254 research outputs found

    Performance Evaluation of Encrypted Text Message Transmission in 5G Compatible Orthogonal Multi-level Chaos Shift Keying Modulation Scheme Aided MIMO Wireless Communication System

    Get PDF
    - In this paper, a comprehensive performance evaluative study has been made on encrypted text message transmission in 5G compatible orthogonal multi-level chaos shift keying modulation scheme aided MIMO wireless communication system. The 4 X 4 multi-antenna supported simulated system incorporates four channel coding (1/2-rated Convolutional, (3, 2) SPC, LDP Cand Repeat and Accumulate (RA)), different signal detection (MMSE, ZF, Cholesky decomposition and Group Detection (GD) approach aided Efficient ZeroForcing (ZF)), and Chaotic Walsh-Hadamard encoding schemes

    Double-Stream Differential Chaos Shift Keying Communications Exploiting Chaotic Shape Forming Filter and Sequence Mapping

    Get PDF
    ACKNOWLEDGMENT This research have been supported in part by the Scientific and Technological Innovation Leading Talents Program of Shaanxi Province, China Postdoctoral Science Foundation Funded Project (2020M673349), Open Research Fund from Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing (2020CP02)Peer reviewedPostprin

    Synchronization of spatiotemporal semiconductor lasers and its application in color image encryption

    Full text link
    Optical chaos is a topic of current research characterized by high-dimensional nonlinearity which is attributed to the delay-induced dynamics, high bandwidth and easy modular implementation of optical feedback. In light of these facts, which adds enough confusion and diffusion properties for secure communications, we explore the synchronization phenomena in spatiotemporal semiconductor laser systems. The novel system is used in a two-phase colored image encryption process. The high-dimensional chaotic attractor generated by the system produces a completely randomized chaotic time series, which is ideal in the secure encoding of messages. The scheme thus illustrated is a two-phase encryption method, which provides sufficiently high confusion and diffusion properties of chaotic cryptosystem employed with unique data sets of processed chaotic sequences. In this novel method of cryptography, the chaotic phase masks are represented as images using the chaotic sequences as the elements of the image. The scheme drastically permutes the positions of the picture elements. The next additional layer of security further alters the statistical information of the original image to a great extent along the three-color planes. The intermediate results during encryption demonstrate the infeasibility for an unauthorized user to decipher the cipher image. Exhaustive statistical tests conducted validate that the scheme is robust against noise and resistant to common attacks due to the double shield of encryption and the infinite dimensionality of the relevant system of partial differential equations.Comment: 20 pages, 11 figures; Article in press, Optics Communications (2011

    Cluster Shift Keying: Covert Transmission of Information via Cluster Synchronization in Chaotic Networks

    Full text link
    A network of chaotic systems can be designed in such a way that the cluster patterns formed by synchronous nodes can be controlled through the coupling parameters. We present a novel approach to exploit such a network for covert communication purposes, where controlled clusters encode the symbols spatio-temporally. The cluster synchronization network is divided into two subnetworks as transmitter and receiver. First, we specifically design the network whose controlled parameters reside in the transmitter. Second, we ensure that the nodes of the links connecting the transmitter and receiver are not in the same clusters for all the control parameters. The former condition ensures that the control parameters changed at the transmitter change the whole clustering scheme. The second condition enforces the transmitted signals are always continuous and chaotic. Hence, the transmitted signals are not modulated by the information directly, but distributed over the links connecting the subnetworks. The information cannot be deciphered by eavesdropping on the channel links without knowing the network topology. The performance has been assessed by extensive simulations of bit error rates under noisy channel conditions

    Physics and Applications of Laser Diode Chaos

    Full text link
    An overview of chaos in laser diodes is provided which surveys experimental achievements in the area and explains the theory behind the phenomenon. The fundamental physics underpinning this behaviour and also the opportunities for harnessing laser diode chaos for potential applications are discussed. The availability and ease of operation of laser diodes, in a wide range of configurations, make them a convenient test-bed for exploring basic aspects of nonlinear and chaotic dynamics. It also makes them attractive for practical tasks, such as chaos-based secure communications and random number generation. Avenues for future research and development of chaotic laser diodes are also identified.Comment: Published in Nature Photonic

    Enhancing physical layer security of cognitive radio transceiver via chaotic OFDM

    Get PDF
    Due to the enormous potential of improving the spectral utilization by using Cognitive Radio (CR), designing adaptive access system and addressing its physical layer security are the most important and challenging issues in CR networks. Since CR transceivers need to transmit over multiple non-contiguous frequency holes, multi-carrier based system is one of the best candidates for CR's physical layer design. In this paper, we propose a combined chaotic scrambling (CS) and chaotic shift keying (CSK) scheme in Orthogonal Frequency Division Multiplexing (OFDM) based CR to enhance its physical layer security. By employing chaos based third order Chebyshev map which allows optimum bit error rate (BER) performance of CSK modulation, the proposed combined scheme outperforms the traditional OFDM system in overlay scenario with Rayleigh fading channel. Importantly, with two layers of encryption based on chaotic scrambling and CSK modulation, large key size can be generated to resist any brute-force attack, leading to a significantly improved level of security

    Chaos-Based Spectral Keying Technique for Secure Communication and Covert Data Transmission between Radar Receivers over an Open Network Channel

    Get PDF
    Application of chaotic signals in modern telecommunication facilities and radars is an actual task that can significantly extend functionality of these systems and improve their performance. In this chapter, we propose a concept of chaos-based technique for secure communication and hidden data transmission over an open network channel which is based on a novel method for spectral keying of chaotic signal generated by nonlinear dynamical system with delayed feedback. In the technique developed, the modulating information sequence controls the parameter of nonlinear element, so that it switches the chaotic modes and changes the spectral structure of the signal, transmitted to the communication channel. A noncoherent reception is used for demodulation the information message from received waveform. We start from theoretical justification of the proposed scheme, and show then the numerical simulations and imitation modeling results, as well as demonstrate experimental validation of suggested technique. Also, the communication system reliability and its covert operation efficiency under impact of AWGN in the environment with high-level interferences have been shown by means of evaluation the system anti-jamming capabilities and unauthorized access immunity
    corecore