
UNIVERSITÄT BREMEN
Fachbereich 3 (Mathematik und Informatik)

Combining Perception and Knowledge for Service

Robotics

Dejan Pangercic

Dissertation
zur Erlangung des Grades eines Doktors der Ingenieurswissenschaften

Dr. Ing.

Vorgelegt im Fachbereich 3 (Mathematik und Informatik)

der Universität Bremen

im Januar 2014

Prüfer der Dissertation: 1. Univ.-Prof. Michael Beetz, PhD

2. Assoc.-Prof. Kei Okada, PhD

Abstract

As the deployment of robots is shifting away from the industrial settings towards

public and private sectors, the robots will have to get equipped with enough knowl-

edge that will let them perceive, comprehend and act skillfully in their new work-

ing environments. Unlike having a large degree of controlled environment variables

characteristic for e.g. assembly lines, the robots active in shopping stores, museums

or households will have to perform open-ended tasks and thus react to unforeseen

events, self-monitor their activities, detect failures, recover from them and also learn

and continuously update their knowledge.

In this thesis we present a set of tools and algorithms for acquisition, interpreta-

tion and reasoning about the environment models which enable the robots to act

flexibly and skillfully in the afore mentioned environments. In particular our contri-

butions beyond the state-of-the-art cover following four topics: a) semantic object

maps which are the symbolic representations of indoor environments that robot can

query for information, b) two algorithms for interactive segmentation of objects of

daily use which enable the robots to recognise and grasp objects more robustly, c) an

image point feature-based system for large scale object recognition, and finally, d) a

system that combines statistical and logical knowledge for household domains and is

able to answer queries such as “Which objects are currently missing on a breakfast

table?”.

Common to all contributions is that they are all knowledge-enabled in that they either

use robot knowledge bases or ground knowledge structures into the robot’s internal

structures such as perception streams. Further, in all four cases we exploit the tight

interplay between the robot’s perceptual, reasoning and action skills which we believe

is the key enabler for robots to act in unstructured environments.

III

Most of the theoretical contributions of this thesis have also been implemented on

TUM-James and TUM-Rosie robots and demonstrated to the spectators by having

them perform various household chores. With those demonstrations we thoroughly

validated the properties of the developed systems and showed the impossibility of

having such tasks implemented without a knowledge-enabled backbone.

IV

Zusammenfassung

Während sich der Einsatz von Robotern von Industrieanlagen in den privaten und

öffentlichen Sektor verschiebt, werden diese Roboter mit genug Wissen ausgestattet

werden müssen, damit sie ihre Umgebung richtig wahrnehmen und interpretieren

können und angemessen agieren. Statt in bekannten und kontrollierbaren Umgebun-

gen wie Montageanlagen werden sich Roboter in Kaufhäusern, Museen und Haushal-

ten zu recht finden müssen. Dort müssen sie in der Lage sein, mit offenen Auf-

gabenstellungen umzugehen und auf unvorhergesehene Ereignisse zu reagieren. Sie

müssen sich selbst überwachen, um Fehlerzustände zu erkennen und zu beheben,

und darüber hinaus die Fähigkeit zum kontinuierlichen Lernen besitzen.

In dieser Doktorarbeit präsentieren wir eine Reihe von Werkzeugen und Algorithmen

für Akquisition, Interpretation und Reasoning über Umgebungsmodelle, die einem

Roboter ermöglichen, in den genannten Umgebungen auf flexible und kompetente

Weise tätig zu sein. Insbesondere gliedert sich unser Beitrag zu dem Stand der Tech-

nik in vier Teile: a) semantische Karten, die eine symbolische Repräsentation von In-

nenraumumgebungen sind und die der Roboter als Informationsquelle nutzen kann,

b) zwei Algorithmen für die interaktive Segmentierung von Alltagsgegenständen, die

dem Roboter erlauben, diese Objekte richtig zu erkennen und zu greifen, c) ein auf

Punkt-Features basierendes System für die Erkennung einer großen Anzahl von Ob-

jekten und schließlich d) ein System, das logisches und statistisches Wissen kom-

biniert, um beispielsweise zu erkennen, welche Lebensmittel oder Besteckteile auf

einem Frühstückstisch noch fehlen.

Alle vier Beiträge sind wissensbasiert in dem Sinn, dass sie entweder auf eine Roboter-

wissensdatenbank zugreifen oder Wissensrepräsentationen in den Datenstrukturen

des Roboters, wie etwa Perzeptionsdaten, grundieren. Weiterhin sind in allen vi-

er Ansätzen die drei essenziellen Kernkomponenten eines Roboters eng gekoppelt:

V

Wahrnehmung, Reasoning und Aktion. Wir betrachten dies als Grundvoraussetzung

um Roboter in den Alltag zu bringen.

Fast alle theoretischen Ansätze wurden auf den beiden Robotern TUM-James und

TUM-Rosie implementiert und vor Zuschauern demonstriert. Die Roboter bearbeiten

in den Vorführungen Haushaltsaufgaben und validieren dadurch die Eigenschaften

des in dieser Doktorarbeit entwickelten Systems. Es zeigt sich, dass die Lösung solch-

er Aufgaben für Roboter ohne umfangreiches Wissen nicht möglich ist.

VI

Acknowledgments

The list of people that made this thesis possible is long and I am incredibly grateful

that I was able to work with and to befriend so many great and smart people.

Without further ado, I would like to thank Michael and Radu for bringing me into the

Intelligent Autonomous Systems (IAS) group which means that they believed in me

even in the times when I had no proven record. Michael, working with you was truly

amazing and unique in every aspect possible and I can only wish for such a mentor,

boss and friend again. Vielen, vielen Dank.

Thomas at the beginning and then Zoli, Nico and Mihai were my best office mates.

Thank you guys for so many fruitful discussions and all these laughters. Working

in IAS group always felt like working in one big, symbiotic family. Luci, Ingo, Lars,

Christoph, Freek, Daniel, Karinne, Alexandra, Lorenz, David W., David G., Georg,

Gheorghe, Alexis, Dominik, Uli, Zahid, Fede, Sorin and Francisco, thank you very

much for creating such a fantastic atmosphere. Special thanks goes to Moritz, Zoli

and Jan. First two for being my closest collaborators and for helping me advance

the scientist in me, and to Jan for taking me under his wing in my greenest research

times. All three also became (and remained) my very good friends which I am espe-

cially proud of. Nothing would have been possible without a tremendous support of

our admin staff – Doris, Sabine and Quirin, I will owe you one for ever. If I had to

single out one thing during my PhD, then working with undergraduate students and

building up talents would be the one. I had a real pleasure to work with the pool of

unbelievable prospects. Fadri, Kai, Andy, Vlad, Ross, Karol, Niko, Ronny, Nacer, Rim,

Julius, Martin, Monica, Shulei, Florian, Vlado, Hozefa, Andreas, Rok and Tom, you

were the best and I am really proud of how you are doing today.

VII

Working in IAS group made me really international and enabled me to meet and

later also work with the brightest minds from all over the world. Kyle, Oscar, Asako,

Jürgen, Kei, Wolfram, Daniel, Gajan, Andrzej, Matei, Vijay, Brian, both Stefans, Ry-

ohei, Dubi, Kurt are just some that I can recall from the top of my head. Having such

collaborators all around the world only reminds me how lucky I actually am.

Dr. Uwe Haass and CoTeSys provided us with funds and fantastic robots and infras-

tructure – something without which my research would have never been possible.

Willow Garage revolutionized the field of service robotics with ROS and PR2 robots

– thank you very much for making our lives so much easier.

After leaving IAS I joined Bosch RTC in Palo Alto and started working with just as

smart and amazing people as I had before. Ben, Chris, Sarah, Phil, Jan, Matthias and

Kaijen, it was an unbelievable year and it seems that nothing can really stop us.

Elena M., Elena D., Barbi, Luka, Ninchy, Outi, Emmi, Flo, Sandi, Nudzejma were

always biggest fans of my work and friends that I could count on on any given day.

EESTEC gave me some of the most fond memories of my undergraduate studies and

EESTEC people (Borut, Marko, Petko, Ovidiu, Clee just to name a few) and EESTEC

spirit have stuck with me during my PhD and apparently will forever.

My father Peter and mum Milena bear the ultimate ‘guilt‘ for me to be here. Thank

you so much for instilling this relentless work ethic in me. It has worked out always.

Hvala lepa. Andrej is my brother and someone I have an honor to mentor and guide

through his life. Mali, I am really proud of how and what you do, keep going.

Lastly, thank you dear robot gods for bringing my dear angel from Portugal in my life.

Diana is my true soul mate and someone that shows me that life is not just about the

work. Eu amo-te moja moja.

VIII

Contents

Abstract III

Kurzfassung V

Acknowledgements VII

Contents IX

Figures XIII

Tables XXI

Algorithms XXIII

1 Introduction 1

1.1 Motivation . 2

1.2 Contributions . 2

1.3 Example Use Case . 7

1.4 Outline . 12

2 List of Prior Publications 13

3 System Setup 17

3.1 The Assistive Kitchen Laboratory . 18

3.1.1 Hardware Infrastructure . 18

3.1.2 Robots . 19

3.2 Tools . 21

3.2.1 Robot Operating System . 21

3.2.2 KnowRob . 22

IX

Contents

3.2.3 Point Cloud Library . 22

3.2.4 OpenCV . 23

3.3 Datasets . 23

3.3.1 Semantic3D . 23

3.3.2 VOSCH . 25

4 Semantic Object Maps 27

4.1 Introduction . 27

4.2 Representation Language and Integration with KnowRob 29

4.2.1 Object Representation in SOM+ Maps 32

4.2.2 Spatio-temporal Object Pose Representation 34

4.2.3 SOM+ Inference Methods . 35

4.3 Data Acquisition . 36

4.3.1 Acquisition of the Basic Mesh Representation 38

4.3.2 Registration . 38

4.3.3 Surface Reconstruction . 40

4.3.4 Texture Reconstruction . 40

4.3.5 Next Best View Planning . 41

4.4 Data Interpretation . 41

4.4.1 Detection of Relevant Planes . 41

4.4.2 Detection of Handles . 42

4.4.3 Articulation Model Learning . 44

4.4.4 Generation of Door and Drawer Hypotheses 46

4.4.5 Active Door and Drawer Hypotheses Validation through Inter-

action . 46

4.5 Results . 47

4.5.1 Door Opening . 47

4.5.2 Performance Profiling . 48

4.5.3 SOM+ Example Queries . 48

4.6 Discussion . 49

5 Interactive Segmentation of Textured and Textureless Objects 51

5.1 Introduction . 51

5.2 System . 57

5.2.1 Textured Objects . 57

X

Contents

5.2.2 Textureless Objects . 60

5.3 Textureless Objects: Static Pre-segmentation 62

5.3.1 Decomposition into Part Graphs . 62

5.3.2 Object Part Categorization . 63

5.3.3 Verification of Correctness of Segmentation 63

5.4 Contact Point Estimation and Pushing . 64

5.4.1 Contact Points from Concave Corners 67

5.4.2 Push Direction and Execution . 68

5.4.3 Simulations . 68

5.5 Object Segmentation . 70

5.5.1 Textured Objects . 70

5.5.2 Textureless Objects . 78

5.6 Dense Model Reconstruction . 83

5.7 Results . 83

5.7.1 Textured Objects . 83

5.7.2 Textureless Objects . 87

5.8 Discussion . 90

6 Knowledge-linked Object Recognition 93

6.1 Introduction . 93

6.2 Perceptual Pop-Out . 97

6.3 Objects of Daily Use Finder . 98

6.3.1 Object Modelling . 98

6.4 Object Recognition . 108

6.5 Integration of ODUfinder in the Perception Server for Generic Object

Recognition . 111

6.6 Integration with the KnowRob and SOM+ Map 113

6.7 Results . 115

6.7.1 Barcode Recognition . 115

6.7.2 Database Training . 115

6.7.3 Recognition of Objects based on Known Views 117

6.7.4 Improved Detection through Incremental Learning 118

6.8 Discussion . 120

XI

Contents

7 Knowledge-enabled Scene Understanding 123

7.1 Introduction . 123

7.2 K-COPMAN System Overview . 125

7.2.1 K-COPMAN Components . 127

7.2.2 Example Scenario . 127

7.3 Perceptual Models . 129

7.3.1 Perception Routines . 131

7.3.2 Passive Perception . 131

7.3.3 Perceptual Memory . 131

7.4 Integration with the KnowRob . 132

7.4.1 Computable Relations . 133

7.4.2 K-COPMAN Predicates . 133

7.5 Probabilistic First-Order Reasoning . 134

7.6 Results . 135

7.7 Discussion . 139

8 Demonstrations 141

8.1 Robots Making Pancakes . 142

8.1.1 Future Challenges . 145

8.2 Robots that Shop for and Stores Groceries 146

8.2.1 Future Challenges . 149

8.3 Robots Serving Drinks . 149

8.4 Discussion . 150

9 Conclusion 153

9.1 Future Work . 156

Bibliography 159

XII

List of Figures

1.1 Building of a SOM+ map in a kitchen environment (top), SOM+ map

representation (middle) and a set of robot queries made possible due

to such powerful representation (bottom). 4

1.2 TUM-Rosie preparing pancakes. 7

3.1 Personal robots TUM-James (left) and TUM-Rosie (right). 20

3.2 The mobile manipulation platform used for obtaining the database and

performing hierarchical object categorization and classification. The

hardware setup consists of a B21 mobile base with two 6-DOF arms,

stereo cameras, a laser sensor mounted on the end effector and a ro-

tary table. The bottom area of the image shows the input as observed

by the robot and the surface and geometric categorization and classi-

fication of an iced tea box. 24

3.3 TUM-James robot equipped with a Kinect sensor acquiring training

data of the objects shown in the bottom-right of the figure. 26

4.1 Part of the ontology of household appliances and entities of furniture.

Super-classes of e.g. HumanScaleObject have been omitted for better

readability. Courtesys@Tenorth. 31

4.2 Hierarchy of part-of relations between the different object components

in the semantic map and a grounding example for doors and handles. 33

4.3 System integration for autonomous SOM+acquisition. Module for ob-

jects of daily use detection and recognition [Pangercic et al., 2011a] is

part of the system but discussed in Chapter 6. 37

4.4 Left-column: Testbed kitchens at TUM and Bosch RTC. Middle-column:

Poisson-based surface reconstruction. Right-column: Blending-based

texture re-projection on the left surface mesh. 39

XIII

List of Figures

4.5 Visualization of the processing steps for the handle detector based on

invalid measurements. Top-left: example of two specular handles, top-

middle: invalid measurements in place of specular handles as seen in

a point cloud by Kinect, top-right: final handle poses (green spheres)

computed from the generated convex hulls visualized in the corner of

the subfigure, bottom-left: cabinet front face as binary mask (white),

bottom-middle: invalid measurements as binary mask (white), bottom-

right: result of a bit-wise conjunction operation. 43

4.6 The PR2 robot operates the cabinet in the Bosch RTC kitchen and

learns the kinematic model. Top-left and middle figures depict a pair

of doors with the handle with specularity and a successful handle de-

tection. Top-right and bottom row figures show two snapshots from

the opening sequence. 45

5.1 Top: PR2 robot successfully picking-up the object after segmenting it

in clutter using segmentation algorithm for textured objects. Bottom:

the result of clustering of two highly cluttered scenes. 52

5.2 Top: The service robot PR2 aiming to segment the scene consisting

of textureless object. Results of the scene segmentation using Re-

gion Growing method [Zhan et al., 2009] (b), Part-Graph-based Hash-

ing [Marton et al., 2012] method (d) and Graph-based segmentation

method [Felzenszwalb and Huttenlocher, 2004] (a). These methods

work in depth, RGB and RGBD space respectively and all underachieve

due to the complexity of this challenging task. On the other hand blue

egg on the blue plate (e) was correctly segmented using the interac-

tive approach presented in this chapter. Subfigures c and f: 3 white

objects segmented correctly showing the generality of the approach

for multiple objects. 54

5.3 This subsystem consists of four main nodes: a node for estimating the

initial contact point and the push direction, a node that extracts 2D-

features and tracks them while it moves the robot arm in the push

direction, an object clustering node that assigns the tracked features

to objects and finally, a dense model reconstruction node. 58

5.4 System pipeline for the segmentation of textureless objects. 59

XIV

List of Figures

5.5 Two test scenes in the left and right column respectively. First row:

original scenes; second row: extracted RGBD features before the in-

teraction; third row: parts P from the static segmentation; fourth row:

object hypotheses O from the static segmentation; fifth row: tracked

RGBD features after interaction; sixth row: relative distances between

the tracked features. Plots with the ramp denote distances between

features on different objects and plots with the constant values denote

distance between features on the same object. 61

5.6 Distribution of number of parts (see Figure 5.5 row 3) per object

category and their approximation with a Poisson distribution. Cour-

tesy@Marton. 65

5.7 Estimation of the contact point and the push direction. Top-left figure:

original scene. Top-right figure: depth image as seen from the vir-

tual camera positioned above the table. Bottom-left figure: Extracted

contour of the object cluster, convex corners are shown in green, con-

cave corners in red. Bottom-right figure: Direction of the dominant

eigenvectors at the corners. 66

5.8 Screenshots from the Gazebo simulation of a two object scene (left)

and the corresponding visualization of the segmentation result. The

black arrows in the left image show the 7 push directions for a single

contact point. The dots on the objects in the right image represent

features and their colors represent the cluster they were assigned to

for a particular successful push sequence. The red arrows represent

the starting gripper positions and directions of all the successful push

sequences in a simulation run. Courtesy@Gupta. 69

XV

List of Figures

5.9 Feature trajectory clustering with rigid motion hypotheses: Each fea-

ture i, depicted as a circle, is tracked over each time step t, forming

a trajectory of feature positions Si. After the robot finished its push

motion, two features u and v, depicted as red circles, are randomly

selected. From their trajectories Su and Sv, a rigid transformation Ak,t

is calculated that represents the rigid motion of u and v for each time

increment from t to t + 1. If u and v are on the same object, all

other features will move according the sequence of rigid transforma-

tions Ak = {Ak,t}T−1
t=0 , which serves as the rigid motion hypotheses for

an object (e.g. the blue box). As the dark blue feature belongs to the

same object as u and v, its motion can be explained by this motion hy-

pothesis, and will thus be assigned to the same object. The motions of

the dark green features located on a different object are poorly mod-

eled by this motion hypothesis, and thus trigger the algorithm to create

another motion hypothesis. 72

5.10 Test scenes 1 to 8 from top to down. Left column: original scenes,

middle column: contact point estimation, right column: segmentation

after the first push cycle. Please note, that the 2D contours in the

middle column are generated from the virtual view above the table

which may slightly change the perspective. Features on the objects

that did not get pushed are in the same cluster (denoted by the same

color) as background features. 76

5.11 Clustering success rate on 17 scenes for different values of pthreshold

(maximum allowed break percentage) as a function of dthreshold (break

distance threshold). 81

5.12 Results of the segmentation of objects depicted in Figure 5.10 using

random vs. corner-based pushing. The tabular (upper) part of the fig-

ure denotes the average number of pushes over 3 runs needed to seg-

ment the respective object in the respective scene. Number 10 (max-

imum number of pushes allowed) means the robot failed to segment

the object. The same statistics is also depicted as a bar chart in the

bottom part of the Figure for clarity. X-axis represents the scene and

the object number, Y-axis the number of pushes. 85

XVI

List of Figures

5.13 Legend for the different scene configurations. The scenes are shown

in Figure 5.14. 88

5.14 Results of the segmentation for 17 scenes. 1st/4th image column: im-

age before the push for scenes. 2nd/5th column: image after the push

for scenes. 3rd/6th column: point cloud after dense model reconstruc-

tion for scenes. 89

5.15 Failure cases exemplified. In the left-top scene the "black pepper” ob-

ject became occluded by the robot arm. In the right-top scene the

features on the semi-transparent object were tracked unsuccessfully.

Bottom row: failed segmentation from the random pushing experi-

ment where the robot pushed objects such that they all moved rigidly

with respect to each other . 91

6.1 Top row: System diagram for ODUfinder-m. PR2 robot builds up an

object appearance model, retrieves its semantic information and stores

both in the knowledge base. Bottom row: PR2 robot recognizing ob-

jects lying on the tabletop using Kinect sensor and ODUfinder-r. Right

column depicts extraction of clusters from point clouds (top), projec-

tion of clusters onto camera image and Region-Of-Interest extraction

(middle) and, finally, ODUfinder-r recognizing objects (bottom). 95

6.2 Left: Region of interest extraction using back projection of 3D points,

Right: Over-segmentation using a region-growing based approach. . . 98

6.3 Robot (left-most image) is manipulating an object in front of the cam-

era (top row). Bottom row: Extraction of keypoints and masking of

robot’s parts. 99

6.4 Example of a vocabulary tree and filling with the training data. Cour-

tesy@Nister. 101

6.5 Pipeline used by ZBar to recognize barcodes. Data streams between

the processing stages with minimal buffering. Courtesy@Brown. 103

6.6 Example scan grid overlaid on an EAN-13 symbol. The two indepen-

dent halves of the symbol are outlined (red), as well as the individual

characters (blue). Each scan pass is streamed to the linear scanner.

Successful scan passes are highlighted (green). Note that a typical

scan grid uses a much denser stride (1-3 pixels). Courtesy@Brown. . . 104

XVII

List of Figures

6.7 Edge detection performed by the linear scanner: (top) input signal and

low-pass filter, (top-middle) first derivative and threshold, (bottom-

middle) filtered zero crossings of the second derivative, (bottom) out-

put widths. Courtesy@Brown. 106

6.8 Detection of objects by partial textures. Left part shows that only a

“Jacobs” sign is sufficient, while the right part implies the same for a

“Kronung” sign. 110

6.9 Perception server architecture: from sensor data to objects. 111

6.10 Example of object taxonomy in the KnowRob knowledge base (and

thus SOM+map). Courtesy@Tenorth. 114

6.11 Barcode recognition evaluated on 30 objects. 116

6.12 Test objects. 117

6.13 We performed the final evaluation test on a total number of 13 objects

located at 4 different scenes in our kitchen lab (denoted with Scene

1 . . . Scene 4). The robot was programmed to navigate to each of the

scenes and capture point cloud and image from several different views

by traversing along the free paths around the scenes. 119

7.1 K-COPMAN’S building blocks. Left) Perception server used in K-COPMAN

with state-of-the-art perception routines. Middle) KNOWROB with pred-

icates for evoking of perception routines and extension plugins for

first-order probabilistic reasoning and knowledge on static objects.

Right) TUM-Rosie with logical control program. Courtesy@Tenorth. . 126

7.2 Query to the K-COPMAN system for items that are missing on a table

with respect to a particular meal. The system first locates the table,

perceives the objects on it, queries the probabilistic inference engine

for items that are supposed to be on the table and determines those

that are missing. BLN graphical model is explained in Section 7.5. . . . 129

7.3 Some of the perception routines used by the K-COPMAN as imple-

mented in the Perception Server (Section 6.5), their procedure call

interface, their functionality and an example result. For the full list

see [Marton et al., 2011]. 130

7.4 Information stored in the symbolic knowledge base about a (not yet

fully classified) object that was detected on a table. 132

7.5 Setup of the sensor head. 135

XVIII

List of Figures

7.6 Evaluation results for meal type breakfast. 1st row: Snapshots of test

scenes; 2nd row: object hypotheses; 3rd row: detection of objects

using match-sift routine; 4th row: results of probabilistic inference for

missingObjects query. Below enlisted objects correspond to the inferred

ones (visualized off the table) in left-to-right rear-to-front order. Part

of the figure courtesy@Tenorth. 136

7.7 Evaluation results for meal type lunch. 1st row: Snapshots of test

scenes; 2nd row: object hypotheses; 3rd row: detection of objects

using match-sift routine; 4th row: results of probabilistic inference for

missingObjects query. Below enlisted objects correspond to the inferred

ones (visualized off the table) in left-to-right rear-to-front order. Part

of the figure courtesy@Tenorth. 137

8.1 Robots carrying out demonstrations. 141

8.2 Picture of a bottle of pancake mix obtained from an online shop. 144

8.3 Sequence of screen-shots from the shopping for groceries demonstra-

tions. TUM-James is seen finding objects on the mock-up of the shop-

ping shelf, graping and putting them into the shopping basket and

finally bringing them ‘home‘. In the next step robot uses ODUfinder

to recognize the object, infers its most probable storage location and

stores it away. 147

XIX

List of Tables

4.1 Results of detecting the handles and opening the cabinets based on the

information derived from the SOM+ map. 47

4.2 Execution times for building of SOM+maps (Figure 4.3). 48

5.1 Segmentation results for all 17 scenes. For each scene there were 3

experiments conducted. 90

5.2 Segmentation success rates of different scene configurations. 90

6.1 Profile data for the generated database of 3500 objects. 115

6.2 Detection of objects and identification of unknown views using SIFT

with vocabulary trees. 118

6.3 Improved detection for Scene 1 from Figure 6.13 before and after the

vocabulary tree was re-trained and database rebuilt with the templates

for green milk box. All in all, more views got the correct label. 120

XXI

List of Algorithms

1 Randomized feature trajectory clustering. Mind that for the sake of clar-

ity we do not write out the subscript m in the text explaining this algo-

rithm. 73

2 Graph-based trajectory clustering algorithm. A break between features

means that the relative distance between them exceeded the given thresh-

old. Courtesy@Marton. 82

3 Region growing with normals & boundaries. Courtesy@Balint-Benczedi. 84

XXIII

Chapter 1

Introduction

The robots are moving away from the industrial settings where they operate in cages,

are pre-programmed and the code re-usability is in general not an issue anymore. Ac-

cording to the World Robotics report 2011 [Haegele, 2011]more than 13.700 service

robots for professional use were sold in 2010 boosting this number up 4% from the

year 2009. Furthermore, for the period 2011 to 2014, sales are forecast to about

87.500 professional service robots in total and a strong growing sector will be the

mobile platforms in general use. Service robot suppliers estimate that about 12.000

mobile platforms in general use will be sold in the given period. Additionally, investe-

ments of large companies like Google, Amazon, and Bosch show real business case

viability for service robots and accelerate the process of commercialization. The lat-

ter is very encouraging and supports in 1988 proclaimed breakthrough of the service

robots by the father of service robotics, Joseph F. Engelberger.

According to Prats [2009], a service robot is a robot “which operates partially or fully

autonomously to provide services useful to the humans”. Because of their multitude

of forms and structures as well as application areas, service robot subcategories are

not easy to define [Haegele, 2011]. Within the scope of this thesis we will however

consider mobile platforms equipped with two human-like arms and grippers (such

as e.g. Personal Robot 2 [PR2]) and we will call them personal robots. Their main

purpose is to help elderly and impaired people in their daily life.

1

1 Introduction

1.1 Motivation

According to the VDE report [Eberhardt, 2012] the share of people age 80 and over

will in Germany increase from 5% in 2008 to 14% in 2060. As life expectancy in-

creases, so does the chance of people becoming physically and mentally limited, often

increasing the demand for care services. While on the one hand the number of peo-

ple requiring care is steadily increasing, on the other hand the number of caregivers

is decreasing due to factors such as decline in population, decline in infrastructure,

etc. [Eberhardt, 2012]. This societal changes force us to develop new concepts, in-

cluding technologies such as personal robots, for promoting independent living. Pro-

longing the independence of elderly people with minor disabilities and increasing

their participation in daily life is expected to improve the well-being and the health-

state of these people and thereby also mitigate the care-giving problem. The example

set of tasks that people want the personal robots to perform include preparing drinks

and food, reaching for books and other objects from a shelf, plugging things, loading

a video, watering plants and other gardening tasks, getting items from the refrig-

erator, turn knobs, opening/closing doors and drawers, turning appliances on and

off, operating light switches, shopping for groceries, etc [Prats, 2009; Mitzner et al.,

2011]. These open-ended tasks must be on the one hand executed in a variety of

unstructured environments, according to the personal preferences of human com-

panions, at the right times and in the right situations and on the other hand they

must still be performed robustly, repeatedly and with the “style”.

1.2 Contributions

To tackle above challenges we in this thesis develop two important contribu-

tions: On the one hand we investigate building of the knowledge-enabled per-

ception systems that enable these personal robots to carry out open ended tasks

for elderly and handicapped people in their domestic environments (e.g. house-

holds, elderly homes, etc.). Given such challenging tasks and environments, we

on the other hand deliberately investigate tight integration of robot’s percep-

tion, knowledge and action skills – a key enabler for robust and stereo-typical

performance of such robots.

2

1.2 Contributions

In Section 1.3 we present a use case where the personal robot is tasked with the

preparation of pancakes for breakfast. We will use this example to motivate the work

presented herein, to expose the relevant research questions, to show the collabora-

tions and the placement of our work with respect to the rest of the related work,

but also to refer to it as a reader’s guide throughout the whole thesis. In order for

the robots to competently tackle such tasks they have to be able to generate the

knowledge about their working environment and they have to involve all their skills

including perception, reasoning and manipulation. Only then will they be able to

answer and execute the following types of queries:

• What is the semantic of my environment (e.g. How do I find the kitchen)?

• How do I navigate around my environment?

• How do I find, open and close the refrigerator?

• How do I find the table and set it up for breakfast?

• Which and how many objects are necessary to set up the table?

• Where do I find needed objects (e.g. a milk, pancake mix, plates, a cutlery,

etc.)?

• How do I pick and place objects?

• etc.

The realization of a personal robot capable of answering above queries requires us

not to only equip the robots with the necessary perceptual capabilities but also to

abstract away these percepts into a sufficiently rich knowledge representation. Do-

ing so enables us not to only be able detect, recognize, localize, and geometrically

reconstruct the objects in their environments, but it also brings us means to interpret

the perception results in the context of the actions and activities that the robots per-

form. Albeit a very challenging problem, the robots do not have to solve it everyday

anew. Because they are to perform many activities on a regular basis, because they

are to be deployed once and then operate in the same environment for the years

to come and because the environment is to the larger extent kept stable, the robots

can turn this into their advantage. For example, in order to get a pancake mix out

3

1 Introduction

INPUT

SOM

QUERIES
Example PROLOG query to retrieve an articulation model:

Results of further PROLOG queries:

?- rdf triple(’in-ContGeneric’, cup67, ?B),
 rdf has(?B, openingTrajectory, ?Traj),
 findall(?P, rdf has(?Traj, pointOnTrajectory, ?P),?Points).

What is the structure of the
objects?
cupboard, door, handles Is the object o placed correctly? Where does the bottle of milk belong?

Kinect View

Data Acquisition

Drawer55
 Type: Drawer
 subClassOf: Box-Container
 width: 0.31 ^^ Meter
 parts: Door58

Refrigerator67
 Type: Refrigerator
 subClassOf: Box-Container
 width: 0.58 ^^ Meter
 parts: Door70

Figure 1.1: Building of a SOM+ map in a kitchen environment (top), SOM+ map rep-
resentation (middle) and a set of robot queries made possible due to such
powerful representation (bottom).

4

1.2 Contributions

of the refrigerator, the robot has to learn about the location of the refrigerator only

once, after-wards it inserts the refrigerator together with its semantic attributes such

as e.g. type and function into its enviroment model and can re-use this knowledge

in the later runs. Environment models thus serve as important resources for an au-

tonomous robot by providing it with the necessary task-relevant information about

its habitat. Robots can make use of environment models such that they perform their

tasks more reliably, flexibly, and efficiently. To function efficiently, it is imperative that

these environment models are acquired mostly autonomously and therefore support

the deployment of mobile robots in new environments, without requiring too many

software updates or (much of) manual user input.

We present a set of tools and algorithms for acquisition, interpretation and reasoning

about the environment models which enable the robots to act flexibly and skillfully

in the indoor kitchen environments. In particular our contributions beyond the state-

of-the-art are the following:

• Semantic Object Maps (SOM+). These maps serve as information resources

for autonomous service robots performing everyday manipulation tasks in kitchen

environments. They provide the robot with information about its environment

that enable it to perform fetch and place tasks more efficiently and reliably.

To this end, the semantic object maps can answer queries such as the follow-

ing ones: “What do parts of the kitchen look like?”, “How can a container be

opened and closed?”, “Where do objects of daily use belong?”, “What is inside

of cupboards/drawers?”, etc.

• Algorithms for Interactive Segmentation of Textured and Textureless Ob-

jects. We explore the robot’s ability to interact with the environment and de-

sign two novel object segmentation algorithms. The proposed system allows

a robot to effectively segment textured and textureless objects in cluttered

scenes by leveraging its manipulation capabilities. In this interactive percep-

tion approach, 2D or 3D features are tracked while the robot actively induces

motions into a scene using its arm. The robot autonomously infers appropriate

arm movements which can effectively separate objects. The resulting tracked

feature trajectories are assigned to their corresponding object by using novel

clustering algorithms, which sample rigid motion hypotheses for the a priori

unknown number of scene objects.

5

1 Introduction

• Objects of Daily Use Finder (ODUfinder). We realize an ODUfinder, a robot

perception system for autonomous service robots acting in human living en-

vironments. The perception system enables the robots to capture appearances

and retrieve semantic types of textured objects of daily use and to then detect

and recognize these sets of objects in the arbitrary scenes. Efficiency, robust-

ness, and a high detection rate are achieved through the combination of mod-

ern text retrieval methods that are successfully used for indexing huge sets of

web pages and state-of-the-art robot vision methods for object recognition. The

barcodes are used to query a product information website, in order to retrieve

the semantic types of the objects.

• Knowledge-enabled Scene Understanding. Recognition results from the above

perception algorithms are used to generate symbolic representations of per-

ceived objects and scenes and to infer answers to complex queries that require

the combination of perception and knowledge processing. Using such system,

called K-COPMAN (Knowledge-enabled Cognitive Perception for Manipulation),

the robot can solve inference tasks such as identifying items that are likely

to be missing on a breakfast table. In essence we use Bayesian Logic Net-

works (BLN), a formalism that combines statistical knowledge (in fragments

representing conditional probability distributions) with logical knowledge (sen-

tences in first-order logic). Key features of this system are that it can make a

robot environment-aware and that it supports goal-directed as well as passive

perceptual processing.

Our approach is holistic from the point of view of the autonomous robot and begins

from the raw sensory data, through categorization and recognition of coarse objects

and objects of daily use, over to the abstract and hierarchical representation of parts

of the environment and finally, up to the statistical and logical knowledge that enable

reasoning about the scenes and situations. Generally put, such system is an informa-

tion resource for the robot, which informs the robot with respect to what to do, to

which object, and in which way.

The set of problems that we do not consider in this thesis entails to: dynamics (e.g.

moving human companions), large scale rooms, large pose uncertainties and percep-

tual anchoring. However we believe that the devised foundations and the developed

6

1.3 Example Use Case

integrated system will provide an excellent starting point to elevate this research even

further.

1.3 Example Use Case

Throughout the thesis we will use a realistic example of the robot being tasked with

the “Prepare the breakfast with pancakes” task in order to show the research chal-

lenges investigated in this thesis, the solutions proposed, the applicability of our work

using real robots1), the integration with respect to the related work and finally, we

will use it as a reader’s guide throughout this thesis. The given task was publicly

demonstrated in front of a large crowd, including several world-renowned roboti-

cists, in one of the CoTeSys workshops as reported in detail in Chapter 8.

Figure 1.2: TUM-Rosie preparing pancakes.

1http://ias.cs.tum.edu/robots

7

1 Introduction

The whole task can, without the loss of generality, be broken up into the following

set of subtasks. In the following we will present the challenges and our solutions

and discuss assumptions and integration of the related work for the cases that fall

beyond the scope of this thesis. The paragraphs with the underlined titles denote our

contributions to the use case.

Receiving Task “Prepare a breakfast with pancakes” for Michael. The instruction

for this task is communicated to the robot through a spoken dialog [Google], user

interface dialog, etc. In our case we focused on the limited set of up to 2 tasks that

the robot was able to decipher and process unambiguously. In order to generate the

plan for the breakfast with pancakes task this means an automatic mapping to the

generation of the execution plan from the WikiHow2 instructions. For the remainder

of the thesis we will assume that the task instructions are already transcribed in a

form of a semi structured natural language as is the case for http://www.wikihow.

com.

Generating Execution Plans from Internet Instructions. World Wide Web (WWW)

is a large resource of everyday, commonsense knowledge. The websites such as EHow,

WikiHow, WordNet, Cyc, etc. provide a bulk of structured knowledge about how to

perform everyday tasks, semantic relations about the objects and the actions and

so on. They were however written in natural language and thus for humans which

means that they assume a great deal of implicit knowledge. For example, a certain

instruction might state that in order to cook something the oven shall be turned

on, but it is never explicitly stated that the oven shall be turned off at the end.

Tenorth [2011]; Beetz et al. [2011, 2012] provide a partial solution to this problem

in that they first expand their knowledge representation and processing framework

KnowRob with the processed encyclopedic knowledge and secondly convert the latter

into an execution plan. The result of this conversion are the needed objects and other

kinds of entities and the action steps specified as the declarative goal statements in

the plan executive language CRAM [Beetz et al., 2010]. In this thesis we primarily

deal with two instructions: Make-Pancakes-Using-Mondamin-Pancake-Mix3 and Set-

2http://www.wikihow.com
3http://www.wikihow.com/Make-Pancakes-Using-Mondamin-Pancake-Mix

8

1.3 Example Use Case

a-Table4. The processing of both into the execution plans is discussed in [Beetz et al.,

2011] and [Pangercic et al., 2009] respectively.

Finding the Kitchen. After the robot has resolved to the list of needed objects and

actions to perform the given task, it proceeds on to find them. However, since in this

thesis we assume the operation in the kitchen domain, the first task for the robot

is to resolve the room categorization problem, the problem herein referred to as a

global semantic map. For this we envision combining our work with the one proposed

by Pronobis [2011] which links spatial concepts to sensory information originating

from multiple modalities such as vision and laser range data. Their system is capable

of incorporating semantic information extracted from such sources as the geometry

and general appearance of places, presence of objects, topology of the environment

and/or human input, etc. and in the end correctly categorize room types.

Finding the Furniture. Once in the kitchen, the robot shall make use of its local se-

mantic map SOM+ , which we build autonomously and represent as symbolic knowl-

edge bases in KnowRob. KnowRob contains facts about objects in the environment

and that link objects to data structures such as poses, dimensions, appearance mod-

els, etc. In the acquisition step, as discussed in Chapter 4, we use a low-cost, low-

accuracy Kinect sensor and advance the state-of-the-art registration, reconstruction

and interpretation algorithms in order to generate maps with the sufficient quality to

be later on used by the robot during its manipulation task. While the annotation of

cupboards and drawers is currently done manually, the tables and chairs are catego-

rized using matching of furniture CAD models from the web catalogs in a probabilistic

Hough voting [Mozos et al., 2011] schema.

Finding the Objects of Daily Use. In order to find the needed objects (e.g. a pan-

cake mix, a cutlery, dishware) we employ a library of specialized perception routines

that solve different, well-defined perceptual sub-tasks and can be combined into com-

posite perceptual activities including the construction of an object model database,

multi-modal object classification, and object model reconstruction for grasping. In

particular we developed algorithms that can can either categorize the objects by

shape or recognize them by their visual appearance. For the former we together

with Marton et al. [2011] and Kanezaki et al. [2011] developed two types of the

4http://www.wikihow.com/Set-a-Table

9

1 Introduction

global shape descriptors and for the latter we developed SIFT-based and barcode-

based algorithms that in particular scale very well for the large number of objects. All

algorithms are tightly integrated into the KnowRob which extends the set of robot’s

task by allowing to perform reasoning and inferences upon the perceived objects.

Lastly, the perception system gains its strengths by exploiting the knowledge from

the above mentioned SOM+s and by detecting and incrementally adding new object

models in the course of robot’s life cycle.

Localization and Navigation. Often items are not in stock in human kitchens. To

illustrate that our robot can cope with this type of situations we assume that the

robot was not able to find a pancake mix in the refrigerator. We have to retreat to the

backup solutions which in this case will have our robot go shopping for the pancake

mix. We integrated an approach by Saito et al. [2011] who use Open Mind Indoor

Common Sense (OMICS) [Gupta and Kochenderfer, 2004] in order to describe the

objects and their typical locations outside of our kitchen domain. In this particular

case the second most likely location for a pancake mix was a grocery store. In order to

navigate the robot from our assistive kitchen lab to the grocery store across the street

we use a stock Adaptive Monte Carlo localization [Fox, 2001] and path planning

software available in Robot Operating System5. Once in the grocery store, we propose

an inclusion of the work by Joho et al. [2011] to rapidly approach the vicinity of the

sought-after object, pancake mix in this case. Their search algorithm is based on

the learning from object arrangements of example environments using a maximal

entropy model.

Shopping. Once in the vicinity of the shopping rack we need to recognize the pan-

cake mix and put it in the shopping basket. While the recognition of the pancakes

mix is done using a combination of SIFT features and a Vocabulary Tree matcher,

the problem is in that the objects are tightly cluttered together on the shopping rack.

In order to generate the region of interest hypotheses we thus developed an inter-

active segmentation approach that lets the robot interact with the environment and

segment the objects based on the analysis of the movement of extracted and tracked

2D and 3D features [Bersch et al., 2012]. Finally, we also demonstrate a bi-manual

pick-and-place action in constraint spaces [Pangercic et al., 2011b].

5www.ros.org

10

1.3 Example Use Case

Making of Pancakes. Making pancakes requires manipulation actions with effects

that go far beyond the effects of normal pick-and-place tasks in terms of complexity.

For instance, in the process the robot might encounter the following challenges: the

robot must pour the right amount of pancake mix onto the center of the pancake

maker, and monitor the action success to forestall undesired effects such as spilling

the pancake mix. It must handle the spatula exactly enough to push it under the

pancake for flipping it. This requires the robot to select the appropriate force in order

to push the spatula just strong enough to get under the pancake, but not too strong

to avoid pushing it off the pancake maker. The list of issues is in fact ongoing and

we kindly refer an astute reader to the original publication [Beetz et al., 2011] for

further details.

Setting a Table. To complete the task the robot is to set the table according to the

processed and converted WikiHow instruction 6. This task amounts to the robot find-

ing the dining table, inferring which objects are already present and which are still

missing. We use the above mentioned system for recognition of objects of daily us in

order to correctly identify the objects on the table and then apply Bayesian Logic Net-

works (BLN) [Jain et al., 2009], a formalism that combines statistical knowledge (in

fragments representing conditional probability distributions) with logical knowledge

(sentences in first-order logic) to infer the missing objects. Once the robot knows

which objects it needs and how they look like, it has to find them in the kitchen

environment [Schuster et al., 2012] and grasp them [Witzig et al., 2013]. We use

ontologies to semi-automatically link the objects to their possible locations in the

kitchen and thus enable a much faster and reliable object search. To execute the right

grasp on the right object we use probabilistic graphical methods and human in the

loop approach.

6http://www.wikihow.com/Set-a-Table

11

1 Introduction

1.4 Outline

The rest of the thesis is organized as follows.

Chapter 3: System Setup

After we motivated the general case, we will present the wide corpus of systems and

tools supporting and enabling this thesis.

Chapter 4: Semantic Object Maps

Discusses and thoroughly presents the representation language, acquisition and in-

terpretation algorithms to generate the SOM+s for domestic environments.

Chapter 5: Interactive Segmentation of Textured and Textureless Objects

We explain how we solve a rather challenging problem of segmenting the objects of

daily use in heavily cluttered tabletops and shopping shelves. This work falls in the

area of research called interactive perception.

Chapter 6: Knowledge-linked Object Recognition

Describes a combined 2D-3D categorization and classification of objects of daily use

and the generation of their abstract representations.

Chapter 7: Knowledge-enabled Scene Understanding

The outcomes of the Chapter 4, Chapter 5 and Chapter 6 are used in this chapter

where we show how to effectively combine perception, knowledge representation

and statistical learning in order to classify scenes and situations from everyday life.

Chapter 8: Demonstrations

To show the generality and scalability of herein proposed and developed algorithms

we have run several public demonstrations about which we briefly report in this chap-

ter.

Chapter 9: Conclusion

Finally we will conclude and give the directions for the future work.

12

Chapter 2

List of Prior Publications

The work presented in this document is partly based on prior publications. Sections

of this work that drew upon content from prior publications cited the respective pub-

lications where appropriate. A complete list of publications that were (co-)authored

during my research as a doctoral candidate is provided below.

Journal Articles

Zoltan Csaba Marton, Dejan Pangercic, Nico Blodow, and Michael Beetz. Combined 2D-3D

Categorization and Classification for Multimodal Perception Systems. The International

Journal of Robotics Research, 30(11):1378–1402, 2011.

Moritz Tenorth, Ulrich Klank, Dejan Pangercic, and Michael Beetz. Web-enabled Robots –

Robots that Use the Web as an Information Resource. Robotics & Automation Magazine, 18

(2):58–68, 2011.

Michael Beetz, Dominik Jain, Lorenz Mösenlechner, Moritz Tenorth, Lars Kunze, Nico Blodow,

and Dejan Pangercic. Cognition-Enabled Autonomous Robot Control for the Realization of

Home Chore Task Intelligence. Proceedings of the IEEE, Special Issue on Quality of Life

Technology, 100(8):2454–2471, 2012.

Conference Papers

Thomas Witzig, J. Marius Zöllner, Dejan Pangercic, Sarah Osentoski, Philip Roan, Rainer

Jäkel, and Rüdiger Dillmann. Context Aware Shared Autonomy for Robotic Manipulation

13

2 List of Prior Publications

Tasks. In In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

Tokyo Big Sight, Japan, 2013.

Karol Hausman, Ferenc Balint-Benczedi, Dejan Pangercic, Zoltan-Csaba Marton, Ryohei Ueda,

Kei Okada, and Michael Beetz. Tracking-based Interactive Segmentation of Textureless

Objects. In In IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe,

Germany, 2013.

Dejan Pangercic, Moritz Tenorth, Benjamin Pitzer, and Michael Beetz. Semantic Object Maps

for Robotic Housework - Representation, Acquisition and Use. In 2012 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS), 2012.

Thomas Rühr, Jürgen Sturm, Dejan Pangercic, Michael Beetz, and Daniel Cremers. A Gen-

eralized Framework for Opening Doors and Drawers in Kitchen Environments. In IEEE

International Conference on Robotics and Automation (ICRA), 2012.

Michael Beetz, Moritz Tenorth, Dejan Pangercic, and Benjamin Pitzer. Semantic Object Maps

for Household Tasks. In 5th International Conference on Cognitive Systems (CogSys 2012),

2012.

Michael Beetz, Ulrich Klank, Ingo Kresse, Alexis Maldonado, Lorenz Mösenlechner, Dejan

Pangercic, Thomas Rühr, and Moritz Tenorth. Robotic Roommates Making Pancakes. In

11th IEEE-RAS International Conference on Humanoid Robots, 2011.

Nico Blodow, Lucian Cosmin Goron, Zoltan-Csaba Marton, Dejan Pangercic, Thomas Rühr,

Moritz Tenorth, and Michael Beetz. Autonomous Semantic Mapping for Robots Performing

Everyday Manipulation Tasks in Kitchen Environments. In Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), 2011.

Shulei Zhu, Dejan Pangercic, and Michael Beetz. Contracting Curve Density Algorithm for

Applications in Personal Robotics. In 11th IEEE-RAS International Conference on Humanoid

Robots, 2011.

Dejan Pangercic, Moritz Tenorth, Dominik Jain, and Michael Beetz. Combining Perception

and Knowledge Processing for Everyday Manipulation. In IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems (IROS), pages 1065–1071, 2010.

Zoltan-Csaba Marton, Dejan Pangercic, Nico Blodow, Jonathan Kleinehellefort, and Michael

Beetz. General 3D Modelling of Novel Objects from a Single View. In Proceedings of the

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2010a.

14

Zoltan-Csaba Marton, Dejan Pangercic, Radu Bogdan Rusu, Andreas Holzbach, and Michael

Beetz. Hierarchical Object Geometric Categorization and Appearance Classification for

Mobile Manipulation. In Proceedings of the IEEE-RAS International Conference on Humanoid

Robots, 2010b.

Ulrich Klank, Dejan Pangercic, Radu Bogdan Rusu, and Michael Beetz. Real-time CAD Model

Matching for Mobile Manipulation and Grasping. In 9th IEEE-RAS International Conference

on Humanoid Robots, pages 290–296, 2009.

Dejan Pangercic, Rok Tavcar, Moritz Tenorth, and Michael Beetz. Visual Scene Detection and

Interpretation using Encyclopedic Knowledge and Formal Description Logic. In Proceedings

of the International Conference on Advanced Robotics (ICAR)., 2009.

Workshop Papers

Christian Bersch, Dejan Pangercic, Sarah Osentoski, Karol Hausman, Zoltan-Csaba Marton,

Ryohei Ueda, Kei Okada, and Michael Beetz. Segmentation of Textured and Textureless

Objects through Interactive Perception. In RSS Workshop on Robots in Clutter: Manipula-

tion, Perception and Navigation in Human Environments, 2012.

Ross Kidson, Darko Stanimirovic, Dejan Pangercic, and Michael Beetz. Elaborative Evaluation

of RGB-D based Point Cloud Registration for Personal Robots. In ICRA 2012 Workshop on

Semantic Perception and Mapping for Knowledge-enabled Service Robotics, 2012.

Zoltan-Csaba Marton, Dejan Pangercic, and Michael Beetz. Efficient Surface and Feature

Estimation in RGBD. In RGB-D Workshop on 3D Perception in Robotics at the European

Robotics (euRobotics) Forum, 2011.

Asako Kanezaki, Zoltan-Csaba Marton, Dejan Pangercic, Tatsuya Harada, Yasuo Kuniyoshi,

and Michael Beetz. Voxelized Shape and Color Histograms for RGB-D. In IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems (IROS), Workshop on Active Semantic

Perception and Object Search in the Real World, 2011.

Dejan Pangercic, Vladimir Haltakov, and Michael Beetz. Fast and Robust Object Detection in

Household Environments Using Vocabulary Trees with SIFT Descriptors. In IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems (IROS), Workshop on Active Semantic

Perception and Object Search in the Real World, 2011.

15

2 List of Prior Publications

Michael Beetz, Ulrich Klank, Alexis Maldonado, Dejan Pangercic, and Thomas Rühr. Robotic

Roommates Making Pancakes - Look Into Perception-Manipulation Loop. In IEEE Interna-

tional Conference on Robotics and Automation (ICRA), Workshop on Mobile Manipulation:

Integrating Perception and Manipulation, pages 529–536, 2011.

Michael Beetz, Nico Blodow, Ulrich Klank, Zoltan Csaba Marton, Dejan Pangercic, and Radu Bog-

dan Rusu. CoP-Man – Perception for Mobile Pick-and-Place in Human Living Environments.

In Proceedings of the 22nd IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems (IROS) Workshop on Semantic Perception for Mobile Manipulation, 2009. Invited pa-

per.

16

Chapter 3

System Setup

In this chapter we briefly present and motivate the reasoning behind the selected

tools, testbed, robots and datasets that this thesis makes use of.

Personal robots are very complex systems requiring the knowledge that spans from

knowing how the hardware components are built and function, how they interface

to the software level, how to process and interpret the raw data, how to make use

of the data in order to act sensibly in the given context and all the way to knowing

how to tie all of this algorithms and actions together and possibly debug and analyze

failure cases. To be able to focus on the objectives laid out in Chapter 1 we opt out

to study problems commonly encountered in the assistive kitchen laboratory. We use

a standard PR2 robot [PR2] and an in-house built TUM-Rosie robot, with the stock

available drivers and basic algorithms (e.g. navigation), we write our algorithms in

meanwhile de facto standard framework ROS (Robot Operating System) [Quigley

et al., 2009] and finally use open source libraries such as openCV (Open Source

Computer Vision) [Bradski, 2000], PCL (Point Cloud Library) [Rusu and Cousins,

2011] and KnowRob (Knowledge processing for autonomous Robots) [Tenorth and

Beetz, 2009]. This allows us to on the one hand leverage the basic algorithms and on

the other hand contribute our findings back to the research community. We take the

importance of the latter utmost serious as it does not only help the robotics commu-

nity and keeps re-inventing of the wheel syndrom low, but it also provides us with

the valuable and critical feedback on the usability of herein proposed approaches.

17

3 System Setup

3.1 The Assistive Kitchen Laboratory

The majority of the work presented in this thesis has been developed and tested in the

Assistive Kitchen testbed [Beetz et al., 2008] located in the Central CoTeSys1 Robotic

Laboratory II. The assistive kitchen is a ubiquitous computing, sensing, and actuation

environment with robotic assistants (see Figure 1.1).

This assistive kitchen includes two personal robots that are to learn and perform

complex household chores. The robots shall either perform housework alone (as as-

sumed within the scope of this thesis) or jointly with human companions. Having

such testbeds is important for several reasons. They are realistic environments and

much less structured than a normal industrial environment. Yet they are common to

humans and to the degree well “understood”. Assistive kitchens also raise challeng-

ing research problems. One of these problems is that performing household chores

is a form of everyday activity that requires extensive commonsense knowledge and

reasoning. Another challenge is the low frequency of daily activities, which requires

embedded systems and robotic agents to learn from very scarce experience. Besides,

household chores include a large variety of manipulation actions and composed ac-

tivities that pose hard research questions for current mobile manipulation research.

On the flip side these kind of kitchens are becomming standard in research labs

around the world which is an important prerequisite for sharing of research findings

and knowledge about this domain. Further, a vast palette of information resources

(e.g. websites and video portals with cooking instructions, websites with general

knowledge bases and commonsense reasoning engines) allows for an integration of

a large deal of useful assumptions and hypotheses. Finally, an instrumentation of as-

sistive kitchens with e.g. high fidelity motion tracking systems allows for a repetitive

task execution and comparison of results against the ground truth.

3.1.1 Hardware Infrastructure

The hardware infrastructure of the kitchen consists of mobile robots and networked

sensing and actuation devices that are physically embedded into the environment.

1Cognition for Technical Systems project, www.cotesys.org

18

3.1 The Assistive Kitchen Laboratory

The latter incorporates global environment sensors, sensor-equipped furniture, web-

enabled appliances, and “smart” objects.

Global Sensors of the Kitchen. We have mounted a set of static off-the-shelf cam-

eras positioned to cover the kitchen area with high resolution in critical working

areas. With these cameras, actions of the people and robots can be tracked from

different locations to allow for more accurate positioning and pose estimation.

Sensor-equipped Furniture. The entities of furniture in the assistive kitchen are

also equipped with various kinds of sensors. For example, we have cupboards with

long-range RFID tag readers that enable the cupboards to “know” the identities of the

RFID tagged objects that are currently in the cupboard. Additionally, the cupboards

are equipped with magnetic contact sensors that sense whether the cupboard doors

are open or closed. Another example is a table which contains several integrated

capacitive sensors as well as short-range RFID readers. The capacitive sensors report

the capacitance of different areas on the table, when an object is placed there, while

the RFID readers provide exact information on what object was placed there.

Web-enabled Kitchen Appliances. such as the refrigerator, the oven, the microwave,

and the faucet, allow for remote and wireless monitoring and control.

"Smart" Objects. In addition, kitchen utensils, tools and small appliances are equipped

with integrated sensors such as RFID tags.

Note that in this thesis we only used robots’ on-board sensors, instrumented parts of

the kitchen were used in different studies and demonstrations. Actual experiments

were carried out in 6 different kitchens, 2 located at the TUM and 4 at the Bosch

Research and Technology center in Palo Alto, CA.

3.1.2 Robots

We performed the experiments with two similar personal robots depicted in Fig-

ure 3.1. TUM-James is a PR2 robot [PR2] with the holonomic base and two back-

drivable 7 DOF arms with jaw grippers. In order to perceive its environment TUM-

James uses 2 Hokuyo UTM 30LX laser range finders (one used for navigation and

19

3 System Setup

one for 3D model acquisition), a narrow stereo and a wide stereo camera set, high-

resolution Prosilica camera, 2 forearm cameras and a head-mounted Kinect. The lat-

ter sensor became our de facto sensor since October 2010. In order to generate or-

ganized point clouds prior to Kinect’s release, the PR2 used a visible infrared light

projector. TUM-Rosie is a robot with the Kuka omnidirectional base and 2 Kuka

Figure 3.1: Personal robots TUM-James (left) and TUM-Rosie (right).

lightweight and compliant 7 DOF arms with the DLR-HIT hands. TUM-Rosie fea-

tures 3 Hokuyo UTM 30LX laser range finders (two for navigation and one for 3D

model acquisition), a stereo camera set, a thermal camera, an infrared depth sensor

SwissRanger SR4000 and a Kinect. Both robots are equipped with powerful on-board

computers and run ROS. While TUM-James has been mostly used for true mobile ma-

nipulation tasks (such as opening drawers in a coordinated arm-base fashion, etc.),

TUM-Rosie has been on the other hand mostly used for very dexterous pick and place

tasks (such as pouring pancake mix, making of sandwiches, etc.). The algorithms and

20

3.2 Tools

methods developed within the scope of this thesis have been applied to and are used

by both robots (see Chapter 8).

3.2 Tools

Selecting the right tool for the right job is often of a crucial importance. Since the

work proposed in this thesis finds itself mostly at the intersection between the per-

ception and the knowledge processing for personal robots we needed the right tools

for all three “departments”. We thus selected openCV and PCL libraries for the percep-

tion problems, partly because they offer a great deal of openly available fundamental

algorithms. In addition, PCL also started in our lab and provides us with the opportu-

nity to conveniently push our algorithms back to the community. For the knowledge

processing our natural choice was to select KnowRob by Moritz Tenorth, our labmate

and one of the most frequent collaborators. KnowRob provides, to the best of our

knowledge, the largest domain specification language for household robotics in the

world. Finally, we use ROS as one the largest and most widespread frameworks for

robots which we adopted very early in its emerging and which we also helped co-

shape to the large extend. In the following we will briefly summarize each of the

components and expose the main features used in this thesis work.

3.2.1 Robot Operating System

ROS is an open-source, meta-operating system for robots. It provides the services that

normally make up an operating system, including hardware abstraction, low-level

device control, implementation of commonly-used functionality, message-passing be-

tween processes, and package management. It also provides tools and libraries for

obtaining, building, writing, and running code across multiple computers. In gen-

eral ROS ecosystem consists of three main parts: ROS file system, ROS computation

graph and ROS community. While the first one defines how ROS stacks, packages and

configuration files shall be laid out, the second one defines a peer-to-peer network

of ROS processes that are processing data together. This network can either function

synchronously or asynchronously. ROS community part enables us to create our own

21

3 System Setup

federal repositories, develop the code rapidly, share it with the community in alpha

version and then through the feedback slowly converge towards the final releases.

3.2.2 KnowRob

KnowRob is a knowledge processing system that combines knowledge representation

and reasoning methods with techniques for acquiring knowledge and for grounding

the knowledge in a physical system and can serve as a common semantic framework

for integrating information from different sources. KnowRob combines static encyclo-

pedic knowledge, common-sense knowledge, task descriptions, environment models,

object information and information about observed actions that has been acquired

from various sources (manually axiomatized, derived from observations, or imported

from the web). It supports different deterministic and probabilistic reasoning mecha-

nisms, clustering, classification and segmentation methods, and includes query inter-

faces as well as visualization tools. In this work we use KnowRob’s household domain

knowledge in OWL format, KnowRob’s representation language for SOM+ maps pre-

sented in Chapter 4 and finally KnowRob’s interface to the perception algorithms for

modeling of perceived and inferred objects.

3.2.3 Point Cloud Library

PCL is a comprehensive, free, BSD licensed, library for n-D Point Clouds and 3D

geometry processing. From an algorithmic perspective, PCL incorporates a multitude

of 3D processing algorithms that operate on point cloud data, including: filtering,

feature estimation, surface reconstruction, model fitting, segmentation, registration,

tracking, etc. PCL is also fully integrated with ROS. In this thesis we mostly leverage

PCL’s filtering algorithms for the down-sampling of the data, segmentation algorithms

to break the whole-room point cloud into a set of planes and fixtures, features for the

categorization of objects of daily use and finally tracking library for the interactive

segmentation of textureless objects.

22

3.3 Datasets

3.2.4 OpenCV

OpenCV is an open-source BSD-licensed library that includes several hundreds of

computer vision algorithms that operate on 2D image data, including: segmentation,

calibration, feature extraction, feature matching, tracking, etc. We deployed feature

extraction and matching algorithms for the recognition of textured objects, feature

extraction and optical flow-based feature tracking for the interactive segmentation of

textured objects, etc. OpenCV is also fully integrated with ROS.

3.3 Datasets

As a side product of this thesis we generated two datasets of commonly encountered

objects of daily use with the groundtruth pose information which the community

has been using as benchmarks to evaluate their object categorization and recognition

algorithms. In the following we briefly explain the configuration of both datasets.

3.3.1 Semantic3D

The platform used for the acquisition of models in this dataset is briefly described

in Figure 3.2, and consists of a B21 mobile base with the calibrated compound of

Amtec Powercube 6-DOF arms and sensors such as a SICK LMS400 laser device and

Basler Scout stereo cameras2. Given that both the laser and the arm are very fast

and accurate, dense scans of tables can be made in under a second. To facilitate the

assembly of a large database of object models, we have created a rotating table using

a DP PTU47 pan-tilt unit that is controlled by the robot over the network. Objects

placed on this rotating table are scanned and saved as point cloud and image data.

The resultant database of object models was then used to categorize and classify

objects found in natural table setting scenes as reported in Chapter 6.

The database of 3D objects is available at http://semantic-3d.cs.tum.edu, The images

in the dataset have been acquired using Basler Scout scA1390 stereo cameras at

a resolution of 1390x1038 pixels. The 3D depth data was recorded using a SICK

2Please note that the TOF camera located on the robot head was not used.

23

3 System Setup

Appearance class
Icetea wildberry
(angle: 0)

Geometric class
Tetrapak box

Stereo cameras

6-DOF arms

Laser

Figure 3.2: The mobile manipulation platform used for obtaining the database and per-
forming hierarchical object categorization and classification. The hardware
setup consists of a B21 mobile base with two 6-DOF arms, stereo cameras, a
laser sensor mounted on the end effector and a rotary table. The bottom area
of the image shows the input as observed by the robot and the surface and
geometric categorization and classification of an iced tea box.

24

3.3 Datasets

LMS400 range scanner with 0.5◦ angular resolution, resulting in point clouds with

roughly 200-1000 points per object after the gross statistical removal procedure. The

range scanner was tilted with 30rad/s during one scanning cycle.

The set of objects encompasses the ones commonly used in a typical household en-

vironment (mugs, utensils, books, etc) and is envisioned for a larger expansion in

the future. In a pursue to account for a wide variety of view angles, we rotated the

objects on the rotating table with a given angle-step (30◦ in the preliminary version)

and acquired partial snapshots from a human-eye perspective, i.e. the ones that the

best approximate the robot’s view point during its working cycle. We consider this

to be an important point as opposed to similar initiatives (e.g., [KIT, 2010]) where

the datasets are acquired using high-precision but non-affordable, fixed sensors, and

thus not usable for applications such as ours.

3.3.2 VOSCH

This database of 3D objects was obtained using the Kinect sensor mounted on the

head of a PR2 robot. The set of objects (see Figure 3.3) encompasses those commonly

used in a typical household environment as well (mugs, utensils, groceries, etc.) and

is available at http://www.ros.org/wiki/vosch. In this case we rotated the objects on

the rotating table with an angular step of 15◦ around the up-axis, and acquired partial

snapshots from a perspective that best approximates the robot’s viewpoint during

its working cycle. For every view of the object, a VOSCH or ConVOSCH [Kanezaki

et al., 2011] descriptor was estimated and a database of 63 objects was generated. An

object detection pipeline with Support Vector Machines or Linear Subspace Method

classifiers was then used to detect objects in natural scenes.

25

3 System Setup

Kinect RGBD Device

Database (63 Objects)

SVM or LSM Models

Rotating table
(for training data)

RGB

RGB Correlations

S
h

ap
e

Shape

+
=

Recognition of Objects

Figure 3.3: TUM-James robot equipped with a Kinect sensor acquiring training data of
the objects shown in the bottom-right of the figure.

26

Chapter 4

Semantic Object Maps

4.1 Introduction

Robots that do not know where objects are have to search for them. Robots that do

not know how objects look have to guess whether they have fetched the right one.

Robots that do not know the articulation models of drawers and cupboards have to

open them very carefully in order to not damage them. Thus, robots should store

and maintain knowledge about their environment that enables them to perform their

tasks more reliably and efficiently. We call the collection of this knowledge the robot’s

maps and consider maps to be models of the robot’s operation environment that serve

as information resources for better task performance.

Robots build environment maps for many purposes. Most robot maps so far have been

proposed for navigation. Robot maps for navigation enable robots to estimate their

position in the environment, to check the reachability of the destination and to com-

pute navigation plans [Thrun, 2002]. Depending on their purpose maps have to store

different kinds of information in different forms. Maps might represent the occupancy

of environment of 2D [Thrun et al., 1998] or 3D grid cells [Wurm et al., 2010], they

might contain landmarks [Montiel et al., 2006] or represent the topological structure

of the environment [Kortenkamp and Weymouth, 1994]. The maps might model ob-

jects of daily use [Nakayama et al., 2009a], indoor [Rusu et al., 2009a; Henry et al.,

2010], outdoor [Rusu et al., 2009c], underwater [Smith et al., 1997], extraterrestrial

surfaces, and aerial environments [Shen et al., 2011].

27

4 Semantic Object Maps

A research area that has received surprisingly little attention is the automatic acqui-

sition of environment maps that enable robots to perform human-scale manipulation

tasks, such as setting a table, preparing a meal, and cleaning up.

In this thesis as one of the contributions we investigate semantic object maps (SOM+s),

which are a subcategory of maps that store information about the task-relevant ob-

jects in the environment, possibly including geometric 3D models of the objects, their

position and orientation, their appearance, and object category. We focus here on

semantic object maps that represent all the furniture entities of kitchen envi-

ronments including cupboards, electrical devices, tables, counters, positions,

appearances, and articulation models.

Overview of our system for the generation of SOM+ maps is depicted in Figure 1.1

where a PR2 robot acquires the data using an RGBD sensor in a kitchen environment

(top), the resulting representation of an environment as a SOM+ map is in the middle

and a set of example queries that SOM+ map provides to the robot is shown in the

bottom. We can see that the SOM+ map is an abstract representation of the environ-

ment that represents the environment as a hierarchically structured object where the

parts themselves are objects that have a geometric 3D model, an appearance, and a

3D position and orientation. In addition, objects might have associated articulation

models that tell the robot how they can be opened and closed, which is visualized by

the yellow trajectories in the bottom part of the figure.

In this chapter we investigate and describe how SOM+ maps can be represented and

how the representations can be automatically acquired autonomously.

In this context the key contributions of this chapter are:

• a functional end-to-end system that covers all steps required to automatically

reconstruct textured SOM+ models of kitchens, annotates them with the func-

tional and semantic information and articulation models for opening and clos-

ing drawers and doors;

• methods for acquiring accurate environment maps with low-cost RGBD sen-

sors by using vision and active manipulation actions such opening drawers and

doors;

28

4.2 Representation Language and Integration with KnowRob

• a logic-based formal language and background knowledge for the representa-

tion of SOM+ maps;

• an application level with a rich set of task queries that the system can answer

and thus enable the personal robot to carry out every day manipulation tasks.

We validate the concept of SOM+ maps and the robot system for their acquisition in

extensive experimental studies, in which the robots operate autonomously to acquire

SOM+ maps in 5 kitchens.

The remainder of the chapter is organized as follows. In Section 4.2 we introduce our

representation language for SOM+ maps and explain how the maps are organized

and how different types of information are stored and handled. Next two sections

will present the system integration by i) giving an overview of the SOM+ map acqui-

sition step (Section 4.3) and ii) discussing the data interpretation step (Section 4.4).

Section 4.5 presents the empirical evaluation and explains example queries and put

them to use. In the final section we will conclude and discuss the on-going extensions

of this work.

4.2 Representation Language and Integration with KnowRob

We represent SOM+ maps as symbolic knowledge bases that contain facts about ob-

jects in the environment and that link objects to data structures such as appearance

models or SIFT features which can be directly used by the robot’s perception system

to recognize the respective objects 1. Encoding maps into symbolic knowledge bases

rather than lower-level data structures has two main advantages: First, it allows to

have a uniform interface for querying for information, combining low-level informa-

tion like the dimensions and poses of objects with semantic information about their

properties. Second, this approach facilitates the integration of background knowledge

from other sources like the WWW [Tenorth et al., 2011] or common-sense knowledge

bases [Kunze et al., 2010]. This enables the robot to apply this knowledge to reason

about objects in the map, for example to infer problems that can occur when operat-

ing the dishwasher.

1Moritz Tenorth derived the representation language and implemented it in KnowRob as part of the
joint publication [Pangercic et al., 2012].

29

4 Semantic Object Maps

More formally, we consider a SOM+ map to be a pair SOM+ = 〈� ��+�� ,	〉,
where � ��+�� is the knowledge base representing the environment and 	 is a

set of inference methods that can infer knowledge that is implied by the knowledge

base but not directly stored. For example, 	 includes a method to infer whether two

positions p1 and p2 satisfy the qualitative spatial relationship “on top of”.

The knowledge base � ��+�� itself is formalized as a triple 〈� ,� ,� 〉 where

� is a terminological knowledge base that specifies the categories of objects that are

used to represent the environment. � denotes assertional knowledge, for example

that Refrigerator67 is a physical object in the environment and an instance of concept

Refrigerator. Finally, � is spatial knowledge that asserts the pose of Refrigerator67 in

the environment. The different components of a SOM+ knowledge base are depicted

in Figure 4.1.

The encyclopedic knowledge stored in � provides definitions of classes of objects and

their properties, similar to those that can be found in a dictionary. It is very useful

as a common vocabulary to describe the robot’s knowledge. The different classes are

arranged in a hierarchy, and are inter-connected by roles, a structure called an “on-

tology”. A small part of this ontology, describing entities of furniture and household

appliances, is shown in the upper part of Figure 4.1. The major part of � is prior

knowledge that is already available before the map has been built.

The objects in the semantic map are represented as instances of the semantic classes

in � and form the assertional knowledge base � . It contains information about

their composition from parts, e.g. that Refrigerator consists of a box-shaped frame,

a door, a hinge, and a handle, that the door is rotationally connected to the frame

by the hinge, and that the handle is attached to the door. Each of these components

is described as an instance of the respective semantic class with all of its properties,

e.g. the information that a refrigerator is used as storage place for perishable items,

or that an oven can be used for heating food. The elements of � are generated from

the perception system and can be passed as arguments to the robot executive. They

are thus grounded in both the perception and in the action execution system.

The spatial knowledge � includes both metric and qualitative spatial information

about the poses of objects in the environment. Metric object poses are determined

by the mapping procedure (Section 4.4) and are stored in the knowledge base. Addi-

30

4.2 Representation Language and Integration with KnowRob

Drawer55
 Type: Drawer
 subClassOf: Box-Container
 width: 0.31 ^^ Meter
 parts: Door58
 parts: Slider59

Refrigerator67
 Type: Refrigerator
 subClassOf: Box-Container
 width: 0.58 ^^ Meter
 parts: Door70
 parts: Hinge71

Spatial
Knowledge

Assertional
Knowledge

Terminological
Knowledge

HumanScaleObject

StorageConstruct

ElectricalHouseholdAppliance RefrigeratorStorageDevice

Dishwasher Refrigerator Drawer CupboardOven
is-a

is-a

is-a

is-a
is-a

is-a

is-a

is-a

is-a

is-ais-ais-a
is-a

is-a

is-a

Box-Container

ContainerArtifact

PhysicalDevice

Place

Figure 4.1: Part of the ontology of household appliances and entities of furniture. Super-
classes of e.g. HumanScaleObject have been omitted for better readability.
Courtesys@Tenorth.

31

4 Semantic Object Maps

tional qualitative descriptions, like “on the table” can be computed as a different view

on the data. These more abstract descriptions are not directly stored in the knowledge

base, but computed at a query time. This approach helps to avoid inconsistencies due

to duplicate data storage [Tenorth et al., 2010]. The computational methods are part

of the set of inference procedures 	 , which further includes methods to e.g. trans-

parently convert units of measure (Section 4.2.2).

The SOM+ map provides a tell-ask-interface to other components in the system. The

tell-interface allows to add knowledge to the knowledge base and is mainly used by

the mapping component: Whenever new objects are detected in the environment,

they are added to the knowledge base. The ask-interface provides reasoning services

to the robot’s executive and to other components that require map information.

4.2.1 Object Representation in SOM+ Maps

Most of the objects found in semantic maps of household environments are furniture

entities and household appliances – which are complex, composed objects consisting

of several parts (Figure 4.2). Complementary to this part-of hierarchy, the connec-

tions between parts in terms of links and joints describe a kinematic chain. In the

example, hinges are described as parts of the door, which is linked to the refrigera-

tor’s body with the hingedTo relation:
1 Indiv idual : semanticmap14
2 Types :
3 SemanticEnvironmentMap
4
5 Indiv idual : Re f r i ge ra to r67
6 Types :
7 R e f r i g e r a t o r
8 Facts :
9 describedInMap semanticmap14

10 width "0.51"^^Meter
11 depth "0.59"^^Meter
12 he ight "0.78"^^Meter
13 p r op e r P h y s i c a lP a r t s Door70
14 p r o p e r P h y s i c a lP a r t s Hinge70
15
16 Indiv idual : Door70
17 Types :
18 Door
19 Facts :
20 width "0.51"^^Meter
21 depth "0.01"^^Meter
22 he ight "0.78"^^Meter
23 hingedTo Re f r i ge ra to r67
24 p r op e r Ph y s i c a lP a r t s Handle160

32

4.2 Representation Language and Integration with KnowRob

part-of

part-of part-of

part-of

part-ofpart-of

fixed-to fixed-to

fixed-tofixed-to

appearance

hinged-to

prism-conn

SemanticMap13

Door58 Door70

Drawer55

Slider58 Hinge70

Handle154 Handle160

Refrigerator67

part-ofpart-of

Figure 4.2: Hierarchy of part-of relations between the different object components in
the semantic map and a grounding example for doors and handles.

33

4 Semantic Object Maps

An explicit description of the units of measure is important for the representation of

spatial information in order to correctly interpret coordinate values. In the proposed

representation, all numeric values can be annotated with the unit of measure that

is being used. The units are described in the extensive QUDT ontology2 including

conversion factors. Compatible units, such as lengths, can be transparently converted

into each other. For example, if the map contains dimensions and positions in meters,

the user can query for information in feet and will automatically receive the converted

values.

4.2.2 Spatio-temporal Object Pose Representation

The hierarchical representation introduced in the previous section qualitatively de-

scribes the composition of the environment out of objects and their parts, but does

not specify their poses. We represent the pose information separately to account for

object poses that change over time. Such a spatio-temporal representation is espe-

cially important for objects that are regularly moved, but it can also describe static

objects as well as movable parts of static objects, such as the furniture doors.

We realized the spatio-temporal aspect by reifying the event that created some belief

about an object pose, e.g. the detection of an object at some position. Instead of stor-

ing the information that an object “is at location A”, the system thus describes that

it “has been detected at location A at time T”. This allows to store multiple detec-

tions of the object at different poses. In a naive implementation, attaching multiple

poses to one object would lead to inconsistencies. The following code describes the

detection of an object that is modeled in the knowledge base: An instance of a Seman-

ticMapPerception is created for each detection (perception24), and is annotated with

the time at which the perception has been made (timepoint24), the pose at which the

object was estimated to be (pose24), and the object instance that has been perceived

(Refrigerator67).

2http://qudt.org/

34

4.2 Representation Language and Integration with KnowRob

1 Indiv idual : percept ion24
2 Types :
3 SemanticMapPerception
4 Facts :
5 eventOccursAt pose24
6 objectActedOn Re f r i ge ra to r67
7 s tar tT ime timepoint24
8
9 Indiv idual : pose24

10 Types :
11 Pose3D
12 Facts :
13 m00 "1.00"^^ f l o a t
14 m01 "0.00"^^ f l o a t
15 . . .

By default, system determines the pose of an object based on the most recent de-

tection, but if needed, it can also go back in time and reconstruct previous world

states.

4.2.3 SOM+ Inference Methods

Using the inference methods 	 , the system can infer novel statements from the in-

formation in the map. Let us consider the computation of the “inside” relation as an

example. If this relation holds can be calculated based on the poses and dimensions of

two objects. Based on the spatio-temporal representation of object poses described in

the previous section, such qualitative relations can be evaluated both for the current

and for previous world states.

We use the holds(rel(?A, ?B), ?T) predicate to express that a relation rel between

?A and ?B is true at time ?T. The following Prolog code computes the “inside” re-

lation in a simplified way (not taking the rotation of the objects into account) by

comparing the axis-aligned bounding boxes of the inner and outer object to check

whether one contains the other. First, the latest perception of each object before time

?T is determined using the object_detection predicate. The poses where objects have

been perceived are read using the eventOccursAt relation. Then, the system reads the

objects’ positions and dimensions, and compares the bounding boxes.

35

4 Semantic Object Maps

1

2 holds (in_ContGeneric (? InnerObj , ? OuterObj) , ?T) :−
3

4 o b j e c t _ d e t e c t i o n (? InnerObj , ?T , ?VPI) ,

5 o b j e c t _ d e t e c t i o n (? OuterObj , ?T , ?VPO) ,

6

7 r d f _ t r i p l e (eventOccursAt , ?VPI , ? InnerObjPose) ,

8 r d f _ t r i p l e (eventOccursAt , ?VPO, ? OuterObjPose) ,

9

10 % read the cente r coord ina te s of the inner e n t i t y

11 r d f _ t r i p l e (poseX , ? InnerObjPose , ? IX) , [. . .]
12

13 % read the cente r coord ina te s of the outer e n t i t y

14 r d f _ t r i p l e (poseX , ? OuterObjPose , ?OX) , [. . .]
15

16 % read the dimensions of the outer e n t i t y

17 rdf_has (? OuterObj , widthOfObject , ?OW) , [. . .]
18

19 % read the dimensions of the inner e n t i t y

20 rdf_has (? InnerObj , widthOfObject , ?IW) , [. . .]
21

22 % compare bounding boxes

23 >=((?IX − 0.5∗? ID) , (?OX − 0.5∗?OD)) ,

24 =<((?IX + 0.5∗? ID) , (?OX + 0.5∗?OD)) ,

25 [. . .]
26 ? InnerObj \= ? OuterObj .

4.3 Data Acquisition

We investigate domain specific map acquisition. This means that we make assump-

tions/assertions about the environments such as the existence of horizontal planar

surfaces at table height, or the existence of front faces of furniture pieces that con-

tain doors and drawers and let the interpretation algorithms use this prior knowledge

to infer much richer environment models that contain all the furniture objects and

structures introduced in Section 4.4.

Our mapping system thus makes a set of assumptions reasonable for typical kitchens,

which include the following ones. (1) Kitchens have vertical planar walls (outmost

boundaries) and kitchens have planar floors (the ground plane) and ceilings. (2) Front

faces of furniture are vertical planes often in front of walls. Front faces of furniture’s

are typically rectangular and contain doors and drawers. Front faces of drawers and

doors are parts of containers (typically used for placing objects inside). (3) Doors

typically have handles and hinges, drawers have handles. Both can be opened (by

36

4.3 Data Acquisition

pulling the handles). Some cupboards have tabletops that are planar surfaces in ta-

ble height. Tables are tabletops standing on legs. (3) Some cupboards have special

purposes: refrigerator, oven, microwave, dishwasher, etc. They are specializations of

boxed containers. (4) Task-relevant objects are liftable and stand on table tops and

shelves. (5) All others “object” structures are obstacles.

We will come back to the issue that these assumptions are of heuristic nature in Sec-

tion 4.6 and outline how the next generation of the system is supposed to generalize

from this overspecialization.

The SOM+ mapping algorithms exploit these assumptions to better and faster pro-

cess the raw sensor data through registration, plane fitting, etc and to generate and

validate object hypotheses and infer better models of them.

Acquisition

Interpretation

Pre-processing Registration Surface
Reconstruction

Texture
Re-projection

Ask-Tell
Interface

Detection of
Relevant Planes

Detection of
Handles

Articulation
Model Learning

Door and Drawer
Hypotheses

Door and Drawer
Hypotheses
Validation

Object of Daily
Use Detection

And Recognition

Next Best View
Planning

SOM+ Map
Implemented in

KnowRob

Figure 4.3: System integration for autonomous SOM+acquisition. Module for objects
of daily use detection and recognition [Pangercic et al., 2011a] is part of the
system but discussed in Chapter 6.

In order to acquire a SOM+ map the robot has to explore and solve a number of per-

ceptual tasks in order to obtain the necessary information pieces. The overall struc-

37

4 Semantic Object Maps

ture of the map acquisition process is illustrated in Figure 4.3. The first phase in

doing so is to obtain an accurate, smoothed and textured triangular 3D mesh of the

environment where holes in the mesh are eliminated as much as possible (upper

block in Figure 4.3). The result of this phase is a mesh representation that forms

the basis for the detection, categorization and recognition of furniture objects (lower

block in Figure 4.3). These two blocks will be further detailed in the following two

subsections.

The SOM+ mapping system is designed for autonomous manipulation platforms that

are equipped with a low-cost RGBD sensor on a pan-tilt basis (we use a PR2 robot

with a head-mounted Kinect sensor).

4.3.1 Acquisition of the Basic Mesh Representation

The robot acquires an accumulated RGBD point cloud by exploring the environ-

ment and panning and tilting its head in order to cover the desired view frustum.

The raw data are processed using a statistical noise removal kernel and then run

through a Moving Least Squares module as proposed by Rusu et al. [2008]. These

pre-processing steps enable a robust alignment of the point clouds and facilitate mesh

reconstruction and texture re-projection.

4.3.2 Registration

To create a consistent and accurate 3D mesh model, the individual point cloud views

are transformed into one common coordinate system and merged with each other.

The merging step is performed through the geometric alignment of three-dimensional

views using the estimated robot position as an initial guess using a variant of the It-

erative Closest Point (ICP) algorithm [Besl and McKay, 1992]. Here we employ the

more robust point-to-plane variant of ICP that uses a Levenberg-Marquardt algorithm

to minimize distances between points in one point cloud to respective correspond-

ing tangent planes in the other point cloud. To avoid the accumulation of registration

errors over many scans, which could cause inconsistencies in the map, we globally op-

38

4.3 Data Acquisition

Figure 4.4: Left-column: Testbed kitchens at TUM and Bosch RTC. Middle-column:
Poisson-based surface reconstruction. Right-column: Blending-based tex-
ture re-projection on the left surface mesh.

39

4 Semantic Object Maps

timize the registration in a second step using a graph optimization technique [Grisetti

et al., 2007].

4.3.3 Surface Reconstruction

To obtain a compact and fast-loading 3D model of the environment we use triangle

meshes as our geometric and visual representation for SOM+ maps. We apply a volu-

metric approach for reconstructing triangle meshes from the point clouds generated

by the registration module. The first step of this approach calculates a 3D indica-

tor function with positive values for points inside the model, and negative values

for points outside. Kazhdan et al. [2006] proposed an efficient way of calculating

this indicator function on a regular grid constructed of smoothly overlapping volu-

metric field functions using a system of Poisson equations. The second step extracts

the iso-surface of this indicator function by creating mesh vertices at zero-crossings

along edges of grid cells [Lorensen and Cline, 1987]. The middle column in Fig-

ure 4.4 shows the reconstructed triangle meshes of five kitchens. Each mesh consists

of roughly 50K triangles while the raw point cloud is made up of more than 18M

points.

4.3.4 Texture Reconstruction

In general, the environments are made out of a variety of different materials which

influence their appearance. Realistic reconstruction and reproduction of the surface

appearance greatly enhances the visual impression by adding more realism and can

thus be used for segmentation of surfaces, environment change detection, scene anal-

ysis [Xiong et al., 2011] or for object of daily use recognition [Pangercic et al.,

2011a]. To achieve the texture reconstruction we capture color images together with

point clouds. We use those images to reconstruct texture maps that are mapped onto

the 3D mesh. The first step of texture reconstruction computes a mapping for each

mesh 3D vertex position into the 2D texture domain. In our system we use a least-

squares method [Lévy et al., 2002] for finding the conformal mapping that minimizes

distortions introduced by the 3D-2D mapping. When stitching multiple images into

a texture, discontinuities on boundaries between images may become visible. For a

40

4.4 Data Interpretation

consistent texturing we want to minimize the visibility of those undesired artifacts.

Here we employ the blending technique proposed by Pitzer et al. [2010] to globally

adjust the color of all pixels simultaneously. The result is a texture composite without

visual boundary artifacts. The right column in Figure 4.4 presents the final texture

mapped meshes.

4.3.5 Next Best View Planning

In this chapter we focus on the SOM+ maps of the kitchenette parts of indoor envi-

ronments. Whole room data acquisition that requires next best view planning for a

mobile base was presented in our earlier work [Blodow et al., 2011] and is based

on the information gain approach in which we use costmaps to find those poses that

guarantee enough coverage of the unknown space as well as sufficient overlap with

the already containing data for successful registration.

4.4 Data Interpretation

4.4.1 Detection of Relevant Planes

Given the mesh generated by the texture re-projection module, our system first ex-

tracts relevant planes from it, categorizes them as walls, floor, ceiling, tables or other

horizontal structures and doors or drawers. The latter is achieved by first locating

the relevant planar structures, testing for the existence of handles and segmenting

the doors and drawers first passively, and then actively through an interaction of the

robot with the environment. As an exhaustive search for all planar structures is com-

putationally intractable, we only search for those that are aligned with the walls of

the room. The alignment of the latter is determined using a RANSAC-based approach

on the normal sphere, as in [Marton et al., 2010]. Since in many indoor environ-

ments, most of the surface normals estimated at every point coincide with one of the

three main axes of the room, these directions can be used to limit the plane extrac-

tion.

41

4 Semantic Object Maps

4.4.2 Detection of Handles

We identified two types of handle appearances3 that have different characteristics

with respect to sensor data: handles that have specular reflection and the ones that

do not. To tackle these two distinct cases we propose a two-fold approach that first

tries to recognize and localize a handle in a 3D model of the given environment. Shall

the latter fail we resolve to finding the handle in the parts of the 3D model that lacks

range measurements due to the reflection of the sensor’s projected infrared light

pattern on specular surfaces [Rühr et al., 2012]. We assert the handle’s pose and

dimension as SOM+’s assertional knowledge according to Figure 4.1. The example

result of such a handle detection is depicted in the bottom of Figure 4.2.

4.4.2.1 Detection of Handles without Specularity

We apply a version of the approach proposed by Rusu et al. [2009b] which uses

3D mesh data as an input and assumes that the handles are to be found at a certain

distance hd from a segmented plane of a door along the normal direction of the plane.

The parameter hd is given by the ADA (Americans with Disabilities Act) requirements

as the maximum distance from a door plane where a handle could be located. Their

pipeline gets all points whose distance from the plane model is smaller than hd , and

checks whether their projection on the plane falls inside the bounding polygon of

the plane. The actual handle is obtained by first projecting the handle on the door

plane, and then fitting the best line within a plane parallel to the door in it using a

RANSAC-based line fitting to infer the correct orientation. The geometric centroid of

the handle cluster is then used along with the orientation of the line and the plane

normal to grasp the handle.

4.4.2.2 Detection of Handles with Specularity

The handle detector described in the previous subsection works well when the handle

is thick enough to be visible in the 3D mesh acquired by the robot. In practice, we

3Please note that we only considered handles that correspond to the Americans with Disabilities Act:
http://www.ada.gov/pubs/ada.htm.

42

4.4 Data Interpretation

Figure 4.5: Visualization of the processing steps for the handle detector based on invalid
measurements. Top-left: example of two specular handles, top-middle: in-
valid measurements in place of specular handles as seen in a point cloud by
Kinect, top-right: final handle poses (green spheres) computed from the gen-
erated convex hulls visualized in the corner of the subfigure, bottom-left:
cabinet front face as binary mask (white), bottom-middle: invalid measure-
ments as binary mask (white), bottom-right: result of a bit-wise conjunc-
tion operation.

43

4 Semantic Object Maps

found that this strategy fails when the handles are too thin or specular, so that they

are not seen by the sensor. Technically, the Kinect sensor requires that a large enough

block of the projected pattern to be visible to compute the disparity [WillowGarage,

2010b]. In case of thin or specular handles the infrared pattern gets reflected, which

results in low correlations during block matching so that the sensor returns missing

values in these regions (see Figure 4.5, top-left).

Our key idea is thus to actively exploit patches with invalid measurements (“holes”)

in the depth images of the Kinect sensor, as they potentially indicate the presence of

a specular handle. To robustly detect these holes and restore their poses we proceed

as follows. Firstly we create two binary masks (2D images) of the invalid measure-

ments and projected points of the detected cabinet face (ROI). Next we perform a

series of dilation and erosion operations on such generated images to fill the holes

in the binary images. Following we perform a bit-wise conjunction of the two binary

masks and obtain an image containing handle candidates within the ROI (Figure 4.5,

bottom row). Following we apply an Euclidean clustering using a region growing ap-

proach and keep only clusters C that correspond to the expected size of the handle in

the image. To restore the position of the centroid of the handle we first compute the

convex hull H around every cluster ci from a set of clusters C , find the corresponding

3D point in the ROI point cloud for every point hi on the hull H and compute the

centroid (Figure 4.5, top-right). The orientation of the handle is calculated by first

converting the image with the clusters into an edge image using a Canny operator

and then using a RANSAC-based line fitting. The pose of the handle is finally trans-

formed into the coordinate frame of the base of the robot (with Z pointing upwards

and X pointing forwards) and the handle is grasped. To find the distance between

the handle and the supporting plane we make use of the PR2’s tactile sensors in its

fingertips: We steer the robot’s arm towards the transformed pose and the X compo-

nent of the handle position is determined as the contact point between the handle

and fingertip.

4.4.3 Articulation Model Learning

To open the cabinets we use a controller developed by Sturm et al. [2011]. The

controller assumes that the robot has already successfully grasped the handle of an

44

4.4 Data Interpretation

articulated object and that a suitable initial pulling direction is known. The robot

then pulls in this direction using an equilibrium point control (EPC) [Jain and Kemp,

2010] and observes the resulting motion of its end effector. From this partial trajec-

tory, it continuously (re-)estimates the kinematic model of the articulated object. The

robot uses the kinematic model to predict the continuation of the trajectory. To deal

with the workspace limits of the manipulator we make use of a secondary controller

that moves the omni-directional base of the robot so that the reachable volume of

the manipulator is maximized. After the motion of the end effector has come to a

rest, the range of valid configurations of the articulated object is estimated. In sum,

this gives us the full kinematic model of the articulated object. Finally, we sample the

so-generated trajectory and store the poses of the sampled points on the trajectory

as SOM+map spatial knowledge according to Figure 4.1. An example of the model

learning step is visualized in Figure 4.6.

Rotational

Figure 4.6: The PR2 robot operates the cabinet in the Bosch RTC kitchen and learns
the kinematic model. Top-left and middle figures depict a pair of doors with
the handle with specularity and a successful handle detection. Top-right and
bottom row figures show two snapshots from the opening sequence.

45

4 Semantic Object Maps

4.4.4 Generation of Door and Drawer Hypotheses

This module, initially proposed by Blodow et al. [2011], uses mesh vertices as seed

points around footprint of handles to estimate an initial model of the color distri-

bution of the door. The model consists of the intensity values’ median ĩ and median

average distance (MAD). The seed regions are expanded by adding neighboring ver-

tices whose colors match the estimated color model, using a basic region growing

algorithm based on the assumption that vertices on the door border are surrounded

by vertices with different color. The color model for a region is updated after all pos-

sible vertices are added, and the process is repeated until the values of ĩ and MAD

stabilize. After this step, fixtures that produce overlapping segments are marked for

further examination, while the rest are added to the SOM+ map, along with the rect-

angular approximations to the found planar segments.

4.4.5 Active Door and Drawer Hypotheses Validation through

Interaction

Concurrently with the learning of the articulation models we also make use of the

movement of the respective front of a cabinet and accept and reject the hypothesis

generated in the previous subsection. To achieve this we use a temporal difference

registration of two point clouds (of a closed and an open cabinet) as put forth by

Rusu et al. [2008], using a search radius parameter of 0.5 cm, which corresponds to

the noise level of the sensor data after the pre-processing step as discussed above.

We project the points that only appear in the second point cloud (corresponding to

the door or the drawer planeSEG) by applying the inverse of the transform between

the first and the last pose of the stored opening trajectory. We then obtain the con-

vex hull around such projected planePROJ , and assuming an environment based on

rectangular furniture, we extract the width and the height of the cabinet front. For

prismatic joints such as in case of drawers, we compute the distance between the two

planes, which gives us the maximum opening distance and the depth of a drawer.

For rotational joints, we assume that the depth of the cabinet is the same as the

depth of the horizontal surface above it. We store poses and dimensions of cabinets

46

4.5 Results

as SOM+map’s assertional knowledge according to Figure 4.1. Result of the final seg-

mentation is shown in the bottom of Figure 4.2.

4.5 Results

We evaluated the proposed integrated approach in five kitchens (see Figure 4.4) by

measuring the quality of the generated SOM+ map in terms of the handle re-detection

and the re-opening of the doors using learned and stored articulation models, and by

measuring the average run times needed to generate one instance of SOM+ map. In

the accompanying video4 we also present a range of possible queries that our system

can answer but are currently still difficult to evaluate quantitatively.

kitchen #cabinets #trials #handle #opening #opening
detection success success
success (w/o model) (w model)

1 3 9 9 (100%) 8 (89%) 9 (100%)
2 5 15 15 (100%) 15 (100%) 15 (100%)
3 7 21 18 (86%) 19 (90%) 18 (100%)
4 1 3 3 (100%) 0 (0%) 3 (100%)
5 6 18 18 (100%) 14 (78%) 18 (100%)

Total: 22 66 63 (95%) 56 (85%) 66(100%)

Table 4.1: Results of detecting the handles and opening the cabinets based on the infor-
mation derived from the SOM+ map.

4.5.1 Door Opening

In this experiment, we had the PR2 robot detect handles and three times open each

of the 22 cabinets within five different kitchens (see Figure 4.4). Due to the PR2’s

limited arm reach, we omitted the cabinets with handles located above 1.2m and

the cabinets positioned in constrained spaces such as the ones adjacent to walls. The

objective of the experiment was to asses the detection rate of handles given their

a priori poses stored in the SOM+ map, and to evaluate the robustness of a cabinet

4http://youtu.be/B7kMviETh50

47

4 Semantic Object Maps

opening given their a priori learned and stored articulation models. The results of the

experiment are presented in Table 4.1. In column four we notice that the detection

of the handle only failed three times. All failures occurred on a cabinet located next

to the metal dishwasher that generated the invalid measurements which our handle

detection algorithm took as a handle hypothesis. Column five presents the success

rate of opening the cabinets without a priori learned model and column six with the

a priori learned model. Playing back the stored trajectories turned out to be be 100%

successful.

4.5.2 Performance Profiling

In Table 4.2 we broke down our processing pipeline into a set of independent com-

ponents and profiled their performance on Intel Xeon W3520 desktop computer with

2.67GHz processor and 24GB of memory. Total time amounting to building of one

SOM+ map of one kitchenette from the scratch is 1.2h. Querying times for the infor-

mation stored in SOM+ map are around 1s/quer y .

Component Runtime
Data acquisition and pre-processing 0.1h
Registration 0.4h
Surface reconstruction 0.3h
Texture re-projection 0.3h
Door opening and segmentation 0.1h
Generation of SOM+map 1s
Total 1.2h

Table 4.2: Execution times for building of SOM+maps (Figure 4.3).

4.5.3 SOM+ Example Queries

The bottom part of Figure 1.1 and an accompanying video5 show different queries

that can be answered by the SOM+ map representation. Let us consider the following

query as an example:
5http://youtu.be/B7kMviETh50

48

4.6 Discussion

1 ?− r d f _ t r i p l e (knowrob : ’ in−ContGeneric ’ , knowrob : ’ Cup67 ’ ,B) ,

2 rdf_has (B , knowrob : openingTra jec tory , Tra j) ,

3 f i n d a l l (P , rd f_has (Traj , knowrob : pointOnTra jectory , P) ,

4 Po in t s) .

It reads the trajectory for opening the container where cups are stored in by first

computing the ’in-ContGeneric’ relation based on the poses and dimensions of the

objects. For the resulting containers, it is checked whether there is an opening trajec-

tory attached, and if that is the case, all points on this trajectory are returned. This

query shows how the semantic map representation can translate qualitative abstract

queries into information that can be used to parametrize the robot’s actions such as

the trajectory. In Chapter 7, we show how different kinds of knowledge can be inte-

grated with semantic maps, such as statistical relational information [Tenorth et al.,

2010].

4.6 Discussion

In this chapter we presented an integrated system for semantic mapping which en-

ables the robot to build Semantic Object Maps that support rich and powerful queries.

While having such queries is appealing and useful at first, we also evaluated and val-

idated the system and proved that robot with SOM+maps can execute its tasks much

faster and more reliable. We are aware that some of our perceptual heuristics do not

fit (to e.g. old fashioned doors or doors without handles) and will in the future con-

tinue working towards the ensemble of experts-based methods (first version of such

system we implemented and describe in Chapter 6.5) to alleviate that. Furthermore,

we will also integrate our algorithm for the recognition of beds, chairs, etc. [Mozos

et al., 2011] to scale towards mapping of whole apartments. Another avenue worth

exploring to overcome the heuristic nature of the perceptual routines is to learn prob-

abilistic models for the appearance of furniture entities. To this end we will use the

textured component of the photo-realistic textured mesh. This however requires huge

training data bases [Mozos et al., 2011] and the scaling of probabilistic learning and

reasoning. Our system requires approximately 3h to build a SOM+map of a kitchen

room. Even though this contributes to the long robot setup time, we believe that it is

still permissive given it is required to be done only once at the beginning of robot’s

inception as a robot companion.

49

Chapter 5

Interactive Segmentation of Textured and
Textureless Objects

5.1 Introduction

A robot operating in human environments may be required to perform complex dex-

terous manipulation tasks in a variety of conditions. Personal robots are likely to

perform tasks that require them to interact with objects that populate human envi-

ronments. For example, when emptying a shopping bag [Klingbeil et al., 2011b] the

robot is likely to be confronted with a cluttered unstructured scene like the exam-

ples shown in Figure 5.1. In order to successfully perform this task, the robot must

be able to detect the individual objects. Without the ability to interact with the en-

vironment, it can be difficult to distinguish between the object boundaries and the

background.

To further exemplify this case we point to Figure 5.2 which consists of objects of sim-

ilar colors, shapes and sizes. To demonstrate how difficult is it to segment them we

tested three state-of-the-art segmentation algorithms operating in depth, RGB and

RGBD space respectively on the given scene. We notice that they are far from being

optimal in the cases of i) same color objects (a coffee mug and a saucer), ii) similar

shape objects and occlusions (a white and a blue box), iii) stacked objects (an egg

and a plate) and also in the case of iv) a sensor default (cutlery in this case appears

transparent to the Kinect sensor). Following structure from motion approaches, one

could observe the scene from various views and apply merging of hypotheses. This

approach would however fail in the case of non-navigable spaces for the robot. While

one can certainly fine tune the algorithms’ parameters for a certain setup and envi-

ronment, it is easier and arguably more natural to exploit the robot’s embodiment

51

5 Interactive Segmentation of Textured and Textureless Objects

Figure 5.1: Top: PR2 robot successfully picking-up the object after segmenting it in clut-
ter using segmentation algorithm for textured objects. Bottom: the result of
clustering of two highly cluttered scenes.

52

5.1 Introduction

and interaction capabilities in order to obtain a better understanding of its environ-

ment. Reaching out to get a sense of what is around is the way how infants get to

know their “near space” according to Piaget’s theory of spatial cognition in the senso-

rimotor stage (until the age of 2), and getting a hold of connectivity (i.e. object unity)

is an important factor in the infant’s understanding of objects at that stage [Cohen

and Cashon, 2003].

To solve above and similar challenges we, similar to Katz and Brock [2011] and Bergström

et al. [2011], propose a system that uses a robot arm to induce motions in a scene

to enable effective object segmentation. Our system employs a combination of the

following techniques: i) estimation of a contact point and a push direction of the

robot’s end effector by detecting the concave corners in the cluttered scene, ii) fea-

ture extraction using features for textured and textureless objects, iii) tracking using

algorithms optimized for the before selected features and finally, iv) two novel clus-

tering algorithms to segment both types of the objects.

Research in passive perception has traditionally focused on static images and seg-

mented images based on a set of features such as color [Bruce et al., 2000] or higher

order features like in graph cut approaches [Boykov and Kolmogorov, 2004]. Other

approaches, such as that of Vidal et al. [2004], employ camera motion for image

segmentation.

Segmentation of rigid objects from a video stream of objects being moved by the robot

has been addressed by Fitzpatrick [2003] and Kenney et al. [2009]. These works are

based on the segmentation of objects from a video stream of a pre-planned arm

motion, use a simple Gaussian model of the color values to infer the possible motion

and a graph cut algorithm for the final object segmentation. These approaches can

deal with textured as well as textureless objects. In contrast, our arm motion is not

pre-planned but adapts to the scene and we make use of the 3D data to segment the

object candidates from the background.

Katz and Brock [2011] address the problem of segmenting the articulated objects

(e.g. drawer). A Lucas-Kanade tracker and a set of predictors (relative motion, short

distance, long distance, color, triangulation and fundamental matrix) are applied to

obtain rigid body hypotheses (in a form of a graph) and a subsequent fixation point

on the object. The latter is used to segment an object based on color, intensity and

53

5 Interactive Segmentation of Textured and Textureless Objects

a b c

fed

Figure 5.2: Top: The service robot PR2 aiming to segment the scene consisting of tex-
tureless object. Results of the scene segmentation using Region Growing
method [Zhan et al., 2009] (b), Part-Graph-based Hashing [Marton et al.,
2012] method (d) and Graph-based segmentation method [Felzenszwalb and
Huttenlocher, 2004] (a). These methods work in depth, RGB and RGBD
space respectively and all underachieve due to the complexity of this chal-
lenging task. On the other hand blue egg on the blue plate (e) was correctly
segmented using the interactive approach presented in this chapter. Subfig-
ures c and f: 3 white objects segmented correctly showing the generality of
the approach for multiple objects.

54

5.1 Introduction

texture cues. The major limitation of this approach is the pre-planned arm motion

and the time needed to break the graph of object hypotheses into the subgraphs

using a min-cut algorithm.

Bergström et al. [2011] propose an approach to interactive segmentation that re-

quires initial labeling using a 3D segmentation through fixation which results in a

rough initial segmentation. The robot interacts with the scene to disambiguate the

hypotheses. Points in the motion space are clustered using a two component Gaus-

sian mixture model. A limitation of the system lies in the number of objects, which

was never greater than two in the experimental results.

Some approaches examine how the perturbations can be planned to accumulate a

sequence of motion cues. Gupta and Sukhatme [2012] use a set of motion primitives

consisting of pick and place, spread, and tumble actions to sort cluttered piles of

single-color objects. Euclidean clustering is used in the distance and the color space

to classify the scenes as uncluttered, cluttered, or piled. Distance-based clustering is

limited as its success is subject to correctly selected threshold. Color-based clustering

may fail in the presence of sudden lighting changes. Additionally, this approach can

not deal with heavily textured objects but could work well in combination with ours.

Chang et al. [2012] present a framework for interactive segmentation of individual

objects with an interaction strategy which allows for an iterative object selection,

manipulation primitive selection and evaluation, and scene state update. The manip-

ulation primitive selection step uses a set of heuristics to maximize the push action,

however, it is unclear in how much this component contributes to the successful

segmentation of the objects. The manipulation primitive evaluation step uses sparse

correspondences from the Lucas-Kanade optical flow tracker and computes a set of

transforms which are color matched against a dense point cloud. A likelihood ratio of

a target being a single item or multiple items is determined based on the magnitude

of the transform motion and the percentage of dense point matches. The major lim-

itation compared to our work is that they do not estimate corner contact points and

do not accumulate the transforms across the history of push actions.

Finally, there is a corpus of works dealing with the estimation of the articulation

models for drawers, boxes, etc. [Yang et al., 2011; Sturm et al., 2010]. The common

problem for both approaches is in that they assume the presence of a large, moving

plane which they can reliably detect by running e.g. a RANSAC algorithm on the

55

5 Interactive Segmentation of Textured and Textureless Objects

input point cloud and which unanimously represents the part of the object they are

looking for.

Overall, we present the following main contributions for the segmentation of scenes

consisting of textured and textureless tabletop objects.

Textured Objects:

• A heuristic for finding a contact point and a push direction for the robot’s ma-

nipulator to induce distinct motions to effectively separate the objects (Sec-

tion 5.4).

• A novel clustering algorithm for 2D-feature trajectories that is based on sam-

pling rigid motion hypotheses for the a priori unknown number of scene objects

(Section 5.5.1);

Textureless Objects:

• A set of RGBD features suitable for the tracking of flat and round textureless

object (Section 5.5.2.1);

• A novel graph-based algorithm for the clustering of 3D-feature trajectories, in

which graph edges measure the dissimilarities between the RGBD features’ dis-

tances (Section 5.5.2.3);

• The inclusion of a static scene pre-segmentation algorithm and a probabilistic

method for the detection of over or under-segmentation (Section 5.3);

• A dense model reconstruction algorithm that makes use of the already clustered

features (Section 5.6).

Finally we also present the integration of all the above into two separate pipelines

using ROS as depicted in Figure 5.3 and Figure 5.4.

This chapter is organized as follows: System pipelines for segmentation of both types

of the objects is presented in Section 5.2, pre-segmentation step for textureless ob-

jects in Section 5.3 and contact and push point estimation in Section 5.4. Actual seg-

mentation algorithms are outlined in Section 5.5, which is followed by Section 5.6

56

5.2 System

about dense model reconstruction. Finally we present the experimental results and

conclude with the discussion1.

5.2 System

5.2.1 Textured Objects

The overall system schema for interactive segmentation of textured objects is de-

picted in Figure 5.3 and consists of four main steps. In the first, a 3D point cloud of a

static tabletop scene with household items is captured by a depth camera (in this case

using the Kinect). Points belonging to the table are separated from points belonging

to the group of objects. The shape of the group of objects is used to infer a contact

point and a push direction for the robot’s manipulator.

In the second step we capture a sequence of Kinect RGB camera images of the scene,

while the robot pushes its end effector into the group of objects. Shi-Tomasi features

are extracted from the first camera frame and then tracked over subsequent frames

using optical flow. Once object motion is detected, the robot continues moving its

end effector a predefined distance along the push direction. Since we assume the

robot arm is calibrated and we have a model of its geometry, we employ a self-filter

to exclude features from the robot’s arm.

In the third step, the recorded feature trajectories are clustered and assigned to object

hypotheses. Finally, in the fourth and the last step the dense model is reconstructed

using the region growing algorithm where the clustered point features are used as

seed points.

57

5 Interactive Segmentation of Textured and Textureless Objects

Tabletop
Depth
Image

Find
Cluster

of Objects

Input Image Input Point Cloud

Detection of
Concave Corners,

Push Point and
Direction

Shi-Tomasi
Feature

Extraction

Arm
Navigation

Optical Flow
Feature
Tracking

Feature
Trajectory
Clustering

Euclidean
Clustering on
the Clusters

Region Growing
in Normals

Space

INPUT DATA

PUSH POINT / DIRECTION ESTIMATION

FEATURE TRACKING

CLUSTERING

DENSE MODEL RECONSTRUCTION

Figure 5.3: This subsystem consists of four main nodes: a node for estimating the initial
contact point and the push direction, a node that extracts 2D-features and
tracks them while it moves the robot arm in the push direction, an object
clustering node that assigns the tracked features to objects and finally, a
dense model reconstruction node.

58

5.2 System

Obtain Oversegm.
Parts and Labels
of the Point Cloud

Push Point
Estimation

Input
Point Cloud

Extract
 the RGBD
Features

Arm Navigation
And Feature

Tracking

Euclidean
Clustering on
the Clusters

Region Growing
in Normals

Space

Relative
Distance

Calculation

Graph-based
 Clustering

INPUT DATA

STATIC OBJECT PRE-SEGMENTATION

FEATURE TRACKING

TRAJECTORY CLUSTERING

DENSE MODEL RECONSTRUCTION

Figure 5.4: System pipeline for the segmentation of textureless objects.

59

5 Interactive Segmentation of Textured and Textureless Objects

5.2.2 Textureless Objects

Our approach for segmentation of textureless objects consists of five main steps as

depicted in Figure 5.4 and demonstrated in an accompanying video2. In the first

step we obtain an RGBD point cloud from the Kinect sensor. In the second step we

perform static object pre-segmentation which results in a set of categorized object

hypotheses O, with the category being either flat or round, and a list of object parts

Po that every object o ∈ O consists of. Having obtained the object hypotheses O we

infer which hypothesis is segmented correctly. For that we count the number of parts

that the respective object hypotheses O consists of and then sample from the Poisson

distribution according to the Equation 5.1. After obtaining the probability of the scene

being segmented correctly we decide if the interactive segmentation algorithm should

be used or not.

We use categorization of the objects as a prior for tracking by extracting and tracking

line and corner RGBD features on the flat object hypotheses and circle and cylinder

RGBD features on the round ones in the third step. Finally, we execute the arm mo-

tion movement in 1cm intervals until we reached a maximum of pre-defined number

of pushes. All of the features are being tracked during the interaction and the tra-

jectories of feature centroids are being saved. Based on relative distances between

the feature centroids, the graph-based algorithm for the trajectory clustering is ap-

plied. The output of the algorithm is the number of objects belonging to a certain

object hypothesis o and the association between the object number and the parts

p1, . . . , pn ∈ Po that belong to it (fourth step). In the fifth and the last step the dense

model is reconstructed using the same region growing algorithm as in the textured

objects case but with the difference that clustered RGBD features are used as seed

points.

1System integration, graph-based trajectory clustering algorithm and dense model reconstruction were
implemented as joint work with our colleagues Karol Hausman, Ferenc Balint-Benczedi and Zoltan-
Csaba Marton [Hausman et al., 2013].

2http://youtu.be/Bu4LayrGC1s

60

5.2 System

Figure 5.5: Two test scenes in the left and right column respectively. First row: original
scenes; second row: extracted RGBD features before the interaction; third
row: parts P from the static segmentation; fourth row: object hypotheses
O from the static segmentation; fifth row: tracked RGBD features after in-
teraction; sixth row: relative distances between the tracked features. Plots
with the ramp denote distances between features on different objects and
plots with the constant values denote distance between features on the same
object.

61

5 Interactive Segmentation of Textured and Textureless Objects

5.3 Textureless Objects: Static Pre-segmentation

For the interactive segmentation of textureless objects we first apply a set of priors

which aid us to select the right feature for the right type of the object. We make

use of the classification method presented by Marton et al. [2012] which is based

on part-graph-based hashing. The basic idea behind it is that segmenting objects

accurately in a cluttered scene does not always yield the expected result, as seen in

Figure 5.5 row 4, and can lead to classification failures, but over-segmenting is easily

realizable [Malisiewicz and Efros, 2007; Lai and Fox, 2010; Mozos et al., 2011]. We

use the classification approach described by Marton et al. [2012] for categorizing

over-segmented object parts in cluttered scenes by considering combinations of these

parts to compute features and classify these efficiently with the aid of hashing. The

result is a set of labeled parts with geometric categories that can be grouped in order

to obtain object hypotheses. Based on statistics computed from the training data on

single objects, we can estimate how likely it is that an object hypothesis is correct.

In the rest of the section we summarize the part-graph-based hashing algorithm

briefly and show how we use it to guide the interactive segmentation.

5.3.1 Decomposition into Part Graphs

In order to find the parts (p1, . . . , pn ∈ Po) in the point clouds we use the clustering

criteria presented by Mozos et al. [2011], such that patches with a small curvature

are considered, as shown in Figure 5.5 row 3. For each part we subsequently compute

GRSD- (Global Radius-based Surface Descriptor [Kanezaki et al., 2011]) feature and

store it for later use. We then extract the part neighborhoods by checking if the phys-

ical distance between two parts falls below a threshold of 2cm (considering Kinect

noise level [WillowGarage, 2010a]), and build a connectivity matrix. Starting at each

vertex of the connectivity matrix, we create all the possible groupings up to a certain

size (eight parts in the case of single objects and four in the case of cluttered scenes)

in order to obtain the “soup of segments”, and create the groups’ hash codes using

isomorphic graph metrics. The hash codes are then used to further split the feature

space ending up with a separate classifier (nearest neighbors in our case) for each

hash code. During the classification phase we obtain confidence votes only from those

62

5.3 Textureless Objects: Static Pre-segmentation

classifiers, which were created for the hash codes that are found in our scene. Based

on these votes a decision is made upon the class of the segments. For a detailed

description of this approach please refer to Marton et al. [2012].

5.3.2 Object Part Categorization

The classifier was trained on a subset of the dataset from Lai et al. [2011a] as pre-

sented in Marton et al. [2012]. The choice of the feature determined for each part,

namely the GRSD- is motivated by the fact that we are dealing with novel objects not

seen before by the classifier, so in order to successfully categorize them we need to

use geometric features. Additionally, the low dimensionality and additive property3

make GRSD- a suitable choice for such task.

Objects (o1, . . . , on ∈ O) are categorized in six geometrical categories: sphere, box,

rectangular/flat, cylinder, disk/plate and other. Doing this we get a better a discrim-

ination between different objects. After having the results for the six geometrical

classes, we merge them together into different object types considering everything

spherical and cylindrical being round, and disks/plates, flats and boxes as flat ob-

jects. With the category other we thus get three object types, whereas most household

objects fall into the first two [Marton et al., 2011].

In this system we omit the category other and use the other two in order to determine

if the interactive segmentation is needed, and if yes, which RGBD features to extract

and track in the respective part of the point cloud in the given scene.

5.3.3 Verification of Correctness of Segmentation

Since the geometric categorization of parts does not give the correct grouping of

these parts to form objects, simply grouping the parts of the same category together

does not always separate the objects, especially if classification errors occur too. A

method of voting for object centroids followed by a model fitting step was described

by Mozos et al. [2011], but we assume having no CAD models for test objects in

3If the feature is additive, the descriptor that would be computed for the object is the same as the sum
of the features of its segments.

63

5 Interactive Segmentation of Textured and Textureless Objects

this system. We would also have to consider 6DOF poses, complicating the approach

considerably.

Whereas the segmentation of objects is not uniquely defined, there are still regular-

ities in the number of parts they are broken up into. As shown in Figure 5.6, the

distribution of the number of different object parts, generated in the training stage

of the part-graph-based hashing algorithm, can be modeled as a Poisson distribution,

with an average error of 1.7% (and at most roughly 9%).

The Poisson distribution described by Equation 5.1 describes the probability of dif-

ferent number of events occurring in a given interval, which we interpret here as the

number of part boundaries encountered over the surface of the scanned object. The

parameter λ is the mean of number of parts, which in our case is 0.876 for flat, 2.166

for round, and 3.317 for other object types.

P(k par ts f orming a single ob jec t) = λk exp−λ /k! (5.1)

This simple model is used to judge if a group of parts of the same geometric cate-

gory forms a single object or if the robot should try to interact with it. We cut the

probabilities at 0.3 for flat and 0.15 for round objects.

Example: To demonstrate this, from the middle part of Figure 5.6 we can deduce

that the flat object is most likely to consist of 1 or 2 parts. The test scene with 2 boxes

(Figure 5.5) was categorized as one object (row 4), but in row 3 we notice that there

are 6 parts in the scene. The probability for 1 object consisting of 6 parts is below

the 0.3 value according to the Poisson distribution and clearly indicates an over-

segmentation error and the need for the robot to segment this region interactively.

5.4 Contact Point Estimation and Pushing

To perform object segmentation based on the individual object motions induced by

the robot, appropriate contact points between the objects in the scene and the robot’s

end effector must be determined. Furthermore, the direction the robot’s end effector

should move must be chosen.

64

5.4 Contact Point Estimation and Pushing

Figure 5.6: Distribution of number of parts (see Figure 5.5 row 3) per object category
and their approximation with a Poisson distribution. Courtesy@Marton.

65

5 Interactive Segmentation of Textured and Textureless Objects

In this work, we consider a cluttered tabletop scene. Since most commonly encoun-

tered household items have convex outlines when observed from above [Marton

et al., 2011], our system uses local concavities in the 2D contour of an object group

as an indicator for boundaries between the objects. The robot separates objects from

each other by pushing its end effector in between these boundaries. In the follow-

ing, we describe a heuristic to determine a contact point and a push direction from

depth-sensor data.

(a) (b)

(d)(c)

Figure 5.7: Estimation of the contact point and the push direction. Top-left figure: orig-
inal scene. Top-right figure: depth image as seen from the virtual camera po-
sitioned above the table. Bottom-left figure: Extracted contour of the object
cluster, convex corners are shown in green, concave corners in red. Bottom-
right figure: Direction of the dominant eigenvectors at the corners.

66

5.4 Contact Point Estimation and Pushing

5.4.1 Contact Points from Concave Corners

We restrict the problem of finding a contact point to the table plane. Our algorithm

employs 2D-image processing techniques to select contact point candidates. The

table plane is estimated from the depth-camera’s point cloud data using RANSAC

[Fischler and Bolles, 1981] and separated from the object points. The remaining

cloud points are projected into a virtual camera view above the table. Since the pro-

jected cloud points are sparse, we employ standard morphological operators and 2D-

contour search [Suzuki and Abe, 1985] to identify a closed region, R, corresponding

to the group of objects. These steps are shown in Figure 5.7.

This region’s outer contour is then searched for strong local directional changes by

applying a corner detector and subsequently the corners that are placed at local con-

cavities are selected. As in the Shi-Tomasi corner detector [Shi and Tomasi, 1994],
we compute the corner response for each pixel location p = (px , py) based on the

covariance matrix Z:

Z(p) =

⎡⎣ ∑S(p) I2
x

∑
S(p) Ix I y∑

S(p) Ix I y

∑
S(p) I

2
y

⎤⎦ , (5.2)

where Ix and I y are the image gradients in x and y direction and S(p) the neighbor-

hood of p. A corner detector response is recorded if min(λ1,λ2) > θ , where λ1,λ2

are the eigenvalues of Z and θ is a given threshold. We also check for roughly equal

eigenvalues, i.e. λ1 ≈ λ2, ensuring that there are strong gradient responses in two

approximately orthogonal directions. The local maxima of the smoothed corner re-

sponses, are the detected corners illustrated as circles in Figure 5.7.

The concavity of each corner is estimated using a small circular neighborhood. If a

larger portion of this neighborhood is inside R rather than outside, the corner must be

a concave part of R’s contour and is shown red in Figure 5.7. This method effectively

handles noise in terms of directional changes. Only the concave corners are consid-

ered contact point candidates, unless no corner is found fulfilling the above concav-

ity criterion. This method computes potential contact points for only one group of

objects, which the robot wants to break up for segmentation. If the scene contains

multiple object groups the method will be applied to each group separately.

67

5 Interactive Segmentation of Textured and Textureless Objects

5.4.2 Push Direction and Execution

The push direction at a corner is set to be parallel to the eigenvector corresponding

to the larger eigenvalue of the covariance matrix Z(p) in Equation 5.2. Intuitively,

the dominant eigenvector will align with the dominant gradient direction. However,

at a corner with two similar gradient responses in two directions, the eigenvector

becomes the bisector. As only corners with roughly equal eigenvalues are chosen as

potential contact point candidates, the eigenvector of each contact point candidate

will bisect the angles of the contour at the corner location. as shown in Figure 5.7.

After determining the contact point candidates and the push directions in the 2D

table plane, the end effector is moved within a constant small distance parallel to the

table plane. A contact point is below an object’s center of gravity and close to the

friction vector between the object and the table, which avoids toppling over objects

while pushing them. When there are multiple contact point candidates, the closest

contact point to one of the end effectors and physically reachable by the robot arm,

is selected.

5.4.3 Simulations

We carried out several simulations in the physics-based simulator Gazebo4 to vali-

date our corner pushing heuristic. To verify that pushing at corners is indeed more

effective, we spawned different scenes in Gazebo with two or three closely placed

objects. Objects were flat and round, in different orientations and arranged such that

they were in solid contact or in single point contact. We then simulated pushing at

these objects with a PR2 gripper at many different contact points along the bounding

box of the objects and in many different directions. More precisely, we chose points

along the bounding box spaced 2cm apart and for every such point, the gripper sim-

ulated a sequence of 2 pushes in 7 different directions 15◦ apart (See Figure 5.8).

The starting gripper pose and the object poses before and after every push were

recorded. Then Shi-Tomasi features with known but randomly determined locations

were spawned artificially on the objects. Based on the recorded object poses, the loca-

tions of all the features were computed after every push. This enabled us to compute

4http://gazebosim.org/

68

5.4 Contact Point Estimation and Pushing

the simulated optical flows. The feature trajectories so obtained were then clustered

using Algorithm 1. The contact points for the pushes which resulted in a success-

ful segmentation of objects were then observed and the number of successful corner

pushes were counted. A push was classified as a corner push if the contact point is

less than 1cm away from an object corner. We carried out 5 runs5 on every of 24

Figure 5.8: Screenshots from the Gazebo simulation of a two object scene (left) and the
corresponding visualization of the segmentation result. The black arrows in
the left image show the 7 push directions for a single contact point. The dots
on the objects in the right image represent features and their colors represent
the cluster they were assigned to for a particular successful push sequence.
The red arrows represent the starting gripper positions and directions of all
the successful push sequences in a simulation run. Courtesy@Gupta.

different scenes (11 scenes with 2 objects, 13 scenes with 3 objects), which resulted

in an average of 381.5 push sequences for a scene out of which an average of 14.9

pushes were successful in segmenting all the objects in the scene correctly. Out of

these, 7.25 pushes were corner pushes. There were an average of 10 object corners

in each scene. From this it follows that there were on average 70 corner pushes and

311.5 other pushes. This gives the segmentation success of 10% for the corner pushes

and 2.4% for the non-corner ones. The reason for the low overall segmentation result

5Please mind that since Gazebo uses an ODE engine which is based on linear complementarity problem
constraint formulation and since the simulation is defendant on the CPU load, the runs are not fully
deterministic.

69

5 Interactive Segmentation of Textured and Textureless Objects

is on the one hand in that the scenes in the simulation included the single contact

points between the objects and on the other hand in that various non-favorable ori-

entations per contact point were computed and executed. We observed that corner

pushing was successful in all the scenes while side pushing was successful only when

the objects were in single point contact. When the objects were next to each other

and similar in size, pushing at the sides resulted in the objects moving together as a

single rigid body, thus making the algorithm fail. In such cases, only corner pushes

succeeded. These simulations thus prove the benefits of corner pushing irrespective

of object arrangement.

5.5 Object Segmentation

Once the robot’s end effector touches the objects, the resulting object motions are

used to discriminate between the different items on the table. Features are tracked

in the scene and the resulting feature trajectories are clustered. The clustering is

based on the idea that features corresponding to the same objects must follow the

same translations and rotations. Since the approach for feature clustering differs for

textured and textureless objects we split the section in the following accordingly.

5.5.1 Textured Objects

The following assumptions with respect to textured objects were made:

• Texture: Each item has some texture over most of its surface, such that texture

features can be used to appropriately represent an object for tracking.

• Rigid Body: Each item is a rigid body and not subject to deformations when

interacting with the robot’s end effector or other objects.

5.5.1.1 Feature Trajectory Generation using Optical Flow

We take advantage of the objects’ texture properties by extracting i = 1...N Shi-

Tomasi features [Shi and Tomasi, 1994] at the pixel locations {pi,0}N
i=1 from the ini-

70

5.5 Object Segmentation

tial scene at time t = 0, i.e. before an interaction with the robot took place. Fea-

ture locations are extracted using the same Shi-Tomasi feature detector as described

in Section 5.4.1 but in this case on the 2D textured image (depicted in bottom row

of Figure 5.1) When the robot’s end effector interacts with the object, a Lucas-Kanade

tracker [Bouguet, 2002] is used to compute the optical flow of the sparse feature set.

Using the optical flow, each feature’s position pi,t is recorded over the image frames

at time t = 0...T while the robot is interacting with the objects. That is, for each

successfully tracked feature i, a trajectory Si = {pi,t}T
t=0 is obtained. The features are

tracked with the average time resolution of 1.047s which is the average time needed

to process one image frame.

5.5.1.2 Randomized Feature Trajectory Clustering with Rigid Motion
Hypotheses

After calculating the set of all feature trajectories � ≡ {Si}N
i=1, the goal is to partition

this set such that all features belonging to the same object are assigned the same

object index ci ∈ {1, .., K}, where the number of objects K is not known a priori.

In other work on moving object segmentation, clustering has been applied directly to

optical flow vectors [Klappstein et al., 2008; Brox and Malik, 2010]. However, in this

context, where the robot induces the motion, the objects tend to be subject to strong

rotational motions, which cause strongly non-collinear optical flow vectors. Instead,

we take advantage of the rigid body property of objects and assume that each subset

of the features trajectories� belonging to the same object k are subjected to the same

sequence of rigid transformation Ak ≡ {Ak,t}T−1
t=0 , i.e. we cluster features with respect

to how well rigid transformations can explain their motions. As the objects only move

on the table plane, we restrict a possible rigid transformation A to be composed of

a 2D-rotation R, a 2D-translation t and a scaling component s, i.e. A = s · [R|t]. The

scaling component compensates for the changes in size of the projected objects in the

camera image. The actual scaling is not linear due to the perspective view, however,

the error resulting from this linearization is small as the objects are displaced only in

small amounts.

The clustering algorithm we propose is outlined in Algorithm 1, and combines a divi-

sive clustering approach with RANSAC-style model hypothesis sampling. At the core

71

5 Interactive Segmentation of Textured and Textureless Objects

t = 0

A0

A1

t = 1

t = 2

Figure 5.9: Feature trajectory clustering with rigid motion hypotheses: Each feature i,
depicted as a circle, is tracked over each time step t, forming a trajectory of
feature positions Si. After the robot finished its push motion, two features
u and v, depicted as red circles, are randomly selected. From their trajecto-
ries Su and Sv, a rigid transformation Ak,t is calculated that represents the
rigid motion of u and v for each time increment from t to t + 1. If u and v
are on the same object, all other features will move according the sequence
of rigid transformations Ak = {Ak,t}T−1

t=0 , which serves as the rigid motion
hypotheses for an object (e.g. the blue box). As the dark blue feature belongs
to the same object as u and v, its motion can be explained by this motion
hypothesis, and will thus be assigned to the same object. The motions of the
dark green features located on a different object are poorly modeled by this
motion hypothesis, and thus trigger the algorithm to create another motion
hypothesis.

72

5.5 Object Segmentation

of the algorithm (lines 4–12, see also Figure 5.9), we randomly draw 2 tracked fea-

tures u,v and estimate a sequence of rigid transformations A1,t from their optical flow

motions as first model hypothesis. The feature trajectories Si that can be explained

well by A1,t are considered "model inliers" and are removed from set of feature tra-

jectories. From the remaining set, again 2 features are drawn to create a second

model hypothesis A2,t and all inliers are removed. This process repeats until there are

not enough features left to create a new model hypothesis. This process results in K

hypotheses.

Algorithm 1: Randomized feature trajectory clustering. Mind that for the sake of
clarity we do not write out the subscript m in the text explaining this algorithm.

1 Input: Set of feature trajectories � ≡ {Si}N
i=1 where Si = {pi,t}T

t=0

2 Output: object cluster count K , object cluster assignments c=
�

ci
�N

i=1 where
ci ∈ {1, .., K}

3 for m := 1 to M do
4 km := 1, �m := �
5 while |�m| ≥ 2 do
6 draw 2 random trajectories Su, Sv ∈ �m

7 generate sequence of rigid transformations: Akm
≡ {Akm,t}T−1

t=0 from
(Su, Sv)

8 for Sj in �m do
9 sum squared residuals w.r.t to Akm

: rkm, j :=
∑T−1

t=0 ‖p j,t+1−Akm,tp j,t‖2
2

10 if rkm, j < T HRESHOLD then
11 �m := �m \ {Sj}
12 km := km+ 1

13 Km := km

14 for Si in � do
15 Assign each trajectory to best matching rigid transformation sequence:

c∗m,i := argmin{1,..,km,..,Km−1} rkm,i, where rkm,i :=
∑T−1

t=0 ‖pi,t+1−Akm,tpi,t‖2
2

16 Select best overall matching set of rigid transform sequences:

m∗ := argminm

∑Km

km=1

∑
i rkm ,i ·1[c∗m,i=km]∑

i 1[c∗m,i=km]
17 Return: K := Km∗ , c :=

	
c∗m∗,i

N

i=1

We bias the sampling of the 2 points (line 6) such that drawn feature pairs are not

likely to be further apart than the object size OS = 0.1m that the robot can grasp.

For this, the first feature u is chosen uniformly and the probability p for choosing

73

5 Interactive Segmentation of Textured and Textureless Objects

a feature i as the second point is proportional to the normalized Gaussian density

function of the distance between pi and pu:

p(i)∝ exp

�
−‖ pi − pu ‖2

2

2σ2

�
, (5.3)

where σ is set to half of the object size OS in image space.

In line 7, a rigid transformation Ak,t is computed from the trajectories Su and Sv at

each time increment from t to t + 1. A 4-DOF transformation Ak,t can be computed

directly using geometrical considerations outlined by Horn [1987] from the two 2D-

feature point locations pu and pv at t and t + 1, such that:

pu,t+1 = Ak,tpu,t and pv,t+1 = Ak,tpv,t . (5.4)

We use the sum of squared residuals over all time increments, rk, j =
∑T−1

t=0 ‖pi,t+1 −
Ak,tpi,t‖2

2, as a measure of how well a feature trajectory Si fits a transformation se-

quence Ak, where each residual is the difference vector between the actual feature

location pi,t+1 and Ak,tpi,t , the feature location predicted by Ak,t . This measure is

used to discriminate between inliers and outliers for the model generation process

(line 10), as well as for the best assignment c∗i of a trajectory to a model hypothesis

(line 15). Note that the final assignment may not necessarily correspond to the model

hypothesis for which the trajectory was an inlier if a later generated hypothesis ex-

plains its motions better. Furthermore, using a model to predict the features’ motions

at each time step, as compared to considering only the total movement induced by

the robot, is effective at discriminating between objects that start or stop moving at

different time steps during the robot interaction.

As each trajectory pair that is used for the model hypothesis generation is chosen in

a randomized fashion, it can happen that a pair of features is chosen such that they

are not on the same object. This can cause an erroneous partitioning process of the

feature trajectory set, resulting in wrong model hypotheses. However, this problem

can be overcome with a high probability by sampling from the whole hypotheses

generation process M -times, where each set of model hypotheses is indexed by the

iteration m in Algorithm 1. This is explained in detail in Section 5.5.1.3. We choose

the best m according to the score function (line 16), which is the sum of summed

74

5.5 Object Segmentation

squared residuals between each trajectory and its best matching model hypothesis,

normalized by the number of feature trajectories assigned to this hypothesis. This

measure thus favors sets of hypotheses that predict a smaller number of objects and

where the number of features per object is roughly equal. Often erroneous hypotheses

are only supported by few outlier features and are suppressed.

Even though we used the clustering algorithm for the clustering of the 2D features,

the algorithm scales to 3D space as well.

5.5.1.3 Trajectory Clustering Complexity Analysis

Instead of sampling M -times the trajectory model generation process, one could gen-

erate a model hypothesis for all

N

2

� ≈ N2

2
possible feature pairs (N - number of all

extracted features as above), as done in quality-threshold clustering [Heyer et al.,

1999]. However, for a small maximal number of objects K , M can be small such

that the computational complexity of our algorithm is much lower as shown in the

following.

The probability that a draw of a pair of trajectories �u, �v (line 7) is the result of the

motion of the same object can be approximated if we neglect the bias in Equation 5.3

and instead assume uniformly random draws from all detected feature trajectories.

Given the true number of objects K and the number of feature trajectories Nk on an

object k ∈ {1, ..., K} := � , the probability to select any 2 feature trajectories from

the same object in the first draw w = 0 is

Pk,0(2 traj. on object k) =
Nk · (Nk − 1)
N · (N − 1)

. (5.5)

Thus the probability to have 2 feature trajectories selected on any of the K objects

together in the first draw w = 0 is:

P0 =
∑
k∈�

Nk · (Nk − 1)
N · (N − 1)

≈∑
k∈�

�
Nk

N

�2
, N � 1 . (5.6)

75

5 Interactive Segmentation of Textured and Textureless Objects

Figure 5.10: Test scenes 1 to 8 from top to down. Left column: original scenes, mid-
dle column: contact point estimation, right column: segmentation after the
first push cycle. Please note, that the 2D contours in the middle column are
generated from the virtual view above the table which may slightly change
the perspective. Features on the objects that did not get pushed are in the
same cluster (denoted by the same color) as background features.

76

5.5 Object Segmentation

If we assume that Nk is the same for all objects, i.e.

Nk := N̄k =
N
K

, this simplifies to P0 =
1
K

.

Once a draw is made, all trajectories matching the model hypothesis defined by the

draw are assigned to that model and are removed from �m. The next draw w = 1 is

made from the remaining N − Nk trajectories of the remaining K − 1 objects, given

that the trajectory assignment (line 10-11) discriminates sufficiently between the tra-

jectories belonging to that model and those that do not. Analogously the probability

for drawing two feature trajectories from any of the remaining objects in draw w,

conditioned that all previous draws were correct, is:

Pw =
∑

k∈� \�̄

�
Nk

N −∑k′∈�̄ Nk′

�2
Nk=N̄k==

1

K − w
, (5.7)

where �̄ is the set of modeled objects whose trajectories have been removed from

�m.

The probability that for all draws the drawn feature trajectory pairs are together on

an object thus is:

P =
K−1∏
w=0

Pw =
1

K!
. (5.8)

The probability P directly corresponds to the inlier probability in RANSAC. Thus, one

can similarly estimate the number of times M that above drawing process should

be executed in order to find a set of correct motion model hypotheses with a given

probability α < 1. That is, the algorithm returns a good segmentation with probability

α. As 1−α= (1− P)M is the probability that in none out of M drawing processes all

K drawn trajectory pairs were together on an object, M can be calculated as:

M =
log(1−α)
log(1− P)

=
log(1−α)
log(1− 1

K!
)

. (5.9)

For example for K = 4 objects and α= 0.95, M = 72 sampling runs are required.

77

5 Interactive Segmentation of Textured and Textureless Objects

However, in our experiments, M = 20 proved to be sufficient, since we bias the

drawing of trajectories towards features that are initially close to each other, such

that the probability Pw is higher than in random sampling. It is important to notice

that this bias as controlled by σ in Equation 5.3 may not be too strong, as close-by

feature pairs decrease the accuracy when estimating a motion model for an object

from their trajectories. This is because the feature displacements are tracked only

with pixel precision such that the rotation estimate of close-by feature pairs is subject

to larger noise, which can result in splitting an object in the segmentation.

5.5.2 Textureless Objects

In this subsection we describe the selected RGBD features suitable for the tracking of

textureless objects and the particle filtering-based tracking library. The features are

estimated on the above (Section 5.3.2) classified list of object hypotheses O from the

RGBD point cloud. RGB and the depth measurements in the point cloud are time

synchronized and registered. We employ 3D circle and 3D cylinder point cloud fea-

tures for the round objects and 3D line and 3D corner point cloud features for the flat

objects. The rationale behind this selection of features is that they are all fast to com-

pute and yet distinctive enough for tracking with the proposed tracking algorithm.

The latter uses a combination of the visual appearance and the geometrical structure

of the feature to compute the likelihood function of the feature hypothesis.

5.5.2.1 RGBD Features

In order to obtain a 3D line point cloud we first find object edge candidates in the clut-

tered scene using curvature values computed in the input point cloud from the Kinect

sensor. Next we fit a line model to the object edge candidates using RANSAC [Fis-

chler and Bolles, 1981] and finally pad the line with neighboring points on the ob-

ject within a radius of 5cm. 3D corner point clouds are determined using the 3D

variant of the Harris corner detector as implemented in the Point Cloud Library

(PCL)(pointclouds.org) and padded with neighboring points on the object within

a radius of 5cm as well. Padding of both features is necessary in order to guarantee

78

5.5 Object Segmentation

computation of a better likelihood function needed by the tracker as explained in the

following subsection. The features are shown in Figure 5.5 rows 2 and 5.

To obtain a 3D cylinder point cloud, we also use a RANSAC model which is based on

the fact that on a cylinder surface, all normals are both orthogonal to the cylinder

axis and intersect it. We consider the two lines defined by two sample points and their

corresponding normals as two skew lines, and the shortest connecting line segment

as the axis. Determining the radius is then a matter of computing the distance of

one of the sample points to the axis. By setting the cylinder axis perpendicular to the

table results are more robust, but is not mandatory. Finally, the generation of the 3D

circle is also done using RANSAC by projecting a sample point into the 3D circle’s

plane and computing the distance between this point and the point obtained as an

intersection of the line from the circle’s center with the circle’s boundary, whereas

the line is passing through the projected sample point. The features are shown in the

right column of Figure 5.5 rows 2 and 5.

5.5.2.2 Particle Filtering-based Tracking of RGBD Pointclouds

The feature point clouds extracted above are then passed to the particle filter-based

tracker as reference models. The tracker consists of four steps: i) the above described

reference model selection (RGBD features), ii) pose update and re-sampling, iii) com-

putation of the likelihood and iv) weight normalization. In the pose update step we

use a ratio between a constant position and a constant velocity motion model which

allows us to achieve efficient tracking with a lesser number of the particles. In the

re-sampling phase we utilize Walkers Alias Method [Walker, 1977]. The likelihood

function l j of the hypotheses in the third step is computed as in Equation 5.10 and

is based on the similarity between the nearest points pair of the reference point (pj)

cloud and the input data (qj). Similarity is defined as a product of a term describing

the points pair’s euclidean distance leucl idean and a term describing points pair’s match

79

5 Interactive Segmentation of Textured and Textureless Objects

in the HSV (Hue, Saturation, Value) color space lcolor . α and β are the weight factors

set to 0.5 in our case.

l j = leucl idean(pj, qj)lcolor(pj, qj)

leucl idean(pj, qj) =
1

1+α|pj − qj|2
lcolor(pj, qj) =

1

1+ β |pj,hsv − qj,hsv|2 (5.10)

To obtain the model’s weight we sum over likelihood values for every points pair in

the reference model as follows: wi =
∑

j
l j. This likelihood function assures a com-

bined matching of model’s structure and visual appearance. In the final step we nor-

malize the previously computed model weight by applying a relative normalization

as described by Azad et al. [2011]. The real-time operation of the algorithm is made

possible through various optimization techniques such as downsampling of the point

clouds, openMP parallelization and KLD-based (Kullback-Leibler Divergence) sam-

pling [Fox, 2001] to select the optimal number of particles.

Why not to track object parts? To answer this question we refer the reader to scene 1

in Figure 5.5, row 3 where top surfaces of both boxes were grouped into one segment.

Had we taken this segment as a reference cloud the tracking algorithm would fail due

to its limitation to generate multiple reference clouds during tracking.

5.5.2.3 Trajectory Clustering

The tracked features’ 3D trajectories (see Figure 5.5 row 6) are clustered using Algo-

rithm 2 in order to find the feature-object associations. We treat each of the n RGBD

features as a node in a graph, where edge weights represent the maximum number

of consecutive violations of the relative distance variation threshold (dthreshold), i.e.

breaks (optionally, also pose changes can be checked for better performance). The

final connection matrix is obtained by removing the edges which have weights that

exceed a given percentage (pthreshold) of the theoretic maximum number of frames.

The distance between features which did not vary are then clustered together.

80

5.5 Object Segmentation

Figure 5.11: Clustering success rate on 17 scenes for different values of pthreshold (max-
imum allowed break percentage) as a function of dthreshold (break distance
threshold).

81

5 Interactive Segmentation of Textured and Textureless Objects

Algorithm 2: Graph-based trajectory clustering algorithm. A break between features
means that the relative distance between them exceeded the given threshold. Cour-
tesy@Marton.
�� ������ 	
 ���
���
������� n ��� ������ 	
 ���� ����� m� ��������

������
� �������	� ������	�� dthreshold� ��� ���	��� ���
��� 	

	���
�����
������ pthreshold� ��� ��� ��� 	
 �	����	�� 	
 ��
�
������ T ��

Input: n, m, dthreshold , pthreshold , T = {t1...tm}
�� �������� ������
�� �� t1 ��

1 Dre f erence = pairwiseL2(t1)
�� �� 	

	���
����� ������ �������
������� ��

2 Cbreaks = zeros(n,n)
�� �������� ������
�� �� t1 ��

3 Tbreaks = zeros(m,n,n)
��
	��� ������ 	

	���
����� ������ ��

4 foreach ti ∈ T do
�� �������� ������
�� �� ti ��

5 Di = pairwiseL2(ti)
�� �������	� 	
 ������
�� ��

6 Ei = |Di − Dre f erence|
�� ��������
������ ����� ��

7 Bi = {(f1, f2)|Ei[f1, f2]> dthreshold}
8 foreach (f1, f2) ∈ Bi do
9 Cbreaks[f1, f2] ++ �� ��
������
	����� ��

10 foreach (f1, f2) �∈ Bi do
11 Cbreaks[f1, f2] = 0 �� �����
	����� ��

12 Tbreaks[i] = Cbreaks �� ����
	����� ��

�� ������� ���
������ 	

	���
����� ������ ��
13 Mbreaks = max(Tbreaks)/m

��
���� ����
��
� ������ ��
14 A= getConnections(Mbreaks <= pthreshold)

�� ������ 	

������� ����� 	� �����
��� ��
15 nrclusters = nrZeros(eigenValues(diag(degrees(A)) - A))

�� ���
�������
�������� ��
	���
������ ��
Output: Fclusters = connectedComponents(A)

Figure 5.11 shows an evaluation of the clustering algorithm on 17 scenes from Fig-

ure 5.14. The use of pthreshold is clearly advantageous, and the method works well

for a range of the pthreshold and the dthreshold parameters. Since too low values for

dthreshold over-segment the features, values over 1.5cm are used, and the possible

under-segmentations solved by applying the whole method iteratively until all the

objects are clearly separated.

82

5.6 Dense Model Reconstruction

5.6 Dense Model Reconstruction

In order to generate useful input for object recognition or object grasping, we in the

end densely reconstruct the segmented objects. Considering the connected features

ci ∈ {1, .., K} in case of textured objects and Fclusters in case of textureless objects as

being part of the same object, we reconstruct the dense model of the object using

region growing in normal space, which also makes use of the borders found at depth

discontinuities, as shown in Algorithm 3. The idea for the region growing constraints

is based on the segmentation described by Mishra and Aloimonos [2009], where the

authors make use of a predefined fixation point and a border map. Since we already

know the features that are part of the object, we can easily define a seed point for the

region growing. In order to find the best possible seed point, we separate the con-

nected features using euclidean clustering, calculate each of the resulting clusters’

centroid, and then start growing from these. An important condition of the region

growing is the assumption that objects are often composed of convex parts [Jacobs,

2001]. Therefore, we make sure that during region growing two points are assigned

to the same region Ri if the angle epsthresh between the vector connecting them and

the points normal is close to obtuse (considering the sensor noise level [Willow-

Garage, 2010a] 89◦ were used). Once all region-feature pairs have been identified,

we reconstruct the dense model. Since in the trajectory clustering step we already

identified the features that belong to the same object, having multiple regions for the

same object is easily dealt with by merging those regions for which the corresponding

features belong to the same object into dense models Rj.

5.7 Results

5.7.1 Textured Objects

We evaluated the segmentation of textured objects on real scenes using PR2 robot.

Depth and RGB images were taken from a Kinect sensor mounted on the robot’s head

(See Figure 5.1).

83

5 Interactive Segmentation of Textured and Textureless Objects

Algorithm 3: Region growing with normals & boundaries. Courtesy@Balint-
Benczedi.
�� ��� �� ����	
�� Fclusters �
 ci� �
������ ��
������ droi�thresh� ����� ��
������

epsthresh� ���� �	�	� sq�
��
��� �
�� R� �	

���
��
�� Ri� �
�� ��
�
������� ��
��� processed ��

Input: Fclusters or ci , droi_thresh, epsthresh

1 foreach fi ∈ Fclusters or ci do
2 ps,i:= centroid(fi) sq.add(ps,i) �� ������ � ���� ��
�� ��� ���
� �� � �	�	� ��
3 processed(ps,i) = t rue
4 Ri := {ps,i} ��
�
�
��
��
��
�� ��
5 while sq.notempt y() do
6 N := {qj‖dist(qj , Ri[c])< droi_thresh}

�� ������ ��
����
���� ��
7 foreach qj ∈ N do
8 if processed(qj) = t rue then
9 continue

10 if boundar y(qj) = t rue then
11 stopgrowing = t rue
12 Ri ← Ri ∪ {qj} processed(qj) = t rue
13 break

14 if deg (�ps,iq j , norm(qj)) > epsthresh then
15 Ri ← Ri ∪ {qj}
16 processed(qj) = t rue

17 else
18 break

19 if stopgrowing = f alse && ∀qj ∈ N boundary(qj) = false then
20 sq← N

21 R← Ri

22 foreach Ri , Rj ∈ R do
23 if fi f j ∈ same object then
24 Ri ← Ri ∪ {Rj}

Output: Dense models Rj

5.7.1.1 Random vs. Corner-based Pushing

We arranged eight tabletop scenes with the cluttered background shown in Fig-

ure 5.10 and evaluated the segmentation success rate given corner-based pushing

and random pushing. In the latter mode we randomly sample poses from the set of

reachable poses along the object pile contour. In the corner-based pushing experi-

ments we also evaluated the correctness of detected contact points and push direc-

tions. After contact point and direction initialization, the robot entered into a push-

84

5.7 Results

Figure 5.12: Results of the segmentation of objects depicted in Figure 5.10 using ran-
dom vs. corner-based pushing. The tabular (upper) part of the figure de-
notes the average number of pushes over 3 runs needed to segment the
respective object in the respective scene. Number 10 (maximum number
of pushes allowed) means the robot failed to segment the object. The same
statistics is also depicted as a bar chart in the bottom part of the Figure
for clarity. X-axis represents the scene and the object number, Y-axis the
number of pushes.

85

5 Interactive Segmentation of Textured and Textureless Objects

cluster cycle until one or more objects were successfully segmented (the number of

pushes was not exclusive to single object) or we reached a maximum 10 number

of pushes. For every push the robot’s end-effector traveled for 1cm along the push

direction.

For each of the scenes we carried out three segmentation runs and present the aver-

age results in Figure 5.12. In every run the success of the segmentation was inspected

visually by the human operator and the objects were removed from the scene by

the operator upon the successful segmentation. In all 24 runs for the corner-based

pushing all the contact points and the push directions were successfully chosen and

executed. As shown in Figure 5.12 an informative, corner-based pushing results in a

faster and more reliable segmentation of objects. Using random pushing, there were

10 runs in which the robot failed to segment the whole scene (total of 26 unseg-

mented objects). For the corner-based pushing we only had 3 unsegmented scenes

and total of 10 non-segmented objects, while exerting 0.6 pushes less on average as

in the case of random pushing. Across all runs using corner-based pushing 89% of

all objects were segmented successfully. The most frequent source of failures for the

random pushing is depicted in the right part of Figure 5.15 where the push motion

was induced such that all objects moved rigidly with respect to each other. In terms

of average computational costs per scene, corner detection and direction estimation

took 0.2s, arm to corner movement 5s and Shi-Tomasi feature extraction 0.1s. Every

next push took 0.3s and the clustering of every next image frame requires 1.047s.

The total average time to segment 1 scene was ∼1 minute.

5.7.1.2 Grasping

We ran a grasping experiment on the scene 8 (Figure 5.10) and use an associated

point cloud for the calculation of the object pose. To compute the latter we take the

set of 3D points corresponding to the the set of 2D features from the successfully

segmented cluster and apply an Euclidean clustering to remove possible outliers. We

then compute the 3D centroid to obtain the object position and then use the Principle

Component Analysis to compute the orientation. The result of this experiment is

presented in a video 6.

6http://youtu.be/4VVov6E3iiM

86

5.7 Results

5.7.2 Textureless Objects

The system for segmentation of textureless objects was evaluated on 17 scenes in

different configurations as illustrated in Figure 5.14. The scenes are numbered 1-

17 and arranged according to the legend shown in Figure 5.13. Though our system

can iteratively cope with multi-object scenes, we performed the evaluation on two-

object scenes with the finite number of scene configurations that can occur. These

configurations can be split in three different ways, namely: i) size, ii) shape, and iii)

arrangement. A scene may consist of two objects of different sizes or the same size.

The objects may be either both flat or round or a combination of these two. They

may also occur in different arrangements; completely separated, only touching, one

on top of the other, or in solid contact. Solid contact refers to both objects being in

contact with each other, whereby the contact area is larger than a single line (scene

number 4 in Figure 5.14). Some configurations are infeasible for our approach. For

example a flat object and a round object cannot be of the same size, or round object

on top of another round object cannot be pushed (one mug on top of another mug).

It is also not possible to have a round object that is in solid contact with another

round object. For this case we consider solid contact as being two objects touching

with more than one line, for example in scene number 17 where also the handle of

the mug touches the juice box.

It is important to emphasize that the above devised conventions refer to the scenes

after a push. The scenes before interaction were designed such that it is difficult or

impossible to segment them using static segmentation techniques.

Average time to segment one scene from Figure 5.14 amounted to 12.5s with the pre-

segmentation taking 1.5s, feature extraction 3.5s, pushing 6s (tracking runs at 25 f ps

for up to 10 features) and dense model reconstruction 1.5s. Apart from tracking

all modules perform linearly with the number of features and objects respectively

and can thus easily be used for larger and more complex scenes. For all the scenes

the push point estimation algorithm was used, the only exception being the ’on top’

arrangements for which the algorithm does not generalize. For this reason and since

the scope is on the priors from the static segmentation, RGBD features for textureless

objects and the final dense model reconstruction, we performed the experiments by

87

5 Interactive Segmentation of Textured and Textureless Objects

1separated

touching

on top

in solid contact

separated

touching

on top

in solid contact

2

3

4

5

6

7

8

9

10

11

-

12

13

-

-

14

15

16

17

-

-

-

-

arrangement

different
size

same
size

shape
flat-flat round-round round-flat

Figure 5.13: Legend for the different scene configurations. The scenes are shown in Fig-
ure 5.14.

manually inducing motions into the corners of the scenes. In our future work we will

address finding a generalized push point algorithm.

All the experiments were performed three times for each of the 17 scenes. All the re-

sults are presented in Table 5.1 which shows the segmentation success rate for every

scene. The corresponding figures for this data can be found in Figure 5.14. The algo-

rithm was never able to segment the scene number 8 and performed poorly for scenes

6 and 13. In these cases the contact surface of the two objects is large and the objects

are of the same size. Erroneous reconstruction happens due to a lack of a sufficiently

good boundary estimation near the touching surface, and therefore the region grow-

ing does not terminate. This could be alleviated by integrating texture/color-based

segmentation methods, which we plan to investigate in the future.

It is important to note that the overall segmentation was successful in more than

82% of the experiments. Table 5.2 shows that the more objects differ and the less

in contact they are the more successful the segmentation becomes. Our algorithm

performs extremely well in the ’on top’ arrangement which is very challenging for

the static segmentation techniques.

88

5.7 Results

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Figure 5.14: Results of the segmentation for 17 scenes. 1st/4th image column: image
before the push for scenes. 2nd/5th column: image after the push for scenes.
3rd/6th column: point cloud after dense model reconstruction for scenes.

89

5 Interactive Segmentation of Textured and Textureless Objects

Scene number 1 2 3 4 5 6 7 8 9
Success rate[%] 100 100 100 100 100 33,3 100 0 100
Scene number 10 11 12 13 14 15 16 17

Success rate[%] 100 66,7 100 33,3 100 100 100- 66,7

Table 5.1: Segmentation results for all 17 scenes. For each scene there were 3 experi-
ments conducted.

total diff. size same size flat-flat round-round round-flat apart in contact on top
Success rate[%] 82,4 93,9 61,1 79,2 80,0 91,7 100 66,7 91,7

Table 5.2: Segmentation success rates of different scene configurations.

5.8 Discussion

To exemplify some of the failed cases for the segmentation of textured objects we

would like to direct reader’s attention to Figure 5.15. One failure was caused by

unsuccessful tracking of the features through the image sequence, for instance when

the robot’s arm occluded initially detected features (e.g. pepper box in the left scene).

A similar effect was observed, when an object was rotated due to the robot interaction

and features on its vertical surface were occluded by the object itself. In the right

scene, a semi-transparent and a reflective object was used. The failure was caused

because the features were lost during tracking or they moved entirely inconsistently

as the reflection pattern changed.

For the textureless objects we would like to draw the reader’s attention to all the

scenes with the round objects (Figure 5.14). It can be noted that the Kinect sensor

from the used viewpoint (mounted on the head of the human size PR2 robot) always

captures mugs as two spatially non-connected parts. In order to robustly merge these

two parts using segmentation algorithms operating on point clouds or images of static

scenes, model-based segmentation algorithms are required. While that constitutes a

feasible solution, the system presented in this thesis can easily deal with such scenes

without a model by clustering the two parts of the mug since they move rigidly with

respect to each other.

For the scene in right column of Figure 5.5 we can observe that there is only one

feature on the left object. All the clustering algorithms trying to explicitly cluster at

least one pair of features with the constant relative distance over time would fail in

90

5.8 Discussion

Figure 5.15: Failure cases exemplified. In the left-top scene the "black pepper” object
became occluded by the robot arm. In the right-top scene the features on the
semi-transparent object were tracked unsuccessfully. Bottom row: failed
segmentation from the random pushing experiment where the robot pushed
objects such that they all moved rigidly with respect to each other

91

5 Interactive Segmentation of Textured and Textureless Objects

this case. Using the graph-based clustering method we are able to disconnect the two

nodes of the graph and infer that there is a single feature-object association.

92

Chapter 6

Knowledge-linked Object Recognition

6.1 Introduction

A robot acting as a household assistant must be capable of recognizing the hundreds

of objects of daily use that are present in its working environment. It also has to

be able to recognize new objects, for example, when emptying a shopping basket to

put the purchased items where they belong [Klingbeil et al., 2011a]. For the latter

task the robot has to retrieve semantic information, such as the product type, typical

storage location, perishability and other characteristics.

In this chapter we present the design and implementation of the Objects of Daily Use

Finder (ODUfinder) perception system that can deal with some aspects of this chal-

lenge. The system consists of two major components, an object modeling (ODUfinder-

m) and an object recognition (ODUfinder-r) component. The system (shown in Fig-

ure 6.1) detects and decodes barcodes on objects by implementing an open source

ZBar barcode reader library [Brown et al., 2011], retrieves semantic information

about objects from a large (over seven million products) product information web-

site Barcoo1, builds the appearance models of the textured objects and finally detects

and recognizes those in typical kitchen scenes. The models for perceiving the objects

to be detected and recognized are acquired autonomously using the robot’s camera

(Kinect in this case) but could also be loaded from the large object catalogs such

as Google images. In the system configuration described here, the robot is equipped

with an object model library containing approximately 3500 objects from Barcoo.

The ODUfinder-r achieves an object detection rate of 10 FPS and recognizes objects

1www.barcoo.com

93

6 Knowledge-linked Object Recognition

reliably with an accuracy rate of over 80%. Object detection and recognition is fast

enough so that it does not cause delays in the execution of the robot’s tasks.

Using the ODUfinder-m (Figure 6.1 top) the robot autonomously builds up the vi-

sual appearance and the semantic model of the textured object. To do so it leverages

the open source ZBar barcode reader library [Brown et al., 2011] for product bar-

code identification. The library reliably extracts product data encoded with many

barcode formats (symbologies) from camera frames in real time. Having successfully

read the barcode, the robot then in real time queries the Barcoo website and extracts

information such as the object type, its relation in the taxonomy of object classes,

object picture, etc., which we (at the moment) manually align with the taxonomy

in the knowledge processing system KnowRob [Tenorth and Beetz, 2009] and thus

SOM+maps. Barcoo is with over seven million object classes one of the largest stan-

dardized product information store in the world.

The ODUfinder-r system employs a state-of-the-art object perception technique Scale

Invariant Feature (SIFT) [Lowe, 2004] using a vocabulary tree [Nister and Stewe-

nius, 2006], which we extend in that the ODUfinder-r detects candidates for textured

object parts by over-segmenting image regions and then combines the evidence of

the detected candidate parts to infer the presence of the object. This extension sub-

stantially increase the detection rate as well as the detection reliability, in particu-

lar in the case of partial obstruction and in certain lighting conditions like specular

reflections on object parts. In a nutshell this chapter provides the following main

contributions:

• A barcode detection and recognition library ZBar that reliably extracts product

data encoded with many barcode formats (Section 6.3.1.3);

• An over-segmentation-based recognition of textured objects (Section 6.4);

• An application of a vocabulary tree matcher to real perception problems (Sec-

tion 6.4);

• An access to one of the largest objects of daily use information catalogs Barcoo

with standardized descriptions.

94

6.1 Introduction

Extracted
clusters

Tilting laser

Kinect sensor

CCD cameras Projected clusters
on camera image

ODUfinder recogniton
Left: input image
Right: matched templates

In-hand
Object

Modeling

Barcode
Localization

and
Decoding

Barcoo
Website

Appearance
Models

Kinect
point cloud
and image

Semantic
Information

SIFT Extraction
and

Vocabulary
Tree Training

Knowledge
Base

Figure 6.1: Top row: System diagram for ODUfinder-m. PR2 robot builds up an ob-
ject appearance model, retrieves its semantic information and stores both
in the knowledge base. Bottom row: PR2 robot recognizing objects lying
on the tabletop using Kinect sensor and ODUfinder-r. Right column de-
picts extraction of clusters from point clouds (top), projection of clusters
onto camera image and Region-Of-Interest extraction (middle) and, finally,
ODUfinder-r recognizing objects (bottom).

95

6 Knowledge-linked Object Recognition

ODUfinder system is out-of-the-box and open-source available in ROS2 and can be

easily deployed on any kind of robot equipped with a 3D sensor and a camera with

auto-focus that are calibrated with respect to each other.

In terms of related work, Nakayama et al. [2009b] present the AI Goggles system,

which is a wearable system capable of describing generic objects in the environ-

ment and of retrieving the memories of these objects by using visual information in

real time without any external computation resources. The system is also capable of

learning new objects or scenes taught by users. As the core of the system, a high-

accuracy and high-speed image annotation and retrieval method supporting online

learning are considered. The authors use color higher-order local auto-correlation

(Color-HLAC) features and the Canonical Correlation Analysis (CCA) algorithm in

order to learn the latent variables.

Arbeiter et al. [2010] implemented a framework for 3D perception and modeling.

The proposed algorithm can be used to reconstruct a 3D environment or learn models

for object recognition on a mobile robot. Both color and time-of-flight cameras are

used, and 2D features are extracted from color images and linked to 3D coordinates.

Those coordinates then serve as input for a modified fastSLAM algorithm that is

capable of rendering environment maps or object models.

A self-referenced 3D modeler is presented in [Strobl et al., 2009], where the au-

thors demonstrate that an ego-motion algorithm can simultaneously track natural,

distinctive features and provide 3-D modeling of the scene. The use of stereo vision,

an inertial measurement unit and robust cost functions for pose estimation further

increased system’s performance.

Incremental learning and recognition of objects is done in an unsupervised manner

in [Triebel et al., 2010], but the authors focus mainly on chairs, and it is not clear

how well multiple objects could be reliably detected without any prior information.

Moreover, scalability is hard to assess since only one view is analyzed at a time.

Much of the recent barcode literature focuses on mobile platforms. In [Adelmann,

2006] a binarized scan line based approach is used to read product barcodes. Simi-

larly for [Wachenfeld et al., 2008], which also relies on assumptions specific to the

2http://www.ros.org/wiki/objects_of_daily_use_finder

96

6.2 Perceptual Pop-Out

EAN/UPC symbology. In [Rocholl et al., 2010], EAN/UPC data is extracted from

blurry images by guessing digits and comparing a single scan line with a mathe-

matical blur model.

The remainder of this chapter will proceed as follows: in the next section we discuss

the system’s architecture. Object modeler is explained in Section 6.3, followed by Sec-

tion 6.4 focusing on the ODUfinder’s capability to recognize objects. In Section 6.5 we

present integration of ODUfinder into an ensemble of perception expert methods and

in Section 6.6 we present the integration with the knowledge base. In Section 6.7

we discuss the results of experiments and, finally, in the end we conclude and give

suggestions for future research.

6.2 Perceptual Pop-Out

The ODUfinder-m is depicted in Figure 6.1 top. We assume that the objects stand on

horizontal, planar surfaces and the scenes they are part of can be cluttered or the

objects are more or less isolated. The robot then detects the horizontal plane and

the unknown object candidates as the perceptual pop-outs (Figure 6.2). Next, robot

computes the grasp points as presented in [Ciocarlie et al., 2010], grasps the object

and articulates it in front of the robot’s cameras as described in Section 6.3.1.1. While

the object is being rotated the robot learns its visual appearance (Section 6.3.1.1)

and concurrently tries to localize and decode its barcode (Section 6.3.1.3). Finally,

the object information is extracted from Barcoo and stored into the knowledge base

(Section 6.6).

With ODUfinder-r (Figure 6.1 bottom) the robot simultaneously takes a 3D scan and

captures an image of the scene in front of it. The robot detects object hypotheses

as in ODUfinder-m above. These object hypotheses are then back-projected into the

captured image as regions of interest and searched for objects using the Vocabulary

Tree matcher (See Section 6.4).

97

6 Knowledge-linked Object Recognition

Figure 6.2: Left: Region of interest extraction using back projection of 3D points, Right:
Over-segmentation using a region-growing based approach.

6.3 Objects of Daily Use Finder

6.3.1 Object Modelling

ODUfinder-m consists of three essential modules (Figure 6.1 top) for i) in-hand ob-

ject manipulation, ii) barcode localization and decoding and iii) learning of object

appearance models. In the following we discuss these modules in details.

6.3.1.1 In-hand Object Modelling

We assume that the robot is positioned in front of the horizontal plane at the approx-

imate table height and has the head-mounted Kinect sensor pointed at the table. The

object model acquisition process is depicted in Figure 6.3 and best explained through

the following steps:

• extract the horizontal plane and the object clusters [Klank et al., 2009];

• calculate object grasp points on object’s cluster [Ciocarlie et al., 2010];

• grasp the object, bring it in the frustum of the camera and set it upright;

• rotate the object around the up-right (z) axis in 30◦ steps;

98

6.3 Objects of Daily Use Finder

Figure 6.3: Robot (left-most image) is manipulating an object in front of the camera (top
row). Bottom row: Extraction of keypoints and masking of robot’s parts.

• mask out parts of the robot and extract the object template using SIFT keypoints

(Figure 6.3). We use depth sensor information to filter out noisy keypoints from

the environment as well as the keypoints belonging to the robot itself;

• build documents from the keypoints, quantize them with the existing vocabu-

lary tree and add them to the database (Section 6.3.1.2);

• find the barcode and query the object information from Barcoo (Section 6.3.1.3);

• repeat above four steps until object has been rotated for 2πrad (note that our

PR2 robot is equipped with the continuous revolute wrist joint).

6.3.1.2 Vocabulary Tree-based Recognition of Textured Objects

As already pointed out before we perform object recognition of textured objects by

computing the set of SIFT descriptors for all distinctive pixels in through perceptual

pop-out computed region of interest and then determine the object model in the

library that best explains the set of SIFT descriptors of the region of interest. Each

object view contains the set of SIFT descriptors of the distinctive pixels.

99

6 Knowledge-linked Object Recognition

Unfortunately, comparing a region of interest with every object view in the object

model library is prohibitively expensive. To this end, as proposed by Sivic and Zisser-

man [2003], we consider object recognition as a document retrieval problem, which

enables us to use fast data structures and retrieval algorithms and apply them to

object recognition problems for large libraries of object models.

Vocabulary Tree. We employ vocabulary trees that were developed by Nister and

Stewenius [2006] for retrieving similar images in very large image libraries. The

vocabulary tree of branching factor K and depth L is a tree data structure where the

nodes in the tree represent a set of SIFT descriptors. The root node of the vocabulary

tree represents the SIFT descriptors of all views of all object models in the library.

If a node n in the vocabulary tree represents the set of SIFT descriptors � then its

children nodes represent the partitioning of � into k subsets represented by the

children nodes cn1 . . . cnk, where the SIFT descriptors within a children nodes are

similar and the ones of different children nodes dissimilar (see Figure 6.4).

Thus, by taking a SIFT descriptor sd and classifying it hierarchically through the vo-

cabulary tree using the defined distance measure on the SIFT descriptors we quickly

find the set of SIFT descriptors that are most similar in the object model database

as the leaf nodes, whose representative SIFT descriptors have the smallest distances

to sd. We apply vocabulary trees for TF-IDF (Term Frequency Inverse Document Fre-

quency [Robertson, 2004]) indexing, a method used in document retrieval to find

documents that best fit a given textual user query. For efficiency, sd is not compared

to all features in a given node, but to the centroid of its features.

The SIFT descriptors in the vocabulary tree also have a reference to the object model

in which they occur. Thus, when sd matches a leaf node it votes for the object models

that the SIFT descriptors of the identified leaf belong to.

The children nodes cn1 . . . cnk of � are computed by applying k-means clustering

to the SIFT descriptors of node n. Since the TF-IDF algorithm works on words (the

equivalent of leaf nodes), we use a vocabulary tree to convert the keypoint descriptors

into words, where each word is an integer value corresponding to the number of the

leaf node.

100

6.3 Objects of Daily Use Finder

Figure 6.4: Example of a vocabulary tree and filling with the training data.
Courtesy@Nister.

101

6 Knowledge-linked Object Recognition

Building the Database. In our approach we use a similar database as described

by Nister and Stewenius [2006]. In order to be able to detect objects the database

only stores the quantized SIFT features of the images, but not the images themselves.

The following steps describe the building process of the database:

• In order to extract the visual SIFT features from the images we use an open-

source implementation [libfastsift] of the standard SIFT algorithm as initially

described by [Lowe, 2004]. Each SIFT feature is characterized by a 128 di-

mensional descriptor vector, 2 image coordinates, a scale and an orientation

value. In the current implementation we only use the descriptor vectors for the

detection process and the image coordinates for visualization.

• After we have the vocabulary tree, we quantize feature descriptors to single

words. For every image, we take all SIFT features, we quantize them with the

vocabulary tree and we group the resulting words into one document for every

image. In this way each document is composed of a list of all quantized features

corresponding to a single image.

• After generating all image documents, we insert them into a specialized database

as proposed by Nister and Stewenius [2006]. The database is then trained with

the TF-IDF algorithm. After this training the database can be queried with doc-

uments generated from input camera images in order to find the best database

matches between objects in the image and objects in the database. The database

documents, along with specific database information, are stored in a binary for-

mat in order to allow for fast loading of the database. Additional information,

like image file names, textures and feature coordinates, is also saved for visu-

alization purposes.

6.3.1.3 Barcode Recognition

Product barcodes are recognized by processing each camera frame with the ZBar

library (Figure 6.5). The library arranges scan passes over the image, extracts bar/s-
pace (element) edges directly from the grayscale image, searches for specific patterns

in the measured width ratios and returns data about any decoded barcode instances

(symbols).

102

6.3 Objects of Daily Use Finder

ZBar image scanner

video
input

scan
passes

linear
scanner

element
decoder

image stream

intensity
sample
stream

element
width

stream

decoded
data

stream

Figure 6.5: Pipeline used by ZBar to recognize barcodes. Data streams between the pro-
cessing stages with minimal buffering. Courtesy@Brown.

All barcode image processing is implemented using a causal, streaming approach;

there are no full image processing steps and minimal intermediate buffering is re-

quired for each stage.

Image Scanner. The image scanner analyzes incoming video frames and returns

any detected barcode information. The barcode search starts by decomposing the

two-dimensional image into one-dimensional scan passes, generated by iterating the

image pixels using a simple axis-aligned grid (Figure 6.6).

Each scan pass is an independent stream of pixel intensity values, which may be

compared to the data generated by a laser or wand scanner. Note that the scan grid

makes no assumptions about the location of barcodes in the image; however, for

symbols with a large aspect ratio, it does assume the symbol is approximately aligned

to the image axes.

The density of passes in the scan grid is configurable, allowing a trade-off between

processing time and redundancy, which affects decode latency and sensitivity to sym-

bol orientation, while still allowing full resolution in the scan direction.

103

6 Knowledge-linked Object Recognition

Figure 6.6: Example scan grid overlaid on an EAN-13 symbol. The two independent
halves of the symbol are outlined (red), as well as the individual characters
(blue). Each scan pass is streamed to the linear scanner. Successful scan
passes are highlighted (green). Note that a typical scan grid uses a much
denser stride (1-3 pixels). Courtesy@Brown.

104

6.3 Objects of Daily Use Finder

Intensity samples are streamed to the linear scanner for edge detection and the re-

sulting element width stream is fed to the decoder. Finally, the image scanner collects

any decoded data and handles temporal redundancy by applying hysteresis and du-

plicate suppression before returning the results.

Linear Scanner. The linear scanner looks for edges in the intensity stream and gen-

erates a running sequence of alternating bar (dark segment) and space (light seg-

ment) element widths. Edge detection (Figure 6.7) begins with a simple IIR low-pass

filter to remove some noise from the signal:

�yi = αyi + (1−α)�yi−1 (6.1)

where yi is the new intensity sample and α is the constant smoothing factor for the

filter. This filtered intensity stream feeds a standard one-dimensional differential edge

detector (similar to [Marr and Hildreth, 1980]). Derivatives are calculated as:

�y ′i−1/2 = �yi − �yi−1 (6.2)

�y ′′i−1 = �yi − 2�yi−1+ �yi−2 (6.3)

corresponding to the kernels y ′ = [−1 1] ∗ y and y ′′ = [1 − 2 1] ∗ y .

Primary noise filtering is achieved by application aware thresholding of �y ′; barcode

edges occur together, with similar strengths and spacing proportional to their size. To

leverage this, the threshold level, Ti, is selected dynamically, based on the last edge

rate, and decays linearly to a minimum level, Tmin, at a rate based on the last reported

element width:

Ti =max

�
Tmin,γ�y ′j
�

1−τ xi − x j

x j − xk

��
(6.4)

|�y ′i | ≥ Ti (6.5)

where xi is the location of the current sample, x j and xk are the locations of the

previous two edges and γ,τ ∈ [0,1] are constants that determine the relative edge

sensitivity and rate that the threshold returns to minimum, respectively.

105

6 Knowledge-linked Object Recognition

� y′′ i
� y′ i,

T i
y i

,� y i

Figure 6.7: Edge detection performed by the linear scanner: (top) input signal and
low-pass filter, (top-middle) first derivative and threshold, (bottom-middle)
filtered zero crossings of the second derivative, (bottom) output widths.
Courtesy@Brown.

106

6.3 Objects of Daily Use Finder

After thresholding, the selected zero-crossings of �y ′′ are interpolated to locate edges

with sub-pixel precision and non-maximal suppression selects the most salient tran-

sition for each edge.

One of the goals of the ZBar library is to minimize the number of parameters pre-

sented to users. Therefore, the scanner constants, α, γ, τ and Tmin were selected

during scanner design and are hardcoded into the library implementation. The val-

ues apply across a broad range of use cases and were determined empirically, using

a relatively small set of images (around 100) from various sources.

Decoder. The element decoder examines the stream of element widths from the lin-

ear scanner, looking for specific ratios defined by the relevant barcode specifications.

When a valid pattern is detected, the decoded data and associated symbology identi-

fication metadata are returned to the image scanner.

Many linear product identification symbologies are supported by the library, includ-

ing: the GS1 EAN/UPC family [GS1], GS1 DataBar [DataBar] and Code 128 [Code128],
among others. Each supported symbology is implemented as a separate finite state

machine (FSM). These FSMs operate in parallel on the same element width stream,

enabling auto-discrimination between symbologies.

Decode for a given symbology typically proceeds by looking for one or more “finder

patterns” – ratio combinations unique to the symbology that identify a specific lo-

cation within a symbol – usually begin/end delimiters, sometimes a central finder.

Subsequent characters are then expected at specific intervals. The decode is complete

when another delimiter is encountered. Any unexpected or illegal patterns reset the

FSM back to the initial search state.

When comparing element width ratios, the decoder avoids direct comparison be-

tween bars and spaces, which is overly sensitive to variations in exposure and print-

ing process. Instead, the decoder adopts a more robust approach suggested by most

of the barcode literature, which prefers to compare bar and space pairs or bars to

bars and spaces to spaces, as these combinations are invariant to consistent erosion

and dilation effects caused by exposure variation.

107

6 Knowledge-linked Object Recognition

Decoder reliability is assured variously (depending on the specific symbology) through

a combination of character self-checks, symbol completeness, data checksums and the

redundancy of collecting multiple scan passes.

In Section 6.6 we show how to query, parse and store the information from Barcoo

into the SOM+map.

6.4 Object Recognition

In this section we show how we have specialized vocabulary tree for the purpose

of object recognition in the context of robot perception. Our principal aim was to

improve the capability of the proposed method for identifying objects in real scenes,

which required taking different lighting conditions, obstruction and clutter, and the

uncertainty and noise associated with physical sensors acting in the real world, into

consideration.

In order to find an object in the extracted ROI we have to generate a database docu-

ment in the same way as described in Section 6.3.1.2. We first extract the SIFT fea-

tures from the received image and we quantize the descriptor vectors to words with

the vocabulary tree. A single document is formed from all words of the input image

and we can query the database with it. The database returns the best N matches with

their respective scores (between 0 and 2, where 0 is best and 2 is worst).

This approach performs well as long as the objects are isolated and the approach

from previous subsection extracts one object per ROI. If two or more objects are in

the ROI, and especially if more than one of them is also loaded in the database, the

performance decreases. This happens because the database retrieval mechanism tries

to find an image containing all of the objects together and, although the objects can

still be detected, their scores are low and very similar. This makes it very difficult to

tell which match truly corresponds to the object in the image.

In order to improve recognition performance in such cases we present a clustering

of features of the input image in 2D space (the position of the feature in the image).

We determine the visually distinctive pixels using SIFT features and apply region

growing algorithm to determine the clusters. Region growing starts from a point that

108

6.4 Object Recognition

does not belong to any clusters and incrementally adds points that are in a predefined

radius r around the original point. The process is repeated for all newly added points.

This results in clusters that represent the strongest texture “islands” in the image

(Figure 6.2 right).

For our application, the quality of the segmentation results heavily depends on the

appropriate setting of the radius parameter r. In order to improve performance, we

adaptively chose the radius length in relation to the level of texturedness of the cam-

era image using a scaled and shifted logistic sigmoid function:

r2(x) = (r2
max − r2

min)(K(1− logsi g(x − A))) + r2
min (6.6)

where logsig is defined as:

logsi g(x) =
1

1+ e−x . (6.7)

Argument x is the number of keypoints in the image. The parameters rmin and rmax

denote the maximum and the minimum values of the radius. The parameter A de-

notes the value of x , where the value of the function is the average of the minimum

and maximum value of the radius. The constant K denotes the speed at which the

function approaches its minimum and maximum values. These 4 parameters are de-

termined empirically and are valid for images of roughly similar sizes. In the exper-

iments below we use the following values: A = 800, K = 0.02, rmin = 200, rmax =
600.

In this way we can find rich-textured sub-regions in the object candidate image. It

is difficult to make the clustering algorithms find the exact regions of the objects,

but our experiments show, that this is indeed not necessary. If we adjust the clus-

tering algorithm to over-segment, we get several clusters per object. These clusters

correspond to the strongest textures of the objects and are, in most cases, enough to

identify the whole object (see Figure 6.8).

The next step is to generate a document for every cluster size greater than the prede-

fined size Scluster and query the database with those documents. Typical values for the

Scluster are between 20 and 30, because smaller clusters are unlikely to produce mean-

ingful results. Thus, every cluster has its own ranking of the most probable matches

and we need to merge the results. In order to combine the results from every cluster

109

6 Knowledge-linked Object Recognition

Figure 6.8: Detection of objects by partial textures. Left part shows that only a “Jacobs”
sign is sufficient, while the right part implies the same for a “Kronung”
sign.

into one final list of matches, we sum the scores (clustersscores) which result from

matching of every cluster against every image in the database. In this way, if several

clusters vote with a high score for a specific image in the database, we understand

that it is very likely that we have found the right object in the image. Note that if

we had two objects in one input image, which also have respective entries in the

database, then we will get more than two clusters from the input image (thanks to

the over-segmentation) and the database retrieval mechanism will not search for the

documents containing both objects, but rather only for parts of the objects, which

will result in far more distinctive scores.

The final consensus is that, as our segmentation method tends to over-segment, the

ODUfinder-r considers the image regions that could spatially lie on the same objects

as multiple evidence for the respective objects and combines the evidences provided

by the individual regions. Obviously the visual region-based object model appearance

is particularly appropriate to handle partly obstructed objects and those which might

have parts that cause reflections.

110

6.5 Integration of ODUfinder in the Perception Server for Generic Object

Recognition

6.5 Integration of ODUfinder in the Perception Server for
Generic Object Recognition

In order to be able to recognize all possible objects that the robot may encounter in

a household, having only one or few perceptual mechanisms will not suffice. Many

algorithms have thus been developed to solve these problems for different subsets of

objects, with varying accuracy and reliability, with different requirements for com-

putational resources, and under different context conditions. Some of them require

prior object models while others can do without, some infer only general categories,

others exact instances without the knowledge of the broader categories these objects

fall into. The approaches also differ in the type of sensors used, in speed, in that not

all of them report 6D poses, in the number of objects they can deal with at once, etc.

The realization of robot perception systems that can perceive the range of objects

to be manipulated in a typical human environment with the accuracy and reliability

needed for grasping them successfully in real everyday settings, however, still poses

a very hard research problem. To overcome this problem we helped creating a per-

ception server system that can deal with a truly large range of objects [Marton et al.,

2011]. The perception server is depicted in Figure 6.9 and ODUfinder represents its

classification library. In the following we briefly summarize its architecture.

Figure 6.9: Perception server architecture: from sensor data to objects.

The images and 3D information coming from the robot’s sensors are processed by

the Perception Executive and the gathered data is interpreted according to the task

at hand (searching for a specific object or identifying all objects). First, to limit the

111

6 Knowledge-linked Object Recognition

search-space for object locations, a set of possible locations is extracted and the cor-

responding sensor readings (3D clusters, 2D Regions-Of-Interest) are considered to

represent object candidates. These object hypotheses are then processed as needed in

order to associate the percepts to the correct object in the Object Model Database.

When an object is being sought for, the system selects a set of features, whose val-

ues uniquely describe the object amongst all the objects in the database. The same

features’ values are then computed using the examination modules for each object hy-

pothesis, and the first one that presents matching ones is selected as the target object

for e.g. grasping. In the case that no geometric model is associated with the database

object in question, we compute it on demand and feed it to the grasp planner.

If computational resources allow all object hypotheses can be checked against all

objects in the database – and new objects, or new positions or views of known objects,

can be detected. In this case, the features for each object hypothesis are computed

one by one, according to a hierarchy, and the possible object identities are filtered

in each step. The selection of the feature to be used in each step is hand encoded as

of now, but an expansion of the single-object case is envisioned to be extended for

finding the most discriminative features in each step.

This process is repeated until either an object is found whose stored features match

all observed features, or until there are no matching objects left in the database,

signaling that a novel object was observed. In the ambiguous case, when all features

were computed and there are still multiple matching objects left from the database,

the system takes no action and leaves the object hypothesis unclassified.

Since the computation of the features for an object hypothesis is prohibitively expen-

sive, the aim of the procedure is to also minimize the number of objects that have to

be compared against as drastically as possible in each step, and allow a large number

of objects to be handled efficiently. Given enough descriptive features, this method

can scale well in the context of objects of daily use in human living environments. We

consider this approach to be a move away from bottom-up, rigid pipelines, towards

a more flexible setup. This enables the robot to specialize to the current situation,

producing shorter processing times as not all the methods are needed all the time.

In order to be able to learn more and more about an object, multiple detections with

different sensors and from different points of view are needed. To check if two per-

112

6.6 Integration with the KnowRob and SOM+ Map

cepts belong to the same object or not, we use a simplified version of the probabilistic

framework for identity resolution [Blodow et al., 2010], which is based on positions

of objects.

6.6 Integration with the KnowRob and SOM+ Map

In order to enable the robot to reason about the types and properties of the objects

it has detected, the output of the recognition system needs to be linked to semantic

information about the objects, and to other descriptions of these items that may exist

in the system, for example specifications of action parameters. We use the KnowRob

ontology [Tenorth and Beetz, 2009] as an interlingua to integrate these different

sources of knowledge. KnowRob provides formal specifications of object classes as

well as their properties and relations. As long as different parts of the robot, e.g.

the action executive and the object recognition module, refer to these classes for

describing objects, they can make use of information in the other modules.

The Barcoo website already provides a taxonomy of more than seven million object

classes that describe for instance Cheese as a sub-class of Dairy and Food. In addition,

individual object detections are annotated with a number of properties such as the

object picture, price or nutrition facts of the object. By (currently manually) align-

ing this taxonomy with the KnowRob ontology, the provided information becomes

available to the robot for abstract reasoning about the objects it has detected.

Figure 6.10 illustrates the inference steps that can be performed via tell-ask-interface

as presented in Chapter 4.2. The reasoning process combines encyclopedic knowl-

edge about the refrigerator (upper left part), common-sense knowledge that a re-

frigerator is the storage place for perishable goods, spatial knowledge describing an

instance of a refrigerator at a certain location in the environment, and knowledge

about the pancake mix object that was automatically generated from Barcoo’s web-

site.

113

6 Knowledge-linked Object Recognition

PhysicalDevice ContainerArtifact

RefrigeratorStorageDevice Box-Container

CoolingDevice

Refrigerator

StorageConstruct

ElectricalHouseholdAppliance

HouseholdAppliance

is-a

is-a is-a

is-a

is-a is-a

is-a

is-a

is-a is-a is-a

instanceOf

instanceOf

FoodIngredientOnly GroceriesPerishable

storagePlaceFor

PancakeMix Baking_Mixes

MixForBakedGoods

Pancake_Waffle_Muffin_Mixes

Mondamin_P fannkuchen_Teig_Mix_200g_Pancake_Mix

Groceries_Aisle_1

is-a

is-a

GermanDeliObject

is-a

is-a

is-a

is-a

is-a

is-a

is-a

is-a

is-a

is-a

Figure 6.10: Example of object taxonomy in the KnowRob knowledge base (and thus
SOM+map). Courtesy@Tenorth.

114

6.7 Results

6.7 Results

We evaluated ODUfinder with respect to its runtimes, success rate of barcode and

object instance recognition and, finally, with respect to being able to learn and incor-

porate new object models on the fly.

6.7.1 Barcode Recognition

We evaluated the ZBar library by running the test on barcodes of 30 objects of daily

use. During testing we positioned the camera 5cm away from the barcode center and

then rotated the object around camera’s optical axis into 3 possible configurations:

0◦, 45◦ and 90◦. We ran three batches of tests under varying lighting conditions: in

the morning, in the afternoon and under the artificial light. The averaged results are

presented in Figure 6.11, which clearly shows the effect of using an axis aligned scan

grid: all barcodes were detected when the symbol was oriented with the scan grid,

but the detection rate decreased as the symbol was rotated, with the worst case at

45◦, where only a few of the scan passes were able to complete a path through the

symbol, compromising the redundancy that ZBar relies on for robust recognition.

6.7.2 Database Training

To provide an insight into the performance of ODUfinder-m we have trained a vo-

cabulary tree and built a database with 3500 textured objects from Barcoo. K and L

parameters for the structure of the vocabulary tree were 6 and 6 and the Table 6.1

provides the rest of the profiling. Please note the cluster query time under 100ms

which ensures the real time operation of the system.

Source nr. images nr. features training
time

cluster
query time

Barcoo 3500 2500000 1h 90ms

Table 6.1: Profile data for the generated database of 3500 objects.

115

6 Knowledge-linked Object Recognition

Figure 6.11: Barcode recognition evaluated on 30 objects.

116

6.7 Results

Figure 6.12: Test objects.

6.7.3 Recognition of Objects based on Known Views

In order to evaluate our approach as a whole, we performed the detection and recog-

nition test in the assistive kitchen laboratory (see left column of Figure 6.13). The

test was carried out on a total number of 13 objects located at 4 different scenes (de-

noted with Scene 1 to Scene 4). The robot was programmed to navigate to each of

the scenes and capture point cloud and image from several different views by travers-

ing along the free paths around the scenes. The basic Planar Support approach could

not have been applied for the scenes 2 and 4 as the supporting planes are too high,

thus impossible to scan with either of our robots.

The vocabulary tree and corresponding database with descriptors were trained and

built from images from the SemanticDB database and 10 more images of products

from the Barcoo web site3. The parameters K and L were both set to 5, resulting in

a 1 minute training time of the datasbase for the 65000 features extracted from 170

images. In this configuration the querying for 1 object cluster took 50 ms. Setting the

score value of the database retrieval mechanism to the experimentally determined

3Note that for the Barcoo object we initially only obtain one image per object

117

6 Knowledge-linked Object Recognition

Scene #Views/#Known #Failures #Unknown Success
Scene 1 52/42 10 10 80.8%/100%
Scene 2 11/11 5 0 54.5%/54.5%
Scene 3 24/24 2 0 91.6%/91.6%
Scene 4 12/12 0 0 100%/100%

Total 99/89 7 10 82.8%/92.1%

Table 6.2: Detection of objects and identification of unknown views using SIFT with
vocabulary trees.

value of 1.0 enables us to classify all measurements that exceed this value as un-

known.

As per Table 6.2 scene 1 contained 1 object (green milk box) for which vacabulary

tree was trained on the Barcoo image of the object. This known face of the object was

initially not in the robot’s field of view which resulted in the recognition success rate

of 80.8%. For the scene 2 we attribute all failed cases due to the ODUfinder not being

able to extract the regions of interest. In the scene 3 the robot failed to separately

cluster the book and the can which in turn resulted in the wrong regions of interest

and finally in the failures in the recognition. The right most column of Table 6.2

shows success rates with and without unknown views.

6.7.4 Improved Detection through Incremental Learning

In the case that an object hypothesis is detected in the same position in the map’s

coordinate frame in subsequent scans we assume that it is the same object as the one

identified previously. For the localization we use an AMCL-based framework combin-

ing robot’s odometry and laser readings in a priori built 2D map [Pfaff et al., 2006].
Localization’s absolute error margin lies at 0.02 m on average, thus we consider ob-

ject hypotheses to represent the same object if they are not further away than 0.05 m.

If the subsequent call of the recognition function of ODUfinder returns no matching

views for the given object hypothesis, we store the current observation as a new

view.

118

6.7 Results

Scene 1

Scene 2 Scene 3

Scene 4

Scene 1 Scene 2

Scene 3 Scene 4

Figure 6.13: We performed the final evaluation test on a total number of 13 objects lo-
cated at 4 different scenes in our kitchen lab (denoted with Scene 1 . . . Scene
4). The robot was programmed to navigate to each of the scenes and capture
point cloud and image from several different views by traversing along the
free paths around the scenes.

119

6 Knowledge-linked Object Recognition

To demonstrate the capability of our system to acquire new object models on the

fly we set up the Scene 1 with one unknown object (green milk box) which in fact

generated all 10 un-classified views reported in the first row of Table 6.2. Knowing

that these do not match anything in the database, we can introduce them as new

object models. The assumption we are making here is that the scene remains static,

thus the cluster cloud and the defined region of interest at the given 3D position in

the world coordinate frame contain the same object. The vocabulary tree is for the

moment re-trained every time the new uknown object is detected.

Scene 1 #Views/#Known #Failures #Unknown Success
Before 52/42 10 10 80.8%/100%
After 52/52 2 0 96.2%/96.2%

Table 6.3: Improved detection for Scene 1 from Figure 6.13 before and after the vocab-
ulary tree was re-trained and database rebuilt with the templates for green
milk box. All in all, more views got the correct label.

After this we performed another test run on the Scene 1 with the re-trained tree and

the updated database of SIFT descriptors and were able to reduce the number of not

detected objects down to 2 as shown in Table 6.3.

Since most large databases (e.g. Barcoo website) offer only single pictures of objects,

incremental learning is an important feature for a perception system that needs to

develop over time.

6.8 Discussion

This chapter has presented a perception system for autonomous service robots acting

in human living environments, coined the ODUfinder. The perception system enables

robots to detect and recognize textured objects of daily use, it ensures real-time and

robust operation and is modular with respect to the integration of new components

(e.g. detection of texture-less or translucent objects). The system is available as open-

source and widely used by several research, and in case of ZBar, also industrial com-

munities. We have also shown that fusing together semantic information available

through SOM+maps and those extracted from commonly available resources such as

120

6.8 Discussion

product information websites or web shops gives the robot the power to perform its

actions in sensible and reasonable way.

Several research issues remain to be solved. In case of highly mounted shelves or

cluttered planar surfaces, our system is unable to generate regions of interest which

in turn decreases the success of SIFT matching. For this case we plan to incorpo-

rate our interactive segmentation work presented in the previous chapter to validate

regions of interest. For dealing with textureless and transparent objects we plan to

incorporate object recognizers by Hinterstoisser et al. [2012] and [Lysenkov et al.,

2012] respectively. Finally, to effectively fuse various object detection and recogni-

tion results we already started exploring UIMA [Ferrucci and Lally, 2004], which is

an architecture used in the famous Jeopardy quiz by Watson computer. UIMA archi-

tecture makes it possible to analyze large volumes of unstructured information in

order to discover knowledge and models that are most relevant for the robot’s tasks

at hand.

121

Chapter 7

Knowledge-enabled Scene Understanding

7.1 Introduction

Autonomous robots performing everyday manipulation tasks have to make many de-

cisions that require the combination of perception and knowledge processing. As an

illustrative example for knowledge-enabled perception, consider a robot that is to set

the table together with a human as outlined in our master plan in Section 1. In order

to implicitly coordinate its course of action with the human, the robot has to fetch

missing items. Based on what the robot sees on the table and the time of the day, the

robot is to probabilistically infer what meal the table is set for, what is likely to be

eaten, and, based on this, which utensils are likely to be required.

In this chapter we effectively combine results of Chapter 4, Chapter 5 and Chapter 6.

The original version of the system presented herein has been presented in [Pangercic

et al., 2010].

We propose the logic programming system K-COPMAN (Knowledge-enabled Cognitive

Perception for Manipulation) that can test and satisfy knowledge preconditions for

everyday manipulation. K-COPMAN fulfills three main functions:

1. Providing the robot with abstract symbolic knowledge about perceived scenes.

K-COPMAN acquires and stores perceptual data during robot operation, associates

data structures with symbolic names that can be used for perceptually grounded

knowledge processing. These perceptions extend static perceptual data like environ-

ment maps introduced in Section 4 and objects introduced in Section 6. There are

two main perceptual mechanisms: task-directed and passive perception. Task-directed

perception provides information necessary for accomplishing manipulation tasks – in-

123

7 Knowledge-enabled Scene Understanding

formation about the object to be acted on and the scene context. The passive percep-

tion is to make the robot environment-aware by also memorizing objects that are not

task-relevant at the time of perception. Object information is stored in K-COPMAN at

different levels of detail, ranging from raw, sub-symbolic data to symbolic descrip-

tions.

2. Using abstract symbolic knowledge for accomplishing perception tasks. K-COPMAN

enables the robot to employ knowledge processing functionalities to simplify percep-

tual tasks by using (symbolic) models of context, situations, and goal-directed behav-

ior. Using knowledge processing mechanisms and the belief state (memory) of the

robot, the robot can for instance point the camera at places where it believes objects

to be or exploit the fact that objects inside a cupboard are invisible unless the door is

open.

3. Answering types of queries that require the combination of knowledge pro-

cessing and perception. For instance, K-COPMAN enables the robot to infer the items

that are missing on a table set for a particular meal, the items that have to be put

away in order to clean a table, or the items that have to be put into the fridge. In-

ferring these information requires using a combination of perception and knowledge

processing mechanisms.

Technically, K-COPMAN is realized as an interface layer to open-source SWI Pro-

log [Wielemaker et al., 2012]. Prolog combines fast inference and computation with

declarative, logics-based semantics. Lightweight Prolog inferences can even run in

feedback loops up to 10 Hz to make the robot action-aware. Prolog’s foreign lan-

guage interface thereby facilitates the integration of perception routines written in

other programming languages like C/C++.

The remainder of this chapter starts with an overview of the software architecture

(Section 7.2). Then, the perception server and the library of perception routines

are explained (Section 7.3). Section 7.4 describes the integration of the perceptual

mechanisms with the knowledge processing system KNOWROB [Tenorth and Beetz,

2009]. We conclude with a demonstration scenario, discuss and evaluate one exam-

ple query.

124

7.2 K-COPMAN System Overview

7.2 K-CoPMan System Overview

K-COPMAN is an extension of KNOWROB and extends KNOWROB in two important

ways. First, it adds a set of predicates that abstract away from the robot’s percep-

tual mechanisms and transforms the perceptual tasks and their results into a logi-

cal representation suitable for knowledge processing and decision-making. Second,

K-COPMAN provides a continual update mechanism for the part of the knowledge

base that represents the dynamic world state. This mechanism is to make the robot

environment-aware, i.e. to always have a rough estimate of the current state of the

world. For example, in our application, objects on tables and kitchen counters are

declared as a relevant dynamic aspect of the world that should be monitored contin-

ually. K-COPMAN keeps track of the positions of objects on different tables and asserts

these percepts as logical facts.

A robot programmer can use KNOWROB to define concepts needed for robot control in

terms of first-order logical statements. For example, to write plans for joint human-

robot table setting tasks, the programmer might want to define the concept of items

that are missing on a table in the following way: Missing items on a table where

people intend to have a meal m are those items that are predicted to be needed for

this meal, but cannot be perceived to be already on the table. Having this definition,

the programmer can write a plan fragment such as: keep putting a missing item on

the table until no further items are believed to be missing. In this code fragment, the

missing item is a knowledge precondition of the plan step that has to be achieved by

computing which items in the environment satisfy the above concept definition.

In this setting, K-COPMAN’s task is to test the perception-related parts of the concept

definition. Thus, K-COPMAN translates the conditions to be checked into parametrized

perception routines and interprets their results in order to check the conditions. It

also controls and supervises the perception processes that are spawned from the in-

formation requests, and it stores and manages the results returned by the perception

processes.

In order to perform competent perception, it is often helpful to make use of other

knowledge stored in KNOWROB. In this example, checking the condition requires the

robot to identify the right table, which is accomplished using the semantic environ-

ment map stored in KNOWROB as presented in Chapter 4. It allows, for example, to

125

7 Knowledge-enabled Scene Understanding

Figure 7.1: K-CoPMan’s building blocks. Left) Perception server used in K-CoPMan
with state-of-the-art perception routines. Middle) KnowRob with predi-
cates for evoking of perception routines and extension plugins for first-order
probabilistic reasoning and knowledge on static objects. Right) TUM-Rosie
with logical control program. Courtesy@Tenorth.

126

7.2 K-COPMAN System Overview

query for objects of type “Table”, especially for those that are used for having meals.

Similarly, reasoning with perceived information requires the system to explicitly deal

with the uncertainty that results from sensors being unreliable, inaccurate, and only

providing incomplete information about the world. This functionality is provided by

a predicate library that realizes probabilistic first-order reasoning.

7.2.1 K-CoPMan Components

Figure 7.1 shows the embedding of K-COPMAN into the overall robot control system

and the software components of K-COPMAN within this system. The core of K-COPMAN

is the utilization of the perception server (see Section 7.3). The perception server

calls the respective perception routines, monitors and manages the perception pro-

cesses they execute, and stores to and updates the K-COPMAN data store according

to the perception tasks and their results. The second component is the implementa-

tion of the K-COPMAN predicates. The implementation translates information needed

to compute the truth value of a predicate into parametrized calls of perception rou-

tines and interprets the results returned by these routines in terms of the information

requested. The third component is the passive perception component, which contin-

ually acquires point cloud data obtained from laser sensor sweeps (Chapter 7.3 pro-

vides specifics). As a fourth component, K-COPMAN uses KNOWROB’s tell-ask-interface

to communicate with the robot control program. The method knowrob-query(q) re-

turns a boolean value depending on whether or not q is implied by the “virtual”

knowledge base. ���������	
����
���
�� �� returns the bindings of the query vari-

able var which renders the logical expression of the query true. The fifth component

consists of KNOWROB extension libraries for perceptual memory management, first-

order probabilistic reasoning and static environment mapping.

7.2.2 Example Scenario

Let us now consider our example task of bringing missing items to a breakfast table

in more detail. Inferring the missing items is a very complex task and requires the

integration of heterogeneous information: Where is the table? What is already on the

table? What should be there? Where to find the missing items?

127

7 Knowledge-enabled Scene Understanding

Figure 7.2 describes the specification of the ����������	
�� predicate. The first three

conditions in the predicate require the variable �
��	 to be a table in the environment

and to have a primary function of having a meal on it. This condition can be met

by employing the robot’s semantic map of the environment to identify the tables in

the environment (visualized in red). The fourth condition tests the set of objects in

a given region of interest, which, in our case, is the top of the table, denoted by

the variable �
��	. This condition is checked with the perceptual mechanisms of the

K-COPMAN perception server which sets up a perception task to detect, categorize and

recognize all the objects on the table and binds the result of this perception task to

the Prolog variable �	�
	��	�. The next condition specifies the items that are probably

needed on the table. To identify these, we use the first-order probabilistic reasoning

component. Schematically, KNOWROB converts the predicate �		�	����	
������	
�

into a query P(on(Obj,Table) | Perceived1, . . ., Perceivedn), which is then computed for

all possible objects. Given the result of this probabilistic query, KNOWROB binds the

set of objects for which the probability value exceeds some threshold θ to the Prolog

variable �		�	� (e.g. θ = 0.5 or lower, depending on how conservative we want to

be). The last condition then determines the missing items ������� as those items that

are in the set �		�	� but not in the set �	�
	��	�.

The specification of the predicate �	�
	��	����	
������
�	 is most relevant, as it

actually uses the capabilities of K-COPMAN.

perceivedObjectsOnPlane(Plane, Perceived) :-

onPlane(Plane),

setOf(Obj-Hyp,

(on(Obj, Plane),

category(Obj,Cat),

uniqueId(Id),

objectInstace(Obj,KnownObj),

Obj-Hyp = [Id,Obj,Cat,KnownObj]),

Perceived).

The condition collects all object hypotheses generated by the perception routine by

producing a unique �� for each hypothesis, associating with it the raw sensor data

��� that belongs to the hypothesis, categorizing the object hypothesis (�
�), and

checking whether the hypothesis is a known object instance ��������, and if so,

128

7.3 Perceptual Models

which one. The perceptual routines needed for the realization of this condition are

explained in Figure 7.3 and the definitions of the predicates in terms of these percep-

tion routines can be found in Section 7.4.2.

missingObjects(Meal, Missing):-
 instanceOf(Table, 'table'),
 in(Table, Kitchen),
 primaryFunction(Table, 'HavingAMeal'),
 perceivedObjectsOnPlane(Table, Perceived),
 neededObjectsForMeal(Perceived, Needed),
 setOf(Obj,
 (member(Obj, Needed),
 not(member(Obj, Perceived)), Missing).

Semantic Map, Encyclopedic Knowledge K-Copman perception server

First-Order Probabilistic Reasoning

Figure 7.2: Query to the K-CoPMan system for items that are missing on a table with
respect to a particular meal. The system first locates the table, perceives the
objects on it, queries the probabilistic inference engine for items that are
supposed to be on the table and determines those that are missing. BLN
graphical model is explained in Section 7.5.

7.3 Perceptual Models

Let us now explain the perception routines used by K-COPMAN, the passive percep-

tion, and the storage and management of perceptual data in more detail.

129

7 Knowledge-enabled Scene Understanding

op abstract routine call functionality example results
fin

d-
ho

r-
pl

an
es

plane-hyp ←
perceive

an object
cat. plane
ori. horizontal
size≥ 0.25m2

The routine find-hor-planes(pointcloud)
estimates surface normals based on local
neighborhoods performs region growing
on the points with approximately vertical
normals. The routine then estimates the
best horizontal plane using sample con-
sensus and the minimal bounds thereof
(for details see [Klank et al., 2009] and
Chapter 6.2).

fin
d-

cl
us

te
rs

obj-hyp ←
perceive

an object
cat. pcd-cluster
on hor-plane

The routine find-clusters(pl) is called
with the symbolic name pl of a horizon-
tal plane as its parameter and returns a
set of names of object hypotheses that
are perceived as being supported by pl as
its result. Each hypothesis name is asso-
ciated with a subset of point cloud data,
which are marked in different colors in
the picture on the right.

m
at

ch
-c

ad

given obj-hyp

examine obj-hyp
object-identity
object-pose

match-cad(obj-hyp, 2D-image) gets an
object hypothesis obj-hyp and a 2D color
image as its input and performs CAD
model matching on the image region
that corresponds to obj-hyp. The routine
returns the object identity of the match-
ing model in the object database and de-
termines the pose of the object. (see [Ul-
rich et al., 2009]).

m
at

ch
-s

ift

given obj-hyp

examine obj-hyp
object-identity
object-pose

match-sift(pcd-cluster, 2D image) finds
objects in a 2D image using ODUfinder
as presented in Chapter 6.

re
co

ns
tr

uc
t-

ob
je

ct

given obj-hyp

examine obj-hyp
object-identity
surface-of-revolution

The routine reconstruct-object(pcd-
cluster, rotation-axis) [Blodow et al.,
2009] detects surfaces of revolution
in point clouds reliably and efficiently.
Symmetry assumptions can be hypothe-
sized and verified in order to complete
the model from a single view, i.e. to
generate data on the occluded parts of
the object. These complete models can
be used for grasp analysis.

Figure 7.3: Some of the perception routines used by the K-CoPMan as implemented in
the Perception Server (Section 6.5), their procedure call interface, their func-
tionality and an example result. For the full list see [Marton et al., 2011].

130

7.3 Perceptual Models

7.3.1 Perception Routines

The K-COPMAN uses a set of perception mechanisms for images and point cloud

data, including the detection of horizontal planes, point cloud clustering, CAD model

matching, and SIFT-based classification. The mechanisms that are most important for

this chapter are listed in Figure 7.3, which shows the name of the routine, how it can

be called abstractly, a short functional description, and some sample results. These

routines can be used both for task-directed perception and for the passive percep-

tion.

7.3.2 Passive Perception

The passive perception component of the perception server (Chapter 6.5) is a key

mechanism used in K-COPMAN, which makes the robot environment-aware. It searches

the point clouds of the shoulder laser scanner for regions of interest (using SOM+s as

a prior), such as tables or cupboards. Whenever it finds such a region, it clusters the

point cloud data in order to segment objects standing on top of it. A unique identifier

is generated for each of these clusters and asserted to the knowledge base (Object

Model Database), together with information on the region the time at which it was

perceived. The identifier can later be used in conjunction with the perception server

to further examine the cluster, e.g. to categorize/classify the corresponding object.

The example in Figure 7.4 illustrates the information that is saved for point cloud

clusters. Until the object type is determined, K-COPMAN only knows that it is a �����,

the region of interest it was detected in (here: ����), the position of the cluster center,

and the corresponding point cloud data.

7.3.3 Perceptual Memory

The perceptual memory stores all percepts, making them accessible to future queries.

For performance reasons, computations are performed on demand. The passive per-

ception module, for instance, only segments the observed point cloud data and saves

the clusters in the memory. Any further processing, such as the classification of the

131

7 Knowledge-enabled Scene Understanding

thing(o45),

holds(onPlane(o45,roi2,), t23),

holds(position(o45, <1.5m,2.5m>), t23),

object-data(o45,).

object
center

Figure 7.4: Information stored in the symbolic knowledge base about a (not yet fully
classified) object that was detected on a table.

observed objects, is postponed until the information is required for queries involving

the respective object identifiers.

7.4 Integration with the KnowRob

The knowledge processing part in K-COPMAN is based on KNOWROB which is, as

already alluded before, specialized in integrating sensor data into the knowledge

processing system to perform reasoning on observations from the real world. For

K-COPMAN, we extended KNOWROB with an interface to the perception server de-

scribed in Chapter 6.5. This allows for direct reasoning on the perceived objects and

their properties, and for applying perception routines to them.

The perception routines described in Section 7.3 are embedded into Prolog using the

foreign language interface (FLI). Prolog predicates are linked to the functions in the

perception server and evaluated by calling the corresponding perception routine.

132

7.4 Integration with the KnowRob

7.4.1 Computable Relations

External data can easily be integrated using computable relations, which allow to

determine whether a relation between object instances holds not only on the static

knowledge in the system, but also by querying external data sources. Computables

are calculated on demand during the reasoning process.

In the K-COPMAN system, computables use attached perception routines to check if

a relation holds or not. For instance, the relation ���������	
 ����� is evaluated

internally by the K-COPMAN predicate
������������
 �����, and the class property of

an object is determined by a SIFT-based classification method. In addition to loading

data into the system, computable relations can also be used to calculate qualitative

spatial relations based on the objects’ positions, e.g. to determine whether an object

is on a table. For these relations, the query is not passed to the perception server, but

to a small Prolog program that reads the object positions and dimensions and checks

whether the relation holds.

7.4.2 K-CoPMan Predicates

In the following, we list the most relevant K-COPMAN predicates for the implementa-

tion of the perceivedObjectsOnPlane predicate:

holds(onPlane(Obj,Plane),ti) is true if ��	 refers to the raw data of an object hy-

pothesis detected by the perception server when looking at plane ����� at time in-

stance ti. The predicate is implemented using the perception routines find-hor-planes

and find-clusters (see Figure 7.3).

holds(position(Obj,Pos),ti) is true if Pos is the center of mass of the last detection

of the object hypothesis Obj before ti.

holds(spatial-rel(Obj1,Obj2),ti) is true if the object hypotheses Obj1 and Obj2 were

last detected at the positions Pos1 and Pos2, and if these positions satisfy the con-

straints for spatial-rel, e.g. left-of. At the moment, we use hard-coded rules to define

the spatial relations that depend on the pair of objects at hand but we plan to expand

this.

133

7 Knowledge-enabled Scene Understanding

categorize(Obj, Cat) evaluates to true if the point cloud cluster identified by Obj can

be classified as Cat by one of the perception routines in K-COPMAN. Depending on

the perception routine, Cat can either be a geometric category, e.g. a cylinder, or an

object class like a milk box.

7.5 Probabilistic First-Order Reasoning

In order to cope with non-deterministic domains, we integrated statistical models,

in particular statistical relational models, into our knowledge processing system. By

abstracting away from concrete entities and instead representing general principles

(of statistical nature) about a domain, statistical relational models represent meta-

models for the construction of concrete probability distributions – represented as

graphical models – for a given domain of course, i.e. a concrete set of entities that

are of interest (see [Getoor and Taskar, 2007]). Specifically, we use Bayesian Logic

Networks (BLN) [Jain et al., 2009], a formalism that combines statistical knowl-

edge (in fragments representing conditional probability distributions) with logical

knowledge (sentences in first-order logic). For a given set of entities, a BLN can be

instantiated to obtain a ground mixed network [Mateescu and Dechter, 2008] or aux-

iliary Bayesian network that represents a full-joint probability distribution over the

relevant propositions about these entities. Given a model structure and a sufficient

amount of relational data – taken directly from our relational knowledge process-

ing system – the parameters of a BLN with given dependency structure can easily be

learned, yielding a quantitative representation of statistical dependencies inherent in

the data.

To realize our example application (Section 7.2.2), we constructed a model that rep-

resents statistical knowledge about table settings. For this model, we used synthetic

training data which was generated based on a stochastic process that considered the

preferences and habits of six individuals. The model considers the types of meals,

the people participating in them (whose preferences the model reflects), the places

at which these people sit, the food and drinks they consume as well as the utensils

they use to do so. The latter two types of objects constitute the same categories as

available in the perception server of K-COPMAN. The model’s conditional probability

fragment structure is shown in Figure 7.2 (right). Given a partial table setting for one

134

7.6 Results

or more persons, the model can be used to infer the probability with which further

utensils or food and drinks might be required. Using an appropriately chosen prob-

ability threshold, we can thus flexibly perform the task of completing a table setting

based on the information we are given.

7.6 Results

We apply K-COPMAN to the autonomous mobile manipulation robot TUM-Rosie1 de-

picted in Figure 7.1 (right), which is to perform everyday manipulation activities

such as setting the table in a kitchen environment. K-COPMAN controls and uses the

sensor system shown in Figure 7.5. A pair of high-resolution color cameras, a stereo-

on-the-chip camera, and a time-of-flight sensor on a pan-tilt sensor head are used for

task-directed perception. In addition, a tilting laser scanner mounted on the robot’s

shoulder continually acquires depth maps of the scene in front of the robot (which

are mostly used by the passive perception module).

Hokuyo UTM-30LX
2.5D laser

Videre STOCSwissRanger
4000 (TOF)

SVS Vistek
(RGB)

Figure 7.5: Setup of the sensor head.

1The system was later tested on a TUM-James robot as well with the head-mounted Kinect sensor.

135

7 Knowledge-enabled Scene Understanding

bread, coffee, cheese, fork, spoon

knife, napkin, bowl

Scene 1 Scene 2 Scene 3

plate, napkin, sausage, juice

 cake, cup

 fork, knife, spoon, ice-tea, coffee

juice, sausage, breakfast cereal

dinner plate, cup, drinking glass

 coffee, bread, cheese, breakfast cereal, tea

 knife, glass, spoon, bowl, fork

 salad, juice, breakfast cereal, soup, pizza

 bowl, glass, cup, plate

Figure 7.6: Evaluation results for meal type breakfast. 1st row: Snapshots of test scenes;
2nd row: object hypotheses; 3rd row: detection of objects using match-
sift routine; 4th row: results of probabilistic inference for missingOb-
jects query. Below enlisted objects correspond to the inferred ones (visu-
alized off the table) in left-to-right rear-to-front order. Part of the figure
courtesy@Tenorth.

136

7.6 Results

plate, fork, spoon, knife, napkin

salad, juice, pizza, water

Scene 4 Scene 5

salad, plate, spoon, fork, napkin

drinking glass, water

 cake, cup

coffee, soup, bowl, cup, glass soup, pizza, knife, bowl, cup

Figure 7.7: Evaluation results for meal type lunch. 1st row: Snapshots of test scenes;
2nd row: object hypotheses; 3rd row: detection of objects using match-
sift routine; 4th row: results of probabilistic inference for missingOb-
jects query. Below enlisted objects correspond to the inferred ones (visu-
alized off the table) in left-to-right rear-to-front order. Part of the figure
courtesy@Tenorth.

137

7 Knowledge-enabled Scene Understanding

To validate our proposed framework, we performed several experiments on the table

scenes depicted in the first row of Figure 7.6 and Figure 7.7. As we will show, the in-

tegrated system can help a robot system make the decisions required for competent

operation in the presence of uncertainty. In addition to the example of inferring miss-

ing objects, we will present further queries showing the advantages of integrating

perception, knowledge processing and probabilistic reasoning.

Scenes 1-3 in Figure 7.6 show incomplete breakfast settings, whereas scenes 4 and 5

in Figure 7.7 are incomplete lunch settings. The task is to infer which items need to be

added to complete the setup. The first row shows the incomplete setup and the lists

of objects they involve. In the second row, the table surfaces and clusters identified

in the point cloud data are drawn. The clusters were projected onto 2D images and

classified with the match-sift routine (third row). In the remaining, unoccupied parts

of the images, we searched for further objects using combinations of our perception

routines.

The set of perceived objects was read into the KnowRob system and passed as ev-

idence to the probabilistic reasoning engine which, based on the model described

in the previous subsection, infers the table setting that is most likely to be desired.

The bottom row visualizes the perceived objects (visualized on the table) and in-

ferred objects (visualized off the table) as instantiated in KnowRob. The hue indicates

probability: Red corresponds to 1.0, with orange, yellow, green and blue denoting

declining probabilities in this order.

As an example query, consider the fourth scene in Figure 7.7. In terms of the func-

tions and predicates the model considers, the query for potentially missing entities

translates to a probabilistic query as follows,

P(usesAnyIn(P, ?u, M), consumesAnyIn(P, ?f, M) | mealT(M) = Lunch ∧
usesAnyIn(P, Plate, M) ∧ usesAnyIn(P, Knife, M) ∧
usesAnyIn(P, Fork, M) ∧ usesAnyIn(P, Spoon, M) ∧
usesAnyIn(P, Napkin, M) ∧ consumesAnyIn(P, Salad, M) ∧
consumesAnyIn(P, Pizza, M) ∧ consumesAnyIn(P, Juice, M) ∧
consumesAnyIn(P, Water, M) ∧ takesPartIn(P, M))

≈ 〈〈 Glass: 1.00, Bowl: 0.85, Cup: 0.51, . . . 〉,
〈 Soup: 0.82, Coffee: 0.41, Tea: 0.14, . . . 〉〉

138

7.7 Discussion

where P is some person participating in the meal M , who is assumed to be using/con-

suming the objects that were detected, and we ask for the probabilities of correspond-

ing usesAnyIn and consumesAnyIn atoms. The results above (listed in order of proba-

bility) are certainly sensible, given that the presence of a spoon generally implies that

something like soup is likely to be consumed, and therefore that a bowl/soup plate is

likely to be required. Also, a glass is necessary for the drinks to be consumed.

Further applications of the system, beyond inferring missing objects, are the recog-

nition of an activity/meal based on the objects that were perceived, the detection of

misplaced objects (by applying the predicates for computing spatial relations on the

perceived objects), and even the identification of potentially superfluous objects (i.e.

objects that have a low probability given the other objects).

7.7 Discussion

We presented K-COPMAN, a system that integrates novel perception routines and

knowledge processing mechanisms for autonomous robot manipulation. The system

abstracts perceptual facts from the real world, utilises symbolic knowledge to boost

up perceptual capabilities, and blends in the combination of both in order to answer

complex queries such as what items are missing on the table for a meal. We verified our

approach by showing several queries that demonstrate how the system can contribute

to informed decision making.

Since the detected objects are formally represented in the knowledge base, queries

can combine object information with background knowledge that describes, for ex-

ample, their main functionality. For instance, the following query searches for objects

that can be used to cut food and that are lying on the table:

?- type(Obj, ObjType),

subClassOf(ObjType, ’KitchenUtensil’),

onPlane(Obj, T),

type(Obj, ’Table’),

primaryFunction(ObjType, ’CuttingFood’).

Obj=knife1

139

Chapter 8

Demonstrations

Most of the theoretical contributions of this thesis have also been implemented on

our TUM-James and TUM-Rosie robots in a form of a public demonstration where

we programmed the robots to i) make pancakes, ii) shop for and store groceries and

iii) serve drinks (see Figure 8.1). While the first two demonstrations were carried

out in the assistive kitchen laboratory (in front of a large crowd of world renowned

roboticists), the last one was firstly carried in the assistive kitchen at Bosch RTC in

Palo Alto and secondly during the exhibition at IEEE/RSJ International Conference on

Intelligent Robots and Systems 2011 (IROS2011). Running such demonstrations or as

we like to call them “feasibility studies” is a way for us to on the one hand get a grasp

of the actual problems that household robots will have to tackle as oppose to trying

too hard to make them up and thus risk wandering into the false assumptions. On

the other hand this also enables us to survey the hardware and the range of available

software components and thus judge what their respective limitations are.

Figure 8.1: Robots carrying out demonstrations.

141

8 Demonstrations

For instance, there is a general belief at the moment that the 2D localization for

even indoor floors is a solved topic [Fox, 2001]. While this might hold as long as the

robot’s tasks do not go beyond navigation and obstacle avoidance, the localization is

certainly too inaccurate for a very fine and dexterous manipulation where precision

rates under 1cm are needed. Our suggested solution for this case was thus to act in a

sense-act-refine loop and to get localized relative to the scene or objects in question

as oppose to doing so in the global map. And this is just the tip of the iceberg, the list

of challenges thus also includes perception of objects in varying lighting conditions,

limited field of view for the majority of the available sensors (e.g. Kinect), under-

actuated hands, slow motion planning algorithms, temperature-dependent behavior

of cooking substances (e.g. pancake mix), lack of tactile sensors that would enable

an execution of certain tasks in partial contact with the environment, disambiguation

when translating the natural instructions into the robot executive programs, lack of

clean semantic information when using the object models from WWW and, last but

not least, lack of well defined interfaces between software components. In the rest of

this chapter we will break down those challenges that became especially prominent

in the given demonstrations and elaborate on our proposed solution. The consen-

sus that we can already share in the preface is that most of the issues either stem

from years of the segregated development of the respective fields and taking of false

assumptions (e.g. in computer vision lighting and blur effects seldom get any atten-

tion), and underachieving and expensive hardware.

The algorithms proposed in this thesis are implemented as libraries and expose their

functionality through ROS nodes. The communication with other components such

as robot’s drivers, localization, etc. is made via ROS topics, services and actions. This

choice enabled us to use the code from other individuals and groups, and to also

relatively well break our code into the computation, communication, coordination,

composition, and configuration parts [Prassler et al., 2009].

8.1 Robots Making Pancakes

In this demonstration1, the robots retrieve instructions for making pancakes from the

World Wide Web and generate robot action plans from the instructions. This task

1http://www.youtube.com/watch?v=gMhxi1CJI4M

142

8.1 Robots Making Pancakes

is jointly performed by two autonomous robots: The first robot opens and closes

cupboards and drawers, takes a pancake mix from the refrigerator, and hands it to

the second robot. The second robot cooks and flips the pancakes, and then delivers

them back to the first robot. While the robot plans in the scenario are all percept-

guided, they are also limited in different ways and rely on manually implemented

sub-plans for parts of the task.

The purpose of this experiment is to show the midterm feasibility of the service robots

entering into household environments and more importantly the better understand-

ing of how we can realize control systems with these capabilities by building such a

system. We tested various hypotheses such as whether the localization accuracy of a

mobile robot suffices to perform tasks such as cabinet door opening, whether success-

ful percept-guided behavior for sophisticated manipulation actions can be generated,

whether objects can be detected, recognized and grasped reliably and whether robot

plans can be generated from web instructions made for human use.

While the whole demonstration is a result of a large group effort and thoroughly

described in a separate publication [Beetz et al., 2011], we will in this section focus

on our contributions and discuss the potential of the underlying technologies as well

as the research challenges raised by the experiment. For the demonstration we build

a SOM+map of the assistive kitchen laboratory as described in Section 4 and use a

perception server (Section 6.5) and ODUfinder(Section 6) in particular to detect and

recognize a pancake mix. While a SOM+map is depicted in Figure 4.2 and includes

poses of handles and articulation models of cupboards, we for this experiment use a

product information website to learn object attributes (see Figure 8.2).

Using a SOM+map and an object to map association via afore described ontology

and reasoning (Figure 6.10) our robots can find objects faster and more reliable.

SOM+’s knowledge base namely describes pancake mix as a perishable item and it

further contains information about refrigerators, namely that they are household ap-

pliances, cooling devices, container artifacts, and that they are storage places for

perishable goods. Using perceptual pop-out (Chapter 6.2) inside the refrigerator lim-

its the search space and thus reduces the false positive rate in terms of recognized

objects. Utilizing pre-stored knowledge about the poses of handles, knobs and ar-

ticulation models, our robots are less prone to grasp wrong fixtures in the kitchen

and less prone to fail while opening cupboards due to handle slippage or errors in

143

8 Demonstrations

Figure 8.2: Picture of a bottle of pancake mix obtained from an online shop.

144

8.1 Robots Making Pancakes

continuous estimation of the articulation models. Owing it to the insufficient local-

ization performance, we only use handle and knob poses stored in the SOM+map to

find their approximate poses. To actually find and grasp those features, we still have

to perform additional re-perception step in the coordinate frame of the target object

(e.g. cupboard to be operated) and also perform all mobile manipulation tasks such

as door opening relative to the robot’s base odometry frame.

8.1.1 Future Challenges

Despite a very encouraging result this demonstration revealed a plethora of further

research challenges. For instance we learned that there is a range of perception tasks

that the robot must accomplish: it must detect objects, recognize, localize, reconstruct

them, it has to calibrate the tools in its hand, it has to monitor the deformation of the

pancake. Also the objects and stuff that are to be perceived vary a lot: some objects

are textured, others have identifiable forms, others are transparent and others, like

plates, are indistinguishable from each other. Objects can also be heavily occluded

and positioned in a clutter. For the mapping part we believe that approaches like

Kinect Fusion [Izadi et al., 2011] yield enough details and enough accuracy, however

a challenge remains in how to continuously update the map as objects move and

reliably (industrial strength grade) bridge the gap to the knowledge retrieved from

www. For the latter we propose human in the loop approaches such as e.g. proposed

by Pitzer et al. [2011]. Robot perception has to thus go far beyond the library of

methods that is currently used in the control software and be from the beginning on

part of the robot’s perception-reasoning-action loop.

In terms of manipulation we learned that robot’s hands do not have to necessary

get more dexterous for tabletop manipulation but rather more compliant [Deimel

and Brock, 2013] and cheaper. Further we found that robots like TUM-James and

TUM-Rosie are by enlarge too big and too bulky for actual mobile manipulation in

real homes and thus constrained environments [Rühr et al., 2012]. While making

smaller and more dexterous robots is well under way [UnboundedRobotics, 2013],
there is also a great need for whole body kinematics algorithms and manipulation of

objects with both arms (e.g. using hand-over strategy) and both together in dynamic

environments.

145

8 Demonstrations

The demonstration was a feasibility study, and we had to deal with many of the issues.

Many aspects have been solved specifically and some actions have been hand-coded.

One important aspect of the experiment was that we integrated previously indepen-

dent research efforts and validated that these efforts can be combined effectively and

thus contribute to a successfully integrated solution for robotic household tasks.

8.2 Robots that Shop for and Stores Groceries

In this single-robot demonstration the robot is tasked to simulate a shopping and

store object away tasks2. Similarly to the experiment above we want to show the

midterm feasibility of the service robots entering into household environments and

in addition also public sectors such as grocery stores. In addition to the above listed

hypotheses to be tested, we also want to test readiness of TUM-James’ bi-manual ma-

nipulation skills and whether a manipulation can aid and improve robot’s perception.

Using algorithm for the inference of organizational principles adds another dimen-

sion to our work in that robot can actually adapt and personalize its behavior to the

human companions.

While the whole demonstration is again a result of a larger group effort and in full

documented in a following publication: [Pangercic et al., 2011b], our contribution

was major. The robot thus for instance uses the interactive segmentation approach

from Chapter 5 by poking the objects located on the shopping shelf. Such gener-

ated priors are then fed to the ODUfinder (Chapter 6) where the object is recognized,

grasped and put into the shopping basket. In this version of the demonstration the ob-

jects are not tightly crammed together since this would impose an inevitable grasping

constraint. Upon bringing the objects home which is simulated by emptying the shop-

ping basket on the empty horizontal surface in the assistive kitchen laboratory, the

robot runs an algorithm that determines an organizational principle of an environ-

ment (in this case the TUM assistive kitchen laboratory, Chapter 3.1) and infers where

to best place the objects. Finally, it grasps the objects and actually stores them away

into the allocated place as also depicted in Figure 8.3. To represent both kitchen and

shopping store environments we again use SOM+maps as described in Chapter 4. Al-

gorithm to infer the organizational principles has been contributed by Schuster et al.

2https://www.youtube.com/watch?v=gbIDPqb_2iM

146

8.2 Robots that Shop for and Stores Groceries

Observ.

Inference (fridge)

Ontology + WUP similarity

+

=

Figure 8.3: Sequence of screen-shots from the shopping for groceries demonstrations.
TUM-James is seen finding objects on the mock-up of the shopping shelf,
graping and putting them into the shopping basket and finally bringing
them ‘home‘. In the next step robot uses ODUfinder to recognize the object,
infers its most probable storage location and stores it away.

147

8 Demonstrations

[2012] and requires the robot to first acquire organization principle models given

observations of the objects found within a particular environment. In order to deter-

mine a suitable storage location for a given object, the algorithm then identifies the

class to which the object belongs and performs inference over the model using, in par-

ticular, features pertaining to the similarity between the object and the other objects

already stored in the environment. More details about this algorithm are available

in the paper [Schuster et al., 2012]. For collision-free arm manipulation we rely on

planning algorithms available in ROS [Sucan and Chitta, 2013].

Using pipeline for the segmentation of textured objects Chapter 5.2.1, we are able

to very successfully generate segmentation priors for ODUfinder and then recognize

objects even when multiple objects are being stacked on top of each other or co-

located side by side as shown in Figure 6.2. Unlike using perceptual pop-out as in the

pancake demonstration, we in this case thus show and integrate an alternative tool

for the generation of constraints for ODUfinder which proves the generality of our

object recognition system. SOM+map is built and used to determine spatial location

of objects of a given category within the grocery store3. On the other hand the same

SOM+map as in the pancake demonstration is used to infer storing locations for the

objects. For the latter we again use Barcoo website, and generate an ontology that ex-

tends the KnowRob ontology with knowledge about more than 7,000 manufactured

products. In addition to the object category structure, this online shop also provides

detailed descriptions of the properties of products, such as the perishability status,

price, ingredients, etc. (see Figure 6.10). The latter proves being especially useful in

this demonstration when a storage place for an object milk is requested. Since milk is

categorized as a perishable objects and that property is linked to the cooling device

refrigerator in the extended KnowRob taxonomy, the latter was inferred as a storage

location over a kitchen table where milk could also be found during breakfast. As

proposed by Schuster et al. [2012], the following features are used to learn the or-

ganizational principles: semantic similarity, purpose, meal relevance, size and shape.

These features came as a result of a thorough analysis of photographs of kitchens of

our colleagues as well as blogs and videos from the Internet. Concerning bi-manual

manipulation, we experienced problems in that used arm planning algorithms cur-

rently do not allow for the adequate specification of constraints such as when to use

which arm, where to grasp an object given a task at hand and how to hold an ob-

3Only verified through the use of one shopping rack in this demonstration.

148

8.3 Robots Serving Drinks

ject during the manipulation (e.g. up-right if it is filled with the liquid). Bridging the

gap between manipulation algorithms and semantic understanding of the course of

actions for a given task has been part of our ongoing work [Witzig et al., 2013].

8.2.1 Future Challenges

This demonstration as well revealed several challenging research problems. Unlike in

the pancake demonstration, we realized that we would need better and more dexter-

ous grippers to be able to grasp the objects from the shelves or place them into the

cluttered containers such as refrigerators. Bi-manual manipulation becomes an abso-

lute must when it comes to the tasks such as shopping. An important aspect when

operating in public spaces such as grocery stores becomes reliable navigation in dy-

namic environments that is also cost effective. Alternatives to laser-based navigation

solutions will have to be explored in the future by using e.g. camera and/or ultra

sound array sensors. Another challenge is to be able to deal with a truly large scale

object recognition. Product mining store Barcoo has currently over 7 million objects

in their database and the recognition of objects will currently still not be possible

with our solution proposed in Chapter 6. Lastly, we believe that to learn organiza-

tional principles for a wide variety of household we will have to turn to the shared

autonomy approaches more and devise a solution that will render it possible for the

remote operators to collaborate with the robots from remote and help them overcome

unforeseen situations.

8.3 Robots Serving Drinks

In this demonstration we programmed another PR2 robot (Bosch-Alan) at another

PR2 Beta Site at Bosch RTC in Palo Alto to fetch the drinks from the refrigerator and

serve them to visitors4. The demo begins with a visitor selecting the drink of choice

and the robot then proceeds by finding the refrigerator and opening it. Inside the re-

frigerator it then has to find a selected drink, grasp it, close the refrigerator door and

bring the drink to designated table. This demonstration was quickly and effectively

built up using the same tools as in the two demonstrations above, that is SOM+maps

4http://www.youtube.com/watch?v=z36xkUILtQE

149

8 Demonstrations

for being able to understand the environment and operate in it, and ODUfinder for

object detection and recognition. The major difference to previous two demonstra-

tion however is in that it took place in two completely different environments. Firstly

in Bosch’s assistive kitchen and secondly in the exhibition center of the IEEE/RSJ

International Conference on Intelligent Robots and Systems 2011. This at least to

the extent proves that we developed and built tools that are generic and sustainable.

The only real difference that we encountered in this environment were handles that

have specular reflection and for which we had to develop a special type of detector as

presented in Section 4.4.2.2. The most important lesson learned however is that stan-

dardized hardware (PR2 robot in this case) and standardized and quality software

(ROS) sped up our development and deployment substantially.

8.4 Discussion

In this chapter we presented three demonstrations using human-like robots in envi-

ronments that resembled households as closely as possible. The robots were tasked

with everyday chores such as serving, cooking and shopping. The algorithms devel-

oped in this thesis, in particular SOM+maps, interactive object segmentation and

ODUfinder were integrated successfully and they performed robustly with respect to

robustness, false positive rates and different environments. In general we observed

that robots perform better if they are equipped with the domain knowledge and

their algorithms for perception, reasoning and action are tightly coupled together -

which is exactly where this thesis is placed. The coupling becomes increasingly eas-

ier if standardized hardware and software is available. Regarding respective research

fields, the most and the best tools are available in the field of perception which is

most likely due to the emergence of cheap sensors such as Kinect and availability of

excellent open-source tools such as OpenCV and PointCloud library. Recently we are

also witnessing a so-called ensemble of experts system being adopted widely. In this

systems, like in our perception server (Chapter 6.5), various perception algorithms

work together with an aim to maximize the performance. In terms of manipulation

there is in general a lack of cheap, precise and compliant hardware. In addition, most

grasp and motion planning algorithms do not provide an option to impose semantic

constraints and thus do not allow for encoding of task dependent knowledge. Very

few work has been so far done on the reasoning and artificial intelligence driven

150

8.4 Discussion

robotics. For the robots, to be able to live with and serve humans, they will have to

understand their environment and their task and have an ability to monitor execution

of their tasks, detect and recover from failures and also learn. We believe that this

thesis contributes substantially into this direction which has been validated through

above presented demonstrations. However, to fully understand the problems in the

real world and to make progress quickly two things will need to happen. On the one

hand benchmarks will have to be developed and used to be able to test and compare

systems developed by different researchers. From that point on a set of best practices

will need to be developed that will prevent community to reinvent the wheel over

and over again. On the other hand to be able to bring service robots on the market

quickly a concept of shared autonomy will need to be adopted widely in order for

humans to assist service robots with the high intelligence tasks.

151

Chapter 9

Conclusion

This chapter concludes the thesis by summarizing the main contributions of our re-

search and providing a line of possible extensions that we either already work on or

encourage the research community to continue pursuing.

The thesis has been from the ground on motivated with a real use case as presented

in Chapter 1.3. An entire household task has been selected because we on the one

hand believe (and work actively towards) that personal robots will penetrate into

homes beyond vacuum cleaners and toys, and on the other hand because this kept us

focused on developing a solution for the problem rather than finding a problem for

an out-of-space solution. After deliberately analyzing the whole “prepare pancakes

for breakfast” task we identified two main issues. First, research in robotics has been

since Shakey times [Nilsson, 1984] very divided into sub-fields (e.g. computer vi-

sion, motion and grasp planning, mapping and localization, etc.) and there has been

very few exceptions [Asfour et al., 2000] where researchers tried to integrate tools

and algorithms from multiple fields in one realistic and useful robotic application.

Secondly, we noticed that almost always the domain knowledge pertaining to a cer-

tain task has been either over- or under-simplified. While the former issue leads to

incomplete solutions and omittance of helpful clues, the latter one either results in

continuous reinventing of the wheel or really sloppily designed solutions. To cover

up for these deficiencies we decided to work on the solutions that will make use of

knowledge bases, KnowRob in our case, and always strive to have our algorithms in

the perception-reason-act loop of the robot.

We first started with the mapping of the environment as presented in Chapter 4.

With the SOM+concept that we propose and implement, the robot can autonomously

153

9 Conclusion

acquire photo-realistic meshes of the indoor environments and segment the meshes

into various fixtures such as planes, knobs and handles. Additionally the robot can

also grasp the handles and interactively segment furniture faces and learn articulation

models. The results of these computation step are then abstracted away and asserted

into a hierarchical ontology of the knowledge base. The knowledge base contains

three sources of the knowledge: terminological, assertional and spatial and allows for

powerful queries that unify low-level information like the dimensions and poses of

objects with semantic information about their properties obtained from encyclopedic

sources for instance. In the end we qualitatively and quantitatively evaluated this

concept and confirmed that SOM+ maps can be built in various environments and in

real time and that robots using maps are significantly faster and robuster when acting

in the indoor environments if using a priori stored information.

Next we tackled detection and recognition of furniture objects and objects of daily

use. While the former has been published in a separate publication [Mozos et al.,

2011], we in Chapter 5 present a novel, interactive perception approach for the

segmentation of objects of daily use. In this approach we use robot arm to induce

motions into the clutter of objects, observe and track features on the objects and

in the end cluster rigidly moving features as belonging to one object or otherwise.

This approach shifts the classical paradigm from sense-act to sense-act-sense and by

tightly connecting robot’s perception and manipulation skills yields superior results

to those that are based on the segmentation of static images only. In our approach we

tackle textured and textureless objects separately when it comes to feature extraction

and tracking and subsequent trajectory clustering but reuse part of the segmentation

pipeline that requires computation of the push points, dense model reconstruction

and actual pushing. We use such obtained densely reconstructed models to grasp ob-

jects or to constrain object recognition task as presented in Chapter 6 to a specific

region of interest. Recent robotics challenges1 have exposed a large need for interac-

tive perception tools and algorithms in order to make robots more autonomous and

thus on the market faster.

In Chapter 6 we present an object recognition system that scales well with the large

number (couple of thousand) of objects and is also linked with the KnowRob knowl-

edge base. The system uses SIFT features and vocabulary trees to perform search

1http://www.theroboticschallenge.org

154

efficiently. For robustness we introduced an additional measure based on the cluster-

ing of SIFT features which significantly improves the performance of the system in

the presence of occlusions or minor changes in object’s appearance due to tear and

wear. The system also uses an external barcode reader library which we connected to

the product information site Barcoo which provides a taxonomy of more than seven

million object of daily use classes. Having such a taxonomy and object properties

such as e.g. perishability, allows us to connect this ontology with the above ontology

of the SOM+ environment model and then execute powerful queries such as “Where

does this object belong to?” or “Where do I find an object of type milk”? This system

is also integrated into the perceptual server which was jointly developed in the IAS

group and features various other object detection, categorization and recognition al-

gorithms. With this system we have on the one hand shown that fast, scalable and

robust object recognition is possible within a real robotic application. On the other

hand, by linking Barcoo and SOM+ we extended a range of possible queries that the

robot can pose to its knowledge base by an order of magnitude.

In our final contribution in Chapter 7 we effectively combine results of Chapter 4,

Chapter 5 and Chapter 6 and add statistical relational learning in the mix. Such re-

sulting system termed K-COPMAN can now test and satisfy knowledge preconditions

for everyday manipulation. As an example, the robot using this system can now per-

ceive the tabletop scene and then infer which objects are missing and then go and

fetch them. In a nutshell the system employs two main perceptual mechanisms: task-

directed and passive perception. Task-directed perception provides information neces-

sary for accomplishing manipulation tasks – information about the object to be acted

on and the scene context. The passive perception is to make the robot environment-

aware by also memorizing objects that are not task-relevant at the time of perception.

Using knowledge processing mechanisms and the belief state (memory) of the robot,

the robot can for instance point the camera at places where it believes objects to

be or exploit the fact that objects inside a cupboard are invisible unless the door is

open. Finally, to cope with non-deterministic domains, we integrated statistical mod-

els, in particular statistical relational models (BLN), into our knowledge processing

system.

155

9 Conclusion

9.1 Future Work

Though above systems have been thoroughly validated and have shown great promise

en route of introducing robots into everyday environments, there is still plenty of re-

search issues to be addressed.

With SOM+ maps we propose an inclusion of the recent surface reconstruction ap-

proaches that are based on the work by Izadi et al. [2011], most notably a work

by Whelan et al. [2012] who overcome memory limitations of the former by intro-

ducing factor graphs in the pipeline and thus enabled surface reconstruction of really

large environments. Further, solutions for dealing with the dynamically changing en-

vironments will have to be explored and solved. Though the cases when large objects

such as cupboards, tables, chairs, etc. are moved around are rare, we still need to

update our maps accordingly. We propose to either use our passive perception model

from K-COPMAN and continuously and lazy monitor the environment or introduce

the human in the loop as suggested by Pitzer et al. [2011]. Further remaining issues

involve the level of detail of the interpretation of reconstructed surfaces, modeling

of the inside of cupboards and interactive acquisition of the data (e.g. interactive

segmentation and articulation model learning) in constrained environments. On the

knowledge side our objective is to be able to automatize creation of the ontologies

for the environment modeling by e.g. sourcing information from the furniture stores

such as IKEA. This will help us to skip the manual alignment step as reported earlier.

Further we plan to introduce more and even more powerful queries and test and

validate them rigorously in a larger set of real household environments. For that we

believe that, we as a community, have to come up with a benchmark that will consist

of datasets from numerous environments and enable us to simulate robot’s actions

in those environments. We propose a use of simulators such as Gazebo [Koenig and

Howard, 2004], where photo-realistic meshes and their interpretations can be in-

serted and the robot’s behavior simulated physically correctly.

In the interactive object segmentation work we plan to fuse both approaches for the

segmentation of textured and textureless objects. Currently both pipelines diverge

in two places, in the feature estimation and tracking step and in the trajectory seg-

mentation step. For the former, a measure to estimate the texturedness in a certain

scene will need to be developed. For the latter we plan to either make the choice

156

9.1 Future Work

of the segmentation algorithm dependent on the selected feature or we will try to

make graph-based segmentation faster to deal with the larger number of features

and thus textured objects as well. In addition we plan to integrate an arm motion

planning component [Sucan and Chitta, 2013] which will allow us to execute safe

and sound push action. One missing component in the presented setup are trans-

parent and translucent objects. We have recently seen detectors [Klank et al., 2011]
and recognizers [Lysenkov et al., 2012] that are for the most of the time exploiting

a deficiency of the time-of-flight to perceive transparent objects and take the lack of

the sensor data as an indication of the presence of such objects. While this is a valid

assumption and we plan to adopt it, the lack of data can also be caused by other

phenomena in the environment such as the presence of glass or a strong sun light.

To overcome this we plan to integrate ultra sound array sensors on robot’s head and

tactile sensors [Romano, 2011] on robot’s hands to be able to test and validate if

transparent objects have been detected and recognized correctly. Finally, we plan to

introduce the interactive perception approach in other tasks such as navigation in

dynamic environments, where obstacle would need to be removed, as well. Further

interesting tasks to consider are validation of the pose estimation on the recognized

objects or relative localization with respect to the object of interest, e.g. a refrigera-

tor.

Emergence of cheap sensors such as Kinect [WillowGarage, 2010b] or SoftKinetic [Soft-

Kinetic, 2012], have triggered and already substantially improved research in the

field of object of daily use detection and recognition [Lai et al., 2011b; Hinterstoisser

et al., 2012; Collet Romea et al., 2011]. The remaining challenges include fusing of

all available algorithms in an even larger ensemble of experts system that will learn

on the fly which algorithms to use given a certain situation and also learn the nec-

essary parameters. Using UIMA [Ferrucci and Lally, 2004] architecture which was

used in the famous Jeopardy quiz by Watson computer is something that we are al-

ready exploring and that with very promising results. UIMA architecture in the Wat-

son setup is used to analyze large volumes of unstructured information in order to

discover knowledge that is relevant to an end user. Another remaining problem is on

how to capture and incorporate all possible object models in the world. While we cur-

rently do not have a direct answer to this question, we definitely believe that working

together with large retailer stores and companies such as Google that have computa-

tional resources as well access to online data, is the way to go. Expanding Google’s

157

9 Conclusion

freebase [Bollacker et al., 2008] with the necessary structs to hold terminological,

assertional and spatial information is one of the possible solutions.

158

Bibliography

Robert Adelmann. C.: Toolkit for Bar Code Recognition and Resolving on Camera. In Phones -

Jump Starting the Internet of Things. In: Informatik 2006 workshop on Mobile and Embedded

Interactive Systems, 2006.

Georg Arbeiter, Jan Fischer, and Alexander Verl. 3D Perception and Modeling for Manipu-

lation on Care-O-bot 3. In In Proceedings of the ICRA 2010 Workshop: Best Practice in 3D

Perception and Modeling for Mobile Manipulation, 2010.

Tamim Asfour, Karsten Berns, and Rüdiger Dillmann. The humanoid robot ARMAR: Design

and control. In IN IEEE/APS INTL CONFERENCE ON HUMANOID ROBOTS, pages 7–8, 2000.

Pedram Azad, David Munch, Tamim Asfour, and Rüdiger Dillmann. 6-DoF model-based track-

ing of arbitrarily shaped 3D objects. In ICRA, 2011.

Michael Beetz, Dominik Jain, Lorenz Mösenlechner, Moritz Tenorth, Lars Kunze, Nico Blodow,

and Dejan Pangercic. Cognition-Enabled Autonomous Robot Control for the Realization of

Home Chore Task Intelligence. Proceedings of the IEEE, Special Issue on Quality of Life

Technology, 100(8):2454–2471, 2012.

Michael Beetz, Ulrich Klank, Ingo Kresse, Alexis Maldonado, Lorenz Mösenlechner, Dejan

Pangercic, Thomas Rühr, and Moritz Tenorth. Robotic Roommates Making Pancakes. In

11th IEEE-RAS International Conference on Humanoid Robots, 2011.

Michael Beetz, Lorenz Mösenlechner, and Moritz Tenorth. CRAM – A Cognitive Robot Abstract

Machine for Everyday Manipulation in Human Environments. In IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 1012–1017, 2010.

Michael Beetz, Freek Stulp, Bernd Radig, Jan Bandouch, Nico Blodow, Mihai Dolha, An-

dreas Fedrizzi, Dominik Jain, Uli Klank, Ingo Kresse, Alexis Maldonado, Zoltan Marton,

Lorenz Mösenlechner, Federico Ruiz, Radu Bogdan Rusu, and Moritz Tenorth. The Assistive

159

Bibliography

Kitchen – A Demonstration Scenario for Cognitive Technical Systems. In IEEE 17th Interna-

tional Symposium on Robot and Human Interactive Communication (RO-MAN), Muenchen,

Germany, pages 1–8, 2008. Invited paper.

Niklas Bergström, Carl Henrik Ek, Mårten Björkman, and Danica Kragic. Scene Understand-

ing through Interactive Perception. In In 8th International Conference on Computer Vision

Systems (ICVS), 2011.

Christian Bersch, Dejan Pangercic, Sarah Osentoski, Karol Hausman, Zoltan-Csaba Marton,

Ryohei Ueda, Kei Okada, and Michael Beetz. Segmentation of Textured and Textureless

Objects through Interactive Perception. In RSS Workshop on Robots in Clutter: Manipula-

tion, Perception and Navigation in Human Environments, 2012.

Paul J. Besl and Neil D. McKay. A Method for Registration of 3D Shapes. IEEE Transactions on

Pattern Analysis and Machine Intelligence (TPAMI), 14(2):239–256, 1992.

Nico Blodow, Lucian Cosmin Goron, Zoltan-Csaba Marton, Dejan Pangercic, Thomas Rühr,

Moritz Tenorth, and Michael Beetz. Autonomous Semantic Mapping for Robots Performing

Everyday Manipulation Tasks in Kitchen Environments. In Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), 2011.

Nico Blodow, Dominik Jain, Zoltan-Csaba Marton, and Michael Beetz. Perception and Prob-

abilistic Anchoring for Dynamic World State Logging. In 10th IEEE-RAS International Con-

ference on Humanoid Robots, pages 160–166, 2010.

Nico Blodow, Radu Bogdan Rusu, Zoltan Csaba Marton, and Michael Beetz. Partial View

Modeling and Validation in 3D Laser Scans for Grasping. In 9th IEEE-RAS International

Conference on Humanoid Robots (Humanoids), 2009.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Freebase: a

collaboratively created graph database for structuring human knowledge. In SIGMOD ’08:

Proceedings of the 2008 ACM SIGMOD international conference on Management of data,

pages 1247–1250, 2008.

Jean Y. Bouguet. Pyramidal Implementation of the Lucas Kanade Feature Tracker: Description

of the algorithm. Jean-YvesBouguet, 2002.

Yuri Boykov and Vladimir Kolmogorov. An Experimental Comparison of Min-Cut/Max-Flow

Algorithms for Energy Minimization in Vision. IEEE Trans. Pattern Anal. Mach. Intell., 26:

1124–1137, 2004.

160

Bibliography

G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

Jeff Brown et al. ZBar Bar Code Reader, 2011.

Thomas Brox and Jitendra Malik. Object segmentation by long term analysis of point trajec-

tories. In Proceedings of the 11th European conference on Computer vision: Part V, ECCV’10,

pages 282–295. Springer-Verlag, 2010.

J. Bruce, Tucker Balch, and Maria Manuela Veloso. Fast and inexpensive color image segmen-

tation for interactive robots. In Proceedings of the 2000 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS ’00), volume 3, pages 2061 – 2066, 2000.

Lillian Chang, Joshua R. Smith, and Dieter Fox. Interactive singulation of objects from a pile.

International Conference on Robotics and Automation (ICRA), 2012.

Matei Ciocarlie, Kaijen Hsiao, E. Gil Jones, Sachin Chitta, Radu Bogdan Rusu, and Ioan A.

Sucan. Towards Reliable Grasping and Manipulation in Household Environments. In Pro-

ceedings of RSS 2010 Workshop on Strategies and Evaluation for Mobile Manipulation in

Household Environments, 2010.

Code128. Information technology – Automatic identification and data capture techniques –

Bar code symbology specification – Code 128, 2000.

Leslie B. Cohen and Cara H. Cashon. Infant Perception and Cognition. In Comprehensive

Handbook of Psychology, Volume 6: Developmental Psychology, chapter II. Infancy, pages 65–

89. Wiley and Sons, 2003.

Alvaro Collet Romea, Manuel Martinez Torres, and Siddhartha Srinivasa. The MOPED frame-

work: Object recognition and pose estimation for manipulation. International Journal of

Robotics Research, 30(10):1284 – 1306, 2011.

DataBar. Information technology – Automatic identification and data capture techniques –

GS1 DataBar bar code symbology specification, 2006.

Raphael Deimel and Oliver Brock. A Compliant Hand Based on a Novel Pneumatic Actuator.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA),

pages 01–07, 2013.

Birgid Eberhardt. Service Robotics – an Opportunity for Demographic Change. 2012.

161

Bibliography

Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient Graph-Based Image Segmentation.

Int. J. Comput. Vision, 59(2):167–181, 2004.

David Ferrucci and Adam Lally. UIMA: An Architectural Approach to Unstructured Informa-

tion Processing in the Corporate Research Environment. Natural Language Engineering, 10

(3-4):327–348, 2004.

Martin A. Fischler and Robert C. Bolles. Random Sample Consensus: A Paradigm for Model

Fitting with Applications to Image Analysis and Automated Cartography. Communications

of the ACM, 24(6):381–395, 1981.

P. Fitzpatrick. First contact: an active vision approach to segmentation. In IEEE/RSJ Int. Conf.

Intelligent Robots and Systems (IROS), 2003.

D. Fox. KLD-Sampling: Adaptive Particle Filters. In Advances in Neural Information Processing

Systems 14. MIT Press, 2001.

Lise Getoor and Ben Taskar, editors. Introduction to Statistical Relational Learning (Adaptive

Computation and Machine Learning). MIT Press, 2007.

Inc Google. Google Voice Search.

G. Grisetti, S. Grzonka, C. Stachniss, P. Pfaff, and W. Burgard. Efficient estimation of accurate

maximum likelihood maps in 3D. Proceedings of the IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pages 3472–3478, 2007.

GS1. GS1 General Specifications, 2010.

Megha Gupta and Gaurav S. Sukhatme. Using Manipulation Primitives for Brick Sorting in

Clutter. International Conference on Robotics and Automation (ICRA), 2012.

Rakesh Gupta and Mykel J. Kochenderfer. Common Sense Data Acquisition for Indoor Mobile

Robots. In AAAI, pages 605–610, 2004.

Martin Haegele. World Robotics - Service Robots 2011. Technical report, International Fed-

eration of Robotics, 2011.

Karol Hausman, Ferenc Balint-Benczedi, Dejan Pangercic, Zoltan-Csaba Marton, Ryohei Ueda,

Kei Okada, and Michael Beetz. Tracking-based Interactive Segmentation of Textureless

Objects. In In IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe,

Germany, 2013.

162

Bibliography

Peter Henry, Michael Krainin, Evan Herbst, Xiaofeng Ren, and Dieter Fox. RGB-D Mapping:

Using Depth Cameras for Dense 3D Modeling of Indoor Environments. In ISER 2010, 2010.

Laurie J. Heyer, Semyon Kruglyak, and Shibu Yooseph. Exploring Expression Data: Identifi-

cation and Analysis of Coexpressed Genes. Genome Research, 9(11):1106–1115, 1999.

S. Hinterstoisser, C. Cagniart, S. Ilic, P. Sturm, N. Navab, P. Fua, and V. Lepetit. Gradient Re-

sponse Maps for Real-Time Detection of Texture-Less Objects. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 2012.

Berthold K. P. Horn. Closed-form solution of absolute orientation using unit quaternions.

Journal of the Optical Society of America A, 4(4):629–642, 1987.

Shahram Izadi, David Kim, Otmar Hilliges, David Molyneaux, Richard Newcombe, Push-

meet Kohli, Jamie Shotton, Steve Hodges, Dustin Freeman, Andrew Davison, and Andrew

Fitzgibbon. KinectFusion: Real-time 3D Reconstruction and Interaction Using a Moving

Depth Camera. In Proceedings of the 24th Annual ACM Symposium on User Interface Soft-

ware and Technology. ACM, 2011.

David W. Jacobs. Perceptual Organization As Generic Object Recognition. In From Fragments

to Objects - Segmentation and Grouping in Vision, chapter IV. Models Of Segmentation And

Grouping, pages 295–329. 2001.

A. Jain and C.C. Kemp. Pulling Open Doors and Drawers: Coordinating an Omni-directional

Base and a Compliant Arm with Equilibrium Point Control. In ICRA, 2010.

Dominik Jain, Stefan Waldherr, and Michael Beetz. Bayesian Logic Networks. Technical

report, IAS Group, Fakultät für Informatik, Technische Universität München, 2009.

Dominik Joho, Martin Senk, and Wolfram Burgard. Learning Search Heuristics for Finding

Objects in Structured Environments. Robotics and Autonomous Systems, 59(5):319–328,

2011.

Asako Kanezaki, Zoltan-Csaba Marton, Dejan Pangercic, Tatsuya Harada, Yasuo Kuniyoshi,

and Michael Beetz. Voxelized Shape and Color Histograms for RGB-D. In IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems (IROS), Workshop on Active Semantic

Perception and Object Search in the Real World, 2011.

Dov Katz and Oliver Brock. Interactive Segmentation of Articulated Objects in 3D. In Work-

shop on Mobile Manipulation at ICRA, 2011.

163

Bibliography

Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Poisson surface reconstruction. In

4th Eurographics symposium on Geometry processing, pages 61–70, 2006.

Jacqueline Kenney, Thomas Buckley, and Oliver Brock. Interactive segmentation for ma-

nipulation in unstructured environments. In Proceedings of the 2009 IEEE international

conference on Robotics and Automation, ICRA’09, 2009.

KIT. Kit Object Models Web Database, 2010.

Ulrich Klank, Daniel Carton, and Michael Beetz. Transparent Object Detection and Recon-

struction on a Mobile Platform. In IEEE International Conference on Robotics and Automa-

tion (ICRA), 2011.

Ulrich Klank, Dejan Pangercic, Radu Bogdan Rusu, and Michael Beetz. Real-time CAD Model

Matching for Mobile Manipulation and Grasping. In 9th IEEE-RAS International Conference

on Humanoid Robots, pages 290–296, 2009.

Jens Klappstein, Tobi Vaudrey, Clemens Rabe, Andreas Wedel, and Reinhard Klette. Moving

Object Segmentation Using Optical Flow and Depth Information. In Proceedings of the

3rd Pacific Rim Symposium on Advances in Image and Video Technology, PSIVT ’09, pages

611–623. Springer-Verlag, 2008.

E. Klingbeil, D. Rao, B. Carpenter, V. Ganapathi, A. Y. Ng, and O. Khatib. Grasping with

Application to an Autonomous Checkout Robot. In Proc. of the IEEE International Conference

on Robotics and Automation, pages 2837–2844, 2011a.

Ellen Klingbeil, Deepak Drao, Blake Carpenter, Varun Ganapathi, Oussama Khatib, and An-

drew Y. Ng. Grasping with Application to an Autonomous Checkout Robot. In In Interna-

tional Conference on Robotics and Automation (ICRA), 2011b.

N. Koenig and A. Howard. Design and use paradigms for Gazebo, an open-source multi-robot

simulator. Intelligent Robots and Systems, 2004. (IROS 2004). Proceedings. 2004 IEEE/RSJ

International Conference on, 3:2149–2154 vol.3, 2004.

David Kortenkamp and Terry Weymouth. Topological mapping for mobile robots using a

combination of sonar and vision sensing. In Proceedings of the twelfth national conference

on Artificial intelligence (vol. 2), AAAI’94, pages 979–984, 1994.

Lars Kunze, Moritz Tenorth, and Michael Beetz. Putting People’s Common Sense into Knowl-

edge Bases of Household Robots. In 33rd Annual German Conference on Artificial Intelli-

gence (KI 2010), pages 151–159. Springer, 2010.

164

Bibliography

K Lai and D Fox. Object Recognition in 3D Point Clouds Using Web Data and Domain Adap-

tation. The International Journal of Robotics Research, 29(8):1019–1037, 2010.

Kevin Lai, Liefeng Bo, Xiaofeng Ren, and Dieter Fox. A Large-Scale Hierarchical Multi-View

RGB-D Object Dataset. In International Conference on Robotics and Automation (ICRA),

2011a.

Kevin Lai, Liefeng Bo, Xiaofeng Ren, and Dieter Fox. Sparse Distance Learning for Object

Recognition Combining RGB and Depth Information. In IEEE International Conference on

on Robotics and Automation, 2011b.

Bruno Lévy, Sylvain Petitjean, Nicolas Ray, and Jérome Maillot. Least squares conformal maps

for automatic texture atlas generation. ACM Trans. Graph., 21(3):362–371, 2002.

libfastsift. Fast SIFT Image Features Library, 2009.

William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution 3D surface

construction algorithm. In 14th annual conference on Computer graphics and interactive

techniques, pages 163–169. ACM Press, 1987.

David G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints. Int. Journal of

Comp. Vision, 60(2):91–110, 2004.

Ilya Lysenkov, Victor Eruhimov, and Gary Bradski. Recognition and Pose Estimation of Rigid

Transparent Objects with a Kinect Sensor. In Proc. of Robotics: Science and Systems, 2012.

Tomasz Malisiewicz and Alexei A. Efros. Improving Spatial Support for Objects via Multiple

Segmentations. In Proceedings of the British Machine Vision Conference, 2007.

D. Marr and E. Hildreth. Theory of Edge Detection. In Proceedings of the Royal Society of

London. Series B, Biological Sciences, volume 207, pages 187–217, 1980.

Zoltan-Csaba Marton, Ferenc Balint-Benczedi, Nico Blodow, Lucian Cosmin Goron, and

Michael Beetz. Object Categorization in Clutter using Additive Features and Hashing of

Part-graph Descriptors. In Proceedings of Spatial Cognition (SC), 2012.

Zoltan Csaba Marton, Dejan Pangercic, Nico Blodow, and Michael Beetz. Combined 2D-3D

Categorization and Classification for Multimodal Perception Systems. The International

Journal of Robotics Research, 30(11):1378–1402, 2011.

165

Bibliography

Zoltan-Csaba Marton, Dejan Pangercic, Nico Blodow, Jonathan Kleinehellefort, and Michael

Beetz. General 3D Modelling of Novel Objects from a Single View. In Proceedings of the

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2010.

Robert Mateescu and Rina Dechter. Mixed Deterministic and Probabilistic Networks. Annals

of Mathematics and Artificial Intelligence, 54(1-3):3–51, 2008.

Ajay K. Mishra and Yiannis Aloimonos. Active Segmentation With Fixation. In ICCV, 2009.

Tracy L. Mitzner, Cory-Ann Smarr, Jenay M. Beer, Tiffany L. Chen, Jennifer Megan Springman,

Akanksha Prakash, Charles C. Kemp, and Wendy A. Rogers. Older Adults’ Acceptance

of Assistive Robots for the Home. Technical Report HFA-TR-1105, Georgia Institute of

Technology: Human Factors and Aging Laboratory, 2011.

J. Montiel, J. Civera, and A. Davison. Unified Inverse Depth Parametrization for Monocular

SLAM. In Proceedings of Robotics: Science and Systems, 2006.

Oscar Martinez Mozos, Zoltan Csaba Marton, and Michael Beetz. Furniture Models Learned

from the WWW – Using Web Catalogs to Locate and Categorize Unknown Furniture Pieces

in 3D Laser Scans. Robotics & Automation Magazine, 18(2):22–32, 2011.

Hideki Nakayama, Tatsuya Harada, and Yasuo Kuniyoshi. AI Goggles: Real-time Description

and Retrieval in the Real World with Online Learning. In Proceedings of the 2009 Canadian

Conference on Computer and Robot Vision, 2009a.

Hideki Nakayama, Tatsuya Harada, and Yasuo Kuniyoshi. AI Goggles: Real-time Description

and Retrieval in the Real World with Online Learning. Computer and Robot Vision, Canadian

Conference, 0:184–191, 2009b.

N. J. Nilsson. Shakey the Robot. Technical Report 323, AI Center, SRI International, Menlo

Park, CA, USA, 1984.

David Nister and Henrik Stewenius. Scalable Recognition with a Vocabulary Tree. In CVPR

’06: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pat-

tern Recognition, pages 2161–2168. IEEE Computer Society, 2006.

Dejan Pangercic, Vladimir Haltakov, and Michael Beetz. Fast and Robust Object Detection in

Household Environments Using Vocabulary Trees with SIFT Descriptors. In IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems (IROS), Workshop on Active Semantic

Perception and Object Search in the Real World, 2011a.

166

Bibliography

Dejan Pangercic, Koppany Mathe, Zoltan-Csaba Marton, Lucian Cosmin Goron, Monica-

Simona Opris, Martin Schuster, Moritz Tenorth, Dominik Jain, Thomas Ruehr, and Michael

Beetz. A Robot that Shops for and Stores Groceries. AAAI Video Competition (AIVC 2011),

2011b.

Dejan Pangercic, Rok Tavcar, Moritz Tenorth, and Michael Beetz. Visual Scene Detection and

Interpretation using Encyclopedic Knowledge and Formal Description Logic. In Proceedings

of the International Conference on Advanced Robotics (ICAR)., 2009.

Dejan Pangercic, Moritz Tenorth, Dominik Jain, and Michael Beetz. Combining Perception

and Knowledge Processing for Everyday Manipulation. In IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems (IROS), pages 1065–1071, 2010.

Dejan Pangercic, Moritz Tenorth, Benjamin Pitzer, and Michael Beetz. Semantic Object Maps

for Robotic Housework - Representation, Acquisition and Use. In 2012 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS), 2012.

Patrick Pfaff, Wolfram Burgard, and Dieter Fox. Robust Monte-Carlo Localization Using Adap-

tive Likelihood Models. In EUROS, pages 181–194, 2006.

B. Pitzer, S. Kammel, C. DuHadway, and J. Becker. Automatic reconstruction of textured

3D models. In IEEE International Conference on Robotics and Automation (ICRA), pages

3486–3493, 2010.

Benjamin Pitzer, Michael Styer, Christian Bersch, Charles DuHadway, and Jan Becker. Towards

perceptual shared autonomy for robotic mobile manipulation. In ICRA, pages 6245–6251,

2011.

PR2. Personal Robot 2, 2010.

Erwin Prassler, Herman Bruyninckx, Klas Nilsson, and Azamat Shakhimardanov. The Use of

Reuse for Designing and Manufacturing Robots. Technical report, White Paper, 2009.

Mario Prats. Robot Physical Interaction through the combination of Vision, Tactile and Force

Feedback bibtex. Phd thesis, Jaume-I University, Munich, Germany, 2009.

Andrzej Pronobis. Semantic Mapping with Mobile Robots. PhD thesis, Royal Institute of Tech-

nology (KTH), Stockholm, Sweden, 2011.

Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob

Wheeler, and Andrew Y. Ng. ROS: an open-source Robot Operating System. In ICRA

167

Bibliography

Workshop on Open Source Software, 2009.

Stephen Robertson. Understanding inverse document frequency: On theoretical arguments

for IDF. Journal of Documentation, 60:2004, 2004.

J.C. Rocholl, S. Klenk, and G. Heidemann. Robust 1D Barcode Recognition on Mobile Devices.

In Pattern Recognition (ICPR), 2010 20th International Conference on, pages 2712 –2715,

2010.

Joe Romano. PR2 Tactile Sensor, 2011.

Thomas Rühr, Jürgen Sturm, Dejan Pangercic, Michael Beetz, and Daniel Cremers. A Gen-

eralized Framework for Opening Doors and Drawers in Kitchen Environments. In IEEE

International Conference on Robotics and Automation (ICRA), 2012.

Radu Bogdan Rusu and Steve Cousins. 3D is here: Point Cloud Library (PCL). In IEEE Inter-

national Conference on Robotics and Automation (ICRA), pages 1–4, 2011.

Radu Bogdan Rusu, Zoltan Csaba Marton, Nico Blodow, Mihai Dolha, and Michael Beetz.

Towards 3D Point Cloud Based Object Maps for Household Environments. Robotics and

Autonomous Systems Journal (Special Issue on Semantic Knowledge in Robotics), 56(11):

927–941, 2008.

Radu Bogdan Rusu, Zoltan Csaba Marton, Nico Blodow, Andreas Holzbach, and Michael

Beetz. Model-based and Learned Semantic Object Labeling in 3D Point Cloud Maps of

Kitchen Environments. In Proceedings of the IEEE/RSJ International Conference on Intelli-

gent Robots and Systems (IROS), 2009a.

Radu Bogdan Rusu, Wim Meeussen, Sachin Chitta, and Michael Beetz. Laser-based Percep-

tion for Door and Handle Identification. In Proceedings of the International Conference on

Advanced Robotics (ICAR), 2009b. Best Paper Award.

Radu Bogdan Rusu, Aravind Sundaresan, Benoit Morisset, Kris Hauser, Motilal Agrawal, Jean-

Claude Latombe, and Michael Beetz. Leaving Flatland: Efficient Real-Time 3D Navigation.

Journal of Field Robotics (JFR), 2009c.

Manabu Saito, Haseru Chen, Kei Okada, Masayuki Inaba, Lars Kunze, and Michael Beetz.

Semantic Object Search in Large-scale Indoor Environments. In IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), Workshop on Active Semantic Perception

and Object Search in the Real World, 2011.

168

Bibliography

Martin Schuster, Dominik Jain, Moritz Tenorth, and Michael Beetz. Learning Organizational

Principles in Human Environments. In IEEE International Conference on Robotics and Au-

tomation (ICRA), pages 3867–3874, 2012.

Shaojie Shen, Nathan Michael, and Vijay Kumar. Autonomous multi-floor indoor navigation

with a computationally constrained MAV. In ICRA, pages 20–25, 2011.

Jianbo Shi and Carlo Tomasi. Good Features to Track. In 1994 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR’94), pages 593 – 600, 1994.

J. Sivic and A. Zisserman. Video Google: A Text Retrieval Approach to Object Matching in

Videos. In Proceedings of the International Conference on Computer Vision, volume 2, pages

1470–1477, 2003.

C. M. Smith, J. J. Leonard, A. A. Bennett, and C. Shaw. Feature-based concurrent mapping

and localization for autonomous underwater vehicles. In Proceedings of IEEE Oceans, 1997.

SoftKinetic. Depthsense Cameras, 2012.

K. H. Strobl, E. Mair, T. Bodenmüller, S. Kielhöfer, W. Sepp, M. Suppa, D. Burschka, and

G. Hirzinger. The Self-Referenced DLR 3D-Modeler. In Proceedings of the IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems, pages 21–28, 2009. best paper

finalist.

J. Sturm, K. Konolige, C. Stachniss, and W. Burgard. 3D Pose Estimation, Tracking and Model

Learning of Articulated Objects from Dense Depth Video using Projected Texture Stereo. In

Advanced Reasoning with Depth Cameras at the Robotics: (RSS10), 2010.

J. Sturm, C. Stachniss, and W. Burgard. A Probabilistic Framework for Learning Kinematic

Models of Articulated Objects. Journal on Artificial Intelligence Research (JAIR), 41:477–

626, 2011.

Ioan A. Sucan and Sachin Chitta. MoveIt, 2013.

Satoshi Suzuki and Keiichi Abe. Topological structural analysis of digitized binary images by

border following. Computer Vision, Graphics, and Image Processing, 30(1):32–46, 1985.

Moritz Tenorth. Knowledge Processing for Autonomous Robots. PhD thesis, Technische Univer-

sität München, 2011.

169

Bibliography

Moritz Tenorth and Michael Beetz. KnowRob – Knowledge Processing for Autonomous Per-

sonal Robots. In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages

4261–4266, 2009.

Moritz Tenorth, Ulrich Klank, Dejan Pangercic, and Michael Beetz. Web-enabled Robots –

Robots that Use the Web as an Information Resource. Robotics & Automation Magazine, 18

(2):58–68, 2011.

Moritz Tenorth, Lars Kunze, Dominik Jain, and Michael Beetz. KNOWROB-MAP – Knowledge-

Linked Semantic Object Maps. In 10th IEEE-RAS International Conference on Humanoid

Robots, pages 430–435, 2010.

S. Thrun, A. Bücken, W. Burgard, D. Fox, T. Fröhlinghaus, D. Hennig, T. Hofmann, M. Krell,

and T. Schmidt. Map Learning and High-Speed Navigation in RHINO. In D. Kortenkamp,

R.P. Bonasso, and R. Murphy, editors, AI-based Mobile Robots: Case studies of successful robot

systems. MIT Press, Cambridge, MA, 1998.

Sebastian Thrun. Robotic Mapping: A Survey. In Exploring Artificial Intelligence in the New

Millenium. Morgan Kaufmann, 2002.

Rudolph Triebel, Jiwon Shin, and Roland Siegwart. Segmentation and Unsupervised Part-

based Discovery of Repetitive Objects. In Proceedings of Robotics: Science and Systems,

2010.

Markus Ulrich, Christian Wiedemann, and Carsten Steger. CAD-Based Recognition of 3D

Objects in Monocular Images. In IEEE International Conference on Robotics and Automation,

pages 1191–1198, 2009.

UnboundedRobotics. UBR-1 Robot, 2013.

René Vidal, Yi Ma, and Stefano Soatto. Two-view multibody structure from motion. Interna-

tional Journal of Computer Vision, 68:2006, 2004.

S. Wachenfeld, S. Terlunen, and Xiaoyi Jiang. Robust recognition of 1-D barcodes using

camera phones. In Pattern Recognition, 2008. ICPR 2008. 19th International Conference on,

pages 1 –4, 2008.

Alastair J. Walker. An Efficient Method for Generating Discrete Random Variables with Gen-

eral Distributions. ACM Trans. Math. Softw., 3(3):253–256, 1977.

170

Bibliography

T. Whelan, M. Kaess, M.F. Fallon, H. Johannsson, J.J. Leonard, and J.B. McDonald. Kintin-

uous: Spatially Extended KinectFusion. In RSS Workshop on RGB-D: Advanced Reasoning

with Depth Cameras, 2012.

Jan Wielemaker, Tom Schrijvers, Markus Triska, and Torbjörn Lager. SWI-Prolog. Theory and

Practice of Logic Programming, pages 67–96, 2012.

WillowGarage. Precision of the Kinect sensor, 2010a.

WillowGarage. Technical description of Kinect calibration, 2010b.

Thomas Witzig, J. Marius Zöllner, Dejan Pangercic, Sarah Osentoski, Philip Roan, Rainer

Jäkel, and Rüdiger Dillmann. Context Aware Shared Autonomy for Robotic Manipulation

Tasks. In In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

Tokyo Big Sight, Japan, 2013.

K. M. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, and W. Burgard. OctoMap: A Proba-

bilistic, Flexible, and Compact 3D Map Representation for Robotic Systems. In Proc. of the

ICRA 2010 Workshop on Best Practice in 3D Perception and Modeling for Mobile Manipula-

tion, 2010. Software available at http://octomap.sf.net/.

Xuehan Xiong, Daniel Munoz, J. Andrew (Drew) Bagnell, and Martial Hebert. 3-D Scene

Analysis via Sequenced Predictions over Points and Regions. In IEEE International Confer-

ence on Robotics and Automation (ICRA), 2011.

Heran Yang, Tiffany Low, Matthew Cong, and Ashutosh Saxena. Inferring 3D Articulated

Models for Box Packaging Robot. CoRR, abs/1106.4632, 2011.

Qingming Zhan, Yubin Liang, and Yinghui Xiao. Color-Based Segmentation of Point Clouds.

2009.

171

