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Abstract 

This dissertation addresses the place recognition and loop detection problem in large 
scale outdoor environments. It is noticeable that humans are capable of recognizing places 
with ease even in large complex environments. Many psychological works support that 
humans perceive a scene based on the perception of objects. Instead of creating a detailed 
representation of all the objects in a scene, human visual systems build an economic scene 
representation by putting emphasis on the extraction of a few key ‘aspects’ of the scene 
information, such as an inventory of salient objects and the layout of these objects, etc. This 
economic representation results in an enormous saving of processing and memory resources, 
which plays a key role for the success of human visual system on place recognition.  

This dissertation tries to solve the place recognition and loop closing problem in a way 
similar to human visual system. First, a novel image segmentation algorithm is developed. 
The image segmentation algorithm is based on a Perceptual Organization model, which 
allows the image segmentation algorithm to ‘perceive’ the special structural relations among 
the constituent parts of an unknown object and hence to group them together without object-
specific knowledge.  

Then a new object recognition method is developed. Based on the fairly accurate 
segmentations generated by the image segmentation algorithm, an informative object 
description that includes not only the appearance (colors and textures), but also the parts 
layout and shape information is built. Then a novel feature selection algorithm is developed. 
The feature selection method can select a subset of features that best describes the 
characteristics of an object class. Classifiers trained with the selected features can classify 
objects with high accuracy.  

In next step, a subset of the salient objects in a scene is selected as landmark objects to 
label the place. The landmark objects are highly distinctive and widely visible. Each 
landmark object is represented by a list of SIFT descriptors extracted from the object surface. 
This object representation allows us to reliably recognize an object under certain viewpoint 
changes. To achieve efficient scene-matching, an indexing structure is developed. Both 
texture feature and color feature of objects are used as indexing features. The texture feature 
and the color feature are viewpoint-invariant and hence can be used to effectively find the 
candidate objects with similar surface characteristics to a query object.  Experimental results 
show that the object-based place recognition and loop detection method can efficiently 
recognize a place in a large complex outdoor environment.  
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1 Introduction 

Many people may have experienced similar situations like this in their lives – when you 
are exploring a strange environment without a map at hand, after a while, you may move 
back to the point where you start. Once that happens, you can immediately find that you have 
visited the place before. It seems that our visual system creates a stable and detailed 
representation of each place we have visited and stores it in our brain. When we revisit a 
place, we can quickly match the detailed representation stored in our brain to the current 
scene and hence recognize the place accordingly. Our visual systems can help us to recognize 
many places with ease even in large complex environments. Why is our visual system so 
powerful on place recognition and how does our visual system really work? 

The seemingly easy task actually requires many complex vision activities in our brain. 
According to recent work [Rensink00], human visual systems do not keep a detailed 
representation of a scene in the brain at all. This is because the gathering of visual 
information is done using a retina that has high resolution only over a few degrees of visual 
angle. Therefore, a complete representation of a scene requires the contents of individual eye 
fixations to be integrated via a high-capacity visual buffer [Feldman85, Trehub91]. However, 
many experimental works [Irwin96, Simons97] do not find evidence that such an integrative 
visual buffer exists – for example, changes in an image of scene become difficult to detect 
during a blink, eye movement or other such interruption.  This “change blindness” shows that 
people are bad at accumulating visual detail. Otherwise, change would be easily detected by 
comparing immediate visual input with the contents of the visual buffer.  The fact that 
change blindness can be induced under various conditions indicates that dropping visual 
details may be central to the way people represent the world around them.  

A large body of evidence [Rensink00, Moore98, Rufin03] supports that visual systems 
perceive scenes based on the perception of objects. Essential properties of an object include 
the requirement that it should be discrete, be differentiated from its background and be an 
individual, something that cannot be divided without losing its integrity. The whole 
perception process of scenes is stated as the follows [Rensink00]: the period of first a few 
hundred milliseconds is called “early vision” stage. Early vision refers to the aspect of low-
level processing carried out regardless of higher-level context. Low-level processes are 
concerned with separating out the various physical factors in the scene that give rise to the 
pattern of luminance intensities in the image. The output of early vision is a set of “proto-
objects”. Proto-objects refer to relatively complex assemblies of fragments that correspond to 
localized structures in the world. Many works [Rensink95, Rensink98] suggest that proto-
objects are the lowest-level structures directly accessible to attention, with much of their 
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underlying detail being accessed only by deliberate effort. The proto-objects only have 
limited coherence in space and time. Right after proto-objects in a scene are formed by low-
level processes, high-level processes start. First, the abstract meaning, or gist of the scene 
(e.g. whether the scene is a city, harbor, picnic, etc.) is extracted. At the same time, another 
important aspect of scene structure called layout is also extracted. Layout refers to the spatial 
arrangement of the objects in a scene. The gist and layout are then used to prioritize attention, 
directing it to the objects that are most important in the context. Visual system usually 
focuses attention on one object at a time [Deubel96, Garavan98, Rensink98]. Once an object 
gets attended, the constituent parts of the object are grouped together and a summary 
description of the object is formed, like its size, overall shape, dominant colors, etc. Among 
many discrete objects in a scene, only a few of them will get attention. For the attended 
objects, only a subset of them (4~6) will be explicitly represented in short-term visual 
memory [Rufin03]. Many other objects will be ignored or forgotten soon. Finally, an abstract 
scene schema is formed. Scene schemas are long-term structures that may last indefinitely. 
Scene schemas are believed to include an inventory of objects that are explicitly represented 
in short-term memory, along with the relative locations of these objects. Figure 1.1 shows the 
architecture of the visual perception of scenes. 

Therefore, our visual systems take a very elegant strategy to process the large amounts of 
information surrounding us. Instead of creating a detailed representation of all the objects in 
a scene, our visual systems build a more economic scene representation by putting emphasis 
on the extraction of a few key ‘aspects’ of the scene information. This economic 
representation results in an enormous saving of processing and memory resources, which 
plays a key role for the success of our visual system on place recognition.  

Now we want to ask if we can build a similar visual system for a robot? When a robot is 
moving around in a large complex environment, can its visual system also detect the various 
objects in a scene? Can its visual system also create an economic representation for a scene 
by extracting a few key aspects of the most important objects in that scene? Can its visual 
system also recognize a place by efficiently and accurately matching the objects stored in its 
“long-term memory” to the objects detected in the current scene? The answers to these 
questions are the goal of this dissertation.  

The key for vision-based place recognition is of objects perception (segmentation) and 
object recognition. The two problems are the fundamental unsolved problems in computer 
vision. The two problems are tightly related. Object perception (segmentation) tells where 
objects are in a scene while object recognition tells what the percept objects are. Not only for 
place recognition, many other computer vision tasks like scene categorization, content-based 
image retrieval etc., essentially relay on reliable object perception and recognition. We have 
developed a novel image segmentation and object recognition system. Based on these two 
works, we develop an object-based place recognition and loop detection method. Like the 
human visual system, our place recognition method also operates on object-level. 
Experimental result shows that our method can recognize places efficiently and accurately in 
a large complex outdoor environment.  

This dissertation presents the details of our image segmentation, object recognition and 
object-based place recognition and loop detection methods. The remainder of this chapter 
outlines the motivation for this research in section 1.1. Section 1.2 gives the pipeline of our  
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Figure 1.1. An architecture for the visual perception of scenes, from [Ronald00]. It is suggested that the visual 
perception of scenes may be carried out via the interaction of three different systems. System I: Early-level 
process produce volatile proto-objects (object parts). System II: Focused attention “assemble” different object 
parts to form an individuated object with both temporal and spatial coherence. System III: Setting information – 
obtained via a non-attentional stream – guides the allocation of focused attention to various parts of the scene, 
and allows priorities to the various possible objects.   
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system and contributions of this dissertation. Section 1.3 concludes this chapter with the 
document organization. 

1.1 Motivation 

   Reliable place recognition is an important computer vision task for autonomous 
navigation of mobile vehicles, particularly, for the simultaneous localization and mapping 
(SLAM) problem.  Although much progress has been made [Tomatis03, Bosse04, 
Montemerlo01], today’s SLAM technology still faces some serious problems that prevent it 
from becoming a robust and practical application system. A major problem SLAM faces is 
the big loop closure problem [Newman05]: when a vehicle is closing a big loop, such as 
around a building or hallway corridors, it cannot detect the loop due to the gross error of 
location estimates and hence is unable to build a consistent map (see Figure 1.2 for an 
example). 
      The key to solving the loop closure problem is enabling vehicles to quickly detect a loop 
while revisiting an area. One possible way to achieve this is to capture some special 
geometric or visual features from each scene so that the appearance dissimilarity of different 
scenes can be accurately measured. Most existing SLAM systems use range devices such as a 
range scanner and laser scanner to measure the geometric primitives (e.g., corners and edges) 
of a workspace to build a map. These simple geometric features are often not special enough  

 
Figure 1.2 An illustration of the big loop closing problem for SLAM from [Newman05]. When a vehicle is 
closing a big loop, such as around a building or hallway corridors, it cannot detect the loop due to the gross 
error of location estimates and hence is unable to build a consistent map.  
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to build a unique “signature” for a place. In contrast, it is generally agreed that vision is one  
of the richest sources of information and it has the potential to provide enough information to 
uniquely identify the robot’s position [Lamon01]. 

Good visual features should have the following properties:  
(1) robust to changes in view point;  
(2) robust to changes in scale;  
(3) robust to changes in illumination.  
This is because when mobile vehicles are moving around in a complex environment, they 

usually observe many landmarks over time from different angles, distances or illuminations. 
Recently the computer vision community has adopted a class of affine covariant visual 
features [Lowe04, Matas02, Kadir01]. Many of these features are invariant, to certain degree, 
to changes in illumination, scale, translation, rotation and viewpoint. This makes them ideally 
suited to be used as visual landmarks. The performance evaluation of different affine 
covariant features can be found in [Mikolajczyk03, Mikolajczyk05]. Promising results have 
been obtained by recent appearance-based approaches [Newman05, Se02, Se05] that are 
based on the affine covariant features. In [Newman05], the combination of saliency 
[Kadir01] and MSER [Matas02] features are used as visual landmarks. In [Se02, Se05] SIFT 
features [Lowe04] are used as the basic visual features.   

Typically, a challenge for these methods is that they are not scalable to large 
environments. Although the affine covariant visual features have some properties that make 
them suited to be used as visual landmarks, they also cause a serious information redundancy 
problem.  From any given viewpoint, there may be hundreds or even thousands of affine 
covariant features visible (see Figure 1.3, for an example). Features detected at a sequence of 
positions along a long path quickly form a large database. In a large environment, it is often 
the case that a database may contain hundreds of thousand or even millions of features. When 
a robot attempts to match the features visible at current position to the features that has been  

 
Figure 1.3 An example of large number of affine covariant visual features visible at many viewpoints in outdoor 
environments. For each row, left is original scene image, right shows the SIFT features (green arrows) detected 
from the image   
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stored in its database, the space of features that must be searched might be very large. This 
makes scene-matching very inefficient and hence makes on-line loop detection difficult. 

Therefore, the critical problem for vision-based loop detection is how to detect a loop 
without a costly search in large environments. There are two ways to increase scene-
matching efficiency. Firstly, we can reduce the information amount for labeling a place.  

Although there may be hundreds or even thousands of features visible at a given 
viewpoint of an environment, only a few of them are necessary for place recognition. If we 
only keep a subset of such features that is good enough for recognizing the place, then we 
can significantly compress the feature database size. Secondly, more importantly, we can add 
some indexing information for the features in the database so that we can greatly reduce the 
search space of features when executing a query. Good indexing information can make the 
real-time query achievable even in a very large database. 

Another challenge for these methods is the dynamic environments. Most works recognize 
a place by comparing two images based on local feature matching. The method can only 
handle fairly static environments. For dynamic environments where a scene contains many 
mobile objects like cars and people, the method may not work well. If a scene contains many 
mobile objects, then some mobile objects may move out and some new mobile objects may 
move in. As a result, images taken from the same place at different time may have big visual 

 
(a)                                                                            (b) 

 
(c) 

Figure 1.4 An example that recognizing place by comparing two images based on local feature matching has 
difficulty dealing with dynamic environments. (a) and (b) are two images taken from a same place.  It can be 
observed that the scene contains many mobile objects like cars. 3423 SIFT features are extracted from (a) and 
3379 ISFT features are extracted from (b). (c) shows that there are only 27 matched SIFT features between the 
two images.    
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difference. Under this situation, only a small portion of two images may get matched. An 
example is shown in Figure 1.4. 3423 and 3379 SIFT features are extracted from (a) and (b) 
images respectively. Only 27 SIFT features are matched between the two images. It is 
difficult to decide if the two images are taken from the same place only based on local 
feature matching information. 

We propose to use an object-based place recognition method to address these problems. 
As mentioned in the introduction section, human visual system perceives scenes based on the 
perception of objects. Many psychological works support that human visual system takes a 
very elegant strategy to process the large amounts of information surrounding us. Instead of 
creating a detailed representation of all the objects in a scene, human visual system builds a 
very economic scene representation by extracting a few key ‘aspects’ of the scene 
information. This economic representation results in an enormous saving of processing and 
memory resources, which plays a key role for the success of our visual system on place 
recognition. Thus, we believe that vision-based place recognition methods should follow a 
similar strategy.  Place recognition based on object level has many desired properties. Firstly, 
we can greatly simplify scene representation. Compared to representing a scene by recording 
global scene property, representing a scene with a set of salient objects in the scene requires 
much less information. In addition, place recognition based on object level can increase the 
place recognition persistence. When a vehicle revisits a place, most likely it will see the 
scene from a different viewpoint. Therefore, it is inevitable that there may exist some 
changes in the scene caused by different backgrounds or illuminations. By representing a 
scene with a set of salient objects, we can ignore the background information and hence 
make place recognition more robust. More importantly, many objects are appearance-
distinguishable since objects have various surface characteristics like colors and textures. 
Thus, the surface characteristics of objects provide good indexing information for objects. 
This can help us to avoid many unnecessary comparisons. For example, we do not need to 
compare an object in red color to an object in green color when performing a query in a 
database. The indexing information can significantly improve scene-matching efficiency. 
Besides, if we can recognize some static objects like buildings and use these static objects as 
landmark, we may also be able to handle the dynamic environments.   

Recognizing places on the level of objects requires stable perception on various objects in 
different scenes. In other words, we need to segment scene images into their constituent 
objects. This turns out to be one of the fundamental and challenging problems in computer 
vision community. Usually many structured objects are composed of different parts. Since 
different parts of an object have different functions, it is natural that different parts of an 
object may have totally different surface characteristics (e.g., colors and textures). Most 
existing image segmentation methods are designed to detect homogeneous units in images. 
These homogeneous units may only approximately correspond to object parts. As results, 
these image segmentation methods often cause an over-segment problem – an object in an 
image is segmented into multiple parts. Since these image segmentation methods do not 
know what objects are, they cannot regroup the object parts back. It is recently argued that, to 
achieve that, one might need to recognize the object first. This forms a chicken-and-egg 
problem since segmentation is supposed to be a pre-processing for object recognition. Thus, 
the basic problem that needs to be solved for object-based place recognition is how to detect 
object boundaries without object-specific knowledge in scene images.  
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1.2 Contributions 

   The pipeline of this dissertation work is illustrated in Figure 1.5.  An object-based place 
recognition and loop closing method has been developed. This system includes a novel image  
segmentation algorithm and an object recognition method and an object-based place 
recognition algorithm. Accordingly, our research contributions are listed as follows. 
 

• A novel image segmentation algorithm: The most significant contribution is the 
development of a novel image segmentation algorithm. The image segmentation 
algorithm is based on a Perceptual Organization model. Like the human visual system, 
the Perceptual Organization model can ‘perceive’ various special structural relations 
that obey the principle of non-accidentalness among the constituent parts of an object 
and hence can group them together without object-specific knowledge. Experimental 
results showed that the Perceptual Organization model outperforms two recent 
methods in the literature and can stably detect various salient objects for different 
scenes.   

• A new object classification method: We then develop a new object classification 
method. Based on the fairly accurate segmentations generated by our image 
segmentation algorithm, we build an informative object description that include not 
only the appearance (colors and textures), but also the parts layout and shape 
information. We also develop a novel feature selection algorithm. Our feature 
selection method can select a subset of features that can characterize an object class 
well. With the selected features, we can classify an object with high accuracy.  

• Object-based place recognition method: Instead of using large number of affine 
covariant features to represent a scene, we use a set of objects that are both distinctive 
and widely visible to represent a place.  This object-based scene representation 
method greatly reduces the amount of information for labeling a place. Thus, we 
achieve a high degree of compression on the size of visual feature database. We then 

 

Figure 1.5 The block diagram for our object-based place recognition and loop closing system. 
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designed a range tree database to organize the detected objects. This range tree 
database makes use of the texture and color information to index the stored objects. 
The indexing information can help us to quickly find the range of potential matching 
objects for a query object. Thus, the range tree database allows us to detect a loop 
without a costly search in large environments. Experimental results showed that our 
method can quickly detect a loop in most cases in a large complex outdoor 
environment. 

 

1.3 Document organization 

  The remainder of this document is organized as follows: 
• Chapter 2 reviews existing work relevant to this dissertation, including image 

segmentation, object classification and place recognition and loop closing methods. 
• Chapter 3 describes our image segmentation algorithm for scene images. 
• Chapter 4 presents our object classification method.   
• Chapter 5 presents our object-based place recognition and loop closing algorithm. 
• Chapter 6 presents the experimental results. 
• Chapter 7 concludes with a summary of accomplished work and future works for this 

dissertation. 
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2 Related work 

This chapter discusses research works in two relevant areas: existing image segmentation 
algorithms are addressed in section 2.1; Section 2.2 discusses current object classification 
methods; Section 2.3 reviews various SLAM methods and the data associate problem; 

 

2.1 Image segmentation 

Over the last 30 years, a large number of image segmentation approaches have been 
proposed in literature. In this section, we review some representative methods. The reviewed 
algorithms are divided into five categories: (1) region-based image segmentation techniques, 
(2) contour-based segmentation methods, (3) boundary detection approaches based on 
statistical learning, (4) class segmentation methods, (5) methods based on Gestalt laws. 
Region-based methods and contour-based methods belong to bottom-up methods which 
segment images based on low-level features like colors, textures and edges, etc. Boundary 
detection methods, class segmentation methods, and methods based Gestalt laws belong to 
top-down methods which segment images based on higher-level knowledge. Boundary 
detection methods detect object boundary based on boundary models learned from training 
images. Class segmentation methods segment images based on object-specific knowledge 
learned from training images. Methods based on Gestalt laws segment images based on 
generic knowledge (Gestalt laws) of real-world objects. Our image segmentation method 
(POM) belongs to this category. Figure 2.1 shows some examples of the five categories.  

2.1.1 Region based methods 

To overcome the shortcomings of early graph-based methods that only segment images 
based on local properties, Wu and Leahy [Wu93] first introduced a minimum cuts criterion in 
graph. This criterion is designed to minimize the similarity between pixels in two groups. 
The weakness of their work is that their method favors small components. To fix this bias, 
Shi and Malik [Shi00] proposed the normalized cut criterion. The normalized cut criterion re-
scales the cut weight by computing the cut cost as a fraction of the total edge connections to 
all the nodes in the graph, which removes the trivial solutions of cutting small sets of isolated 
nodes in the graph. The main problem of normalized cut methods is the computational 
efficiency. Minimizing normalized cut yields a NP-hard problem. Although the authors  
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Figure 2.1 Some examples of different image segmentation methods 

developed several approximation methods to compute the minimum normalized cut, the  
computational costs of these approximations are still too high for many practical applications 
and the error in these approximations is not well understood. 

Felzenszwalb and Huttenlocher [Felzenszwalb04] proposed an efficient graph-based 
generic image segmentation algorithm. As with the graph cut methods, this method also tries 
to capture the non-local image characteristics. This is achieved by adaptively adjusting the 
segmentation criterion based on the degree of variability in neighboring regions of the image. 
A boundary is detected when the degree of variability across the boundary of two regions are  
large relative to the degree of variability inside at least one of the regions. Due to the high 
efficiency and good segmentation quality, this method has been widely used by many 
applications to generate an initial partition. This initial partition often provides good spatial 
support for the subsequent region-merging processes.  

Comaniciu and Peter [Comaniciu02] treated image segmentation as a cluster problem in a 
spatial-range feature space. Their mean-shift segmentation algorithm has illustrated excellent 
performance on different image datasets and has been considered as one of the best bottom-
up image segmentation methods (see Figure 2.1- Mean-shift for an example). Some of these 
region-based methods have been widely used to generate small coherent regions called 
superpixels for many applications [Malisiewicz07, Micusik09, Pantofaru08, Yang07]. Our 
method also makes use of this algorithm to provide space support for detecting the shape and 
size information of object parts. 
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2.1.2 Contour-based segmentation methods 

Contour closure is one of the important grouping factors identified by Gestalt 
psychologists. Early contour-based works like active contour methods [Chan01] only utilize 
boundary properties such as intensity gradients (see Figure 2.1- Active contours for an 
example). Zhu and Yuille [Zhu96] first used both boundary and region information within an 
energy optimization model. They assume an image consists of a set of homogenous regions. 
The homogeneity of the regions is defined on some low-level properties such as intensity, 
color or texture. For their method to achieve good performance, a set of initial seeds needs to 
be placed correctly inside each homogenous region. In addition, they use the gradient descent 
algorithm to compute the minimum energy, which in many cases can only find the local 
minima. 

Jermyn and Ishikawa [Jermyn01] proposed a new form of energy function. Their energy 
function is defined on the space of boundaries in the image domain in the form of a ratio of 
two integrals around the boundary. The numerator of the energy is a measure of the ‘flow’ of 
some quantity into or out of the region. The denominator is a generalized measure of the 
length of the boundary. The main contribution of this form of energy is that the general types 
of region information are allowed to be incorporated into the energy function. Our method is 
also based on this form of energy function. We extend the energy function to incorporate the 
different Gestalt laws together to capture structure context information. Our energy function 
is addressed in detail in Chapter 3.  

2.1.3 Boundary detection approaches 

For comparison purposes, we briefly consider a class of boundaries detection methods 
based on statistical learning. Martin et al. [Martin04] treated boundary detection as a 
supervised learning problem. They used a large data set of human-labeled boundaries in 
natural images to train a boundary model. Their model can then predict the possibility of 
boundary at each pixel based on a set of low-level cues like brightness, color and texture 
extracted from local image patches. One big challenge for their method is that object parts 
have wide variation of surface characteristics (e.g., brightness, color, texture etc.). For 
example, people wear clothes with different colors and textures; cars of same model can be 
painted into totally different colors, etc. For many objects, some of their parts may have 
similar colors to the backgrounds around them. It is very difficult to detect the real 
boundaries for these objects only based on surface characteristics information. In addition, 
their model detects a boundary solely based on local information, which often cannot provide 
enough evidence for the appearing of boundaries in a location. As a result, their model often 
fails to detect some true boundaries and meanwhile detect a lot of false positives in practice. 

Noticing the importance of context information, Dollar et al. [Dollar06] designed their 
supervised learning algorithm for edge and boundaries detection based on a large number of 
generic features calculated over a large image patch. The generic features include gradients, 
difference of offset Gaussian, and so on at multiple scales and locations. The context 
information is expected to be provided in a very large aperture and some knowledge of 
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Gestalt laws are also implicitly incorporated into the model through some well-designed 
training samples that obey some Gestalt laws. Their method can only output a soft boundary 
map. To find the close-contour of object boundaries, further knowledge is required.  
   In the recent work, Hoiem et al. [Hoiem07] take a similar statistical approach. They 
claimed that people recognize objects intrinsically based on 3D interpretation. Therefore, 
their statistical mode is based on both 2D perceptual cues like color, position, strength and 
length of boundaries, and 3D cues such as surface orientation estimates, and depth estimates. 
As with other statistical methods, their model also suffers from the wide variation of the 
surface properties of object parts. Additionally, recovering 3D information from a single 
image often causes errors. As a result, their model also has the problem of accurately 
detecting object boundaries in many cases (see Figure 2.1- HBD for an example).  

2.1.4 Class segmentation methods 

Multi-class image segmentation (or semantic segmentation) has become an active research 
area in recent years. The goal here is to label each pixel in the image with one of a set of 
predefined object class labels. Many works operate on pixel level. Shotton et al. [Shotton09] 
assign a class label to a pixel based on a joint appearance, shape and context model. Shotton 
et al. [Shotton08] proposed to use semantic texton forests for fast classification. A number of 
works utilize superpixels as a starting point for their task. Gould et al.[ Gould08] proposed a 
superpixel-based conditional random field (CRF) to learn the relative location offsets of 
categories.  In their recent work [Gould09], they developed a classification model which is 
defined in terms of a unified energy function over scene appearance and scene geometry 
structure (see Figure 2.1- Gould09 for an example). Fulkerson et al. [Fulkerson09] use 
superpixels as the basic unit. They construct a classifier on the histogram of local features 
detected in each superpixel and regularize the classifier by aggregating histograms in the 
neighborhood of each superpixel. Other notable works in this area includes Micusik  et al. 
[Micusik09], Yang et al. [Yang07] and He et al. [He04]. 
 

2.1.5 Image segmentation methods based on Gestalt laws 

  Finally, we review some previous efforts attempting to apply Gestalt Laws to guide image 
segmentation. A great challenge for applying Gestalt Laws of Organization to real-world 
applications is to find quantitative and objective measures of these grouping laws. The 
Gestalt Laws of Organization are descriptive. Therefore, one needs to quantify them for 
scientific applications. Another challenge to incorporate Gestalt Laws of Organization into 
practical applications is how to combine the various grouping factors. People seem to apply 
multiple Gestalt laws at once when performing grouping. This is because different parts of an 
object are usually attached in different ways and a single Gestalt law only captures a single 
structural relation of object parts. Thus, only by systematically applying the various Gestalt 
laws, one may be able to group all the constituent parts of an object together.  Previous 
systems cannot find an elegant way to handle these two challenges.  Some works [Lowe85; 
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Jacobs96] only implemented a small subset of Gestalt Laws of Organization for particular 
tasks.  

A number of  works [Lowe85, Jacobs96, Mahamud03, Ren08] only applied one or two 
Gestalt Laws (e.g. proximity, curvilinear, continuity, closure or convexity etc.) on one-
dimensional image features (e.g. lines, curves, edges) to find closed contours in images. 
Lowe [Lowe85] and Mahamud et al.[Mahamud03] integrated proximity and continuity laws 
to detect smooth closed contour bounding unknown objects in real images. Ren et al. 
[Ren08] developed a probabilistic model of continuity and closure built on a scale-invariant 
geometric structure to estimate object boundaries. Jacobs [Jacobs96] emphasized that 
convexity plays an important role in perceptual organization and in many cases overrules 
other laws like closure.   

Mohan and Nevatia [Mohan92] incorporated several Gestalt Laws to detect a group of 
collated features describing objects. Their segmentation algorithm, however, is simply based 
on a set of ad hoc geometric relations among these collated features and is not based on the 
optimization of a measure of the value of a group.  McCafferty [McCafferty90] formulated 
the grouping problem in Perceptual Organization as an energy minimization problem where 
the energy of a grouping is defined as a function of how well it obeys the Gestalt Laws of 
Organization. He treated the total energy of a grouping as the linear combination of the 
individual grouping energies corresponding to the Gestalt Laws of Organization. This form 
of group energy requires finding the value of the weighting term denoting the relative 
importance of each grouping factor for overall perceptual grouping, which is difficult to 
decide since no systematic attempt has been made to categorize the relative importance of 
each Gestalt Laws of Organization. 

2.2 Object classification and feature selection 

2.2.1 Object classification methods 

   The recognition of object categories is one of the fundamental and challenging problems in 
computer vision. Object classification methods can be roughly divided into two categories 
based on their object representation model – part-based methods and orderless bag-of-
keypoints methods [Zhang07].  
   A number of works are based on modeling objects by parts. Lazebnik et al. [Lazebnik04] 
model objects with geometrically invariant parts. In [Fergus03], objects are modeled as 
flexible constellations of scale-invariant parts. Felzenszwalb et al. [Felzenszwalb05] 
represent an object by a collection of parts arranged in a deformable configuration. The 
deformable configuration is represented by spring-like connections between pairs of parts. 
Amit et al. [Amit07] proposed patchwork of parts (POP) model. They use edge features as 
parts. The deformation of an object is defined in terms of locations of a number of reference 
points. Each reference point is associated with a part. Other notable works include 
[Craddall05, Epshtein07, Schneiderman04]. Although from a conceptual point, part-based 
models provide an appealing way of representing many real-world objects, their values have  
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Figure 2.2 An example of using texton for object classification. In first step, convolving each training image 
with a filter bank. Each pixel gets a vector of responses of the filter bank. Then using kmeans method to cluster 
these vectors to a set of textons. In the second stage, mapping each training image of the same class to textons 
learned in the first stage and using these texton distribution to learn an object class model for each class. In third 
stage, mapping a testing image to texton and comparing the texton distribution of the testing image with the 
learned object class models to classify an image. Some images and figures are from [Shotton09]. 

not been demonstrated in practical applications. It has been reported that part-based models 
are often outperformed by conceptually simple models like orderless bag-of-keypoints  
methods on difficult datasets. This is mainly caused by the difficulty of matching a model to 
an object instant in an image. Due to occlusion and viewpoint changes, the object instants  
may yield vastly different shapes, which make reliably model matching difficult in practice.  
In addition, learning spatial relations remains complex and computational expensive. It often 
requires training objects to be well segmented from the background in an image, which 
currently can only be achieved by hand.  Recently, Felzenszwalb et al. [Felzenszwalb08] 
proposed a discriminatively trained, multiscale, deformable part model. Their models include 
both a coarse global template and higher resolution templates. The global template covers an 
entire object while higher resolution templates cover salient parts. Unlike other part-based 
methods, their model can be trained from weakly-labeled data (e.g. a training object is 
specified by a bounding box, the accuracy outline of the object is not available).   
  In contrast to part-based methods, the orderless bag-of-keypoints methods have achieved 
more successes in practical applications. The orderless bag-of-keypoints methods have 
shown good invariance to pose, viewpoint and occlusion. In addition, they have the 
advantage of simplicity and computation efficiency. Early works recognize objects with a 
sparse set of local features. The local features are often extracted by specialized interest 
operators from texture regions. Csurka et al. [Csurka04]  proposed to a bag-of-keypoints 
method based on vector quantization of affine invariant descriptor of image patches. They 
first use harris affine detector to detect a set of harris points from an image. Then build a 



 
 

16

SIFT descriptors for each harris points and cluster the SIFT descriptors to form keypoints. 
Therefore a bag-of-keypoints corresponds to a histogram of the number of occurrences of 
particular image patterns in a given image. Grauman et al. [Grauman05] use harris and SIFT 
detectors to detect interest points and build PAC-SIFT descriptors for each detected 
interesting point. They then use earth mover’s distance (EMD) to compute the 
correspondence between two bags of features. Other notable works include [Opelt04, 
Willamowski04].  Since these methods only extract information from texture regions, they 
can not handle objects with uniform surfaces like sky, road, water, etc.  

After realizing that uniform regions also contain important information for object 
recognition, people proposed many methods based on dense set of features. Different with 
methods based on sparse set of features, methods based on dense set of features extract 
features from both texture regions and uniform regions. Malik et al. [Malik01] used texton 
for texture recognition. The term textons were originally used to describe human textural 
perception and in the literature usually refers to the clusters of feature vectors in a high 
dimensional space [Winn05].  Winn et al. [Winn05] first used texton for object recognition. 
The specific textons and the particular proportions of texton in each class are learned from a 
segmented training set (see Figure 2.2 for an example). Although totally discarding the 
spatial layouts of textons, the learned model perform well on both shape-free and structured 
objects. Their ideals are followed by many other works [Lazebnik06, Savarese06, Shotton09]. 
One drawback of the bag-of-keypoints methods is that they do not represent the geometric 
structure of the object class and also do not distinguish between foreground and background 
features. Due to this reason, the performance of bag-of-keypoints methods may be affected 
by clutter. Some works have been proposed to fix the problem. Savarese et al. [Savarese06] 
present an approach that augment bag-of-keypoints method and incorporate shape 
information. They use correlograms to capture spatial co-occurrences of features. Their 
method can encode both local and global shape and can be robust to occlusions. Grauman 
and Darrell [Grauman05] propose to use pyramid match kernels to compute the 
correspondence of two sets of unordered features.  Their method maps unordered feature sets 
to multi-resolution histograms and computes a weighted histogram intersection in this space. 
Lyu [Lyou05] design a new kernel function that obeys the mercer condition to compute the 
correspondence between two unordered features. All these methods augment the orderless 
bag-of-keypoints methods by incorporating certain spatial information and have obtained 
promising results. 

2.2.2 Feature selection 

Classification tasks usually involve representing the patterns as feature vectors. In many 
practical applications, the number of features can be very large. Feature selection refers to 
search algorithms that select a subset of most characterizing features from an initial larger set 
of features. When the initial set of features is small, optimal subset of features can be found 
by exhaustively searching. When the initial set of features is large (usually > 50), however, 
feature selection becomes challenging since the exhaustively search is infeasible due to the 
excessively large numbers of possible feature sets. Many sequential-search-based 
approximation schemes like best individual features, sequential forward search, sequential 
forward floating search etc. have been proposed in the literature [Jain00]. Peng et al. [Peng05] 



 
 

17

proposed a criterion of max-dependency, max-relevance and min-redundancy for feature 
selection. The measurement of their criteria is based on mutual information.  

A big family of feature selection works is based on Markov Blanket. The Markov 
Blanket of the target feature T, denoted as MB(T), is defined as the set of features conditioned 
on which all other variables are probabilistically independent of T. Margaritis et al. 
[Margaritis99] presented the first provably correct algorithm that discovers the Markov 
Blanket of a feature from data. They presented a two-stage Markov Blanket called Grow- 
shrink Markov Blanket algorithm (GSMB). Xing et al. [Xing01] follows a similar scheme in 
their work. Tsamardinos et al. [Tsamardinos03] introduced several variants of GSMB such as 
the Incremental Association Markov Blanket (IAMB) and the Interleaved IAMB (Inter-
IAMB). One drawback of GSMB and its variants is that they require sample exponential to 
the size of MB(T), which seriously limits the applications of their methods. Aliferis et al. 
[Aliferis05] proposed a sample-efficient Markov Blanket algorithm. However their method is 
based on an assumption that the maximum number of conditioning and conditioned variables 
is bounded. This assumption may not hold for complex datasets. 

2.3 Simultaneous localization and mapping (SLAM) and place 

recognition 

2.3.1 Robot mapping and SLAM 

Mapping is the problem of generating models of robot environments from sensor data. The 
reason why robot mapping is important is because many successful mobile robot systems 
require maps for their operation. To map an environment, a robot has to deal with two types 
of sensor noise: Noise in perception (e.g., range measurements) and noise in odometer (e.g., 
wheel encoders) [Thrun01]. 

Because of the latter, the problem of mapping creates an inherent localization problem, 
which is the problem of determining the location of a robot relative to its own map. The 
mobile robot mapping problem is therefore often referred to as the simultaneous localization 
and mapping problem (SLAM) [Thrun01].  

The field of mapping was roughly divided into metric and topological approaches [Thrun02] 
based on their map representations.  Metric maps capture the geometric properties of the 
environment. A representative metric map representation is the occupancy grid [Moravec88,  
Elfes87, Elfes88].  Occupancy grids represent a region as a matrix of cells. Each cell 
describes a small rectangular area in the environment and indicates the probability that the 
area is occupied by a value in the range (0,1). An example of occupancy grid map is shown 
in figure 2.3.  This method has been used in many robotic systems such as [Buhmann95, 
Burgard96, Burgard99, Borenstein91, Guzzoni97, Schneider94, Thrun00, Yamauchi97]. 

There are several difficulties concerning occupancy grids. The first issue is the tradeoff 
between grid resolution and computational complexity. To capture environment detail, small 
grid size is desired. On the other hand, for feasible and efficient computation, larger grid size 
is required, especially in large environments. Occupancy grids represent uncertainty at a local  
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Figure 2.3 An example of an occupied grid map for an office environment. From [Burgard96] 

 (vehicle-centric) level, but not at a global level, which is essential for map convergence. 
Besides, data association, a main issue all SLAM methods are facing, is difficult operating on 
occupancy grids. These issues make occupancy grid methods only applicable to reasonable 
small environments [Bailey02].  
     Another representative metric representation is feature map. Feature maps represent the 
environment by the global locations of parametric features. Appropriate feature may be  
landmarks, distinctive objects or shapes in the environment. An example of feature map is 
shown in Figure 2.4. Feature maps are widely used in probabilistic approaches. Smith and 
Self [Smith88] first introduced a statistical framework to generate maps. In their approach, a 
map is represented by the Cartesian coordinates of sets of features. The map is combined 
with robot’s pose to form a state vector. They then used Kalman filter to estimate the joint 
posterior over all the features and robot pose. Based on assumptions that all the noises are in 
Gaussian distribution, the joint posterior is represented by a state mean vector and a state 
covariance matrix. In the following years, many people [Csorba97, Castellanos99, Guivant01, 
Dissanayake01, Newman00, Leonard92, Williams01] further developed this approach. Today, 
the Kalman filter based methods are in still widespread use. 
    The main weakness of the Kalman filter based methods is the high computation and 
storage costs. The stochastic SLAM methods need to maintain correlations in the state 
covariance matrix. For an environment containing n map features, there are n×n elements 
stored in the covariance. These  n×n elements need to be updated with each new observation. 
Therefore, the computation and storage are specified as being O(n2). 
   A further problem concerning the feature map based methods is that they are only applied 
to structured environments where the observed objects can be reasonably depicted by basic 
geometric feature models. For the unstructured environments, objects may have arbitrary 
shapes or curves. More complex models are required to well describe these general objects.   
   Besides, like the occupancy grids, feature maps also have a problem for robust data 
association. Objects depicted by basic geometric feature models are often not unique enough 
to label a place. This makes observation-to-map correspondence is difficult. All these issues 
make feature map based methods only apply to small-scale environments where stable 
landmarks are observable, computation is tractable, and accumulated state uncertainty does  
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not exceed conservative limits. For feasible and convergent operation in larger areas, 
modifications to the basic stochastic SLAM algorithm are required [Bailey02]. 
   To handle large-scale environments, some researchers proposed topological map 
representation. Occupancy grids and feature maps are both metric maps where location is 
defined as a set of coordinates in Cartesian space. Topological maps do not rely on metric 
measurements. Instead, they represent the environment in terms of places and connecting 
paths. Topological maps are generally depicted by a graph structure where the graph nodes  
define distinctive places in the environment and the graph edges define procedural 
information for traveling from one node to another. The topological maps are built on the 
assumptions that distinctive places are locally distinguishable from the surrounding area and  
the procedural information is sufficient to enable the robot to travel from one place to next 
specified place. Examples of topological methods include [Jefferies05, Choset96, 
Engelson92 Kortenkamp94,  Pierce94, Shatkay97, Yamauchi96, Zimmer96]. 

  Topological maps are attractive for their efficient and compact representation, which 
makes them suitable for large-scale environments. The most critical weakness of topological 
maps, however, is place recognition. Place recognition is a form of data association where 
the observation-to-map correspondence is based on the apparent similarity between two data 
sets: observation information and a graph node description. It is a common case that some 
places in a large environment may have similar appearances. Without the aid of some form of 
metric location measure, it might be difficult to distinguish these places. If a place is not 
recognized or an alternate location is mistaken for a place then the topological sequence is 
broken and the robot becomes lost [Bailey02].  
   The qualities of metric and topological maps are complementary. Metric maps, with an 
appropriate uncertainty representation, can capture the geometric properties of the 
environment. The captured geometric properties can help constrain data association and 
permit non-qualitative trajectory planning.  On the other hand, topological maps break the 
world up into locally connected regions and avoid the problems of maintaining a global 
reference frame. For this reason, most working topological methods use hybrid topological 
and metric maps. Hybrid topological metric maps are basically topological frameworks 
where the place definition and /or path definitions contain metric information, which means  

 
Figure 2.4 An example of a feature map. from [Bailey02] 
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Figure 2.5 An example of a topological map. from [Jefferies05] 

that places are no longer restricted to discrete locations but can describe regions of arbitrary 
size and shape as local metric maps. An example of hybrid topological metric maps is shown 
in Figure 2.5. 
   Although many progresses have been made in past twenty years, robotic mapping still 
faces many problems. A key challenge in robotic mapping arises from the nature of the 
measurement noise. The measurement errors are statistically dependent. This is because 
errors in control systems accumulate over time. As results, the control errors affect the way 
future sensor measurements are interpreted. This causes many existing mapping algorithms  
surprisingly complex, both from a mathematical and from an implementation point of view 
[Thrun02].  
   Another difficulty of the robot mapping problem is caused by the high dimensionality of 
the entities that are being mapped. A detailed two-dimensional floor plan, which is an equally 
common representation of robotic maps, often requires thousands of numbers. But a detailed 
3D visual map of a building may easily require millions of numbers. From a statistical point 
of view, each such number is a dimension of the underlying estimation problem. Thus, the 
mapping problem can be extremely high-dimensional [Thrun02].   
   The dynamism of robot environments also creates a big challenge. Some changes in an 
environment may be relatively slow, such as the change of appearance of a tree across 
different seasons. Others are faster, such as the change of door status or the location of 
furniture items. The dynamism of robot environments often makes the explanation of sensor 
measurement inconsistent. For example, imagine a robot facing a closed door that previously 
was modeled as open. Such an observation may be explained by two hypotheses, namely that 
the door status changed, or that the robot is not where it believes to be. Thus, most methods 
rely on a static world assumption, in which the robot is the only time-variant quantity and 
everything else that moves is just noise. Consequently, most techniques are only applied in 
relatively short time windows, during which the respective environments are static 
[Thrun02].  
     A challenge also arises from the fact that robots must choose their way during mapping. 
The task of generating robot motion during building a map is commonly referred to as 
robotic exploration. While optimal robot motion is relatively well-understood in fully 
modeled environments, exploring robots have to cope with partial and incomplete models. 



 
 

21

For this reason, exploration is often solved sub-optimally via simple heuristics. When 
choosing where to move, various quantities have to be traded off: the expected gain in map 
information, the time and energy it takes to gain this information, the possible loss of pose 
information along the way, and so on. Furthermore, the underlying map estimation technique 
must be able to generate maps in real-time, which is an important restriction that rules out 
many existing approaches [Thrun02].  
   Among all the problems in today’s robotic mapping, however, the hardest one is the 
correspondence problem, also known as the data association problem [Thrun02]. Most 
SLAM methods build a map by incrementally integrating new data into the map. Every time 
a new sensor measurement is acquired, the robot must determine if: 
1) It is associated with an unknown region of workspace? 
2) It is associated with a previously mapped region? or  
3) It is spurious and should be ignored?  
The correspondence problem becomes challenging when the robot’s pose is in gross error. 

Figure 1.2 shows an instance of this problem, in which a robot attempts to map a large cyclic 
environment. When closing the cycle, the robot has to find out where it is relative to its 
previously built map. This problem is complicated by the fact that at the time of cycle 
closing, the robot’s accumulated pose error might be unboundedly large. The correspondence 
problem is difficult, since the number of possible hypotheses can grow exponentially over 
time. Most scientific progress on the correspondence problem has emerged in the past several 
years, after a long period in which the problem was basically ignored in the robot mapping 
community [Thrun02]. The work presented in this dissertation is mainly designed to help 
handle this big challenge in SLAM. 

2.3.2 Data association and loop closing problem for SLAM 

Early works [Smith88, Castellanos99, Feder99] use the gated Nearest Neighbor algorithm 
to associate sensor observations with map features given map and pose estimates. This type 
of algorithms fails when the pose estimate is in gross error, which is often the case when a 
robot is closing a big loop.  Neira and Tardos [Neira01] present a Joint compatibility test 
algorithm. Instead of considering each matching between sensor observation and map 
features independently, their algorithm takes into account the correlations between features in 
a local region. This technique presents some degrees of robustness against pose estimate 
error. Bosse et al. [Bosse04] developed a hybrid metrical/topological approach. They 
represent a large environment as a graph of multiple local submaps with limited size. The 
loop closure event is detected by performing matching with constant-size local submaps that 
are expected to have some non-empty intersection with the true local area. Other hybrid 
metrical/topological approaches include [Tomatis03, Choset01, Bailey01]. Thrun et al. 
[Thrun01] propose a SLAM method to avoid the need for exact data association. Instead of 
only keeping the most likely pose, their method maintains the full posterior over poses. By 
doing so, their method can accommodate large errors of pose estimate.   With this technique, 
their method is able to close moderately sized loops. A similar work is developed by 
Gutmann et al. [Gutmann99]. However, all the methods rely on pose estimate to associate 
data or detect loop. Therefore, these methods still struggle when the pose estimate is in gross 
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error.  
 

2.3.3 Vision-based methods 

Newman and Ho [Newman05] point out that the fundamental solution for the big loop 
closing problem of SLAM is to allow a robot to be able to recognize place in an independent 
way. i.e., a robot should be able to quickly decide if it is revisiting a place or exploring a new 
place only based on the current sensor measurement and the pre-built map, and not rely on its 
pose estimates. They believe that camera is an ideal tool for this purpose because it can 
provide rich information about a place and allow a robot to be able to build a unique 
“signature” for each place. They combine the Saliency and “Maximally stable extremal 
regions” (MSER) techniques together to detect the regions that are not only salient but also 
robust to changes in view point in an image. Then, they build a SIFT descriptor to encode 
each detected region and store the SIFT descriptors in a database. Loop detection is achieved 
by matching the SIFT descriptors extracted from the current image to the SIFT descriptors 
stored in the database. They conduct the experiment in an indoor environment. The result 
shows that using visual information alone to detect possible loop closure events can make 
traditional SLAM algorithm more robust. However, their query mechanism has a complexity 
linear in database size, which makes their method not scalable to large environments.  

Se et al. [Se02] developed a vision-based global localization and mapping method. They 
use SIFT features as visual landmarks. By keeping the distinctive SIFT features in a 
database, they are able to build a 3-D map of an environment and use these SIFT features for 
localization at the same time. By matching the SIFT features detected in current frame to the 
pre-built SIFT database map, they can globally localize the robot and detect a loop. The 
distinctiveness of SIFT features eliminates the data association problem struggled by the 
traditional SLAM methods. Once detect a loop, they can determinate the accumulated 
position error and employ a global minimization procedure to do backward correction on all 
the previous submaps. Their work has been tested in a simple indoor office environment. As 
with Newman and Ho’s work, their loop detection method may require a high computational 
cost search for large outdoor environments. 

   Cummins and Newman [Cummins07] propose a probabilistic appearance based 
navigation and loop closing method. They apply a bag-of-words representation in a 
probabilistic framework. Words are built as SIFT descriptors around the regions of Harris-
affine interest points. Each word represents some small aspect of the local workspace. The 
underlying map representation is a set of discrete places. Each place is parameterized by a 
probability distribution over the existence of words at that place. They train a generative 
model of observations based on a large number of images collected from a large urban 
region. The generative model of observations is used to capture the co-occurrence statistics 
of the visual words. If an observation contains some distinctive words and has a match for 
one of the mapped place, then a loop is detected. Otherwise, a new place is added into the 
map. They experiment in a large outdoor environment and achieve good performance on 
place recognition. However, their method requires a time-consuming training stage. If a robot 
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moves to a totally different environment, the generative model of observations trained before 
may not be accurate enough and a new training process is required for the new environment. 
In addition, they use a collection of visual words to represent a place. Thus, their scene-
matching method is essentially based on the global scene image properties. This might cause 
scene-matching fail due to the presence of some changes in the scene in many cases. 

Sala et al. [Sala06] notice the importance of eliminating redundancy from landmark-based 
map. They claim that more attention needs to be put on the size of landmark database or the 
number of landmark lookups required for localization. They present a method to 
automatically select an optimal set from the entire set of features visible in an environment. 
They decompose the world into a small number of maximally sized regions. At each position 
in a given region, the same small set of features is visible for navigation. They collect images 
at known discrete points (e.g., the points of a virtual grid overlaid on the floor of the 
environment) in a small indoor environment. By doing so, for each of the grid points, they 
know which features in the database are visible; and for each feature in the database, they 
know from which grid point it is visible. Therefore, their method is only applied to 
localization problem where the map of an environment is already available. 

 

2.3.4 Object representation methods 

   Objects in the real world have description of infinite complexity. In practice, however, 
object representation is often application-related. Most applications need only small amounts 
of information to perform a task adequately. The key is to choose representations for each 
task that encapsulates necessary information to perform the task in an efficient manner.  
   In our case, our goal is to recognize a scene by recognizing a set of salient objects in the 
scene. When mobile vehicles are moving around in a complex environment, it is often the 
case that the vehicles may observe many objects over time from different angles, distances or 
under different illuminations. Therefore, for our application, object representation should 
have the following properties: 

1.    Robust to changes in view point;  
2.    Robust to changes in scale;  
3.    Robust to changes in illumination.  

   There are many object representation methods in the literature. Early works represent 
objects with a list of expected properties, such as colors, shapes, rough sizes, etc. The success 
of these methods in object recognition has mainly been in domains where imaging conditions 
and object appearance are restricted or well-controlled. As for the recognition of many 
common objects in natural settings, such as cars and people in outdoor scenes, these 
techniques often cannot produce satisfied results. The main difficulty, as pointed out by 
Ullman [Ullman96], lies in the tremendous view variability associated with the images of a 
given object. For example, depending on the viewing angle, the pictures of a car may look 
very different. As a result, an algorithm designed based on a single or a few views may not 
work on a picture of the object taken from a new view [Zhang03]. 
   Most works in view-invariant object recognition can be classified into three approaches 
[Ullman96], namely, using invariants, part decomposition, and alignment. In using 
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invariants, the idea is to use object features that are invariant over a wide range of views, 
such as various geometric invariants [Mundy92]. Despite its success in some applications, 
using invariants also has several limitations. First, for a given object, it might not always be 
obvious as to how to find its invariants. Even if they can be found, weighing their relative 
importance can be difficult. Second, many invariants are sensitive to noise and occlusion. 
Finally, because many invariants are obtained by many-to-one mappings, different objects 
may have the same invariant feature values [Zhang03].     
    Part decomposition approach decomposes an object into a set of simple and generic 
shapes, such as boxes, cylinders, and generalized cylinders. Then, the object is represented 
by a graph.  The nodes of the graph correspond to the decomposed parts and the edges of the 
graph encode their spatial relations. By doing so, part decomposition approach can represent 
very complicated objects. Besides, this approach also achieves some degree of invariance 
through the spatial relations embedded in the graph representation. For example, the wheels 
of a car are always below its windows from different viewing angles. This approach, 
however, also has some practical limitations. For example, at relatively coarse levels, many 
similar objects may have the same part decomposition. A fine level decomposition, on the 
other hand, may produce very complex models for relatively simple objects. Similarly, stable 
and consistent part decomposition is often not easy and may even be ill-defined for many 
natural objects [Ullman96]. 
    Alignment approach achieves invariance by compensating for the transformations that an 
object may have undergone during the imaging process. The advantage of this approach is 
that it uses the entire shape, rather than its partial (as in using invariants) or coarse (as in part-
decomposition) representations. Thus it promises better recognition performance. The 
disadvantage of this approach is that sometimes, the optimization involved in the alignment 
operation may be computation- intensive[Zhang03].  
      Recently the computer vision community has adopted a class of affine covariant visual 
features [Lowe04, Matas02, Kadir01]. Many of these features are invariant, to certain degree, 
to changes in illumination, scale, translation, rotation and viewpoint. This makes them ideally 
suited to be used as visual landmarks. Among them, SIFT [Lowe04] has gained noticeable 
attention and been widely used in applications.  

2.3.5 Content-based image retrieval technologies 

Our goal is to quickly recognize a place by matching the set of landmark objects in the 
place to the landmark objects recorded in a large database. To achieve this goal, we need to 
build an efficient indexing schema so that for any query object, we can quickly find the most 
similar objects to the query object from the database. This application is similar to the 
content-based image retrieval (CBIR) technologies. CBIR aims at retrieving images based on 
their visual similarity to a user specified query image. Many CBIR systems are based on 
using visual features like shape, color, texture, etc to index and retrieve relevant images from 
image database. 

Shape is an important feature for perceptual object recognition and classification of images 
[Prasad04]. Different shape representations such as chain code, polygonal approximations, 
curvature, Fourier descriptors, radii method, and moment descriptors have been proposed and 
used in various applications [Gonzalez87]. Features such as moment invariants and area of 
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region do not give perceptual shape similarity. The weakness of chain codes is that they are 
not normalized and hence are not invariant to shape scale. A region-based shape 
representation and indexing scheme that is translation, rotation, and scale invariant is 
proposed in [Lu99]. Compared to Fourier method, this method achieves better retrieval 
performance. The drawback of this method is that it works only on binary images and has 
been applied on only 2D planar images. Moreover the shapes with similar eccentricity but 
different shapes are also retrieved as matching images. A retrieval system using combined 
color and shape indexing has been developed [Prasad04]. This method combines the earlier 
grid-based shape representation with the dominant color-based index to provide better 
retrieval efficiency and effectiveness.   
  Color is one of the most important image indexing features employed in CBIR. Bimbo 
[Bimbo99] provides a comprehensive survey of various methods employed for color image 
indexing and retrieval in image databases. Some of the popular methods to characterize color 
information in images are color histograms [Hafner95], color moments [Stricker97], and 
color correlograms [Huang97]. Though all these methods provide good characterization of 
color, they have the problem of high-dimensionality. This leads to more computational time, 
inefficient indexing, and low performance[Prasad04]. To overcome these problems, 
Ravishankar et al.[Ravishankar99] propose dominant color regions approach. The dominant 
color descriptor gives the distribution of the salient colors in the image. Unlike the bin 
quantization in the histograms, the specification of colors in a dominant color descriptor is 
limited only by the color space quantization. Hence dominant color descriptor provides an 
effective, compact, and intuitive representation of colors present in a region of interest. 
Similar methods include color clustering [Wan98].  
    Texture, like color, is also considered to be a powerful low level feature for image search 
and retrieval application. Generally, approaches in the analysis of image based on textural 
contents use either the spatial or frequency-based techniques. Spatial approaches include 
structural and statistical models such as the co-occurrence matrix and autoregressive models 
[Abbadeni00]. In the frequency-based approach, popular techniques include wavelet-based 
models such as the Gabor wavelet decomposition model. There is another class of models 
called perceptual models. In these models, textures are represented by a set of features that 
have a perceptual meaning such as contrast, coarseness, directionality, regularity, etc. 
[Abbadeni00, Bimbo99]. Other approaches include image decomposition by filtering with a 
subband or wavelet filter bank [Theoharatos06, Do02] and appliance of a linear 
transformation by a Fourier or discrete cosine transform [Leung01, Zhong00]. 
   Although our application is similar to CBIR, there are some differences between these two 
applications. The most important difference is that our application requires indexing features 
to be viewpoint-invariant. This is because when vehicles are revisiting a place, most likely 
they will see the scene from a different viewpoint. This means that objects in a scene might 
be observed from different distances, different viewing angles and under different 
illuminations. The viewpoint-invariant requirement makes shape feature not applicable to our 
application. In CBIR, shape features are usually applied to some types of image datasets 
where images are taken under control conditions. In these images, objects are usually placed 
in uniform backgrounds so that the geometric shape of objects can be accurately extracted. 
This condition does not hold in our application. In our case, objects are not controlled and 
appear in their natural habitat. From different viewing angles, object’s shape looks quite 
different (e.g. cars). In addition, sometimes the perceptual organization model used in our 
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image segmentation algorithm might make small error on grouping objects, which also 
affects the accuracy of object shape. All these issues make shape features instable. Therefore, 
in our work, we do not use shape as an indexing feature.  Compared to shape feature, 
appearance-based features like color and texture are more stable for viewpoint changes, 
which makes them suited as indexing features for our application.  
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3 Image segmentation based on Perceptual 

Organization 

In this chapter, we want to tackle a challenging problem – how to detect object 
boundaries without object-specific knowledge in scene images. As we mentioned in Chapter 
1, this turns out to be one of the fundamental and challenging problems in computer vision 
community. Usually many structural-rich objects are composed of different parts. Since 
different parts of an object have different functions, it is natural that different parts of an 
object may have totally different surface characteristics (e.g., colors and textures). Most 
existing image segmentation methods are designed to detect homogeneous units in images. 
These homogeneous units may only approximately correspond to object parts. As a result, 
these image segmentation methods often cause over-segment problem – an object in an 
image is segmented into multiple parts. Since these image segmentation methods do not 
know what objects are, they cannot regroup the object parts back. It is recently argued that, to 
achieve that, one might need to recognize the object first. This forms a chicken-and-egg 
problem since segmentation is supposed to be a pre-processing for object recognition. In this 
chapter, we developed a novel image segmentation algorithm. The image segmentation 
algorithm is based on a Perceptual Organization model. With the Perceptual Organization 
model, our image segmentation method can ‘perceive’ the special structural relations among 
the constituent parts of an unknown object and hence can group them together without 
object-specific knowledge. The image segmentation algorithm allows us to ‘perceive’ the 
salient objects in a place. The work presented in this chapter is the most significant 
contribution for the dissertation.  

The remainder of the chapter is organized as follows: we first present an example of 
Perceptual Organization phenomenon in Section 3.1. We then briefly introduce the Gestalt 
laws and Perceptual Organization in Section 3.2. In Section 3.3, we illustrate a list of Gestalt 
cues with real-world objects, our Perceptual Organization model mainly rests on the list of 
Gestalt cues. Then, we describe the generic knowledge about natural scene images in Section 
3.4. In Section 3.5, we present our Perceptual Organization model and the boundary 
detection algorithm. The relation of our Perceptual Organization model and the Gestalt laws 
is discussed in Section 3.6. Finally, the image segmentation algorithm is described in Section 
3.7 and Section 3.8. 
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3.1 Perceptual Organization phenomenon 

As we mentioned in Chapter 1, detecting object boundaries in scene images is a 
challenging problem. Natural scene images usually contain multiple objects. In many cases, 
the objects in a scene are cluttered and occluded. Different scenes are often associated with 
different groups of characteristic objects. Many structural-rich objects like vehicles and 
buildings etc. are composed of several parts. Since different parts have different functions, it 
is natural that different parts of an object may have totally different surface characteristics 
(e.g., color, texture, brightness, etc.). Most bottom-up methods are designed to detect 
homogeneous image regions, which may only correspond approximately to the object parts. 
As a result, bottom-up methods may inevitably cause an over-segmenting problem – an 
object may be segmented into multiple regions (parts) and it is difficult to regroup these 
regions back. It is recently argued [Malisiewicz07, Russell 06] that in order to regroup these 
regions back, one might need to solve the object recognition problem first, which forms a 
chicken-and-egg problem since segmentation is supposed to be a pre-processing step for 
object recognition. Some works [Borenstein04, Rutishauser04] attack this difficulty by using 
object-specific models to help identify object boundaries. These methods are generally called 
top-down methods. However, these methods do not perform well when the images contain 
objects that have not been seen before. Therefore, top-down methods cannot apply to scene 
images since scene images usually contain various kinds of objects and it is impossible to 
learn all the object models in advance. Therefore, our research objective is to explore 
detecting object boundaries in an image without any object-specific knowledge.  

It has long been known that Perceptual Organization plays a powerful role in human 
visual perception. Perceptual Organization in general refers to a basic capability of the 
human visual system to derive relevant groupings and structures from an image without prior 
knowledge of its contents. The Gestalt psychologists summarized some underlying principles 
(e.g., proximity, similarity, continuation, closure, symmetry, etc.) that lead to human 
perceptual grouping. They believed that these laws capture some basic abilities of the human 
mind to proceed from the whole to the part [Lowe85].  A simple synthetic example of 
perceptual grouping phenomena is shown in Figure 3.1. In this image, although the four parts 
have different surface characteristics and shapes, most people would prefer to group part a 
and part b together.  The main reason is that these two parts are approximately symmetric 
along a vertical axis and also aligned along the vertical direction which makes the boundary 
of the union of these two parts has a smooth continuation. Part d is separated from the group 
of a and b because it is weakly attached to part b. Although there is also a strong attachment 
between part c and part b, unlike part a and b, part c has an irregular shape. Notice that in this 
process, people seem to simultaneously apply four Gestalt laws to help them do grouping: 
symmetry and continuation laws for grouping part a and part b together; proximity law for 
separating part d from part a and b; similarity law for separating part c from part a and b. 

The simple example illustrates that people have the ability to make a correct decision on 
grouping the different parts of an unknown object together even under certain degrees of 
clutter and occlusion. This kind of capability is desired for natural scene image segmentation. 
Although different objects in natural scenes have different configurations of parts, in most  
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                    (a)                                 (b) 

Figure 3.1 A synthetic example of Perceptual Organization phenomena. (a) A synthetic image. (b) The 
boundary energy of four regions containing component a. Brighter line represents lower boundary energy value. 
The region that contains a and b (Upper left) has the minimal boundary energy. 
. 

cases an object part should be at least tightly attached to one of the remaining parts of that 
object. Therefore, if an object is composed of a set of parts, there always exist some special  
structural relations among most of these parts. As demonstrated in the above example, in 
many cases, these kinds of special structural relations can be captured by the human visual 
system. Our goal is to develop an image segmentation method that has a similar behavior like 
human visual system. For most of the salient objects in a scene, even though without any 
specific knowledge about these objects, our algorithm should be able to group the different 
parts of these unknown objects together and find the correct boundaries for these objects. We 
believe that we can achieve this goal by applying the Gestalt laws in image segmentation. 
However, a great challenge is that all Gestalt laws are descriptive and therefore are difficult 
to be applied to scientific applications directly.  

3.2 Gestalt psychology and Perceptual Organization 

Gestalt is a German word meaning configuration or pattern. Different from the previous 
theory that assumed that perception could be explained solely as a combination of individual 
components, the school of Gestalt Psychology stresses that the whole is greater than the sum 
of its parts. This is because when a group of parts are considered as a whole, many new 
properties will emerge. For example, the property of orientation emerges only when two or 
more dots are considered and each dot does not have this property individually 
[McCafferty90].  

 The major contribution of Gestalt psychology to today’s understanding of Perceptual 
Organization was to highlight a number of factors, which they considered to lead to visual 
grouping. These factors are summarized as follows [Wertheimer38, Lowe85]: Proximity: 
components that are close together tend to be grouped together; Similarity: components that 
are similar in physical attributes like size, shape, color or others, are grouped together; 
Continuation: components that lie along a common line or smooth curve are grouped 
together; Symmetry: components that are bilaterally symmetric about some axis are grouped  
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Figure 3.2 Gestalt laws. (a) black blocks are grouped on the basis of proximity; (b) circles and squares are 
paired based on similarity in shape;  (c) incomplete squares are perceived due to closure; (d) two crossing lines 
rather than two non-crossing curves are perceived due to good continuation and (e) curves are paired on the 
basis of symmetry; (f) four ellipses are perceived due to convexity. 
 

together; Closure: components that seem to complete some entity are grouped together. 
These grouping factors are known as the Gestalt laws of Organization and used to explain 
how smaller objects are grouped to form larger ones. Examples of Gestalt laws are shown in  
Figure 3.2. In the later stage, Gestaltists tried to summarize their laws of organization with 
the single law of Pragnanz, which is a German term meaning “good of form”.  This law is 
also referred as law of simplicity. The law is based on the observation that in any situation, 
objects in the environment are perceived in a way that makes as simply as possible. However, 
many psychologists realized that this law of simplicity is unsatisfactory because it is not well-
defined and too subjective for scientific use. In 1980’s, Witkin and Tenenbum proposed an 
alternative principle called non-accidentalness [Witkin83]. Specifically, from a probabilistic 
point of view, the Gestalt laws are relatively unlikely to occur by accident, but most likely 
originate in a single object or process. In other words, there exist causal relations between 
Gestalt laws and scene structure. For example, the Proximity law can be explained by the fact 
that if two components are closer together in an image, they are also very likely to be 
adjacent in the 3D world. Besides the above classic Gestalt laws, other Gestalt laws like 
Convexity also draws a large notice by many researchers [Jacobs96, Jabobs03].  

As we have mentioned in the Chapter 3.1, there are two challenges for applying Gestalt 
Laws of Organization to real-world applications. The first challenge is to find quantitative 
and objective measures of these grouping laws. The Gestalt Laws of Organization are in 
descriptive forms. Therefore, one needs to quantify them for scientific use. Another 
challenge is that of how to combine the various grouping factors. People seem to apply the 
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Gestalt laws systematically in a grouping process. This is because different parts of an object 
are usually attached in different ways. If one applies Gestalt laws independently without 
incorporating other laws, he may only capture a subset of the parts that the structural 
relations of them only obey the applied Gestalt laws and miss the remaining. Thus, only by 
systematically applying the various Gestalt laws, one may be able to group all the constituent 
parts of an object together. Our solutions for solving these two challenges are presented in 
the following subsections. 
 

3.3 Gestalt cues in real-world objects 

    As shown in Figure 3.2, classic Gestalt laws are usually illustrated with a set of artificial 
elements like dots and lines. As results, most works in the literature mainly apply Gestalt 
laws on zero- or one-dimensional image features (e.g. points, lines, curves, etc.). Different 
with these works, our method applies Gestalt laws on two-dimensional image features – 
object parts. Following Jacobs [Jacobs03], we treat perception organization as a process of 
finding features in 2-D image that provide cues about the 3-D structure that produced the 
image. Since real-world objects are composed of different parts, the properties of object parts 
in 2-D images provide vital clues about the real-world objects that produce the 2-D objects in 
the images. We first give the formal definition of object parts in images: 
    Definition: an object part refers to a homogenous portion of an object surface in an image. 
    Based on our empirical observation, most object parts have approximately homogenous 
surfaces (e.g. colors, textures, etc.). Therefore, the homogenous patches in an image 
approximately correspond to the parts of the real-world 3-D objects that produce the 2-D 
image. Throughout this dissertation, we use this definition for object parts.  

As Bruce [Bruce90] pointed out that the Gestalt grouping laws are believed to reflect the 
general properties of the world. In other words, the Gestalt laws may work because they 
reflect a set of sensible assumptions that can be made about the world of physical and 
biological objects. In the remaining of this section, we illustrate a set of Gestalt cues with 
real-world objects to show the validation of these assumptions. Our perceptual Organization 
model presented in Section 3.5 then rests on these Gestalt cues.   

 The symmetry law is based on an assumption that many natural and man-made objects are 
symmetrical.  The symmetrical relations can be observed in various natural and man-made 
objects. Examples of symmetry relations among different parts of real-world objects are 
illustrated in Figure 3.3 – in (a), the person’s head and body are approximately symmetric 
along a vertical central axis; in (b)-(d), different parts of the buildings are approximately 
symmetric along their vertical central axis; in (e), the head and body of the owl are 
approximately symmetric along the vertical central axis; in (f), different parts of the bowling  
are approximately symmetric along the vertical central axis; in (g), the top red portion and 
the bottom black base of the mailbox are approximately symmetric along the vertical central 
axis; in (h), the top red portion and the white base of the fire-hydrant are approximately 
symmetric along the vertical central axis. Therefore, based on the symmetry law, if two 
object parts are symmetrical along a central axis (most likely along a vertical axis in natural  
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(a) (b) (c) (d) 

   
 

(e) (f) (g) (h) 
Figure 3.3 Symmetry law in real-world objects. (a) the person’s head and body are approximately symmetric 
along a same vertical central axis; (b)-(d) different parts of the buildings are approximately symmetric along the 
vertical central axis; (e) the head and body of the owl are approximately symmetric along the vertical central 
axis; (f) different parts of the bowling bottle are approximately symmetric along the vertical central axis; (g) the 
top red portion and the bottom black base of the mailbox are approximately symmetric along the vertical central 
axis; (h) the top red portion and the white base of the fire-hydrant are approximately symmetric along the 
vertical central axis. (images from [Griffin07] and [Russell08]) 
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scenes), then the two object parts may belong to a single object.   
  The continuation law is based on an assumption that the shapes of natural objects and 

many man-made objects tend to vary smoothly rather than having abrupt discontinuous. 
Examples of continuation relations among different parts of real-world objects are illustrated 
in Figure 3.4 – in (a), the beak of the goose is aligned with the head; in (b), the central white 
portion of the ibis is aligned with the black tail; in (c), the blue portion of the umbrella is 
aligned with the central white portion; in (d), the blue portion of the bag is aligned with the 
black portion of the bag; in (e), the top black portion of the bread-maker is aligned with the 
bottom white portion; in (f), the top white portion of the paper shredder is aligned with the 
black bottom; in (g)-(h), from the front and rear views, the windows of the vehicles are 
aligned with the bodies. Therefore, we conclude that like the symmetrical relation, alignment 
is also a strong indication of two object parts belonging to a single object.  

  Convexity is a common characteristic for object parts and object surfaces.  The surfaces of 
many natural or man-made objects, such as buildings, furniture, many kinds of vehicles, etc., 
are known to be convex. For some objects, even if their structures are not fully convex, they 
may consist of at least some convex parts. Given the importance of convexity, Liu et al 
[Liu99] claimed that theories of perceptual organization must take into account the role of 
convexity. And convexity has been considered in grouping by many researchers [Jacobs96, 
Liu99, Jabobs03].  Examples of convexity relations among different parts of real-world 
objects are illustrated in Figure 3.5 – in (a), the panel of the gas pump is embedded in the 
blue portion of the gas pump; in (b), the red portion of the gold fish is embedded in the body 
of the fish; in (c), the label of the winebottle is embedded in the bottle; in (d), the black 
portion of the welding mask is embedded in the red portion of the mask; in (e), the yellow 
head of the blimp is embedded in the remaining white part; in (f), the central blue portion of 
the video projector is embedded in the remaining part of the projector; in (g)-(h), the 
windows and wheels of the vehicles are embedded in the bodies of the vehicles. The 
embedded components of these objects help increase the convexities of the objects. Thus, 
according to the Convexity law, an object part that is embedded into an entity should belong 
to the entity due to its contribution of increasing the degree of convexity of the entity.  

  The Proximity law is based on an assumption that if two object parts are closer together in 
an image, they are also very likely to be adjacent in the 3D world. Since matter is cohesive, 
adjacent regions are likely to belong together. In classic Gestalt laws, the Proximity law is 
often illustrated by a group of artificial components that are spatially closer together. This 
type of illustration, however, cannot hold in real-world images. A real-world image is 
actually the 2-D projection of a 3-D scene. Due to the projection transformation, the depth 
information of the scene is lost. Therefore, in a 2-D scene image plane, neighboring object 
parts do not necessarily mean that they are adjacent in 3-D world! To judge if two 
neighboring object parts in a 2-D image are adjacent, we need to take into account depth 
information. One depth cue that is widely used in art is the relative size of different objects. 
This is based on the fact that the size of an image cast by an object is small if the object is far 
away and large if the object is closer. Thus, if the size of an object part is much smaller than 
its neighbors, the object part may be far away from its 2-D neighbors in 3-D world. On the 
other hand, if an object part is much bigger than its neighbors, the object part may belong to 
background according to the figure/ground law. Besides, if two object parts are cohesive, 
they need to share certain amount of boundaries. Some examples of proximity relations are  
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(a) (b) (c) (d) 

  
(e) (f) (g) (h) 

Figure 3.4 Continuation law in real-world objects. (a) the beak of the goose is aligned with the head; (b) the 
central white portion of the ibis is aligned with the black tail; (c) the blue portion of the umbrella is aligned with 
the central white portion; (d) the blue portion of the bag is aligned with the black portion of the bag; (e) the top 
black portion of the bread-maker is aligned with the bottom white portion; (f) the top white portion of the paper 
shredder is aligned with the black bottom; (g)-(h) from the front and rear views, the windows of the vehicles are 
aligned with the bodies. (images from [Griffin07] and [Russell08]) 

 
 

    
(a) (b) (c) (d) 

  
  

(e) (f) (g) (h) 
Figure 3.5 Convexity law in real-world objects. (a) the panel of the gas pump is embedded in the blue portion of 
the gas pump; (b) the read portion of the gold fish is embedded in the body of the fish; (c) the label of the whine 
bottle is embedded in the bottle; (d) the black portion of the welding mask is embedded in the red portion of the 
mask; (e) the yellow head of the blimp is embedded in the remaining white part; (f) the central blue portion of 
the video projector is embedded in the remaining part of the projector; (g)-(h) the windows and wheels of the 
vehicles are embedded in the bodies of the vehicles. The embedded components of these objects help increase 
the convexities of the objects. (images from [Griffin07] and [Russell08]) 
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presented in Figure 3.6 – in (a)-(d) the windows of the vehicles have similar size with the 
bodies and share certain amount of boundaries with the bodies; in (e)-(f), the roofs of the 
buildings have similar size with the remaining parts of the buildings and share certain amount 
of boundaries with the remaining parts of the buildings. Therefore, if two neighboring object 
parts have relatively similar sizes and share certain amount of boundaries, then these two 
neighboring object parts are considered to be adjacent in 3-D world.  
    One challenging problem for segmentation is to determinate which image regions are seen 
as the foreground and which are seen as background. It has been known that convexity plays 
an important role in figure/ground separation – the regions perceived as foreground tends to 
be more convex than those assigned as background. Besides, as we mentioned earlier, the 
relative sizes plays a role in the figure/ground separation problem as well – small size objects 
tend to be perceived as foreground and large size objects tend to be perceived as background. 
The other cue that we find is useful for the figure/ground separation is the boundary 
complexity of image regions. Based on our observation, vegetations are common background 
objects in many natural scenes. Many vegetations have irregular shapes while most man-
made objects have regular shapes. Examples of the similarity cue is shown in Figure 3.7 – in 
(a)-(f), the man-made objects in the images have smooth boundaries while the vegetations in 
the images have complex boundaries. Therefore, the similarity in boundary complexities can 
also plays a role on separating the man-made foreground objects from the background 
vegetations. This problem is addressed in our Perceptual Organization model.   

3.4 Background identification for outdoor scene images 

 In order to detect objects’ boundaries in a natural scene image, one needs to answer two 
basic questions [Malisiewicz07]: 1. Where may an object begin in a scene? 2. Where may an 
object end in that scene? We tackle the first question in this section.  

According to [Shotton09], objects appearing in natural scenes can be roughly divided into 
two categories: unstructured objects and structured objects. Unstructured objects usually 
have nearly homogenous surfaces while structured objects usually consist of multiple parts 
with each part having distinct appearances (e.g. colors, textures). The common backgrounds 
in outdoor natural scenes are those unstructured objects like skies, roads, trees, grasses, etc 
(see Figure 3.8 for examples). These background objects have low visual variability and in 
most cases are distinguishable from other structured objects in an image. For instance, a sky 
usually has a uniform appearance with blue or white colors; a tree or grass usually has a 
textured appearance with green colors. Therefore, these background objects can be accurately 
recognized solely based on appearance information.  

Suppose we can use a bottom-up segmentation method to segment an outdoor image into 
uniform regions (Superpixels). Then some of the regions must belong to the background 
objects. To recognize these background regions, we use a technique similar to [Shotton09]. 
The key for this method is to use textons to represent object appearance information. The 
term texton is first presented by [Malik01] for describing human textural perception. The 
whole textonization process proceeds as follows: Firstly the training images are converted to 
the perceptually uniform CIE Lab color space. Then the training images are convolved with a 
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(a) (b) (c) 

   
(d) (e) (f) 

Figure 3.6 Proximity law in real-world objects. (a)-(d) the windows of the vehicles have similar size with the 
bodies and share certain amount of boundaries with the bodies; (e)-(f) the roofs of the buildings have similar 
size with the remaining parts of the buildings and share certain amount of boundaries with the remaining parts 
of the buildings. (images from [Griffin07] and [Russell08]) 

 
 

  
 

(a) (b) (c) 

   
(d) (e) (f) 

Figure 3.7 Similarity law in real-world objects. (a)-(f) the man-made objects in the images have smooth 
boundaries while the vegetations in the images have complex boundaries. (images from [Griffin07] and 
[Russell08]) 
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(a) 

 
(b) 

Figure 3.8 examples of background and structured objects. (a) background objects (sky, road, tree and grass); 
(b) structured objects; (images from [Griffin07] and [Shatton09]) 
 

17-dimensional filter-bank. We use the same filter-bank as [Winn05], which consists of  
Gaussians at scales 1, 2, 4; x and y derivatives of Gaussians at scales 2 and 4 and Laplacians 
of Gaussians at scales 1, 2, 4, 8. The Gaussians are applied to all three color channels, while 
the other filters are applied only to the luminance (L) channel. By doing so, we obtain a 17-
dimensional response for each training pixel. The 17-dimensional response is then 
augmented with the CIE L, a, b channels to form a 20-dimensional vector. This is different 
from [Shotton09] because we find that after augmenting the three color channels, we can 
achieve slightly higher classification accuracy. Then the Euclidean-distance K-means 
clustering algorithm is performed on the 20-dimensional vectors collected from the training 
images to generate K cluster centers. These cluster centers are called textons. Finally each 
pixel in each image is assigned to the nearest cluster center, producing the texton map. More 
details about the textonization process are referred to [Winn05]. After this textonization 
process, each image region of the training images is represented by a histogram of textons. In 
addition, we calculate the centroid of the segment and augment the centroid location (in 
upper, middle or bottom area of an image) with the 150-dimensional texton histogram to 
form a 151-dimensional appearance feature vector. The reason to augment region location is 
that some objects like sky tends to occur in upper area of the images, while road or water 
tends to appear at the bottom of the images. Therefore the absolute location of a region also 
provides useful information for some object classes. 
   We then use these training data to train a set of binary Adaboost classifiers [Friedman00] to 
classify the unstructured objects (skies, roads, trees, grasses, etc.). Similar to the result from 
[Shotton09], our classifiers also achieve high accuracy on classifying these background 
objects on outdoor images.  Each of the superpixels that are classified as non-background 
objects may correspond to a portion of an object surface. Therefore, after background 
identification, we are able to find the beginning part of an object in the image (see Fig. 3.14-
(b) for an example). The question left unanswered is given the beginning part of an object, 
where the remaining parts of that object are? 
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3.5 Perceptual Organization model 

Now the problem that we are interested in is: Given an object part of an unknown object, 
can we find the remaining parts of the object in an image without any object-specific 
knowledge of the object?  

To tackle this problem, we develop a Perceptual Organization model. Our strategy works 
as follows: Since there always exist some special structural relations that obey the principle 
of non-accidentalness among the constituent parts of an object, we may be able to group the 
set of parts together by capturing these special structural relations.  This problem is 
formalized as follows:  

Problem definition: Let Ω be the domain of definition of a scene image,  Ω =  RB ∪RS . RB 
denotes the regions that belong to backgrounds. After the background separation, we known 
that all the structured objects in the image are contained in a sub-region RS ⊂ Ω. Let Ρ0 be the 
initial partition of Ω from a bottom-up segmentation method. Let a denote a uniform patch 
from the initial partition Ρ0. For ∀ (a∈Ρ0)∧(a∈RS), we want to find the maximum region Ra 
⊂ RS so that, a ∈ Ra and for any uniform patch i, where (i∈Ρ0)∧ (i∈Ra), i should have some 
special structural relations that obey the non-accidentalness principle with the remaining 
patches in Ra. This is formulated as follows:  

 
                           S

R
a RRRaRER ⊂∧∈∂= with])[(minarg                             (3.1) 

where R is a region in RS, ∂R is the boundary of R, E[∂R] is a boundary energy function, 
which is defined as follows [Jermyn01]:  
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where L(∂R) is the length of the boundary of R and γ is an injection from a circle O1 into 
Ω.  t is an arbitrary parameterization of O1. Therefore, γ (t) is a point in Ω.  γ ′(t) is a tangent 
vector to the boundary of R. γ ′(t)⊥ is a normal vector, oriented according to the orientation of 
the boundary of R. v is an user-defined vector field on Ω derived from image data. According 
to Green’s theorem: 
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This relates the line integral of a vector field v over the boundary of a region R to a 
double integral of its divergence over the interior. Therefore, instead of encoding the 
information along a boundary, we are able to encode the information over the region 
enclosed by the boundary. Let function f(x,y) = ∇⋅v(x,y), the boundary energy becomes:  
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Thus, the function f(x,y) encodes data from image region R. By choosing f(x,y) 
appropriately, one can extract any interesting region from an image. For example, let IT 
represents image intensity, f(x,y)=IT looks for bright areas and f(x,y)=e-IT prefers dark areas. 
The general form of f is defined as follows (Jermyn and Ishikawa 2001): 
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where M is a monotonically-decreasing function of its argument. Given an image I, T 

maps a point in an image domain to a feature space T[I]: Ω → Υ . Υ is a metric space with 
metric ρ, Ys is a point in Υ. Thus, the value f(x,y) is large when the feature value at point (x,y), 
T[I](x,y), is close to Ys. In our case, we want to use f(x,y) to encode Gestalt laws. Therefore, 
we define f(x,y) as follows: 

                              Riiyxeyxf ai SSabs ∈∈= −•− ,),(with),( )(θ                            (3.6) 
where θ is a weight vector and abs denotes the absolute value. Si is a point in the 

structural context space and Si=[Bi Ci]. Sa is a reference point in the structure context space 
and it encodes structure information of a.  Since a is a starting point of an unknown object 
and it is the only known information that we have about the unknown object, we use a as 
reference point. Ci is the connectedness strength, which we will define later. Bi is the 
boundary complexity of image patch i, which can be measured as [Su06]: 
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where N is the number of pixels of the boundary of image patch i,  k is the length of a 
sliding window over the entire boundary of patch i. A(s,k) and F(s,k) are the strength and 
frequency of the singularity at scale(step) s. pd and pd+ks are the two ends of a segment of the 
boundary in the window. pd+cs and pd+(c-1)s are the pixels between pd and pd+ks. n is the 
number of the notches in the window. A notch means a non-convex portion of a polygon, 
which is defined as a vertex with an inner angle larger than 180° . The detail definitions of 
notch, A(s,k) and F(s,k) are given in [Vasselle93]. See figure 3.9 for examples for notch, 
A(s,k) and F(s,k). Small Bi value means patch i has a regular shape (i.e., a smooth boundary). 
Large Bi value means patch i has an irregular shape.   Examples of regular shapes and 
irregular shapes are shown in Figure 3.10. If patch i has similar shape regularity to patch a, 
then the function f might have large value inside patch i (depends on the connectedness Ci). 

After obtaining the boundary complexity of patch i, we need to measure how tightly 
image patch i is connected to the parts of the unknown object that contain image patch a. Ci 
is the cohesiveness strength and is calculated as: 
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where j is a neighboring patch of patch i,  φij measures the symmetry of i and j along a 
vertical axis and is defined as:                       

       ),(1 jiij yyδφ −=                                                             (3.11) 
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(a) (b) 

 
 

(c) (d) 
Figure 3.9 (a) Examples of notch from [Vasselle93]. (b) Normalized number of notch can be used to measure 
the frequency of vibration of a boundary from [Vasselle93]. (c) Illustration of strength of vibration from 
[Su06]: the solid line is the original curve; the green line is the chord from pi to pi+3s, the dashed line is the 
curve at scale s. It can be observed that the ratio between the length of green line and dashed line can be used 
to measure the vibration strength. (d) Examples of local vibration and global vibration from [Vasselle93].  

. 
 

 
Figure 3.10 Examples of shape regularity. First row: regular shapes. Second row: irregular shapes.  Notice that 
regular shape objects have smaller B values than irregular shape objects. 

. 
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where δ is Kronecker delta function;  yi and yj are the y-coordinate of the centroids of i 
and j. If yi and yj are very close, then φij will be zero and image patch i will have the same 
connectedness to a as its neighbor j. This is because parts that are approximately symmetric 
along a vertical axis are very likely belonging to the same object. Examples of symmetry 
relation are shown in Figure 3.11-(a). 

ϕij measures the alignment of i and j: 
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where ∂i and ∂j are the boundary of i and j respectively;  e(∂ij) is the extension of the 
common boundary between i and j. Ф denotes empty set. If two parts are strictly aligned 
along a direction, then, it is a strong indication that the two parts may belong to the same 
object. Examples of alignment relation are shown in Figure 3.11-(b). 
 If i and j are neither symmetric nor aligned, then the connectedness of image patch i depends 
on how it is attached to j. λij measures the attachment strength between i and j. It is defined as:   
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where α and β are constants. The attachment strength depends on the ratio of the 
common boundary length between i and j to the sum of the boundary lengths of i and j. If 
there is a large difference in size between i and j (i.e., L(∂ i)>>L(∂ j) or L(∂ j)>>L(∂ i)), it 
usually means that the large one belongs to background like a wall or a big vegetation. Thus, 
i and j have a weak connectedness. If i and j have similar sizes and share a long common 
boundary, then i and j are strongly connected. ω is the angle between the line connecting the 
two ends of ∂ij and the horizontal line. Many objects may stand next to each other in a 
natural scene. Therefore, even if patch i and patch j are tightly attached along horizontal 
direction, patch i and patch j may still belong to two neighboring objects. We use “cos ω” in 
Equation (10) to control the connectedness strength of two attaching patches according to the 
orientation of the attachment. Examples of strong attachments and weak attachments are 
shown in Figure 3.11-(c) and Figure 3.11-(d). 

 In our implementation, we first set the cohesiveness of image patch a to one and then 
gradually spread the connectedness outward until it reaches all the patches in R. We set 
parameters θ = [18, 3.5], α = 20 and β = 3 for our Perceptual Organization model. The 
parameters are set empirically. We tested our Perceptual Organization model on 50 street 
scene images selected from Labelme dataset [Russell08]. We tried different combinations of 
θ, α and β. The combination of θ = [18, 3.5], α = 20 and β = 3 gives us the best 
performance of segmentation accuracy. 
   We have explicitly encoded four Gestalt laws (i.e., Similarity, Symmetry, Continuation and 
Proximity) into our Perceptual Organization model. The Convexity law is actually implicitly 
encoded in the Perceptual Organization model.  This is shown in an example in Figure 3.12. 
In the synthetic image, patch b has a weak connectedness to patch a due to a big difference in 
sizes. Therefore, the two patches should not be treated as one entity. However, the boundary 
energy of the region that contains patches a and b is smaller than that of the region that only  
contains patch a. Therefore, patches a and b are treated as one entity by our Perceptual 
Organization model. The reason is that, the boundary length of the region that contains a and  
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(a) (b) 

  
(c) (d) 

Figure 3.11 (a) Symmetry relations: the red dots indicate the centroids of the components. (b) Alignment 
relations. (c) Two components are strongly attached. (d) Two components are weakly attached. 

. 
 

 
Figure 3.12  Example of Convexity relation. The boundary energy (E[∂R]) of region a (middle) is larger than 
that of the region that contains a and b (right). Thus, our Perceptual Organization model will group a and b 
together. 

. 
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b is shorter than that of the region that contains only patch a, since the patch b helps 
complete a big entity. As a result, the density of the flux of structural potential through the 
boundary of region containing a and b is higher than that of the region containing only a. In 
sum, any components that help complete a big entity will be grouped together with the other 
components composing that big entity due to their contribution of reducing the boundary 
length of the new-formed big entity.  

  Therefore, similar to human visual system, our Perceptual Organization model can 
‘perceive’ a list of special structural relations that obey the principle of non-accidentalness 
like similarity in shape regularity, symmetry, alignment, adjacency, tendency of convexity, 
etc. The ‘perception’ is quantified by boundary energy –  whenever a new member is added 
in a group, if the new member has some structural relations obeying the principle of non-
accidentalness with other members in the group, then the boundary energy of the new-
formed group is smaller than that of the old group. Otherwise, the boundary energy of the 
new-formed group is higher than that of the old group. 

 The remaining task is to find the region Ra in Equation (3.1), which has the minimum 
boundary energy among all the regions that contain image patch a. In other words, we need 
to find the maximum region that contains image patch a and all image patches contained in 
the region have some special structural relations obeying the principle of non-accidentalness  
with each other. This region may be the region occupied by the whole object. The challenge 
is that there may exist a large number of possible regions that contain image patch a and it is 
computationally expensive to search all the possible regions to find the one with global 
minimum boundary energy. Therefore, we develop a boundary detection algorithm based on 
a breadth-first search strategy. Instead of finding the region with the global minimum 
boundary energy, the algorithm tries to find a region with the local minimum boundary 
energy.  Although it is not guaranteed that the algorithm is always able to find the region 
with the optimal boundary energy, we have found that it works quite well in practice.  

 
Algorithm 1 Boundary Detection 
 
INPUT: P0 , RS, and the reference image patch a 
OUTPUT:  region Ra that contains a with the minimal boundary energy in a local area of 

Ra∪ neighbors(Ra) 
1. Let Ra = a. 
2. Let  NRa= {vn⏐ (vn∈ P0)∧ (vn∈ RS)∧ (vn∈ neighbors(Ra)) }.    
3. Repeat step 4-7 for q = 1, …, n. 
4. Select a subset of NRa with q regions: μ = ( u1, …, uq). So that ∀ x, y <= q, there 

exists a path in μ connecting ux to uy.  
5. Measure the boundary energy of Ra∪ μ with Equation (4).  
6. If E[∂(Ra∪ μ )] < E[∂(Ra)], set Ra = Ra∪ μ, GOTO step 2.  
7. Otherwise select the next set of μ from NRa and repeat step 4-7 until all possible μ 

have been tested.  
8. Return Ra. 
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   At the beginning, Ra only contains image patch a. Then, the algorithm measures the 
boundary energy of the combination of Ra and its immediate neighbors. The algorithm stops 
when no combination of Ra and its immediate neighbors have smaller boundary energy than 
that of Ra. The “q = 1” in Step 3 tests the combination of Ra and a single neighboring region 
of Ra. The “q = 2” tests the combination of Ra and a pair of connected neighboring regions of 
Ra, and so on.  In practice, we have found that even when n = 2, the algorithm performs well 
in general. 

 An example of our boundary detection algorithm is shown in Figure 3.1. In this synthetic 
image, all four patches have different surface characteristics (i.e., colors) and shapes. We 
want to detect the boundary of the object that contains patch a. The f values (in Equation 6) 
in patch a decides the boundary energy of patch a, which is evaluated as: f(x,y) = exp(-
θ*abs(Sa – Sa )) = 1. Then, the boundary energy of patch a can be calculated from Equation 
(4): E[∂(a)] = -∫∫a 1 dxdy / L(∂(a)). We then test the boundary energy of the region that 
contains a and its immediate neighbor b. Patch b has a strong connectedness to patch a, 
because they are aligned and also symmetric along a vertical axis. In addition, like patch a, 
patch b also has a smooth boundary. Thus, the f value in patch b also equals to one and the 
boundary energy E[∂(a∪ b)]< E[∂(a)]. According to our boundary detection algorithm (Step 
6), the object now contains both patch a and b and the new neighbors of the object are patch 
c and d. The next step is to test if part d also belongs to the object. The f value in patch d is 
very small because patch d only shares a small amount of boundary with patch b. Therefore, 
parch d has a weak connectedness to patch b, and hence, E[∂(a∪ b∪ d)]>E[∂(a∪ b)]. So 
patch d might not be part of the object. The remaining neighbor is patch c. Although patch c 
has a strong connectedness to patch b, unlike patch a, it has an irregular shape. Therefore, the 
f value in patch c is much smaller than one and E[∂(a∪ b∪ c)] > E[∂(a∪ b)].So patch c 
might not belong to this object either. Since patch d and patch c are not connected, the 
algorithm stops and return Ra = a∪ b, which has the minimum boundary energy in the area of 
Ra ∪ c∪ d. It is not necessary to measure E[∂(a∪ b∪ c∪ d)] because we have proven that, if 
“E[∂(a∪ b∪ d)] > E[∂(a∪ b)]” and “E[∂(a∪ b∪ c)] > E[∂(a∪ b)]” and “d and c are not 
connected”, then “E[∂(a∪ b∪ c∪ d)] > E[∂(a∪ b)]”. 
 

Lemma 1 Let region C and region D be neighbors of region A. Regions C and D are not 
connected. If “E[∂(A∪ D)] > E[∂(A)]” and “E[∂(A∪ C)] > E[∂(A)]”, then “E[∂(A∪ C∪ D)] > 
E[∂(A)] ”. 

Proof.  Let FA = ∫∫A f(x,y) dxdy; FC =∫∫C+∂(AC) f(x,y) dxdy; FD=∫∫D+∂(AD) f(x,y) dxdy;  
According to Equation (4), E[∂(A∪ C)]>E[∂(A)]→ (FA+FC )/(L(∂A) + L(∂ C) - 2L(∂AC)) 

<  FA /L(∂A) → FC < FA (L(∂ C) - 2L(∂AC))/ L(∂A);  
Similarly, E[∂(A∪ D)] > E[∂(A)] → (FA+FD )/(L(∂A) + L(∂ D) - 2L(∂AD)) < FA /L(∂A) 

→ FD < FA (L(∂ D) - 2L(∂AD))/ L(∂A);  
Finally, E[∂(A∪ C∪ D)] = -( FA+FC+FD )/( L(∂A)+L(∂ C) +L(∂ D) - 2L(∂AC)-2L(∂AD) ) 

> - FA (L(∂A)+L(∂ C)+L(∂ D)-2L(∂AC)-2L(∂AD))/(( L(∂A)+L(∂ C)+L(∂ D)-2L(∂AC)-
2L(∂AD) L(∂A))= - FA / L(∂A)=E[∂(A)].   
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3.6 Get good spatial support for object parts 

  The Perceptual Organization model introduced in Section 3.4 can ‘perceive’ various 
special structural relations that obey the principle of non-accidentalness among the 
constituent parts of an object. Therefore, to apply the proposed Perceptual Organization  
model to real-world natural scene images, we need to have good spatial support for the object 
parts. In other words, we need to segment an image into regions so that each region 
approximately corresponds to an object part. This task is achievable because most object 
parts have nearly homogenous surfaces and many existing bottom-up image segmentation 
methods can efficiently detect the homogenous units in an image. In our implementation, we 
make use of Felzenszwalb and Huttenlocher’s [Felzenszwalb04] approach to generate an 
initial partition for a natural scene image. We choose their method because it is not only very 
efficient, but also has the ability to preserve detail in low-variability image regions while 
ignoring detail in high-variability regions. Their method has the advantage of being able to  
handle different object parts with various surface properties. However, the raw segmentation 
result of their method in many cases are still too noisy (refer Figure 3.13 – (b)). To further 
increase the segmentation quality, we apply a segment-merge method on the initial 
superpixels to merge the small size regions (i.e., region size < 0.03% of the image size) with 
their neighbors. These small size regions are often caused by the texture of surfaces or by the 
inhomogeneous portions of some part surfaces. Since these small size image regions 
contribute little to the structure information (shape and size) of object parts, we merge them 
together with their larger neighbors to improve the performance of our Perceptual 
Organization model. In addition, if two adjacent regions have similar colors, we also merge 
them together. By doing so, we obtain a set of improved superpixels. Most of these improved 
superpixels correspond to object parts.  Examples of improved Superpixels are presented in 
Figure 3.13. The whole process takes about 6 seconds in our Matlab implementation. 

3.7 Image segmentation algorithm 

We now turn into image segmentation algorithm. Given an outdoor scene image, we 
firstly apply the segment-merge technique described above to generate a set of improved 
superpixels. Most of the superpixels correspond approximately to object parts in that scene. 
We build a graph to represent these superpixels: Let G = (V, E) be an undirected graph. Each 
vertex ve ∈ V corresponds to a superpixel and each edge (ve, vf) ∈ E corresponds to a pair of 
neighboring vertices.  We then use our background classifiers described in Section 3.4 to 
divide V into two parts: backgrounds like skies, roads, grasses, trees, etc. (RB) and structured 
parts (RS). All the structured objects in the scene are therefore contained in RS.  We then 
apply Perceptual Organization on RS . At the beginning, all the components in RS are marked 
as unprocessed. Then, for each unprocessed component vu in RS, we use the boundary 
detection algorithm described in the Section IV-B to detect the best region Ou that contains 
vertex vu. The region Ou may correspond to a single object or the semantically more  
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                                   (a)                         (b)                   (c)  
Figure 3.13 Get spatial support for object parts. (a) Original images. (b) The initial partitions from Felzenszwalb 
and Huttenlocher’s (2004) approach. (c) The final superpixels after applying a segment-merging method on the 
initial partition. The final superpixels approximately correspond to object parts. 
 

meaningful part of an object. We mark all the components composing the Ou as processed. 
The algorithm gradually moves from the ground plane up to the sky until all the components  
in RS are processed. Then we finish one round of Perceptual Organization procedure and use 
the grouped regions in this round as a new set of components to start a new round of 
Perceptual Organization on RS. At the beginning of a new round Perceptual Organization, we 
merge the adjacent components if they have similar colors and build a new graph for the new  
components in RS. This Perceptual Organization procedure is repeated for multiple rounds 
until no components in RS can be grouped with other components.  In practice, we find that 
the result of two rounds grouping is good enough in most cases. At last, in a post-processing 
step, we merge all the adjacent sky objects and ground objects together to generate final 
segmentation. An illustration of the algorithm’s pipeline is shown in Fig. 3.14.  

 
 

Algorithm 2   Image segmentation 
 
INPUT: a graph G = (V, E), and a division of V: Structured parts (RS) and Backgrounds 

(RB) . 
OUTPUT: a segmentation of V into objects or regions SS = (O1,…,Ok) 
 

1. Set SS = RS ; 
2. Repeat steps 2-9 until members in SS do not change; 
3. Let known regions Rk= RB and unknown regions Ruk= RS; Set ST = ∅; 
4. Let outer regions Ro= {vo⏐ (vo∈ V) ∧ (vo∈ Ruk)∧ (vo∈ neighbors(Rk))}; 



 
 

47

5. While Ro ≠ ∅, repeat steps 5-7s; 
6. For each vo∈ Ro,  
7. Call the boundary detection algorithm in Section 3.3 to detect the region of the object 

Ovo that contains vo.  
8. Let Ro= Ro\ Ovo ; Ruk= Ruk\ Ovo; ST = ST ∪Ovo and Rk= Rk∪Ovo;  Let  Rt= {vt⏐ vt∈ V∧ 

vt∈ Ruk ∧ vt∈ neighbors(Ovo)} and set Ro= Ro∪ Rt; 
9. Finish one round grouping, Let SS = ST and use SS members to rebuild G; 
10. Let SS = SS ∪ RB and return SS;  

3.8 Discussion 

It is well accepted that segmentation and recognition should not be separated and should be 
treated as an interleaving procedure. Our method basically follows the scheme. Our method 
requires identifying some background objects as a starting point. Compared to the nearly 
unlimited number of structured object classes, there are only several common background 
objects in outdoor scenes. These background objects have low visual variety and hence can 
be reliably recognized. After background objects are identified, we can roughly know where 
the structured objects are and delimit the grouping in certain areas of an image. For many 
objects like the major object classes appearing in street (buildings, vehicles, signs, people, 
etc.) and many other objects illustrated in Section 3.3, our method can piece the whole 
objects or the main portion of the objects together without requiring recognizing them. In 
other words, for these object classes, our method provides a way to separate segmentation 
and recognition. This is the major difference between our method and other class 
segmentation methods which require recognizing an object in order to segment it.  Our work 
shows that for many fairly articulated objects, recognition may not be a requirement for 
segmentation. The geometric relations of the constitute parts of the objects provide useful 
cues indicating the memberships of these parts.  

For some objects that have complex structures like bicycles, motorcycles, some complex 
buildings etc., our simple Perceptual Organization model may not be able to piece the whole 
objects together. Instead, it may only piece some semantically meaningful parts like wheels, 
windows or doors together. For these objects, object recognition is still required to generate 
good segmentations. The results of our method can greatly help the recognition by providing 
some semantically meaningful parts of these objects. 

Future extension to this work includes integrating more Gestalt laws into the Perceptual 
Organization model. In current model, we only check the symmetry relations between two 
vertically attached parts. Symmetry along other directions should also be considered. The 
closure law which can be used to handle occlusions is also desired for a Perceptual 
Organization model. Besides, we also want to find better way of combining different Gestalt 
laws. Our Perceptual Organization gives more concerns on symmetry, continuity and 
convexity. This is because some psychology experiments show that sometimes convexity law 
can overrule other laws like closure. Symmetry law and continuity law sometimes can 
overrule proximity law. However, currently there are no conclusive theories in the 
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psychology literature showing which law overrules other laws and how to overrule other 
laws. A systematical research on this problem will guide us to develop better ways to 
combining different Gestalt laws together.  We also want to incorporate more object 
classification techniques in our method to recognize the common objects appearing in 
outdoor scene. We believe that segmentation and recognition should be interleaved to 
generate good segmentation. Recognizing some objects can greatly help segment and 
recognize other objects in an image. Every round, our Perceptual Organization model may 
group some objects or semantically meaningful parts of objects together.  Recognizing these 
well segmented objects will be helpful for next round Perceptual Organization. This will 
further enhance the segmentation quality of our method for complex scene environments. 

3.9 Summary 

In this chapter, we developed a novel image segmentation algorithm. First we assume 
that we are handling outdoor scene images. The common backgrounds of outdoor scene 
images are skies, grounds, trees, grasses, etc. The backgrounds are nearly uniform and have 
special colors and textures. Therefore the backgrounds can be identified based on colors and 
textures information. Once backgrounds are identified, the remaining regions should belong 
to structured objects which are difficult to segment. Here another assumption we make is that 
most constituent parts of structured objects are nearly uniform. Our experiments show that 
the two assumptions hold for most outdoor scene images. The key component of the image 
segmentation algorithm is a Perceptual Organization model. We first illustrate a list of 
Gestalt cues with real-world objects. We then encode the list of Gestalt laws into a boundary 
energy model to build a Perceptual Organization model. By doing so, the Perceptual 
Organization model can ‘perceive’ the special structural relations among the constituent parts 
of an unknown object and hence can group them together without object-specific knowledge. 
The image segmentation algorithm developed in this chapter allows us to ‘perceive’ the 
salient objects in a place. 
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            (a)                                                                                    (b)                                                                                  (c)                                  
Figure 3.14 Illustration of our segmentation pipeline. (a) Down: Input images. Up: Initial superpixels from 
[Felzenszwalb04]. (b) Up: Improved superpixels with background objects identified. Sky is labeled as blue, 
ground is labeled as yellow and vegetations (tree or grass) are labeled as green. Down: an example of Perceptual 
Organization process. E[∂R] stands for boundary energy.  Firstly the bottom white part of the white car is 
selected. The E[∂R] for the part is measured as -5.06.  Then our Perceptual Organization model groups the two 
pieces of front windows with the white part based on convexity laws. The E[∂R] for these two regions is 
measured as -5.39 and -5.46 respectively. Except for these two parts and the small segment of the front wheel, 
other parts do not have special geometric relations with the white part, such as the bottom part of the white sign 
behind of the front part of the car. The E[∂R] for the region containing the sign part is measured as -5.09. 
Therefore, the region with E[∂R] as -5.46 is detected as the best region for the white part of the car. (c) Up: the 
result of the first round Perceptual Organization. Notice that the different parts of the white car now have been 
grouped into two big pieces. These two big pieces are aligned. Down: final segmentation result after second 
round perceptual Organization. Notice the different parts of the white car are grouped together as a single 
object. (This figure is best viewed in color.) 
 

. 
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4 Object classification based on appearance, 

parts layout and shape 

The image segmentation algorithm described in Chapter 3 can stably detect the boundaries 
of many salient objects under different outdoor scenes. Therefore, like human visual system, 
our system can ‘perceive’ the salient objects in scenes. The next step is to recognize the 
salient objects. 

In this chapter, we present a novel method for object classification. Our main contributions 
are two-fold. Firstly, we build an informative object description, which consists of not only 
appearance, but also certain structural information like parts layout and shape of objects. All 
these information are combined into a high-dimensional vector. Secondly, we develop a new 
information-based wrapper feature selection method. Feature selection refers to search 
algorithms that select a subset of most characterizing features from an initial larger set of 
features. For many pattern recognition applications, feature selection is critic to minimize the 
classification error, especially when the original feature set is very large. With this feature 
selection method, for each object class, we can find a small subset of features that 
characterize the object class well. We then train a binary classifier for each object class based 
on the subset of predictive features selected by our feature selection method for classification 
(see Figure 4.1 for an example). 
   The remainder of this chapter is organized as follows: We first describe how to build an 
informative object description that consists of appearance, parts layout and shape in section 
4.1. Our feature selection method is presented in section 4.2.  

4.1 Building informative object description 

   In this section, we introduce our object description method. Our goal is to build an 
informative object description that encodes appearance, parts layout and shape information of 
an object. Intuitively, each object class has a specific characteristic of the combination of the 
three aspects of information. Therefore, with this informative object description, we may be 
able to find the specific information combination that characterizes an object class well. The 
remaining part of this section details how to quantify the three aspects of information 
respectively.  
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(a) 

(b) 
Figure 4.1 Illustration of object classification pipeline. (a) The object classification pipeline; (b) the numerical 
example of object classification pipeline.  For each object, we first build a 3181-dimensional feature vector that 
describes appearance, parts layout and shape of objects. Then for each object class, we select a subset of 
predictive features.  At last we train a binary classifier for each class with the selected predictive subset of 
features to classify the object class.  
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(a)                    (b)                (c) (d) 

Figure 4.2 Illustration of building appearance features. (a) The input image; (b) upper: texton mapping of the 
input image; Down: segment mask of the object. The star is the centroid. (c) the texton mapping of the input 
object extracted with the segment mask. Different colors indicate different textons. (d) The normalized 
histograms of texton.  
 

4.1.1 Build appearance features 

Appearance information has been widely used in the literature for object classification.  
Among various appearance representations, textons has drowned many attentions [Shotton09, 
Winn05, Malik01, Varma05]. The term textons were originally used to describe human 
textural perception and in the literature usually refers to the clusters of feature vectors in a 
high dimensional space [Winn05].  Textons is well known for providing a compact 
representation for the range of different appearance of an object. 

The process of textonization proceeds as follows. For each training image, firstly the RGB 
color space is converted to the perceptually uniform CIE Lab color space. Then a filter bank 
is applied to convolve the L, a, and b channels respectively. The filter bank is made of 3 
Gaussians, 4 Laplacian of Gaussians (LoG) and 4 first order derivatives of Gaussians. The 
three Gaussian kernels (with σ = 1, 2, 4) are applied to each CIE L, a, b channel, thus 
producing 9 filter responses. The four LoGs (with σ = 1, 2, 4, 8) are applied to the L channel 
only, producing 4 filter responses. The four derivatives of Gaussians are divided into the two 
x and y aligned sets, each with two different values of (σ = 2, 4). Derivatives of Gaussians are 
also applied to the L channel only, thus producing 4 filter responses. Totally a pixel is 
associated a 17 dimensional filter responses. Then the 17 dimensional filter responses is 
augmented with the L, a, b channel values to form a 20 dimensional feature vector. This is 
slightly different with the works in [Winn05]. In our experiment, we find that after 
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augmenting the three color channels, we can achieve slightly higher classification 
performance. Each 20 dimensional feature vector records the local color and texture 
information around the pixel. Then the Euclidiean-distance K-means clustering algorithm is 
employed on the 20 dimensional feature vectors of all training pixels to produce k cluster 
centers (in our work, we used k = 150).  The k cluster centers (textons) define a visual 
vocabulary. Then each pixel in each image is assigned to the nearest cluster center; thus 
generating a map of textons (see Figure 4.2-b for an example). Finally, assuming that a fairly 
accurate segment for each object can be obtained by our POM segmentation method, then a 
normalized histogram of texton occurrences across the region (segment) is computed. The 
histogram of texton occurrences captures the statistic appearance information of the object 
surface (see [Winn05] for details).  In addition, we calculate the centroid of the segment and 
augment the centroid location (in upper, middle or bottom area of an image) with the 150-
dimensional texton histogram to form a 151-dimensional appearance feature vector. The 
reason to augment region location is that some objects like sky tends to occur in upper area 
of the images, while road or water tends to appear at the bottom of the images. Therefore the 
absolute location of a region also provides useful information for some object classes. 

4.1.2 Build parts layout features 

One difficult problem for object classifications is the intra-class variations. Usually 
structured objects consist of multiple parts. Even for objects belonging to the same class, 
many parts of these objects have wide variations on appearances. For example, people often 
wear various kinds of clothes in different scenes and cars can be painted into different colors, 
etc. This often confuses the appearance-based classification methods and causes them to 
make incorrect decisions. However, some parts of the objects in the same class do tend to 
present relatively stable appearances. For instant, the appearances of wheels, windshields and 
headlights do not vary very much across different cars. People’s faces relatively have more 
stable appearances than their bodies, etc. Besides, for objects belonging to the same class, the 
spatial arrangement of parts also has certain patterns. For example, the wheels of cars always 
appear in the bottoms, people’s faces always appear on the top, etc. Therefore object parts 
and their spatial arrangements encode important information about object classes and can be 
used to handle the difficult intra-class variations problem. 

One natural way to extract the parts layout information is to represent an object with parts 
and record the geometric relations among the parts [Ullman01, Lazebnik05, Fergus03]. 
However, partitioning an object into parts and detecting the geometric correspondence 
among the parts turns out to be difficult and computationally expensive [Lazebnik06].  
Besides, this approach cannot handle large viewpoint variations and object deformations. For 
examples, many bottom-up methods can segment images into uniform regions (superpixels). 
But many constituent parts of structured objects are just nearly uniform. Under different 
viewpoints and illuminations, a constituent part may consist of different superpixels. 
Therefore directly using superpixels as object parts is not stable.  We propose a solution that 
can efficiently extract the approximate parts layout information meanwhile be robust to 
certain degree for the viewpoint variations and object deformations. Our method is inspired 
by the ‘subdivide and disorder’ techniques [Lazebnik06]. The operation of ‘subdivide and  
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                                        (a)                    (b)                (c) 
Figure 4.3 Illustration of building parts-layout features. (a) Left: input object; Right-up: Texton mapping of 
input image; Right-down: segment mask with a bounding box. The star is the centroid. (b) the texton map of the 
car object. Different colors indicate different textons. Upper: coarse subdivision. Bottom: fine subdivision. (c) 
The normalized histograms of texton occurrences for each subblock. In total 22+24=20 subblocks and each 
histogram has 150 dimensions. The 20 histograms are concatenated in order to form a 3000 dimensional feature 
vector. 
 

disorder’ involves partitioning an object into subblocks and compute histograms of local 
features. Specifically, given an object, first the bounding box of the object region is 
extracted. Then the centroid of the object is calculated. Centered on the centroid, the 
bounding box is divided into four subblocks. This is because the position of object centroid is 
stable under certain deformations. Each subblock is further equally divided into four 
subblocks. In total, 22+24=20 subblocks are obtained. For each subblock, a normalized 
histogram of texton occurrences is computed. Finally the 20 normalized histograms are 
concatenated in order to form a 20x150=3000 dimensional feature vector (see Fig. 4.3 for an 
example). 

Our method has some advantages. Firstly, we apply both a coarse and a fine subdivision on 
the object surface. This allows us to capture the appearance-stable parts with difference sizes. 
The major portion of large-size parts like windshields may be contained in the subblocks of 
coarse resolution while the major portion of small-size parts like wheels or headlights may be 
contained in the subblocks of fine resolution. Therefore the histograms corresponding to 
these subblocks will exhibit certain patterns. Since the histograms are concatenated in order, 
the arrangements of the appearance-stable parts are also approximately recorded. In addition, 
our method is robust to certain degree for viewpoint variations and object deformations. This 
is mainly because for each subblock, we totally ignore the spatial information and only 
record the statistic appearance information in the local area. As a result, local geometric 
relation variations caused by viewpoint variations or deformations will not cause too much 
change in the histogram of the appearance information drawn from the local area. 
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4.1.3 Build shape features 

Shapes also provide useful information for object classifications. In many cases, people can 
readily identify an object solely based on its silhouette without any other extra information. 
Although many object classes like cars, people etc., have wide intra-class variations on the 
appearances, there always exist certain similarities in shapes for the objects in the same class.  
Therefore, shape property is also very useful for overcoming the intra-class variations 
problem for object classifications.  

Gorelick et. al. [Gorelick05] propose an efficient method to extract the shape information 
of objects based on poisson equation.  We briefly review their work as follows. 

Consider a silhouette S embedded in a grid with mesh size h surrounded by a closed 
contour ∂S. For every internal point, place a set of particles at the point and let them move in 
a random walk until they hit the boundary contour. Let U(x,y) denotes the mean time 
required for a particle to hit the boundaries from point (x,y). Then U(x,y) is equal to the 
average value of its immediate four neighbors plus a constant: 
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Then (4.1) is a discrete form approximation of the poisson equation: 
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With ΔU =Uxx+Uyy denoting the Laplacian of U and 4/h2 denoting the overall scaling. The 
boundary condition of (2) is subject to Dirichlet boundary conditions U(x,y) = 0 at the 
bounding contour ∂S. Fig. 4.4 shows couple of examples of the solutions of poisson equation 
(2) obtained for the silhouettes. It can be observed that U consists of a set of contours which 
represent smoother versions of the bounding contour, which allows each internal point to 
‘feel’ some properties of the boundary contour (shape). One property is the local orientation 
of the boundary shape. Let M(x,y)  be the Hessian matrix of U at point (x,y). It is known that 
the principal orientation of a shape is the orientation of the leading eigenvector of M(x,y). Let 
α(x,y) denote the principal direction felt locally at (x, y). We can use α(x,y) to identify the 
vertical and horizontal regions of a shape by checking if α(x,y) is close to either zero or π/2: 
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Where γ is a constant (we used γ = 3). Based on an observation that U grows faster with 
distance from concavities than from convexities, the gradient magnitude should be higher in 
concave regions. So define: 
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                           (a)                (b)                   (c)               (d) 

Figure 4.4 Examples of the solutions of poisson equation for silhouettes. (a) Input objects. (b) The silhouettes 
(shapes) of input objects. (c) The solutions of poisson equation U. (d) The log(1/ Φ) for two silhouettes. Notice 
the concave regions are marked as dark colors. 
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Φ should have high value in concave regions (see Fig. 4.3-(d)). We then can use Φ to 
identify the concave regions of a shape: 
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Where Φn is obtained by normalizing Φ so that its maximal absolute value is 1. We used δ  
= 4. With the W0, Wπ /2 and Wc, we can use the following weighted moments to capture the 
statistic information of an object shape:  
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Where p,q are the moments orders. p,q ∈{0,1,2,3} and p+q ≤ 3. We substitute w with 
vertical measure W0, horizontal measure Wπ/2 and concave measure Wc, resulting in 10 
moments per measure and 30 moments in total. More detailed explanation of this shape 
information extraction method can be found in [Gorelick05]. 
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Figure 4.5 An example of a Bayesian Network. The parents and children of T are variables in dark gray. The 
Markov Blankets of T includes an additional variable F.   
 

4.2 Feature selection 

In this section, we introduce our feature selection approach. Feature selection refers to 
search algorithms that select a subset of most characterizing features from an initial larger set  
of features. When the initial set of features is small, optimal subset of features can be found 
by exhaustively searching. When the initial set of features is large (usually > 50), however, 
feature selection becomes challenging since the exhaustively search is infeasible due to the 
excessively large numbers of possible feature sets.  In Section 4.1, we build a high-
dimensional object representation for each object. This object representation consists of 151 
dimensional appearance features, 3000 dimensional parts-layout features and 30 dimensional 
shape features. Thus in this case, only suboptimal feature selection algorithm can be applied.  
For each object class, our goal is to select the subset of features that ‘best’ characterizes the 
object class from the initial 3181 features. 

Feature selection has been the focus of many statistical pattern recognition works 
[Tsamardinos03, Peng05, Yaramakala05]. Tsamardinos and Aliferis [Tsamardinos03] show 
that feature selection problem can be modeled as finding the Markov Blankets (MB) in 
Bayesian Networks (BN). A Bayesian network is a directed acyclic graph whose nodes 
represent random variables and edges represent conditional dependence. Nodes which are not 
connected represent variables that are conditionally independent of each other. The MB of a 
node in a BN is its parents, children and children's parents (see Fig. 4.5 for an example). In 
other words, the MB is the minimum conditioning set that makes all other random variables 
independent for a target variable. If we set the object label as a binary random variable with 1 
indicating the target object class and 0 indicating other object classes and also set the 
appearance features, parts layout features and shape features as random variables, then our 
task is to find the MB of the binary label variable. 

Many Markov blanket discovery algorithms have been proposed [Tsamardinos03, 
Aliferis03, Yaramakala05]. These methods all follow a two-phase scheme. In the first stage 
use some sorts of association measurements to select a set of candidate parents and children 
of target variable. This set of candidates is the superset of MB which contains some non- 
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         (a)                                              (b)                                       (c)                                                (d) 
Figure 4.6 Illustration of our feature selection method.   
 

members of MB. Then in the second stage, apply statistic independent tests to remove the 
false positives. These methods have some limitations. Firstly, most of association 
measurements of the methods are based on mutual information. Mutual information is biased 
on features that have large uncertainties. For instance, in our case, the parts-layout features 
reflect the local appearance information of objects, which tend to have larger uncertainties 
than features reflecting the global properties of objects. This may cause these methods miss 
some real MB members. Secondly, the conditional tests of independence they apply are G2 
test or Fisher z test. The number of the training instances to reliable estimate of the statistic 
tests is exponential to the size of the conditioning set. When the size of MB is large, the 
required number of training samples may reach to hundreds of thousands for these statistic 
tests to be reliable. However, for most image datasets, the available training samples are only 
several hundreds or several thousands. As a result, these methods may not be able to remove 
the false positives in the second stage and return an incorrect MB. Our feature selection 
method overcomes both of the limitations to some degrees. 

Like other approaches, the first step of our method is to select a set of candidate parents 
and children of the target variable. Prior knowledge of features is very valuable for feature  
selection. Intuitively, each object class can be accurately described by a specific combination 
of appearance, parts layout and shape information. Thus, a good feature subset that well 
characterizes an object class should be the combination of the three classes of features. Based 
on this prior knowledge, for each class of features, we select the set of most predictive 
features as the candidate parents and children. The predictability of a feature for an object 
class is measured by the information gain [Israels83]: 
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Where T is the target binary class label variable. X is a feature variable. H(X) is the entropy 

of X. H(X|T) is the conditional entropy. I(T,X) is the mutual information between T and X. 
Compared to mutual information, information gain reduces the bias on features that have 
large uncertainties and can be used to find the features that have large effect on target class 
label variable T. For appearance features and shape features, we select the features whose 
information gains are larger than the mean information gain of features in the class. For 
parts-layout features, we select 50 features with highest information gains. Since all parents 
and children should have large effect on the target variable, by selecting features with large 
information gains from each feature class set, we can cover most parents and children of the 
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target label variable. Let PC1 denote this initial candidate parents and children set (see Figure 
4.6 – a for an example).  

In the second stage, we apply a wrapper to remove the false positives in PC1. A wrapper is 
a feature selector that convolves with a classifier (we used Adaboost classifier [Friedman00]), 
with direct goal to minimize the classification error of the particular classifier [Peng05]. We 
keep removing a feature from PC1 and check the cross-validated performance of Adaboost 
classifier. If the classification error remains the same or reduces, permanently remove the 
feature. Otherwise, keep the feature in PC1. Our strategy is first to remove the features that 
have relatively small information gains and large mutual information with other members in 
PC1.  Then remove features with increasing information gains. The idea here is that features 
that have relatively small information gain and large mutual information with other members 
in PC1 likely are the false positives. When the real members of MB are remained, removing 
the redundant features will not affect or may increase the classification accuracy. When most 
redundant features are removed, removing a member of MB will lower the classification 
accuracy. After this stage, we get a compact candidate parents and children PC2 (see Figure 
4.6 – b, c for an example).  

In the last stage, first add all the members of PC2 into the MB set. Then for each X ∈ PC2, 
select a feature Y ∉ PC1 with highest G(X,Y).  Add Y into the MB set and check the cross-
validated performance of Adaboost classifier. If the classification error reduces, keep Y in the 
MB. Otherwise, remove Y. The goal for this operation is to find the children's parents (like 
the variable F in Fig. 4.4).  The children’s parents may not have direct predictability on target 
T but combining them with the corresponding children of T can further increase the 
classification performance (see Figure 4.6 – d for an example).  

4.3 Summary 

The image segmentation algorithm described in Chapter 3 allows us to ‘perceive’ the 
salient objects in scenes. The next step is to recognize what the salient objects are. In this 
chapter, we present a novel method for object classification. Our main contributions are two-
fold. Firstly, we build an informative object description, which consists of not only 
appearance, but also certain structural information like parts layout and shape of objects. All 
these information are combined into a high-dimensional vector. Secondly, we develop a new 
information-based wrapper feature selection method. Feature selection refers to search 
algorithms that select a subset of most characterizing features from an initial larger set of 
features. For many pattern recognition applications, feature selection is critic to minimize the 
classification error, especially when the original feature set is very large. With this feature 
selection method, for each object class, we can find a small subset of features that well 
characterize the object class. We then train a binary classifier for each object class based on 
the subset of predictive features selected by our feature selection method for classification. 
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5 Object-based place recognition and loop 

closing 

   The image segmentation algorithm described in Chapter 3 can stably detect the 
boundaries of many salient objects under different scenes. Therefore, like human visual 
system, our system can also ‘perceive’ the salient objects in scenes. As introduced in Chapter 
1, based on the perception on the objects in a scene, human visual system can build a very 
economic object-based scene representation. The object-based scene representation usually 
consists of 4~6 salient objects. Each object is summarized with a description, like its size, 
overall shape, dominant colors, etc. This economic representation results in an enormous 
saving of processing and memory resources, which plays a key role for the success of human 
visual system on place recognition. Our place recognition approach takes a similar strategy.  
In this chapter, we will first discuss how to build an economic object-based scene 
representation.  We mainly address two problems: 

1.   How to represent an object so that it can be reliably identified under different 
illuminations, from different distances and from different viewpoints? 

2. Among a group of objects appearing in a scene, which subset of them is more 
valuable to be used as landmark objects to label the place? 

After each place is represented by a set of distinctive and widely visible landmark objects, 
we then need to address how to recognize a place based on the landmark objects. To 
recognize a place, we need to match the set of landmark objects detected from current place 
to the landmark objects detected from previous places. It is often the case that thousands of 
landmark objects might be detected in a large environment. Thus, the landmark objects 
detected previously might form a large object database. Object query in the large database 
will be very inefficient without good indexing information. As we mentioned in the 
introduction section, scene-matching efficiency is the key for on-line loop detection in large 
environments. To increase query efficiency, we need to use some stable characteristics of 
these objects as indexes to quickly find the group of candidates that are similar to the query 
object from the database. Therefore, another goal of this chapter is to develop an efficient 
indexing schema for fast object retrieval from a large object database. We mainly address 
two problems: 1) what kinds of characteristics of landmark objects can be used as indexing 
information? 2) how to organize the landmark objects according to indexing information to 
achieve efficient scene matching? 
    The remainder of this chapter is organized as follows: a typical affine covariant visual 
feature – the Scale Invariant Feature Transform (SIFT) is introduced in section 5.1. Our SIFT 
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based object representation method and landmark objects selection method are described in 
section 5.2 and section 5.3 respectively. Then we give a detail introduction of a color model 
in the literature – color invariant in section 5.4. Some typical texture models in the literature 
and our texture descriptor are presented in section 5.5. Our range-tree object database that 
combines both texture and color features as indexing information is introduced in section 5.6. 
Finally we present the whole object-based place recognition and loop closing method in 
section 5.7. 

 

5.1 Scale Invariant Feature Transform (SIFT) 

The Scale Invariant Feature Transform (SIFT) [Lowe04] basically consists of four stages: 
(1) Scale-space extrema detection; (2) Keypoint localization; (3)Orientation assignment; (4) 
Generating keypoint descriptor. The first stage is to identify locations and scales that can be 
repeatedly assigned under differing views of the same object. To achieve this goal, a 
Gaussian-scale space is first built by keeping using Gaussian kernels with different scale 
level σ  to smooth the original image. With the series of Gaussian smoothed images, the 
difference-of-Gaussian (DoG) images are constructed by subtracting the adjacent images in 
the Gaussian-scale space (see Figure 5.1-a).  Each sample point is compared to its eight 
neighbors in the current image and nine neighbors in the scale above and below in DoG. A 
sample is selected only if it is larger than all of these neighbors or smaller than all of them 
(see Figure 5.1- b). These local maxima and minima of DoG are selected as candidate 
keypoints and some of them will be eliminated if found to be unstable.  To achieve 
orientation invariant, each keypoint is assigned with an orientation. This orientation is 
decided by the peak of a gradient orientation histogram formed from the local area around 
that keypoint.  Thus, a SIFT feature consists of the location of a keypoint, the scale and the 
assigned orientation. The last step is to compute a descriptor for the local image region. This 
descriptor is highly distinctive and also invariant to change in illumination or 3D viewpoint.  
Similar as the orientation assignment, the descriptor is also created based on a patch of pixels 
in the local neighborhood of the keypoint.  First the gradient magnitude and orientation at 
each image sample point in a region around the key point location is computed and weighted 
by a Gaussian window.  These samples are then accumulated into 4×4 array of histograms 
with 8 orientation bins in each.  Therefore a standard SIFT descriptor is a 4×4×8=128 
element feature vector (see Figure 5.1-c).  

  SIFT keypoints have some excellent properties: (1) They are very distinctive: the 
distinctiveness is achieved by using a high-dimensional vector to represent the image 
gradients within a local image region; (2) They are surprisingly resilient to image rotation 
and scale and resilient to substantial range of affine distortion and change in illumination; (3) 
Their computation is efficient.  Extracting keypoints from a typical image can be finished in 
near real-time. These characteristics make SIFT have wide applications such as object 
recognition, motion tracking, image panorama assembly, place recognition, robot localization 
and SLAM.  
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(a) 

  
(b) (c) 

Figure 5.1 This figure illustrates SIFT keypoint detection and keypoint descriptor generation, from [Lowe04]. 
(a) Construction of the difference of Gaussian space (DOG). (b) Local extrema detection in the difference of 
Gaussian space. (c) Generation of keypoint descriptor. 
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Figure 5.2 Examples of object representation. For each object, the green arrows enclosed in the red boundary of 
the object are SIFT keypoints. Each SIFT keypoint is assigned with a high dimensional vector as descriptor, 
which records the image gradients within a local image region around the keypoint. Each object is then 
represented with a list of SIFT descriptors of the SIFT keypoints.   

 
 
 
 

5.2 Local feature based object representation 

As introduced in Chapter 5.1, SIFT has many attractive properties that can fulfill the 
requirements of our application. Thus, in our work, we choose to represent an object based 
on SIFT. In most cases, we can extract a set of SIFT keypoints from object surfaces. For each 
SIFT keypoint, we can build a high dimensional vector as descriptor. The SIFT descriptor 
records the image gradients within a local image region around the keypoint. An object is 
then represented by a list of such SIFT descriptors (see Figure 5.2 for examples).   
   To evaluate the goodness of object representations, Marr [Marr82] proposed the following 
five criteria:  

1. Accessibility - needed information should be directly available from the 
representation rather than derivable through heavy computation;  

2. Scope - object representation method should be able to represent a wide range of 
objects;  

3. Uniqueness - an object should have a unique representation;  
4. Stability - small variations in an object should not cause large variations in the 

representation;  
5. Sensitivity - detailed features should be represented as needed. 

   Our object representation generally satisfies these criteria except for sensitivity, which is 
not a big concern in our application. Our goal is to reliably recognize a place by matching the 
set of objects appearing in the place to the recorded objects. This requires object 
representation to be unique so that any object is distinguishable from others. Object 
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representation also needs to be stable because an object may be observed from different 
viewpoints. In addition, object representation needs to be capable of representing various 
objects appearing in natural scenes. Therefore, for our application, the most important 
requirements for object representation are uniqueness, stability and scope.  The uniqueness is 
achieved by the highly distinctive SIFT descriptors. The distinctiveness of SIFT descriptors 
have been verified by many works including [Lowe04, Mikolajczyk05, Newman05, Se02, 
Se05]. The stability is also fulfilled. SIFT keypoints are invariant, to certain degree, to scale 
changes, rotation changes and illumination changes. This means that from different 
viewpoints, we can extract a same set of SIFT keypoints from an object and hence create a 
same set of SIFT descriptors. The scope is satisfied because we can extract a set of SIFT 
keypoints from most object surfaces. The number of SIFT keypoints is directly related to the 
degree of surface texture of objects. Most object surfaces have certain degree of textures. 
Therefore, this object representation can represent most objects appearing in natural scenes.  
 

5.3 Landmark object detection and scene representation 

After creating representations for the objects in a scene, the next step is to represent the 
scene with a subset of objects. As mentioned in Chapter 1, human visual system only keeps 
4~6 “impressive” objects in long-term memory. These “impressive” objects are often good 
enough for place recognition. This economic scene representation results in an enormous 
saving of processing and memory resources, which plays a key role for the success of human 
visual system on place recognition. Therefore, we want to take a similar strategy. The 
question then is: among a group of objects appearing in a scene, which subset of them is 
more valuable as landmarks to label the scene? According to [Sala06], we define two criteria 
to select such landmark objects:  

1. The objects should be distinguishable; and 
2. The objects should be widely visible. 

     The first criterion is common sense: as landmarks, these landmark objects should be 
distinctive enough to uniquely label a place. The reason for the second criterion is because 
when a vehicle revisits a place, most likely it will see the scene from a different viewpoint. 
Therefore, objects visible only from a single location are not suitable as landmarks since they 
will cause place recognition not persistent.  
    The first criterion is well addressed by our object representation. We use a set of SIFT 
descriptors to represent an object. Since SIFT descriptors are highly distinctive, as long as an 
object contains certain number (e.g., >= 8 in our case) of SIFT features (keypoints), the 
object is distinguishable enough.  
    To check if an object is widely visible, we compare the set of objects detected in current 
position with those objects detected in several previous positions. The comparison between 
two objects is based on matching the set of SIFT descriptors contained in one object to the 
set of SIFT descriptors contained in another object. If at least six pairs of SIFT descriptors 
are matched, then the two objects are considered to be the same object in the scene. If an 
object can be stably observed from multiple positions (e.g., >= 2 in our case), the object is  
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                                                               (a)                                                    (b)                                         
Figure 5.3 Examples of landmark objects detection. For each column, upper is the image taken at the current 
position, bottom is the image taken in previous position. Objects that can be observed from multiple positions 
are selected as landmark objects (marked with yellow circles). 
 

selected as a landmark object. Examples of landmark objects detection are shown in Figure 
4.3. By doing so, each detected landmark object is highly distinguishable and widely visible. 
A set of these kinds of landmark objects can be expected to be able to uniquely label a place. 
In our implementation, each place is represented by a set of landmark objects.  
 

5.4 Color feature 

      Although color is well known as a powerful cue in the distinction and recognition of 
objects, it also has some weaknesses. For example, one drawback of using color histogram 
model for object recognition is when the illumination circumstances are not equal, the object 
recognition accuracy degrade significantly.  Besides, the changes in the surface orientations 
of objects also affect color perception. Therefore, Gevers et al. [Gevers99] propose some 
criteria for good color models, such as being robust against changes in viewing direction, 
changes in illumination, changes in surface orientation of the object (i.e. the geometry of the 
object), etc. These criteria well match the requirement of our application. Geusebroek et al. 
[Geusebroek01] investigated invariant properties of colors and discriminative power under 
different illumination conditions. We will give a brief introduction of their work. 
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5.4.1 Color representation 

    Geusebroek et al. claim that colors are only defined in terms of human observation 
[Geusebroek00]. A perceived color does not directly correspond to the spectral content of the 
stimulus. There is no one-to-one mapping of spectral content to perceived color. Instead, 
perceived color is related to both the spectral energy distribution and the spatial configuration 
of colors. Therefore, they propose to use a 3D spectral-spatial space to represent color.  
    The spectral structure of color can be formulized as the follows [Geusebroek00]: 
     Let D(λ) be the energy distribution of the incident light, where λ denotes wavelength. Let 
G(λ0;σλ) be the Gaussian at spectral scale σλ positioned at λ0. The spectral energy 
distribution is approximated by a Taylor expansion at λ0:  
                          ...
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     The observed spectral energy in the Gaussian color model, at infinitely small spatial 
resolution and spectral scale is in second order to 
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measures the first order spectral derivative, and 
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measures the second order spectral derivative. Gλ and Gλλ denote derivatives of the Gaussian 
with respect to λ.  The coefficients of equation 5.1 are also called Gaussian color model. The 
first three components D, Dλ and Dλλ  of Gaussian color model well approximate the CIE 
1964 XYZ basis when taking λ0 = 520 nm and  σλ = 55 nm. Conversion from RGB color 
model to Gaussian color model is achieved by a linear transformation [Geusebroek00]: 
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   The spatial structure of color can be formulized as the follows [Geusebroek00]: 
   Introduction of spatial extent in the Gaussian color model yields a local Taylor expansion 

at wavelength λ0 and position x0. Now the measurement of a spatio-spectral energy 
distribution has a spatial as well as a spectral resolution. The measurement is obtained by 
probing an energy density volume in a three-dimensional spatio-spectral space. The size of 
the probe is determined by the observation scale σλ  and σx.  
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 are the spatio-spectral probes.  

5.4.2 Color invariance 

   The spectral components of an equal energy illumination source (daylight) are constant 
over the wavelength. Under assumption of an equal energy illumination, the energy 
distribution of the incident light is defined as follows [Geusebroek01]: 
     { }),())(1()()(),( 2 xWxpxpxhxD ff λλ ∞−+=     (5.9) 
   Where h(x) denotes intensity variations, pf(x) denotes the Fresnel reflectance at x, W∞(λ,x ) 
denotes the material reflectivity (see figure 5.1 – a for an example). Differentiating D(λ,x) 
with respect to λ get: 
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Differentiating Dλ (λ, x) with respect to λ get:  
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  The H only depends on the derivatives of the material reflectivity of objects. Thus, H 
defines a color invariance. According to Geusebroek [Geusebroek01], H is invariant to 
viewing direction, surface orientation, highlights, illumination direction and illumination 
intensity (see figure 5.4 –b and c for an example). These properties make color invariance H 
suited to be used as an indexing feature for our application. The color invariance H can be 
approximated with the approximation of the second and third components of Gaussian color 
model in equation 5.6: 
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5.5 Texture feature 

   Approaches in the analysis of image based on textural contents use either the spatial or 
frequency-based techniques. A typical spatial-based technique is called edge histogram 
descriptor [Manjunath01]. The edge histogram descriptor captures the spatial distribution of 
edges.  The distribution of edges is a good texture signature. The computation of this 
descriptor is as follows: A given image is first sub-divided into 16 sub-images. Each of the 
16 sub-images is further subdivided into image blocks. The size of these image blocks scale  
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(a) 

 
(b) (c)  

Figure 5.4 (a) Illustration of the energy distribution of the incident light. (b) Input image. (c) Color invariant H.  
 

with the image size and is assumed to be a power of 2. The number of image blocks per sub-
image is kept constant, independent of the original image dimensions, by scaling their size 
appropriately. A simple edge detector is then applied to each of the macro-block, treating the 
macro-block as a pixel image. The pixel intensities for the partitions of the image block are 
computed by averaging the intensity values of the corresponding pixels. The edge-detector  
operators include four directional selective detectors and one isotropic operator. Thus, edges 
are broadly grouped into five categories: vertical, horizontal, 45 diagonal, 135 diagonal, and 
isotropic (nonorientation specific). Those image blocks whose edge strengths exceed a 
certain minimum threshold are used in computing the histogram.  For each sub-image, a local 
edge histograms is computed. Each local histogram has five bins corresponding to the above 
five edge categories. Thus, the edge histogram for the whole image consists of 80 bins. These 
bins are nonuniformly quantized using 3 bits/bin, resulting in a descriptor of size 240 bits. 
Edge histogram descriptor is useful for image to image matching even when the underlying 
texture is not homogeneous. 
   A typical frequency-based technique is called Homogeneous Texture Descriptor (HTD). 
This descriptor is computed by first filtering the image with a bank of orientation and scale 
sensitive filters, and then computing the mean and standard deviation of the filtered outputs 
in the frequency domain. The computation of this descriptor is as follows [Manjunath01]. 
The frequency space is partitioned into 30 channels with equal divisions in the angular 
direction (at 30 intervals) and octave division in the radial direction (five octaves). The center 
frequencies of the feature channels are spaced equally in 30 in angular direction. In the radial 
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direction, the center frequencies of the neighboring feature channels are spaced one octave 
apart. The individual feature channels are modeled using 2-D Gabor functions. Gabor 
functions are modulated Gaussian functions. For the bank of filters used, the filter parameters 
are selected such that the half-maximum contours of the 2-D Gaussians of adjacent filters in 
the radial and angular directions touch each other. The image texture energy and the 
deviation of the energy in each of the filtered channels are then computed. Both the energy 
and the energy deviation are then logarithmically scaled to obtain two numbers, ej and dj for 
jth feature channel. The HTD is formed by a feature vector with 32 elements [Manjunath01]: 
    ],...,,,,...,,[ 30213021,, dddeeeffTD SDDC=      (5.14) 
  The first two elements of the feature vector are the mean intensity and the standard 
deviation of the image texture, respectively. The HTD provides a quantitative 
characterization of texture for similarity-based image-to-image matching. 
    Some texture models can characterize perceptual attributes such as directionality, 
regularity, and coarseness of a texture. An example of this kind of texture model is referred 
to as the “texture browsing descriptor” [Manjunath01].  This is a compact descriptor that 
requires only maximum 12 bits to characterize a texture’s regularity (2 bits), directionality 
(3bits×2), and coarseness (2bits×2).  The regularity of a texture is graded on a scale of 0 to 3, 
with 0 indicating an irregular or random texture. A value of 3 indicates a periodic pattern 
with well-defined directionality and coarseness values. The directionality of a texture is 
quantized to six values, ranging from 0 to 150 in steps of 30. A coarseness component is 
associated with each dominant direction. Coarseness is related to image scale or resolution. It 
is quantized to four levels, with 0 indicating a fine grain texture and a value of 3 indicating a 
coarse texture. To compute the texture browsing descriptor, the image is first filtered using a 
bank of scale and orientation selective band-pass filters. This part is very similar to the one 
for HTD introduced above. The filtered outputs are then used to compute the texture 
browsing descriptor components. This texture descriptor is valuable because it is related to 
human perception of texture, which allows users to manually specify a descriptor for query.  
    Basically, the texture feature extraction processes of both spatial and frequency-based 
techniques involve some operations with certain computational cost.  This will increase the 
computational complexity. In our application, computational complexity is one of the main 
factors in choosing an indexing feature. In addition, like shape features, most of the texture 
features are used in image datasets where images are taken under control conditions. In these 
images, the resolution is high enough to allow detailed texture properties to be accurately 
extracted. Some of texture properties such as coarseness are sensitive to scale change. 
Therefore, these texture features are not viewpoint-invariant, which will cause low indexing 
performance in our application. For these reasons, the texture features in the literature are not 
well suited for our application. 
    A texture-related characteristic of landmark objects is the degree of surface texture. The 
degree of surface texture can be measured by the number of SIFT features extracted from the 
surface. Usually highly textured surfaces generate large number of SIFT features and nearly 
uniform surfaces generate little SIFT features. Using the number of SIFT extracted from an 
object surface as texture descriptor has some merits. First, this texture descriptor satisfies the 
needs of viewpoint-invariant, which is critical to our application. According to [Lowe04], the 
stability of detection for SIFT features is around 70%~90% under different degrees of affine 
distortion. Thus, the number of SIFT features extracted from an object surface is stable under 
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viewpoint changes. Besides, unlike the texture descriptors in the literature, this texture 
descriptor is low-dimensional (only one dimension).  Thus, the similarity measurement of 
this texture descriptor is very simple and efficient. Although the discriminative power of this 
texture descriptor is not very strong, it is sufficient for our application. Notice that in our case, 
the retrieval mechanism does not need to solve the object recognition task. We use a set of 
highly distinctive SIFT descriptors to represent an object. The set of high dimensional SIFT 
descriptors extracted from an object surface records enough detail information of the object 
surface. Thus, in our application, our strategy is to use indexing features to find a set of 
candidates with similar perceptual properties and then use highly distinctive SIFT descriptors 
to get a precise similarity match list among the candidate objects.  Thus, using the number of 
SIFT as texture descriptor can basically satisfy our needs. 

5.6 Range tree database: combination of color and texture 

features 

For each landmark object, we can extract a color feature (color invariance H) and a 
texture feature (the number of SIFT features) from the object surface. Both of them satisfy 
the viewpoint-invariant requirement and can be efficiently extracted. Now we can design an 
efficient indexing structure based on these two features. In current effort, we have 
implemented a system that indexes and retrieves similar objects based on a cascaded texture-
color indexing method. Object retrieval is initially indexed by texture and then indexed by 
color.  

According to [Lowe04], the stability of detection for SIFT features is around 70%~90% 
under different degrees of affine distortion. Thus, the number of SIFT features extracted from 
an object surface is stable in a certain range. For a query object containing 30 SIFT features, 
most likely the matching object will be among those objects that contain 20~40 SIFT features. 
For this reason, we design a range-tree [Samet06] structure database to help us quickly find a 
range of candidates with similar degree of surface texture in a large database. 

   A range tree is a balanced binary search tree where the data are sorted in the leaf nodes 
and these leaf nodes are linked in sorted order by use of a doubly linked list. The non-leaf 
nodes contain midrange values of their left and right subtrees. The midrange value contained 
in a non-leaf node enables discriminating between the left and right subtrees of the non-leaf 
node. A range search for [B:Z] can be performed by searching the tree and finding the node 
with either the largest value ≤ B or the smallest value ≥ B, and then following the links until 
reaching a leaf node with a value greater than Z. For T points, this process takes O(log2 T + 
W) time. W is the number of objects found. An example of a range tree search is shown in 
Figure 5.5. In this figure, the query object (a car) contains 30 SIFT features. We can quickly 
find a group of objects that contains SIFT features range from 20~40 in the object database 
through range tree.  

After retrieving a group of candidate objects with similar degree of surface texture to the 
query object, we further select a subset of the candidate objects that have similar color to the 
query object.   
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Figure 5.5 Illustration of a range tree search. The green arrows in the objects are SIFT features. The query 
object contains 30 SIFT features. Those objects that contain 20~40 SIFT features in the database can be quickly 
found. 
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For each object, we create a histogram for the color invariance H. The histogram entries 
with the highest Peak in the histogram are recorded as the object’s dominant color. Any entry 
in the histogram with local peak that is within 80% of the highest peak is also recorded for 
the object.  If an object has single peak in the histogram, then the object may have an 
approximately homogenous surface. Otherwise, the object may consist of multiple parts with 
totally different colors.  If the difference of dominant color invariance H values of two 
objects is less than 0.2, then the two objects are considered to have similar colors. In addition, 
if the query object has multiple color invariance H values, then selected objects should also 
have multiple color invariance H values.  

By combining the surface texture and color information of objects, we are able to 
compare a query object only to the objects that have similar surface characteristics to the 
query object. This avoids many unnecessary comparisons and therefore, significantly 
increases the query efficiency.  

The final stage of the retrieval process is to determinate if the query object can be 
matched to the candidate objects with similar perceptual properties (texture and color) to the 
query object. This is achieved as follows: For each candidate object, we further compare the 
set of SIFT descriptors extracted from the candidate object surface to those SIFT descriptors 
extracted from the query object surface.  If more than 6 of SIFT descriptors of the query 
object get matched to the SIFT descriptors of a candidate object, then the query object is 
matched to the candidate object, which means that the query object has been seen before and 
the vehicle may be revisiting a place. 

 

5.7 Place recognition and loop closing algorithm 

The complete place recognition and loop closing algorithm is summarized as follows: 
 

INPUT:  image cI taken from current scene c with current time ct  
OUTPUT: place recognition (loop detection) result 
1. Detect SIFT features from Ic; 
2. Run the image segmentation algorithm presented in Chapter 3.7 to segment Ic; 
3. Detect a set of objects Oc. Each object ok ∈ Oc contains more than 8 SIFT features;  
4. Let Op contains the objects detected from three immediate previous positions: Op= Oc-1 ∪ 

Oc-2 ∪Oc-3; Let landmark objects LOc = φ ; Compare Oc with Op, if (ol ∈ Oc) ∧ (ol ∈ Op), 
let  LOc = LOc ∪ ol ; let  Op = Op\ Oc-3 and Op = Op∪ Oc; If LOc = φ, move to the next 
position. Otherwise, represent scene c with a set of landmark objects LOc ⊆ Oc; 

5. Set M = φ ; For each landmark object   ol ∈ LOc, search in the range tree. If a match om is 
found, output the scene number set s (records the these scenes that om appears) of om and 
let M = M ∪ s; Otherwise, insert ol into the range tree with scene number set c; 

6. For each scene number m ∈ M,  compare LOc and LOm,  if  |LOc| is close to |LOm| and 
around 50% of LOc  get matched with LOm and there is a big difference between tc  and  
tm, then detect a loop. (tm is the time when m was visited); if M = φ  or scene c is not 
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matched with any scene in M  ,output that c is a new scene. 
 

5.8 Summary 

    In this chapter, we address how to recognize a place based on the landmark objects. 
The image segmentation algorithm described in Chapter 3 allows us to ‘perceive’ the 

salient objects in scenes. As introduced in Chapter 1, based on the perception on the objects 
in a scene, human visual system can build a very economic object-based scene representation. 
The object-based scene representation usually consists of 4~6 salient objects. Each object is 
summarized with a description, like its size, overall shape, dominant colors, etc. This 
economic representation results in an enormous saving of processing and memory resources, 
which plays a key role for the success of human visual system on place recognition.  

Our place recognition approach takes a similar strategy.  In this chapter, we mainly tackle 
how to build an economic object-based scene representation.  We first represent each object 
with a list of SIFT descriptors. The SIFT based object representation make the object can be 
reliably identified under different illuminations, from different distances and from different 
viewpoints. We then select a subset of objects that are widely visible among the detected 
objects from each place as landmark objects. A set of these kinds of landmark objects can be 
expected to be able to uniquely label a place.  

 To recognize a place, we need to match the set of landmark objects detected from current 
place to the landmark objects detected from previous places. Object query in the large 
database will be very inefficient without good indexing information. To increase query 
efficiency, we need to use some stable characteristics of these objects as indexes to quickly 
find the group of candidates that are similar to the query object from the database. We first 
figure out that for place recognition, colors and degree of textures of object appearances are 
two good characteristics to be used as indexing information. Then we design a range-tree 
database to organize the detected objects. By combining the surface texture and color 
information of objects, we are able to compare a query object only to the objects that have 
similar surface characteristics to the query object. This avoids many unnecessary 
comparisons and therefore, significantly increases the query efficiency. Finally, we give the 
whole object-based place recognition algorithm that is based on all the techniques we 
develop in chapter 3, 4 and 5.  
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6 Experimental results 

In this chapter we present the experimental results for our image segmentation method, 
object classification method and place recognition method.  Section 6.1 tests our image 
segmentation method on three challenging scene image datasets and compare the results with 
several state-of-art methods of reference. In section 6.2, we evaluate our object classification 
method on the MSCR-21 dataset. The place recognition experimental results are illustrated in 
section 6.3.   

6.1 Image segmentation 

6.1.1 Evaluation measures 

Quantifying the performance of a segmentation algorithm remains a challenging task 
[Unnikrishnan05]. Segmentation errors can be classified roughly into three categories: over-
segment – an object is segmented into multiple regions; under-segment – multiple objects are 
segmented together; and arbitrary-segment – different parts of a group of objects are 
segmented together. It is widely agreed that humans differ in the level of details at which 
they perceive images [Unnikrishnan05] and over-segment in certain degree may often 
correspond to this kind of difference in granularity. This is also called selective refinement 
[Martin02]. In many cases over-segment in certain degree is still highly valuable for the 
subsequent processing in many applications. Under-segment basically means that a 
segmentation algorithm contributes little in the image region. Arbitrary-segment is the worst 
case. It means that the content of an image is totally distorted in the region. Therefore, a good 
segmentation performance measure should be tolerant to the refinement to certain degrees 
and meanwhile be sensitive to the under-segment and arbitrary-segment errors.  

Many performance measures have been proposed in the literature [Martin02, Estrada05, 
Unnikrishnan05, Zhang06] for the segmentation evaluation task. Under human-aided 
segmentation evaluation framework, boundary matching measure and region differencing 
measure are widely used. The former is based in the comparison of machine-detected 
boundaries with respect to human-marked boundary and the latter operates on computing the 
degree of overlap between machine-generated segmentations and human-generated reference 
segmentation. If segment membership information is discarded, then a segmentation can be 
regarded as a boundary map. The boundary matching measure, when applying on the 
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boundary map, is tolerant to the refinement to certain degree. However, it is also insensitive 
to under-segment. Although the region difference measure can appropriately punish the 
under-segment, it is not tolerant to the refinement. Since it is not an easy task to determine 
which performance measure is superior, Martin [Martin02] recommended that people should 
use multiple performance measures to validate their results. Therefore, we have used both 
boundary matching measure and region differencing measure. 

For the boundary matching measure, we use the Precision-Recall framework developed by 
Martin [Martin02]. A precision-recall curve is a parameterized curve that captures the trade-
off between accuracy and noise as a segmentation algorithm’s parameters varies. Precision is 
the fraction of detections that are true boundaries, while recall is the fraction of true 
boundaries that are detected. Thus, precision is the probability that the segmentation 
algorithm’s signal is valid, and recall is the probability that the ground truth data is detected.  
These two quantities can be combined in a single quality measure, F-measure, defined as the 
weighted harmonic mean of Precision and Recall: 

                                                 11 )1(
1

−− −+
=

UK
F

ππ
                                        (6.1) 

where K and U represent Precision and Recall, respectively. π is a weight  that is usually set 
to 0.5. The reason of choosing the same weights for Precision and Recall is that both of them 
are equally important to generate good segmentations. The F-measure is valued between 0 
and 1, where larger values are more desirable. The location of the maximum F-measure along 
a precision-recall curve provides the optimal parameters for a segmentation algorithm 
[Estrada05]. In our case, each tested algorithm uses the default parameters released by the 
authors. The only thing we changed in Ncuts and MBD is setting the parameter about the 
number of desired regions based on the ground truth data for each image, which we believe 
should yields better results than a fixed number for these two algorithms. Thus, the precision-
recall curve for each algorithm degenerates into a single point. 

For the region difference measure, we choose the method proposed by Russell [Russell06]. 
Unlike the region difference measure in [Martin02], this measure does not have the problem 
of favoring under-segments or over-segments. A segmentation accuracy score is defined as: 
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where GT and RM represent the set of pixels in the ground truth segment of an object and 
the machine-generated object segment, respectively. If more than one ground truth 
segmentation intersects RM, then we use the one that results in the highest score. The score is 
then averaged over all the detected object segments. The measurement is often called object-
level accuracy. Another measurement that is often used for evaluating classification 
segmentations is pixel-level accuracy. Pixel-level accuracy is also based on equation 6.2. The 
difference between object-level accuracy and pixel-level accuracy is that for the ground truth 
class segmentation, multiple objects belonging to the same class are assigned with the same 
label. As a result, if a method merges some physically apart same class objects together, it 
still achieves high pixel-level accuracy. Therefore, methods achieving high pixel-level 
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accuracy do not mean that they can also achieve high object-level accuracy (See Figure 6.3 
for an example).   
 

6.1.2 LabelMe database 

6.1.2.1 Experimental setup 

We first test the image segmentation algorithm described in Section 3.8 on the LabelMe 
[Russell08] scene image database. We selected 100 typical natural scene images from the 
LabelMe database as test images. The test images cover various environments like urban 
areas, suburban areas, residence areas, roads, airports, etc. Most salient objects in these 
images have already been labeled by different peoples. Therefore, the labels can be used as 
ground truth. The labeled objects cover a variety of object classes like sky, roads, buildings, 
vehicles, vegetations, people, signs, etc. This provides more flexibility to us: we can not only 
evaluate the overall performance of a segmentation algorithm but also measure the 
segmentation quality of the algorithm on the individual object class.  

We benchmarked three methods of reference: the recent version of Ncuts [Cour05], 
Martin’s [Martin04] boundary detector and Hoiem’s [Hoiem07] boundary detector. We 
compared their segmentation results with ours. The four tested methods represent four 
different strategies of boundaries detection: The Ncut algorithm detects boundaries based on 
appearance homogeneity; Martin’s boundary detector (MBD) predicts the probability of 
boundary at each pixel using local brightness, texture, and color gradient cues; Hoiem’s 
boundary detector (HBD) identifies and labels boundaries using the traditional edge and 
region cues together with 3D surface and depth cues; and our method detects object 
boundaries based on the Perceptual Organization Model (POM) presented in this paper.   

In all the experiments, we used the implementation provided by the authors. Both Ncuts 
and MBD require users to set a parameter about the number of regions that an input image 
needs to be segmented into. To make a fair comparison, these parameters are set based on the 
ground truth segmentation for each image so that these two methods can yield approximately 
the best segmentation results. Specifically, in our implementation, we set parameters σ=0.5, 
k=300 and min=20 for Felzenszwalb’s [Felzenszwalb04] algorithm to generate the initial 
partition for an input image and we set parameters θ = [18, 3.5], α = 20 and β = 3 for the 
Perceptual Organization model used in our image segmentation algorithm. 

6.1.2.2 Experimental result 

Figure 6.2 shows the precision-recall curve and the distribution of recall and precision for 
the four tested algorithms on the 100 testing images from LabelMe dataset. In the precision-
recall curve graph (Figure 6.2 – Left), it can be observed that the F-measure of our method 
(POM) dominates significantly over the others. The distribution of recall (Figure 6.2 – 
middle) shows that for most images, our POM can detect more than 60% true boundaries. 
The distribution of precision (Figure 6.2 - right) shows that majority of detected boundaries 
by our POM in most images are true boundaries. Notice that the HBD achieves higher 
precision. However, HBD obtains higher precision in the cost of lower recall rate. This  
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Figure 6.1 Region-based segmentation measurements. The first row: object-level accuracy. The second row: 
pixel-level accuracy. 
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Table 6.1 Segmentation accuracy score on LabelMe dataset 
 Ncuts MBD HBD POM 

Overall (%) 40.2 34.6 36.1 53.2 
Vehicle (%) 25.3 25.2 14.2 49.5 

Building (%) 40.7 38.5 33.8 47.6 
Vegetation (%) 38.4 34.0 33.6 43.4 

 
 
means that although the majority of detected boundaries by HBD are true boundaries, lots of 
true boundaries are not detected in the images. Thus, HBD causes some under-segment 
problems in many images.  

The results of averaged segmentation accuracy score are summarized in Table 6.1. The 
distribution of the segmentation accuracy of the overall objects, vehicles, buildings and 
vegetation are presented in Figure 6.3. We applied the Student’s T-test to the accuracy results 
for the POM compared against other three methods. This test confirms that the differences in 
these results are statistically significant, with a confidence level of 99.5% (except for the 
confidence level of the difference between POM and Ncuts on vegetation is 95%). Our 
method scores better than the other methods on the overall objects and the three object 
classes. Especially for the vehicles, our method achieves significantly better results than the 
other methods. We have closely inspected the results of our method and found that most of 
the vehicles that our method gets low segmentation accuracy score on are those occluded 
vehicles or small-size distant vehicles in the background (see the middle image in Figure 6.4 
for examples). As shown in Figure 6.4 and Figure 6.5, segmentation errors on these vehicles 
actually do not affect the visual quality of segmentation too much. For the salient front-stage 
vehicles, our method can group the whole vehicles together in most cases. As for the 
buildings, most of the low-score buildings are caused by the over-segment error. Unlike the 
vehicles, some buildings have complicated structures. Some parts of a building are not very 
tightly attached to the main part of that building. As results, our method often over-segments 
a big building into two or three connected components. Since the region difference measure 
we used here is not tolerant to refinement, these buildings achieve very low score (around 
30% ~ 50%), which affects the performance of our method on the buildings. 

  Figure 6.4 and Figure 6.5 present some qualitative testing results. Figure 6.4 compares the 
four tested methods on three examples. It can be observed that Ncuts algorithm presents good 
performance on detecting homogenous objects like vegetations and some buildings. For 
objects with multiple parts with different colors like vehicles, however, the Ncuts algorithm 
often merges some parts of these objects with the background that has close color to them. 

The results of MBD and HBD show that both methods have a problem of finding the close-
contours of the non-homogenous object boundaries. It can be observed that while the two 
methods can accurately detect the boundaries in the areas where the object parts are 
significantly different from the background, they both often make mistakes in the areas 
where object parts have the similar surface properties to the background. Compared to the 
other tested methods, our POM achieves the best visual qualities. The segments obtained by 
our method often coincide with the physical objects or their connected parts. Unlike the other 
methods, our method incorporates psycho-physical perceptions, which makes its output close  
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                         (a)                                                       (b)                                                           (c) 
Figure 6.2 Boundary-based evaluation results. (a) Precision-Recall curve. (b) The distribution of Recall. (c) The 
distribution of Precision. 

 
 

 
                                           (a)                                                                                        (b)                                           

 
                                          (c)                                                                                           (d) 
Figure 6.3 Region-based evaluation results. (a) The distribution of overall segmentation accuracy.  (b) The 
distribution of vehicle segmentation accuracy. (c) The distribution of building segmentation accuracy. (d) The 
distribution of vegetation segmentation accuracy. 
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(a) 

(b) 

(c) 

(d) 

(e) 

 
Figure 6.4 Comparison of the four tested methods. (a) An example of ground truth segmentations. (b)-(e) 
Segmentation results from the Ncuts, Martin’s boundary detector (MBD), Hoiem’s boundary detector (HBD), 
and our method based on the Perceptual Organization model (POM), respectively. Segmentation results of 
POM are much closer to the ground truth segmentations compared to the results from the other three methods. 
(This figure is best viewed in color). 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Figure 6.5 Examples of our POM segmentation algorithm on different environments. (a) Roads. (b) Airports. (c) 
Suburban areas. (d) Residence areas and (e) Urban areas. It can be observed that the boundaries of most salient 
front-stage objects in these scenes are accurately detected. (This figure is best viewed in color). 
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(a) 

 

(b) 

 

(c) 

 
Figure 6.6 Examples of the object classes that our POM segmentation algorithm can handle. (a) Vehicles; (b) 
buildings. (c) Other man-made objects with simple structures. (This figure is best viewed in color). 

to human perception (the ground truth segmentation).  
   Figure 6.5 presents the segmentations of our image segmentation algorithm on different 

natural scene environments. In simple environments (e.g., roads) where there is no too much 
occlusion and clutter, the boundaries of almost all salient objects in the images are accurately 
detected. In complex environments (e.g. suburban and urban areas), even though our method 
might make some grouping errors due to occlusion and clutter in some regions of the images, 
it still generates good segmentation results – most salient objects in these scenes are 
accurately segmented. This shows that our proposed Perceptual Organization model can 
stably detect the boundaries of various objects under different environments. 

Figure 6.6 summarizes the object classes our Perceptual Organization model can handle in 
the street. Our Perceptual Organization model favors vehicles very well. Vehicles mainly 
consist of three parts: windows, bodies and wheels. As shown in Figure 3.4, 3.5, and 3.6, the 
different parts of vehicles are approximately aligned, embedded or share certain amount of 
boundaries with each other. Our Perceptual Organization model can capture all these spatial 
relations and hence can group the whole vehicles together in most cases. Similarly, different 
parts of many buildings are symmetric, aligned or share certain amount of boundaries with 
each other. Therefore, our Perceptual Organization model can handle these types of buildings 
as well. For other many man-made objects with simple structures, such as fire-hydrants, ad 
boards, signs, etc. These objects either have approximately homogenous surfaces or the 
structural relations of the different parts of the objects obey the Gestalt cues presented in 
Chapter 3.3. Our Perceptual Organization model also can handle these objects well.  In 
general, the experimental result shows that our Perceptual Organization model can handle the  
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major object classes that appear in outdoor scenes, which builds a foundation for our object-
based place recognition and loop closing method.  

6.1.3 Gould09 database 

6.1.3.1 Experimental setup 

In second experiment, we test our image segmentation algorithm on a recently released 
outdoor image database Gould-09 [Gould09] (see examples in Figure 6.7). This database 
contains 715 images of urban and rural scenes assembled from a collection of public image 
datasets: LabelMe [Russell08], MSRC-21 [Shotton09], PASCAL [Everingham07], and 
Geometric Context (GC) [Hoiem05]. The images on this database are down-sampled to 
approximately 320x240 pixels. The images contain wide variety of physical and biological 
objects like buildings, sign, cars, people, cows, sheep, etc. This dataset provides ground truth 
object class segmentations that associate each region with one of 8 semantic classes (sky, 
tree, road, grass, water, building, mountain, or foreground). Besides the object class labels, 
the ground truth object segmentations that associate each segment with one physical object 
are also provided. Therefore we can evaluate our POM performance on segmenting different 
object classes on this dataset. The database is publically available from the first author’s 
[Gould09] website. Following the same setup in [Gould09], we randomly split the database 
into 572 training images and 143 testing images. 

We benchmarked a state-of-art class segmentation method – Gould et al. [Gould09b] for 
references on this dataset. The Gould’s method also used superpixels as a starting point for 
their methods.  The Gould’s method we tested is a slight variant of the baseline method 
described in [Gould08]. The baseline method of [Gould08] achieved comparable result 
against the relative location prior method in [Gould08], Shotton’s method [Shotton09] and 
Yang’s method [Yang07] on the MSCR-21 [Shotton09] dataset (see figure 6.8 for an 
example). All two methods are trained on the training set and tested on the testing set. For 
our Perceptual Organization method (POM), we set parameter σ=0.5, k=80 and min=80 for 
Felzenszwalb’s algorithm [Felzenszwalb04] to generate the initial superpixels for an input 
image and set parameters θ = [18, 3.5], α = 20 and β = 3 for our Perceptual Organization 
model. We used the 572 training images to learn five binary Adaboost [Friedman00] 
classifiers to identify 5 background object classes (sky, road, grass, tree, water).  

Table 6.2 Segmentation accuracy score on Gould09 dataset 

 

sky 

tree 

road 

grass 

w
ater 

building 

m
ountain 

foreground 

average 

Pixel %
 

Gould09  32.5 13.5 28 26.4 37.6 11.8 20.4 9.3 16.3 75.4 
POM (ours) 46.1 29.3 38.8 42.9 58.8 29.6 28.8 27.8 32.5 - 
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6.1.3.2 Experimental result 

   Table 6.2 compares the performance of our method with the baseline methods (Gould et al. 
[Gould09b]) on the Gould09 dataset. The segmentation accuracy measurement is still based 
on equation (6.2). The score is averaged over all the salient object segments. If the size of a 
ground truth object segment < % 0.5 of the image size, it is not a salient object and will not 
be accounted for segmentation accuracy. In total, we detect 2757 salient objects from 143 
testing images and on average 19 objects per image. We used Normalized cut algorithm 
[Cour05] to generate 400 superpixels per image for Gould’s method. We are able to achieve 
on average improvement of 16.2% over the performance of Gould’s method. 
      The Gould09 database only provides 8 semantic classes (sky, tree, road, grass, water, 
building, mountain, or foreground) for training.  The foreground semantic class on Gould09 
actually includes a wide variety of object classes like cars, buses, people, signs, sheep, cows, 
bicycles, motorcycles, etc., which have totally different appearance and shape characteristics. 
This makes training an accurate classifier for classifying the foreground class become 
challenging. Gould’s method seems to be adaptable to the variation of the number of 
semantic classes. Their method achieved 70.1% pixel-level accuracy on the 21-class MSCR 
database and achieved impressive 75.4% pixel-level accuracy on the 8-class Gould09 
database. However, since the foreground class includes a wide variety of object classes, 
Gould’s method cannot well handle clutter environments where multiple foreground objects 
may appear in close locations. In such cases, Gould’s method often merges a group of 
different object instances like people, car, sign etc. in close location together. This affects the 
performance of their method on the object-level segmentation. If the foreground class can be 
further subdivided into more semantic object classes, the performance of Gould’s method can 
be expected to improve on the Gould09 database. 
     The problem of small number of semantic classes does not affect our method. Our method 
only requires identifying 5 common homogenous background objects (sky, tree, road, grass, 
water). The remaining object classes are treated as structured objects. Our Perceptual 
Organization model can piece the major portion of the structured objects together without 
requiring recognizing them. From this point of view, our method is easy-to-train compared to 
the class segmentation methods in the literature.  Among 2757 salient objects detected in the 
testing images, the structured objects (buildings + foregrounds) accounts for 52.6%. Our 
method significantly outperforms Gould’s method on segmenting the structured objects. This 
shows that our Perceptual Organization model can well handle various structured objects 
appearing in outdoor scenes. 

 To gain a qualitative perspective of the performance of the three testing methods, we 
present several representative images (first row), along with the ground truth segmentations, 
and Gould’s results (second row and third row), as well as the results of our method (fourth 
row) in Figure 6.9.  

The first example (the first column) contains a nearly centered people with clean 
backgrounds. It can be observed that all three methods can well handle this type of images. 
The Gould’s method accurately classifies most part of the centered people as foreground. Our 
method also pieces the major portion of the people together. The second example is a typical 
street scene which contains several structured objects (vehicle, building), and background 
objects. These structured objects are well separated in the image. Our method well 
segmented most of the vehicles and the buildings.  The third image is a clutter street scene  



 
 

85

 
Figure 6.7 Examples of Gould09 database. 

 
 

 

Figure 6.8 The performance of the baseline method of Gould08 (masked by a red arrow) is comparable to 
three other class segmentation methods on MSRC-21 database based on pixel-level accuracy. The table is 
from [Gould08]. 
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Figure 6.9 Examples of our POM segmentation algorithm on Geometic Context dataset. Row 1: Input 
images. Row 2: Ground Truth segmentations. Row 3: POM (ours) results. Row 4: Gould’s result. It can 
be observed that our method can stably segment some salient objects in different scenes. (This figure is 
best viewed in color). 
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which contains several vehicles parked in front of a building. These vehicles stay closely to 
each other. Our method well segmented most of the vehicles and the background building. 
The Gould’s method miss-classified some parts of the buildings as foreground. Besides, 
Gould’s method merges the whole group of vehicles together. 

6.1.4 Geometric Context (GC) database 

6.1.4.1 Experimental setup 

To further test the performance of our method under different outdoor scenes, we evaluate 
our image segmentation method on the Geometric Context database (GC) [Hoiem05], which 
consists of a wide variety of outdoor scenes including beaches, forest, hills, suburbs and 
urban streets etc (see examples in figure 6.10). 101 images of the dataset are assigned with 
ground truth object segmentations by the authors in [Hoiem05] (each ground truth object 
segment corresponds to one physical object instance). Therefore we can evaluate our POM 
method’s performance on handling different outdoor scenes on this dataset. Since the ground 
truth object class information is not provided on this database, which is required for the class 
segmentation methods in the training stage, to make a fair comparison, we only compare our 
method with the Hoiem’s boundary detector (HBD)[Hoiem07] on overall object 
segmentation.  Hoiem’s boundary detector has been trained and tested in the same dataset 
and hence can be used as a baseline for this dataset.  

In this dataset, we set parameter σ=0.5, k=280 and min=100 for Felzenszwalb’s algorithm 
[Felzenszwalb04] to generate the initial superpixels for an input image and set parameters θ 
= [18, 3.5], α = 20 and β = 3 for our Perceptual Organization model. We use the same 
background classifiers trained in the Gould-09 database to identify background objects on 
this dataset.   

6.1.4.2 Experimental result 

Table 6.3 compares the performance of our method with the baseline HBD method in the 
Geometric Context (GC) dataset. The segmentation accuracy measurement is still based on 
equation (6.2). The score is averaged over all the salient object segments. If the size of a 
ground truth segment size < % 0.5 of the image size, it is not a salient object and will not be 
accounted for segmentation accuracy. In total, we detect 786 salient objects from 101 images 
and on average 7.8 objects per image. We are able to achieve on average improvement of 
16% over HBD’s performance.    
   To gain a qualitative perspective of the performance of the two testing methods, we present 
several representative images (first row), along with the ground truth segmentations (second 
row) and HBD’s results (third row), as well as the results of our method (fourth row) in 
Figure 6.11. The first example (the first column) shows that both methods can well handle 
salient objects with clean backgrounds. HBD correctly detect the major boundaries of the big 
tower. Our method also pieces the major parts of the tower together. The second example is a 
street scene which contains many rigid objects (vehicles) in rear view. Our method well 
segment most of the vehicles while HBD treats the whole scene as a big object. The third  
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Figure 6.10  Examples of Geometic Context (GC) database. 
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Figure 6.11 Examples of our POM segmentation algorithm on Geometic Context dataset. Row 1: Input 
images. Row 2: Ground Truth segmentations. Row 3: Hoiem’s results. Row 4: POM (ours) results.  It can 
be observed that our method can stably segment some salient objects in different scenes. (This figure is best 
viewed in color). 
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Table 6.3 Summary of segmentation score on GC dataset 

 HBD Ours 

Overall (%) 36.8 52.8 

 
 
image is a clutter environment. HBD treats the group of people as a big object and accurately 
detect the boundary of the group of people. Our method generates finer segmentations. 
Although several people in middle are grouped together due to clutter, our method generates 
several good segments for people standing on the edge of the group of people.    

6.1.5 Qualitative assessment 

  Figure 6.12 and Figure 6.13 show some good and bad examples, respectively. From 
Figure 6.12, it can be noticed that our method can well segment many kinds of structured 
objects even under clutter environments. 
  There are still some mistakes that we would like to address in the future. The inference of 
our Perceptual Organization model is mainly based on the geometric relations between 
different object parts. This requires obtaining the geometric properties (shape, size, etc.) of 
object parts. We assume that object parts have nearly homogenous surface and hence the 
uniform regions in an image correspond to object parts. Although this assumption holds in 
most cases, there are still some exceptions. For example, in Figure 6.13, the black car body is 
painted into different patterns. As a result, the car body is over-segmented to many small 
parts. Under this situation, our Perceptual Organization model could not detect any special 
relations between the small parts and hence could not piece them together. We hope that we 
can handle this problem in the future by redefining the proximity law. A group of 
neighboring parts with similar size actually obeys the definition of proximity law in many 
Perceptual Organization works.  
   Our method can handle objects with polygon shapes well. But some object classes like 
bicycles, motorcycles, some buildings, etc. have very complex structures. Some parts of the 
objects are not strongly attached to other parts. For these object classes, our Perceptual 
Organization model may not be able to piece the whole object together. Instead, it may only 
piece some semantic meaningful parts of the objects together. For these objects, higher-level 
object-specific knowledge is still required to segment the whole objects.  
   Another problem is caused by strong reflection. An example is shown in Figure. Due to the 
strong reflection, the upper rear part of the blue bus shows extremely bright white color. Our 
method identified the region as sky and hence did not piece the part with the bus. In clutter 
environments, one structured object may stand in front of another structured object. From 
some viewpoints, the parts of the front object may coincidently have special geometric 
relations with the parts of the back object. Under these situations, our Perceptual 
Organization model may be confused and merge these parts together. This problem can be 
addressed by recognizing the background structured objects. Currently our method can only 
identify five homogenous background object classes (sky, road, tree, grass and water).  
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(a) (b) 

(c) (d) 

  
(e) (f) 

Figure 6.12 Examples of where our POM segmentation algorithm does well. (This figure is best viewed 
in color). 

  
(a) (b) 

(c) (d) 

Figure 6.13 Examples of where our POM segmentation algorithm makes mistakes. (This figure is best 
viewed in color). 
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Actually, the mountains, buildings and walls are also common background objects in outdoor 
scenes. We plan to enhance the background identification capability of our method in the 
future by training more classifiers to identify mountains, buildings and walls etc. With the 
ability of identifying more background object classes, the performance of our method can be 
expected to be further improved. 
 

6.2 Object classification 

6.2.1 Experimental setup 

We evaluated the performance of discrimination of the proposed method with respect to 
the Microsoft Research Cambridge (MSRC) database[Shotton09]. The MSRC database is 
composed of 591 images with 21 object classes: building, grass, tree, cow, sheep, sky, 
airplane, water, face, car, bicycle, flower, sign, bird, book, chair, road, cat, dog, body and 
boat. The images are segmented and objects are hand-labeled with colors assigned as indices 
into the list of object classes. All the object classes are viewed under general lighting 
conditions and poses (see Figure 6.14 for examples). We used the GML Adaboost classifier 
[Friedman00] for both feature selection and object classification. In the feature selection 
stage, for each object class, we applied the feature selection method described in Chapter 4.2 
to select a subset of features that characterizes the object class well. In the object 
classification stage, first, the database is split into 50% training and 50% testing sets. Then 
for each class, we applied the corresponding selected features on the training set to train a 
binary classifier. Each binary classifier predicts if an instance belongs to one particular class. 
We directly use five binary classifiers to recognize five common background object classes 
(skies, roads, trees, grasses and water). Finally, with the collection of structured object binary 
classifiers, we used the one-per-class method [Guruswami99] to build a multiclass classifier 
by classifying an instance to the class whose binary classifier returns highest confidence level.  

  For all our experiments, we use region-based recognition accuracy – i.e. given a ground 
truth segment, assign a single class label to it and then measure classification accuracy. 

 

6.2.2 Results 

  As we mentioned in Chapter 3.4, the common backgrounds in outdoor natural scenes are 
those unstructured objects like skies, roads, trees, grasses, etc. These background objects 
have low visual variability and in most cases are distinguishable from other structured 
objects in an image. For instance, a sky usually has a uniform appearance with blue or white 
colors; a tree or grass usually has a textured appearance with green colors. Therefore, these 
background objects can be accurately recognized solely based on appearance information.   
 We first randomly split database into 50% training and 50% testing set. We then use the 

151-dimensional appearance features described in Chapter 4.1.1 to train five binary Adaboost 
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classifiers [Friedman00] for the five background object classes (skies, roads, trees, grasses 
and water) using the training set. Table 6.4 reports the classification accuracies of the five 
background object classifiers on the testing set. It can be observed that the trained classifiers 
can accurately recognize the five background objects. For both training and testing, we use 
the ground truth segments for feature extraction. 
  After recognizing the unstructured background object classes, we then test the performance 

of our method on structured object classes. Since appearance-based methods have been 
widely used in literature, we want to access how much the parts-layout and shape 
information, combined with appearance information, can help with object class recognition. 
Specifically, we are interested in the following aspects: (1) the effect of combing appearance 
and parts-layout features; (2) the effect of combing appearance and shape features; (3) the 
effect of combing appearance, parts-layout and shape features. 

We selected three typical structured classes: car, building and face. Car and building have 
large variability on appearance but have certain pattern on parts-layout and shape. Face has 
stable variability on appearance and certain pattern on shape. The database contains enough 
training samples for the three classes (see Figure 6.15 for examples). Thus, the three classes 
should be well characterized by combination of appearance, parts-layout and shape 
information. 

Table 6.5 reports the classification accuracies on the three selected object classes with 
different combination of features. The results are classification accuracy of the corresponding 
binary classifiers of the three classes. The one-per-class method was not applied in this 
experiment. It can be observed that the three classes cannot be accurately classified only 
based on appearance information. Both parts-layout and shape information helps improving 
the classification accuracy. The use of joint appearance, parts-layout and shape information 
gains the highest classification accuracies for the three object classes. 

We also evaluated our feature selection method on the three selected object classes. We 
compared our method against the HITON feature selection method [Aliferis03], which has 
achieved successes on many complex large datasets. We also tested the results when no 
feature selection was applied (i.e. using the full 3181 features for classification). Table 6.6 
reports the classification accuracies on the three selected object classes with different feature 
selection methods. The results are classification accuracies of the corresponding binary 
classifiers of the three classes. The one-per-class method was not applied in this experiment. 
It can be observed that with full set of features, even though all the information is contained, 
the learned classifiers are still not accurate for the three object classes because of too many 
noises (redundant features) in the data. For the HITON feature selection method, due to the 
small sample size, the conditional tests of independence are not reliable. As a result, HITON 
returned incorrect MB. We found that HITON picked the majorities of features from the 
parts-layout features and thus basically ignore the important appearance and shape 
information. Compared to HITON, our feature selection methods always picked a compact 
combination of appearance, parts-layout and shape features.  This experiment shows that 
with the compact informative features, we can learn more accurate classifiers for structured 
object classes. 

Next, we compared the classification accuracy of our method against the state-of-the-art 
TextonBoost method [Shotton09]. TextonBoost recognizes object classes by combining 
appearance, layout and context information, which helps it achieve higher classification 
accuracy than the appearance-only based method [Winn05] in this MSRC 21-class database.  
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Figure 6.14 Examples of MSRC-21 database [Shotton09]. 
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Table 6.4 Summary of results of background objects classification accuracy. 

Accuracy (%) Sky Road Tree Grass Water 
TextonBoost 87.1 67.4 67.8 93.4 48.7 
Our method 92.3 82.9 86.1 96.3 55.3 

 
Table 6.5 Summary of results obtained by different combination of features on 
classifying car, building and face. Notice that the highest accuracies are obtained by 
the use of joint appearance, parts-layout and shape information 

 

 Car Building Face 
Appearance 63.1 61 60 
Appearance + 
 parts-layout 

68.4 66.2 73.1 

Appearance +  
shape 

80.9 73.8 71.4 

Appearance + 
parts-layout + shape 

85.7 76.2 82.8 

 
 

Table 6.6 Summary of results obtained by different feature selection methods on 
classifying car, building and face. In this experiment, we use the binary classifier for 
each class. Notice that the highest accuracies are obtained by the use of our feature 
selection method. 

 Car Building Face 
Full set 23.8 65.5 73.7 
HITON 62.5 52.9 73.7 
Our method 85.7 76.2 82.8 
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Table 6.7 Summary of results obtained by different classification methods on 
classifying car, building and body.  
 Car Building Body 
TextonBoost 56.3 60 40.9 
Our method 
(based on Ground Truth) 

85.7 91.9 86.4 

Our method 
(based on POM) 

81.3 83.1 70.8 

 
 
Following the same setup in [Shotton09], we split the database into 45% training, 10% 

validation and 45% testing sets. The boost rounds were set as 700.  For our method, we split 
the database into 50% training and 50% testing set. We applied the one-per-class method on 
the 16 structured binary classifiers to build a multiclass classifier by classifying an instance 
to the class whose binary classifier returns highest confidence level. In this experiment, we 
still use the ground truth segments of testing set for feature extraction. Figure 6.16 shows the 
confusion matrixes of TextonBoost and our method respectively. Notice that our method 
achieves higher accuracies for almost every structured object class. For building, the 
classification accuracy of the binary classifier is only 76.2%. The classification accuracy of 
the multiclass classifier raises up to 91.9%. This means, for many building instances, the 
building binary classifier alone is not confident enough to classify them as building. But 
compared to the results of other binary classifiers, the building binary classifier still returns 
the highest confident levels for these instances. For classes which have low visual variability 
and many training examples (such as grass, tree, sky, etc.), our method achieves slightly 
better or comparable results as TextonBoost. Even for the classes that have high visual 
variability and fewer training examples (like boat, chair, bird, dog), our method achieves 
higher accuracy than TextonBoost. As pointed out in [Shotton09], with more training 
examples, the accuracies for these classes are expected to be improved.  

All the experiments above use the ground truth segments of the testing images for feature 
extraction. The experiment results show that under ideal case where highly accurate 
segments of the objects are given, our object classification method can achieve high 
classification accuracy. In practical cases, however, the highly accurate segments of the 
objects can not be obtained automatically. To evaluate the performance of our method in 
practice, finally, we test our object classification method on our POM segmentations, which 
can only provide fairly accurate segments for some objects. We select three structured object 
classes – building, car and people (body) for the experiment. The reason is that the tree object 
classes often appear in outdoor streets. Recognizing these object classes is helpful for object-
based place recognition. For each test image, we apply our POM segmentation method to 
segment the image. Our POM method can identify five background objects (sky, road, grass, 
tree and water) and generate fairly accurate segments for the remaining structured objects. 
We then use the multi-class classifier to classify the segments of the structured objects.   
   Table 6.7 reports the classification accuracies on the three selected object classes with 
different object classification methods. It can be observed that our object classification 
method still achieves good accuracy on the fairly accurate segments of the three object  
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Figure 6.15 Examples of car, building and face images in MSRC-21 database [Shotton09]. 
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bike 12.5  12.5  6.3     6.3 56.3  6.3         
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book 5.9              94.1       
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dog 7.7  7.7 7.7 7.7   7.7 7.7        15.4  15.4 23.1  
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building 91.9   1.2       2.3   1.2  1.2    2.3 1.2 
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tree   86.1              2.3     
cow 6.3   84.4     3.1   6.3          

sheep 25.0   5.0 50.0         10.0  5.0   5.0   
sky      92.3                
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water        55.3              

face 5.3        94.7             
car 14.3         85.7            

bike 12.5          81.3         6.3  
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bird 38.7             58.1       3.2 

book          15.8     78.9     5.3  
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road                 82.9     

cat 58.3                 41.7    
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boat 23.1          3.9          73.1

Figure 6.16 Classification accuracy confusion matrixs. Upper: TextonBoost [Shotton09], down: Ours. 
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classes generated by our POM method. Especially for the rigid objects like car and building, 
there are only small performance drops on POM segmentation compared to the performance 
on the highly accurate ground truth segmentation. For the non-rigid object like body, in some 
cases our POM can not piece the whole body together due to the large pose deformation.  
This affects the performance of our classification method.  
 

6.3 Place recognition and loop closing 

6.3.1 Experimental setup 

We tested the place recognition and loop detection algorithm described in Section 5.5 
using imagery collected from a mobile robot. The test environment is shown in Figure 6.17. 
The robot first traveled over an outdoor trajectory of 1.6km. In this trip, the robot took an 
image of resolution 640×480 around every four meters. For each image, we first extracted 
SIFT features from that image using Lowe’s implementation [Lowe04]. Then, we run our 
image segmentation algorithm to segment the image into its constituent objects. Any object 
that contains more than 8 SIFT features were selected as salient objects. By comparing this 
set of salient objects with those salient objects detected in several previous locations, we 
were able to detect a set of landmark objects that were visible from multiple locations. These 
landmark objects were used to label the place and were stored in a range tree database with 
color and number of SIFT features inside as index information. Each landmark object was 
represented with a list of SIFT descriptors contained in the object. Only SIFT descriptors 
contained in these landmark objects were retained. All other SIFT descriptors were discarded.  
By doing so, we significantly compressed the database size. 
 

6.3.2 Results 

  As seen in Table 6.7, during this trip, the robot collected total 374 images. Together, 
702,118 SIFT features were extracted from these images. We detected 621 landmark objects 
from this environment. Total 91,908 SIFT features were contained in these landmark objects. 
Thus, only less than 14% of total 702,118 SIFT descriptors extracted from 374 images were 
stored in the range tree database. More importantly, the stored SIFT descriptors are grouped 
with good index information. The combination of database compression and index 
information enables us to detect a loop without a costly search. 

After closing the loop, the robot traveled along the loop again. In this trip, it randomly took 
images from 50 places. For each place, it took two images from two different locations so 
that we could detect some landmark objects in the scene. We then used the detected landmark 
objects at each place to test if our algorithm can detect the loop. Our algorithm correctly 
detected the loop at all the 50 places. Depending on the numbers of objects appearing in 
scenes, instead of detecting a single location where the set of query objects were observed 
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from in the first trip, our algorithm might list multiple continuous locations where the set of 
query objects were observed from in the first trip at some places. This is because at these 
places, only several objects appeared in the scenes. As a result, the robot observed a same set 
of objects at multiple continuous locations in the first trip. In such cases, our algorithm could  
not accurately judge which location the set of query objects were observed from in the first 
trip, but instead found that the set of query objects were observed at multiple (2~4) locations 
in the first trip.  

Figure 6.18 shows an example of loop detection. The building and the tree in the image 
taken from the second trip are matched with the corresponding objects in an image taken 
from the first trip. Therefore our algorithm recognizes the images as originating from the 
same place. Figure 6.19 highlights the robustness of our algorithm to scene change. It can be 
observed that there exist big scene difference between each pair of images due to different 
background vegetations and different illumination conditions. This may cause some 
problems for place recognition methods based on comparison on the global scene image 
properties like [Cummins07]. Different from these methods, our algorithm recognizes a place 
based on matching the widely visible objects in the scene to those objects stored in a database. 
Thus, as long as the same set of objects recorded before appear in a scene, our algorithm can 
correctly recognize the place despite the big scene difference in background. This shows that 
place recognition based on object level are more robust to scene changes. 

In most cases, our algorithm can detect a loop between 0.2~3.7 seconds. We believe that 
this performance is relatively efficient compared with existing image-based loop detection 
methods. Since to our best knowledge, most existing image-based method only applied to 
small environments. The work [Cummins07] that was tested in a similar environment like 
ours took maximum 6 seconds to detect a loop. At four places where were totally covered by 
vegetations, however, the loop detection efficiency dropped down. Unlike man-made objects 
that have various surface characteristics (e.g. colors and textures), vegetations are not 
appearance-distinguishable landmarks. Many vegetations have similar green color and 
contain several hundreds of SIFT features. In such cases, the index information cannot give 
us too much help. We had to compare the vegetations detected at the four places to many 
vegetations stored in the range tree database. Thanks to the distinctive SIFT features, our 
algorithm still correctly recognized the four places. But this was achieved at high price – it 
took around 5.5~6.3 seconds to detect a loop at the four places. These kinds of places are 
common challenge for any appearance-based place recognition methods. Even human beings 
may have trouble distinguishing some places without special characteristic like these. In 
general, for any place that contains some man-made objects, the loop detection can be 
finished within 3.7 seconds (excluding the time for extracting SIFT features and image 
segmentation). Therefore, our method works efficiently in most cases in this complex large 
outdoor environment.  

Figure 6.20 presents the query efficiency for the SIFT database and the range tree database. 
Six sets of images (ranging from 60 to 160) were selected from the image collections. For 
each set of images, two databases were built. One was a SIFT database formed by all the 
SIFT features extracted from these images. The other one was a range tree database formed 
by all the landmark objects detected from these images. For each database, two queries were 
executed. One query image was selected from the set of images the database was built on and 
the other one was not. As expected, the query efficiency was much higher in the range tree 
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database than in the SIFT database. One can see that for the SIFT database, the query 
performance quickly dropped down when the database size increased. Especially for the 
unmatched query, all the SIFT features in the database had to be compared to decide that 
there was no match. This implies that the works based on affine covariant visual features 
[Newman05],[Se02],[Se05] are not applied to large complex outdoor environments since 
these methods require costly searches for loop detection in such environments.  For the range 
tree database, there was no big difference between the matched and unmatched queries 
because it is an object-based database. For any query object, only a small range of objects in 
the database needs to be compared to (in this experiment, the query objects are salient objects 
detected from a single image). Therefore, we claim that the range tree database structure is 
efficient for large environments. 

6.4 Summary 

In this chapter, we present the segmentation algorithm, object classification and place 
recognition experimental results. We first selected 100 typical street scene images from the 
challenging LabelMe dataset as test images. The test images cover various environments like 
urban areas, suburban areas, residence areas, roads, airports, etc. We benchmarked three 
methods of reference: the recent version of Ncuts [Cour05], Martin’s [Martin04] boundary 
detector and Hoiem’s [Hoiem07] boundary detector. We compared their segmentation results 
with ours. The experimental results show that our segmentation method outperforms the 
other three methods. Especially for the structural-rich objects like buildings and vehicles, our 
method achieve significantly better results. We then evaluate our segmentation method on a 
recently released challenging dataset (Gould09) [Gould09], which contain wide variety of 
physical and biological objects like buildings, sign, cars, people, cows, sheep, etc. We 
compared our algorithm with a baseline outdoor segmentation method Gould09 [Gould09]. 
Our algorithm outperforms Gould09 by 16% on region-based segmentation accuracy. The 
experimental result shows that our segmentation method can handle various physical and 
biological objects well.  To further test the performance of our segmentation algorithm on 
different outdoor scenes, we evaluate our image segmentation method on the Geometric 
Context dataset (GC) [Hoiem05], which consists of a wide variety of outdoor scenes 
including beaches, forest, hills, suburbs and urban streets etc. We compared our algorithm 
with a baseline outdoor segmentation method HBD [Hoiem07]. Our algorithm outperforms 
HBD by 16% on region-based segmentation accuracy.  The experimental result shows that 
our segmentation can perform well under wide variety of outdoor scenes. 

We then evaluate our object classification method on the MSRC-21 dataset. The 
experimental results show that our method significantly increases classification accuracy for 
many object classes in the dataset.  

At last, we test the place recognition method on a dataset collected from a 1.6km outdoor 
loop. The experimental result shows that our place recognition method can accurately and 
efficiently recognize various places that have been visited before, even under situation where 
there exist big scene differences caused by different background vegetations and different 
illumination conditions. 
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Figure 6.17 Testing environment. The mobile robot travels clockwise around a large loop with total path length 
1.6km. The red dot in top marks the starting point. 

 
 
 

Table 6.8 Storage efficiency  
Total number of images 374 
Average SIFT per image 1,878 
Total detected SIFT features 702,118 
Total detected landmark objects 621 
Average SIFT per object 148 
Total SIFT descriptors stored in database 91,908 
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Figure 6.18  An Example of loop closing. Upper: a sequence of images taken from the first trip.  Down: An 
image taken from the second trip. A loop is detected because the building and the tree in the bottom image 
are matched with the corresponding objects in top images (This figure is best viewed in color). 
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(a) (b) 

  
(c) (d) 

Figure 6.19.  Examples of loop detection under scene changes. (a), (b), (c), (d) present a pair of images 
taken from a same place respectively. For each pair of images, the top image was taken in the first trip 
along the loop. The bottom image was randomly taken from 50 places in the second trip along the loop. 
Notice that there exist some scene changes between each pair of images caused by different background 
vegetation and different illumination. (This figure is best viewed in color.) 
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Figure 6.20 Query efficiency: SIFT database vs. range tree 
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7 Conclusion 

7.1 Summary of contribution 

This dissertation is motivated by the need of reliable place recognition in large complex 
environments for autonomous mobile robotics. We notice that human is capable of 
recognizing places with ease even in large complex environments. Many psychological 
works support that human perceives a scene based on the perception of objects. Instead of 
creating a detailed representation of all the objects in a scene, human visual system builds an 
economic scene representation by putting emphasis on the extraction of a few key ‘aspects’ 
of the scene information, such as an inventory of salient objects and the layout of these 
objects, etc. This economic representation results in an enormous saving of processing and 
memory resources, which plays a key role for the success of human visual system on place 
recognition. Therefore, we proposed an object-based place recognition and loop closing 
method which works in a similar way to human visual system.  

In chapter 3, we first developed a novel image segmentation algorithm. The image 
segmentation algorithm is based on a Perceptual Organization model. The Perceptual 
Organization model can ‘perceive’ the special structural relations among the constituent parts 
of an unknown object and hence can group them together without object-specific knowledge. 
The image segmentation algorithm allows us to ‘perceive’ the salient objects in a place.  

In chapter 4, we present a novel method for object classification. Our main contributions 
are two-fold. Firstly, we build an informative object description, which consists of not only 
appearance, but also certain structural information like parts layout and shape of objects. All 
these information are combined into a high-dimensional vector. Secondly, we develop a new 
information-based wrapper feature selection method. Feature selection refers to search 
algorithms that select a subset of most characterizing features from an initial larger set of 
features. For many pattern recognition applications, feature selection is critic to minimize the 
classification error, especially when the original feature set is very large. With this feature 
selection method, for each object class, we can find a small subset of features that well 
characterize the object class. 

To achieve efficient scene-matching, in chapter 5, we first selected a subset of the salient 
objects in a scene as landmark objects to label the place. The landmark objects are highly 
distinctive and widely visible. Each landmark object is represented by a list of SIFT 
descriptors extracted from the object surface. This object representation allows us to reliably  
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Figure 7.1 Summary of contributions. 

recognize an object even under certain viewpoint changes. We then developed an indexing 
structure. We use both texture feature and color feature of objects as indexing features. Both 
the texture feature and the color feature are viewpoint-invariant and hence can be used to 
effectively find the candidate objects with similar surface characteristics to a query object.   

The experimental results are presented in chapter 6. The experimental results show that 
our segmentation method outperforms the other state-of-art reference methods. Especially for 
the structured objects like buildings and vehicles, our method achieves significantly better 
results. This shows that our segmentation method can stably segment variant salient objects 
in different outdoor scenes. We then evaluate our object classification method on the MSRC-
21 dataset. The experimental result shows that our method significantly increase the 
classification accuracy compared to state-of-art methods. This proves that good 
segmentations can provide more valuable information about object classes to overcome the 
challenging intra-class variation problem and therefore is the key for object classification. At 
last, we test the place recognition method on a dataset collected from a 1.6km loop. The 
experimental result shows that our place recognition method can accurately and efficiently 
recognize various places in a large complex outdoor environment, even under situation where 
there exist big scene differences caused by different background vegetations and different 
illumination conditions. 

The pipeline of our contributions is illustrated in Figure 7.1. With this summary of the 
contributions, we now turn into the future directions for this research.  
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7.2 Directions for future research 

7.2.1 Improvement on the Perceptual Organization model 

    Image segmentation is one of the fundamental problems for computer vision. Due to the 
wide variety of object classes, one challenge for outdoor scene segmentation is that one may 
need to segment an object without recognizing what kind of objects it is. For this reason, we 
have developed a novel image segmentation method based on Perceptual Organization.  We 
encoded five Gestalt laws into a boundary energy model to form a Perceptual Organization 
model. Obviously, our implantation of Perceptual Organization does not completely capture 
the perceptual power of the human mind. Besides the five Gestalt laws we encoded in our 
Perceptual Organization model, there are many other Gestalt laws discovered in the literature 
such as Closure, Collinear, etc. Occlusion is a common problem in outdoor scene 
segmentation. For an instance, a car or a building may stand behind a tree or people and 
therefore be divided into separated two parts. In these cases, the Closure laws can be applied 
to handle the occlusion problem. Besides, the implantation of some Gestalt laws in our model 
can be improved. For instance, we only consider the symmetry between two vertically 
attached parts in our model. The symmetry along other directions is also needed to be 
considered in practice. For the proximity law, we only consider two vertically attached 
neighboring parts. There are also many other forms of proximity in practice. Therefore, the 
first major area for future research is to incorporate more Gestalt laws into our Perceptual 
Organization model meanwhile improve the implementation of some existing Gestalt laws. 
By doing so, our Perceptual Organization model can be expected to have more ‘perceptual 
power’ for handling real world objects. 

7.2.2 Object recognition based on semantic parts 

We have shown that certain structural information like parts layout and shape of objects 
can provide valuable information to overcome the challenging intra-class variations for 
object classification. However, acquiring the structural information (especially for shape) 
requires object to be well segmented. In practice, this may not be achievable. Although our 
Perceptual Organization model can piece many fairly attached objects together only based on 
general geometric statistic knowledge (Gestalt laws), for many objects with complex 
structures like bicycles, motorcycles, some buildings, etc, the high-level object-specific 
knowledge is still required to generate perfect segmentations for these objects. For these 
objects, our simple Perceptual Organization model may not be able to piece the whole object 
together. Instead, it may only piece the semantic parts like wheels, windows, doors together. 
Although semantic parts do not contain the same amount of information as the whole object 
has, they still provide some valuable cues for object classification. For instances, if we 
recognize a wheel, we may infer that the object may be classified as a bicycle or a 
motorcycle. If we identify a door, then the object may belong to a building, etc. Since perfect 
segmentation for the whole objects may not be expected but good segmentation for semantic 
parts of the objects is achievable, object recognition based on semantic parts may be a more 
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practical solution. Hence, another avenue for future research is to develop object 
classification methods based on semantic parts. This will make object classification more 
robust and reliable in practice.  

7.2.3 Place recognition for dynamic environments 

A potential problem we found in the initial place recognition and loop closing experiment 
is that sometimes our method selects some vehicles as landmark objects to label a place. 
Since the vehicles may move out of a scene in any moment, this may confuse our method and 
lower the performance of place recognition. So far our method recognizes a place solely 
based on low-level features of objects, like the colors and textures of object surfaces. To 
handle dynamic environments where there may exist scene changes, such as some objects 
may move in a scene and some objects may move out a scene, some high level knowledge is 
necessary. Therefore a component that we would like to add into the system is the object 
recognition method developed in Chapter 4. With an object recognition method, we may be 
able to classify the selected landmark objects into different categories such as buildings, 
vegetations, vehicles, etc. With the high-level knowledge about the landmark objects, we can 
assign high weight to permanent landmark objects like buildings and assign low weight to 
mobile objects like vehicles. This may enhance the strength of our method handling scene 
changes and make our method more robust.   

7.2.4 Other applications 

    One application of the techniques developed in this dissertation is for the perimeter patrol 
problem, which usually refers to patrolling around a closed area by a team of robots. The 
perimeter patrol problem requires robots to visit a target area repeatedly in order to monitor 
some changes in the state of that area.  A scenario is that a team of robots patrol in a large 
closed area where localization devices like GPS might not receive stable signals at many 
places, which is often the case in many urban areas.  In this scenario, the robots need a 
reliable localization solution for them to decide which region they are monitoring. Our 
method can provide the robot with this kind of capability.  Assuming that before patrolling, 
each robot has traveled around the close area once and built a landmark objects database like 
the one in Chapter 5.  Then during patrolling process, at any place, a robot can accurately 
decide which region it is monitoring solely based on the objects it detects in the scene. This 
relieves the difficulty of unreliable localization in large environments, which is a common 
problem for any mobile robotic system. Besides, our method can enhance the capability of 
robots for scene changes detection. Since it is a common knowledge that surveillance 
cameras can only detect moving objects in a scene, one strategy an intruder might take is 
stopping moving when he find a patrolling robot is approaching. This will make a robot 
difficult to tell if the intruder belongs to a static background object or an intruded object. This 
strategy cannot work when the patrolling robot incorporates our object-based place 
recognition system – During place recognition process, if a robot detects an object that has 
never been seen before at the place, it can signal a scene change alarm. Thus, our object-
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based place recognition method can greatly enhance the effectiveness and robustness of the 
perimeter patrol system.  
    Other applications include scene categorization, content-based image retrieval, etc. All 
these applications require well-understanding of an image. Given an image, one needs to 
know what kind of objects appear in the image and where these objects are in the image to 
make the decision like if the image contain the query object or the image belong a specific 
scene category. The image segmentation method and the object classification approach 
developed in this dissertation can answer the above two questions and therefore make the 
solution for these applications straightforward.  

7.3 Discussion with closing remarks 

    Object perception forms a foundation for many computer vision tasks. In the first chapter 
of this dissertation, we illustrate that psychologists believe that people perceive a scene based 
on the perception of the salient objects in the scene. Firstly the gist and layout are used to 
prioritize attention, directing it to the objects that are most important in the context. Once an 
object gets attended, the constituent parts of the object are grouped together and a summary 
description of the object is formed, like its size, overall shape, dominant colors, etc. In other 
words, object perception involves a Perceptual Organization process and a following 
recognition step.  The work of this dissertation tries to simulate the object perception 
procedure.  We have developed a Perceptual Organization model by encoding a list of 
Gestalt laws. By doing so, the Perceptual Organization model can group some constituent 
parts of objects together without recognizing it.  Further, we have developed an object 
recognition method based on the segments generated by the Perceptual Organization model. 
Obviously, our implementation of Perceptual Organization does not completely capture the 
perceptual power of the human mind. But we believe that object perception based on the 
Perceptual Organization points to a very promising direction. We hope that the concepts 
presented in this dissertation can build a step towards extending the state of art in computer 
vision.  
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