1,583 research outputs found

    Adaptive conflict-free optimization of rule sets for network security packet filtering devices

    Get PDF
    Packet filtering and processing rules management in firewalls and security gateways has become commonplace in increasingly complex networks. On one side there is a need to maintain the logic of high level policies, which requires administrators to implement and update a large amount of filtering rules while keeping them conflict-free, that is, avoiding security inconsistencies. On the other side, traffic adaptive optimization of large rule lists is useful for general purpose computers used as filtering devices, without specific designed hardware, to face growing link speeds and to harden filtering devices against DoS and DDoS attacks. Our work joins the two issues in an innovative way and defines a traffic adaptive algorithm to find conflict-free optimized rule sets, by relying on information gathered with traffic logs. The proposed approach suits current technology architectures and exploits available features, like traffic log databases, to minimize the impact of ACO development on the packet filtering devices. We demonstrate the benefit entailed by the proposed algorithm through measurements on a test bed made up of real-life, commercial packet filtering devices

    Study and simulation of low rate video coding schemes

    Get PDF
    The semiannual report is included. Topics covered include communication, information science, data compression, remote sensing, color mapped images, robust coding scheme for packet video, recursively indexed differential pulse code modulation, image compression technique for use on token ring networks, and joint source/channel coder design

    The effect of the color filter array layout choice on state-of-the-art demosaicing

    Get PDF
    Interpolation from a Color Filter Array (CFA) is the most common method for obtaining full color image data. Its success relies on the smart combination of a CFA and a demosaicing algorithm. Demosaicing on the one hand has been extensively studied. Algorithmic development in the past 20 years ranges from simple linear interpolation to modern neural-network-based (NN) approaches that encode the prior knowledge of millions of training images to fill in missing data in an inconspicious way. CFA design, on the other hand, is less well studied, although still recognized to strongly impact demosaicing performance. This is because demosaicing algorithms are typically limited to one particular CFA pattern, impeding straightforward CFA comparison. This is starting to change with newer classes of demosaicing that may be considered generic or CFA-agnostic. In this study, by comparing performance of two state-of-the-art generic algorithms, we evaluate the potential of modern CFA-demosaicing. We test the hypothesis that, with the increasing power of NN-based demosaicing, the influence of optimal CFA design on system performance decreases. This hypothesis is supported with the experimental results. Such a finding would herald the possibility of relaxing CFA requirements, providing more freedom in the CFA design choice and producing high-quality cameras

    Range-enhanced packet classification to improve computational performance on field programmable gate array

    Get PDF
    Multi-filed packet classification is a powerful classification engine that classifies input packets into different fields based on predefined rules. As the demand for the internet increases, efficient network routers can support many network features like quality of services (QoS), firewalls, security, multimedia communications, and virtual private networks. However, the traditional packet classification methods do not fulfill today’s network functionality and requirements efficiently. In this article, an efficient range enhanced packet classification (REPC) module is designed using a range bit-vector encoding method, which provides a unique design to store the precomputed values in memory. In addition, the REPC supports range to prefix features to match the packets to the corresponding header fields. The synthesis and implementation results of REPC are analyzed and tabulated in detail. The REPC module utilizes 3% slices on Artix-7 field programmable gate array (FPGA), works at 99.87 Gbps throughput with a latency of 3 clock cycles. The proposed REPC is compared with existing packet classification approaches with better hardware constraints improvements

    A New Texture Synthesis Algorithm Based on Wavelet Packet Tree

    Get PDF
    This paper presents an efficient texture synthesis based on wavelet packet tree (TSWPT). It has the advantage of using a multiresolution representation with a greater diversity of bases functions for the nonlinear time series applications such as fractal images. The input image is decomposed into wavelet packet coefficients, which are rearranged and organized to form hierarchical trees called wavelet packet trees. A 2-step matching, that is, coarse matching based on low-frequency wavelet packet coefficients followed by fine matching based on middle-high-frequency wavelet packet coefficients, is proposed for texture synthesis. Experimental results show that the TSWPT algorithm is preferable, especially in terms of computation time

    A fractal dimension based optimal wavelet packet analysis technique for classification of meningioma brain tumours

    Get PDF
    With the heterogeneous nature of tissue texture, using a single resolution approach for optimum classification might not suffice. In contrast, a multiresolution wavelet packet analysis can decompose the input signal into a set of frequency subbands giving the opportunity to characterise the texture at the appropriate frequency channel. An adaptive best bases algorithm for optimal bases selection for meningioma histopathological images is proposed, via applying the fractal dimension (FD) as the bases selection criterion in a tree-structured manner. Thereby, the most significant subband that better identifies texture discontinuities will only be chosen for further decomposition, and its fractal signature would represent the extracted feature vector for classification. The best basis selection using the FD outperformed the energy based selection approaches, achieving an overall classification accuracy of 91.25% as compared to 83.44% and 73.75% for the co-occurrence matrix and energy texture signatures; respectively

    The Multiplicative Zak Transform, Dimension Reduction, and Wavelet Analysis of LIDAR Data

    Get PDF
    This thesis broadly introduces several techniques within the context of timescale analysis. The representation, compression and reconstruction of DEM and LIDAR data types is studied with directional wavelet methods and the wedgelet decomposition. The optimality of the contourlet transform, and then the wedgelet transform is evaluated with a valuable new structural similarity index. Dimension reduction for material classification is conducted with a frame-based kernel pipeline and a spectral-spatial method using wavelet packets. It is shown that these techniques can improve on baseline material classification methods while significantly reducing the amount of data. Finally, the multiplicative Zak transform is modified to allow the study and partial characterization of wavelet frames
    • …
    corecore