    Doctors struggling with the daily problems of clinical medicine usually have little time for molecular and cell biology. But genetic research is producing an explosion of knowledge which doctors will need to understand in order to join in the ethical and financial debates that will inevitably follow the new treatments discovered. There may, indeed, be therapeutic gold hidden in our genes, but the price for it could be more than we can afford. This is the first of three articles introducing a series which aims to convey the excitement and potential power of biomedical science by speculating how current research will impinge on clinical management of common conditions

    A signal transduction score flow algorithm for cyclic cellular pathway analysis, which combines transcriptome and ChIP-seq data

    Get PDF
    Determination of cell signalling behaviour is crucial for understanding the physiological response to a specific stimulus or drug treatment. Current approaches for large-scale data analysis do not effectively incorporate critical topological information provided by the signalling network. We herein describe a novel model- and data-driven hybrid approach, or signal transduction score flow algorithm, which allows quantitative visualization of cyclic cell signalling pathways that lead to ultimate cell responses such as survival, migration or death. This score flow algorithm translates signalling pathways as a directed graph and maps experimental data, including negative and positive feedbacks, onto gene nodes as scores, which then computationally traverse the signalling pathway until a pre-defined biological target response is attained. Initially, experimental data-driven enrichment scores of the genes were computed in a pathway, then a heuristic approach was applied using the gene score partition as a solution for protein node stoichiometry during dynamic scoring of the pathway of interest. Incorporation of a score partition during the signal flow and cyclic feedback loops in the signalling pathway significantly improves the usefulness of this model, as compared to other approaches. Evaluation of the score flow algorithm using both transcriptome and ChIP-seq data-generated signalling pathways showed good correlation with expected cellular behaviour on both KEGG and manually generated pathways. Implementation of the algorithm as a Cytoscape plug-in allows interactive visualization and analysis of KEGG pathways as well as user-generated and curated Cytoscape pathways. Moreover, the algorithm accurately predicts gene-level and global impacts of single or multiple in silico gene knockouts.Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich

    Discovering novel cancer bio-markers in acquired lapatinib resistance using Bayesian methods.

    Full text link
    Signalling transduction pathways (STPs) are commonly hijacked by many cancers for their growth and malignancy, but demystifying their underlying mechanisms is difficult. Here, we developed methodologies with a fully Bayesian approach in discovering novel driver bio-markers in aberrant STPs given high-throughput gene expression (GE) data. This project, namely 'PathTurbEr' (Pathway Perturbation Driver) uses the GE dataset derived from the lapatinib (an EGFR/HER dual inhibitor) sensitive and resistant samples from breast cancer cell lines (SKBR3). Differential expression analysis revealed 512 differentially expressed genes (DEGs) and their pathway enrichment revealed 13 highly perturbed singalling pathways in lapatinib resistance, including PI3K-AKT, Chemokine, Hippo and TGF-β\beta singalling pathways. Next, the aberration in TGF-β\beta STP was modelled as a causal Bayesian network (BN) using three MCMC sampling methods, i.e. Neighbourhood sampler (NS) and Hit-and-Run (HAR) sampler that potentially yield robust inference with lower chances of getting stuck at local optima and faster convergence compared to other state-of-art methods. Next, we examined the structural features of the optimal BN as a statistical process that generates the global structure using p1p_1-model, a special class of Exponential Random Graph Models (ERGMs), and MCMC methods for their hyper-parameter sampling. This step enabled key drivers identification that drive the aberration within the perturbed BN structure of STP, and yielded 34, 34 and 23 perturbation driver genes out of 80 constituent genes of three perturbed STP models of TGF-β\beta signalling inferred by NS, HAR and MH sampling methods, respectively. Functional-relevance and disease-relevance analyses suggested their significant associations with breast cancer progression/resistance

    Data-driven modelling of biological multi-scale processes

    Full text link
    Biological processes involve a variety of spatial and temporal scales. A holistic understanding of many biological processes therefore requires multi-scale models which capture the relevant properties on all these scales. In this manuscript we review mathematical modelling approaches used to describe the individual spatial scales and how they are integrated into holistic models. We discuss the relation between spatial and temporal scales and the implication of that on multi-scale modelling. Based upon this overview over state-of-the-art modelling approaches, we formulate key challenges in mathematical and computational modelling of biological multi-scale and multi-physics processes. In particular, we considered the availability of analysis tools for multi-scale models and model-based multi-scale data integration. We provide a compact review of methods for model-based data integration and model-based hypothesis testing. Furthermore, novel approaches and recent trends are discussed, including computation time reduction using reduced order and surrogate models, which contribute to the solution of inference problems. We conclude the manuscript by providing a few ideas for the development of tailored multi-scale inference methods.Comment: This manuscript will appear in the Journal of Coupled Systems and Multiscale Dynamics (American Scientific Publishers
    corecore