
Research Article
Adaptive Conflict-Free Optimization of Rule Sets for
Network Security Packet Filtering Devices

Andrea Baiocchi,1 Gianluca Maiolini,2 Annachiara Mingo,3 and Daniele Goretti4

1Department of Information Engineering, Electronics and Telecommunications (DIET),
University of Roma “Sapienza”, Via Eudossiana 18, 00184 Rome, Italy
2Ipanema Technologies, Via Roberto Lepetit 8/10, 20124 Milan, Italy
3Digi International GmbH, Lise-Meitner-Straße 9, 85737 Ismaning, Germany
4Altran Italia S.p.A., Via Tiburtina 1232, 00131 Rome, Italy

Correspondence should be addressed to Andrea Baiocchi; andrea.baiocchi@uniroma1.it

Received 1 June 2014; Revised 17 December 2014; Accepted 22 December 2014

Academic Editor: Tin-Yu Wu

Copyright © 2015 Andrea Baiocchi et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Packet filtering and processing rules management in firewalls and security gateways has become commonplace in increasingly
complex networks. On one side there is a need to maintain the logic of high level policies, which requires administrators to
implement and update a large amount of filtering rules while keeping them conflict-free, that is, avoiding security inconsistencies.
On the other side, traffic adaptive optimization of large rule lists is useful for general purpose computers used as filtering devices,
without specific designed hardware, to face growing link speeds and to harden filtering devices against DoS and DDoS attacks. Our
work joins the two issues in an innovative way and defines a traffic adaptive algorithm to find conflict-free optimized rule sets,
by relying on information gathered with traffic logs. The proposed approach suits current technology architectures and exploits
available features, like traffic log databases, to minimize the impact of ACO development on the packet filtering devices. We
demonstrate the benefit entailed by the proposed algorithm through measurements on a test bed made up of real-life, commercial
packet filtering devices.

1. Introduction

A key challenge of secure systems is the management of
security policies, from high level ones down to the platform
specific implementation. Security policies define constraints,
limitations, and authorization on data handling and com-
munications. The growth of communication links speed
brings forward a need for improved performance of packet
filtering devices, such as firewalls and secure Virtual Private
Networks (S-VPN) gateways. To improve performance while
maintaining consistency, network security policies should
be tailored according to the network traffic. We address
specifically computer based packet filtering devices that do
not use hardware specialized filters (e.g., based on FPGAs)
and refer to that vastly widespread sequential rule list model,
which accounts for most common, computer-based filtering
devices currently deployed.

The process of inspecting incoming packets and looking
up the policy rule set for a match often results in CPU over-
load andpacket delay or even loss. As amatter of fact, rule lists
do not exceed few hundreds active rules in well-maintained,
operational packet filtering devices. Packets that match high
rank rules require a small computation time compared to
those that require scanning the whole rule set.The processing
load per packet becomes increasingly concerning as the input
line speed increases and as packet filtering functions are
assigned to a larger number of inexpensive, relatively simple
devices. Having packets matching high rank rules is not
so unlikely; for example, typically undesired or unpredicted
traffic is essentially dealt with by the “deny all” rule.

In this paper, we pursue saving of CPU power by shaping
the rule set onto the network traffic impacting the device.
The idea is to give high priority to rules intercepting a
large fraction of current traffic. Algorithms aiming at packet

Hindawi Publishing Corporation
Journal of Computer Networks and Communications
Volume 2015, Article ID 872326, 17 pages
http://dx.doi.org/10.1155/2015/872326

http://dx.doi.org/10.1155/2015/872326

2 Journal of Computer Networks and Communications

filter processing time improvements are presented in [1–6].
The nontriviality of the optimization procedures is due to
dependencies among rules, which puts constraints on rule
reordering. Disregarding such dependencies can introduce
inconsistency of policies implemented by the rule set of the
devices. As reported in a number of works [7–11], conflicts
among rules can cause holes in security, which are often hard
to detect.

We develop an algorithm to solve the rule set optimiza-
tion problem, under the constraint that the reordered rule
set be conflict-free. Leveraging on this approach, already
proposed, for example, in [5], we extend the optimization
algorithm with the extraction of new rules from the “deny
all” rule, in order to improve packet processing time further
by capturing undesired packet flows that do not match any of
the existing rules.The new rules are inserted in the rule set so
as to maintain the optimization of the processing load with
respect to the current traffic mix. The overall optimization
procedure is named Adaptive Conflict-Free Optimization
(ACO). Our test results prove that the extraction of rules
from the “deny all” rule, as done in ACO, can improve CPU
performance of packet filtering devices and it can reduce the
impact of DoS (Denial of Service) and DDoS (Distributed
Denial of Service) attacks.

We outline an adaptive procedure to automatically launch
ACO according to traffic profile measured at device inter-
faces, aiming at striking a balance between device configu-
ration updates and obtainable performance gains in a time
varying environment, where traffic mix changes over time.
Information on the network traffic mix is retrieved from
log files collected by packet filtering devices. Using log files
directly from the packet filtering device allows us to define
an adaption algorithm that can be used for different kind of
filtering, that is, whatever the fields exploited by rules are (e.g.,
header based or based on application level payload strings).

Our aim is to show how relatively simple means can gain
a performance improvement without deeply affecting hard-
ware and software of currently deployed devices, especially
in the access networks, where their number is large and they
are based on relative cheap, off-the-shelf machines.

Thepaper is organized as follows. In Section 2we describe
related works. In Section 3 we introduce the operational
scenario and the software tools we have realized to run
ACO. A detailed description of ACO algorithm is provided
in Section 4. Section 5 outlines the algorithm that launches
the ACO adaptively, according to the measured traffic mix.
In Section 6 we describe experimental results based on a
laboratory test-bed aiming at measuring ACO performance
improvement and effectiveness against DoS attacks. Finally,
we give some concluding remarks in Section 7.

2. Related Work

In [12] the Policy Core Information Model (PCIM) is
described as an object-orientedmodel for representing policy
information as extensions to the Common Information
Model (CIM) activity within the Distributed Management
Task Force (DMTF: http://www.dmtf.org/). The definition of

policy and policy rule presented in PCIM and its extension
shown in RFC-3198 [13] gave to Basile and Lioy [14] the
starting point to refine these concepts in a way useful for a
formal approach. Hari et al. [7] aim at detecting if firewall
rules are correlated to each other, while in [8, 9] a set of
techniques and algorithms are defined to detect all policy
conflicts. Along this line, [10] and [11] provide an automatic
conflict resolution algorithm for a single firewall and a tuning
algorithm for multiple cooperating firewalls, respectively.

In parallel, great emphasis has been placed on how to
optimize packet filtering devices performance. The recent
review in [15] offers a systematic comparison of traffic-
aware approaches to rule-based traffic filtering in security
devices. In [16] a simple algorithm based on rule reordering
is presented. This work describes rule dependencies using
Directed Acyclic Graphs (DAGs), yet it does not provide a
methodology to build the DAG of a given device. In addition
the proposed algorithm is unfeasible in a real environments
with large rule sets and complex graphs. Framework and
methodologies to inspect and analyze bothmultidimensional
firewall rules and traffic logs information are proposed in
[1–3]. In [1, 2] the optimization tool uses current traffic
characteristics to define rule set ordering so as to minimize
the operational cost of the firewall. Four schemes are used
to achieve this goal (hot caching, total reordering, default
proxy, and online adaptation). In [3] an adaptive firewall
optimization framework, named OPTWALL, is proposed; it
is built to reflect the current traffic pattern into rule sets.
A limit of [1–3] is that it is not defined when the update
process must be started and the weight parameters used
in the rule size estimation. The approach proposed in [4]
optimizes the performance by rule reordering, but how to
create the necessary statistics for rule weight estimation as
well as how to find dependency relations between rules is not
defined. In [5] an algorithm to optimize firewall performance
is presented; it orders the rules according to their weights
and considers two factors to determine the weight of a rule:
rule frequency and recency which reflect the number and
time of rule matching, respectively. They present two types
of update: performance-based triggered update and time-
based periodic update. We adopt a similar approach, also
taking into account for the further optimization brought
about by breaking up the default “deny-all” rule. Reference
[6] presents a process of managing firewall policy rules,
consisting of anomaly detection, generalization, and policy
update using Association Rule Mining and frequency-based
techniques. However, a complex distributed network with
multiple firewalls and log acquisition are not contemplated.
TCAM based fast packet classification is proposed in [17].
However, TCAMare expensive and power hungry, as pointed
out, for example, in [18]. Efficient packet classification by
means of an especially designed software is tackled in [19].
In [18], after a wide review of many alternatives, Lim et al.
propose and analyse the Boundary Cutting algorithm. It leads
to a decision tree data structure that can be optimised to yield
good search complexity even in very big rule lists (in the order
of 100000 rules). A heuristic approach is explored in [20],
by looking for a compromise between memory efficient trie
data structures and search efficient decision trees. Detection

Journal of Computer Networks and Communications 3

of specific packets is considered in [21], where a randomised
algorithm is considered: the emphasis here is placed on
isolating specifically targeted packets from the mass of the
wire traffic. Even though mere search performance can be
quite improved by decision tree, still complexity, power con-
sumption, and cost often call for simpler realization of packet
filtering devices. So, adapting the rule list to the current
traffic load remains a valid concept. Following that concept,
an approach similar to ours, yet based on a more complex
algorithm than the one we have developed, is defined in
[22]. In [23, 24] different traffic-aware packet classification
algorithms are defined, without considering specifically the
traffic-adaptive optimization obtained by extracting detailed
rules from the “deny all” rule. The rejection of massive
undesired traffic is addressed in [25]. Their approach can be
seen as complementary to the one here proposed, based on
the extraction of new rules from the “deny all” rule.

A third relevant and correlated issue is about the impact
of the rule extraction from the deny all string. The few
works on this topic [1, 4] do not demonstrate if and in
which cases this action benefits on CPU processing time.
Moreover, those works do not detail how many rules should
be extracted and according to which priority order. We give
an extraction algorithm coupled with rule set optimization
and demonstrate it can help relieving the effect of Denial of
Service (DoS) attacks on the packet filtering devices. DoS
attacks attempt to exhaust or disable access to resources at
the victim. These resources are either network bandwidth,
computing power, or operating system data structures. In
flooding attacks, one or more attackers send streams of
packets aimed at overwhelming link bandwidth or computing
resources at the victim [26]. This type of attack, defined in
[27], can be really dangerous because it can be performed
also by using many unaware sources of attack (Distributed
DoS), so reaching huge diffusion and volume, as shown in
[28], where a three-week analysis of a network is reported that
foundmore than 12000DoS attacks. In particular, we focused
our attention on a flooding attack towards a firewall, aiming
at making the packet filtering device collapse by means of a
huge quantity of messages matching “deny all” rule.

Current packet filtering technologies exploit traffic adap-
tive mechanisms, as take-in access list in cache [29]. In
particular, the device stores a hash table whose entries match
active packet flows andpoint at the corresponding rule/action
of the rule set (cache association). This allows scanning the
rule set only for the first packet of each active flow. Despite
this method being adaptive to network traffic, its efficiency
decreases when the size of the hash table grows. Moreover,
this approach is ineffective with a large number of different
undesired packet flows.

Finally, we give just a hint to different research directions
on packet filtering devices. High speed packet filtering by
means of specialized and optimized hardware is a prolific
topic; for example, some recent works address the use of
FPGAs (e.g., [30–33]). These works focus on optimized
hardware design or matching rule searching techniques that
can be conveniently implemented with FPGAs. Instead, in
this work we assume a general purpose computer server is
used to run the filtering machine, which is typical of access

networks devices. Another approach focuses on defining an
efficient compiler to produce optimized implementation of a
high level policy list, to minimize match search complexity
(e.g., see [34, 35]). These works focus on optimization of the
code implementing the filtering machine for the given list
of rules, while our approach aims at optimally adapting the
sorting of the rule list to the current analyzed traffic mix.
These can be seen as complementary points of view.

3. System Architecture

3.1. Definitions and Notation. We assume that security poli-
cies are translated into an ordered list of predicates of the
form: 𝐶 → 𝐴, where 𝐶 is a condition and 𝐴 is an
action. We refer to predicates implementing security policies
as rules. For security gateways and packet filtering devices,
actions 𝐴 that can be carried out on a packet are 𝑎𝑙𝑙𝑜𝑤 or
𝑑𝑒𝑛𝑦 (In IPSec gateways a third possible action is 𝑝𝑟𝑜𝑐𝑒𝑠𝑠
for packets belonging to an activated security association
needing to be encrypted and/or protected for authentication
and integrity check.). The condition of a rule is obtained
as the logical AND of a number of conditions of the type:
“selector value frompacket header/payload belongs to a given
interval or set/matches the given string.” For example, classic
implementation of network level packet filtering devices
considers five selectors:

(1) PT = 𝑝𝑟𝑜𝑡𝑜𝑐𝑜𝑙 𝑡𝑦𝑝𝑒, whose values can be represented
by eight bit integers, that is, range between 0 and 28−1;

(2) SA = 𝑠𝑜𝑢𝑟𝑐𝑒 𝑖𝑝 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 and DA = 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛
𝑖𝑝 𝑎𝑑𝑑𝑟𝑒𝑠𝑠, whose values can be represented in dotted
decimal notation and correspond to integers ranging
from 0 up to 232 − 1 (for IPv4);

(3) SP = 𝑠𝑜𝑢𝑟𝑐𝑒 𝑝𝑜𝑟𝑡 and DP = 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑟𝑡, whose
values can be represented by sixteen bit integers, that
is, range between 0 and 216 − 1.

A condition is specified by giving an interval of values
for each selector; that is, a condition can be viewed as an
interval contained in the five-dimensional, finite lattice space
𝑆
5 defined by

𝑆
5
= {0 ≤ SA ≤ 232 − 1; 0 ≤ DA ≤ 232 − 1;

0 ≤ SP ≤ 216 − 1; 0 ≤ DP ≤ 216 − 1;

0 ≤ PT ≤ 28 − 1} .

(1)

Different selectors could be considered, possibly involv-
ing header fields belonging to other layers than network one,
for example, application layer, or using strings taken from
packet payload. For example, a URL can be used in the rule
condition.The basic structure of the list as a sequence of rules
does not change though. In the end, the predicates reduce to
text strings or to numeric intervals.The selected fields of each
packet are checked against the predicates to verify whether
they correspond to the string value or are comprised within
the interval range.

4 Journal of Computer Networks and Communications

Given a rule set organized as an ordered list, each packet
delivered to the packet filtering device interfaces is checked
against each rule, following the rule ordering, until the first
matching rule is found.Then, the action of the matching rule
is applied. The last rule, 𝑅

𝑁+1
, is usually a “deny all,” that

is, a rule with wild-cards for each condition field. The “deny
all” discards any packet that has not matched any previous
rule, so it implements the principle that anything which is not
explicitly allowed must be denied. We assume there is always
a “deny all” at the bottom of the rule list.

The processing cost per packet is proportional to the
depth of the matching rule. Hence, it can be reduced by
reordering the rules according to the fraction of the input
load thatmatches each rule, under the constraint ofmaintain-
ing the dependencies among rules. The adaptation algorithm
of a tagged device is triggered only when the analysis of
the overall hit ratios of rules of that device points out that
a significant shift of the aggregated traffic mix through the
tagged device has taken place. The traffic mix is monitored
through the logs produced by the device itself, as detailed in
the ensuing subsection.

3.2. Networking Scenario. The considered scenario is made
up of packet filtering security devices deployed in a man-
aged network. Network Management Systems (NMS) allow
administrators to handle device configurations (rule lists)
and to monitor packets flowing through devices using log
messages collected and stored by the packet filtering device.

The overall architecture of the automated and adaptive
policy management system that we have built up is depicted
in Figure 1. The complete system comprises a policy conflict
resolution tool, a log management infrastructure, and a tool
that, based on log messages collected from all devices in
the network, estimates rule matching ratios and triggers
automatically and adaptively the rule set optimization process
based on traffic statistics. The focus of this paper is on the
optimization and adaptation part of the entire project.

All packet filtering devices, such as firewalls and security
gateways, are set up to collect and send a log message
reporting on packets they allow or deny as a normal part of
their operations.We exploit this feature forACO.The analysis
of log messages allows us to figure out

(i) real time traffic profile without using further devices
such as network agents;

(ii) how many rules are working and how many packets
match with each rule.

A monitoring infrastructure is developed in order to
collect and store log information into a log database (LogDB).
In our testbed logs collected fromdevices are sent by using the
“syslog” standard [36, 37]. Any other format could be used
as well, provided it is “spoken” by both the device and the
LogDB host. Figure 2 shows example data stored in LogDB.
In particular, consider the following.

(i) IP address is retrieved from “syslog” packet. It identi-
fies a device interface on the network.

(ii) Device type specifies rule list type; device could be
configured with both FW and IPSec access list (this
is an optional field).

(iii) Rule rank is the offset of the rule reported by the log
with respect to the top of the list that the rule belongs
to.

(iv) Count is number of packets that match that rule.

The optimization tool box in Figure 1 contains ACO
algorithm. It retrieves the IP addresses of device interfaces
to the networks and the device rule set from the DCDB. For
each device ACO retrieves rule hit numbers from LogDB.
Then it calculates rule weights and hence rule costs. These
are the input parameters to the optimization algorithm (see
Section 4).

Log centralization is the typical architecture used in cur-
rent corporate and telcos networks. Our architecture aims at
showing how to exploit log data collection of the NMS also to
improve efficiency of packet filtering devices. Log reporting
and updating of rule list are normally implemented functions
and a LogDB is available in most networks independently of
ACO. ACO exploits those functions for its own purposes,
namely, to enhance packet filtering efficiency and harden
them against DoS.

Packet filtering devices of the managed network are
monitored and the ACO algorithm is started when at least
one of the following events occurs:

(i) rule set is modified by the administrator (such as rule
insertion, modification, or removal);

(ii) network traffic changes, that is, a new flow starts, or
an existing flow varies its bit rate or terminates.

The first criterion is motivated mainly to check policy
consistency and the second one to optimize performance
adapting to traffic.We outline an algorithm for ACO automa-
tion in Section 5 specifically for this second situation. That is
the part referred to by “Intelligent Decision Support System”
in Figure 1.

4. Adaptive Conflict-Free Optimization (ACO)
Algorithm Description

Let R = [𝑅
1
, . . . , 𝑅

𝑁
, 𝑅
𝑁+1
] be the ordered, conflict-free rule

list, provided as input to ACO; 𝑁 is the number of rules,
besides the last rule, 𝑅

𝑁+1
, which is assumed to be “deny

all.” ACO aims at minimizing packet processing times, under
the constraint of maintaining a conflict-free rule list. For
a detailed discussion and formalization of security policy
conflicts in a rule list see [7, 8, 10]. It suffices to say that,
for a conflict-free list, any couple of rules in the list must
be either disjoint or in an inclusive matching relation. Rules
𝑅
𝑖
and 𝑅

𝑗
are disjoint if no packet can match both of them;

relative positions of 𝑅
𝑖
and 𝑅

𝑗
in the list are unconstrained.

Rule 𝑅
𝑖
is inclusive matching to 𝑅

𝑗
, denoted as 𝑅

𝑖
⊂ 𝑅
𝑗
, if

any packetmatching𝑅
𝑖
alsomatches𝑅

𝑗
but the converse does

not hold;moreover, actions associatedwith𝑅
𝑖
and𝑅

𝑗
must be

different. For the list to be conflict-free, rule 𝑅
𝑖
must precede

rule 𝑅
𝑗
(more specific rule first). The relevant point for ACO

Journal of Computer Networks and Communications 5

ACO

Aggregation

Normalization

Correlation

Intelligent
decision

support system

Configuration
management

Elsag datamat SAS

Security gateway

Firewall

IDS

Switch

Router

Network devices

Log

Log

Log

Log
Lo

g

Device
 configuration

DB

Data store
(log)

Log
file

Log
file

Notification

Conflict
resolution

module

Net administrator

1

Report

Alert

log management infrastructure
Network management system:

2
3

4

Figure 1: Overall architecture of the managed network system using the Adaptive Conflict-Free Optimization (ACO) module.

Figure 2: LogDB table example.

is that whenever two rules, say 𝑅
𝑖
and 𝑅

𝑗
, have a nondisjoint

domain, that is, there exists at least one packet that matches
both of them, those two rules are said to be dependent and
their ordering must be preserved as given in the input rule
list.

The optimization process defines a new rule listR∗, which
includes rules 𝑅

𝑖
, 𝑖 = 1, . . . , 𝑁, possibly reordered, and 𝑅

𝑁+1

(“deny all”) as the last rule. Further optimization is discussed
in Sections 4.1 and 4.2, by merging into the rule list also
rules extracted from 𝑅

𝑁+1
. The optimized list R∗ must be

equivalent to R under the point of view of security policy
implementation. Formally, for each given packet 𝑃 entering
the device interfaces, the action performed by the device
under R and R∗ must be the same.

In the following, the subscript of rules refers to their rank
in the original rule list. Let 𝑦

𝑖
denote the rank of 𝑅

𝑖
in the

(possibly reordered) list, 𝑖 = 1, . . . , 𝑁+ 1 (Since the “deny all”
is always the last rule, it is 𝑦

𝑁+!
= 𝑁 + 1; moreover, in the

original rule list it is 𝑦
𝑖
= 𝑖.). The rank 𝑦

𝑖
is proportional to

the processing cost of matching 𝑅
𝑖
; that is, for every packet

matching 𝑅
𝑖
, 𝑦
𝑖
tests are required to check all rules until

𝑅
𝑖
is hit. The weight of 𝑅

𝑖
is 𝑤
𝑖
= 𝑛
𝑖
/𝑛, where 𝑛

𝑖
is the

number of packets hitting 𝑅
𝑖
and 𝑛 is the overall number of

packets received by the considered packet filtering device.The
quantities 𝑛 and 𝑛

𝑖
, 𝑖 = 1, . . . , 𝑁, are obtained by collecting the

device logs over an observation time interval. The discussion
of how to adapt the weights𝑤

𝑖
over time is given in Section 5.

The cost of 𝑅
𝑖
is therefore 𝐶

𝑖
≡ 𝑤
𝑖
⋅ 𝑦
𝑖
. The overall cost

𝐶R(y) of the list R for a given rule ranking y = [𝑦
1
⋅ ⋅ ⋅ 𝑦
𝑁
]

(Any feasible ranking y is a permutation of the integer set
[1, 2, . . . , 𝑁].) is

𝐶R (y) = 𝐶1 + 𝐶2 + ⋅ ⋅ ⋅ + 𝐶𝑁 + 𝐶𝑁+1

=

𝑁

∑

𝑖=1

𝑤
𝑖
𝑦
𝑖
+ (𝑁 + 1) 𝑦

𝑁+1
.

(2)

6 Journal of Computer Networks and Communications

ACO output is a rule set R∗ that minimizes the packet
processing cost:

𝐶
∗

R = miny 𝐶R (y) , (3)

under the constraint that the reordered listR∗ be conflict-free
and equivalent toR; that is, if𝑅

𝑖
and𝑅

𝑗
(𝑖 < 𝑗) are dependent,

it must be 𝑦
𝑖
< 𝑦
𝑗
.

We can state the constraint in a way useful to the opti-
mization algorithm by resorting to a Pseudo-Tree data struc-
ture describing the relationships among the rules, referred to
as Device Pseudo-Tree (DPT) associated with the given rule
list. An implicit definition of the DPT goes as follows: rule 𝑅

𝑖

is a child of rule 𝑅
𝑗
if and only if 𝑅

𝑖
⊂ 𝑅
𝑗
and there does not

exist any rule 𝑅
𝑘
such that 𝑅

𝑖
⊂ 𝑅
𝑘
⊂ 𝑅
𝑗
for 𝑖 ̸= 𝑗 ̸= 𝑘. Rules

belonging to a conflict-free rule list, apart from the “deny all”
rule, can be arranged in separate trees (possibly a single one)
making up the DPT [10]. In each tree of the DPT there is a
root node which represents a rule that includes all the rules in
the tree and there are one or more leaves which represent the
most specific rules in the tree. Given the DPT associated with
R, the constraint is checked by just requiring that no rule be
assigned a rank smaller than its child rule(s); that is, scanning
the list from top to bottom we must find any parent rule after
its owndescendant rules (i.e., the rules of the subtree rooted at
the considered rule). Obviously, rules associated with disjoint
subtrees of the DPT can be placed in any relative order.

The detailed steps of ACO algorithm are described in
Appendix A. A full blown example of the procedure is
developed in Appendix B.

4.1. Extracting Rules from Deny All. If a high rate undesired
flow matches the “deny all” rule, it can be convenient to
extract a specific rule for that flow and place it at the optimum
rank in the rule list. Extracted rules are always disjoint from
all others in the rule set, so they do not cause additional
conflicts and can be placed anywhere in the rule list.However,
the inclusion of extracted rules does not necessarily improve
performance from processing load point of view.

In this section we define an algorithm for rule extraction
from the “deny all” rule. It starts by identifying the minimum
set of rules that covers the space of the denied traffic. As
outlined in Section 1, the condition 𝐶 of a rule 𝑅 : 𝐶 → 𝐴
corresponds to the interval of the five-dimensional lattice 𝑆5
described by the selector values specified in the rule condition
𝐶.We denote the interval associatedwith rule𝑅

𝑗
, withI(𝑅

𝑗
).

Let R be the set of indices of rules that are roots of the
trees forming the DPT. The only rule more general than any
𝑅
𝑖
, 𝑖 ∈R, is the “deny all” rule. So, for the nonredundancy of

the rule list, the action associatedwith𝑅
𝑖
, 𝑖 ∈R, is necessarily

allow. Then, the subspace A ⊂ 𝑆
5 comprising all allowed

flows is given by

A = ⋃
𝑖∈R

I (𝑅
𝑖
) . (4)

Let us define D as the complementary space of A in 𝑆5;
namely, D = 𝑆

5
\ A. We are interested in the minimum

partition ofD into intervals; that is,

D =
𝑀

⋃

𝑘=1

I (𝑅
𝑒,𝑘
) , (5)

where the intervals I(𝑅
𝑒,𝑘
) are disjoint. This partition is

not unique and can be obtained efficiently, for example,
by using the same techniques as in ARC/PARC (Adaptive
Resolution Classifier/Pruning ARC) min-max neurofuzzy
classifiers [38].

Once the intervals I(𝑅
𝑒,𝑘
) of the partition of D are

found, we are given the list L
𝑒
of extractable rules, L

𝑒
=

[𝑅
𝑒,1
, . . . , 𝑅

𝑒,𝑀
], to insert in the optimized rule setR∗ in order

to achieve a reduction of device processing load. Only those
rules from L

𝑒
that lead to a significant processing effort saving

are included into R∗. This depends on the weight 𝑤
𝑒,𝑘

of
𝑅
𝑒,𝑘
, that is, the fraction of packets matching 𝑅

𝑒,𝑘
during the

observation interval.
For each 𝑅

𝑒,𝑘
in L
𝑒
, rule weight 𝑤

𝑒,𝑘
in the observed time

interval 𝑇 can be computed as𝑤
𝑒,𝑘
= 𝑥
𝑒,𝑘
⋅𝑤
𝑁+1

, where 𝑥
𝑒,𝑘

is
the share of packets blocked by the “deny all” rule that match
𝑅
𝑒,𝑘

and 𝑤
𝑁+1

is the “deny all” weight. We assume that the
numbering of rules 𝑅

𝑒,𝑘
is arranged so that they are listed in

order of decreasing values of 𝑤
𝑒,𝑘
; that is, it is 𝑤

1,𝑒
≥ 𝑤
2,𝑒
≥

⋅ ⋅ ⋅ ≥ 𝑤
𝑀,𝑒

. Let L∗
𝑒
= [𝑅
𝑒,1
, 𝑅
𝑒,2
, . . . , 𝑅

𝑒,𝑀
] be the new list.

4.2. Inserting Rule Extracted from Deny All String. This phase
consists of the insertion into R∗ of 𝑡 rules (0 ≤ 𝑡 ≤ 𝑀),
taken from L∗

𝑒
. Thanks to the all disjoint relations among

the rules in L∗
𝑒
and among these rules and the ones in R∗,

the extracted rules 𝑅
𝑒,𝑖
can be inserted in any position of R∗

without generating conflicts.
Given the rule list R∗, let its cost be

𝐶 (R∗) =
𝑁

∑

𝑘=1

𝑘𝑤
𝑘
+ (𝑁 + 1)𝑤𝑁+1. (6)

When 𝑅
𝑒,𝑖
is inserted into R∗ with rank ℎ the following cost

is obtained:

𝐶 (R∗ ∪ 𝑅
𝑒,𝑖
) =

ℎ−1

∑

𝑘=1

𝑘𝑤
𝑘
+ ℎ𝑤
𝑒,𝑖

+

𝑁

∑

𝑘=ℎ

(𝑘 + 1)𝑤
𝑘
+ (𝑁 + 2) (𝑤

𝑁+1
− 𝑤
𝑒,𝑖
)

= 𝐶 (R∗) +
𝑁+1

∑

𝑘=ℎ

𝑤
𝑘
− 𝑤
𝑒,𝑖
(𝑁 + 2 − ℎ) .

(7)

Equation (7) shows that 𝐶(R∗ ∪ 𝑅
𝑒,𝑖
) is a decreasing

function of the weight 𝑤
𝑒,𝑖
for a given value of ℎ. So, to reap

the maximum gain (cost reduction), insertion should start
from the extracted rule with the biggest weight. Once the
optimum insertion location for this rule is found, the second

Journal of Computer Networks and Communications 7

biggest weight extracted rule can be considered and so on. By
virtue of the ordering of L∗

𝑒
, the insertion algorithm starts by

considering 𝑅
𝑒,1

and finds a value for ℎ
1
, that is, the rank of

𝑅
𝑒,1

inR∗∪𝑅
𝑒,1
, whichminimizes the overall rule list cost. To

achieve this goal we should perform an exhaustive search. If
the obtainedminimumcost is less than the cost of the original
list R∗, then R∗ is updated by adding the extracted rule 𝑅

𝑒,1
.

The algorithm stores the updated list and its overall cost, and
then it goes on evaluating the insertion of𝑅

𝑒,2
and so on, until

it evaluates the insertion of all𝑀 rules of L∗
𝑒
.

As a result of the insertion of extracted rules, we obtain𝑀
expanded rule lists,R∗

𝑘
≡ R∗∪𝑅

𝑒,1
∪⋅ ⋅ ⋅∪𝑅

𝑒,𝑘
of length𝑁+𝑘+1

(including the “deny all” rule), where the 𝑘 added rules have
been assigned positions ℎ

1
, . . . , ℎ

𝑘
, respectively, 𝑘 = 1, . . . ,𝑀.

The corresponding costs are denoted as Γ
𝑘
≡ 𝐶(R∗

𝑘
); by

extension, we set also Γ
0
≡ 𝐶(R∗). Since any benefit brought

by the insertion of 𝑅
𝑒,𝑘

grows up with𝑤
𝑒,𝑘

and rules of L∗
𝑒
are

ordered by decreasingweights, the sequence of obtained costs
{Γ
𝑘
}
0≤𝑘≤𝑀

is unimodal; that is, it has a unique minimum, say
for index ℎ∗. Then ℎ∗ ≥ 0 is the optimum number of rules to
be extracted from the “deny all” and it can be found at a cost
linear with𝑀.

5. Traffic Driven Adaptation of ACO

The trafficmix at the input of a packet filtering device changes
over time, so that each rule is matched by a varying number
of packets as new traffic flows set on or running ones end up.
The changing traffic mix impacts ACO since the weights 𝑤

𝑖

of the rule list cost function defined in Section 4 are just the
fraction of packets matching rule 𝑅

𝑖
.

To address this issue we follow the same approach devel-
oped, for example, in [5, 39]. We define an adaptive, event
driven mechanism to trigger running of ACO, including
the rule extraction from “deny all.” The key elements of
our proposed mechanism are (i) collection of device log
information; (ii) statistical testing based on log data, to
estimate trafficmix variation over time; (iii) extraction of rule
from “deny all,” provided the cost of the added rules is more
than compensated by the processing gain.

The logic of ACO adaption is as follows. Let 𝑡
𝑘
be the last

time that the rule list of the tagged device has been updated.
Logs are collected from the packet filtering device, so that the
management system can track the number 𝑛

𝑖
(𝑘) of packets

matching rule 𝑅
𝑖
(𝑖 = 1, . . . , 𝑁) and the overall number

𝑛(𝑘) of packets arrived at the device over the time interval
of duration [𝑡

𝑘
, 𝑡
𝑘
+ 𝑇
𝑘
]. The collection time 𝑇

𝑘
is defined

so as enough logs are accumulated to evaluate a statistically
reliable estimate of the packet traffic fractions matching each
rule; that is, 𝑤

𝑖
(𝑘) = 𝑛

𝑖
(𝑘)/𝑛(𝑘), 𝑖 = 1, . . . , 𝑁, and 𝑤

𝑁+1
(𝑘) =

1 − ∑
𝑁

𝑖=1
𝑤
𝑖
(𝑘). The weight vector w(𝑘) = [𝑤

1
(𝑘) ⋅ ⋅ ⋅ 𝑤

𝑁+1
(𝑘)]

estimated at time 𝑡
𝑘
+ 𝑇
𝑘
is compared to the previous one,

w(𝑘 − 1), that has been used to optimize the rule list at time
𝑡
𝑘
. We test the hypothesis that the two weight vectors are

drawn from the same probability distribution, by using the
Chi Square test. If the hypothesis is inconsistent with the data
(i.e., there is statistically reliable evidence that the input traffic
mix has changed) a new optimization of the rule list is run, by

taking the new weights equal to w(𝑘). On the contrary, a new
collection period starts and the whole process repeats all over
again.

The automation algorithm is run individually for each
device. The processing can be centralized in a network
management system, by downloading logs accumulated by
the filtering devices and storing them into the LogDB. The
Algorithm 1 summarizes the steps carried out by the ACO
Decision Support System (ACO-DSS) to adapt the rule list
according to the filtered traffic mix. The ACO-DSS samples
the LogDB, to check whether the number of packets 𝑛(𝑘)
listed in the collected logs for the considered device in the
𝑘th sampling interval of duration𝑇

𝑘
is larger than a threshold

value 𝑇𝐻1. If that is the case, the Chi Square statistical
test is performed. If the test detects that the traffic mix has
changed, ACO is run, including extraction of rules from
“deny all.” The performance gain of the resulting optimised
list is assessed and compared with a threshold 𝑇𝐻3. The new
list is implemented if the performance gain is big enough.

The parameters𝑇𝐻1 and sampling time𝑇
𝑘
can be dimen-

sioned based on the following guidelines. Let us consider
the 𝑘th sampling interval, drop the subscript 𝑘 for simplicity,
and let 𝜗 be the probability that a packet belongs to a given
flow. The unbiased, asymptotically consistent estimator of 𝜗
is 𝜗 = 𝑥/𝑛, where 𝑥 is the number of packets belonging to
that flow out of the 𝑛 logs collected in the considered interval.
The relative root mean square error of this estimator is E =
RMSE(𝜗)/𝐸[𝜗] = √(1 − 𝜗)/(𝑛𝜗) < 1/√𝑛𝜗 ≈ 1/√𝑥. This can
be made less than a given error 𝜖 (we set 0.01), by taking 𝑥
bigger than 1/𝜖2 (10000 in our case). Accurate estimates of
traffic flow rates are required especially for the largest flows,
those that have the biggest impact on processing resources
of the device so that their filtering can be optimized most
profitably. Let 𝜉 be the fraction of the device max throughput
𝜇 such thatwewant accurate estimates for those flows offering
at least 𝜉𝜇 pkts/s. Then, we should set 𝑇

𝑘
so that 𝜉𝜇𝑇

𝑘
≥ 1/𝜖
2.

For example, let 𝜇 = 42000 pkts/s, as in Section 6, and let
𝜉 = 0.05; that is, we aim at estimating accurately those
flows whose rate is equal to or bigger than 5% of the device
throughput.Then it must be 42000⋅0.05⋅𝑇

𝑘
= 10000, whence

𝑇
𝑘
≥ 4.65 s. Even if the input rate of the input packet flow is

two orders of magnitude less than the example above, still the
requirement on 𝑇

𝑘
would be in the order of some hundred

seconds. The fine tuning of 𝑇
𝑘
should be carried out in the

specific networking environment where the packet filtering
device is deployed. This issue is further discussed at the end
of this section.

The decision about traffic mix changing exploits the Chi
Square test (CST), to determine if the current sample weight
vector belongs to the same probability distribution as the
previous one (see also [39]). The choice of the significance
level 𝛼, namely, the probability of false positive errors, is
guided also by the observation that false positive errors are
more critical than false negative errors. As amatter of fact, the
latter implies that a real shift of traffic mix is overlooked: in
that case all device rule lists stay the same so they might turn
to be nonoptimized against the current traffic mix. In case
of a false positive error, device rule lists would be updated

8 Journal of Computer Networks and Communications

(1) for 𝑑𝑒V← 1 to𝑁
𝑑𝑒V𝑖𝑐𝑒 do

(2) if 𝑇𝑖𝑚𝑒𝑟(𝑑𝑒V) 𝑒𝑥𝑝𝑖𝑟𝑒𝑑 then
(3) 𝑛

𝑗
← # logs matching rule 𝑅

𝑗
for device dev

(4) 𝑛 ← # logs collected for device 𝑑𝑒V
(5) if 𝑛 ≥ 𝑇𝐻1 then
(6) 𝑋

𝑗
← 𝑛
𝑗
/𝑛, 𝑗 = 1, . . . , 𝑁𝑟𝑢𝑙𝑒𝑠(𝑑𝑒V)

(7) 𝑞 ← ∑
𝑁𝑟𝑢𝑙𝑒𝑠(𝑑𝑒V)
𝑗=1

(𝑋
𝑗
− 𝑌
𝑗
)
2
/𝑌
𝑗

(8) if 𝑞 > 𝑇𝐻2 then
(9) 𝑌

𝑗
← 𝑋
𝑗
, 𝑗 = 1, . . . , 𝑁𝑟𝑢𝑙𝑒𝑠(𝑑𝑒V)

(10) Extract rules from “deny all”
(11) Optimize rule list of device dev
(12) Evaluate percentage Cost Reduction pCR
(13) if 𝑝𝐶𝑅 ≥ 𝑇𝐻3 then
(14) Upload optimized rule list into device dev
(15) end if
(16) end if
(17) end if
(18) 𝑇𝑖𝑚𝑒𝑟(𝑑𝑒V) ← 𝑇
(19) end if
(20) end for

Algorithm 1: ACO automation.

erroneously, since a traffic mix change is estimated whereas
no actual change has occurred. The choice of the 𝛼 level
depends on error cost weighting of specific applications. We
set 𝛼 = 0.01.

Let 𝑋
𝑗
= 𝑛
𝑗
(𝑘) be the number of logs matching rule 𝑅

𝑗

in the current observation interval and 𝑌
𝑗
= 𝑛
𝑗
(𝑘 − 1) the

number of logs for which the rule list is currently optimized.
The test variable is

𝑞 =

𝑁+1

∑

𝑗=1

(𝑋
𝑗
− 𝑌
𝑗
)
2

𝑌
𝑗

. (8)

The null hypothesis is that the outcomes 𝑋
𝑗
are drawn

from the same probability distribution as the 𝑌
𝑗
, 𝑗 =

1, . . . , 𝑁 + 1. The test variable 𝑞 in case of null hypothesis is
asymptotically distributed as a Chi Square with𝑁 degrees of
freedom for large sizes of the collected log sample. Hence 𝑞 is
compared with the Pearson threshold for the Chi Square test;
namely, TH2 ≡ 𝜒2

𝑁,1−𝛼
, the (1 − 𝛼) quantile of the Chi Square

random variable with 𝑁 degrees of freedom. For 𝑁 ≫ 1, it
is 𝜒2
𝑁,1−𝛼

≈ 𝑁 + Γ
1−𝛼
√2𝑁, where Γ

1−𝛼
is the 1 − 𝛼 quantile

of the standard Gaussian random variable. For 𝛼 = 0.01 it is
Γ
99
= 2.576.
If 𝑞 ≤ TH2, the null hypothesis is accepted and the traffic

mix is deemed to be unchanged. Then, the logs gathered in
the last observation interval are discarded. In case the traffic
mix is estimated to have changed, ACO is run, including the
extraction of rules from “deny all.” The amounts of obtained
performance improvement do not necessarily justify the
upload of the new rule lists. They are sent to the devices only
if there is enough performance improvement to be gained.
This is realized by means of threshold TH3, expressing the
minimumpercentage cost reduction (costRed%) that triggers

upload of the new configuration into the DCDB and hence
to the filtering devices (TH3 = 5%). The choice of TH3
is a trade-off between the benefits of the optimization and
the costs of the configuration upload. These costs may be of
different type, for example, unavailability of the device for a
certain period of time (reset on upload), security issues, or
reduced device redundancy. Note also that the benefits of the
optimizationmay vary depending on the network devices and
traffic, which is why TH3 should be chosen according to the
specific scenario in which ACO is deployed.

A critical point for ACO automation to be feasible is the
expected time scale of traffic mix variation. That depends on
the specific networking context.We address specific examples
in the next section, where the traffic mix changes due to a
DoS attack that introduced abruptly new packet flows in an
attempt to saturate the input capacity of the packet filtering
device.

As an example of “ordinary” traffic variation over time
(not affected by DoS attacks), we show in Figure 3 two traffic
measurements taken from a tier-1 level Italian ISP operational
public network (input and output traffic profiles are plotted
on the positive and negative ordinates, resp.). The top graph
reports the http/https traffic impacting aweb portal of amajor
company. The traffic profile refers to a single IP address/port
number (80) and is plotted in units of packets/s. The bottom
graph shows UDP traffic impacting an authoritative DNS
server (unique IP address/port number 53).

In both cases, it is apparent that significant changes of
the volume of traffic of each flow occur over a time scale in
the order of hours. This provides the opportunity to relax
the requirement on the observation time interval to collect
a reliable statistical sample of logs and determine when a

Journal of Computer Networks and Communications 9

Tue Wed Thu Fri Sat Sun Mon

(p
ac

ke
ts/

s)

−6k
−2k
2k
6k
10k
14k
18k

(a)

50
40
30
20
10
0

−10
−20
−30
−40
−50

Tue Wed Thu Fri Sat Sun Mon

(p
ac

ke
ts/

s)

(b)

Figure 3: Examples of traffic flow time variation of a flow packet rate (pkts/sec) in public operational networks (packets in: positive y/packets
out: negative y): (a) http/https flow in a major company web portal; (b) DNS traffic towards an authoritative DNS server.

Net1 Net2

Firewall

Net3

Legitimate traffic

Legitimate traffic

DoS traffic

PC1 PC2

PC3 (attacker)

Figure 4: Test-bed layout for performance evaluation of ACO.

significant change occurs. It also relaxes the computational
power requirements to run ACO.

6. Performance Evaluation of ACO

We carried out an experimental evaluation of the benefits of
rule set optimization and rule extraction from “deny all.” We
set up a test-bed, outlined in Figure 4 and consisting of three
Fast Ethernet subnets (physical link capacity: 100Mbps).
Two of them, net1 and net2, are connected by a single
packet filtering device Amtec SAS 1000, referred to simply
as “filtering device” in the following. The device rules are
configured so that only traffic between net1 and net2 is
allowed. Attacking flows originate from net3 and all of them
match the “deny all” rule; hence they have the maximum
possible processing cost.

The filtering device used in the experiments runs many
security functions (i.e., known attacks detection, activity
logging), which makes the test-bed a close picture of a real
operational environment yet it forbids simple mathematical
modeling of CPU activity. So, we run black box tests and we
take packet loss ratio and packet throughput of a tagged flow
through the filtering device as key performance indicators.

In Section 6.1 we discuss tests aimed at evaluating benefits
of rule set optimization on processing performance of a

0.00
50.00

100.00
150.00
200.00
250.00
300.00
350.00
400.00
450.00
500.00

0.00 20.00 40.00 60.00 80.00 100.00
Cost reduction (%)

G
ai

n
(p

ac
ke

t/s
) (

%
)

30.1Mbit/s (58594 packets/s @Tx)
20.5Mbit/s (39063 packets/s @Tx)
10Mbit/s (19531 packets/s @Tx)

Figure 5: Filtering device throughput gain versus the tagged flow
rule cost reduction for different values of the tagged flow inbound
packet rate.

packet filtering device. Section 6.2 deals with performance
improvement by means of rule extraction from “deny all,”
specifically benefits in rejecting Denial of Service attacks.

6.1. Effect of Rule Cost Optimization. To evaluate the packet
filtering device performance improvement obtainable as a
function of the position of rules inside the list, we have
generated UDP flow from net1 to net2 with a carried rate
(throughput) 𝜆

0
when the rank of the rule matching that flow

is 𝑟
0
. In Figure 5 we plot the throughput gain (𝜆 − 𝜆

0
)/𝜆
0

as a function of the processing cost reduction (𝑟
0
− 𝑟)/𝑟

0
,

as the matching rule rank is decreased from 𝑟
0
to 1. Three

different values of the inbound packet rates are considered.
In all three considered cases, IP packets are 64 bytes long; it
is 𝑟
0
= 150 and 𝜆

0
ranges between 3200 and 3428 packets/s

(Some dispersion of numerical results of experiments is due
to the well known burstiness of traffic generation bymeans of
IPERF [40].).

The results in Figure 5 show that the percentage through-
put improvement grows with packet rate. This is a useful
feature of ACO, since the demand for lowering the processing
cost arises, when the traffic intensity increases. On the
contrary, the less the inbound packet rate is, the less the
optimization benefit is.

10 Journal of Computer Networks and Communications

6.2. DoS Rejection Capability via Extraction of Rules from
“Deny All”. ACO can provide help in relieving the effect of
DoS and DDoS attacks on the packet filtering devices. Denial
of Service (possibly Distributed DoS) aims at overloading
the CPU of the device by throwing a large amount of traffic
on it, consisting of flows not envisaged in the policy design.
These flows are discarded by virtue of the “deny all” rule, but
this requires the entire list to be checked before a decision
is taken on each packet. Even cache based accelerators can
be ineffective, if a large number of different, undesired flows
are thrown against a filtering device. That is not difficult
to obtain, for example, by randomly changing source port,
destination port, protocol type, or source address fields. ACO
rule extraction from “deny all” can provide aggregated rules
able tomatch the undesired traffic.Those rules can bemerged
in the rule list by the optimization procedure, so accounting
for their weight in terms of matched packets.

ACO cannot be the only defence against DoS/DDoS
attacks, especially when inbound link is saturated by anoma-
lous traffic. In this case only the provider can definitely
remove the effect of DoS/DDoS by disconnecting malicious
sources of traffic. Despite that, we show that ACO is effective
in detecting and reacting to DoS/DDoS attacks by relieving
CPU load and protecting legitimate traffic.

Because of the limited number of associations that can be
created and their single flow nature, cache based acceleration
of processing works best with static traffic patterns. If a big
surge of traffic made up of a large number of different and
varying flows hits the filtering device, cache association is
essentially ineffective. Extraction of rules from “deny all”
as carried out in ACO aims at addressing this problem so
as to complement the cache acceleration mechanism, by
minimizing the time needed to match a packet. This is
obtained by extractingmaximally aggregated deny rules from
the “deny all” and bringing them as close to the top of the rule
set as dictated by the fraction of the inbound traffic hitting
that rule.

The effectiveness of ACO is measured from a user point
of view, as suggested in [41, 42], by injecting into the security
device an allowed flow and measuring its degradation under
the DoS attack. The considered types of legitimate traffic in
our test-bed are TCP and UDP flows, as in [43], and FTP
transactions. To measure network performances we take the
following key performance indicators:

(i) long-term average net throughput for TCP and UDP;
(ii) average file transfer speed (in Mbit/s) for FTP.

For each type of legitimate traffic we vary the DoS attack-
ing flow bit rate from 1Mbit/s up to 35Mbit/s. According to
a worst case scenario, we set the attacking flow packet size
to 40 bytes, so that attacking flow packet rates range from
3124 packets/s for a bit rate of 1Mbit/s up to 110655 packets/s
for a bit rate of 35 Mbit/s.

Results are shown in Figures 6, 7, and 8 for TCP, UDP,
and FTP traffic, respectively. Each experiment consists of
launching a legitimate flow. Let 𝑡

0
= 0 denote the start time

of the experiment. All legitimate flows are set so that the
filtering device processes themwithout any packet loss in case

80

70

60

50

40

30

20

10

0
0 100 200 300 400 500 600

TC
P

ba
nd

w
id

th
 (M

bi
t/s

)

DoS at 3@124pkts/s
DoS at 15@626pkts/s
DoS at 31@247pkts/s
DoS at 47@576pkts/s

DoS at 62@429pkts/s
DoS at 83@092pkts/s
DoS at 99@730pkts/s
DoS at 110@655pkts/s

Time (s)

Figure 6: TCP sending rate sample path over 600 s, with DoS attack
starting at time 200 s and ACO rule extraction and optimization
carried out at time 400 s.

of no DoS attack. Performance worsening is only due to the
onset of the attacking flow starting from time 𝑡

1
= 200 s. At

time 𝑡
2
= 400 s ACO is run (The numerical values of these

times are chosen to ease graph display; the reaction time of
the automated ACO algorithm is in the orders of seconds;
see Section 5.): a rule that captures the DoS flow is extracted
from the “deny all” and the overall rule list is optimized as
described in Section 4.The experiment run is stopped at time
𝑡
3
= 600 s.
When the attack starts, performance of the legitimate flow

degrades abruptly. After the extraction performed by ACO, it
improves, in some cases getting back to the value observed
prior to the attack. The legitimate flows react in different
ways, according to the functionality of each protocol. For
example, Figure 6 shows that TCP suffers major throughput
loss even under a relatively mild attack (3124 pkts/s), due to
TCP congestion window shrinking on packet loss detection.
After ACO extraction of a rule filtering the attacking flow
and optimization of the rule list, the device can process
packets faster, thus reducing loss events and allowing TCP to
attain a higher sending rate. UDP case is completely different
(Figure 7), since there is no closed loop congestion control
mechanism and datagram retransmission. In this case ACO
extraction turns out to bring about a major performance
improvement. The extraction phase of ACO is quite effective
against DoS attack also in FTP case, as shown in Figure 8.

For each legitimate traffic and for each attack packet rate,
we calculate the percentage improvement (PI) of the relevant
performance indicator due to rule extraction from the “deny
all” rule. PI of a given performance indicator 𝑋 is defined as
follows:

PI
𝑋
= 100 ×

𝐸 [𝑋
𝐴
] − 𝐸 [𝑋

𝐵
]

𝐸 [𝑋
𝐵
]

, (9)

where 𝐸[𝑋
𝐵
] ≡ Value of 𝐸[𝑋] 𝑏𝑒𝑓𝑜𝑟𝑒 ACO execution and

𝐸[𝑋
𝐴
] ≡ Value of 𝐸[𝑋] 𝑎𝑓𝑡𝑒𝑟 ACO execution.

The two average values are taken over 200 s time intervals.
𝐸[𝑋
𝐴
] is the average of the performance indicator from

𝑡 = 200 s up to 𝑡 = 400 s, whereas 𝐸[𝑋
𝐵
] is computed by

Journal of Computer Networks and Communications 11
U

D
P

rx
/tx

 p
ac

ke
ts

ra
tio

0 100 200 300 400 500 600 700

Time (s)

1.1

1.0

0.9

0.8

0.7

0.6

0.5

DoS@ 3.124 pkts/s
DoS@ 15.626pkts/s
DoS@ 31.247pkts/s
DoS@ 47.576pkts/s

DoS@ 62.429pkts/s
DoS@ 83.092pkts/s
DoS@ 99.730pkts/s
DoS@ 110.655pkts/s

Figure 7: Sample path over 600 s of the ratio between sending and
receiving rates of a UDP flow, with DoS attack starting at time 200 s
and ACO rule extraction and optimization carried out at time 400 s.

averaging the performance indicator from 𝑡 = 400 s up to
𝑡 = 600 s. In the setup of these experiments, we force the
execution of ACO at time 𝑡 = 400 s, to let the time for stable
regime be reached both before and after ACO execution.

In Figure 9 PI of the average download speed is plotted for
FTP as a function of the attacking flow packet rate 𝜇. Other
cases are qualitatively similar to this one. For DoS attack at
packet rates lower than about 6500 pkts/s the obtained PI is
very low, so in those cases ACO rule extraction is not really
needed. For bigger values of the attack flow packet rate the
PI grows reaching a maximum for 𝜇 ≈ 62400 pkts/s and
then it decreases somewhat, still hovering around 60%. Even
under a heavy attack, performing ACO rule extraction and
optimization allows users to download a file via FTP more
than twice faster as compared to a nonoptimized rule list.

ACOcan be also exploited againstDDoS attacks, since the
rules extracted from the “deny all” include aggregates of flows:
they are actually themost general rules that cover the selector
parameter subspace complementary with the subspace of
allowed flows. So, a small set of rules can deal with all possible
DDoS flows. When DDoS attack flows, possibly generated
from different sources, match with a single extracted rule, the
distributed attack is faced by ACO just as if it were a DoS
attack from a single source. To demonstrate this robustness
of our approach, we perform an experiment keeping the test
methodology and network scenario same as before, except
that three different attacking flows are generated in net3,
originating from three different PCs. Attacking flows are such
that a single extracted rule matches all attacking flows. For
space reasons we do not show all DDoS test results, but just
the PI for every legitimate flows (Table 1). Attacking flows
aggregate bit rates used in the experiments are as high as
about 80Mbit/s. Even against such powerful attacks, the
provision of ACO rule extraction and optimization reaps a

45.00

40.00

35.00

30.00

25.00

20.00

15.00

10.00

5.00

0.00
0 20 40 60 80 100 120 140

FTP transaction index

FT
P

tr
an

sfe
r s

pe
ed

 (M
bp

/s
)

DoS 3124pkts/s
DoS 15626pkts/s
DoS 31247pkts/s
DoS 47576pkts/s

DoS 62429pkts/s
DoS 83092pkts/s
DoS 99730pkts/s
DoS 110655pkts/s

Figure 8: FTP transfer speed sample path for 120 transactions
with DoS attack starting after 40 transactions and the extraction
performed after 80 transactions.

3.
12

4

15
.6

26

31
.2

47

47
.5

76

62
.4

29

83
.0

92

99
.7

30

11
0.

65
5

0.00%

50.00%
66.67%

100.00%

165.19%

86.27%

60.98%
64.46%

0.00
20.00
40.00
60.00
80.00

100.00
120.00
140.00
160.00
180.00

Attack packet rate (pkt/s)

FT
P

tr
an

sfe
r s

pe
ed

pe

rc
en

ta
ge

 im
pr

ov
em

en
t (

%
)

Figure 9: FTP transfer speed percentage improvement (PI) for
average download speed after ACO rule extraction from “deny all”
and optimization as a function of the attacking flow packet rate.

performance gain up to about 60% (FTP case) with respect
to the degradation due to the attack.

7. Conclusions

This work focuses on optimization techniques for packet
filtering devices such as firewall and security gateways. The
basis of our proposal is the reduction of the packet processing
cost relying on traffic observed on the network. Our tool
collects traffic information by means of logs, sent by the
managed devices, and exploits them to reorder the device
rule set. Furthermore, it creates new rules extracted from
the “deny all” rule to match input traffic flows that are not
captured by other rules.This last feature can be useful against
DoS/DDoS attacks.

12 Journal of Computer Networks and Communications

Table 1: Percentage improvement (PI) of the efficiency parameter
due to ACO rule extraction and optimization as a function of
attacking flow packet rate, for TCP, UDP, and FTP legitimate flows.

𝜇 [pkts/s] TCP PI [%] UDP PI [%] FTP PI [%]
3124 — 0.04 0.00
6553 0.00 0.03 50.00
9830 27.29 0.47 50.00
13107 17.84 1.96 40.49
15626 20.93 3.61 66.67
31247 12.02 5.50 64.37
47576 26.58 17.55 72.79
62429 33.73 34.71 104.02
83092 21.87 32.92 64.51
99730 22.16 22.00 65.81
110655 20.61 23.65 64.71
131072 21.47 26.88 63.34
196608 18.83 26.59 68.42
262144 18.92 27.20 64.93

We have implemented ACO in an experimental testbed
and measured the effect of ACO. Results point out that rules
reordering entails a tangible improvement of packet filtering
device processing performance. We have also tested the anti-
DoS functionality of ACO extraction phase, measuring the
attacks impact on legitimate traffic, and we have demon-
strated that, for attacks with packet rate higher than a critical
value, extracting rules from “deny all” allows legitimate users
under attack to reach a performance improvement between
30% and 60% in most cases.

Appendices

A. ACO Procedure Details

ACO target can be stated as follows: find a ranking y that
minimizes the rule list cost 𝐶R(y) in (2), under the constraint
that 𝑦

𝑖
< 𝑦
𝑗
if 𝑅
𝑖
≻ 𝑅
𝑗
in the DPT defined in Section 4. With

reference to the DPT, we write 𝑅
𝑖
≻ 𝑅
𝑗
if 𝑅
𝑖
belongs to the

subtree rooted in 𝑅
𝑗
.

Let R = [𝑅
1
, . . . , 𝑅

𝑁
, 𝑅
𝑁+1
] be the conflict-free rule list

given as ACO input. We place the “deny all” rule on top of
the DPT associated with R as a common root, thus formally
making this structure a tree, which we refer to as Rule Tree
(RT).

We define a reduction process of RT, starting from the
leaf rules and reducing subtrees into single nodes, with an
associated ordered partial rule list. The idea is that we start
out with “atomic” lists made up of the single rule associated
with each node of the DPT; then we visit the DPT starting
from the leaves up to the root and we merge partial rule lists
associatedwith visited nodes into a bigger list, withminimum
cost and verifying the constraint. This procedure breaks up
the problem of finding the optimal ordering of all rules into
solving subproblems, consisting of merging two optimized
lists into a bigger, still optimized one, until we end up with
a list including all rules.

Let 𝑅
𝑋
denote the rule associated with node 𝑋 of RT.

Let 𝜇
𝑛
(L
1
, . . . , L

𝑛
) be the list merging function, whose inputs

are 𝑛 (optimized) rule lists and output is a unique optimized
ordered list encompassing all rules appearing in the 𝑛 input
lists. The steps of the reduction algorithm are as follows.

(1) Initialization. Set 𝑘 = 0, G(0) ≡ RT, and L
𝑋
= [𝑅
𝑋
]

for each𝑋 ∈ G(0).
(2) Leaf Node Reduction. Take all leaf nodes
𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑆
, which are children of the same

parent node 𝑌 in the tree G(𝑘), remove them, and
label 𝑌 with the ordered rule list L

𝑌
= [𝜇

𝑆
(L
𝑋
1

,

L
𝑋
2

, . . . , L
𝑋
𝑆

), 𝑅
𝑌
]; repeat until all (original) leaves of

G(𝑘) are removed.
(3) Stop Condition. Let T be the residual tree after the

reduction in step (2) above. If the depth ofT is greater
than 1, letG(𝑘 + 1) = T, replace 𝑘 with 𝑘 + 1, and go
back to step (2).

Since the depth of the RT is reduced by one at each step,
the algorithm terminates in a finite number of steps, say 𝐾.
The ordered list associated with the unique node of G(𝐾) is
the optimized rule list R∗. The list merging function 𝜇

𝑛
(⋅) is

applied to 𝑛 disjoint rule lists L
𝑗
of length ℓ

𝑗
(𝑗 = 1, . . . , 𝑛) and

yields a list L of length∑
𝑗
ℓ
𝑗
. For 𝑛 ≥ 2 it is defined recursively

by

𝜇
𝑛
(L
1
, L
2
, . . . , L

𝑛
) = 𝜇
2
(𝜇
𝑛−1
(L
1
, L
2
, . . . , L

𝑛−1
) , L
𝑛
) , (A.1)

with 𝜇
1
(L
1
) ≡ L
1
. It suffices to specify the merge function for

two lists, that is, 𝜇
2
(L
𝑎
, L
𝑏
). The function 𝜇

2
(L
𝑎
, L
𝑏
) merges

the minimum cost lists L
𝑎
and L

𝑏
into a single minimum cost

list L satisfying theDPT constraint, provided that both L
𝑎
and

L
𝑏
separately do satisfy the same constraint.
The algorithm to form L = 𝜇

2
(L
𝑎
, L
𝑏
) can be described

inductively. Let L
𝑎
= [𝑎
1
, . . . , 𝑎

𝑛
] and L

𝑏
= [𝑏
1
, . . . , 𝑏

𝑚
] be

two minimum cost lists, satisfying the DPT constraints. Let
also𝑊

𝑎,𝑘
denote the sum of weights of rules [𝑎

𝑘
, . . . , 𝑎

𝑛
] for

𝑘 = 1, . . . , 𝑛, and let 𝑊
𝑏,ℎ

denote the sum of weights of
rules [𝑏

ℎ
, . . . , 𝑏

𝑚
], for ℎ = 1, . . . , 𝑚. Finally, let M be the

matrix defined implicitly by the recurrence𝑀
𝑖,𝑗
= min{𝑊

𝑎,𝑖
+

𝑀
𝑖,𝑗+1
,𝑊
𝑏,𝑗
+ 𝑀
𝑖+1,𝑗
} and𝑀(𝑖, 𝑛 + 1) = 𝑀(𝑚 + 1, 𝑗) = 0 for

𝑖 = 1, . . . , 𝑛 + 1; 𝑗 = 1, . . . , 𝑚+ 1. Then consider the following.
(1) Set 𝑡 = 0, ℎ = 𝑘 = 1, and L(0) = [] (empty list).
(2) If𝑊

𝑎,𝑘
+𝑀
𝑘,ℎ+1
< 𝑊
𝑏,ℎ
+𝑀
𝑘+1,ℎ

, let L(𝑡+1) = [L(𝑡), 𝑎
𝑘
]

and replace 𝑘with 𝑘+1; else letL(𝑡+1) = [L(𝑡), 𝑏
ℎ
] and

replaceℎwithℎ+1. Let 𝑡 = 𝑘+ℎ−2. If (𝑘 ≤ 𝑛)∧(ℎ ≤ 𝑚),
repeat step (2).

(3) If 𝑘 = 𝑛 + 1, let L = [L(𝑡), 𝑏
ℎ
, . . . , 𝑏

𝑚
], and then stop.

(4) If ℎ = 𝑚 + 1, let L = [L(𝑡), 𝑎
𝑘
, . . . , 𝑎

𝑛
], and then stop.

In the following it is proved that this algorithm provides
the optimum (minimum cost) list L if the twomerged lists L

𝑎

and L
𝑏
are each separately optimized. Since L

𝑎
= [𝑎
1
, . . . , 𝑎

𝑛
]

and L
𝑏
= [𝑏
1
, . . . , 𝑏

𝑚
] are each optimized, their ordering

minimizes their respective costs:

𝐶 (L
𝑎
) =

𝑛

∑

𝑖=1

𝑖𝑤
𝑎,𝑖
, 𝐶 (L

𝑏
) =

𝑚

∑

𝑗=1

𝑗𝑤
𝑏,𝑗
. (A.2)

Journal of Computer Networks and Communications 13

· · ·

· · ·

· · ·

· · ·

...
...

...

a1/Wb,1

b1/Wa,1

b2/Wa,1

bm/Wa,1

a1/Wb,3

a1/0

a2/Wb,1

a2/Wb,2

b2/Wa,2

b1/Wa,2

bm/Wa,2

ai/Wb,j

bj/Wa,i

an/Wb,1

b1/Wa,n

an/Wb,2

b1/0

b2/0

bm/0

an/0

1, 1

1, 2

1, 3

2, 1

2, 2

2, 3

1, m + 1 2, m + 1

n + 1, m

n, m + 1 n + 1, m + 1

i, j

i, j + 1

i + 1, j

a1/Wb,2

n, 1

n, 2

n + 1, 1

n + 1, 2

n + 1, 3

Figure 10: Graph for the optimization of the merging cost.

Let us now consider the merged list L. Let 𝑢
𝑖
≥ 0 be the

number of rules of L
𝑏
that are placed in between 𝑎

𝑖−1
and 𝑎
𝑖
,

𝑖 = 2, . . . , 𝑛; let 𝑢
1
≥ 0 be the number of rules of L

𝑏
that are

placed before 𝑎
1
; let 𝑢
𝑛+1
≥ 0 be the number of rules of L

𝑏
that

are placed after 𝑎
𝑛
. Similarly, let V

𝑗
≥ 0 be the number of rules

of L
𝑎
that are placed in between 𝑏

𝑗−1
and 𝑏
𝑗
, 𝑗 = 2, . . . , 𝑚; let

V
1
≥ 0 be the number of rules of L

𝑎
that are placed before 𝑏

1
,

and let V
𝑚+1
≥ 0 be the number of rules of L

𝑎
that are placed

after 𝑏
𝑚
. Note that 𝑢

1
+ ⋅ ⋅ ⋅ + 𝑢

𝑛+1
= 𝑚 and V

1
+ ⋅ ⋅ ⋅ + V

𝑚+1
= 𝑛.

Then the cost of L can be expressed as

𝐶 (L) =
𝑛

∑

𝑖=1

(𝑖 +

𝑖

∑

𝑘=1

𝑢
𝑘
)𝑤
𝑎,𝑖
+

𝑚

∑

𝑗=1

(𝑗 +

𝑗

∑

𝑘=1

V
𝑘
)𝑤
𝑏,𝑖

= 𝐶 (L
𝑎
) + 𝐶 (L

𝑏
) +

𝑛

∑

𝑘=1

𝑢
𝑘

𝑛

∑

𝑖=𝑘

𝑤
𝑎,𝑖
+

𝑚

∑

𝑘=1

V
𝑘

𝑚

∑

𝑗=𝑘

𝑤
𝑏,𝑗

= 𝐶 (L
𝑎
) + 𝐶 (L

𝑏
) +

𝑛

∑

𝑘=1

𝑢
𝑘
𝑊
𝑎,𝑘
+

𝑚

∑

𝑘=1

V
𝑘
𝑊
𝑏,𝑘
.

(A.3)

Given the ordered, conflict-free, and optimized lists L
𝑎

and L
𝑏
, the overall cost in (A.3) points out that minimization

only depends on the two last sums (incremental cost due to
merging). This merging cost can be rewritten in a different
way. Let 𝛼

𝑡
be 1 if the 𝑡th element of L belongs to L

𝑎
and

0 otherwise, for 𝑡 = 1, . . . , 𝑚 + 𝑛; let also 𝛽
𝑡
= 1 − 𝛼

𝑡
.

Let 𝐶
𝑡
= 𝛼
𝑡
𝑊
𝑏,𝐵(𝑡)

+ 𝛽
𝑡
𝑊
𝑎,𝐴(𝑡)

, where 𝐴(𝑡) = ∑𝑚+𝑛
𝑗=𝑡+1
𝛼
𝑗
and

𝐵(𝑡) = ∑
𝑚+𝑛

𝑗=𝑡+1
𝛽
𝑗
, for 𝑡 = 1, . . . , 𝑚 + 𝑛. Then, (A.3) can be

modified as follows:

𝐶 (L) − 𝐶 (L
𝑎
) − 𝐶 (L

𝑏
) =

𝑛

∑

𝑘=1

𝑢
𝑘
𝑊
𝑎,𝑘
+

𝑚

∑

𝑘=1

V
𝑘
𝑊
𝑏,𝑘

=

𝑚+𝑛

∑

𝑡=1

𝛼
𝑡
𝑊
𝑏,𝐵(𝑡)
+ 𝛽
𝑡
𝑊
𝑎,𝐴(𝑡)
,

(A.4)

where the 𝛼
𝑡
’s and 𝛽

𝑡
’s result from the ordering of the merged

list L.
Themerging of the two lists is done by preserving the rela-

tive order of rules belonging to the same original list, because
of the conflict-free constraint. Then, the minimization of the
merging cost can be done by selecting at step 𝑡which element
to pick for the 𝑡th position of L from the current top elements
of L
𝑎
(𝑡) and L

𝑏
(𝑡) in such a way that the sum in the rightmost

side of (A.4) is minimized; L
𝑎
(𝑡) and L

𝑏
(𝑡) denote the lists

obtained from L
𝑎
and L

𝑏
by deleting the elements already

inserted in the first 𝑡 − 1 positions of L (𝑡 = 1, . . . , 𝑚 + 𝑛). The
selection process is initialized with L

𝑎
(1) = L

𝑎
and L

𝑏
(1) =

L
𝑏
.
This problem can be restated as finding the minimum

cost route from origin to destination nodes in the graph of
Figure 10.

The state (𝑖, 𝑗) of the graph refers to the (partial) lists
L
𝑎
(𝑖 + 𝑗 − 2) and L

𝑏
(𝑖 + 𝑗 − 2), the top elements of the two lists

being 𝑎
𝑖
and 𝑏
𝑗
, respectively. From state (𝑖, 𝑗) a transition can

be triggered to (𝑖 + 1, 𝑗) or (𝑖, 𝑗 + 1), in case 𝑎
𝑖
or 𝑏
𝑗
is selected,

respectively. It is intended that state components 𝑛+1 or𝑚+1
represent the end of the list. The labels on the graph arcs are
coded as 𝑥/𝑦 where 𝑥 denotes the popped up element and 𝑦
is the arc cost.

The origin node is (1, 1) and the destination node is
(𝑛 + 1,𝑚 + 1). The minimum cost route can be found, for
example, by using a Bellman-Ford like approach, starting
from the destination node. In general, let the minimum
merging cost starting from state (𝑖, 𝑗) be𝑀

𝑖,𝑗
. Then, from the

graph structure it is easy to check that

𝑀
𝑖,𝑗
= min {𝑊

𝑎,𝑖
+𝑀
𝑖,𝑗+1
,𝑊
𝑏,𝑗
+𝑀
𝑖+1,𝑗
} ,

𝑖 = 1, . . . , 𝑛; 𝑗 = 1, . . . , 𝑚;

𝑀
𝑖,𝑚+1

= 𝑀
𝑖+1,𝑚+1

, 𝑖 = 1, . . . , 𝑛;

𝑀
𝑛+1,𝑗
= 𝑀
𝑛+1,𝑗+1

, 𝑗 = 1, . . . , 𝑚;

𝑀
𝑛+1,𝑚+1

= 0.

(A.5)

14 Journal of Computer Networks and Communications

Deny all

R1

R2

R3

R4 R5

R6

R7

R8

Figure 11: Device Pseudo-Tree associated with the rule list in Table 2. Red/green boxes denote 𝑑𝑒𝑛𝑦/𝑎𝑙𝑙𝑜𝑤 actions.

Deny all Deny all

Deny all

1 2

3 4

X1 X2

X3 X4 X4X5 X5

X6X6 X7X7 X8X8

Y1

Y2 Y3 Y4 Y5

wX6 = 0.2 wX7 = 0.15 wX8 = 0.1 wX6 = 0.2 wX7 = 0.15 wX8 = 0.1

wX3 = 0.15 wX4 = 0.05 wX5 = 0.05 wX4 = 0.05 wX5 = 0.05

wX1 = 0.1 wX2 = 0.1

Deny all

WY2 = 0.55 WY3 = 0.2 WY4 = 0.15 WY5 = 0.9

WY1 = 0.35

LX6 = [R8] LX6 = [R8]LX7 = [R6] LX7 = [R6]LX8 = [R2] LX8 = [R2]

LX3 = [R7] LX5 = [R1] LX5 = [R1]LX4 = [R3] LX4 = [R3]

LX1 = [R4] LX2 = [R5]

LY1 = [R4, R5, R7]

LY2 = [R4, R5, R7, R8] LY3 = [R3, R6] LY4 = [R1, R2] LY5 = [R4, R5, R7, R8, R3, R6, R1, R2]

Figure 12: Optimization of the DPT of Figure 11 in four steps.

Starting from state (𝑖, 𝑗), if𝑊
𝑎,𝑖
+𝑀
𝑖,𝑗+1
< 𝑊
𝑏,𝑗
+𝑀
𝑖+1,𝑗

, then
𝑏
𝑗
is selected; otherwise 𝑎

𝑖
is selected. The complexity of the

algorithm is linear with𝑚 and 𝑛.

B. Example of ACO Application

We develop a full blown example of application of ACO.
An example of conflict-free rule list that can be fed as

input to ACO is given in Table 2.
Reordering must respect rule dependencies to avoid

introducing conflicts. For example, if rule 𝑅
8
in Table 2 is

brought to the top of the list because of its large cost, that
creates a conflict with rule 𝑅

7
, since the condition of 𝑅

7
is

included in the condition of𝑅
8
and their actions are opposite.

TheDPT for the rule list in Table 2 is depicted in Figure 11.
The “deny all” rule has been put on top of the DPT, as it is the
most general rule.

The DPT of Figure 11 is used to optimize the rule
list of Table 2 with the weights shown in the last column
of Table 2. Figure 12 shows the optimization process in
four steps (from left to right, from top to bottom). The
final ordered, conflict-free, and optimized list is R∗ =

Journal of Computer Networks and Communications 15

Table 2: Example of rule list with𝑁 = 8 (𝑅
9
is the “deny all” rule).

𝑅
𝑖

Source IP address Destination IP address Destination port Source port Protocol type Action 𝑤
𝑖

𝑅
1

3.0.1.120/32 0.0.0.0 0-65535 0-65535 Any Deny 0.05
𝑅
2

3.0.1.0/24 0.0.0.0 0-65535 0-65535 TCP Allow 0.1
𝑅
3

2.0.0.1/32 0.0.0.0 80 80 TCP Deny 0.05
𝑅
4

3.0.0.2/32 0.0.0.0 0-1024 0-1024 UDP Allow 0.1
𝑅
5

3.0.0.3/32 0.0.0.0 0-1024 0-1024 TCP Allow 0.1
𝑅
6

2.0.0.0/24 0.0.0.0 0-65535 0-65535 Any Allow 0.15
𝑅
7

3.0.0.0/24 0.0.0.0 0-65535 1024-65535 Any Deny 0.15
𝑅
8

3.0.0.0/24 0.0.0.0 0-65535 0-65535 Any Allow 0.2
𝑅
9

0.0.0.0 0.0.0.0 0-65535 0-65535 Any Deny 0.1

Table 3: List of rules extractable from the “deny all” rule of the rule set in Table 2.

𝑅
𝑒,𝑘

Destination IP address Source IP address Destination port Source port Protocol type Action 𝑥
𝑒,𝑘

𝑅
𝑒,1

3.0.2.0-255.255.255.255 0.0.0.0 0-65535 0-65535 Any Deny 0.7
𝑅
𝑒,2

2.0.1.0-2.255.255.255 0.0.0.0 0-65535 0-65535 Any Deny 0
𝑅
𝑒,3

0.0.0.1-1.255.255.255 0.0.0.0 0-65535 0-65535 Any Deny 0.3

Table 4: Variation of cost when extracted rule 𝑅
𝑒,1
, with weight

𝑤
𝑒,1
= 0.7𝜌, is inserted into the optimized rule list R∗ with rank

ℎ; the weight of the “deny all” rule is parametrized by 𝜌 ∈ [0.1].

𝑅
𝑘

𝑤
𝑘

rank ℎ of 𝑅
𝑒,1

Δ𝐶(ℎ) = ∑
𝑁+1

𝑘=ℎ
(𝑤
𝑘
− 𝑤
𝑒,1
)

𝑅
4
0.1111 ⋅ (1 − 𝜌) 1 1.0000 − 6.3000𝜌

𝑅
5
0.1111 ⋅ (1 − 𝜌) 2 0.8889 − 5.4889𝜌

𝑅
7
0.1667 ⋅ (1 − 𝜌) 3 0.7778 − 4.6778𝜌

𝑅
8
0.2222 ⋅ (1 − 𝜌) 4 0.6111 − 3.8111𝜌

𝑅
3
0.0556 ⋅ (1 − 𝜌) 5 0.3889 − 2.8889𝜌

𝑅
6
0.1667 ⋅ (1 − 𝜌) 6 0.3333 − 2.1333𝜌

𝑅
1
0.0556 ⋅ (1 − 𝜌) 7 0.1667 − 1.2667𝜌

𝑅
2
0.1111 ⋅ (1 − 𝜌) 8 0.1111 − 0.5111𝜌

𝑅
9

𝜌 9 0.3 𝜌

[𝑅
2
, 𝑅
3
, 𝑅
5
, 𝑅
6
, 𝑅
1
, 𝑅
4
, 𝑅
7
, 𝑅
8
, 𝑅
9
]. Its overall cost is 𝐶(R∗) =

4.75, to be compared with the initial cost 𝐶(R) = 5.75 (17.4%
cost reduction).

As an example of how a list of rules extracted from “deny
all” can be created, we refer to the rule list in Table 2. The
correspondent DPT is shown in Figure 11. Table 3 illustrates
the set of rules 𝑅

𝑒,𝑘
extractable from the “deny all” rule of the

list in Table 2 and the associated normalized weights 𝑥
𝑒,𝑘
. So,

the list L∗
𝑒
of candidate rules for extraction is L∗

𝑒
= [𝑅
𝑒,1
, 𝑅
𝑒,3
],

since 𝑅
𝑒,2

has 0 weight.
If we apply “deny all” rule extraction to the rule list of

Table 2, by using the extracted rule set of Table 3, it turns out
that there is no cost reduction.This is because rule extraction
has a useful impact only if the number of packets matching
“deny all” is a significant fraction of the overall packets dealt
with by the filtering device. In the example of Table 2 “deny
all” traffic accounts for just 10%. As another example, let us
assume that the weight of “deny all” is 𝜌 and other weights
stay the same except they are scaled to make the sum of all
weights equal to 1. The new weights are denoted with a tilde

and are shown in Table 4. The last column of Table 4 reports
the difference between the cost of the rule list R∗ and the
one with rule 𝑅

𝑒,1
inserted with rank ℎ; namely, Δ𝐶(ℎ) ≡

𝐶(R∗∪𝑅
𝑒,1

with rank ℎ)−𝐶(R∗).Theweight of the extracted
rule is 𝑤

𝑒,1
= 0.7𝜌, according to the first line of Table 3. It is

easily found that the most convenient rank for 𝑅
𝑒,1

is ℎ = 1
for all 𝜌 > 0.1792, which is the intersection point between
the straight lines corresponding to the first and fifth rules. For
example, for 𝜌 = 0.25, the cost 𝐶(R∗ ∪ 𝑅

𝑒,1
with rank 1) =

𝐶(R∗)−0.575where the cost of the list with no extracted rule
is 𝐶(R∗) = 5.46.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] S. Acharya, J. Wang, Z. Ge, T. Znati, and A. Greenberg,
“Simulation study of firewalls to aid improved performance,” in
Proceedings of the 39th Annual Simulation Symposium, pp. 18–
25, Huntsville, Ala, USA, April 2006.

[2] S. Acharya, J. Wang, Z. Ge, T. F. Znati, and A. Greenberg,
“Traffic-aware firewall optimization strategies,” in Proceedings
of the IEEE International Conference on Communications (ICC
’06), pp. 2225–2230, Istanbul, Turkey, July 2006.

[3] S. Acharya, M. Abliz, B. Mills, and T. Znati, “Optwall: a
hierarchical traffic-aware firewall,” inProceedings of 14th Annual
Network and Distributed System Security Symposium (NDSS
'07), San Diego, Calif, USA, February 2007.

[4] L. Zhao, Y. Inoue, and H. Yamamoto, “Delay reduction for
linear-search based packet filters,” in Proceedings of the Interna-
tional Technical Conference on Circuits/Systems, Computers and
Communication (ITC-CSCC ’04),Matsushima, Japan, July 2004.

[5] H. Named and E. Al-Shaer, “Dynamic rule-ordering optimiza-
tion for high-speed firewall filtering,” in Proceedings of the ACM
Symposium on Information, Computer and Communications

16 Journal of Computer Networks and Communications

Security (ASIACCS ’06), pp. 332–342, Taipei, Taiwan, March
2006.

[6] K. Golnabi, R. K. Min, L. Khan, and E. Al-Shaer, “Analysis
of firewall policy rules using data mining techniques,” in
Proceedings of the 10th IEEE/IFIP Network Operations and
Management Symposium (NOMS ’06), pp. 305–315, Vancouver,
Canada, April 2006.

[7] A. Hari, S. Suri, and G. Parulkar, “Detecting and resolving
packet filter conflicts,” in Proceedings of the 19th Annual Joint
Conference of the IEEE Computer and Communications Societies
(IEEE INFOCOM ’00), pp. 1203–1212, Tel Aviv, Israel, March
2000.

[8] E. Al-Shaer, H. Hamed, R. Boutaba, and M. Hasan, “Conflict
classification and analysis of distributed firewall policies,” IEEE
Journal on Selected Areas in Communications, vol. 23, no. 10, pp.
2069–2083, 2005.

[9] E. Al-Shaer andH.Hamed, “Firewall policy advisor for anomaly
detection and rule editing,” in Proceedings of IEEE/IFIP Inte-
grated Management Conference (IM ’03), Colorado Springs,
Colo, USA, March 2003.

[10] S. Ferraresi, S. Pesic, L. Trazza, and A. Baiocchi, “Automatic
conflict analysis and resolution of traffic filtering policy for
firewall and security gateway,” in Proceedings of the IEEE
International Conference on Communications (ICC ’07), pp.
1304–1310, Glasgow, Scotland, June 2007.

[11] S. Ferraresi, E. Francocci, A. Quaglini, and F. Picasso, “Secu-
rity policies tuning among IP devices,” in Knowledge-Based
Intelligent Information and Engineering Systems, vol. 4693 of
Lecture Notes in Computer Science, pp. 149–158, Springer, Berlin,
Germany, 2007.

[12] B. Moore, E. Ellesson, J. Strassner, and A. Westerinen, “Policy
core information model version 1 specification,” Tech. Rep.
RFC-3060, 2013.

[13] A.Westerinen, J. Schnizlein, J. Strassner et al., “Terminology for
policy-based management,” Tech. Rep. RFC-3198, 2001.

[14] C. Basile and A. Lioy, “Towards an algebraic approach to solve
policy conflicts,” in Proceedings of the Workshop on Logical
Foundations of an Adaptive Security Infrastructure (WOLFASI
'04), Turku, Finland, July 2004.

[15] Q.Duan andE.Al-Shaer, “Traffic-aware dynamic firewall policy
management: techniques and applications,” IEEE Communica-
tions Magazine, vol. 51, no. 7, pp. 73–79, 2013.

[16] A. Tapdiya and E. W. Fulp, “Towards optimal firewall rule
ordering utilizing directed acyclical graphs,” in Proceedings of
the 18th International Conference on Computer Communications
and Networks (ICCCN ’09), pp. 1–6, San Francisco, Calif, USA,
August 2009.

[17] Y.-K.Chang,C.-C. Su, Y.-C. Lin, and S.-Y.Hsieh, “Efficient gray-
code-based range encoding schemes for packet classification in
TCAM,” IEEE/ACM Transactions on Networking, vol. 21, no. 4,
pp. 1201–1214, 2013.

[18] H. Lim, N. Lee, G. Jin, J. Lee, Y. Choi, and C. Yim, “Boundary
cutting for packet classification,” IEEE/ACM Transactions on
Networking, vol. 22, no. 2, pp. 443–456, 2014.

[19] Z. Wu, M. Xie, and H. Wang, “Design and implementation
of a fast dynamic packet filter,” IEEE/ACM Transactions on
Networking, vol. 19, no. 5, pp. 1405–1419, 2011.

[20] H. Lim, Y. Choe,M. Shim, and J. Lee, “A quad-trie conditionally
merged with a decision tree for packet classification,” IEEE
Communications Letters, vol. 18, no. 4, pp. 676–679, 2014.

[21] L. Abeni, N. Bonelli, and G. Procissi, “Randomized packet
filtering through specialized partitioning of rulesets,” IEEE
Communications Letters, vol. 17, no. 12, pp. 2380–2383, 2013.

[22] G. Misherghi, L. Yuan, Z. Su, C.-N. Chuah, and H. Chen,
“A general framework for benchmarking firewall optimization
techniques,” IEEETransactions onNetwork and ServiceManage-
ment, vol. 5, no. 4, pp. 227–238, 2008.

[23] H. Hamed, A. El-Atawy, and E. Al-Shaer, “On dynamic opti-
mization of packet matching in high-speed firewalls,” IEEE
Journal on Selected Areas in Communications, vol. 24, no. 10, pp.
1817–1830, 2006.

[24] A. El-Atawy, T. Samak, E. Al-Shaer, and L. Hong, “Using
online traffic statistical matching for optimizing packet filtering
performance,” in Proceedings of the 26th IEEE International
Conference on Computer Communications (INFOCOM ’07), pp.
866–874, Anchorage, Alaska, USA, May 2007.

[25] A. El-Atawy and E. Al-Shaer, “Adaptive early packet filtering
for defending firewalls against DoS attacks,” in Proceedings
of the 28th IEEE Conference on Computer Communications
(INFOCOM ’09), pp. 2437–2445, Rio de Janeiro, Brazil, April
2009.

[26] A. Hussain, J. Heidemann, and C. Papadopoulos, “A frame-
work for classifying denial of service attacks,” in Proceedings
of the Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications (SIGCOMM ’03),
Karlsruhe, Germany, August 2003.

[27] “Information processing systems, open systems interconnec-
tion basic reference model, part 2: security architecture,” Tech.
Rep. ISO 7498-2, 1989.

[28] D. Moore, G. M. Voelker, and S. Savage, “Inferring Inter-
net Denial-of-Service Activity,” University of California at
San Diego—CAIDA, 2001, http://www.caida.org/publications/
papers/2001/BackScatter/.

[29] C.-H. Shen and T.-Y. Chung, “PFC: a new high-performance
packet filter cache,” in Proceedings of the International Computer
Symposium, Taipei, Taiwan, December 2004.

[30] W. Jiang and V. K. Prasanna, “Large-scale wire-speed packet
classification on FPGAs,” in Proceedings of the ACM/SIGDA
International Symposium on Field Programmable Gate Arrays
(FPGA ’09), pp. 219–228, Monterey, Calif, USA, February 2009.

[31] Y. Qi, J. Fong, W. Jiang, B. Xu, J. Li, and V. Prasanna, “Multi-
dimensional packet classification on FPGA: 100 Gbps and
beyond,” in Proceedings of the International Conference on
Field-Programmable Technology (FPT ’10), pp. 241–248, Beijing,
China, December 2010.

[32] V. Pus, J. Blaho, and J. Korenek, “Memory optimizations for
packet classification algorithms in FPGA,” in Proceedings of the
13th IEEE International Symposium onDesign andDiagnostics of
Electronic Circuits and Systems (DDECS ’10), pp. 297–300, April
2010.

[33] W.-G. Wang, T. Zhang, Y.-F. Zheng, and Y. Yang, “Realization
of FPGA-based packet classification in embedded system,”
in Proceedings of the IEEE Intrumentation and Measurement
Technology Conference (I2MTC ’09), pp. 943–942, Singapore,
May 2009.

[34] A. Begel, S. McCanne, and S. L. Graham, “BPF+: exploiting
global data-flow optimization in a generalized packet filter
architecture,” in Proceedings of the Conference on Applications,
Technologies, Architectures, and Protocols for Computer Commu-
nication (SIGCOMM ’99), pp. 123–134, Cambridge, Mass, USA,
August-September 1999.

Journal of Computer Networks and Communications 17

[35] P. Rolando, R. Sisto, and F. Risso, “SPAF: stateless FSA-based
packet filters,” IEEE/ACM Transactions on Networking, vol. 19,
no. 1, pp. 14–27, 2011.

[36] C. Lonvick, “The BSD syslog protocol,” Tech. Rep. RFC-3164,
2001.

[37] D. New and M. Rose, “Reliable delivery for syslog,” Tech. Rep.
RFC-3195, 2001.

[38] A. Rizzi, M. Panella, and F. M. F. Mascioli, “Adaptive resolution
min-max classifiers,” IEEE Transactions on Neural Networks,
vol. 13, no. 2, pp. 402–414, 2002.

[39] W. Wang, H. Chen, J. Chen, and B. Liu, “Firewall rule ordering
based on statistical model,” in Proceedings of the International
Conference on Computer Engineering and Technology (ICCET
’09), pp. 185–188, Singapore.

[40] A. Botta, A. Dainotti, and A. Pescapé, “Do you trust your
software-based traffic generator?” IEEE Communications Mag-
azine, vol. 48, no. 9, pp. 158–165, 2010.

[41] J. Mirkovic, A. Hussain, B. Wilson et al., “Towards user centric
metrics for denial-of-service measurement,” in Proceedings of
the Workshop on Experimental Computer Science, June 2007.

[42] J. Mirkovic, A. Hussain, S. Fahmy, P. Reiher, and R. K. Thomas,
“Accurately measuring denial of service in simulation and
testbed experiments,” IEEE Transactions on Dependable and
Secure Computing, vol. 6, no. 2, pp. 81–95, 2009.

[43] J. Mirkovic, P. Reiher, C. Papadopoulos et al., “Testing a
collaborative DDoS defense in a red team/blue team exercise,”
Institute of Electrical and Electronics Engineers. Transactions on
Computers, vol. 57, no. 8, pp. 1098–1112, 2008.

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mechanical
Engineering

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Antennas and
Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

