299 research outputs found

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    ALET (Automated Labeling of Equipment and Tools): A Dataset, a Baseline and a Usecase for Tool Detection in the Wild

    Full text link
    Robots collaborating with humans in realistic environments will need to be able to detect the tools that can be used and manipulated. However, there is no available dataset or study that addresses this challenge in real settings. In this paper, we fill this gap by providing an extensive dataset (METU-ALET) for detecting farming, gardening, office, stonemasonry, vehicle, woodworking and workshop tools. The scenes correspond to sophisticated environments with or without humans using the tools. The scenes we consider introduce several challenges for object detection, including the small scale of the tools, their articulated nature, occlusion, inter-class invariance, etc. Moreover, we train and compare several state of the art deep object detectors (including Faster R-CNN, Cascade R-CNN, RepPoint and RetinaNet) on our dataset. We observe that the detectors have difficulty in detecting especially small-scale tools or tools that are visually similar to parts of other tools. This in turn supports the importance of our dataset and paper. With the dataset, the code and the trained models, our work provides a basis for further research into tools and their use in robotics applications.Comment: 7 pages, 4 figure

    Assistive technology design and development for acceptable robotics companions for ageing years

    Get PDF
    © 2013 Farshid Amirabdollahian et al., licensee Versita Sp. z o. o. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs license, which means that the text may be used for non-commercial purposes, provided credit is given to the author.A new stream of research and development responds to changes in life expectancy across the world. It includes technologies which enhance well-being of individuals, specifically for older people. The ACCOMPANY project focuses on home companion technologies and issues surrounding technology development for assistive purposes. The project responds to some overlooked aspects of technology design, divided into multiple areas such as empathic and social human-robot interaction, robot learning and memory visualisation, and monitoring persons’ activities at home. To bring these aspects together, a dedicated task is identified to ensure technological integration of these multiple approaches on an existing robotic platform, Care-O-Bot®3 in the context of a smart-home environment utilising a multitude of sensor arrays. Formative and summative evaluation cycles are then used to assess the emerging prototype towards identifying acceptable behaviours and roles for the robot, for example role as a butler or a trainer, while also comparing user requirements to achieved progress. In a novel approach, the project considers ethical concerns and by highlighting principles such as autonomy, independence, enablement, safety and privacy, it embarks on providing a discussion medium where user views on these principles and the existing tension between some of these principles, for example tension between privacy and autonomy over safety, can be captured and considered in design cycles and throughout project developmentsPeer reviewe

    Scene Segmentation and Object Classification for Place Recognition

    Get PDF
    This dissertation tries to solve the place recognition and loop closing problem in a way similar to human visual system. First, a novel image segmentation algorithm is developed. The image segmentation algorithm is based on a Perceptual Organization model, which allows the image segmentation algorithm to ‘perceive’ the special structural relations among the constituent parts of an unknown object and hence to group them together without object-specific knowledge. Then a new object recognition method is developed. Based on the fairly accurate segmentations generated by the image segmentation algorithm, an informative object description that includes not only the appearance (colors and textures), but also the parts layout and shape information is built. Then a novel feature selection algorithm is developed. The feature selection method can select a subset of features that best describes the characteristics of an object class. Classifiers trained with the selected features can classify objects with high accuracy. In next step, a subset of the salient objects in a scene is selected as landmark objects to label the place. The landmark objects are highly distinctive and widely visible. Each landmark object is represented by a list of SIFT descriptors extracted from the object surface. This object representation allows us to reliably recognize an object under certain viewpoint changes. To achieve efficient scene-matching, an indexing structure is developed. Both texture feature and color feature of objects are used as indexing features. The texture feature and the color feature are viewpoint-invariant and hence can be used to effectively find the candidate objects with similar surface characteristics to a query object. Experimental results show that the object-based place recognition and loop detection method can efficiently recognize a place in a large complex outdoor environment

    Learning cognitive maps: Finding useful structure in an uncertain world

    Get PDF
    In this chapter we will describe the central mechanisms that influence how people learn about large-scale space. We will focus particularly on how these mechanisms enable people to effectively cope with both the uncertainty inherent in a constantly changing world and also with the high information content of natural environments. The major lessons are that humans get by with a less is more approach to building structure, and that they are able to quickly adapt to environmental changes thanks to a range of general purpose mechanisms. By looking at abstract principles, instead of concrete implementation details, it is shown that the study of human learning can provide valuable lessons for robotics. Finally, these issues are discussed in the context of an implementation on a mobile robot. © 2007 Springer-Verlag Berlin Heidelberg

    Combining Perception and Knowledge for Service Robotics

    Get PDF
    As the deployment of robots is shifting away from the industrial settings towards public and private sectors, the robots will have to get equipped with enough knowl- edge that will let them perceive, comprehend and act skillfully in their new work- ing environments. Unlike having a large degree of controlled environment variables characteristic for e.g. assembly lines, the robots active in shopping stores, museums or households will have to perform open-ended tasks and thus react to unforeseen events, self-monitor their activities, detect failures, recover from them and also learn and continuously update their knowledge. In this thesis we present a set of tools and algorithms for acquisition, interpreta- tion and reasoning about the environment models which enable the robots to act flexibly and skillfully in the afore mentioned environments. In particular our contri- butions beyond the state-of-the-art cover following four topics: a) semantic object maps which are the symbolic representations of indoor environments that robot can query for information, b) two algorithms for interactive segmentation of objects of daily use which enable the robots to recognise and grasp objects more robustly, c) an image point feature-based system for large scale object recognition, and finally, d) a system that combines statistical and logical knowledge for household domains and is able to answer queries such as Which objects are currently missing on a breakfast table? . Common to all contributions is that they are all knowledge-enabled in that they either use robot knowledge bases or ground knowledge structures into the robot s internal structures such as perception streams. Further, in all four cases we exploit the tight interplay between the robot s perceptual, reasoning and action skills which we believe is the key enabler for robots to act in unstructured environments. Most of the theoretical contributions of this thesis have also been implemented on TUM-James and TUM-Rosie robots and demonstrated to the spectators by having them perform various household chores. With those demonstrations we thoroughly validated the properties of the developed systems and showed the impossibility of having such tasks implemented without a knowledge-enabled backbone
    • …
    corecore