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Preface

At the dawn of the new millennium, robotics is undergoing a major transforma-
tion in scope and dimension. From a largely dominant industrial focus, robotics
is rapidly expanding into the challenges of unstructured environments. Interact-
ing with, assisting, serving, and exploring with humans, the emerging robots will
increasingly touch people and their lives.

The goal of the new series of Springer Tracts in Advanced Robotics (STAR) is
to bring, in a timely fashion, the latest advances and developments in robotics on
the basis of their significance and quality. It is our hope that the wider dissemina-
tion of research developments will stimulate more exchanges and collaborations
among the research community and contribute to further advancement of this
rapidly growing field.

The collection edited by Margaret Jefferies and Albert Yeap is the fourth
one in the series on mapping, and keenly focuses on the common core problems
between cognitive and robot spatial mapping. Such cross-fertilisation was made
possible thanks to a thematic workshop held in early 2003 at Auckland University
of Technology, where scientists from the two communities, psychologists and
roboticists, met and discussed freely in a meeting-of-the-mind environment.

The ambitious goal of the volume following the workshop is to show how cog-
nitive researchers should give more thoughts to the perceptual and localization
problems while robotics researchers should consider implementing autonomous
systems not having the sole task of building a map of the environment. A num-
ber of significant applications are described where this sort of gap is effectively
bridged.

The material is nicely organised in three parts; namely, robot mapping, cog-
nitive mapping, and robot cognitive mapping, each accompanied by an introduc-
tion by a distinguished researcher in the field. Gathering some of the authorities
working on spatial mapping, this volume is dedicated to the memory of Mar-
garet Jefferies, who sadly passed away while completing the work. Here I warmly
recall her profound passion and devotion during the revision and edition of the
collection, despite her health problems. A very fine addition to our STAR series!

Naples, Italy, Bruno Siciliano
July 2007 STAR Editor
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Kognitive Neurowissenschaften
Germany

Sebastian Thrun
Stanford University
Computer Science Department
USA

Nicola Tomatis
Ecole Polytechnique Fédérale de
Lausanne
Autonomous Systems Lab
Switzerland
BlueBotics SA, Lausanne
Switzerland



List of Contributors XI

Wengrong Weng
University of Waikato
Department of Computer Science
New Zealand

Diedrich Wolter
Universität Bremen
Cognitive Systems
SFB-TR 8
Germany

Chee Kit Wong
Auckland University of Technology

Centre for Artificial Intelligence
Research
New Zealand

Wai K. Yeap
Auckland University of Technology
Centre for Artificial Intelligence
Research
New Zealand

University of Malaya
Department of Artificial Intelligence
Malaysia



Contents

Robot and Cognitive Approaches to Spatial Mapping
Margaret E. Jefferies, Wai K. Yeap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Part I: Robot Mapping

Robot Mapping: An Introduction
Raja Chatila . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1 Simultaneous Localization and Mapping
Sebastian Thrun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Hybrid, Metric-Topological Representation for Localization
and Mapping
Nicola Tomatis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Machine Perception in Unstructured and Unknown
Environments
Steven Scheding, Richard Grover, Hugh Durrant-Whyte . . . . . . . . . . . . . 65

4 Emergent Cognitive Mappings in Mobile Robots Through
Self-organisation
Ulrich Nehmzow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5 Towards a Generalization of Self-localization
Diedrich Wolter, Christian Freksa, Longin Jan Latecki . . . . . . . . . . . . . 105

Part II: Cognitive Mapping

Dead Reckoning, Cognitive Maps, Animal Navigation and the
Representation of Space: An Introduction
Charles R. Gallistel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137



XIV Contents

6 Geometry and Navigation
Ken Cheng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7 Cue and Goal Encoding in Rodents: A Source of
Inspiration for Robotics?
Etienne Save, Vincent Hok, Sophie Renaudineau, Carole Parron,
Bruno Poucet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

8 These Maps Are Made for Walking – Task Hierarchy of
Spatial Cognition
Sabine Gillner, Hanspeter A. Mallot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

9 Landmarks for Navigation in Human and Robots
Stephen C. Hirtle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

10 Learning Cognitive Maps: Finding Useful Structure in an
Uncertain World
Eric Chown, Byron Boots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

Part III: Cognitive Robot Mapping

Cognitive Robot Mapping: An Introduction
Benjamin Kuipers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

11 An Intellectual History of the Spatial Semantic Hierarchy
Benjamin Kuipers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

12 Robot Cognitive Mapping – A Role for a Global Metric
Map in a Cognitive Mapping Process
Margaret E. Jefferies, Jesse Baker, Wengrong Weng . . . . . . . . . . . . . . 265

13 Using a Mobile Robot to Test a Theory of Cognitive
Mapping
Wai K. Yeap, Chee K. Wong, Jochen Schmidt . . . . . . . . . . . . . . . . . . . 281

14 A Robot System for Biomimetic Navigation – From
Snapshots to Metric Embeddings of View Graphs
Matthias O. Franz, Wolfgang Stürzl, Wolfgang Hübner,
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Robot and Cognitive Approaches to Spatial
Mapping

Margaret E. Jefferies and Wai K. Yeap

Introduction

Imagine designing an autonomous mobile robot to mingle with us in our envi-
ronment. Although the robot, like us, could search a map to locate places and
consult a global positioning system to find out where things are, it should also,
like us, be able to compute, or update, its representation of its surroundings as
observed through its sensors.

Robot spatial mapping, in this book, is about the problem of a robot comput-
ing such a representation from data gathered by its sensors. This problem has
been studied since the creation of the first autonomous mobile robot, SHAKEY
[8], in the late nineteen-sixties. For some recent examples of work in this area,
see [5].

People (and animals) compute a representation of their environment, too.
Their representation is commonly referred to as a cognitive map [9]. Cogni-
tive spatial mapping, in this book, is about the problem of computing a cog-
nitive map. It has been studied extensively by many researchers of disparate
backgrounds. For some major reviews and collections of works in this area, see
[2, 3, 4].

It is not surprising that the robot and cognitive mapping problems share some
common core problems. One would reasonably expect some cross-fertilisation of
research between the two areas to have occurred, and this has happened but only
recently. One reason for this is that much of the early research in both fields has
focussed on opposite ends of the mapping problem. On the one hand, roboticists
were working hard on what can be called “the sensor problems”. Robots were
not equipped with powerful sensors in the early days and still aren’t; although
better routines were developed to deal with sensor errors and the use of lasers
have become more common. Robots still lack powerful vision systems. On the
other hand, cognitive researchers focused mainly on “the knowledge problems”.
They investigated what people remembered most when visiting new places and
how their conceptually rich knowledge of their environment is organised into
hierarchies. They discussed the use of landmarks and high-level cognitive capa-
bilities, such as the use of short-cuts, and the ability to orient oneself in complex
spaces, such as places far apart in a city.

M.E. Jefferies et al. (Eds.): Robot. & Cogn. Approach. to Spat. Map., STAR 38, pp. 1–5, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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“Never the twain shall meet” is not the case. There are signs that both fields
have matured and that efforts to cross-fertilise are happening. For instance,
roboticists speak of landmarks and place recognition, and cognitive scientists
have shown some interests in how the shape of local environments affects long-
term memory of space. This cross-fertilization, however, is neither complete nor
common yet. Some usage of the term landmark by roboticists does not have
a corresponding usage in the cognitive science community. Roboticists may be
asking the same kind of questions (how can someone recognize their immediate
location) but their solutions are often highly dependent on the poor sensors with
which their robot is equipped.

Nevertheless, autonomous mobile robots have now been created that are map-
ping an ever increasing environment. Stimulants like the DARPA Grand Chal-
lenge should encourage the development of robots that can move outside the
office environment and into less structured and more chaotic ones. Researchers
(such as [1, 7, 11]) interested in developing computational theories of cognitive
maps are beginning to test their ideas using real robots instead of relying on
simulation studies. Doing so should force them to think about how to fill the
gaps between a cognitive theory and its implementation on a practical platform.

In 2000, we published a paper, titled “On early cognitive mapping”, in the
Spatial Cognition and Computation Journal [12]. In it, we reviewed two distinct
paradigms for cognitive mapping, discussing works from both the psychological
and the robotics literature. In writing the paper, we felt the need to more ac-
tively promote the cross-fertilisation between the two fields. In early 2002, we
decided to organise a special workshop on “Robotics and Cognitive Approaches
to Spatial Mapping”. Our idea was to invite researchers from both fields to at-
tend a single meeting. The workshop was subsequently organized and held at
AUT Technology Park from 27th February to 1st March in 2003. Those who ac-
cepted our invitation and were able to attend were: Ken Cheng, Matthias Franz,
Christian Freksa, Stephen Hirtle, Hanspeter Mallot, Ulrich Nehmzow, Sebastian
Thrun, Nicola Tomatis, and Steve Scheding.

It was an interesting meeting. We brought together, on the one hand, re-
searchers who have dedicated their life to studying human and animal way-
finding behavior, and on the other hand, roboticists fascinated with creating
robots which try to solve a similar problem. It was clear from the outset that
few in the group were aware of the “story” from the other side. and thus sitting
through the talks gave both sides a fresh perspective on a familiar problem. Now
cognitive researchers might give more thoughts to the perceptual and localization
problems while roboticists might consider implementing an autonomous system
that does not have the sole task of building a map of its environment.

This book is one result of the workshop. Note that participants’ invitations
were based upon their past work and their continuing interests in spatial map-
ping. No papers were submitted or reviewed beforehand. This was not necessary
as our participants have, in the past, contributed significant ideas about spatial
mapping. We wanted a meeting-of-the-mind to cross-fertilize the fields with new
ideas, not a presentation of new findings from their respective research areas.
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Each participant did submit an abstract prior to the meeting, and produced a
working paper for the workshop. The working papers, in most cases, have been
revised significantly and presented as chapters in this book.

In completing the book, we were delighted that Eric Chown, Ben Kuipers and
Verena Hafner accepted our invitation to contribute a chapter each to the book.
Catherine Blanc, who originally accepted our invitation to attend the workshop,
was, sadly, unable to join us. On Catherine’s recommendation, Etienne Save was
invited to write a chapter for the book, instead. We were honored to have three
distinguished researchers, Raja Chatila, Charles Gallistel and Ben Kuipers to
write an introduction each for the three parts of the book.

Organisation of the Book

The book is organized into three parts, namely: Part I on robot mapping, Part
II on cognitive mapping, and Part III on cognitive robot mapping.

Part I consists of five chapters which together address a cross section of prob-
lems with, (such as uncertainty, localization, unstructured environments and
control architectures), and approaches to (such as topological and geometric),
robot mapping. Thrun provides a comprehensive introduction to one of the key
problems roboticists face in developing autonomous mobile robots, namely the
famously known SLAM problem. Tomatis discusses the use of a hybrid topolog-
ical/metric representation for robot mapping whereby each node in it could be a
local metric map of a local space (say, a room) visited by the robot. As evident
in the other two parts, cognitive mapping researchers are increasingly in favour
of using such a representation for cognitive maps.

Scheding et al. and Nehmzow both discuss a variety of issues related to robot
spatial mapping. As noted above, robots have begun to tackle the very difficult
problem of mapping unstructured outdoor environments. Scheding et al. dis-
cuss various mapping issues related to the design of such robots and show how
they overcome some of the issues raised. Nehmzow focuses on the use of neural
networks in robot spatial mapping whereby neat solutions could emerge from
allowing the robot to interact with its environment. Wolter et al. provide a de-
tailed analysis of the self-localization problem using a formal qualitative spatial
reasoning approach to handling incomplete, imprecise, and partially conflicting
(fuzzy) information about spatial situations. This is an important problem in
spatial mapping and the analysis covers a wide range of situations in which
self-localization is needed.

Part II consists of five chapters about cognitive mapping from researchers of
disparate background. These researchers review their earlier work and provide
interesting comments about how their findings could benefit researchers inter-
ested in robot mapping. Cheng and Save et al. both discuss cognitive mapping
based upon their past experiments with rats. Cheng re-examines his earlier work
on the role of geometric information in spatial cognition. He discusses his own
work with rats and that of others with children which demonstrate a preferred
reliance on the overall shape of their environment, sometimes to the exclusion
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of non-geometric cues. Save et al. review the work on how spatial information is
encoded in the brain. They discuss the importance of cue and goal encoding in
the brains of rodents.

Gillner and Mallot, and Hirtle discuss ideas about cognitive mapping from
observing human spatial behaviors in both natural and artificial settings. Gillner
and Mallot discuss a hierarchy of spatial tasks and review their earlier work on a
series of behavioral experiments on human cognition using virtual environments
which they referred to as “Hexatown”. Hirtle discusses the notion of landmarks in
both robot and cognitive mapping and reviewed a tripartite theory of landmarks
that can be applied to navigation by humans in real and electronic spaces.

Chown and Boots end this part with an interesting discussion on the cross-
fertilization of ideas between robot and cognitive spatial mapping. They argue
that, for now, the best strategy might be for the roboticists to extract abstract
strategies from cognitive studies and “apply them to robotics in a manner that
best suits the underlying hardware and challenge at hand”. They extended the
PLAN model of cognitive mapping [1] and introduced C-Plan. This chapter leads
the readers nicely to the next part.

Part III consists of five chapters discussing implementations of cognitive map-
ping theories on a mobile robot. In 1977, Kuipers developed the first computa-
tional model of cognitive maps [6]. We are honored to have him contribute a
chapter which reflects on how his ideas have developed since his early days at
MIT. His work has been, and continues to be, very influential in the study
of spatial mapping. In our own chapters, we continue our effort to implement
our ideas of cognitive mapping onto mobile robots. Jefferies et al. describe hy-
brid topological/metric mapping on a robot approached from a cognitive map-
ping perspective. The important difference from other hybrid approaches in this
book is that the topological and absolute metric maps have equal status; each
is required to improve the quality of the information in the other. A key idea
underlying Yeap’s theory of cognitive mapping [10] is that a cognitive agent that
has some form of range sensing of its environment will need to compute Abso-
lute Space Representations (ASR) as a basis for developing a richer cognitive
map. Yeap et al. show how ASRs are computed by a mobile robot equipped
with sonar sensors. Like Chown and Boots, Yeap et al. show how a cognitive
mapping theory when applied to a mobile robot must adapt to the hardware
of the robot instead of that of humans. Unlike other approaches in this part,
Franz describes an implementation that does not begin with a theory of cog-
nitive mapping. Rather, it begins with a hierarchy of needs in way-finding and
the implementation starts by developing solutions at the lower level which could
then be extended or re-used to solve a problem at a higher level in the hierarchy.
Such an approach is known as the biomimetic approach. Hafner discusses the
neural basis for cognitive mapping and shows how such findings could be used
to develop a neural model of cognitive mapping. Two particularly interesting
problems were encountered in the implementation, namely how metric informa-
tion is encoded in a neural model and how best to evaluate the resulting map
which is computed at the neural level. Hafner shows how her model is tested via
simulation studies and via implementations on an actual robot.
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Robot Mapping: An Introduction

Raja Chatila

How to reach a designated location? This question defines a basic problem in
robotics. The location may be arbitrarily remote and out of sight in general. To
specify it to the robot one can use coordinates in a given reference system, or
some distinguishable perceptual feature which, when recognized by the robot,
defines a termination condition for the navigation task. In general, erratic mo-
tion in the environment to reach the goal location, with simple local obstacle
detection and avoidance will lead to inefficient trajectories, if not to failure of
reaching the target. A real robot in general situations has to determine a path
to reach its goal location that should be efficient with respect to distance, time,
energy consumption or other specific criteria related to the context in which the
motion is achieved (e.g. avoid some dangerous areas, or stay in sight of some
features). Thus, an efficient motion requires knowledge about the environment
layout, which is generally not available to the robot a priori, and must therefore
be acquired through perception. Hence this environment mapping problem
appears as one key issue of the navigation problem and a prerequisite for motion
planning and execution.

The first question that pops up then is how to represent the environment?
And first of all, is any representation necessary at all? And if yes, is there a
unique representation or many? And what should be represented? There has
been a great deal of discussions and controversies on these issues in the past
twenty years.

If we consider natural systems, data from neuroscience indicate that there are
neuronal organizations and interactions that amount to representations of the en-
vironment’s layout. In robotics, the total absence of representations would result
in inefficient motions, and there is today a good understanding of the different
kinds of representations and what knowledge they should convey to the robot.

SLAM

Representations being defined (see below), the mapping problem can be stated
as follows. The robot discovers its environment gradually while moving in it.
Objects and regions perceived from a given location must therefore be related to
previously perceived ones and integrated with them in a consistent manner. The
result of this integration is a map representing the layout of the environment, or
of parts of it.

However, for this integration to be consistent, it is necessary to know – or be
able to estimate correctly – the transform between the newly observed part and

M.E. Jefferies et al. (Eds.): Robot. & Cogn. Approach. to Spat. Map., STAR 38, pp. 9–12, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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Fig. 1. The general SLAM process. After an observation, the local perception or map
has to be associated with the global one to enable an update of both robot pose and
environment model. Selecting the next best view for completing the model is a research
issue by itself.

the already built model. Relating the robot’s new position to the previous ones
provides this transform. In other words the localization of the robot appears
necessary to correctly relate the newly perceived areas with the already known
ones. In the absence of external means of localization – such as GPS, which would
put a strong constraint on the feasibility of mapping – there are two ways to
localize the robot. One is incremental motion integration (e.g., through odom-
etry or inertial units), which is known to eventually diverge because of error
accumulation and integration. The other means of localization is to recognize
known features in the environment and use them as landmarks. However this
latter solution requires knowing the environment map (the landmark positions).
Hence incremental environment mapping and robot localization appear to be two
intimately related processes. The problem to be solved is then simultaneous
localization and mapping (SLAM). The general SLAM process is depicted
in Fig. 1. Solving this problem requires identifying same environment elements
perceived from different positions. It appeared very clearly since the mid eight-
ies that the issue of uncertainties was central in the mapping process. Sensors
are indeed always imperfect; their data are incomplete, noisy and inaccurate.
Environment representations should therefore explicitly take into account un-
certainties to solve the data association problem, i.e., the ability to recognize
the same feature from different perceptions.

Representations

For its navigation the robot needs to know the position and metrics of physical
objects to plan its motions (a geometrical model) in a given space region, and



Robot Mapping: An Introduction 11

the relationships between regions of space to decide for the general roadmap it
will follow. Hence both a geometrical and a topological model are useful, and
complementary. In addition, semantics, which defines the nature of objects or
of space regions, would be an important knowledge, although work on mapping
has rather mostly focused on trying to capture geometry and topology.

There are three main different widely used representations related to geome-
try: appearance, grids and features. “Appearance” designates the practically raw
data provided by sensors, such as 3D points from a laser rangefinder or stereo.
Such data require minimal processing but are almost impossible to use individ-
ually. They are noisy and difficult to be recognized from one perception to the
next. Therefore they are rather often used globally, i.e., as sets of points with
statistical properties. Grid representations capture the presence or probability
of presence of objects in space areas organized as preset grid cells. This kind of
representation is easy to construct but requires that grid cells be recognized as
such for updating. Features are structures of the environment that require some
processing to build. The advantage is that they have some stability that makes
them easier to recognize from a perception to another. Some of the simplest
structures are pixels with invariance properties such as SIFT, or Harris interest
points. More complex ones are geometrical features (e.g., linear approximations),
which have the drawback of requiring a segmentation that might not be adapted
to the actual structure of the environment.

Whatever the representation, correct data association is a pre-requisite to
enable correct updating of the map. This consists in identifying that an environ-
ment element perceived from different positions is actually the same, and this is
complicated by uncertainties. The data association problem has drawn a lot of
attention, and is often solved by a statistical test. One observation can be how-
ever made: the less information a feature conveys, the easier it is to be confused
with other features. Invariance over observations and uniqueness of features (or
of their layout) make data association easier. In other words, there is a com-
promise to find between the processing necessary to build informative features
and the risk of bad data association, which could jeopardize the whole mapping
process and end up with inconsistent maps.

Now if we consider that data association is solved correctly, the fusion step is
the central part of the whole process. Addressing this problem requires a solid
mathematical formalism to represent and handle uncertainties: the probabilistic
framework. The basic problem amounts then to a Bayesian update. The Kalman
filter, as a Bayesian filter, in its extended form because of the non-linearity of the
transforms, was historically the process at the core of the map fusion. In this case
the robot coordinates and the environment representations define together the
state that is updated by observations. It is also established that there are corre-
lations between observations and between observations and state, and that they
imperatively should be considered in the filter formalization and application.
However, the Gaussian noise hypothesis and the difficulty of data association in
many applications where the representations are rather poor drafted attention
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to other kinds of more general filters, namely particle filtering, which also enable
to maintain several hypotheses on the state simultaneously.

Open Issues

The main mathematical framework for SLAM in Robotics is well established
today. Some of the important open issues, which are the focus of ongoing re-
search, are: complexity (i.e., how to deal with a large – and growing – number
of environment features); data association (which stems partly from the poor
representations as mentioned before); and dealing with complex and dynamic
environments (i.e., outdoors, non structured, 3D).

Simultaneous Localization and Mapping is actually not a new problem. When
we look at old maps of coastlines and continents (e.g., from the Sixteenth Cen-
tury), we can understand why they are inaccurate and twisted: the explorers
and cartographers had to solve exactly a SLAM problem with inaccurate sen-
sors. Robots and humans face the same problem.
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Simultaneous Localization and Mapping

Sebastian Thrun

Summary. This article provides a comprehensive introduction into the simultaneous
localization and mapping problem, better known in its abbreviated form as SLAM.
SLAM addresses the problem of a robot navigating an unknown environment. While
navigating the environment, the robot seeks to acquire a map thereof, and at the
same time it wishes to localize itself using its map. The use of SLAM problems can
be motivated in two different ways. One might be interested in detailed environment
models, or one might seek to maintain an accurate sense of a mobile robot’s location.
SLAM servers both of these purposes.

We review three major paradigms of algorithms from which a huge number of re-
cently published methods are derived. First comes the traditional approach, which
relies in the extended Kalman filter (EKF) for representing the robot’s best estimate.
The second paradigm draws its intuition from the fact that the SLAM problem can be
viewed as a sparse graph of constraints, and it applies nonlinear optimization for recov-
ering the map and the robot’s locations. Finally, we survey the particle filter paradigm,
which applies non-parametric density estimation and efficient factorization methods to
the SLAM problem. This article discusses extensions of these basic methods. It elu-
cidates variants of the SLAM problem and poses a taxonomy for the field. Relevant
research is referenced extensively, and open research problems are discussed.

1.1 Introduction

This chapter provides a comprehensive introduction into one of the key enabling
technologies of mobile robot navigation: simultaneous localization and mapping,
or in short SLAM. SLAM addresses the problem of acquiring a spatial map of
a mobile robot environment while simultaneously localizing the robot relative
to this model. The SLAM problem is generally regarded as one of the most
important problems in the pursuit of building truly autonomous mobile robots.
Despite significant progress in this area, it still poses great challenges. At present,
we have robust methods for mapping environments that are static, structured,
and of limited size. Mapping unstructured, dynamic, or large-scale environments
remains largely an open research problem.

The historical roots of SLAM can be traced back to Gauss [31], who is largely
credited for inventing the least squares method, for calculating planetary orbits.
In the Twentieth Century, a number of fields outside robotics have studied the
making of environment models from a moving sensor platform, most notably in
photogrammetry [44] and computer vision [88, 79]. SLAM builds on this work,
often extending the basic paradigms into more scalable algorithms.

M.E. Jefferies et al. (Eds.): Robot. & Cogn. Approach. to Spat. Map., STAR 38, pp. 13–41, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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This article begins with a definition of the SLAM problem, which shall include
a brief taxonomy of different versions of the problem. The centerpiece of this
article is a layman introduction into the three major paradigms in this field, and
the various extensions that exist. As the reader will quickly recognize, there is no
single best solution to the SLAM method. The method chosen by the practitioner
will depend on a number of factors, such as the desired map resolution, the
update time, and the nature of the features in the map, and so on. Nevertheless,
the three methods discussed in this article cover the major paradigms in this
field. For an in-depth study of SLAM algorithms, we refer the reader to a recent
textbook on probabilistic robotics, which dedicates a number of chapters to the
topic of SLAM [82].

1.2 SLAM: Problem Definition

1.2.1 Mathematical Basis

The SLAM problem is defined as follows: A mobile robot roams an unknown
environment, starting at a location with known coordinates. Its motion is un-
certain, making it gradually more difficult to determine its global coordinates.
As it roams, the robot can sense its environment. The SLAM problem is the
problem of building a map the environment while simultaneously determining
the robot’s position relative to this map.

Formally, SLAM is best described in probabilistic terminology. Let us denote
time by t, and the robot location by xt. For mobile robots on a flat ground, xt

is usually a three-dimensional vector, comprising its 2-dimensional coordinate
in the plane plus a single rotational value for its orientation. The sequence of
locations, or path, is then given as

XT = {x0, x1, x2, . . . xT }. (1.1)

Here T is some terminal time (T might be ∞). The initial location x0 is known;
other positions cannot be sensed.

Odometry provides relative information between two consecutive locations.
Let ut denote the odometry that characterized the motion between time t − t
and time t; such data might be obtained from the robot’s wheel encoders or from
the controls given to those motors. Then the sequence

UT = {u1, u2, u3 . . . xT } (1.2)

characterizes the relative motion of the robot. For noise-free motion, UT would be
sufficient to recover the past XT from the initial location x0. However, odometry
measurements are noisy, and path integration techniques inevitably diverge from
the truth.

Finally, the robot senses objects in the environment. Let m denote the “true”
map of the environment. The environment may be comprised of landmarks,
objects, surfaces, etc., and m describes their locations. The environment map m
is typically assumed to be time-invariant (i.e., static).
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Fig. 1.1. Graphical model of the SLAM problem. Arcs indicate causal relationships,
and shaded nodes are directly observable to the robot. In SLAM, the robot seeks to
recover the unobservable variables.

The robot measurements establish information between features in m and the
robot location xt. If we, without loss of generality, assume that the robot takes
exactly one measurement at each point in time, the sequence of measurements
is given as

ZT = {z1, z2, z3, . . . , zT }. (1.3)

Figure 1.1 illustrates the various variables involved in the SLAM problem.
It shows the sequence of locations and sensor measurements, and the causal
relationships between these variables. Such a diagram is known as a graphical
model. It is useful in understanding the dependencies in the SLAM problem.

The SLAM problem is now the problem of recovering a model of the world m
and the sequence of robot locations XT from the odometry and measurement data.
The literature distinguishes two main forms of the SLAM problem, which are both
of equal practical importance. One is known as the full SLAM problem: it involves
estimating the posterior over the entire robot path together with the map:

p(XT , m | ZT , UT ). (1.4)

Written in this way, the full SLAM problem is the problem of calculating the
joint posterior probability over XT and m from the available data. Notice that
the variables right of the conditioning bar are all directly observable to the robot,
whereas those on the left are the ones that we wanted. As we shall see, algorithms
for the offline SLAM problem are often batch, that is, they process all data at
the same time.

The second, equally important SLAM problem is the online SLAM problem.
This problem is defined defined via

p(xt, m | ZT , UT ). (1.5)
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Online SLAM seeks to recover the present robot location, instead of the entire
path. Algorithms that address the line problem are usually incremental and can
process one data item at a time. In the engineering literature, such algorithms
are called filters.

To “solve” either SLAM problem, the robot needs to be endowed with two
more models: a mathematical model the relates odometry measurements ut to
robot locations xt−1 and xt; and a model that relates measurements zt to the
environment m and the robot location xt. These models corresponds to the arcs
in Fig. 1.1.

In SLAM, it is common to think of those mathematical models as probability
distributions: p(xt | xt−1, ut) characterizes the probability distribution of the
location xt assuming that a robot started at a known location xt−1 and measured
the odometry data ut. And likewise, p(zt | xt, m) is the probability for measuring
zt if this measurement is taking at a known location xt in a known environment
m. Of course, in the SLAM problem we do not know the robot location, neither
do we know the environment. As we shall see, Bayes rule takes care of that, by
transforming these mathematical into a form where we can ‘recover’ probability
distributions over those latent variables from the measured data.

1.2.2 Example: SLAM in Landmark Worlds

One common setting of SLAM involves an assumption that the environment is
populated by point-landmarks. When building 2-D maps, point-landmarks may
correspond to door posts and corners of rooms, which, when projected into a
2-D map are characterized by a point coordinate. In a 2-D world, each point-
landmark is characterized by two coordinate values. Hence the world is a vector
of size 2N , where N is the number of point-landmarks in the world.

In a commonly studied setting, the robot can sense three things: the relative
range to nearby landmarks, their relative bearing, and the identity of these
landmarks. The range and bearing may be noisy, but in the most simple case
the sensed landmarks identity will not be noisy.

To model such a setup, one begins with defining the exact, noise-free mea-
surement function. The measurement function h describes the workings of the
sensors: it accepts as input a description of the environment m and a robot
location xt, and it computes the measurement:

h(xt, m). (1.6)

Computing h is straightforward in our simplified landmark setting; it is a simple
exercise in trigonometry.

The probabilistic measurement model is derived from this measurement func-
tion by adding a noise term. It is a probability distribution that peaks at the
noise-free value h(xt, m) but allows for measurement noise:

p(zt | xt, m) ∼ N (h(xt, m), Qt). (1.7)

Here N denotes the 2-dimensional normal distribution, which is centered at
h(xt, m). The 2-by-2 matrix Qt is the noise covariance, indexed by time.
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The motion model is derived from a kinematic model of robot motion. Given
the location vector xt−1 and the motion ut, textbook kinematics tells us how to
calculate xt. Let this function be denoted by g:

g(xt−1, ut). (1.8)

The motion model is then defined by a normal distribution centered at g(xt−1, ut)
but subject to Gaussian noise:

p(xt | xt−1, ut) = N (g(xt−1, ut), Rt). (1.9)

Here QRt is a covariance. It is of size 3-by-3, since the location is a three-
dimensional vector.

With these definitions, we have all we need to develop a SLAM algorithm.
While in the literature, point-landmark problems with range- bearing sensing
are by far the most studied, SLAM algorithms are not confined to landmark
worlds. But no matter what the map representation and the sensor modality,
any SLAM algorithm needs a similarly crisp definition of the features in m, the
measurement model p(zt | xt, m) and the motion model p(xt | xt−1, ut).

1.2.3 Taxonomy of the SLAM Problem

SLAM problems are distinguished along a number of different dimensions. Most
important researcher papers identify the type of problems by making the un-
derlying assumptions explicit. We already encountered one such distinction: full
versus online. Other common distinctions are as follows:

• Volumetric versus feature-based. In volumetric SLAM, the map is sam-
pled at a resolution high enough to allow for photo-realistic reconstruction
of the environment. The map m in volumetric SLAM is usually quite high-
dimensional, with the result that the computation can be quite involved.
Feature-based SLAM extracts sparse features from the sensor stream. The
map is then only comprised of features. Our point-landmark example is an
instance of feature-based SLAM. Feature-based SLAM techniques tend to be
more efficient, but their results may be inferior to volumetric SLAM due to
the fact that the extraction of features discards information in the sensor
measurements.

• Topological versus metric. Some mapping techniques recover only a qual-
itative description of the environment, which characterizes the relation of
basic locations. Such methods are known as topological. A topological map
might be defined over a set of distinct places and a set of qualitative relations
between these places (e.g., place A is adjacent to place B). Metric SLAM
methods provide metric information between the relation of such places. in
recent years, topological methods have fallen out of fashion, despite ample
evidence that humans often use topological information for navigation.

• Known versus unknown correspondence. The correspondence problem
is the problem of relating the identity of sensed things to other sensed things.
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In the landmark example above, we assumed that the identity of landmarks is
known. Some SLAM algorithms make such an assumption, other do not. The
ones that do not provide special mechanisms for estimating the correspon-
dence of measured features to previously observed landmarks in the map.
The problem of estimating the correspondence is known as data association
problem. It is one of the most difficult problems in SLAM.

• Static versus dynamic. Static SLAM algorithms assume that the environ-
ment does not change over time. Dynamic methods allow for changes in the
environment. The vast literature on SLAM assumes static environments. Dy-
namic effects are often treated just as measurement outliers. Methods that
reason about motion in the environment are more involved, but they tend to
be more robust in most applications.

• Small versus large uncertainty. SLAM problems are distinguished by
the degree of location uncertainty that they can handle. The most simple
SLAM algorithms allow only for small errors in the location estimate. They
are good for situations in which a robot goes down a path that does not
intersect itself, and then returns along the same path. In many environments
it is possible to reach the same location from multiple directions. Here the
robot may accrue a large amount of uncertainty. This problem is known
as the loop closing problem. When closing a loop, the uncertainty may be
large. The ability to close loops is a key characteristic of modern-day SLAM
algorithms. The uncertainty can be reduced if the robot can sense information
about its position in some absolute coordinate frame, e.g., through the use
of a satellite-based global positioning receiver (GPS).

• Active versus passive. In passive SLAM algorithms, some other entity
controls the robot, and the SLAM algorithm is purely observing. The vast
majority of algorithms are of this type; they give the robot designer the free-
dom to implement arbitrary motion controllers, and pursue arbitrary motion
objectives. In active SLAM, the robot actively explores its environment in
the pursuit of an accurate map. Active SLAM methods tend to yield more
accurate maps in less time, but they constrain the robot motion. There exist
hybrid techniques in which the SLAM algorithm controls only the pointing
direction of the robot’s sensors, but not the motion direction.

• Single-robot versus multi-robot. Most SLAM problems are defined for
a single robot platform, although recently the problem of multi-robot explo-
ration has gained in popularity. Multi-robot SLAM problems come in many
flavors. In some, robots get to observe each other, in others, robots are told
their relative initial locations. Multi-robot SLAM problems are also distin-
guished by the type communication allowed between the different robots. In
some, the robots can communicate with no latency and infinite bandwidth.
More realistic are setups in which only nearby robots can communicate, and
the communication is subject to latency and bandwidth limitations.

As this taxonomy suggests, there exists a flurry of SLAM algorithms. Most
modern-day conferences dedicate multiple session to SLAM. This article focuses
on the very basic SLAM setup. In particular it assumes a static environment
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with a single robot. Extensions are discussed towards the end of this article, in
which the relevant literature is discussed.

1.3 SLAM: Problem Definition

This section reviews three basic SLAM paradigms, from which most others are
derived. The first, known as EKF SLAM, is historically the earliest but has
recently become slightly unpopular due to its limiting computational properties.
The second, which is based on graphical representations, successfully applies
sparse nonlinear optimization methods to the SLAM problem, and has become
the main paradigm for solving the full SLAM problem. The third and final
method uses non-parametric statistical filtering techniques known as particle
filters. It is a popular method for online SLAM, and provides a fresh new solution
to the data association problem in SLAM.

1.3.1 Extended Kalman Filters

Historically EKF SLAM is the earliest, and perhaps the most influential SLAM
algorithm. EKF SLAM is based on the extended Kalman filter, or EKF [41, 42,
52]. It solves the online SLAM problem by applying the well-known EKF to the
estimation of the robot location and the map. The EKF method for SLAM was
introduced through a series of seminal papers [7, 78, 77]; early implementation
results were reported in [47, 58, 59].

The EKF algorithm represents the robot estimate by a multivariate Gaussian:

p(xt, m | ZT , UT ) ∼ N (μt, Σt) (1.10)

The high-dimensional vector μt contains the robot’s best estimate of its own lo-
cation and the location of the features in the environment. In our point-landmark
example, the dimension of μt would be 3 + 2N , since we need three variables to
represent the robot location and 2N variables for the N landmarks in the map.

The matrix Σt is the covariance of the robot’s assessment of its expected error
in the guess μt. As a quadratic matrix, Σt is of size (3+2N)×(3+2N). In SLAM,
this matrix is usually distinctly non-sparse. The off-diagonal elements capture
the correlations in the estimates of different variables. Non-zero correlations
come along because the robot’s location is uncertain, and as result the locations
of the landmarks in the maps are uncertain. The importance of maintaining
those off-diagonal elements is one of the key properties of EKF SLAM [9].

The EKF SLAM algorithm is easily derived for our point-landmark example.
Suppose, for a moment, the motion function g and the measurement function h
were linear in their arguments. Then the vanilla Kalman filter, as described in
any textbook on Kalman filtering, would be applicable. EKF SLAM linearizes
the functions g and h using Taylor series expansion—again, this is standard
textbook material. Thus, in its most basic form (and in the absence of any data
association problems), EKF SLAM is nothing but the application of the vanilla
EKF to the online SLAM problem.
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Figure 1.2 illustrates the EKF SLAM algorithm for an artificial example. The
robot navigates from a start pose that serves as the origin of its coordinate
system. As it moves, its own pose uncertainty increases, as indicated by uncer-
tainty ellipses of growing diameter. It also senses nearby landmarks and maps
them with an uncertainty that combines the fixed measurement uncertainty with
the increasing pose uncertainty. As a result, the uncertainty in the landmark lo-
cations grows over time. The interesting transition happens in Fig. 1.2d: Here
the robot observes the landmark it saw in the very beginning of mapping, and
whose location is relatively well known. Through this observation, the robot’s
pose error is reduced, as indicated in Fig. 1.2d—notice the very small error el-
lipse for the final robot pose. This observation also reduces the uncertainty for
other landmarks in the map. This phenomenon arises from a correlation that
is expressed in the covariance matrix of the Gaussian posterior. Since most of
the uncertainty in earlier landmark estimates is caused by the robot pose, and
since this very uncertainty persists over time, the location estimates of those
landmarks are correlated. When gaining information on the robot’s pose, this
information spreads to previously observed landmarks. This effect is probably
the most important characteristic of the SLAM posterior [9]. Information that
helps localize the robot is propagated through map, and as a result improves the
localization of other landmarks in the map.

EKF SLAM also addresses the data association problem. If the identity of
observed features is unknown, the basic EKF idea becomes inapplicable. The so-
lution here is to reason about the most likely data association when a landmark
is observed. This is usually done based on proximity: which of the landmarks in
the map corresponds most likely to landmark just observed? The proximity calcu-
lation considers the measurement noise and the actual uncertainty in the poster
estimate, and the metric used in this calculation is known as a Mahalanobis
distance, which is a weighted quadratic distance. To minimize the chances of
false data associations, many implementations use visible features to distinguish
individual landmarks and associate groups of landmarks observed simultane-
ously [61, 62]. Modern-day implementations also maintains provisional landmark
list and only add landmarks to the internal map when they have been observed
sufficiently frequently [1, 13, 14, 91]. With an appropriate landmark definition
and careful implementation of the data association step, EKF SLAM becomes a
powerful method for feature-based SLAM.

EKF SLAM has been applied successfully to a large range of navigation prob-
lems, involving airborne, underwater, indoor, and various other vehicles. Figure
1.3a shows an example result obtained with a state-of-the-art implementation of
EKF SLAM. Shown there is an underwater map obtained with the underwater
robot Oberon, developed at the University of Sydney, Australia, and shown in
Fig. 1.3b. This vehicle is equipped with a pencil sonar, a sonar that can scan
at very high resolutions and detect obstacles up to 50 meters away. To facilitate
the mapping problem, researchers have deposited long, small vertical objects in
the water, which can be extracted from the sonar scans with relative ease. In
this specific experiment, there is a row of such objects, spaced approximately
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(a) (b)

(c) (d)

Fig. 1.2. EKF a applied to the online SLAM problem. The robot’s path is a dotted
line, and its estimates of its own position are shaded ellipses. Eight distinguishable
landmarks of unknown location are shown as small dots, and their location estimates
are shown as white ellipses. In (a)–(c) the robot’s positional uncertainty is increasing,
as is its uncertainty about the landmarks it encounters. In (d) the robot senses the first
landmark again, and the uncertainty of all landmarks decreases, as does the uncertainty
of its current pose. Image courtesy of Michael Montemerlo, Stanford University.

10 meters apart. In addition, a more distant cliff offers additional point features
that can be detected using the pencil sonar.

The map shown in Fig. 1.3a depicts the robot path, marked by the triangles
connected by a line. Around each triangle one can see an ellipse, which corre-
sponds to the covariance matrix of the Kalman filter estimate projected into the
robot location. The ellipse shows the variance; the larger it is, the less certain
the robot is about its current pose. Various small dots in Fig. 1.3 show landmark
sightings, obtained by searching the sonar scan for small and highly reflective ob-
jects. The majority of these sightings is rejected using statistical outlier rejection
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Fig. 1.3. (a) Example of Kalman filter estimation of the map and the vehicle pose. (b)
Underwater vehicle Oberon, developed at the University of Sydney. Images courtesy of
Stefan Williams and Hugh Durrant-Whyte, Australian Centre for Field Robotics.

techniques [13]. However, some are believed to correspond to a landmark and
are added to the map. At the end of the run, the robot has classified 14 such
objects as landmarks, each of which is plotted with the projected uncertainty el-
lipse in Fig. 1.3. These landmarks include the artificial landmarks put out by the
researchers, but they also include various other terrain features in the vicinity
of the robot. The residual pose uncertainty is small.

A key limitation of the EKF solution to the SLAM problem lies in the
quadratic nature of the covariance matrix. A number of researchers have pro-
posed extensions to the EKF SLAM algorithms that gain remarkable scalability

−20

−15

−10

−5

0

5

10

15

20

−10 0 10 20 30 40

)
m( 

X

Y (m)

Estimated Path of the Vehicle

Feature Returns
Tentative Features
Map Features
Vehicle Path

(a)

(b)



Simultaneous Localization and Mapping 23

through decomposing the map into submaps, for which covariances are main-
tained separately. Relevant literature can be found in [1, 27, 33, 48, 93, 80]. Other
researchers have developed hybrid SLAM techniques, which combine EKF-style
SLAM techniques with volumetric map representation; see [2, 3, 35, 68]. Finally,
researchers have developed data association techniques for SLAM [6, 76, 83]
based on advanced statistical techniques such as Dempster’s EM algorithm [11].

1.3.2 Graph-Based Optimization Techniques

A second family of algorithms solves the SLAM problem through nonlinear
sparse optimization. They draw their intuition from a graphical representation
of the SLAM problem. Graph-based techniques were first mentioned in [7, 18],
but a seminal paper [51] provided a first working solution. The representation
in this section is closely related to a series of recent papers [10, 16, 17, 25, 26,
28, 29, 32, 45, 54]. We note that most contemporary techniques are offline and
address the full SLAM problem, although some online versions exist that will be
discussed below.

The basic intuition of graph-based SLAM is a follows. Landmarks and robot
locations can be thought of as nodes in a graph. Every consecutive pair of loca-
tions xt−1, xt is tied together by an arc that represents the information conveyed
by the odometry reading ut. Other arcs exist between locations xt and landmarks
mi, assuming that at time t the robot sensed landmark i. Arcs in this graph are
soft constraints. Relaxing these constraints yields the robot’s best estimate for
the map and the full path.

The construction of the graph is illustrated in Fig. 1.4. Suppose at time
t = 1, the robot senses landmark m1. This adds an arc in the (yet highly incom-
plete) graph between x1 and m1. When caching the edges in a matrix format
(which happens to correspond to a quadratic equation defining the resulting
constraints), a value is added to the elements between x1 and m1, as shown on
the right hand side of Fig. 1.4a.

Now suppose the robot moves. The odometry reading u2 leads to an arc
between nodes x1 and x2, as shown in Fig. 1.4b. Consecutive application of
these two basic steps leads to a graph of increasing size, as illustrated in Fig. 1.4c.
Nevertheless this graph is sparse, in that each node is only connected to a small
number of other nodes. The number of constraints in the graph is (at worst)
linear in the time elapsed and in the number of nodes in the graph.

If we think of the graph as a spring-mass model [32], computing the SLAM
solution is equivalent to computing the state of minimal energy this model. To
see, we note that the graph corresponds to the log-posterior of the full SLAM
problem (cf. (1.4)):

log p(XT , m | ZT , UT ). (1.11)

Without derivation, we state that this logarithm is of the form

log p(XT , m | ZT , UT ) (1.12)

= const +
∑

t

log p(xt | xt−1, ut) +
∑

t

log p(zt | xt, m)
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(a) Observation ls landmark m1

(b) Robot motion from x1 to x2

(c) Several steps later

Fig. 1.4. Illustration of the graph construction. The left diagram shows the graph, the
right the constrains in matrix form.

Each constraint of the form log p(xt | xt−1, ut) is the result of exactly one robot
motion event, and it corresponds to an arc in the graph. Likewise, each constraint
of the form log p(zt | xt, m) is the result of one sensor measurement, to which
we can also find a corresponding arc in the graph. The SLAM problem is then
simply to find the mode of this equation.

X∗
t , m∗ = argmax

XT ,m
log p(XT , m | ZT , UT ) (1.13)

Without derivation, we note that under the Gaussian noise assumptions, which
was made in the point-landmark example, this expression resolves to the follow-
ing quadratic form:

log p(XT , m | ZT , UT ) (1.14)

= const +
∑

t

[xt − g(xt−1, ut)]T R−1
t [xt − g(xt−1, ut)]

+
∑

t

[zt − h(xt, m)]T Q−1
t [zt − h(xt, m)]
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This is a sparse function. A number of efficient optimization techniques can
be applied. Common choices include gradient descent, conjugate gradient, and
others. Most SLAM implementations rely on some sort of iterative linearizing
the functions g and h, in which case the objective in (1.14) becomes quadratic
in all of its variables.

The graphical paradigm is easily extended to handle data association prob-
lems. This is because (1.14) is easily extended to integrate additional knowledge
on data association. Suppose some oracle informed us that landmarks mi and mj

in the map corresponded to one and the same physical landmark in the world.
Then we can either remove mj from the graph and attach all adjacent arcs to
mi, or we can add a soft correspondence constraint [50] of the form

[mj − mi]T Γ [mj − mi] (1.15)

Here Γ is 2-by-2 diagonal matrix whose coefficients determine the penalty for not
assigning identical locations to two landmarks (hence we want Γ to be large).
Since graphical methods are usually used for the full SLAM problem, the op-
timization can be interleaved with the search for the optimal data association.
State-of-the-art implementations rely on RANSAC [24] or branch-and-bound
methods [37, 46].

Graphical SLAM methods have the advantage that they scale to much higher-
dimensional maps than EKF SLAM. The key limiting factor in EKF SLAM is
the covariance matrix, which takes space (and update time) quadratic in the
size of the map. No such constraint exists in graphical methods. The update
time of the graph is constant, and the amount of memory required is linear
(under some mild assumptions). Performing the optimization can be expensive,
however. Technically, finding the optimal data association is suspected to be
an NP-hard problem, although in practice the number of plausible assignments
is usually small. The continuous optimization of the log likelihood function in
(1.14) depends among other things on the number and size of loops in the map.

Figure 1.5 shows the result of a state-of-the-art SLAM algorithm based on
analyzing the constraint graph and a nested search of the best data association.
The data for this map was acquired by CMU’s Groundhog robot [87], built to
explore and map abandoned underground mines. Groundhog is equipped with a
laser range finder which measures the range to obstacles along a horizontal slice
of the world. The specific map shown here covers an area of 250 by 150 meters.
The form of the map is known as occupancy grid map, which is due to Elfes and
Moravec [19, 57]. Occupancy grid maps use Bayesian reasoning to estimate the
posterior probability that a cell is free, thereby accommodating noise in range
finders.

As a baseline for comparison, Fig. 1.5a shows a map constructed in a much
simpler way: Here scans are localized relative to slightly older scans and, once
localized, are added to the map under the assumption that the estimated location
is correct. Such a technique is called scan matching [51]. Scan matching is a
SLAM method, but it can only accommodate very small amounts of location
uncertainties. The failure to close loops is obvious from Fig. 1.5a. In fact, pairwise
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Fig. 1.5. An occupancy grid map of an abandoned mine. The left map estimates
the data association incrementally, and only in reference to the most recent sensor
measurement. The right map is the result of a global data association search and a
graphical optimization. Images courtesy of Dirk Hähnel, University of Freiburg.

scan matching can be thought of as a version of a graphical SLAM algorithm,
but correspondence is only established (and constraints inserted in the graph)
between immediately consecutive scans.

To map this data into a graph of manageable size, the algorithm decomposes
the map into small local submaps, one for each five meters of robot travel. Within
these five meters, the maps are sufficiently accurate, as general drift is small and
hence scan matching performs essentially flawlessly. Each submap coordinates
become a pose node in the GraphSLAM. Adjacent submaps are linked through
the relative motion constraints between them. The resulting structure is shown
in Fig. 1.5b.

On this graph, we can now perform a branch-and-bound recursive search for
correspondences. For finding good submaps tat might correspond, this algorithm
uses a correlation analysis for two overlaying maps. Once two suitable maps are
found, a soft constraint of the type stated in (1.15) is added to the graph, followed
by an optimization step of the resulting set of constraints. Figure 1.6 illustrates
the process of data association: each circle corresponds to a new constraint that
would be found in the search. The figure illustrates the iterative nature of the
search: certain correspondences are only discovered when others have been prop-
agated, and others are dissolved in the process of the search. The final model
is stable, in that additional search for new data association induces no further
changes. The resulting grid map is shown in Fig. 1.5b.
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Fig. 1.6. Data association search. See text.

(a) (b)

(c) (d)

(e) (f)
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Fig. 1.7. Mine map generated by the Atlas SLAM algorithm by [5]. Image courtesy
of Michael Bosse, Paul Newman, John Leonard, and Seth Teller, MIT.

Other graph-based techniques for SLAM have produced similar results. Fig-
ure 1.7 shows a map of the same data set generated by [5], using an algorithm
called Atlas. This algorithm decomposes maps into submaps whose relation is
maintained through information-theoretic relative links.

We note that the graph-based paradigm is very closely link to information
theory, in that the soft constraints constitute the information the robot has
on the world (in an information-theoretic sense [8]). Most methods in the field
are inherently offline, that is, they optimize for the entire robot path. If the
robot path is long, the optimization may become cumbersome. This is one of
the disadvantages of the graph-based paradigm. There exists a number of cross-
overs that manipulate the graph online so as to factor our past robot location
variables. The resulting algorithms are filters; see [5, 66, 69, 84], and they tend
to be intimately related to information filter methods [9, 63, 65, 67, 84, 86].
Many of the original attempts to decompose EKF SLAM representations into
smaller submaps to scale up are based on motivations that are not dissimilar to
the graphical approach; see [33, 48, 92].

As this article is being written, graphical and optimization-based SLAM al-
gorithm are subject of intense research. Recent results show that the paradigm
scales to maps with 108 features [5, 10, 16, 17, 25, 26, 28, 29, 45, 54, 87]. Ar-
guably, the graph-based paradigm has generated some the largest SLAM maps
ever built, but usually in an offline fashion.
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1.3.3 Particle Methods

The third principal SLAM paradigm is based on particle filters. Particle filters
can be traced back to [53], but they have become popular only in recent years.
Particle filter represent a posterior through a set of particles. For the novice in
SLAM, each particle is best thought as a concrete guess as to what the true
value of the state may be. By collecting many such guesses into a set of guesses,
or set of particles, the particle filters captures a representative sample from the
posterior distribution. The particle filter has been shown under mild conditions
to approach the true posterior as the particle set size goes to infinity. It is also
a non-parametric representation that represents multimodal distributions with
ease. In recent years, the advent of extremely efficient microprocessors has made
particle filters a popular algorithm [75, 15, 43, 49, 71].

The key problem with the particle filter in the context of SLAM is that the
space of maps and robot paths is huge! Suppose we have a map with 1000
features. How many particles would it take to populate that space? In fact,
particle filters scale exponentially with the dimension of the underlying state
space. Three or four dimensions are thus acceptable, but 100 dimensions are
generally not.

The trick to make particle filters amenable to the SLAM problem goes back
to [4, 72]. The trick has been introduced into the SLAM literature in [60], fol-
lowed by [55], who coined the name FastSLAM. Let us first explain the basic
FastSLAM algorithm on the simplified point-landmark example, and then dis-
cuss the justification for this approach.

At any point in time, FastSLAM maintains K particles of the type:

X
[k]
t , μ

[k]
t,1, . . . , μ

[k]
t,N , Σ

[k]
t,1, . . . , Σ

[k]
t,N (1.16)

Here [k] is the index of the sample. This expression states that a particle contains

• a sample path X
[k]
t , and

• a set of N 2-dimensional Gaussians with means μ
[k]
t,n and variances Σ

[k]
t,n), one

for each landmark in the environment.

Here n is the index of the landmark (with 1 ≤ n ≤ N). From that it follows
that K particles possess K path samples. It also possesses KN Gaussians, each
of which models exactly one landmark for one of the particles.

Initializing FastSLAM is simple: just set each particle’s robot location to its
known starting coordinates, and zero the map. The particle update then proceeds
as follows.

• When an odometry reading is received, new location variables are generated
stochastically, one for each of the particles. The distribution for generating
those location particles is based on the motion model:

x
[k]
t ∼ p(xt | x

[k]
t−1, u

t). (1.17)

Here x
[k]
t−1 is the previous location, which is part of the particle. This proba-

bilistic sampling step is easily implemented for any robot whose kinematics
can be computed.
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• When a measurement zt is received, two things happen: first, FastSLAM
computes for each particle the probability of the new measurement zt. Let
the index of the sensed landmark be n. Then the desired probability is defined
as follows:

w
[k]
t := N (zt; | x

[k]
t , μ

[k]
t,n, Σ

[k]
t,n). (1.18)

The factor w
[k]
t is called the importance weight, since it measures how “impor-

tant” the particle is in the light of the new sensor measurement. As before,
N denotes the normal distribution, but this time it is calculated for a specific
value, zt. The importance weights of all particles are then normalized so that
they sum to 1.

Next, FastSLAM draws with replacement from the set of existing particles
a set of new particles. The probability of drawing a particle is its normal-
ized importance weight. This step is called resampling. The intuition behind
resampling is simple: particles for which the measurement is more plausible
have a higher chance of surviving the resampling process.

Finally, FastSLAM updates for the new particle set the mean μ
[k]
t,n and

covariance Σ
[k]
t,n, based on the measurement zt. This update follows the stan-

dard EKF update rules.

This all sounds complex, but FastSLAM is quite easy to implement. Sampling
from the motion model is usually straightforward, since it involves a simple
kinematic calculation. Computing the importance of a measurement is, too,
straightforward, especially for Gaussian measurement noise. And updating a
low-dimensional particle filter is also straightforward. This makes FastSLAM
one of the easiest-to-implement algorithm presently available.

FastSLAM has been shown to approximate the full SLAM posterior. The
derivation of FastSLAM exploits three techniques: Rao-Blackwellization, condi-
tional independence, and resampling. Rao-Blackwellization is the following con-
cept. Suppose we would like to compute a probability distribution p(a, b), where
a and b are arbitrary random variables. The vanilla particle filter would draw
particles from the joint distributions, that is, each particle would have a value
for a and one for b. However, if the conditional p(b | a) can be described in
closed form, it is equally legitimate to just draw particles from p(a), and attach
to each particle a closed-form description of p(b | a). This trick is known as
Rao-Blackwellization, and it yields better results than sampling from the joint.
FastSLAM applies this technique, in that it samples from the path posterior
p(X [k]

t | Ut, Zt) and represents the map p(m | X
[k]
t , Ut, Zt) in Gaussian form.

FastSLAM also breaks down the posterior over maps (conditioned on paths)
into sequences of low-dimensional Gaussians. The justification for this decom-
position is subtle. It arises from a specific conditional independence assumption
that is native to SLAM. Fig. 1.8 illustrates the concept graphically. In SLAM,
knowledge of the robot path renders all landmark estimates independent. This is
easily shown for the graphical network in Fig. 1.8: we find that if we remove the
path variables from Fig. 1.8 then the landmark variables are all disconnected [70].
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Fig. 1.8. The SLAM problem depicted as Bayes network graph. The robot moves from
location xt−1 to location xt+2, driven by a sequence of controls. At each location xt

it observes a nearby feature in the map m = {m1, m2, m3}. This graphical network
illustrates that the location variables “separate” the individual features in the map
from each other. If the locations are known, there remains no other path involving
variables whose value is not known, between any two features in the map. This lack of
a path renders the posterior of any two features in the map conditionally independent
(given the locations).

Thus, in SLAM any dependence between multiple landmark estimates is medi-
ated through the robot path. This subtle but important observation implies that
even if we used a large, monolithic Gaussian for the entire map (one per particle,
of course), the off-diagonal element between different landmarks would simply
remain zero. It is therefore legitimate to implement the map more efficiently,
using N small Gaussians, one for each landmark. This explains the efficient map
representation in FastSLAM.

We also note that FastSLAM uses a particle filter. Derivations of the par-
ticle filter can be found in the literature referenced above. Here we note that
both steps—the motion and the measurement steps—retain the property that
(asymptotically) samples are drawn from the full SLAM posterior. This is quite
easy to see for the motion update step. For the measurement step, the property
is retained through resampling, which adjusts the particle population in response
to the new information added by the measurement.

Figure 1.9 shows results for a point-feature problem; here the point features
are the centers of tree trunks as observed by an outdoor robot. The dataset
used here is known as the Victoria Park dataset [34]. Figure 1.9a shows the path
of the vehicle obtained by integrating the vehicle controls, without perception
controls are a poor predictor of location for this vehicle; after 30 minutes of
driving, the estimated position of the vehicle is well over 100 meters away from
its GPS position.

The FastSLAM algorithm has a number of remarkable properties, which may
not be intuitive to the untrained eye. First, it solves both the full and the online
SLAM problems. Each particle has a sample of an entire path (and in fact, con-
ditioning on the entire path is required for its mathematical derivation), but the
actual update equation only uses the most recent pose. This makes FastSLAM a
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Fig. 1.9. (a) Vehicle path predicted by the odometry; (b) True path (dashed line) and
FastSLAM 1.0 path (solid line); (c) Victoria Park results overlaid on aerial imagery
with the GPS path in blue (dashed), average FastSLAM 1.0 path in yellow (solid), and
estimated features as yellow circles. Data and aerial image courtesy of José Guivant
and Eduardo Nebot, Australian Centre for Field Robotics.

filter, similar to the EKF. Second, FastSLAM makes it easy to pursue multiple
data association hypotheses. It is straightforward to make data association deci-
sions on a per-particle basis, instead of having to adopt the same hypothesis for
the entire filter. While we will not give any mathematical justification, we note
that the resulting FastSLAM algorithm samples the correct posteriors even for
SLAM problems with unknown data association—something that neither of the
previous two algorithms can claim. And third, FastSLAM can be implemented
very efficiently. using advanced tree methods to represent the map estimates,

(a) Raw vehicle path (b) FastSLAM (solid), GPS path
(dashed)

(c) Path and map with aerial image
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Fig. 1.10. Application of the grid-based variant of the FastSLAM algorithm. Each
particle carries its own map and the importance weights of the particles are computed
based on the likelihood of the measurements given the particle’s own map.

Fig. 1.11. Occupancy grid map generated from laser range data and based on pure
odometry. All images courtesy of Dirk Hähnel, University of Freiburg.

the update can be performed in time logarithmic in the size of the map N , and
linear in the number of particles M . These properties, along with the relative
ease of implementation, has made FastSLAM a popular choice.

FastSLAM has been extended in great many ways. One important variant is
a grid-based version of FastSLAM, in which the Gaussians are replaced by an
occupancy grid map [38]. This variant is illustrated in Figs. 1.10 and 1.11. Figure
1.10 shows the situation just before closing a large loop. The three different
particles each stand for different paths, and they also posses their own local
maps. When the loop is closed importance resampling selects those particles
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whose maps are most consistent with the measurement. A resulting large-scale
map is shown in Fig. 1.11.

Significant extensions of the FastSLAM method can be found in [20, 21], whose
methods DP-SLAM and ancestry trees provide efficient tree update methods for
grid-based maps. The work in [56] provides a way to incorporate new observa-
tions into the location sampling process, based on prior work in [89].

1.3.4 Relation of Paradigms

The three paradigms just discussed cover the vast majority of work in the field of
SLAM. As discussed, EKF SLAM comes with a computational hurdle that poses
serious scaling limitations. The most promising extensions of EKF SLAM are
based on building local submaps; however, in many ways the resulting algorithms
resemble the graph-based approach.

Graph-based methods address the full SLAM problem, hence are by nature
not online. They draw their intuition that SLAM can be modeled by a sparse
graph of soft constraints, where each constraint either corresponds to a motion
or a measurement event. Due to the availability of highly efficient optimization
methods for sparse nonlinear optimization problems, graph-based SLAM has be-
come the method of choice for building large-scale maps offline. Data association
search is quite easily incorporated into the basic mathematical framework, and
a number of search techniques exist for finding suitable correspondences. There
are also extensions of the graph-based SLAM for the online SLAM problem.
Those tend to remove old robot locations from the graph.

Particle filter methods sidestep some of the issues arising from the natural
inter-feature correlations in the map—which plagued the EKF. By sampling
from robot poses, the individual landmarks in the map become independent,
and hence are decorrelated. As a result, FastSLAM can represent the posterior
by a sampled robot pose, and many local, independent Gaussians for its land-
marks. The particle representation of FastSLAM has a number of advantages.
Computationally, FastSLAM can be used as a filter, and its update requires
linear-logarithmic time where EKF needed quadratic time. Further, FastSLAM
can sample over data association, which makes it a prime method for SLAM with
unknown data association. On the negative side, the number of necessary par-
ticles can grow very large, especially for robots seeking to map multiple nested
loops. We discussed extensions of FastSLAM that use occupancy grid maps in-
stead of Gaussian landmarks, and showed state-of-the-art examples in large map
building.

1.4 Conclusion and Future Challenges

This article provided a comprehensive introduction into the SLAM problem and
its primary solutions. The SLAM problem was defined as the problem faced by
a mobile platform roaming an unknown environment, and seeking to localize
and map its environment at the same time. The article discussed three main
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paradigms in SLAM, which are based on the extended Kalman filter, graph-
based sparse optimization techniques, and particle filters. It pointed out some
of the advantages and disadvantages of those methods. For a more in-depth
discussion, the interested reader shall be referred to a recent textbook covering
SLAM [82].

Interestingly, the field of SLAM is still relatively young, and it has made
enormous progress within just the past decade. In fact, nearly every method
described here has been developed within the past few years. Despite all this
progress, there remains a great number of open research issues that warrant
future research.

In particular, SLAM techniques mostly deal with static environments, yet
nearly every actual robot environment is dynamic. Early applications of SLAM
methods to dynamic environments can be found in [39, 90, 94]. More work
is needed to understand the interaction of moving and non-moving objects in
SLAM.

Most SLAM work addresses single-robot mapping, yet sometimes one is given
a team of robots. Early and highly restrictive work on multi-robot SLAM can be
found in [36, 64]. More recent methods include those in [23, 73, 85]. Multi-robot
SLAM has benefited greatly from a recent DARPA project focused on this topic;
nevertheless, the existing methods have not yet matured to a level where they
can be used by non-experts in the field.

One of the primary challenges in SLAM is to pursue significant implementa-
tions. While the theory of SLAM is now quite well-developed, SLAM has not
yet been used extensively in industrial or commercial applications. There exist
promising proto-types, including methods for building large-scale 3-D volumetric
maps [30, 12, 40, 81], detailed underwater reconstruction [22, 74, 93], and mapping
of abandoned underground mines [87]. Nevertheless, the authors feel that more
work is needed to mature the technology into industrial-strength applications.
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Hybrid, Metric-Topological Representation for
Localization and Mapping

Nicola Tomatis

Summary. This chapter describes an approach for indoor spatial representation,
which is used to model the environment for the navigation of a fully autonomous robot.
The metric and topological paradigms are integrated in a hybrid system for both lo-
calization and map building: A global topological map connects local metric maps
avoiding the requirement of global metric consistency. This allows for a compact envi-
ronment model, which permits both precision and robustness and allows the handling
of loops in the environment during automatic mapping by means of the information of
the multimodal topological localization.

The presented implementation uses a 360 ◦ laser scanner to extract corners and
openings for the topological approach and lines for the metric method. This hybrid
approach has been tested in a 50 x 25m2 portion of the institute building with the
fully autonomous robot Donald Duck. Experiments are of four types: Maps created by
a complete exploration of the environment are compared to estimate their quality; Test
missions are randomly generated in order to evaluate the efficiency of the approach
for both the localization and relocation; The fourth type of experiments shows the
practicability of the approach for closing the loop.

2.1 Introduction

Research in mobile robot navigation has to focus on various issues. Environmen-
tal modeling, perception, localization and mapping are all needed in order to
build a coherent working framework. Even though several successful approaches
have been recently presented, solutions for consistent mapping allowing precise
and robust localization in unmodified, dynamic, real-world environments are
very rare. The problem is highly complex due to the fact that it requires the
robot to remain localized with respect to the portion of the environment which
has already been mapped in order to build a coherent map. The research has
diverged to different category of approaches:

• Metric: Robot position defined by position and orientation [x y θ]T .
• Topological: Position defined by states or places.
• Hybrid: Combination of both the above mentioned.

Approaches using purely metric maps are vulnerable to inaccuracies in both
map-making and odometry abilities of the robot. Even by taking into account

M.E. Jefferies et al. (Eds.): Robot. & Cogn. Approach. to Spat. Map., STAR 38, pp. 43–63, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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all relationships between features and the robot itself, in large environments
the drift in the odometry makes the global consistency of the map difficult to
maintain. To overcome this problem, one can rely on relative measurements.
However, the observations must be associated with the map and this process
still relies on the odometry.

Landmark-based approaches, which rely on the topology of the environment,
can better handle this problem, because they only have to maintain topological
global consistency, not metric. The advantage relies in the fact that topologi-
cal relationships do not suffer of incremental drift as for the metric ones since
they are qualitative, not quantitative. However, these approaches are either less
precise than fully metric approaches, due to the discretization of the localiza-
tion space, or computationally intractable for autonomous robots, when high
resolution is used (centimeter range [11]).

More recently, approaches combining the topological and the metric para-
digms have shown that positive characteristics of both can be integrated to
compensate for the weakness of each single approach.

The approach presented here proposes a natural integration of both the metric
and topological paradigms to combine the best characteristics of both. For this,
the environmental model embodies both a metric and a topological representa-
tion. The metric model consists of infinite lines that belong to the same place.
These places are related to each other by means of a topological map which is
composed of nodes representing topological locations and edges between nodes.
Connections between a node and a place are a special case: Traveling along these
edges causes a switch from the topological to the metric paradigm. The approach
allows for both the localization and the creation of maps. The automatic map-
ping permits also the handling of loops in the environment. This combination
of the metric and the topological representation allows, without any loss of pre-
cision, efficient “planning in the large”, advantageous symbolic representation
for use of the robot (i.e. man-machine interaction) and robustness due to its
multi-hypothesis tracking.

2.2 Spatial Representation

A robot, like a human or an animal, does not need to know its precise position
with respect to the environment when traveling. Of course, it has to avoid ob-
stacles during motion, and, therefore, to measure their relative distance, but the
only moment when it really needs to know its precise position with respect to
the environment, is when it has to interact with the environment (e.g. docking
for recharging, manipulation of an object, human-robot interaction, etc.).

Given this and knowing that it is comparatively easier to maintain topological
global consistence instead of metric, it seems suitable to have a hybrid approach
using a global topological map and many local metric maps (Fig. 2.1) for the
navigation of a mobile robot.
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Fig. 2.1. The space is represented by places given by their metric maps and nodes
representing topological locations. The graph represents the topological map, which is
used for traveling. When interaction with the environment is needed, the local metric
map is used.

2.3 Environment Model

In this section the environmental modeling is presented for the current imple-
mentation.

The environment is described by a global topological map, which permits
moving in the whole environment, and local metric maps which can be used by
the robot as soon as it needs further localization precision (Fig. 2.1). In order to
change from topological to metric, the metric position of the robot in the local
metric map has to be calculated (i.e. initialization of metric parameters). This
requires the measurement of one or more metric features, which are known in
the current local metric map. Thus, the only requirement specific to this model
is to have a detectable metric feature when traveling from a topological node
to a metric place. Given this, local metric maps can be placed anywhere in the
environment.

Switching to topological does not require any specific characteristic: The robot
navigates back metrically to the position, where it initialized the local metric
map and then it resumes its topological navigation.

2.3.1 Global Topological Map

The perception required by a topological approach has to permit the distinction
between places. A model which permits the optimization of the distinctiveness
of the current location, not the precision, is required. In the model describe here,
two different features are chosen for their distinctiveness. These are:

• Corners, which are characterized by their orientation.
• Openings, which are also used for model transition.

The topological map can be viewed as a graph. Topological locations are
represented by nodes containing the information about the way to reach the
connected topological location/metric place. Furthermore, the landmarks lying
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Fig. 2.2. This figure shows the topological model only, not the local metric maps as in
Fig. 1. (a) A portion of a hallway with the extracted corner and opening features. (b)
The topological map is represented by a graph. It contains nodes connected to each
other with the list of corner features lying between them. Openings (topological nodes)
can either be a transition to a room or be a connection to another hallway.

between two locations are represented as a list between the two nodes. In Fig. 2.2
the graph representing the topological model is shown for a portion of the envi-
ronment

The corner extractor returns a set of [x y θ] parameters in robot coor-
dinates, representing the position and orientation of the corners with respect
to the robot. Furthermore, an extraction confidence parameter pc is calculated
for each corner by taking into account its size. Openings are either large dis-
continuities perpendicular to the direction of motion in hall-ways or transitions
from rooms to hallways. They can either be a transition between a hallway and
a room or between two perpendicular hallways. Due to the use of a 360 ◦ laser
scanner, an observation contains many landmarks, which are transformed in a
graph compatible to the environment model, as shown in Fig. 2.3.

2.3.2 Local Metric Maps

The features used for metric environmental representation are infinite lines. They
are less informative than line segments, but have a better probabilistic model
with an analytical solution and permit a very compact representation of struc-
tured geometric environments requiring only about 10 bytes per m2 for a typical
office environment. In Fig. 2.4 a typical office is shown with the lines used for
its local metric map. The line model is ρ cos(ϕ − α) − r = 0, where (ϕ, α) is
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Fig. 2.3. (a) Laser data and the extracted features. (b) The resulting observation
graph.

Fig. 2.4. An office of the institute (a) and the lines representing it in the local metric
map (b). The black segments show the correspondence between the two figures.

the raw measurement and (α, r) the model parameters. The angle between the
line and its perpendicular is α, r is its length. The used extraction algorithm
has been described in [2]. Its result is a set of (α, r) parameters with their 2 x 2
covariance matrix, which is calculated by propagating the uncertainty from the
laser measurements.

2.4 Localization and Map Building

The environment models allow the use of two different navigation methods with
complementary characteristics. The metric approach is an Extended Kalman Fil-
ter (EKF). This method has already proven its strength for localization [3] . Map
building can then be done with the Stochastic Map approach [21] . Topological
navigation uses a Partially Observable Markov Decision Process (POMDP) [5]
for state estimation. The metric localization permits thus a very precise posi-
tioning at the goal point [3, 25] whereas topological localization [5, 25] guaran-
tees robustness against getting lost due to the multimodal representation of the
robot’s location.
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2.4.1 Map Building Strategy

As explained earlier, the environment model is composed of a global topological
map and a set of local metric maps. Local metric maps can be anywhere in the
environment. Even if the approach is applicable to any structured environment, a
suitable environment-dependent strategy has to be adopted. Here, it is assumed
that the robot will have to be very precise in rooms, where most of its tasks
have to be executed (e.g. docking for power recharging; manipulation tasks with
objects on a table; human-robot interaction). While navigating in the large (i.e.
hallways), precision with respect to the features is less important, but robustness
and global consistency take an important role. Because of this, the two different
levels of abstraction (metric and topological) are used in combination of the
different type of environmental structures:

• While navigating in hallways, the robot firstly creates and then updates the
global topological map.

• When it enters a room, it creates a new local metric map.

These two environmental structures are recognized with the laser sensor by
means of a heuristic established by experience: Thin and long open spaces are
assumed to be hallways, while other open spaces will be defined as rooms.

2.4.2 Exploration Strategy

The proposed exploration strategy is simple: The robot first explores all the
hallways in a depth-first way. It then explores each room it encountered by
backtracking. Note that, in general, for each hallway the room exploration re-
duces to a linear list traversal. Rooms with multiple openings cause two special
cases, which are treated in the next paragraphs.

SRooms with an opening to another room

The robot continues building the current metric map. This leads to the next
case if the other room has an opening to a hallway.

Rooms with multiple openings to a hallway

Due to the metric navigation mode during room exploration, the robot knows
the direction of the opening and can therefore deduce if it opens to the same
hallway, a known one or a new one. In the case of known hallways, the robot
simply goes back to the hallway it was coming from and continues its exploration.
If the robot reenters the same room from another opening without recognizing
it, the result will be that two metric maps for the same metric place are created,
one for each opening. In the case of a new hallway, the exploration continues in
a hallway depth-first way.

2.4.3 Topological Localization and Map Building

The current experimental test bed is a part of the institute building. This en-
vironment is rectilinear and mainly composed of offices, meeting rooms and
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hallways. Therefore, only four directions of travel are employed: N, E, S, W.
However, this is not an inherent loss of generality because it is not a general
requirement of the POMDP algorithm.

Position Estimator

Given a finite set of environment states S, a finite set of actions A and a state
transition model T , the model can be defined by introducing partial observability.
This includes a finite set O of possible observations and an observation function
OS, mapping S into a discrete probability distribution over O. T (s, a, s′) rep-
resents the probability that the environment makes a transition from state s to
state s′ when action a is taken. OS(o, s, a)is the probability of making an obser-
vation o in state s after having taken action a. The probability of being in state
s′ (belief state of s′) after having made observation o while performing action a
is then given by the equation:

SE s′(k + 1) =
OS(o, s′, a)

∑
s∈S

T (s, a, s′)SE s(k)

P (o|a,SE (k))
(2.1)

where SEs(k) is the belief state of s for the last step, SE(k) is the belief state
vector of the last step and P (o|a, SE(k)) is a normalizing factor. The observa-
tion function OS is made robust by the fact that an observation is composed of
many landmarks (Fig. 2.3), which give rise to its distinctiveness. The observa-
tion probability is calculated by graph matching between the graph representing
the map and the observation graph (Fig. 2.3). When no openings are visible,
T (s, a, s) = 0.99 while T (s, a, s′) = 0.01 for s �= s′, this means that it is highly
probable that the robot is still in the same state. When the robot encounters
an opening, the most probable state s′ is searched by comparing the traveled
distance d, measured starting from s, to the information saved in state node s
during map building. In this case, T (s, a, s′) = 0.99 while for T (s, a, s′′) = 0.01 .

Heading Estimator

Because the position estimator does not take into account the heading of the
robot, this is done separately as in [12]. However, in this case, the orientation
is estimated by a weighted mean of each observed l ine that is either horizontal
or vertical with respect to the environment. The success of this method is guar-
anteed by the fact that, in general, lines given by the environmental structures
are either parallel or perpendicular to the direction of travel. Infinite lines are
matched by means of the validation test

(
z[i] − ẑ[i]

)
S−1

ij

(
z[i] − ẑ[i]

)T

≤ χ2
α,n (2.2)

where prediction ẑ[j] is directly the odometry state vector variable θ and χ2
α,n is

a number taken from a χ2 distribution with n = 1 degrees of freedom. This can
be viewed as an EKF for heading only, where no map is required because, for
prediction, θ is directly used instead of map features.
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Control Strategy

Since it is computationally intractable to compute the optimal POMDP control
strategy for a large environment [5], simple suboptimal heuristics are introduced.
F or the system presented here the most likely state policy has been adopted:
The world state with the highest probability is found and the action that would
be optimal for that state is executed. However it can happen that the robot is
not sure about its current state. This is calculated by means of the function
U(SE(k)) (called the unconfident function), which is the entropy of the prob-
ability distribution over the states of the map. The POMDP is confident when

U(SE (k)) = −
∑

s

SE s(k) log SEs(k) < Umax (2.3)

where Umax is determined by experience. When the robot is unconfident, it
follows the hallway in the direction where it expects to find more information.
What has to be avoided at any cost is to switch from the multimodal topological
navigation to the unimodal metric navigation when the robot is unconfident
about its location, otherwise it could enter a false local metric place and therefore
be lost. This is a critical situation because the robot would have to both detect
its lost situation (unfeasible without arbitrary assumptions) and recover from it
(relocation).

Map Building

Instead of using a complex scheme for model learning like in [11] and [23], where
an extension of the Baum-Welch algorithm is adopted, here the characteristics
of the observation graph (Fig. 2.3) are used. When the robot feels confident
about its position, it can decide if an extracted landmark is new by comparing
the observation graph to the node in the map corresponding to the most likely
state. This can happen either in an unexplored portion of the environment or in a
known portion, where new landmarks appear due to the environment dynamic.
As already explained, the landmarks have an extraction confidence Pl. This
characteristic is firstly used to decide if the new landmark can be integrated
in the map. When an opening landmark is extracted (i.e. door or cross with
another hallway), it is integrated in the map as a new state node (Fig. 2.2) with
a rough measure of the distance to the last state node. Furthermore, for each
integrated landmark, the confidence Pl is used to model the probability of seeing
that landmark the next time Plmap. When it is reobserved, the probability in
the map is averaged with the confidence of the extracted one. If the robot does
not see an expected landmark the probability 1 − Plmap is used instead.

plmap(ti) =
n∑

i=1

pl(ti)
n

(2.4)

where

pl(ti) =

{
pl(ti) observed
1 − plmap(ti−1) ¬observed

(2.5)
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When the confidence Plmap decreases and is below a minimum, the corresponding
landmark is deleted from the map. This allows for dynamics in the environment,
where landmarks that disappear in the real world will be deleted from the map
too.

Closing the Loop

The problem of closing the loop can be defined as how to detect and correctly map
the environment when coming back to an already visited place due to a loop.
In [23] this is achieved by adding a topological mapper, which ensures global
consistency. The information from this topological mapper is used to correct
their global metric map which eventually converges to a global consistent map.
The current approach differs in two main aspects with respect to the known
methods:

• Instead of closing the loops only by means of the perception, loops are
detected and closed by means of the localization information. This means
that the robot decides by looking where it thinks it is thanks to its multi-
hypothesis system.

• Even by allowing precise metric information, loops have to be closed only
in the topological map because the metric model is represented by many
disconnected local metric maps.

Loops can also exist in a local metric map. However, by assuming that the
topology allows for small maps, the drift in odometry does not cause any problem
to the local consistency, as it has been shown in [7]. The current method works
as follows: The robot does not try to recognize if a single observation has already
been seen somewhere else. However, as soon as the robot creates the map for a
part of the environment which has already been visited, the probability distribu-
tion starts diverging into two peaks: One for the current map position; another
for the previously created location representing the same physical place. The
algorithm starts tracking the two highest probabilities as soon as the POMDP
becomes unconfident because this is the first clue indicating a divergence of the
probability distribution. A loop can then easily be detected when the distribu-
tion has converged into two peaks which move in the same way. The position
where the loop has to be closed can be detected by turning off the automatic
mapper and backtracking with localization until the distribution reconverges to
a single peak. This will be the point where the robot started mapping the loop.
An example is given in Fig. 2.5.

2.4.4 Metric Localization and Mapping

This section briefly describes the main characteristics of the Stochastic Map
approach [21], which permits the simultaneous building of the map and local-
ization using an Extended Kalman Filter [9, 18] for localization simultaneously.
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Fig. 2.5. a) A loop in the environment. (b) Mapping with the POMDP. 1) The map
when the robot is at position 1 in the environment. 2) The robot is re-exploring the
start point. The observation function OS(o, s, a) gives high values for both the new
node in the map and for the start node, but the probability distribution has not yet
diverged because the transition function T (s, a, s′) gives a low probability of coming
at the map start. 3) However, by moving in the same way on the map the distribution
diverges and the POMDP becomes unconfident. 4) The distribution has diverged and
the two peaks move in the same way to 5. (c) The mapping is stopped. The loop is
closed by backtracking.
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With this approach both the robot position xr = (x, y, θ)T and the features
xi = (α, r)T are represented in the system state vector and its covari-ance:

x =

⎡

⎢⎢⎣

xr

xi

. . .
xn

⎤

⎥⎥⎦C(x) =

⎡

⎢⎢⎣

Crr Cr1 . . . Crn

C1r C11 . . . C1n

. . . . . . . . . . . .
Cnr Cn1 . . . Cnn

⎤

⎥⎥⎦ (2.6)

This represents the uncertain spatial relationship between objects in the map,
which is changed by three actions:

• Robot displacement
• Observation of a new object
• Reobservation of an object already existing in the map

Robot Displacement

When the robot moves with an uncertain displacement u given by its two first
moments (u, Cu), which are measured by the odometry, the robot state is up-
dated to g(xr, u) . The updated position and uncertainty of the robot pose are
obtained by error propagation on g:

xr(k + 1) = g(xr(k), u) = xr(k) ⊕ u (2.7)

Crr(k + 1) = G

[
Crr(k) Cru(k)
Cur(k) Cuu(k)

]
GT (2.8)

where ⊕ is the compounding operator and G is the Jacobean of g with respect
to xr and u.

New Object

When a new object is found, a new entry must be created in the system state
vector. A new row and column are also added to the system covariance matrix
to describe the uncertainty in the object’s location and the inter-dependencies
with the other objects. The new object (x̂new, Cnew) can be integrated in the
map by computing the following equations of uncertainty propagation:

xN+1(k) = g(xr(k), xnew) = xr(k) ⊕ xnew (2.9)

CN+1,N+1(k) = GxrCrr(k)GT
xr

+ GxnewCnewGT
xnew

(2.10)

CN+1,i(k) = GxrCri(k) (2.11)
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Re-observation

Let xnew be the new observation in the robot frame. The measurement equation
is defined as:

z = h(xr, xnew, xi) = g(xr, xnew) − xi (2.12)

xi is temporarily included in the state to apply the EKF. However, if prediction
xi satisfies the validation test:

(xnew − xi)S−1
new,i(xnew − xi)T ≤ χ2

α,n (2.13)

where Snewi = Cnew,new + Cii − Cnewi − Cinew, χ2
α,n is a number taken from

a χ2 distribution with n = 2 degrees of freedom and α the level on which the
hypothesis of pairing correctness is rejected, then xnew is a re-observation of xi.

Extended Kalman Filter

When a spatial relationship is re-observed, the updated estimate is a weighted
average of the two estimates calculated by means of an EKF. It allows the update
of a subset of the state vector while maintaining consistency by means of the
covariance matrices. A measurement equation z = h(x1, . . . , xm) is considered
as a function of m relationships included in x. All of the m estimates xi of the
state vector x are updated by a value which is proportional to the difference
δ = z − ẑ between the ideal measurement z and the actual measurement ẑ:

xi(k + 1) = xi(k) + ΓizΓ
−1
zz δ (2.14)

Γiz = E
[
xiδ

T
]

=
M∑

j=1

CijH
T
xj

(2.15)

Γzz = E
[
δδT

]
=

M∑

j=1

M∑

k=1

Hxj CjkHT
xk

(2.16)

where Hxj is the Jacobean matrix of h with respect to xj . The variance and
covariance Cij are also updated:

Cij(k + 1) = Cij(k) − ΓizΓ
−1
zz Γ T

jz (2.17)

2.5 Experiments

The approach has been tested in the 50 x 25m2 portion of the institute build-ing
shown in Fig. 2.6 with four different types of experiments for a total of more
than 1.5km. For the experiments, Donald Duck has been used (Fig. 2.7). It is
a fully autonomous mobile vehicle running XO/2, a deadline driven hard real-
time operating system [4]. Donald navigates locally by means of a motion control
algorithm, which plays the role of both position control and obstacle avoidance:
It reaches the given (x, y, θ)T or (x, y)T goal by planning a collision free path
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Fig. 2.6. The test environment. It is complex, dynamic and artificially closed in A so
that the exploration procedure is finite. Black dots are the places where the automatic
mapper is expected to extract state nodes (the other doors are closed). In B and B′

the robot had problems distinguishing between the two neighbor locations. C and D
are detected as rooms and represented by a single local metric map. A large loop does
not exist in this environment. Therefore, for the experiments, a loop is “artificially
created” by starting the exploration in 1, stopping it in 2, taking the robot manually
to 3 and resuming.

(with respect to the current local data), and reacting to the dynamic environment
either by merely re-planning the path or by changing heading direction and re-
planning when an object appears in front of the robot. Its complete control
architecture is briefly presented in Fig. 2.8.

2.5.1 Map Building

In this section, the automatic mapping capabilities of the presented approach
are evaluated. Note that the environment is arbitrarily closed (Fig. 2.6), so that
the exploration procedure is finite. Furthermore, local metric maps are taken
from the a priori map used in [3], because the stochastic map is not yet imple-
mented on the robot and therefore, runs only offline. For this evaluation, five
maps generated by complete explorations of the environment shown in Fig. 2.6
are compared to evaluate their quality with respect to consistency and complete-
ness. In order to evaluate the topological mapper, maps are compared before the
backtracking step. By knowing which door is open during the exploration, it
can be extrapolated how many state nodes should be extracted (see the black
dots in Fig. 2.6). Their position (odometry) and type (opening or hallway) are
stored during exploration to check whether the resulting model is consistent
with the real environment. For the other features (corners), each resulting map
is compared to the others to calculate the average difference between all pair-
ings of the maps. The results are presented in Table 2.1. One of the problems
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Fig. 2.7. The fully autonomous robot Donald Duck. Its controller consists of a VME
standard backplane with a Motorola PowerPC 604 microprocessor clocked at 300MHz
running XO/2. Among its peripheral devices, the most important are the wheel en-
coders, a 360 ◦ laser range finder and a grey-level CCD camera.

Fig. 2.8. The control architecture of the robot. The goal of this architecture is to share
as may functionality as possible. This results in an emulation of high-level actions by
means of a motion planner relying on a safe obstacle avoidance.
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Table 2.1. Comparison of five maps generated by complete explorations of the envi-
ronment shown in Fig. 2.6

Number of explorations 5
Total traveled distance 343m

Number of states in the environment 13
Mean detected states 12.8/98%

Mean detection errors for hallway/opening 1.2/9.2%
Mean detected features per exploration 78

Mean different features 18/23%

encountered during the exploration was the difficulty of distinguishing between
openings and hallways. This leads to a mean of 1.2 false detections for each
experiment. Nevertheless by visiting all the openings when traversing the en-
vironment by backtracking to add the local metric maps, these errors will be
detected and corrected. In one experiment a state (opening) was not extracted
at all.

For the corner features it is more difficult to define which features really exist
in the environment. What can be measured is the difference between two maps.
The mean number of extracted corners in a map is 78. An average of 18 of these
are either corners or noise that are not always extracted. This means that almost
77% of the features are constant in the five maps showing that the perception
delivers valuable information to the mapper.

2.5.2 Localization

The quality of a map can also easily be estimated by testing it for localization.
For this, two types of localization experiments are performed: One for local-
ization (position tracking) and the other for relocation. To test the topological
localization, 25 randomly generated test missions for a total of about 900m and
28 000 estimates are performed. The robot knows in which state it is at the start
point. A mission is successful when the robot reaches its goal location, is in front
of the opening and is confident about its position. There it switches to the metric
approach by measuring the door frame and using this information to initialize
the EKF. To have more information about the experiments, the information as-
sociated with each state transition is stored in a log file which makes it possible
to determine if each transition detected by the localization actually took place.
The results are presented in Table 2.2. Even if all the missions are successful,
using the log file allows finding 21 false state transitions. These caused 404 false
estimates in B and B′ (Fig. 2.6), where the peak probability moved forward
and backward between two neighbor states. These false estimates represent only
1.4% of the total, meaning that the system recovers quite fast from these errors.
The robot had also confident false estimates (0.5%) that could cause a mission
failure if the goal state is estimated when the robot is in front of another opening.
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Table 2.2. Localization experiments. All the test missions have been successfully per-
formed. However the robot also made false state transitions that caused some false
estimates (1.4%). This happened only by B and B′ in Fig. 2.6. The reason leading
to a success rate of 100% is that the system always recovered from its error without
estimating the goal location in front of a false opening.

Number of missions 25
Successful missions 25/100%

Total traveled distance 899m
Mean traveled distance 36m

Mean travel speed 0.31m/s
Total real state transitions 181

False state transitions 21/12%
Total estimates 27 870

Unconfident states 3 413/12%
False estimates 404/1.4%

Confident false estimates 149/0.5%

Table 2.3. Recovering from a lost situation (i.e. overall constant belief state). The
robot requires from 1 to 4 states to recover, depending on the distinctiveness of the
part of the environment where it is moving.

Number of experiments 10
Total traveled distance 250m

Mean distance for recovering 13.7m
Min / max distance for recovering 1.21/20.31m

Mean number of states for recovering 2.11
Min / max of states for recovering 1/4

The second type of test is focused on recovering from a lost situation (relo-
cation). Ten experiments are started from a randomly defined position in the
environment with a uniform belief state distribution (i.e. lost situation). The
goal is to measure which distance or number of state transitions are required in
order to converge to a correct confident state estimate. To avoid false interpre-
tations, the robot is required to travel 3 state nodes further without estimate
errors to fulfill the test. In Table 2.3 the ten tests are briefly outlined.

As expected the robot can always recover. Its policy is simple: Go forward un-
til recovery or end of hallway; If end of hallway, turn. The system requires a min-
imum of 1 and a maximum of 4 states to recover. The interesting point is that
this difference in the results is position dependent and repeatable. For example,
the crossing between the two hallways permits recovery with a single state transi-
tion because it is global distinctive for the environment in Fig. 2.6. On the other
hand, the right part of the horizontal hallway seems to be more distinctive than
the left one where the robot required the maximum number of states to recover.
Metric localization is used but not explicitly tested here, because the EKF used



Hybrid, Metric-Topological Representation for Localization and Mapping 59

has already been extensively tested in [3] with a total of 6.4km. The mean 2σ-error
bounds are approximately 1 centimeter in x and y and 1 degree for θ. Furthermore,
the metric localization approach has also been tested with this hybrid method for
localization on the same robot in [25], where ground truth measurements at the
goal position resulted in an average error of less than 1cm.

2.5.3 Closing the Loop

In the test environment there are no large loops. In order to test the proposed
approach, a loop is artificially created by displacing the robot during the explo-
ration as shown in Fig. 2.6. As already explained, it can be assumed that when two
peaks appear and move in the same way for three subsequent state transitions a
loop has been discovered. In all the other experiments this has effectively never
appeared, showing that this a good test for loops. This experiment has been per-
formed three times. Each time the probability distribution has effectively diverged
into two peaks allowing the detection of the loop. In order to close the loop the
robot has turned off the mapping algorithm and has gone back until the distribu-
tion has converged to a single confident peak. This took place where the map has
been started (1 in Fig. 2.6) proving that the loop could be correctly closed.

2.6 Related Work

Successful navigation of embedded systems for real applications relies on the
precision that the vehicle can achieve, the capacity of not getting lost and the
practicability of their algorithms on the limited resources of the autonomous
system. Furthermore, the fact that a priori maps are rarely available and, even
when given, not in the format required by the robot, and that they are mainly
unsatisfactory due to imprecision, incorrectness and incompleteness, makes au-
tomatic mapping a real need for application-like scenarios.

Simultaneous localization and map building research can be divided into two
main categories: Metric and topological. Metric approaches are defined here as
methods, which allow the robot to estimate its [x y θ]T position, while topo-
logical approaches are those where the position is given by a location without
precise metric information.

After the first precise mathematical definition of the stochastic map [21], early
experiments [9, 18], have shown the quality of fully metric simultaneous localiza-
tion and map building. The resulting environment model permits highly precise
localization, which is only bounded by the quality of the sensor data [3]. However,
these approaches suffer some limitations. Firstly they rely strongly on odometry.
For automatic mapping this makes the global consistency of the map difficult to
maintain in large environments, where the drift in the odometry becomes too
important. Furthermore they represent the robot pose with a single Gaussian
distribution. This means that an unmodeled event (i.e. collision) could cause a
divergence between the ground-truth and the estimated pose from which the sys-
tem is unable to recover (lost situation). In [7] it has been shown that by taking
into account all the correlations (off-diagonal cross-covariance in (2.6)), the global
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consistency is better maintained. However, this is not sufficient, as confirmed by
a recent work [6], where a solution is proposed by extending the absolute local-
ization to include localization relative to local frames. An alternative approach is
to work with relative information only, as proposed in [19]. However, the problem
of relying on odometry remains to be faced for the association problem.

On the other hand, topological approaches [16] can handle multi-hypothesis
tracking and have a topological global consistency, which is easier to maintain.
The robustness of such approaches has firstly been proven by the application of
the state set progression [20], which has then been generalized to the POMDP
approach [5, 12]. For automatic mapping in [15] the Baum-Welch algorithm has
been used for model learning. In contrast to the above mentioned topological ap-
proaches, [17] proposes a topological approach, which rely heavily on odometry
in order to better handle environment dynamics. All these approaches are robust,
but have the drawback of losing in precision with respect to the fully metric ones:
The robot pose is represented by a location without precise metric information. To
face this, Markov localization [11] has been proposed: A fine-grained grid guaran-
tees both precision and multimodality. However, this approach remains computa-
tionally intractable for current embedded systems. Monte Carlo localization has
recently been proposed [10]. However, it has not been extended for simultaneous
localization and mapping. Metric and topological approaches are converging, like
[6, 10, 11], to hybrid solutions by adding advantageous characteristics of the op-
posite world. Going in this direction, in [22], the approach consists of extracting a
topological map from a grid map by means of a Voronoi based method, while [23]
proposes to use the Baum-Welch algorithm as in [15], but to build a topologically
consistent globalmap which permits closing the loop for the globalmetric map too.

In contrast to the above mentioned approaches, for this system a natural in-
tegration of the metric and topological paradigm is proposed. The approaches
are completely separated into two levels of abstraction. Metric maps are used
only locally for structures (rooms) that are naturally defined by the environ-
ment. There, a fully metric method is adopted. As it has been shown in [7], for
such small environments, where the drift in the odometry remains uncritical, the
stochastic map allows for precise and consistent automatic mapping. The topo-
logical approach is used to connect the local metric maps that can be far away
from each other. With this the robot can take advantage of the precision of a
fully metric EKF navigation added to the robustness in the large of the POMDP
approach. All this is achieved by maintaining a compactness of the environment
representation and a low complexity, which allows an efficient implementation of
the method on a fully autonomous system. This hybrid approach shows also its
practicability for environments with loops. In this case the loop is closed in the
global topological map based on the information from the topological localiza-
tion, while the metric information remains local and does therefore not require
further processing, contrasting to [23], where the topological information is used
for mapping only, to close the loop in the metric map correctly.

This work is one of the first proposing such hybrid integration with [25] for
localization. Since then, the hybrid navigation community is growing with for ex-
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Fig. 2.9. This is an extension of the model presented in Fig. 2.1. The space is rep-
resented by places given by their metric maps, which corresponds in this case also to
topological locations.

ample [1], where a discrete Markov Model is used to generate hypotheses, which
are then tracked by multiple Kalman trackers and [13] with the combination of
Markov Localization and Kalman Filter.

Due to the cross-fertilization of ideas from cognitive science and robotics in
the last few years, it can be seen that these approaches have more and more
in common with what is called cognitive mapping, a term first used in [24]. A
remarkable similarity can be found in [8] and [14], showing that cognitive and
robot mapping are converging toward a common solution.

2.7 Conclusion and Outlook

This chapter has presented a hybrid approach for both localization and map
building. The metric and topological parts are completely separated into two
levels of abstraction. Together they allow a very compact and computationally
efficient representation of the environment for mobile robot navigation. Fur-
thermore this combination permits both precision with the non-discrete metric
estimator and robustness by means of the multimodal topological method.

The approach is validated empirically by extensive experimentation for a total
of more than 1.5km. Map building is tested by performing five complete explo-
rations of the environment and comparing the resulting maps. This comparison
demonstrates that the maps are consistent with respect to the environment and
that perception allows the extraction of important information. For localization,
the success rate over the 0.9km of the 25 tests missions is 100%. Nevertheless
a precise analysis of the state transitions shows that, between neighbor states,
false state estimate occurs (1.4%) and sometimes are even treated as confident
(0.5%). The relocation performance of the topological method has been shown
with 10 successful experiments where the belief state converges within 1 to 4
state transitions depending on the distinctiveness of the part of the environment
where the robot is navigating. It has been shown how loops can be closed on
the localization level instead of the perception level. This is easily done by using
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the multi-hypothesis tracking characteristic of the POMDP for detection and
backtracking for closing the loop.

A logical extension for the future is to have the topological localization running
permanently and to use the metric navigation only when precision is needed. This
requires an extension of the model as it is shown in Fig. 2.9.
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Machine Perception in Unstructured and
Unknown Environments

Steven Scheding, Richard Grover, and Hugh Durrant-Whyte

Summary. This chapter discusses the issue of machine perception from the perspec-
tive of a system design process. The three issues of information gathering, data rep-
resentation and reasoning are discussed, leading to a general high-level model of the
problem. The model is intended to be generic enough to allow a wide variety of tasks to
be performed using a single set of sensory data. It is argued that the model has a direct
correspondence with some recent biological models. Finally, an application is presented
showing how the model may be applied to solving real-world problems, specifically an
autonomous system operating in outdoor unstructured environments.

3.1 Introduction

Mapping unstructured and unknown terrain is an extremely important compe-
tency that any autonomous system must possess in order to be considered truly
useful. The term mapping in this context will be considered to mean the pro-
cess whereby complex information is gathered and subsequently abstractly and
concisely represented. Additionally, the representation should readily support
reasoning on the mapped information so that appropriate actions may be taken.

Therefore, when designing a perception system for an artificial agent, the
following must be considered:

• Information gathering – Are the information sources (usually sensors) capable
of measuring the quantities of interest? For example, water is extremely hard
to classify using only video data, however during daylight, water has a fairly
unique polarisation signature.

• Representation – Does the representation model the underlying uncertain-
ties present in the system? Does the model possess desirable computational
characteristics? How compact is the representation? It is conceivable that for
many missions the data rates from sensors will be in the order of Gigabytes
per minute.

• Reasoning – How does the representation facilitate reasoning? What mech-
anisms allow decisions to be made? Can you, as the designer, be confident
that the correct decisions will be made? Can many parallel tasks be carried
out using the same data sources?

This document will examine each of these issues in turn. The issues will be
explored in the context of an autonomous ground vehicle. The vehicle must be
capable of reconstructing the geometry of its environment, as well as extracting

M.E. Jefferies et al. (Eds.): Robot. & Cogn. Approach. to Spat. Map., STAR 38, pp. 65–81, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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other relevant information such as the identification of vegetation versus rocks
and other high density obstacles.

3.2 Information Gathering

Historically, autonomous systems have relied on tightly constraining the com-
plexity and structure of the operating environment through the use of artificial
lighting, targets and structured environments. Natural outdoor environments,
however, are characterised as structurally complex and require significant sub-
tlety of interpretation. The tendency to underestimate the effects of this is a
result of the (normally) highly-tuned abilities of the observer. A lack of preci-
sion in interpretation leads inexorably to fragility and increased likelihood of
failure. The goal of a sensor system is to reduce the effects of ambiguity through
the appropriate selection of sensors and task-specific processing. Two examples
particularly relevant to an autonomous ground vehicle are identifying: the dif-
ference between a flat plain (such as a salt-pan) and a lake surface; or between
a moss-encrusted rock and a similarly sized bush. Without appropriate sens-
ing and interpretative capabilities these examples remain indistinguishable, with
potential effects ranging from excessive caution to reckless confidence. Similar
biological examples such as the difference between a leaf-shadow pattern and a
predator can be readily imagined.

Resolving such ambiguity is possible if an appropriate set of sensory stimuli are
available: polarisation information can reveal the surface of water as distinct from
earth; while radar can reveal the lower density of the shrub directly. Figure 3.1
shows a schematic example where two objects are sensed in such a way that
the depth and colour variations are not captured; the observational space is
insufficient to clearly resolve the two objects. Conversely, this figure also suggests
the sensory stimuli required to improve this discrimination: colour and/or range.
Intuitively, the best solution would be to use both additional stimuli to reduce
the ambiguities by expanding the dimensionality of the sensory space.

It is important to note that it is not necessary that each dimension introduced
by a sensory stimuli be strictly orthogonal to one another. Rather, provided that
the stimuli themselves span the decision space (that is, the subspace over which
the important criteria for making a decision are supported) the system will be
capable of interpreting the data successfully.

Further consider the example of determining a shrub from a similarly sized
rock. They may have different colours or textural properties, but this is not
guaranteed. Perhaps the only property that can uniquely identify the rock from
the shrub is their density. For various reasons, this property is almost impossible
to determine using cameras (single or stereo), lasers, or most other common
imaging sensors. Radar is perhaps the only technology capable of determining
the density of foliage, albeit indirectly.

To demonstrate these different properties, a small section of data is considered
in more detail here. This portion of data contains a tree with some flat ground
surrounding it. This data set is selected to highlight the subtlety required in
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Fig. 3.1. Two objects are projected into a greyscale image subspace which makes their
separation difficult. If colour or range, or even better both, measurements are available
then their discrimination will be improved.

interpreting sensory data of natural scenes. Different parts of the scene often
require quite different interpretations: the ground can be considered a surface,
but a tree can be considered volumetric in structure.

Figure 3.2 shows the 3D view of the tree and ground that geometry measuring
devices such as lasers and depth-of-field imaging sensors would generate. In this
image it is difficult to discern the expected differences between the tree and the
ground. To this data, colour and texture information can be added relatively
simply, as seen in Fig. 3.3. This representation appears to be very rich in infor-
mation, using both laser and visual data, however it remains difficult to identify
the distinction between the ground and the tree using this extra information.

Figure 3.4 shows the same scene, this time imaged with a millimeter wave
(mmWave) imaging radar capable of measuring the density of the elements of
the scene. This figure is still geometric (as with Fig. 3.2), but the differences are
now immediately apparent.

This example demonstrates the notion that the choice of sensors is very closely
linked to the application. Without the appropriate sensor the task cannot be
carried out, because the information necessary for task completion is simply
not available. This idea has many precedents in the natural world, with many
animals possessing senses and transducers that are uniquely suited to their own
particular environment. Examples include:

• Dolphin Sonar [11] – In the underwater domain, sound propagation is gen-
erally far superior to the propagation of light. In fact, red light is absorbed
by water which reduces the available spectra usable by photo-receptors. Sim-
ilarly turbidity and depth decrease the available light. In [11] it is shown
that dolphin sonar is (in most cases) able to discriminate between four dif-
ferent liquids contained in closed cylinders, a result simply not feasible with
photo-receptor based sensing.
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Fig. 3.2. 3D surface visulisation of the tree data set, from two view points

Fig. 3.3. 3D Delaunay surface visulisation of the tree data set, with texture mapping,
from two view points

• Invertebrate Polarisation Sensitivity [19] – Many invertebrates are able to
sense the polarisation of light directly. In low-light situations this ability
would appear to aid in the discrimination of objects which may have similar
‘colour’, but different polarisation characteristics.
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Fig. 3.4. Combined volumetric and surface visulisation of the tree data set, from two
view points

3.3 Representation

The representation problem for autonomous artificial agents has been addressed
at length in relatively structured internal, and some external, environments.
Readily discernable structural features such as points, lines and other parametric
elements have been utilised, and algorithms such as the Kalman filter [22] and
particle filter [4] implemented to incrementally update such representations. As
environments become more complex, however, they fail to conform to such simple
parametric models and these methods often break-down in a fragile manner.
This occurs in more dynamic indoor environments and, most importantly, in
outdoor environments. In such cases, generalised non-parametric models become
essential. One example of such a representation is the probability of occupancy
which can be described using elevation maps, tesselated surface models [15] and
structured [5] or unstructured [15] occupancy sampling. While such models are
very general, they can also be unweildy [16, 12] and, in particular, basic learning
operations such as incrementally combining new information or combining two
separate representations can be very complicated.

Figure 3.5 shows graphically the dramatic effect the choice of representation
can have on memory requirements and representation fidelity. In Fig. 3.5(a) the
‘real’ object can be seen as a circle or disc. Figure 3.5(b) shows the disc repre-
sented on an 8 × 8 grid whilst Fig. 3.5(c) shows the same disc represented by 64
point samples. The representations displayed in Figs. 3.5(b) and 3.5(c) therefore
have the same memory requirements, however the representational fidelity is
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Fig. 3.5. (a) Real object (disk); (b) Grid representation of object with an 8× 8 array;
(c) particle representation of the object with the same storage requirements as the grid,
i.e., 64 samples

very different. The grid representation shown in Fig. 3.5(b) would require vastly
more memory to achieve the same fidelity as the particle representation.

Coupled to the memory issue is the need to apply a probabilistic approach, due
to inherent uncertainty within and without the system. Two major operations
are needed for such an approach: prediction of the future state of the probabil-
ity given dynamic models of the agent and the environment; and updating the
probability distribution given an observation of the environment. Respectively,
these operations correspond to convolution (from the total probability theorem)
and multiplication (from Bayes’ rule) operations performed on probability dis-
tributions. These provide for a recursive prediction-correction style learning of
a ‘map’ of the environment.

Thus, a practical representation should display two simultaneous character-
istics: it must provide a reasonable level of compactness and must also support
efficient manipulation by multiplication or convolution. The first criteria enables
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Fig. 3.6. 40:1 Compression of a Wavelet Represented Occupancy Grid

efficient storage and communication of the map information and the second
ensures that the resulting data can be practically processed using consistent,
standard probability formulas. There are many representations which achieve
excellent compression or compactness, but many turn out to be extremely diffi-
cult to manipulate efficiently. Two of these previously considered are Gaussian
Mixtures (or Sums of Gaussians) [4, 1] and Support Vector Machines (SVM) [17].
The Gaussian Mixtures approach suffers from an exponential increase in model
complexity as the system evolves, requiring regular re-sampling, whilst the SVM
approach yields representations which are extremely difficult to manipulate and
combine mathematically.

A representation using Haar Wavelets and the Discrete Wavelet Transform
(DWT) [7] is another interesting possibility. Analytical solutions to both the in-
corporation of positional and sensor uncertainty into the representation, and the
multiplication of two wavelet-based representations (wholly within the wavelet
form) have been derived. Their computational complexity is much improved over
traditional occupancy grid implementations. Additionally, the Haar Represen-
tation for occupancy data is inherently compact, as demonstrated in Fig. 3.6.
The figure shows an occupancy grid map originally built using laser data for
which a compression ratio of over 40:1 has been achieved with marginal loss of
information.

This section has shown that probabilistic representations are extremely im-
portant, as they allow the explicit encoding of uncertainty or even complete
ignorance of a particular event or state of the world. Several methods were ex-
amined against the criteria of memory requirements, representational fidelity
and computational complexity. Recently, there has been much work aimed at
applying these types of probabilistic representations to aid in the understand-
ing of the phenomenology of biological systems. In an interesting example [25],
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it is shown that many of the unique features of human visual systems can be
explained by the principle of optimal information transmission, the assumption
being that evolution (or related processes) would presumably have adapted the
human visual system to preserve the maximum amount of sensory information,
regardless of scene complexity, lighting conditions etc. Information in this case
refers to ‘Information Theory’ which defines information directly in terms of
probabilities. Storing probabilistic representations which preserve the maximum
amount of sensory stimuli would therefore appear to have a strong biological
analogue.

An interesting conjecture, implied by recent studies [6] is that in some biolog-
ical systems (ferrets in the case of [6]), up to 80% of the brain’s visually related
activity is devoted to maintaining its learned representation of the world. This
biological analogue strongly suggests that maintaining a world representation is
perhaps the most taxing part of the ‘mapping’ process, and indeed this appears
to be true of robotic systems also.

3.4 Reasoning

Reasoning, like information gathering and representation, may be thought of
as being application specific and is intimately linked to the choice of sensors
and representations. Whilst these three topics have been separated for clarity
of discussion, in reality the three must be considered in toto before any real
problem can be solved.

For the purposes of this discussion, reasoning will be defined as follows:

• The transformation of the sensory stimuli to another, more abstract rep-
resentation, to aid the decision making process. In Fig. 3.7 this process is
referred to as ‘Data Condensation’.

This ‘transformation’ should have the following properties:

• It must be able to incorporate prior knowledge, should it exist.
• The transformation should be considered optimal if it retains only the infor-

mation needed for a particular task, and no other.

These conditions refer to the ability of a reasoning algorithm or process to
highlight the aspects of the data that are important to a particular task. For
example if it were necessary to extract faces from an image sequence, it would
be a reasonable ad-hoc assumption that the algorithm should be able to use
knowledge of skin colour, facial geometry, or any other aspect deemed to be
important. In a probabilistic framework, combining the incoming sensory data
with a prior model of that data is usually achieved through convolution of the
two distributions.

The criteria of optimality can only be measured with respect to the task be-
ing performed, in the sense that no task-specific information is lost during the
transformation process. The ‘prior’ knowledge needed to complete a particular
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task could therefore, in principle, be learnt by posing it as an optimisation prob-
lem which maximises task performance, rather than as an ad-hoc process such
as that described above.

In fact, in [25] it is shown that this single principle of maximising informa-
tion (optimisation) over both short and long time-scales accounts for several
well-known psychophysical phenomena in the visual systems of human-beings.
In robotic systems, learning the correct (or optimal) transformation for reason-
ing tasks is typically computationally expensive, whilst using the transformation
‘on-line’ is usually comparatively inexpensive. It could be conjectured that the
computationally expensive ‘task optimisation’ of the perceptual systems of bio-
logical systems is driven by standard evolutionary processes, with the resultant
‘transformations’ requiring very little ‘brain power’.

3.5 Architecture

The proposed model is shown in Fig. 3.7. The model has three significant char-
acterisitics:

• The data is modelled in a sensor centric manner, representing the perceptual
information in terms of the observed sensory responses. Separate stimuli are
described and quantified as separate degrees of freedom in a high-dimensional
‘sensor space’ which captures, in a single structure, the data from all available
sensors. No attempt is made, at this stage, to infer the existence of impor-
tant characteristics or features. The sensory data itself is treated as the best
available model of the external world.

• Uncertainty and ambiguity in sensing is captured in a probabilistic form as
a likelihood function. The explicit use of a probabilistic model allows opera-
tions of temporal propagation of data and temporal fusion of information to
occur through the use of the Chapman-Kolmogorov and Bayes equations re-
spectively. The actual form used to encode these likelihoods is an important
computational issue and many different techniques are appropriate under dif-
ferent circumstances, including: sets of particles, kernel approximations and
functional representations.

• The tasks of perception and reasoning are interpreted as processes which
abstract and compress the stored information (data condensation). In this
context, we focus on re-interpretation of the data for the purpose of increasing
the contrast in the data relevant to some specific task. Entropy measures can
be used to explicitly estimate the changes to the information content as a
result of this process.

What distinguishes this approach is the emphasis on managing data in its
‘raw’ sensory form and delaying any interpretative tasks until the time and
place where they are required to achieve some goal. This is motivated by the
belief that the sensory stimuli themselves represent a robust, appropriate, and
the most complete, summary of the available data.

Of course, simple recording of sensory information is not inherently valuable,
for the information must be fused and propagated temporally to generate a
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Fig. 3.7. A schematic view of the proposed perception model highlighting the three
main characteristics: a sensor-centric information summary; explicit use of likelihood
models; and delayed, application-specific interpretative stages

concise, composite and useful global reconstruction of the environment. Follow-
ing the approaches of [22, 4] a probabilistic model of the sensory stimuli, in the
form of observation likelihoods, is used to construct the sensor space. Practi-
cally, the responses of a sensor (amplitude returns, regions of irradiance, etc.)
are used to construct a likelihood distribution around a region of true response,
itself the underlying state to be inferred. As examples, consider the inference of
occupancy measures according to laser scans, or interpreting a radar sensor as
a source of information about the reflectivity of the scene.

The utility of delaying the interpretation is evidenced from the fact that the
physical interactions between any single sensing modality and the environment
is ill-posed with a many-to-one relationship between the true environment and
data which makes it essentially impossible to model. If it were possible to con-
struct these models, then it would also be possible to determine, in advance,
the exact combination of sensory measurements which would enable unambigu-
ous reconstruction of an environment model from the data. In the absence of
complete models, performance can only be assessed using an appropriate metric
which combines the characteristics of the data and the overall performance of
the required task. For example, the direct interpretation of a given object’s prop-
erties from radar and infra-red sensors will not necessarily capture its essential
characteristics in a concise manner, whereas some combination of subsets of the
measured stimuli of both sensors may provide a salient description with respect to
some given task. Independently measurable components of this new description
can be considered to form ‘feature descriptors’. This interpretation has much
in common with multi-sensor stimulus models described for mammalian data
fusion of the Superior Colliculus [21].
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3.6 Practical Implementation

3.6.1 The ARGO Demonstrator

In this section we consider the mapping of this approach to the autonomous
ground vehicle (AGV) shown in Fig. 3.8. The vehicle subsystems have been
developed with emphasis on two main goals: to ensure reliable operation over
extended periods (greater than 24 hours continuous) and to provide a modu-
lar, scalable test platform for deployment of technologies resulting from research
programmes. The vehicle has already been demonstrated to operate reliably for
longer than 8 hours and has performed autonomous path-following over distances
in excess of 7.5km and up to 2.5km between individual waypoints. The deploy-
ment arena is unstructured, expansive outdoor environments including desert,
rural farmland and wooded areas.

3.6.2 Reasoning Tasks and Sensing Requirements

Reliable long-term navigation and control for this vehicle under mission scenar-
ios including continuous day/night transitions, all-weather operation and with
speeds of up to 9ms−1 requires at least the capabilities to navigate, plan and
infer properties of potential obstacles. Most importantly the vehicle must be ca-
pable of reliable navigation under all design conditions. There are two obvious
candidates: GPS/INS systems [10] and an implementation of the Simultaneous
Localisation and Map Building (SLAM) algorithm [20]. It has been shown, how-
ever, that reliability and fault detectability considerations suggest that neither
system is suitable in isolation, however an appropriate combination can be devel-
oped. Recent results from the DARPA Grand Challenge [24] have demonstrated
the dramatic effects of undetectable faults in the navigation systems.

Determining the desired path based on available information is also critical
for developing a truly autonomous platform. A reliable and efficient planner will
necessarily interpret sensory data with respect to a vehicle specific model. In
addition to estimating the local surface geometry, characteristics such as ground
type (gravel, grass, tarmac, etc.) and condition will be required. Furthermore,
the traversability of different regions must be estimated at a larger scale; iden-
tifying lakes, salt-pans, rivers, cliffs and known fence-lines among the necessary
tasks. Even with reliable navigation and a global plan, it is well known that lo-
cal variations will prohibit blind path-following. This suggests that a vehicle will
require the ability to detect and respond to obstructions (both volumetrically
positive and negative) in order to modify the trajectory appropriately.

Candidate sensing modalities for these reasoning capabilities include vehi-
cle-based GPS/INS system, near-field laser and radar scanners, and depth
augmented and non-augmented cameras for navigation and near-field sensing.
Efficient global planning suggests the utilisation of satellite (or aerial) height
data, visible and hyper-spectral imagery and surveyed meta-data (fence-lines,
waypoints, beacons etc.).

This method is advocated as each of the separate reasoning tasks are depen-
dent on different subsets of the same sensory data. For example, geometry may
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Fig. 3.8. The Argo vehicle at a recent field trial
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Fig. 3.9. High-level view of a simple implementation of the proposed approach to an
Autonomous Ground Vehicle (AGV). For clarity the feedback between the Navigation
solution and the likelihood generators is omitted.

depend on the direct measurement of the radar and laser reflectivities of the en-
vironment but robust feature association for navigation may require some highly
abstracted combination of all the sensors. Furthermore, the most complete data
is available for each task and assumptions required for a particular task do not
result in data losses for other parallel operations. Finally, the system is able
to handle asynchronous data gathering, providing the most complete available
data at any point in time and is readily extensible to scenarios with multiple
heterogeneous platforms. Figure 3.9 shows a customised version of Fig. 3.7 with
these sensors and reasoning capabilities shown.
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3.6.3 Surface Reconstruction

This section describes one possible application that can be applied to the infor-
mation summary described in the previous section. It demonstrates the utility
of the model, by allowing many application specific surfaces to be built using
the same data sources. These surfaces or maps can then be used for planning
subsequent actions.

Surface reconstruction can be described as a geometric methodology for rep-
resenting an approximation of the objects or features in an environment. The
applications for these surfaces are manifold; most commonly, in terrain-like struc-
tures, a generated surface (map) is used for navigation, localization, path plan-
ning, etc. [13, 23]. Another application for surface reconstruction is to generate
a meshed model in order to perform differential computation on localized nodes
of that object [3]; further employment of such techniques are for visualization
purposes [9]. There is a large amount of literature on the subject of mesh gen-
eration, and surveys on various surface reconstruction and meshing techniques
can be found in [2, 8, 18]. Reference [14] contains a more complete description
of these approaches and techniques.

Most algorithms that generate surfaces often don’t quantify the errors in the
observed information and accept the generated representation as a ‘true’ model
of the surface. This makes performing decisions (e.g., mesh decimation, localiza-
tion, navigation, etc.) a difficult or even unfeasible task. Sensors are not perfect
and usually provide incomplete information about the features of interest. Con-
sequently, this information is subject to errors. If these are not accounted for,
the result of making decisions under the assumption of the representation being
correct may result in equipment loss and mission failure. Unfortunately, it is not
possible to identify and quantify the exact sources of all these errors, which con-
sequently results in the need to be able to perform decisions under uncertainty.
The approach presented here introduces a summary of the uncertainties involved
in the reconstruction and information gain processes of map-building, resulting
in a representation that enables the quantification of bounds on the uncertainty
of a surface region. Therefore, decisions can be performed under the knowledge
of the amount of uncertainty in the surface. The algorithm also allows for fusing
data from multiple viewpoints and different types of ranging sensors (e.g., Laser,
Radar, Stereo vision, etc.).

Results from using a novel surface reconstruction algorithm with the data
obtained from the experimental platform from multiple viewpoints are shown in
Figs. 3.10 and 3.11. Figure 3.10 depicts the reconstructed terrain from various
viewpoints. Figures 3.10(a) and (b), were obtained at a low resolution from a
distant viewpoint. Figures 3.10(c) and (d) were obtained after the first scan by
adding information from another sensor in a closer location providing higher
resolution data. Additionally, the surface management layer was designed to
maximize the resolution of the reconstructed surface, by limiting the normal
error of every triangle to zero variance. This resulted in a highly triangulated
terrain. On the other hand, in Fig. 3.11, the utilities were set to obtain a lower
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Fig. 3.10. The triangulated reconstructed surface from multiple viewpoints, and with
multiple scanning resolutions; (a, b) after a scan from first viewpoint with a two degree
scanning resolution in pan and 0.5 degree in the tilt axis; (c, d) after an additional scan
from a second viewpoint with a 1.5 degree scanning resolution in both axis. The MMSE
threshold of the local particle representation over triangles was set to σ2 = 0m2.

Fig. 3.11. Triangulated reconstruction of the surface from multiple viewpoints, and
with multiple scanning resolutions. Obtained from the same particle representation as
in Fig. 3.10. In this case, the MMSE threshold of the local particle representation over
triangles was set to σ2 = 0.0005m2.

resolution triangulation, by limiting the normal error of every triang le to a
0.0005 variance. This small deviation from the first example allowed the result
of a less triangulated surface without loss of the main features of the map. This
is due to a more triangulated terrain where surface variations are greater and
lower triangulated regions, where there is less variation (flatter regions).

Figure 3.12 depicts the two levels of representation in the knowledge base. One
is the geometric model (a Delaunay Triangulation DT) that is designed to fit in
a Least Mean Square (LMS) sense to the other, the particle representation (in-
formation summary). The particle representation is simply another probabilistic
representation similar to those discussed in Sect. 3.3.
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Fig. 3.12. The representation of two levels of knowledge about the surface: The particle
representation, and the triangulated surface (DT)

3.7 Conclusion

This chapter has presented a discussion of the various aspects of ‘perceptual
systems’ from a practical system designers viewpoint. The task of perception
was broken into three main, but interrelated parts; those of information gath-
ering, representation and reasoning. It was argued that reasoning is the process
of taking abstract sensory data and transforming it (in combination with any
prior information) into a more abstract representation that contains only the
information relevant to a particular task. Further, it was argued that in order
for this to work effectively, that parameters relevant to the task must be sensed,
and then stored in a representation which may be manipulated efficiently and
is compact. Several representations were examined for use in this task. An op-
timal implementation would be one in which the sensors used were uniquely
suited to the task being performed, the representation was computationally ef-
ficient and compact, and the reasoning process discarded only the information
not relevant to the current task. Interestingly, it would appear that evolutionary
processes have shaped many biological systems against these exact criteria, and
that quite simple principles of Information Theory can be used to describe both
robotic and biological systems against the criteria. Finally, an architecture and
an implementation were presented to illustrate the concepts as applied to a large
outdoor robotic system.
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Emergent Cognitive Mappings in Mobile Robots
Through Self-organisation

Ulrich Nehmzow

Summary. This chapter presents examples of emergent cognitive mappings in mobile
robotics, in application areas as diverse as self-localisation, route learning, novelty
detection or action selection.

In all cases, be it navigational or non-navigational tasks, the robot control mecha-
nisms share fundamental properties:

• they exploit an internal mapping between “world space” and “map space” (the
cognitive map),

• they acquire maps through learning, rather than using pre-installed maps, and
• they use these maps for a broad range of tasks, rather than narrowly defined ones.

In other words, this chapter presents evidence for a convergence towards one common
underlying mechanism over a broad spectrum of mobile robot control architectures.

4.1 Introduction

Capabilities such as the ability to learn, to adapt continuously to changing cir-
cumstances during operation, the ability to interpret contradictory, inconsistent
or noisy data or the ability to structure perceptual space autonomously are all
desirable for controllers of autonomous mobile robots. In fact, it is widely ac-
cepted that for reliable robot operation in the real world, over extended periods
of time, they are indispensable.

Early robotics research focused on control architectures specifically designed
to suit the specific niche (in terms of task and environment) that the robot was
to operate in. Few common control principles emerged between such disparate
tasks as acquisition of sensor-motor couplings (a sensor-motor competence) or
self-localisation, route learning or planning of entire paths (navigational com-
petences). Increasingly, however, control architectures for widely different tasks
concerning the control of autonomous mobile robots show similarities that in-
dicate an emerging, fundamental low-level cognitive architecture. This chapter
presents examples from robot navigation (localisation, route learning and path
planning), novelty detection (detecting uncommon sensor stimuli, without hu-
man intervention, and without using pre-installed models) and action planning
(i.e. the autonomous determination of task-achieving sequences of actions) that
all share a common, emerging cognitive mapping mechanism.

M.E. Jefferies et al. (Eds.): Robot. & Cogn. Approach. to Spat. Map., STAR 38, pp. 83–104, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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4.1.1 “Map” and “Cognitive Map”

Map

Commonly, the term “map” is of course used to refer to a navigational map, the
kind one can buy in a stationer’s shop. In the context of autonomous agents,
such as for instance mobile robots, it is however useful to expand the definition
of “map”. For the purposes of this chapter, the term “map” therefore is used
to describe a bijection1 or an injection2 from a “world space” A onto a “map
space” B, so that B is a representation of A, internal to the robot. If this bijection
represents a non-navigational map, the term “mapping” is often used.

A “classical map” therefore is indeed a map in the sense of this chapter,
in that every location in the physical world is represented by a unique entry
on the map, and vice versa. But so are telephone books or family trees: they
respectively map the space of physically existing telephones or people to an entry
in the phone book or a graph in the family tree, and are therefore “maps” in the
sense used in this chapter.

The reason that such mappings are useful in robotics is that they allow the
robot to reason about its world — concerning navigation and otherwise, and
that for many high level robotic tasks they are indispensable. In this chapter,
we will therefore present some examples of cognitive mappings in autonomous
mobile robots, used both for navigation and for other tasks.

Cognitive Map

The term “cognitive map” goes back to Tolman’s 1948 paper [21], in which
he introduces the term to contrast “narrow, strip-like” maps with “broad and
comprehensive” ones. “Map” here refers to classical maps used for navigation.
However, even in the original 1948 article Tolman expanded the scope of cognitive
maps to include behaviour other than navigation, concluding his article with the
role of human cognitive maps concerning regression (“the return to earlier, more
childish ways of behaving”), fixation (“undue persistence of early maps”) and
displacement of aggression onto outgroups. He concludes by equating “cognitive
map” with “reason”, praising “the virtues of reason — of, that is, broad cognitive
maps.”

The term “cognitive map” in Tolman’s sense, therefore, implies a represen-
tation of knowledge that goes beyond simple storage of information, obtained
along a strip-like path (be it in physical or some other cognitive space).

Specifically regarding navigation, two criteria are commonly used to identify
such cognitive map-like organisation of knowledge [14]:

1. the ability to make spatial inferences without direct experience of the loca-
tion in question, and

2. the ability to take mentally a different perspective of a spatial layout.
1 A one-to-one mapping from A to B, with A and B having the same number of

elements.
2 A one-to-one mapping from A to B, where B has more elements than A.
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Especially the first criterion — the ability to make inferences without direct
experience — can be demonstrated in internal representations other than nav-
igational maps, and this chapter gives some examples of this in autonomous
mobile robotics.

4.1.2 Mobile Robot Control and Cognitive Mapping

In mobile robot control, be it for real world (“industrial”) applications or ex-
periments in cognitive science, some control structure is needed that provides a
mapping between the robot’s perceptual space and its action space. This map-
ping might be provided through designed control algorithms (e.g. PID control),
or through evolved control strategies (e.g. artificial neural networks, fuzzy logic
etc.). By whatever means the control strategy is obtained, it forms the core of
the robot controller.

The Problem of Perceptual Discrepancy

The reason why roboticists are often interested in evolving robot control algo-
rithms, for example by using machine learning mechanisms, rather than using
fixed, pre-installed controllers, lies in the “problem of perceptual discrepancy”.

It is inevitable that humans perceive their environment through their own
senses, thus interpreting the world in certain ways. For example, we are unable to
perceive infrared light, which therefore does not feature in our reasoning about
the environment. If the sensitivity of our eyes was in a different wave length,
windows would not be made of glass, but of some other, “opaque” material
(only, of course, it would not be called “opaque”). This unavoidable influence
of our everyday experience can have two negative effects when designing robot
control code:

1. Sensory perceptions are postulated to exist, based on human perception of
the world, and therefore used as part of the control program, while in reality
they do not exist for the robot (for instance, “chair”, or “food”).

2. Sensory perceptions may exist for the robot, but are not exploited by the
human, because he is unaware of them (for instance, “electromagnetic radi-
ation”, or “infrared light”).

Figure 4.1 gives an example. It shows the signals obtained from a side-looking
sonar sensor (bottom graph) and a sonar sensor looking 45◦ ahead. The robot’s
task is to detect doors.

Based on human experience, one would expect that the side-looking sonar
would be best to detect the slight recess of a door, and indeed the graph of the
side-looking sonar shows a peak of about 20 cm above baseline when the robot
passes a door.

However, it turns out that the door jambs actually act like beacons in the
darkness, returning a very strong peak on the sonar scan (top graph in Fig. 4.1).
This is an example of perceptual discrepancy: because humans do not identify
the presence of a door by the presence of a door jamb, this possibility would not
normally enter the mind of a robot programmer.
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Front sonar

Side sonar

A

B

Fig. 4.1. Sonar sensor signals obtained when following a corridor. The small “humps”
in the side-looking sonar measurement can be used to detect doors, but peaks A and B,
which indicate detections of door jambs, are far more prominent. The abscissa indicates
range measured in centimetres, the ordinate position along the corridor.

If, however, the control code was evolved through the robot’s interaction with
its environment, that is, if the robot’s own perception of its environment was used
to create the mapping between perception and action through self-organisation,
then postulated, but non-existent perceptions would never be used, and promi-
nent, but never expected perceptions would be exploited automatically. For this
reason it is often desirable to use mechanisms of self-organisation and emergence
to construct the mappings central to a mobile robot’s controller.

4.2 Experiments with Autonomous Mobile Robots

4.2.1 Navigational Tasks

Location Identification

The simple scenario shown in Fig. 4.2 shows an experimental setup that is regu-
larly used at Essex University as part of student assignments. The robot, moving
along the straight line indicated in the figure, has to stop at a previously visited
goal location (marked by the cross in Fig. 4.2).
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Fig. 4.2. A target location can be identified using perceptual landmarks alone

The simplest method to achieve this might be to just store the robot’s sensory
perception at the goal location, and to use this to determine when the goal has
been reached — a simple stimulus-response system. However, the alternative
of using a cognitive mapping between physical space and the robot’s percep-
tual space also achieves the goal efficiently, and offers the advantage that other,
different mapped locations can be defined and identified as goal positions as well.

Our robot therefore uses an abstracted representation of its sensory percep-
tion, for example an artificial neural network that has been trained with the
sensor signals observed at the goal location. Reaching the goal location is then
indicated by a peak output of the network.

Why could such a mapping be called a cognitive map? One manifestation of
the presence of a cognitive map given earlier was that inferences can be made
based on the map alone, without experiencing the physical counterpart of a
selected map state. In the simple example shown in Fig. 4.2, the output of the
network changes in a characteristic manner as the robot travels along the straight
line, and can therefore be used to identify other, new target locations, even if
the network has been trained on the target location indicated by the cross! The
network weight space and the resulting network response as a whole therefore
constitute a cognitive mapping of the robot’s perceptual space.

That arbitrary, previously visited locations can be identified using such a
cognitive map, is demonstrated by experiments we conducted in 1991. Here, a
simple mobile robot, equipped with just two front whiskers and a wheel revolu-
tion counter for crude distance measuring (see Fig. 4.4) was given the task to
localise in the environment shown in Fig. 4.5 [8].
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Fig. 4.3. The Magellan Pro mobile robot Radix, used in the experiments discussed in
this chapter

Fig. 4.4. The mobile robots Alder (left) and Cairngorm

To achieve this, the robot’s whisker signals were used to detect concave and
convex corners, and information about the current as well as previously visited
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Fig. 4.5. The environment in which localisation experiments with Alder were carried
out
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Fig. 4.6. Input vectors used for the localisation experiment with Alder

corners was used to construct an input vector to a self-organising feature map
(SOFM) [5]. Three different types of input vectors are shown in Fig. 4.6.

These input vectors were used to train a self-organising feature map (SOFM)
(Fig. 4.7), whose excitation patterns can be used to identify the robot’s location.
There are functional similarities here to rat self localisation [1]. When the rat
is at a certain locations, place cells in the rat’s hippocampus fire, and thus
indicate the rat’s position. Likewise, the robot’s SOFM firing pattern changes
with changing location, and can therefore be used to identify the robot’s current
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Fig. 4.7. Input vectors used for the localisation experiment with Alder

place in the world. In both cases, rat and robot, the cognitive map is learnt
through agent-environment interaction.

These experimental results demonstrate that provided sufficient information
is available from the input vector (i.e. the input vector shown at the bottom of
Fig. 4.6 is used), localisation is possible and reliable. The important point for
the purpose of this chapter is that the robot’s cognitive map, the SOFM shown
in Fig. 4.7, can be used to identify a range of different locations, without having
been trained specifically for each location.

Self-Localisation in the Real World

The examples given in the previous section described laboratory experiments,
that is, experiments under conditions in which the occurrence of perceptual alias-
ing (ambiguity in the robot’s sensory perception, which makes location iden-
tification through perception unreliable) can be controlled. In the real world,
perceptual aliasing occurs frequently, and has to be dealt with. One of the most
reliable methods currently in use is to use Bayesian methods [20]; the following
experiment is an example of this [4, 9].

In this experiment, the Nomad 200 mobile robot FortyTwo (Fig. 4.8) was to
localise in the environment shown in Fig. 4.9.

In this environment, the robot obtains identical sensory perceptions at differ-
ent locations, due to the limited resolution of its sensors. In other words, the
“perceptual signatures” obtained in this environment are not unique (percep-
tual aliasing is indicated by shaded areas in Fig. 4.9), so that localisation by
perception alone is impossible.

To address this problem, we used a combination of cognitive navigational
map, evolved through unsupervised exploration of the environment and self-
organisation, and metric information obtained from the robot’s odometry (path
integration) system (Fig. 4.10). Neither odometry nor perception alone would
have been successful in this case, the former would fail due to the inevitable
accumulation of drift error, the latter due to the encountered perceptual alias-
ing. The combination of the two, however, is capable of eliminating implausible
location candidates.

In this experiment, the cognitive mapping between sensory perception in the
real world and the robot’s internal representation of these sensory perceptions
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Fig. 4.8. The Nomad 200 mobile robot FortyTwo

Fig. 4.9. The environment in which FortyTwo was to self-localise. Areas where per-
ceptual aliasing occurred are shown in grey.

was established by training an adaptive resonance theory network (ART 2, [2]).
This clustered the robot’s sensory perceptions (infrared and sonar signals), and
generated a cognitive mapping between perceptual and map space. In parallel,
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Fig. 4.10. The localisation mechanism used by FortyTwo, combining a cognitive navi-
gational map with metric information. The cognitive mapping between sensory percep-
tion and the robot’s internal representation of it is encapsulated in the ART2 recogniser.
“Map” denotes the combined representation of perceptual and odometry information.

the robot’s relative motion, that is, not the motion within a global reference
frame, but merely motion relative to a previously identified location, was used
to disambiguate between locations that appeared perceptually identical.

Quantitative Assessment of Localisation Performance

The performance of a robot localisation system can easily be measured quanti-
tatively by analysing contingency tables that indicate the correlation between a
robot’s actual position (ground truth) and the position assumed by the localisa-
tion system. A useful measure of this correlation is the uncertainty coefficient U ,
which lies between 0 and 1 [3, 9]. A perfect localisation system will produce per-
fect correlation between the robot’s actual and perceived position (in this case,
the uncertainty coefficient U of the contingency table would be 1 [17, 11]). If, at
the other extreme, a robot localisation system would merely guess the robot’s
location, using a random process, the uncertainty coefficient U would become 0.

Figure 4.11 shows the result of this quantitative assessment: a localisation
mechanism purely based on odometry initially provides perfect localisation (un-
certainty coefficient U = 1), and deteriorates with distance travelled. Using per-
ceptual information alone for localisation results in a localisation capability that
is independent from distance travelled, obviously. Furthermore, perception-based
localisation is initially less accurate than odometry-based localisation, because
of perceptual ambiguities in the environment. Combining the two mechanisms,
however, gradually removes perceptual ambiguities, so that the localisation
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Metric Information Alone

Perceptual Information Alone

Perception + Metric Information

U

Fig. 4.11. Localisation capability of FortyTwo, using metric information alone, per-
ceptual information alone, and the two combined. The uncertainty coefficient U shown
here is 1 for perfect localisation, and 0 for localisation no better than random guessing.

performance improves with distance travelled, because more and more infor-
mation is gathered en route, until localisation performance is so constant that
U reaches a high, constant level.

In the example shown in Fig. 4.11, one can see that localisation by odometry
alone is the most accurate localisation method for travel distances below 7m,
after that taking perceptual information into account produces better results.

Route Learning

Mechanisms of self-organisation and topological clustering of sensory percep-
tions — the cognitive mapping mechanism used in the previous example — can
not only be used for self-localisation, but also for path planning or the planning
of entire sequences of actions (Sect. 4.2.2).

The following experiment demonstrates, how both perception and action
can be stored together in one cognitive map, which is obtained through self-
organisation [12]. The objective in these experiments was for a Nomad 200 mo-
bile robot (Fig. 4.8) to learn to follow a route in an unmodified environment. In
other words, no specific information concerning the desired route was given to
the robot a priori; instead, the robot had to acquire the necessary perception-
response mapping in the target environment, through learning.
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Fig. 4.12. Route learning (learning phase): Perception-action pairs are stored in a
self-organising feature map for subsequent autonomous route following

Fig. 4.13. Retrieval of action information stored in the route-learning self-organising
feature map

During an initial learning phase, the robot is driven along the desired route
by a human operator. During this learning phase, a self-organising feature map
(SOFM [5]) is trained, using input vectors that combine sensory perception and
the desired motor response at that location (see Fig. 4.12). This training results
in an internal representation (cognitive map) of perception-action space that can
later be used to follow the desired route autonomously.

The SOFM, a self-organising structure that learns without external
teaching feedback, through unsupervised learning, thus produces an internal
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Fig. 4.14. Example of a route learned by FortyTwo (left), and generalisation ability
of the algorithm (right)

representation of the desired path which emerges through the robot’s interac-
tion with its environment.

When the robot follows the route autonomously after the learning is com-
pleted, the required motor information is retrieved from the SOFM by replacing
the “action part” of the input vector with zeros (step 2 of Fig. 4.13).

If such an input vector is presented to the trained SOFM, the network will find
the closest matching neuron purely on the basis of sensory perception (step 3 of
Fig. 4.13). The “action part” of the winning unit’s weight vector then contains
the required action information (step 4).

Cognitive Mapping Independent from Underlying Mechanism

Note that it is not the actual artificial neural network used that is particularly
interesting here, but the underlying mechanism it supports: without the user
supplying information about location, landmarks etc., the robot generates an
internal representation of its perceptions, the “cognitive map”, and uses this to
perform navigational tasks.

In [13], for example, we used a different kind or emergent mapping, the RCE
network described in [18], to achieve robot navigation. Landmarks, as they were
perceived by the robot’s sensors, were stored in the RCE network (Fig. 4.15),
their topological and geometrical relationship, obtained from the robot’s wheel
encoders, were also stored to allow route planning and route following.

Robustness with Respect to Noise

FortyTwo was able to learn various different routes, using this mechanism, even if
the environment was altered between training and autonomous route following.
In real world robotics, all sensory perception is subject to noise, so that the
mechanisms ability to deal with this is particularly important. For instance,
the changes shown in Fig. 4.14 generated different sensory perceptions at the
junctions, yet the robot was nevertheless able to select the correct path.
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Fig. 4.15. Vectormap for robot navigation. Left: A, B and C are perceptual landmarks,
stored in the robot’s RCE map. Right: Distances di and angles αi between landmarks
are stored elsewhere to allow navigation. “Place” denotes a perceptual cluster in the
RCE map, “N” gives the reference direction for angles.

4.2.2 Non-navigational Tasks

The examples given so far show how emergent structures — for instance those
established by self-organising feature maps — can be used in navigational tasks.
The following example shows how they can be applied to other, non-navigational
cognitive tasks.

The specific examples this section will look at are action planning [15], i.e. the
concatenation of individual, known actions that achieve a global goal that has
not been achieved before by the agent, and novelty detection [23, 10], i.e. the
detection of novel sensory perceptions, without using pre-installed knowledge or
representations of novelty.

Unsupervised Planning of Action Sequences

The objective of the experiments presented in this section was for the mobile
robot Radix (Fig. 4.3) to determine a task-achieving sequence of individual ac-
tions, each of which had been learned earlier, but which have never been brought
into the sequence required to achieve the specific task given to the robot. This is
the “unlocking and opening a door” scenario, which involves i) obtaining a key,
ii) inserting it in the lock, iii) turning it, iv) turning the door handle, and v)
opening the door. All of these actions may have been encountered individually
beforehand, but not in one complete, task-achieving sequence.

In the specific experiments with Radix, the robot initially explored its en-
vironment randomly. During this exploration, the robot used a self-organising
feature map (SOFM) to develop a cognitive mapping between physical sensory
perception and an internal representation of this sensor space (the SOFM). Dur-
ing exploration, the robot also recorded which physical motion linked individual
perceptual clusters on the SOFM.
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Fig. 4.16. Architecture used for autonomous, unsupervised action planning. A self-
organising feature map (SOFM) “contains” a cognitive map of perceptual space, an
additional layer (Action Layer) records motion of the robot between perceptual clusters.

Once this representation of perception-action-perception triples was acquired,
it could be used to determine novel sequences of actions that would take the
robot from some arbitrary, but previously encountered starting location to a
user-specified goal location in perceptual space: the robot was first taken to the
goal location, so that the sensory perception at the goal location was known to
the action selection mechanism. The robot was then taken away from the goal
location to some arbitrary start location, and given the task to move to the goal.

Mechanism

To determine which motor actions will take the robot closer to the goal from its
current position, an imaginary marker is placed at the goal location’s position on
the SOFM, and propagated at constant speed along all action links. If a connec-
tion exists at all between goal and start, the marker (Fig. 4.17) will eventually
reach the robot’s current location in perceptual space, encoded on the SOFM,
thereby indicating a complete path of actions that will take the robot from the
current position to the goal. In our experiments Radix would then execute that
motor action that would take it closer to the goal (in perceptual space), then
repeat the entire action selection mechanism, until the goal was reached. It is
important to realise that all this reasoning happens in perceptual space, not
physical space: only sensory perceptions are encoded in the robot’s cognitive
map, the robot has no notion of Cartesian space in these experiments [16]!

This mechanism of determining links between locations on a “map” was first
introduced by Alan Turing [22], and in Artificial Intelligence is sometimes re-
ferred to as Reaction-Diffusion Dynamics [19] (i.e. a marker diffuses along known
links across the cognitive map, and produces a reaction). Figure 4.18 shows a
scenario, in which the mechanism depicted in Fig. 4.16 was successfully used by
the robot to move from the start to the goal.

Novelty Detection

The final non-navigational example of applications of “cognitive maps” in
robotics was inspired by an inspection scenario, in which the robot has to detect
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Fig. 4.17. Action selection using a cognitive map. Hexagons indicate perceptual land-
marks (the cognitive map of the robot’s perceptual space), ai denote motor actions.
To determine a link from the goal perception to the start perception, a marker diffuses
from the goal location at equal pace along all perception-action links, until it reaches
the current position in perceptual space, thus indicating a complete path between cur-
rent and goal location. Action sequences [a1, a3, a1] and [a2, a3, a2] would both lead to
the goal in this example.

Fig. 4.18. Autonomous action planning: the robot’s task was to determine a task-
achieving sequence of actions that would take it from the “Start” to the “Goal”.
Three different actions are needed to reach the goal, resulting in movement along
three straight segments.

a sensory stimulus that had not been encountered before. The scenario that
inspired this research is the inspection of underground pipes. Such inspection
is very costly and, more importantly, the manual evaluation of video coverage
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Fig. 4.19. The self-organising novelty filter. Input stimuli (sonar sensor perceptions)
are clustered, without supervision, by the SOFM, providing a cognitive mapping of sen-
sory perceptions. Links from SOFM neurons to the one output neuron habituate over
time, so that infrequent input signals will generate a stronger response than frequent
ones.

of underground pipes is so boring that human operators tend to miss genuine
faults.

Detecting abnormality, therefore, is a task that promises high returns of invest-
ment. The difficulty of this task lies in the fact that it is a priori unknown what
the autonomous robot should be looking for. “Novel” items therefore cannot be
defined beforehand, and standard template-matching methods cannot be used.

Instead of detecting abnormality, therefore, we used an acquired model of
normality to detect novelty in the robot’s perception. Figure 4.19 shows the
mechanism.

A self-organising structure — either a self-organising feature map (SOFM) or
another self-organising network, the Grow-When-Required network [7] — clus-
ters the robot’s sensory perception topologically, without external supervision.
The network is the cognitive map in this case, containing an internal represen-
tation of all the robot’s perceptual experiences. Artificial neurons representing
common stimuli will therefore fire frequently, those neurons responding to rare
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Fig. 4.20. Habituation: synaptic efficacy drops as the number of presentations of a
stimulus increases

Environment A

Robot Trajectory

Trial 3 (Learning)

Trial 1 (Learning)

Trial 4 (Not Learning)

Output of Output Neuron

2 4 6 8

0.5

0.5

0.5

0.5

Trial 5 (Learning)

Trial 6 (Not Learning)
0.5

0.5

Trial 2 (Not Learning)

Fig. 4.21. Acquiring a model of normality. FortyTwo explores the test environment
A, and after three exploration runs has habituated to all stimuli present in that envi-
ronment.
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Robot Trajectory

Trial 1 (Not Learning)

Trial 5 (Not Learning)

Output of Output Neuron Distance (m)

2 4 6 8 10

Environment A* (identical to A apart from open door)

Trial 3 (Not Learning)

Trial 4 (Learning)

Trial 2 (Learning)

0.5

0.5

0.5

0.5

0.5

(Door Open)

Fig. 4.22. Detecting novelty. The open door — not present during model acquisition
(Fig. 4.21) — is clearly detected.

sensory perceptions will fire seldomly. This fact can be exploited for novelty
detection, as follows.

Each artificial neuron of the SOFM is connected to one output neuron via a
habituable “synapse”. With each activation of a particular SOFM neuron, the
link between this neuron and the output neuron is weakened, according to the
graph shown in Fig. 4.20. This process is known as habituation.

In other words, the more common a sensory perception, the less activation
the output neuron receives. The output neuron thus serves as a novelty detec-
tor, and can be used to differentiate between common and uncommon sensory
perceptions.

In initial experiments [6] we used the sonar sensor perception of FortyTwo
(Fig. 4.8), as the robot travelled along a corridor, to detect abnormalities in the
robot’s environment. Figure 4.21 (left) shows the output of the novelty filter
during successive traversals of the corridor during the cognitive map acquisition
phase. As can be seen, the robot habituated fully to all perceptions after three
traversals of the corridor.

After the representation of normality had been acquired, we introduced a
novel perception by opening a door (Fig. 4.22). As can be seen, the novelty filter
immediately highlights the area around the door. If the robot is presented with
an open door repeatedly, it will habituate to that perception, too (Fig. 4.22).

One concluding remark: in the novelty-detection scheme presented here com-
mon and rare perceptions are detected at the cognitive map level, independent
from the input stimuli used. Input stimuli of any kind are clustered by the SOFM
or GWR network, the cognitive map, and classified there as novel or common.
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The example discussed in this chapter detected novel stimuli in sonar sensor
signals, but we have used infrared or vision signals [23] as well.

4.3 Summary and Conclusion

4.3.1 Summary

Reference [21] introduced the term “cognitive map” to mean a “broad and com-
prehensive” map, rather than a “narrow, strip-like” one, used for the purpose
of navigation. We argue that the term “map” can be expanded to include not
only maps for the purpose of navigation, but any bijection (one-to-one map-
ping) between the physical world and a representation inside the agent. “Broad
and comprehensive” we take to mean “usable in circumstances other than those
under which the map was acquired”. A second important aspect to the term
“cognitive map” is that the map is acquired through the agent’s interaction with
its environment, not pre-installed.

This chapter illustrates these points with robotics examples concerning naviga-
tional tasks — location identification, self-localisation and route learning — and
non-navigational ones — planning of action sequences and detection of novelty.

Fig. 4.23. Cognitive maps for self-localisation (top row and middle row, right), route
learning (middle row, left), novelty detection (bottom row, left) and action planning
(bottom row, right). Cognitive maps are circled.
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4.3.2 Conclusion

This paper presents a number of examples of how such acquired cognitive maps
can be used in mobile robotics. The examples in Sect. 4.2.1 all relate to Tol-
man’s original application, navigation. Self-localisation and route learning are
the specific examples given.

But cognitive maps, emerging through agent-environment interaction, can
be used for other applications, too. Action planning (Sect. 4.2.2) and novelty
detection (Sect. 4.2.2) are given in this paper as examples; others are conceivable.

There are commonalities to all approaches:

• A core component of the mechanism used is a mapping between physical
space (the “world”) and the agent’s perceptual space, the cognitive map,

• the map is not pre-installed, but acquired through agent-environment inter-
action, and

• the map can be used by the agent to perform more than one narrowly defined
task.

Figure 4.23 once more shows all examples discussed in this chapter, with the
cognitive map circled in each case.

The observation is that one mechanism, one of self-organisation, unsupervised
learning and one showing emergent functionality, is employed to establish the
robot’s cognitive map, be it for localisation, path planning, action planning or
the detection of novelty. This result is surprising, in that classical approaches to
robot control are usually algorithms dedicated to one specific application. The
convergence demonstrated here is one step away from such “insular” solutions.
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Towards a Generalization of Self-localization

Diedrich Wolter, Christian Freksa, and Longin Jan Latecki

Summary. Self-localization is an important task for humans and autonomous robots
as it is the basis for orientation and navigation in a spatial environment and for per-
forming mapping tasks. In robotics, self-localization on the basis of monomodal per-
ceptual information has been investigated intensively. The present chapter looks at
self-localization in a more general setting where the reference information may be pro-
vided by different types of sensors or by descriptions of locations under a variety of
conditions. We introduce some of these conditions and discuss general approaches to
identifying locations in perceived environments. Taking into account cognitive con-
siderations, we propose an approach to identify locations on a high, abstract level
of representation. The approach combines qualitative and quantitative information to
recognize locations described as configurations of shape features. We evaluate this ap-
proach in comparison to other approaches in a self-localization task and a generalized
localization task based on a schematic map.

5.1 Introduction

Humans and autonomous robots need to know where they are located to success-
fully orientate themselves, to navigate in a spatial environment, and to perform
mapping tasks. The notion of “self-localization” (SL) refers to an agent’s proce-
dure of determining where it is located. SL procedures require spatial reference
systems, for example a coordinate system or a map.

In autonomous robotics, approaches to SL have been developed that deter-
mine a robot’s position and orientation (jointly referred to as “pose”) based on
sensor readings. To accomplish this, the robots relate the sensor information
about their environments with their internal knowledge about these environ-
ments. Detected correspondences between the two knowledge sources are used
to infer the presumed location of the robot.

The approach to SL outlined above even enables wheeled robots to identify
locations not visited before. Henceforth, it also enables robots to incrementally
build up spatial knowledge about initially unknown environments by determin-
ing their location and registering new observations in relation to this location.
Coping with a-priori unknown environments is an important ingredient to intel-
ligent autonomous navigation and consequently has been studied intensively.

However, in many situations, agents (humans, robots, software agents) have
extensive a priori knowledge about the spatial environment, for example in the
form of maps, sketches, natural language descriptions, or (precise or vague) mem-
ories of previous observations or descriptions. In such cases it may be desirable

M.E. Jefferies et al. (Eds.): Robot. & Cogn. Approach. to Spat. Map., STAR 38, pp. 105–134, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008



106 D. Wolter, C. Freksa, and L. Jan Latecki

to make use of this knowledge to enable robots to localize themselves more effi-
ciently or in ways that are similar to human self-localization.

For certain tasks the utilization of a priori knowledge is not only desirable but
indispensable, for example when a robot is expected to visit places which are
described by reference to this a priori knowledge; this may frequently be the case
in natural instructions by a human instructor. Furthermore, it may be necessary
that a robot specifies its position not in terms of its internal reference system
but in terms of a reference system that is available to its human instructor and
can be understood by him or by her.

From a technical point of view, this is a different task than conventional SL,
as the knowledge employed exhibits different structures and characteristics than
conventional sensor readings. In particular, this knowledge may not have an
immediate geometric interpretation and it may lack details. Different types of
reference systems will require different ways of self-localization; this does not
imply, however, that localization will be less precise.

From a more abstract point of view, both tasks — sensor-based and knowledge-
based self-localization — can be viewed as belonging to the same class of tasks,
as both answer the question of the robot’s pose with respect to a given spatial
reference system. Therefore we will call this class of tasks “generalized self-
localization” (GSL).

In the present chapter we explore several variations of the SL problem and
investigate how we can extend existing SL approaches in such a way that they can
solve the GSL problem. To this end we propose to employ more abstract forms of
knowledge in order to integrate the dissimilitude of potential information sources
for common treatment. We illustrate this approach using a specific robot task:
spatial orientation by means of schematic maps. Schematic maps (e.g. public
transportation maps or emergency evacuation maps) are successfully employed
by humans due to their fast and efficient use. We will show how GSL can be
used for human-robot communication on the basis of schematic maps.

5.2 The Generalized Localization Task

In robotics, the notion of self-localization has been used in a rather restricted
sense: in its most elementary form it is used to denote the task of identifying the
robots’ locations on the basis of the same type of sensor information that has
been retrieved from the location previously. More specifically, self-localization in
so-called view-based robot navigation (see for example [13]) is performed with
the same sensors and the same spatial resolution by an agent with more or less
the same perspective as before. Thus, the robot can use characteristic features
to identify a specific place in a finite set of places.

However, we may have situations in which a robot has to localize itself from
perspectives it never has encountered before under comparable conditions, pos-
sibly not even with the same sensors, or even never encountered before at
all. A human, another robot, or a data base may have provided information
about the environment; this information is now to be used by the robot for its
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self-localization task. To cope with such situations, we will adopt a more general
notion of self-localization.

5.2.1 Generalizing the Self-localization Task

Starting with the aforementioned case of SL, an agent recognizes a location from
an observation obtained with the same sensors, with the same spatial resolution,
and from the same perspective — a simple task provided the agent receives the
same percept as obtained in a reference cognition event. In realistic situations,
however, the sameness of all these parameters is never given — let alone guar-
anteed; therefore it is not a trivial task to solve this self-localization problem.
Successful approaches must deal with the unavoidable deviations of parameter
values. However, this problem can be solved with little effort purely on the level
of sensor data. We refer to this type of SL (not varying any parameters) as
the elementary case of SL. It is utilized in view-based robot navigation (for an
example, see [13]).

Which abilities does an agent need to recognize places under even less favor-
able conditions: from different locations with different spatial orientation, with
different sensors, at different sensor resolution, or under different environmental
conditions? In the following, we will consider incremental abilities required with
respect to the restricted case of self-localization. We will consider three strands
of generalizing the SL problem: (1) different perspective; (2) different spatial
resolution; and (3) different kinds of sensors. Fig. 5.1 presents an overview of
these generalization strands and indicates specific classes of SL tasks.

Different Perspective

Variations of view poses can be considered a first step of generalizing SL. Robots
identify their location using sensor readings taken at different view poses. Per-
ceiving objects from varying locations, their appearance or visibility can change
— for example, due to occlusion; such changes are reflected in the generalization
axis ‘perspective’. Spatial reasoning allows inferring how a physical phenomenon
observed from one perspective appears when observed from another perspective.

The elementary case of SL permits place recognition in an agent-centered ref-
erence system. To recognize locations independently of the agent’s perspective
we must transform sensory information into a location-independent, absolute
reference system, e.g. a geographic map. Transformation from agent-centered
observations to an absolute map is an abstraction process that abstracts from
individual sensor readings and mediates between differences in multiple observa-
tions of the same physical phenomenon. This step is particularly easy for sensor
data obtained from range sensors. It is still an unsolved problem if relying on
camera images, though.

Using elementary spatial reasoning on an absolute spatial representation al-
lows us to partially infer the expected view caused by a different pose. Most
approaches to robot navigation or robot mapping utilize some kind of abso-
lute representation, typically a coordinate-based map (see, e.g. [30, 41]). In this
representation, perspective generalization can easily be handled.
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same perspective
same sensors
same resolution

same perspective 
different sensors
same resolution

different perspective
same sensors
different resolution

different perspective
different sensors
different resolution

different perspective
same sensors
same resolution

different perspective
different sensors
same resolution

same perspective
same sensors
different resolution

same perspective
different sensors
different resolution

view-based SL

internal-map-based SL

GSL

schematic-map-based
SL

Fig. 5.1. Generalization in self-localization: The elementary case in SL (sameness in
all apsects) is the localization problem faced in view-based robot navigation (bottom).
Three strands of generalizing the elementary situation are depicted: perspective (left);
sensors (center); and resolution (right). SL using an absolute spatial representation can
cope with varying perspectives and handles SL based on a robot’s internal map. The
approach presented in this article uses a schematic map as reference; it is depicted at
the generalization strand from map-based localization to GSL (upper left).

Different Kinds of Sensors and Knowledge Sources

To describe different kinds of sensors and knowledge sources with a single la-
bel, we employ the notion of abstract sensor readings. For example, a map can
provide abstract sensor readings by retrieving sensor information available at a
given pose. An agent that has to recognize a place through perception with a
different kind of sensor than initially will not be able to successfully match the
corresponding percepts, in general; rather it will require a representation that
relates different perceptions in terms of common traits.

For example, the boundary of a physical object may be perceived visually in
terms of a transition between different brightness or hue values, through tactile
perception in terms of a transition of physical resistance values, and through dis-
tance sensors in terms of an abrupt transition between distance values, while the
object surface appearance may exhibit differentiated readings on some sensors
and stable readings on others. Therefore, object boundaries are suitable concepts
of a spatial scene that support multimodal recognition while object surfaces may
be less suitable. Especially object boundaries which are boundaries to passable
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space are of importance to navigation as they constrain possible movements. We
find these boundaries registered in maps, including schematic maps; boundaries
are easily accessible to a robot utilizing range sensors.

To enable multimodal recognition on the basis of different abstract sensor
readings, we may develop a representation that features the notion of an object
boundary while it abstracts from object surfaces, for example. Such a represen-
tation also can be used to relate sensory information to conceptual knowledge
that has been conveyed through object descriptions in terms of natural language
or by graphical means. In other words, to make cross-modal use of a variety of
knowledge sources we can abstract from the specifics of individual modalities
and identify modality-independent features or concepts. We then must provide
mappings between the modality-specific percepts and those concepts.

Different Spatial Sensor Resolution

Even if we stay within the same modality, we will get problems with matching
abstract sensor readings from a given place if the sensors provide spatial data
at different levels of spatial resolution, as they will identify different sets of
sensory features. A suitable abstraction from low-level perceptual features also
will be helpful in this case: a resolution-adaptive representation will enable the
comparison of sensor data obtained at different levels of spatial resolution.

We point out that a change of resolution (granularity) does not necessar-
ily happen uniformly, as in the case of smoothening filter application. Rather,
coarsening can occur selectively like in schematization processes (see [4]). Here
information characteristic for a spatial configuration or relevant to a considered
task may remain on a high level of detail whereas irrelevant information may
be discarded completely. To interrelate different levels of granularity it is advan-
tageous to define a notion of saliency for features; only salient features remain
represented when the resolution is reduced. Moreover, it is essential to estimate
whether a feature at hand will be represented on a specific level of granularity
or not.

5.2.2 High-Level Knowledge for GSL

In the elementary case of SL, sensory information obtained by independently
sensing the same physical phenomenon can be correlated in a rather straight-
forward manner. Moving along one of the three strands of generalization, ade-
quately abstracted information and abstraction processes are required to enable
correlation of sensor readings, i.e. matching, by focusing on essential features.
When the perspective of observation changes, sensory information is abstracted
to yield view independent images by employing an absolute representation, e.g.
a map. To mediate between different abstract sensor readings, information can
be abstracted to cross-modal concepts. Features present on different levels of
resolution can be related using an abstraction process to reduce spatial resolu-
tion or handling information in a granularity-adaptive or granularity-insensitive
manner. Qualitative spatial representations provide an anchor to handle varying
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Fig. 5.2. The pyramid of generalized localization problems from the perspective
of spatial information processing. Possible variations due to change of perspective or
change of source for (abstract) sensor readings decrease when the level of spatial reso-
lution is decreased. A reduction of granularity abstracts from metric details and gives
rise to the importance of characteristic qualitative information.

levels of granularity as only the most relevant relations — which are not subject
to change of resolution — are made explicit. We point out that in all strands of
generalization abstraction is the key to master generalized localization tasks.

SL is primarily a problem of spatial information processing and we are espe-
cially interested in understanding spatial abstraction. Reconsidering the general-
ization strands in SL from the point of spatial abstraction, it can be organized as
the pyramid presented in Fig. 5.2. On the finest level of granularity, fine-grained
metric information is available; sensor and perspective variations cover a wide
range. On a coarser level of granularity the multitude of possible variations de-
creases as the expressiveness in spatial information is reduced.

Coarse spatial information is available through language or through rough or
schematic overview maps; it is typically qualitative information that classifies
spatial information into distinct categories [23]. Notably, qualitative representa-
tions are not restricted to representations of coarse knowledge. Qualitative infor-
mation can also be retrieved from fine-grained representations and, for example,
can be exploited in reasoning process. We conclude that it is advantageous to
explicitly address abstract qualitative information when interrelating spatial in-
formation on significantly varying levels of granularity or to bridge cross-modal
variations.

5.2.3 Localization Using Schematic Maps

In this paper, we use the term “map” to denote a representation that relates
landmarks and features to spatial locations. This subsumes internal spatial rep-
resentations of a robot and external maps, e.g. floor plans. A map typically
preserves spatial information metrically (on a certain level of spatial granular-
ity). If it abstracts from metric properties and represents qualitative aspects of
spatial information (specifically topological and ordering information), we refer
to it as “schematic map”. Schematic maps as characterized by Klippel et al. [23]
abstract from information irrelevant to a specific task considered. For example,
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a schematic floor plan giving directions to visitors typically abstracts from fur-
niture, doors, etc. One may even abstract from the shape of a room. Indeed, a
schematic floor plan represents salient boundaries to free space, for example the
outline of rooms, corridors, etc. Schematic maps can however be designed for ar-
bitrary environments featuring a great variety of objects. Therefore, approaches
to schematic map interpretation by means of recognizing specific objects or spe-
cific spatial properties are restricted to specific environments. We are interested
in the fundamental principles of recognizing spatial environments and, hence-
forth, do not aim at recognizing hallways, doors, etc. This allows responding to
arbitrary environments and maps.

By considering abstract sensor readings retrieved from a schematic floor plan
in relation to a robot capable of scanning the borderline of free space (e.g. by
means of a range sensor) we characterize the localization task using a schematic
map. First, as with any absolute representation, schematic maps provide infor-
mation free of a specific perspective. Second, the granularity of schematic maps
is coarser than of sensor information. However, not all differences between met-
ric maps and schematic maps are due to reduced resolution. When transforming
a metric map into a schematic map, it undergoes a selection process that only
retains salient, characteristic information (compare [4]). For a robot not capable
of distinguishing different kinds of obstacles the relation between sensor infor-
mation and schematic map information presents a small modality change, as the
set of objects that can be perceived by the robot differs from the set of objects
registered in the schematic map. Therefore, we classify the localization using a
schematic map on the generalization strand different perspective, different reso-
lution, same sensor towards GSL (see Fig. 5.1).

5.3 Localization Strategies

In this section we will analyze approaches to SL that employ some kind of
map representation. We will evaluate their applicability to more generalized
localization tasks. First, the SL problem is decomposed into distinct subtasks
and aspects; this decomposition provides a classification scheme for individual
approaches to SL.

5.3.1 Computing the Pose

The challenge in SL is to find a sensible transformation from an agent-centered
perspective to a specific reference system, typically an absolute one. Therefore,
SL primarily is a question of spatial reasoning. On a closer look, additional
aspects emerge, though.

A robot can localize itself by determining the correspondence between its sen-
sory input and the map. In other words, we compute the pose which — according
to its map — explains the sensory input. The problem of determining this corre-
spondence is termed the correspondence problem or the task of data association;
a good solution to the correspondence problem is among the hardest problems
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in mobile robot navigation [41, 21]. Once a correspondence between perceived
features in their local frame of reference and map features in the absolute frame
of reference is established, simple trigonometric computation yields the robot’s
absolute pose. Important criteria of the applicability of specific approaches are
the robot’s perceptual features. The ability to uniquely identify landmarks, for
example, would make the correspondence problem trivial. Industrial applications
sometimes use unique artificial tags to simplify recognition in a robot’s working
environment [20, 16]. In the present chapter, however, we will consider unaltered
environments, though.

To approach the correspondence problem if a — possibly vague — pose esti-
mate is available, matching algorithms are employed. These algorithms calculate
the most likely correspondence between the sensory input and the expected per-
ception on the basis of the pose estimate and the internal map. On the basis of
this correspondence they infer the expected percept. In the context of statistical
frameworks for robot localization the role of matching algorithms is providing
a solid perceptual model to infer the probability of each individual pose hy-
pothesis (compare [40]). The more robust a correspondence can be determined,
even in absence of precise pose estimates, the fewer hypotheses need to be con-
sidered; this improves efficiency. Differences between true and estimated robot
perspective result in differences between actual and expected percept. Robust-
ness of matching algorithms is important, especially in the context of GSL. Here,
variations may also appear due to shifts of modality or granularity.

To sum up, the key challenge in map-based localization is to find a good
solution to the correspondence problem. There are four essential factors that
shape approaches to localization:

Feature representation: Which features are made explicit in the map? (sen-
sor reflection points, extracted feature points, . . .)

Representation of configurations: Which spatial relations are made explicit
in the map? (qualitative knowledge, metric data, . . .)

Spatial reasoning/configuration matching: Which matching algorithm is
used? (Iterative Closest Point, shape matching, . . .)

Temporal reasoning: How is history information handled? (stochastic esti-
mators, conceptual neighborhoods, . . .)

In the following sections we will discuss these factors in some detail.

5.3.2 Feature Representation

Sensor data is interpreted in terms of environmental features. Features can range
from hardly interpreted sensor patterns to complex objects and their properties.
The manifold of features possible can be classified into spatial properties (e.g.
position, size, shape) and non-spatial properties (e.g. color, object category).
In the following we will focus on spatial features in unprepared environments
that can be perceived by robots as well as by humans. Though exploitation
of non-spatial properties would support the recognition processes and would
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complement spatial information, intelligent processing of spatial information is
one indispensable ingredient to successful localization.

The choice of features to be used for localization depends on the type of sen-
sors; applicability to GSL adds further requirements. In external representations
such as schematic maps a coarse level of granularity entails a complete lack
of unimportant features whereas other features may be schematized, i.e. they
are coarsely represented. To successfully match information on different levels
of granularity, means for determining the saliency of a feature and means for
shifting the level of granularity are required. Determination of saliency allows
to estimate whether a feature at hand will be represented on a specific level of
granularity or not; means of shifting granularity levels are required to identify
correspondences. Proceeding from simple to more complex features we exam-
ine these properties as well as the contribution of a specific feature to robust
localization.

Raw Sensor Patterns

A prominent approach relying on matching sensor data is the ‘view-based ap-
proach’. It matches raw sensor images and does not extract features from sen-
sory input. Typically, sensor snapshots are obtained and stored for different
discrete view points. For example, Franz et al. [13] handle linear panoramic
camera images taken at specific locations in the environment. Similar to the
view-based map representation, the lowest level of Kuipers’ spatial semantic hi-
erarchy ([25, 26]) associates the robot’s action patterns at decision points with
the corresponding locations.

Uninterpreted data does not allow for granularity shifts and cannot be inte-
grated with external information. Furthermore, uninterpreted data provides no
information about the local spatial configuration; data can only related to the
view point.

Landmarks

Landmarks are objects in space that are easy to identify; for localization pur-
poses, they can be represented by their position. Landmarks are typical environ-
mental features for localization in human navigation (see e.g. [9]). Landmarks
are well-researched in the context of human navigation, but the detection of
landmarks that are commonly used in human communication (e.g. “the gas sta-
tion”) is not yet possible in computer implementations. Landmarks that can be
used in robotics still must be comparatively simple. For example, Forsman [11]
developed a tree detection approach on the basis of range data; it was tailored
to an outdoor park scenario. Similarly, corners detected in the environment can
be used as landmarks [1]. In human-robot communication it is desirable to iden-
tify entities in the environment that provides both species a spatial reference for
their interaction.

Specific landmark identification approaches restrict applicability to environ-
ments that contain those landmarks. It is however possible to derive additional
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information from landmarks which can be used, for example, to estimate their
appearance in a representation at a specific level of granularity. The utilization
of landmarks in human-robot interaction is still a challenge; its solution depends
on sophisticated object recognition which is still beyond reach.

Free Space

The boundary of free space is of special importance to robots and humans since
it limits the accessible environment and it constrains possible actions. Conse-
quently, many approaches represent free space, its boundary, or geometric fea-
tures derived from it. Information about free space also can be obtained from
maps that are used by humans. Sensors like laser range finders or sonars mea-
sure the boundary of free space directly. We will now review the most important
features for representing boundaries of free space.

Cell Occupancy

In cell occupancy representations, spatial cells are classified as occupied or free.
The spatial domain is partitioned into square-shaped cells of fixed size (e.g.,
10cm x 10cm). The typical map representation employed is the so-called occu-
pancy grid [35]. This technique is particularly popular when using range sensors
like laser range finders (LRF); sensor output can be used directly without pro-
cessing (other than noise filtering). A clear advantage is the universality of the
approach, as it can be used in arbitrary environments. [2]. The simplicity en-
tails severe limitations, though. Occupancy grids are basically bitmap images
that, if related to externally provided maps, would require sophisticated image
processing techniques for matching. As of today, communication on the basis of
occupancy grids is limited to strongly constrained settings like multi-robot map-
ping involving identical robots and known start poses of all robots (see e.g. [24]).

Free Space Boundary

Reflection points measured by a range finder represent the boundary of free
space. To capture a wider context than single points and to reduce the amount
of data, points can be grouped to geometric primitives. For indoor environments
grouping into line segments is especially popular (e.g. [33, 37, 8, 10]). In connec-
tion with communication tasks it may be desirable to identify salient boundary
configurations. A starting-point for defining saliency is given by considering the
size of configurations, e.g. the length of a line.

Existing grouping approaches are limited to environments whose boundaries
present mostly straight lines. To achieve more universal applicability, Wolter &
Latecki [46, 47] propose to use polygonal lines to approximate arbitrarily shaped
boundaries. In this way, the universality of point-based representations and the
compactness of abstract geometric features can be retained. Feature saliency
based on shape complexity and an approach to schematization complex shapes
have been proposed by Barkowsky et al. [4].
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Routes

A prominent geometric feature derived from free space is the Generalized Voronoi
diagram (GVD) [31]. The GVD represents the medial axis of free space (“skele-
ton”), the set of all points equally and maximally apart from the nearest bound-
aries. Each point of the GVD is the center of a circle inscribed in the free space
that touches at least two points of obstacle boundaries. A graph, the so-called
Generalized Voronoi Graph (GVG), is then derived from the GVD; meet points
and end points of the GVD constitute the nodes in the GVG. Nodes belonging
to a GVG are identified by their degree. GVD point touches the boundary).
Roughly speaking, the degree corresponds to the number of Voronoi paths ema-
nating from a given point on the GVD. GVGs offer abstract and compact means
for representation [39]. Furthermore, routes that follow the GVD are maximally
safe as they maintain maximum distance to obstacles. However, the graph struc-
ture of GVGs is susceptible to noise in input data; the problem of robust recog-
nition on the basis of GVGs has not yet been solved. It is not yet possible to
handle the absence of environmental features in external maps when matching
them to perceived information, as the graph structure changes fundamentally
when objects disappear. The applicability of GVGs to place recognition depends
on improvements in handling multiple levels of granularity and in skeleton-based
recognition. These topics are currently under investigation (see [45]).

5.3.3 Representation of Configurations

A configuration describes the spatial arrangement of features that can be per-
ceived in the environment. Frequently coordinate systems are used to represent
the position of objects, but qualitative spatial relations describing relative posi-
tions (e.g., “A is north of B”) or topology information may also be used.

Qualitative Representations

Qualitative representations employ a finite, typically small set of relations to
model spatial information. Relations usually describe by means of relative infor-
mation as obtained by comparison; for example, “north of” and “south of” can
serve as qualitative relations acquired by comparing the geographic location of
two objects.

Some authors confide the set of potential relations to a single connectivity
relation, topology (among others, see [7, 26, 49]). Topological information cap-
tures connectivity information of distinctive places and can be represented by
an (attributed) graph structure. For example, Yeap & Jefferies [49] represent
connectivity of local maps. Graph labeling is required to enable agents to iden-
tify individual edges that meet in a single node of the graph. Yeap & Jefferies
associate edges with exits of the local maps. Kuipers [25] labels directed edges by
robot commands. The execution of an action associated with an edge takes the
robot from one node to the other. In contrast, Franz et al. [13] use directional
information to label edges. Hereby, directions are determined by the relative po-
sitions of the two nodes connected. The kind of information used to attribute
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the graph structure influences the matching process in important ways so that
general statements about the properties of relational representations cannot be
made.

Ordering information is another important representative of qualitative infor-
mation in navigation. Schlieder [38], for example, represents the cyclic order of
point-like landmarks and Barkowsky et al. [3] utilize cyclic order of extended
landmarks in non-cyclic environments. Cyclic order of perceivable objects has
also been used to instruct a mobile robot by means of a schematic map [48].
The self-localization approach proposed in the present chapter utilizes cyclic
ordering, as well.

Qualitative representations have been claimed to provide adequate means for
communicating spatial information; Moratz & Tenbrink [34] utilize projective
relations between objects in a robot instruction setting. A robot is instructed
to move to a position described by qualitative relations. This task is strongly
connected to the localization problem.

Qualitative Calculi

Qualitative calculi extend qualitative relations by introducing means to “calcu-
late with relations”, e.g. to infer, if the relations holding between A and B &
B and C are known, which relation holds between A and C (relation composi-
tion). To relate spatial relations, reasoning — often based on relation compo-
sition & constraint propagation — is applied. With respect to correspondence
determination, constraint-based reasoning could be exploited to prune the search
space. A mapping of objects is only admissible, if it is consistent with qualita-
tive constraints posed on the objects. Thus, qualitative calculi can be employed
to introduce hard constraints in correspondence computation (compare [43]).
Additionally, conceptual neighborhood structures (see Sect. “Spatio-temporal
reasoning”, p. 119) have been introduced for qualitative reasoning. Conceptual
neighborhoods are in particular valuable to resolve conflicts on the symbolic level
by defining an interrelation on the level of relations. However, the application of
qualitative reasoning to the correspondence problem, e.g. by means of constraint
propagation (see Sect. 5.3.4) has not yet been thoroughly investigated.

Quantitative Representations

Quantitative formalisms describe the world by means of absolute, often fine-
grained, uniform scales. Quantitative representations employ no abstraction be-
sides reduction of resolution. Henceforth, sensor data, e.g. distance information
sensed by a range finder, can be mapped directly to a quantitative representa-
tion. The most prominent form of quantitative representation is coordinate-based
geometry; landmark positions, for example, are represented as points in the Eu-
clidean plane. Most approaches in robotics represent positions as coordinates in
the absolute frame of reference given by the global map (see Thrun [41] for an
overview).

Generally speaking, in quantitative representations all available information
is maintained while in qualitative approaches some details may be intentionally
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discarded. In quantitative approaches all values are treated equally and no as-
pects are made explicit. This can hamper recognition, as a small example on
coordinate-based geometry shows. Consider an agent that observes two land-
marks that are located close to one another. By measuring their position the
agent determines two similar coordinates that are both subject to measurement
errors. By evaluating the measurements and taking into account the error mar-
gins, we may not be able to decide which of the landmarks is located on the left
and which is located on the right. The agent can, however, observe with certainty
which of the two landmarks is left of the other. In a quantitative approach, this
knowledge is shadowed by a representation that relates observations to an ex-
ternal scale rather than to one another. Notably, there are situations where we
cannot decide in advance which spatial relations will be required later on. In
such cases, quantitative approaches are more economical as it is impossible to
record all potentially relevant spatial relations in an environment.

5.3.4 Matching

Matching establishes the correspondence between observed features and features
represented in the robot’s internal map.1. A transformation from an agent-
centered to the absolute frame of reference can then be computed on the basis
of correspondences between observed features and map features. In other words,
by establishing the correspondence the agent is localized.

The correspondence problem is challenging in three regards: obtaining a fea-
sible solution, handling uncertainty, and integrating spatio-temporal knowledge.
In the following we will review strategies addressing these problems and we will
analyze how these strategies meet the requirements of GSL.

Achieving Feasibility in Data Association

Considering a map containing n features and an observation comprising m fea-
tures, there are

n∑

i=0

(
n

i

)
·
(

m

i

)
· i! (5.1)

potential correspondences if observed features are not necessarily represented
in the map and only correspondences of type 1-to-1 are taken into account.
Even this restricted case is infeasibly complex, so additional knowledge must be
exploited to reduce the search space and computation time. Confident knowledge,
for example, can be exploited in terms of hard constraints restricting the search
space. If a pose estimate is available, the projection filter [33] can be employed to
disregard map features that are estimated to be hidden to the robot. Likewise,
observed features are filtered. The pose estimate must be of high quality in order
not to disregard features erroneously classified as invisible; this would affect the
1 In the case of SL by means of feature tracking (e.g. [37, 32]), the agent’s previous

observation assumes the role of the internal map in map-based SL.
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matching result. In many robot applications pose estimates are provided by
odometry.

Computational complexity can be further reduced, if distinguishable features
are exploited. For example, using extremes in range scans, Lingemann and
Hertzberg [32] restrict consideration of correspondences to features of the same
type (minimum or maximum). If uncertainty in feature classification is an issue,
a feature similarity measure is used as heuristic, i.e. similarity provides a soft
constraint, and matching is transformed into a discrete optimization task that
assigns the most similar features to one another. In the case of using occupancy
as feature, feature similarity considers difference of cell occupancy; this differ-
ence is typically represented as probability value [19, 41]. Utilization of complex
features allows for fine distinctions in the similarity measure and yields both effi-
cient matching and robustness. In our approach we will argue for shape features
that represent the boundary of free space to exploit distinctive shape similarity
in the matching procedure.

An alternative approach to increase the efficiency of the matching procedure
is to respect the spatial configuration of observed features in relation to the
configuration of map features. Admissible mappings from perception to the map
preserve the configuration of the features. This can, in principle, be achieved
similarly as in constraint propagation (compare [43]), treating relative position
of features as constraints. If, for example, feature A is observed north of feature
B, then by assigning A to some map feature, the set of candidates for B can
be pruned. Unfortunately, uncertainty inherent in map and observation requires
a careful selection of hard constraints that model confident knowledge. In our
approach, we utilize circular order of visibility as a source of certain informa-
tion (compare Sect. 5.5.2). Notably, the application of the Mahalanobis distance
for pruning potential candidates can be interpreted as an application to con-
straint propagation. Here, correlations of distances are exploited for gating in
a statistical framework (compare [36]). To our knowledge, constraint propaga-
tion has not been further utilized in this context and remains an open research
issue. Instead, correspondences are sometimes pruned in a successive step; corre-
spondences which entail a transformation from an agent-centered to an absolute
frame of reference that deviate significantly from the transformation obtained
by averaging the individually obtained transformations can be removed [17].

To avoid costly computation of robust matching, some SL approaches han-
dle the correspondence problem indirectly. They seek to directly determine the
robot pose which explains the percepts (e.g. [41, 18, 33, 6, 8]). In this family of
approaches, the robot pose is no longer derived from the discrete correspondence
problem; instead, it is obtained by a continuous optimization search for an opti-
mal pose. A pose estimate is required as a start value. Within each step, a simple
but fast matching procedure relates perceived features already transformed to
the absolute frame of reference to map features. Typically, nearest neighbor al-
gorithms are applied to perform the matching [18, 33, 6, 8]. Embedded in an
iterative optimization framework, erroneous results of the matching algorithm
can be recovered in successive steps. Notably, all optimization algorithms are
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susceptible to local minima and erroneous matching can further affect the over-
all performance. Therefore, this family of approaches relies on a high quality
pose estimate as start value.

Handling Uncertain Information

Inescapable uncertainty in real-world data inhibits perfectly congruent corre-
spondences. Therefore, the goal must be to find those correspondences which
explain the agent’s observations best. This requires integrating differences of as-
signed features on the level of feature appearance and configuration. The most
successful approaches today use statistical methods to “explain” and correct
for these differences (see Thrun [40, 41] for an extensive overview). The role of
matching algorithms in a statistical framework is to determine the degree of be-
lief in a specific hypothesis of observation, robot pose, and map appearance [19].

Statistical models also are helpful to handle uncertainty beyond sensor noise,
e.g. sporadical errors in feature detection — given that a stochastic distribution
can be found to model this phenomenon. Hähnel et al. [19] regard a uniform
distribution as sufficient to handle erroneous measurement of individual laser
beams by a laser range finder. However, in cross-modality, granularity, or per-
spective shifts of GSL it is unclear if and how differing appearances for a specific
source of abstract sensor readings can be adequately modeled by means of a
probability distribution. For example, it appears impractical to model which
perceived objects are registered in a schematic map. Therefore, we argue for an
additional utilization of qualitative knowledge in GSL which, by advancing to
a more abstract representation, allows disregarding deviations on a fine level of
granularity.

Spatio-Temporal Reasoning

Spatio-temporal reasoning ties spatial and temporal information together. The
possible sequences of physical robot locations and orientations constrain hy-
potheses about its actual and future pose; therefore spatio-temporal reasoning
is an important ingredient to determining the pose of a robot.

In robotics, spatio-temporal reasoning often is tightly coupled with stochas-
tic models to represent uncertainty. Therefore, robot movements are modeled
stochastically. SL can then, for example, be approached by means of Markov pro-
cesses [22] or Monte Carlo methods [42, 12]. This is advantageous in a stochastic
framework of SL, but likewise to the aforementioned considerations it is ques-
tionable how to express spatio-temporal constraints when information on differ-
ent levels of granularity needs to be interrelated. In qualitative representations,
changes on the level of qualitative information can be represented by discrete
conceptual neighborhood [15, 14] structures of qualitative spatial relations. Con-
ceptual neighborhoods denote transitions between qualitative relations. Two re-
lations are neighbored, if and only if they can be directly transformed into each
other by steady motion. For example, when distinguishing four cardinal direc-
tions, “north” and “west” are conceptual neighbors, but “east” and “west” are
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not. If, for example, a landmark is expected in direction “north” but cannot be
observed, this conflict may be resolved most easily by searching in the concep-
tually neighboring directions “west” or “east”. Conceptual neighborhoods allow
expressing spatio-temporal constraints in terms of admissible transitions on the
qualitative level.

5.3.5 Conclusions

In reviewing the variety of map features, we identify three main categories of
information sources used in localization: features represented in absolute maps,
sensor patterns in egocentric observations, and approaches completely abstaining
from map representations (see Fig. 5.3 for an overview). Completely abstaining
from maps either requires employing position sensors like GPS — this requires
external information to establish a frame of reference — or to incrementally
determine the robot’s movement by tracking static features and updating the
pose estimate. In principle, any approach to feature tracking can be related to
a map-based approach, if considering a map that exclusively represents the last
observation. However, we are interested in approaches that allow expressing the
robot’s pose in an externally supplied reference system, i.e. a schematic map.
Thus, approaches handling allocentric map information are most adequate.

There are two principle alternatives in map features to choose from, namely
features that represent landmark positions and features that describe free space
(either directly, e.g. occupancy grids, it’s boundary, e.g. line-based maps, or
derived geometric information, e.g. Voronoi diagrams). Considering maps com-
monly used by humans we conclude that landmarks and representation of free
space are both suitable choices, boundary of free space being the more fundamen-
tal feature, though. Moreover, landmarks typically used by humans are difficult
to identify for a robot. Therefore we suggest anchoring map representations on
a representation of free space boundaries.

With regards to representing configurations, we reviewed relational approaches
which link features by means of a graph, qualitative approaches describing the
relative position of objects, and quantitative approaches employing coordinate
systems. An overview of this classification is presented in Fig. 5.4. Quantitative
approaches support expressive and precise pose representation. Relational and
qualitative approaches, on the other hand, are valuable for handling spatial infor-
mation on a coarser level of granularity. They abstain from metrics and, by doing
so, avoid inescapable differences on the metrical level, e.g., if two configurations
on a different level of granularity are related. In localization tasks employing
coarse external maps we therefore propose to explicitly integrate qualitative or
relational information.

Many matching algorithms employed in robotics align perception and map
by means of continuous optimization which searches for the pose value which
best aligns perception and map. The correspondence problem is eclipsed. This
approach has two major drawbacks. First, they require a pose estimate to start
the search. In the case of using an external map no good start estimate may
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be available. Second, optimization algorithms are susceptible to getting stuck in
local minima. This can easily happen when the optimal alignment of perception
and map is of poor quality, i.e. when features identified in the sensor information
are not registered in the map, or vice versa. This may be the case, for example,
if we use a schematic map.

We suggest focusing on the correspondence problem in order to find an op-
timal correspondence between perception and map. The problem may then be
formulated as a discrete optimization problem that can be solved analytically,
i.e. without the risk of getting stuck in a local minimum. Certain information
can be explicitly introduced by means of qualitative information, its exploitation
allows for an efficient approach. In summary, by incorporating qualitative con-
straints on spatio-temporal processes, on one hand, and by relaxing requirements



122 D. Wolter, C. Freksa, and L. Jan Latecki

on insignificant distinctions, on the other hand, we can considerably reduce the
number of alternatives that must be taken into consideration. This approach
resembles knowledge-based hypothesis matching in natural cognitive systems
more closely and considerably cuts down the computational complexity.

5.4 Spatial Representation Based on Shape Information

In our approach, the spatial representation utilizes shape features that describe
the boundary of free space as basic map entities. Shapes are represented by
configurations of polygonal lines. In these configurations, scene features are si-
multaneously related by qualitative ordering information and by quantitative
position information. In the following we refer to this approach as shape-based
localization or, shortly, SBL. This section presents details on the construction of
its underlying representation.

From the sensor readings of a range sensor we extract shape information as
polygonal lines, termed polylines. Polylines resemble the discrete structure of
sensor data; they allow us to approximate arbitrary contours with arbitrary
precision. SBL differs from other approaches to extracting complex features in
that it is parameter-free and does not require a noise model of the sensor2. All
control-values are determined adaptively, but preset values reduce computational
cost. In the following, we will present a brief description of the OA algorithm;
for an extensive description refer to [46, 47]; intermediate stages of the shape
extraction process are shown in Fig. 5.5.

5.4.1 Extracting Shape Features from Range Information

Shape extraction starts by grouping sensor reading points. The maximum dis-
tance between neighboring points within a single polyline is controlled by a
threshold. Ideally, each polyline represents a single object in view and each ob-
ject is represented by a single polyline. As different view points and noise can
cause different groupings, we need to account for differences in later processing
stages. When we match perceived shapes against the map, we allow for re-joining
and splitting polylines. The threshold that controls the grouping is chosen to re-
semble an assumed minimum object distance of 10 cm.

To obtain a compact representation of shapes without loss of important shape
information and to cancel the effects of sensor noise, we apply Latecki’s &
Lakämper’s Discrete Curve Evolution method (DCE) [27]. DCE describes a
context-sensitive process of evolving polylines by iterative vertex removal. A
vertex relevance measure is defined to determine individual vertices’ contribu-
tion to the shape information; the measure can be computed locally. It is defined
for neighboring vertices u, v, w (see Figure 5.5 (d)) as

2 Veeck & Burgard [44] also suggest to use polygonal lines. Their approach requires an
accurately aligned set of scans as starting point of their computation. In contrast,
we pursue incremental map construction [47, 46].
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wu

v

(a) (b) (c) (d)

Fig. 5.5. States in extracting shape features; grid size is 1m x 1m. (a) input data
obtained from a range sensor in an indoor environment, (b) grouping, (c) application
of DCE, (d) vertex labels in the relevance computation. Framed boxes in (a), (b), and
(c) show enlargements.

r(u, v, w) = d(u, v) + d(v, w) − d(u, w) (5.2)

where d denotes Euclidean distance.
After vertex removal, the relevance measures of neighboring vertices get up-

dated. Hence, DCE is a fast process (complexity O(n log n) for polylines with n
vertices). In practical use, DCE can process laser range scans consisting of 361
measurements in just a few milliseconds. Besides for noise cancellation, DCE
can be used in schematization processes to coarsen the granularity level [4], it
simplifies the contour but maintains the overall appearance.

DCE selects vertices to be removed in the context of a single polyline. The
identification of relevant vertices can be improved by extending the context to
sets of corresponding polylines. To this end, we do not stop the evolution of poly-
lines on the basis of a fixed threshold; rather, we terminate the evolution process
on the basis of shape similarity (see Sect. 5.5.1). Efficiency is improved by first
performing DCE without consideration of shape similarity until an intermediate,
fixed stop threshold is reached. Then, DCE is continued under consideration of
shape similarity. The evolution process for exemplary polylines obtained from a
simulated laser range finder is depicted in Fig. 5.5 (a) – (c).

5.4.2 Representing Configurations

Configurations describe the relative positions of shape features, i.e. polygonal
lines. Most importantly, the cyclic order of visibility is represented. As laser range
data is ordered cyclically to begin with — i.e. ordered by angle of perception
— we simply need to retain the sequence of shape features. We can consider
ordering information as reliable information, i.e., there is no uncertainty about
the ordering of perceived features. Respecting ordering as a hard constraint in the
matching process greatly improves efficiency and robustness. However, if we were
to restrict the representation of configurations to cyclic ordering, we would face
some limitations. For example, if the map were to contain two objects of identical
shape, but only one similar object was found in the sensor data, it would not be
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possible to determine which of the two objects in the map represents the sensor
data. To overcome this limitation, we include metric positional information along
with the ordering information.

5.5 Matching Based on Ordered Shape Information

Matching integrates the recognition of individual shape features and the recog-
nition of configurations. We first describe the recognition of polylines which is
based on shape similarity. Thereafter, recognition of configurations is described.

5.5.1 Shape Similarity

SBL examines shape similarity to determine potentially corresponding shape fea-
tures. Shape similarity is modeled by a shape distance measure — the minimum
distance of 0 refers to identical shapes.

Shape distance measures play an important role in computer vision, partic-
ularly in object recognition. They measure the difference between two shapes
and aim at mirroring human intuition. There is a strong connection between
object recognition in vision and recognition processes in localization, although
the connection between computer vision and robot mapping has not yet been
sufficiently exploited according to Thrun [41]. We derived a shape distance mea-
sure from state-of-the-art shape matching used in computer vision [29, 27]. To
tailor the approach to the domain of range data, some adaptations have been
made (for details see [29, 28]).

The idea of measuring the distance between a polyline p and a model q is
to disregard irrelevant features that make polylines dissimilar from one and
another; in other words, we focus on the subset of vertices that exhibit maximal
similarity. Therefore, the measure has been termed partial optimal similarity
[29]. Here, p corresponds to a polyline extracted from LRF data (which may
still contain some noise), whereas q will be a matching candidate extracted from
the map. The map is typically derived from multiple observations; we consider
map data as absolute reference. The algorithm proceeds as follows: Evolution by
means of DCE is continued for polyline p while a simplification of p improves
the similarity to q.

The basic similarity measure for comparing simplified ps and qs as detailed
in [46, 28] establishes an optimal correspondence of maximal arcs and accumu-
lates differences in relative angular directions. Optimal correspondence of arcs
is computed by means of Dynamic Programming — see [27] for details.

5.5.2 Matching Configurations

Provided we have two configurations of features; the task of the matching algo-
rithm is to determine a sensible correspondence relation on the level of polylines.
In SBL the currently observed configuration is related to the configuration ex-
tracted from the map using the robot’s last location as view point. In other
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words, we do not make use of odometry information to achieve a pose estimate.
Due to the distinctiveness of the shape information and the sensibility of the
shape distance measure we do not require such pose estimate [46]. Differences of
perceived configurations are small on the qualitative level of ordered shape fea-
tures if the robot has not traveled too far (e.g. less than 1m). These differences
can easily be handled by configuration matching.

Matching is formulated here as a discrete optimization problem. We seek to
determine the optimal correspondence of shape features. When matching two
configurations, changes in the environment, variations of perspective, or noise
can cause differences. Constraints and observations that must be considered are
as follows:

• Only polylines showing similar shape may correspond.
• The cyclic order of shape features must not be violated. For example, when

finding corresponding counterparts for polylines p and q, where p proceeds
q, p’s counterpart must also proceed q’s counterpart.

• An object’s visibility can change. Therefore, some polylines may need to be
disregarded.

• Correspondences are not necessarily of the type 1-to-1 due to different out-
comes of the segmentation process. Instead, 1-to-n, n-to-1, and n-to-m types
of correspondence must also be considered.

• Each potential correspondence of two polylines induces an alignment that
would adjust the complete shapes involved. We demand that all alignments
induced by corresponding polylines are consistent.

We now formulate the discrete minimization problem. Let S� : polyline ×
polyline → R

+ ∪ {0} denote the shape distance measure described earlier.
We will denote configurations, i.e. cyclic ordered vectors of polylines by P =
(p1, p2, . . . , pn) and Q=(q1, q2, . . . , qm) respectively; a sub-vector (pi, pi+1, . . . , pj)
will be denoted Pi,j . Pi,i will be abbreviated Pi. Sub-vectors represent a single
polyline composed by concatenating a sequence of polylines; they are introduced
to correct segmentation differences. Furthermore, let ∼ denote the relation of
correspondence which pins polylines from two configurations together. Our aim
is to compute the optimal correspondence relation ∼.

The quality of a match ∼ is determined as the sum of corresponding polylines’
shape distances. To compute the optimal match as an optimization process, a
penalty for not finding a polyline’s counterpart is introduced; otherwise, the
empty correspondence relation would yield 0, the lowest possible value, i.e. the
optimal choice. The counterweight used is a penalty function R : polyline →
R

+ ∪ {0} that grows linearly with the polyline’s angular size in the field of
view. A linearly growing penalty reflects the observation that the shape distance
of two polylines that differ only by independent noise grows linearly, too ([46,
47]). This penalty function also addresses feature saliency by consideration of
size. Preferring larger features over smaller ones is advantageous in matching a
perceived configuration with many details against a schematic map which only
presents salient shape features.
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The observation that an object is to the left (or right, respectively) of an-
other object is not affected by noise in sensor data. Cyclic order of visibility can
therefore be considered certain knowledge. This allows to exploit order as hard
constraint and reduce the search space. Observe that the task of determining the
optimal correspondence relation of polylines restricted to only correspondences
of type 1-to-1 which respect the cyclic order, i.e. (pi ∼ qi′ ∧ pj ∼ qj′ ∧ i < j) →
i′ < j′, is a standard application of Dynamic Programming [5]. Therefore, the
unconstrained search space declared in (5.1) is reduced to

n · m (5.3)

We now formulate the matching which respects the constraints and observa-
tions listed above as a minimization problem and we show how it can be solved
by an extended Dynamic Programming scheme.

We require that an estimate for the alignment induced by any pair of corre-
sponding polylines exists. This estimate can either be derived from odometry or
it can be computed purely based on shape information (see Sect. 5.5.3). Let us
now assume that such an estimate, i.e. a translation vector t and a rotation by
Φ exists. We denote the alignment induced by corresponding polylines P and Q
by A(P, Q). The difference of the induced alignment A(P, Q) and the estimated
alignment is denoted as ΔA(P, Q). To measure ΔA(P, Q) our experimental sys-
tem utilizes

D(dt, dΦ) = ||dt|| + 10dΦ (5.4)

Denoting the set of polylines {pi, pi′ , . . . , qj , qj′ , . . .} not belonging to any cor-
respondence by PQ, determination of the optimal correspondence relation ∼� is
formulated as follows:

∼�= argmin
∑

(Pi,j ,Qi′,j′ )∈∼

⎛

⎜⎝

shape distance︷ ︸︸ ︷
S(Pi,j ,Qi′,j′) +

robot pose consistency︷ ︸︸ ︷
ΔA(Pi,j ,Qi′,j′ )

⎞

⎟⎠ +

penalty︷ ︸︸ ︷∑

r∈PQ

R(r)

(5.5)
To solve the equation, the Dynamic Programming scheme is extended. To

enable detection of correspondences of types 1-to-n, n-to-1, or n-to-m, we intro-
duce an updating step that reconsiders the correspondence determined in the
previous step. This overcomes the prefix requirement of Dynamic Programming:
Suppose a polyline p shall be matched against two polylines q1, q2 which are
created by splitting p. In classical DP, the result of comparing (the prefix) q1
to p cannot be altered in subsequent computation. Thus, if p and q1 are signifi-
cantly dissimilar, q1 is disregarded once and for all. Consequently, q2 would not
be matched either. In our extension to DP, we reconsider q1 when comparing q2
and p; this gives us the correct correspondence of p and the concatenation of q1
and q2.

5.5.3 Shape Complexity and Correspondence Quality

Matching correlates two sets of shape features which are expected to have a cor-
respondence relation. In the case of relating significantly different configurations
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(e.g. relating robot perception with schematic map information or perceptions
from significantly different view points) metric information about position of
objects is of little help; yet if considered, different metric information can even
hinder correspondence association. To overcome this limitation we introduced
a shape complexity measure that allows us to perform the matching restricted
to salient shape features (compare [46] for details). Matching the subset of the
most salient shape features in a configuration is more robust than matching
nearly featureless, small shapes. Hence we perform matching as a two-step pro-
cess. In a first step we only consider the most similar and most complex pairs
of the corresponding shape features; we can estimate the metric displacement
required for the robot pose consistency measure ΔA. In a second matching step,
this knowledge can be taken into account; it allows to robustly associate simple
shape features even in significantly different configurations [46].

5.6 Experimental Comparison

To evaluate different approaches to localization, we set up a simulated environ-
ment using a virtual robot equipped with a laser range finder. Simulation allows
us to easily measure the performance of individual simulation methods, as the
ground truth is known. Additionally, we can systematically alter the environ-
ment and other parameters like sampling rate or sensor quality to gain a better
understanding of the capabilities of individual methods.

To maintain the focus on spatial aspects we do not incorporate stochastic
models; we only determine the most plausible pose. In the context of a hypo-
thetical stochastic framework this would mean that we focus on the development
of individual hypotheses. The more reliably a single hypothesis can estimate the
robot’s true pose, the better a complete system including stochastics performs.
Furthermore, incorporating comprehensive uncertainty handling would conceal
the ability of judging the performance of spatial representation and reasoning
techniques, to a certain extent.

5.6.1 Experiments and Discussion

We examined two experimental setups. The first setup is a typical map-based
robot SL task. A simulated robot traveled a total distance of 43.03m in the
environment depicted in Fig. 5.6 (a). The average travel distance of the robot
between sensing the environment amounts to 11 mm and the average rotation
between sensing amounts to 4.0◦. The true map was accessible to the localization
methods. Hence, the main challenge of this setup is to robustly extract features
from noisy input data and to robustly handle the correspondence problem.

In the second setup we investigated into generalized SL using a schematic
map as reference system. The robot traveled along the same route as in the first
experiment, localizing once every 104 mm on the average; this entails an average
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(a) (b)

Fig. 5.6. Experimental setups to test robot self-localization performance. (a) depicts
the test environment of aprox. 14 × 23 meters containing furniture, complex obstacles,
etc. The path of the robot (dark line), and the path as reconstructed from the simulated
odometry readings (dashed line); (b) shows a schematic map of the test environment.

rotation between sensing and SL of 30.6◦. In this experiment, the schematic map
presented in Fig. 5.6(b) was supplied to the localization methods. This added an
extra challenge to mediating between information present in different levels of
resolution and to robustly handle objects that were missing in the map (compare
Sect. 5.2.3).

In the experiments we compare our approach with the following localization
methods from different categories discussed in Sect. 5.3.

• Map-based localization by line matching [8, 33, 17, 18]
• Iterative Closest Point (ICP) used in connection with occupancy grids [6]
• SBL based on shape matching and ordering information [46, 47]

The methods listed above have been implemented according to the specifica-
tions given in the literature. Grid size for occupancy grids in ICP was 50mm
x 50mm. We determined the quality of the localization by comparing the dif-
ferences between true pose (ground truth) and localized pose. A proximity test
was applied to compare the deviation between computed pose and ground truth
against a threshold. In map-based localization, the test is passed if the position
deviation is less than 100mm and the heading deviation is less than 45◦. The
proximity test for SL using a schematic map allows for a difference in position
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Table 5.1. Tabular overview of localization results obtained. The proximity test
evaluates, if a determined pose is close enough to ground truth. In the map-based
localization, the test is passed if the difference is less than 100mm in position an less
than 45◦ in heading. The proximity test for SL using a schematic map allows for a
difference in position less than 500 mm and 45◦ in heading.

map-based SL:
average difference to true

method position [mm] heading [◦] proximity test [%]
ICP 534 1.5 21
line-based 5167 65 0.4
shape-based 144 1.21 78

SL using schematized map:
average difference to true

method position [mm] heading [◦] proximity test [%]
ICP 2234 25.9 50
line-based 1836 16.6 30
shape-based 553 3.3 86

less than 50cm and 45◦ in heading. Results presented in Table 5.1 and in the
Fig. 5.7 and 5.8 will be discussed in the following.

Considering the map-based localization experiment, we observe that line-
based localization relying on line detection in the LRF data quickly looses track
of the correct path; it passed the proximity test in less than 1% of the cases. At
first glance, ICP seems to resemble the robot’s true trajectory (see Fig. 5.7 (a)).
However, due to susceptibility for local minima in ICP’s optimization process,
pose estimates often get stuck in their local surroundings; however, ICP recov-
ers when the robot moves on further. 21% of the estimated poses satisfied the
proximity test. Shape-based localization passed the proximity test in 78% of the
cases. This demonstrates that our approach is able to robustly perform standard
SL tasks.

Using LRF data corresponding to the same test environment as before, but
providing a simplified schematic map for localization instead of the true map sim-
ulates wayfinding using an overview map. In this setting we relaxed the proximity
limit to a distance of 50cm, since sensed LRF data and schematic map differ sig-
nificantly. We observe a decrease in localization performance which is caused by
the large differences between map and perception. ICP met the proximity con-
straint in 50% of the computed poses, line-based localization succeeded in 30%,
and shape-based localization in 86% of the cases. Of these methods, ICP first
looses track of the robot’s path, but coarsely resembles the true path (see Fig. 5.8
(a)). An interesting observation is that line-based localization performs better in
the localization using the schematic map than in the classical localization task;
a reason for this can be seen in the eased line extraction from the schematic map
as compared to the true environment map containing mostly non-linear obsta-
cles. However, as regards the average localization error, line-based localization
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(a) (b) (c)

Fig. 5.7. Results obtained in the map-based localization experiment. Determined poses
and true poses are plotted. (a) ICP, (b) line-based, and (c) shape-based.

(a) (b) (c)

Fig. 5.8. Results obtained in the localization experiment involving a schematic map.
Computed and true poses are plotted. (a) ICP, (b) line-based, and (c) shape-based.

is outperformed by ICP with an average error in line-based localization of about
2.2 m as compared to about 1.8 m in ICP. In contrast, SBL estimates poses with
an average error of 0.55m, just about the proximity test threshold of 0.5m. SBL
estimates the path closely until the robot enters the last room in the top-left
corner. The failure when entering the room was caused by erroneously matching
the perceived circular obstacle against the wall registered in the schematic map.
Considering the average differences between true and estimated trajectory (see
Table 5.1), it can be concluded that only SBL is able to master the generalized
localization setting.
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5.7 Conclusion

We proposed a generalization of the self-localization problem for robots to inte-
grate a variety of localization tasks. These tasks include localization with respect
to an externally supplied coarse or schematic map and localization based on route
descriptions. We identified three strands of generalization: change of perspective,
change of sensor, and change of resolution.

SL approaches are classified with respect to their choice of map features, their
representation of configuration information, their approach to the correspon-
dence problem, and their integration of spatio-temporal reasoning. For utilizing
external floor plans in a generalized localization task, map features describing
the boundary of free space are particularly valuable. The involvement of coarse
maps requires an abstraction of configuration information from fine-grained met-
ric details which are meaningless in schematic maps to a qualitative level. We
argue in favor of improving matching algorithms to approach the correspondence
problem analytically rather than by means of optimization. Analytical solutions
do not get stuck in local minima; getting stuck in local minima i nevitably oc-
curs when differing views are correlated, as in cross-modal setups or due to a
granularity change.

We describe our approach to SL which makes use of expressive shape features.
Configuration information makes qualitative knowledge explicit alongside metric
information. Qualitative knowledge about cyclic ordering enables design of an
efficient analytical approach t o the correspondence problem.

In an experimental evaluation we demonstrated the applicability of our ap-
proach to standard map-based localization and SL using a schematic map. The
experiments highlighted that our approach performs comparably well as often-
used ICP-based localization in map-based localization. In the case of SL using
a schematic map only the shape-based approach is able to robustly perform
localization.

To sum up, several tasks exist that have a close relation to SL and can all be
integrated into a more general task definition. For all dimensions of generaliza-
tion, a sensible abstraction is the key to finding a solution. Sensible abstraction of
spatial information can be achieved by including abstract qualitative knowledge
and advancing to more expressive map features.
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Dead Reckoning, Cognitive Maps, Animal
Navigation and the Representation of Space: An
Introduction

Charles R. Gallistel

The chapters in this part deal with some aspects of current behavioral and
neurobiological research on the construction of maps by animal brains. A map
is an encoding of some or all of the geometric relations between locations. Map
making is a fundamental part of navigation. It enables the navigator to set
a course for a destination that is not currently perceived by reference to the
navigator’s currently perceptible surroundings.

Navigation and map making are fundamentally computational problems. The
character of the problem and the relevant mathematical principles do not change
when one shifts from the study of animal navigation to the creation of au-
tonomous robots that navigate, any more than character of the imaging problem
and the principles of optics change when one shifts from the study of eyes to
the design of cameras. We can, therefore, answer with some confidence the ques-
tion posed by Chown and Boots, whether there is any common ground between
cognitive mapping and robot mapping. There is because in both cases workable
solutions are strongly constrained by the character of the computational prob-
lem that must be solved. It is the distinctive geometric structure of the problems
that leads to modularity in the mechanisms that have evolved or been designed
to solve the problem (cf. Chap. “Geometry and Navigation”, p. 145). The struc-
ture of the modules reflects the structure of the problem just as the structure of
the eye reflects the principles of optics.

Navigation and map making have engaged mathematical and engineering
minds for centuries. In reading these chapters, I am reminded of my long-standing
conviction that fruitful interchange between psychologists, neuroscientists and
roboticists–and simple, clear thinking–would be facilitated if we all relied more
on the conceptual framework and terminology provided by standard texts on
navigation and map making. If each discipline, or worse yet, each lab or working
group, makes up its own terminology and creates its own conceptual framework
for dealing with universal, long-understood aspects of map making and naviga-
tion, it leads to a great deal of reinventing of the wheel, and it creates barriers
to mutual understanding.

In this introduction, I describe aspects of the common computational problems
faced by robots and animals that make maps for navigational use.

Dead Reckoning. Roboticists find that it is surprisingly difficult for a robot to
estimate where it is from processing sensor input so as to recognize landmarks.

M.E. Jefferies et al. (Eds.): Robot. & Cogn. Approach. to Spat. Map., STAR 38, pp. 137–143, 2008.
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They also find that in many environments, there are long stretches with no
useable landmarks. Animals, including humans, find the same thing. There-
fore, the taking of a fix–establishing where you are from sightings of recognized
landmarks–is done only intermittently. Between fixes, a continuous estimate of
position is kept by means of dead reckoning. This is true in traditional marine
and aeronautical navigation and in animal navigation, including the routine nav-
igation of familiar spaces, both large (city scale) and small (room scale), that
humans carry out throughout a large portion of every day. That is why there is
some discussion of dead reckoning in many of these chapters.

The navigation of familiar spaces is so routine and done with so little thought
that many humans are under the erroneous impression that they cannot dead
reckon and are amazed to learn that ants, bees and rats can. When put to the
test, however, humans are also good at estimating how far they have gone and in
what direction [11]. They are good at it even when walking blind, which deprives
them of a major source of the velocity cues critical to dead reckoning.

The reliance on dead reckoning for the moment-to-moment estimation of po-
sition on the map becomes apparent in experiments with rats in which familiar
routes are lengthened or shortened. The running rat collides with the walls at
the ends of shortened corridors, turns into the wall when it reaches what used
to be the correct turning point in a lengthened corridor, and runs off the end of
a shortened path in an elevated maze (see [5], p. 91ff for review and citations).

Dead reckoning is the integration of velocity with respect to time to obtain
position as a function of time. If viewed as a discrete process, it is the summation
of successive displacements to obtain net displacement. The velocity vector is
displacement per unit time. If displacements,〈Δx, Δy〉 , are estimated at regular
intervals, Δτ , the velocity vector is lim

Δτ→0
〈Δx, Δy〉/Δτ . Displacement is the

distances one has moved in different (preferably orthogonal) directions. A metric
space is by definition a space in which a measure of the distance between any
two points has been defined, so displacement and displacement per unit time are
inherently metric.

Given the fundamental role of dead reckoning in navigation, a central compu-
tational problem is to make the reckoning of the distances moved as accurate as
possible. In animals, and no doubt in robots also, a key to this is integrating the
information from many different cues. Because all of the cues have errors associ-
ated with them, because the validity (accuracy and precision) of the information
provided by any one cue varies from environment to environment, and because
the integration must be done in real time, the integration should be Bayesian [18].

Making a metric map. Dead reckoning provides the navigator with moment-
to-moment estimates of position and heading in a common allocentric coordi-
nate framework. This always accessible estimate of current position and heading
makes it possible to record in that same common coordinate framework the po-
sition of a landmark seen in one location and the position of a landmark seen in
a different location (see [5], p. 106ff).

The map thus created inherits its metric structure from the metric structure
in the dead reckoning that mediates its construction. The metric structure of
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the map is critical to many of its uses, in particular to the estimation of range
and bearing (distance and direction), the fundamental metric measures. Because
metric maps are the formally most powerful of spatial representations and be-
cause weaker geometric properties (e.g., topological properties) are sometimes
erroneously equated with properties that are simpler to compute or, from a com-
putational perspective more basic or primitive, there is a tendency to assume
that cognitive maps in animals have a“simpler” non-metric structure. Given the
role of inherently metric dead reckoning in the construction and utilization of
cognitive maps and the fundamental role of distance and direction in navigational
computations, this is, in my estimation, misguided. The topology is contained
in a metric representation and may be computed from it. The reverse is not
true; topological representations lack the metric information that is essential in
navigation, and there is no way to extract this information from them.

A major computational problem in connection with map making is that the es-
timates for the positions and orientations of the surfaces recorded on the map are
themselves subject to error, deriving as they do from error-prone dead-reckoning
and error-prone distance and direction sensing. As a result of errors in the reck-
oning of the navigator’s position and heading and errors in the sensing of his
distance and direction from landmarks, the same surface will be estimated to
have different positions on the map when approached from different directions
and via different routes on different occasions. This raises two computational
issues:

• how to integrate position and orientation estimates obtained on different
occasions;

• how to avoid, insofar as possible, recording two different surfaces when there
is in fact only one, that is, how to recognize that one has arrived at or is cur-
rently picking up sensor input from a surface whose position has already been
recorded on the map, albeit in a location and with an orientation somewhat
different from those currently imputed to it.

One key to solving these problems is again to treat the positions of surfaces on
the map probabilistically and use a Bayesian (optimal estimation) approach to
integrating in real time past and current information about them [16].

A second key is to focus on global structure, which, as several chapters in this
book emphasize, naturally takes a hierarchical form: the environment has parts;
and the parts themselves have parts. The success of a focus on the structure of
the environment depends on a felicitous choice of a scheme for representing its
shape. This latter issue-how best to represent the shape of the environment-has
received rather little attention. It is one of the deepest issues. Roboticists may
someday make a major contribution because of mathematical sophistication that
they bring to the problem from their engineering training. At present, however,
most robotic map making that I am familiar with uses grid-occupancy [17].
Although this simple representation may facilitate probabilistic integration, it is
an infelicitous choice from the second perspective: using constraints from global
structure to help solve the ambiguity problem (is this a surface already on the
map or a new surface?). The grid-occupancy representation treats the world as an
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unstructured array, composed of cells that are independently either occupied or
unoccupied. In fact, of course, the world has useful a priori predictable statistical
structure (see Chap. “Cue and Goal Encoding in Rodents: A source of Inspiration
for Robotics?”, p. 163): the probability that a given cell is or is not occupied
depends strongly on the occupancy pattern for neighboring cells and also, to
some extent, on global occupancy patterns, the pattern of occupancy in remote
cells. The challenge is to find computationally efficient algorithms that capture
and exploit this probabilistic structure to help resolve the ambiguity problem.

The best approach to the shape representation problem would simultaneously
achieve both compression (a compact encoding of the experienced environmental
shape) while making explicit useful features of the shape, such as, for example,
its part structure, axes of symmetry, efficient routes from part to part, and so
on. Here, roboticists may profit from theoretical work on shape representation
by psychologists. Leyton’s [10] group-theoretic approach with its emphasis on
the parameterized Euclidean operations of translation and rotation that could
most parsimoniously have generated a shape seems particularly promising in
that it suggests how the encoding of the shape of the environment, along whose
surfaces the robot moves, could be based on a natural decomposition of the run
(straight) and turn commands that effect its movements.

Leyton’s work also emphasizes the importance of axes of symmetry in the
encoding and manipulation of shape [9]. The use of medial-axis transforms to
generate an abstract hierarchically structured shape skeleton has been popular
in computer vision and image processing [6, 7, 14, 15] and in psychological and
neurobiological theorizing [8] since Blum first suggested it [1, 2]. Enthusiasm for
this representation has been tempered by the fact that existing approaches to
computing the skeleton are hypersensitive to contour noise and give counterin-
tuitive skeletons for several simple shapes (e.g., rectangles). Recently, Feldman
and Singh ([4], in press) have found an ingenious solution to this problem. In
their approach, Bayesian estimation is used to identify the skeleton most likely
to have “produced” the shape, that is, the skeleton that best “explains” it in a
sense made clear by Leyton’s generative theory of shape.

The medial axis of a part is an example of what Cheng calls a global shape
parameter. These parameters play an important role in the registration of im-
ages in computerized image processing [14]. Cheng (see Chap. “Geometry and
Navigation”, p. 145 and [3]) suggests that they also play an important role in
establishing an animal’s orientation within a familiar environment.

Using the map. The behavioral signature of a cognitive map is the ability to
estimate the range and bearing of one arbitrary location within familiar (that is,
mapped) terrain from another arbitrary location within that same terrain. This
ability extends to insects [12, 13], emphasizing the fundamental role of a metric
map in solving the problems inherent in navigation.

Another fundamental use is in route planning, because many environments
discourage to varying degrees travel by the straight-line route. Among the attrac-
tive features of an axial skeleton representation of the shape of the experienced
environment is that the skeleton itself is a plausible route map: it shows the
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midlines through the parts and where those midlines join one another (cf. Chap.
“Learning Cognitive Maps: Finding Useful Structure in an Uncertain World”,
p. 215 and Chap. “These Maps are Made for Walking – Task Hierarchy of Spatial
Cognition”, p. 181). Route-finding algorithms that work on road maps will work
on axial skeleton representations of environmental shape.

A less often emphasized use is in recognizing places and landmarks (see Chap.
“These Maps are Made for Walking – Task Hierarchy of Spatial Cognition”,
p. 181 and Chap. “Landmarks for Navigation in Humans and Robots”, p. 203).
A precondition for using the perception of the distance and bearing of some part
of the environment to improve one’s estimate of one’s position (that is, to take
a fix) is recognizing it. To recognize a part of the environment is to identify
it with a charted feature. As several chapters emphasize, place and landmark
recognition is no small computational problem (unlike dead reckoning, which is,
in its basics, computationally trivial).

In traditional navigation, the estimate of one’s position and heading on the
map, derived from dead-reckoning, is used to, establish the Bayesian priors on
the chart features with which a currently sensed feature of the terrain may
be identified. Features in grossly different directions and at grossly different
distances from the direction and distance at which one takes the currently sensed
feature to lie have zero prior probability of being identified with it. A navigator
sailing on Long Island Sound who sees something to her east that looks like Mt.
Vesuvius will never conclude that she is in the Bay of Naples, no matter how
good the correspondence between what she now sees and her image of Vesuvius.
Conversely, most navigators, from humans to insects, will accept a poor match
between what they see and their search image of a landmark if what they now
see is close to the location where they expect to see the landmark. Thus, dead-
reckoning plays an important but subtle role in the recognition of the landmarks,
the sightings of which are then used to correct the reckoning. This is true even
for the estimation of position from star sightings (stellar fixes). The first data
entry on most published worksheets for working one’s sightings is the dead-
reckoning estimate of one’s position at the time the sighting was taken. What
is computed from the sighting is the adjustment that should be made to that
estimate. In some methods for working a sight, the star sighted is never even
explicitly identified. It is implicitly identified from the dead reckoning estimate
together with the compass bearing and elevation of the star sighted.

The scheme for representing environmental shape is also an important consid-
eration in landmark recognition. Some schemes, for example, schemes based on
axial skeletons, decompose the shape into a part hierarchy, facilitating recogni-
tion of the parts, whereas others, for example, grid-occupancy schemes, do not.
Thus, some schemes help to solve the parsing problem discussed by Hirtle, while
others do not.

Using landmarks. Landmarks are used to establish heading, establish position,
and punctuate progress along routes (see Chap. “Cue and Goal Encoding in Ro-
dents: A source of Inspiration for Robotics?”, p. 163 and Chap. “Landmarks for
Navigation in Humans and Robots”, p.203). For establishing heading, distant
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landmarks (distal landmarks in Save et al’s terminology) are best because they
minimize parallax. Ideally, points of directional reference (points used to estab-
lish heading) should function independently of one’s position; changes in one’s
position as one moves and errors in the estimate of one’s static position should
have no effect on the estimation of one’s heading. The farther away a direc-
tional reference point is, the less parallax there will be, that is, the less the
effect of variations in position on the estimate of heading. That is why distant
landmarks are preferred for establishing heading. Celestial landmarks are, for
practical purposes, points at infinity; they show no parallax. That is no doubt
why both animals and humans prefer them as points of directional reference.
Exactly the opposite considerations apply when landmarks are used to estimate
position. In that case, one wants the direction of the landmark to be maximally
sensitive to variation in one’s position. That makes close landmarks (proximal
landmarks) preferable for that purpose.

In traditional navigational language, when a landmark is used to punctuate
progress along one or more routes (see Chap. “These Maps are Made for Walk-
ing – Task Hierarchy of Spatial Cognition”, p. 181 and Chap. “Landmarks for
Navigation in Humans and Robots”, p. 203), it is called a waypoint. Waypoints
parse routes into segments. They also serve to verify and correct one’s estimate
of how far one has progressed along the chosen route, that is, to correct the
reckoning. Waypoints generally lie close beside a route. The logic of this is the
same as the logic for choosing landmarks used to estimate position to be as close
to the estimated position as possible. When a waypoint is close abeam (nearby
on a line perpendicular to the route one is following), its angular velocity is
maximal, so the information it supplies per unit time about one’s position is
maximal. Thus, waypoints are chosen for ease of recognition and for proximity
to the route. Ease of recognition may arise either from highly distinctive features
of the waypoint itself or because it has an easily and precisely estimable loca-
tion relative to the larger structure of the surrounding environment, emphasizing
once again the importance of understanding the principles by which this larger
structure is encoded.
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Geometry and Navigation

Ken Cheng

Summary. In vertebrate animals, the geometric arrangement of surfaces in an envi-
ronment has been shown to play an important role in relocating a desired place. In
such relocation tasks, an animal is typically first shown a target location in a rectan-
gular enclosure. After being disoriented, it then has the task of relocating the target.
Aside from the geometric shape of the enclosure, other nongeometric or featural cues
are typically available. These include colours of walls, objects serving as landmarks,
or smells. An often reported pattern of results is preferred reliance on the geometric
cues, sometimes to the exclusion of nongeometric cues. Various axes of space, shape
parameters that include principal axes and axes of symmetry, may play a role in how
animals use geometric information to determine which direction is which. Some work
on robotics related to the geometry literature is presented and the issue of modularity
is discussed.

6.1 Introduction

To navigate to a desired place, an animal typically needs to figure out which
direction is which, a problem known as determining the heading [31]. If the
animal is keeping track of the (straight-line) distance and direction from the
starting point of the journey, a process known as path integration [31], it
needs to keep track of the heading continuously. Many animals path integrate
[1, 26, 31, 42, 58]. In outdoor environments, many animals use both information
in the sky and large-scale Earth-based landmarks to establish which direction is
which. In insects, directional information is extracted out of the pattern of po-
larised light in the sky, and the neurobiological mechanisms have been worked out
in some detail [55, 56]. Continuous large-scale landmarks, such as a shoreline, a
line of trees, or a road are also used by honeybees to establish compass direction
[30]. In fact, bees refer to follow continuous landmarks over the sky compass
when the two are put in conflict. A large body of research on vertebrate
navigation, however, has been conducted in restricted indoor laboratory envi-
ronments, where both sky and large-scale landmarks are absent. If inertial cues
based on path integration are disrupted, then the overall geometric shape of the
environment seems to play an important role in reorientation. This geometry
literature is now burgeoning. This chapter gives a brief overview summary of
the research findings, and then discusses the theory and its relations to robotic
navigation. The review of literature will be brief because a full review is available
elsewhere [12].

M.E. Jefferies et al. (Eds.): Robot. & Cogn. Approach. to Spat. Map., STAR 38, pp. 145–161, 2008.
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6.2 Review of Empirical Literature

6.2.1 The Rotational Error: Basic Phenomenon

In most studies in the geometry literature, disoriented subjects had the task of
relocating a place of reward within a rectangular enclosure. Conceptually, the
cues for orientation in the arena may be divided into two kinds, the geometric
and nongeometric or featural information (Fig. 6.1). Much of the interest in
rotational errors hinges on this distinction. Gallistel [31] defines it as follows:

A geometric property of a surface, line, or point is a property it possesses by
virtue of its position relative to other surfaces, lines, and points within the same
space. A non-geometric property is any property that cannot be described by
relative position alone (p. 212).

I can illustrate this using the example of the first geometry study [3] (Fig.
6.1). The rats were exposed to some food at a randomly chosen location in the
rectangular arena, they got to eat some, were removed, and then had the task of
digging the rest of the food out of the same location after a 90s delay, the food
now buried under uniform wood chips. The rectangular shape of the arena pro-
vides the geometric cues (Fig. 6.1B). In Fig. 6.1B, points of surfaces are shown in
relation to one another, with finer details omitted, such as panels in the corners.
Basically, it is a rectangle, with the target location drawn on it. Also shown is
one axis of symmetry through the middle of the length of the rectangle. Vari-
ous axes that can be defined on the basis of geometric information, parameters
based on shape, may well be of theoretical significance (see Sect. 6.3). What is
not shown in Fig. 6.1B are other characteristics of the surfaces, such as having
a white or black colour, or a smell of anise or peppermint. These featural cues
of different modalities are shown in Fig. 6.1C. Other than features on surfaces,
discrete objects also serve as featural cues in some studies. These objects do pos-
sess geometric properties, but it is the broad coarse-grained geometric properties
that are thought to be most important, not fine geometric details.

The interesting error that led to the geometric/nongeometric distinction is
called the rotational error (Fig. 6.1). In the artificial rectangular task envi-
ronment, but almost never in the real world, defining a location solely with
respect to geometric cues leads to an ambiguity in specifying the target loca-
tion, whereas defining a location with respect to featural cues delivers one single
unambiguous location as the target. In the rectangular space, both the correct
location and the rotational error fit the geometric definition of the place. The
rotational error is located at 180 ◦ rotation through the centre from the correct
location. It is produced when the ‘map’ is matched to the world in the ‘wrong’
way, rotated 180 ◦ from what it should be. Making the rotational error sys-
tematically, that is, above chance levels, indicates that the animal is sometimes
relying solely on geometric information for relocation. And if correct responses
do not outnumber rotational errors statistically, then an animal is relying solely
on geometric information in doing the task.
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Fig. 6.1. Schematic illustration of the relocation task rats in Cheng’s [3] study. A. Rats
were shown some food at the target location, and were later required to go back and
find the food, now buried under uniform wood chips. The arena had plenty of features
other than its overall shape; these included different brightnesses of walls, different
visual and tactile patterns in the corners, a nd smells emanating from some corners.
The rats sometimes searched at the target location, and sometimes made the rotational
error, searching at the location rotated 180 ◦ from the goal through the centre. B. To
commit the rotational error, they must have a representation that only encoded the
location of the food with respect to the overall shape of the arena. In this case, the
animal has two ways of matching its record to the world. The correct way of matching
(top wall of B matched to top wall of A) leads to a correct choice, while the wrong
match (top wall of B matched to the bottom wall of A, with the ‘map’ in B rotated
180 ◦) leads to the rotational error. C. If the record contains featural information, it
can be matched to the world in only one way. No systematic errors would result from
such a record.
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6.2.2 Rats

In Cheng’s [3] experiments, rats made systematic rotational errors in both
working-memory and reference-memory paradigms. In the working-memory
paradigm, the target location could be anywhere in the arena, and a differ-
ent target location was shown to the rat on each trial. Despite the multimodal
featural cues, including smells in some corners, different textures and visual pat-
terns in the corner panels, and with one long wall white and the three other walls
black, the rats made many rotational errors, with correct choices not exceeding
rotational errors statistically. No other systematic errors were found. Margules
and Gallistel [40] replicated these results.

In the reference-memory paradigm [3], possible target locations were restricted
to the corners, and the target location remained the same throughout training.
Rats chose the target location far more than the rotational error, but still made
systematic rotational errors. These results indicate that the featural cues were
discriminable to the rats.

6.2.3 Other Mammals

The pattern of results found for rats turned out to be characteristic of other
mammals tested, including human children. Subjects were typically tested in
reference-memory paradigms, although in the case of children, few trials of train-
ing were given. The pattern is that at least under the right circumstances, cor-
rect locations were chosen significantly more than rotational errors, indicating
that the subjects did use featural information for relocation. But the amount
of rotational errors remained above chance, indicating the use of only geometric
information on some trials.

For rhesus monkeys, the pattern of results depended on the size of the featural
cues provided in the arena, whose size remained constant throughout [34]. Small
featural cues led to the monkeys’ making as many rotational errors as correct
choices. Large featural cues, however, led to significantly more choices of the
correct corner than the rotational error, while the amount of rotational errors
continued to be systematic.

Children resemble monkeys in performing the relocation task: give them big
enough featural cues, and they will use them. Early results on 18-24 month old
children tested in a small (1.2m by 1.8m) rectangular enclosure revealed that
children used the geometric cues readily, choosing mostly either the correct cor-
ner or the rotational error [35, 36]. But they made no use of featural information
over four trials with the target at the same corner, making as many rotational
errors as correct choices. Featural cues were the distinctive colour of a wall or dis-
tinct objects. Other experiments ruled out motivational and attentional factors,
and showed that the featural cues were clearly discriminable. But later exper-
iments with a larger enclosure (2.4m by 3.6m) showed that even 18-24 month
olds can use featural cues, choosing the correct location significantly more often
than the rotational error [38]. Rotational errors, however, remained systematic,
as with rats and monkeys. Explicit manipulations of the size of the testing arena
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showed that it was crucial in predicting the amount of rotational errors [37].
In the small 1.2m by 1.8m space, children up to 5 years of age made as many
rotational errors as correct choices. In the larger 2.4m by 3.6m space, they chose
the correct location significantly more than the rotational error, with rotational
errors remaining systematic, however, for 3-4 year olds, the youngest age tested.

6.2.4 Birds and Fish Use Geometry and Features

Birds and fish do not make systematic rotational errors (unless the featural
cues that they encounter in training are degraded on tests), but they also can
and do use geometric cues. If trained with both geometric and featural cues,
chicks [49, 50], pigeons [21, 19], and two species of fish, the redtail splitfin [45]
and goldfish [51], all chose mostly the correct corner, making no systematic
errors of any kind. On the whole, birds performed better than fish. Well trained
chicks and pigeons were almost perfect. This pattern shows that these species
use featural cues well.

That birds and fish learn to use geometric cues as well is demonstrated in tests
in rectangular arenas stripped of all featural cues, reduced to four walls of the
same colour. Each species then solved the problem up to geometric ambiguity,
choosing mostly either the target location or the rotational error. Interestingly,
these species learned to use the geometric cues even when salient featural cues
were available during training. The featural cues predicted the target location
perfectly, while the geometric cues left a rotational ambiguity. But the avail-
ability of featural cues did not interfere with the learning of geometric cues.
Basically, geometric cues seem to be learned obligatorily [12].

Both species of birds have also been tested with size tranformations of the
arena. In pigeons, when the arena was made slightly smaller, the already trained
birds went with the shape of the arena [20]. That is, if the long wall was to the
left of the short wall at the target corner in the training space, they chose a corner
in the test space where the long wall was to the left of the short wall, even though
these walls were now of different absolute lengths from before. They preserved
relative distances or relative lengths of walls. In two studies, chicks were trained
to search in the middle of a square arena, and then tested in a larger arena
[47, 48]. Chicks showed significant tendencies to search both at the centre (thus
preserving relative distances or going with the shape) and at the correct absolute
distance from a wall.

6.3 Theory

Gallistel [31] has presented the most thorough theoretical analysis of how geome-
try might be used in the relocation task. Conceiving of the relocation problem as
one of using an internal record to locate a place in the external world, the problem
can be divided into two parts. First, one has to align the record with the world,
which is the determination of heading. Then one has to use the record to pinpoint
the target location. The theory states that geometric properties play a major
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role in determining heading. The geometric information used is not the entire
shape in all its details, but some global abstract properties, the principal axes.

6.3.1 Principal Axes

For purposes here, we need to consider only a two-dimensional space, consisting
of the horizontal search surface bounded by walls. Intuitively, the first principal
axis is the long axis that cuts through the middle of the length of the space.
Figure 6.1B shows that in a rectangle, it is the long axis of symmetry. In me-
chanics, this is the axis that minimises the angular momentum when the space
is rotated around the axis. In statistics, it is the principal component, the line
that minimises the sums of squares of perpendicular distances from points in the
space to the line. The second or minor principal axis is orthogonal to the first
principal axis. Mechanically, it is the axis that maximises the angular momen-
tum. The principal axes are clearly much reduced data compared with the metric
properties contained in the shape. Nevertheless, they are metric properties based
on shape, or shape parameters.

Matching the principal axes of internal record and perceived space is a global
matching strategy, matching based on selected global parameters. Computing
the principal axes is a determinate process, not a trial-and-error iterative pro-
cess typical of feature-matching schemes based on matching many local features.
Only a limited number of parameters (two axes) are to be matched, no matter
how complex or large the space. The matching process is thus not subject to
computational explosions. The computation can be based on coarse-scale geom-
etry; fine geometric details are not needed. Missing out on finer details means
some errors in computing a principal axis, but such errors remain small. And if
the purpose of the alignment is only to point to the correct region of space to do
a finer-scaled search, then small errors matter little. Finer scaled spatial informa-
tion, both geometric and nongeometric, will be necessary for precise pinpointing
of a target, but they are not needed for determining heading. This resilience
against errors, or robustness, is a desideratum in any matching scheme.

Of course, using principal axes to determine directions can lead to a 180 ◦

misalignment between internal record and external space. In fact, matching on
the basis of principal axes alone leaves a rotational ambiguity in all spaces, not
just rectangular ones. This is because the two principal axes are orthogonal, and
their poles are not marked. There are always two ways (180 ◦ apart) of matching
up internal records of principal axes to those in the world. This is one reason
why axes of symmetry, which can be curved, might make better global shape
parameters for heading (Sect. 6.3.3, [6, 11]). In defense of principal axes, however,
some other metric properties of the axes may serve to eliminate this ambiguity
in most spaces. For instance, within the confines of a space, the two principal
axes typically do not intersect at their respective centres. There is typically a
long end and a short end. Hence, matching in addition the relative lengths from
the intersection of the axes to the ends of the space does the job. Note that we
should not take rotational errors in rectangular spaces to be evidence for the
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use of principal axes rather than other axes, because in a rectangular space, the
same ambiguity applies to various axes of symmetry as well.

We can contrast this and similar global matching schemes (based on other
types of axes) with local matching algorithms in which matches between corre-
sponding points or features (sets of points) are sought. Local matching strategies
face some problems, such as computational complexity and perceptual aliasing.
As the space gets bigger, so do the number of features, leading to an explosion
in the number of possible ways to match features in the world to features in
the record. This makes for a large correspondence problem. Perceptual aliasing
refers to ambiguity resulting from limited descriptions of what to match. For
example, the limited description “door” has many possible matches in many in-
door settings, as does“tree” in outdoor settings. False correspondences may be
worse than useless. Perceptual aliasing may be reduced by increasing both the
details in the descriptions of features, and the system’s perceptual discriminative
capabilities. Of course, both of these necessary tactics come at a cost.

Both the large correspondence problem and perceptual aliasing mean that
small details can really matter. Small mismatches of details may lead to large
errors, what amounts to a lack of robustness. For example, suppose that one
door of a particular height and shade of brown on the north side of a room is
to be used as a directional cue. If one errs on the colour and height, and ends
up matching to the east door rather than the north door, one ends up with an
enormous (90 ◦ error. To prevent such errors of fine details from wreaking havoc,
one must match many features. This explosion is computationally expensive.

6.3.2 Transformational Experiments on the Use of Geometry

Despite the proliferation of geometry studies, no experiment addressed how
geometry is used for relocation until 2004, when two papers rejecting global
matching appeared, on rats [44] and on chicks [46]. Both studies used the trans-
formational strategy [13]: Animals were trained in one shape of space and trans-
ferred on tests to different shapes. The rats were trained in a rectangular shape
(without featural cues) and transferred to a kite shape [44]. Conceptually, this
is formed by halving the space at a diagonal, reflecting one half, and joining the
two halves at the diagonal again. The chicks were trained to search in a paral-
lelogram arena, also without featural cues [46]. The parallelogram had 2:1 ratios
in both corner angles and wall lengths. On tests, the shape was transformed
to a rectangle (preserving ratio of wall lengths), a rhombus (preserving corner
angles), or else reflected (preserving all metric properties but reversing left-right
relations or sense). Both the rats and the chicks in all the transformed spaces
still had strong biases to search at particular corners. Because the animals still
searched nonrandomly in drastically changed shapes of spaces, they were clearly
not matching on the basis of shape congruence.

Both Pearce et al. [44] and Tommasi and Polli [46] rejected all forms of global
matching in favour of various local matching schemes (such as matching the
angle of walls at a corner) and sensorimotor routines (such as finding a long
wall and moving to its left end). Cheng and Gallistel [11], however, found that a
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strategy of using the major principal axis accounted for the data just as well. The
minor principal axis was irrelevant in that it would not serve to disambiguate the
rotational ambiguity in any of these training spaces. Cheng and Gallistel drew
the first principal axis through each of training and transformed test spaces, and
superimposed the training space on each test space, lined up at the middle of the
axis. A strategy of picking out a corner on this basis accounted for all the data,
without any further assumptions. In contrast, the local explanations proposed
in [44] and [46] come with ad hoc qualifications.

Gallistel and I [6, 11] argued that some form of global matching is highly likely,
although we did not favour principal axes as a basis for matching (discussed in
Sect. 6.3.3). The reason that global matching is necessary has already been
outlined. In simple experimentally constructed spaces, matching on the basis
of a few local features may be possible. In the real world, even in artificially
constructed worlds, this is rarely so. Finding the right tree or the right door out
of an entire search space may tax the perceptual capabilities of an animal or
a robot, unless the region in which to search is restricted. That is what some
kind of global matching scheme does. It is not for pinpointing a location, but for
picking out a rough region to search in. More narrowly targeted local processes
can then effectively take over the job of pinpointing the target. A judicious
combination of global and local processes can effectively cut down the explosion
of computational complexity in both.

6.3.3 What Axes?

If axes are to be used, I suspect that principal axes are not the best. Although
they are physically and computationally simple, as shape paramaters they miss a
lot about the shape they are supposed to capture. Principal axes are necessarily
straight lines at right angles to one another, and these facts may be disadvan-
tageous. As already discussed, without additional properties used in matching,
there are always two ways to match the principal axes in a record to the principal
axes in the world, two matches 180 ◦ apart. Furthermore, having to be straight
is a limitation; it means that the principal axes do not typically describe the
essence of a shape. The principal axes do not capture the the S of a S-shaped
or the C of a C-chaped space. Having principal axes over the entire space might
also miss what we might consider as the structure of a space. Thus, a Y-shaped
should have three radiating spines rather than two orthogonal axes.

A set of alternatives to principal axes are various axes of symmetry. Leyton
[39] provides ample theoretical discussion. For instance, one set of axes may be
formed by drawing circles that are tangent to the edges of the shape. Different
formal definitions may then be used to define the axis of symmetry, such as the
middles of the circles, or the midpoints of the chords connecting two correspond-
ing points on the shape. These axes may curve as they run through the middle
part of a section of space. This is an advantage, as most natural spaces, such
as ponds or openings in a forest, are not rectilinear spaces, and a curved axis
typically allows only one unambiguous match between the record and the world.
Axes of symmetry provide a ‘stick-figure’ outline of the shape. Such axes can
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give an I-shaped space a single fairly straight axis, an S-shaped space a curved
S-shaped axis, and the Y-shaped space three axes converging at the centre of the
“Y”. Whether such axes of symmetry (and which ones) prove to be important
in biological navigation, and whether they may be useful for robotic navigation
both remain to be seen.

Whatever axes or global representations of a space are used, they do not stand
alone. Crucially, such global representations need to be linked to finer-scaled rep-
resentations that can pinpoint a target. The finer scaled representations are likely
to include both geometric and featural properties. This is evidenced well by a
corpus of work on pigeons searching for a small target containing food in artificial
arenas (e.g., [4, 5, 7],reviews: [8, 14]). The axes point to a region; then navigation
requires appropriate look-up instructions, akin to arrows pointing to various in-
set maps with more details. Such an idea was already in Cheng [3]. A geometric
frame encoding the broad shape, also called a geometric module, contains look-
up instructions that point to various featural modules. This issue of instructional
linkage goes beyond the use of geometry or scales of maps. I have biased the dis-
cussion in this chapter to map-like representations. But instructional linkages are
essential even when the navigational strategies are not map-like. Insect strate-
gies, which have been useful for robotics [29], Franz this volume], are described
as a series of navigational servomechanims [10]. Navigational servomechanisms
are linked together to accomplish the task. At appropriate points in the chain,
one mechanism must give way to another. Contextual cues are suggested to play
a major role in instructional linkage [10, 15].

6.4 Geometry and Robotic Navigation

In attempting to construct a metric representation of space in artificial intelli-
gence, Davis [23] emphasised the need for representation of space at different
scales. More global representations are necessarily coarser, a fact arising from
imprecisions in representations. The same proportion of error (±x%) translates
to larger absolute errors with a more global representation. Representations of
smaller regions, with smaller absolute errors, are needed for fine-scaled naviga-
tion. The need to deal with different scales of representations is also discussed
elsewhere in this book (see Chaps. by Thrun, Mallot et al., Yeap, Jefferies). To
my knowledge, however, the use of principal axes or other axes has not been
proposed for robotic navigation.

Personal communication and a check on citations have revealed three lines of
robotic work that draw some inspiration from Cheng [3]. Egerton and colleagues
[24, 25] took the original notion of a geometric module and geometric frame, and
based a program of robotic navigation on it. Nolfi [43] tested minimal robots in
the Cheng [3] task in evolutionary simulations. Yeap and Jefferies [59], Jefferies
this volume, Yeap this volume] suggested that the construction of a frame of
boundaries with exits is important for a robot in building a map. Such a frame
shares much with the notion of a geometric frame.
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feature module 2
door

can open
can exit if open
tall: ~ 2 m
etc.

geometric frame

feature module 1
food

found in a bowl
buried under dirt
tasty: sweet
etc.

Fig. 6.2. Schematic adaptation of Egerton et al.’s [25] geometric frame plus feature
modules for robotic navigation, ideas borrowed from [3]. The robot is navigating in
a rectangular arena such as the one used in Cheng’s [3] experiments. The geometric
frame encodes only the overall shape of the space, plus labels for feature modules, two
of which are shown. The robot needs to look up the contents of feature modules for
further descriptions of a particular location.

6.4.1 “Biologically Inspired” Robotic Navigation

Egerton and colleagues [24, 25] took inspiration from the original geometric
module [3] in designing and building navigating robots for indoor and outdoor
environments. They titled their work “biologically inspired” in both publica-
tions. A sketch of their key idea (Fig. 6.2) reveals a division of the mapping
system into a geometric frame and feature modules, an idea resembling the the-
oretical explications in Cheng [3]. The idea is that an overall frame based on
the geometry of surfaces serves to point out approximately where the robot is.
As with Cheng [3], the frame encodes the broad shape rather than summary
axes. Feature modules to be accessed for particular locales then serve to specify
nongeometric cues useful for navigation in the area.

An important reason for this division of representation is the perceptual alias-
ing problem already discussed. Landmarks are so plentiful in typical outdoor and
indoor environments that they become an embarrassment of riches that creates
problems. Too many views of different objects or scenes are not discriminable
from one another. Too many landmarks may fill particular descriptions such
as a door or a tree. A geometric frame has the function of reducing perceptual
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aliasing problems. It gets a robot to the ball park, a region at which a target may
be found. The number of perceptual matches should then be greatly reduced.
The robot can get away with limited perceptual abilities and limited descriptions
of what it is looking for or attempting to match.

6.4.2 Representationless Solutions to Navigation

Many roboticists would want a robot to have some internal states. These states
may be consulted and used in part to make decisions. They are internal represen-
tations. Notions such as axes of symmetry constitute internal representations.
Agents without such representations are called reactive agents. They are ba-
sically S-R machines. Reactive agents always react to any particular external
stimulus in the same way; thus, no internal representation is consulted. Typi-
cally, they have limited perceptual capabilities as well, and bear the full brunt of
the perceptual aliasing problem. Nolfi [43] described a number of complex tasks
that reactive agents can solve. Included among them is the Cheng [3] task. The
reactive agents, however, only solve the task up to rotational errors.

Nolfi [43] engineered his reactive agents with genetic algorithms that simulate
natural selection in biological evolution. A number programs for a specified robot
with limited perceptual and motor capabilities were set to work on a problem
of locating a target corner in a rectangular arena; this problem stayed the same
throughout evolution. Those doing the best got to breed. They reproduced copies
of themselves, with some variations in their codes. The rest, which failed the
selection process, were thrown out. The new generation was set to work on the
problem, and the selection and reproduction processes were repeated.

The reactive agents did not possess senses that can discriminate a long wall
from a short wall. Those that evolved to solve the task developed various be-
havioural strategies for always getting to the correct kind of corner (the correct
corner or the rotational error). For example, in one problem, the robot was al-
ways released at one of eight positions within the rectangular arena (chosen at
random): at the centre, facing the middle of one of the four sides, or at the
middle of one of the four sides, facing the centre. (These were the training con-
ditions for the rats in [3].) One line of robots evolved a strategy of moving ahead
over open space with a drift to the left. The drift ensured that it always ran
into a long wall first no matter where it was started from. And then, to solve
this particular problem, it was a matter of turning left when it ran into a wall,
and moving along the wall until it got to a corner. Each of these routines are
sensorimotor in nature. Each can be specified as a programmed reaction to a
particular perceived situation, without recourse to any internal representation.

Reactive agents can do many things, including solving the Cheng [3] relocation
task up to rotational errors. But of course, as acknowledged by Nolfi [43], that
does not mean that rats or other animals are solving the task in the same way.
In the studies on relocation in an indoor arena, only the location of search has
been reported. The paths taken by the animals have not appeared in print. Nolfi’s
work suggests that such paths can be relevant to interpreting what strategy an
animal is using.
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Another important tool in [43] is evolutionary simulation. This too can be use-
ful for understanding animal behaviour. It has been used to investigate insects’
navigational strategies [22]. Neural networks were given a problem presented to
insects, which was to find a target location near a salient landmark (e.g., [2, 57]).
The neural networks evolved by selection and recombination in the computer
simulations. (Thus, the work was all virtual, with no robots.) Successful net-
works were selected to reproduce by mixing their algorithms. Interestingly, the
evolved solutions of bee-like networks (which were those that could move side-
ways) resembled bee and wasp search strategies [9, 16, 17]. They first zoomed in
towards the landmark (a strategy called beaconing), and then veered off towards
the goal when they were near the landmarks.

It would be interesting to run evolutionary simulations on the Cheng [3] re-
location problem, but going beyond reactive agents [43] and using agents with
representations. Would a strategy of using global shape parameters evolve, and
if so, what parameters?

6.4.3 Frames with Exits

Yeap and Jefferies [59] were concerned with early cognitive mapping, which has
the goal of getting a robot to build up a map of the environment it is navigating
through. They suggest the strategy of having the robot build an early map of
a local environment specifying where boundaries (such as walls) and exits are.
The idea is to ignore or look past objects within a space (for the time being),
and map out where the barriers are that bound a space, along with openings
through the barriers, which are exits. Such a frame, called an Absolute Space
Representation, allows the robot to navigate through its environment while it
builds up more knowledge. I am being deliberately brief, as the chapters by Yeap
and by Jefferies in this volume contain far more detailed explications of the work.

Robotics is useful for studies in animal behaviour as well as vice versa [54]. In
the case of Yeap and Jefferies’ Absolute Space Representation, it points out the im-
portance of encoding exits. In the animal literature on geometry, the importance
of exits has not yet been tested. If exits are important, then they might serve to
disambiguate rotational symmetry, whereas other objects of equivalent size might
not. Testing this hypothesis is straight forward, and deserves to be done.

6.5 Geometry and Modularity

Systematic rotational errors, found in mammals, have led to views of modularity,
in which the encoding of geometry is done by a dedicated module that does not
encode other kinds of information [12]. The title of the Cheng [3] paper included
the phrase “a purely geometric module”. It reflected the theoretical view that the
labour of encoding spatial properties is divided in the brain. One unit or module
has the job of encoding just the geometric properties. The module has also been
called the geometric frame. It is supposed to be the main map for a space, serving
the role of coordinating all spatial information. This map would contain labels
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for looking up other information at key locations. Important featural information
is in principle accessible within the same system, via these look-up instructions.
Egerton et al.’s robotic program [24, 25] was based on this idea.

The idea of modularity in encoding geometric information can be pushed
further, or it can be abandoned [12]. In a strong view of modularity [52, 53],
one entire navigational system is based solely on geometric information, without
access to featural information via look-up rules. It was not clear to Cheng and
Newcombe [12] what the entirely modular system is supposed to do. Wang and
Spelke [52] write of the re-orientation process, the process of establishing which
direction is which. Wang and Spelke [53] on the other hand, contradict this claim,
and write that it is the relocation process that is modular, the step in which
the surrounding landmarks are used to pinpoint the target location. In either
case, success at using featural information, which is also clearly demonstrated in
mammals, comes about via the use of other modules than the geometric module.
One such module is view-based matching [52].

Modularity is not needed to account for rotational errors. Various performance
factors may be invoked [12, 41]. The fact that both featural and geometric in-
formation are used in all animals tested, at least under the right circumstances,
makes it unnatural to positseparate stores for geometric and featural informa-
tion. Furthermore, one would want to encode the geometric relations between
features as well as the geometric relations of points as points; surely the dis-
tance and direction (metric relations) among key features matter. Rotational
errors might arise because features are not encoded (for instance, because they
are harder to learn than the broad geometric shape), or because the animal does
not put much weight on them, even if they are encoded.

My current view is a mixture of all these views [6]. Geometric and featural
information are stored together in one system. But one (or more) process of
extracting major axes of space, as already discussed, operates on the geometric
information in the representation. Axes are shape parameters defined by the
geometry of shape, not dependent in any way on colours or smells. The use of
such axes can sometimes lead to rotational confusions akin to cognitive illusions.
This process alone can account for rotational errors, without the need for further
modularity.

Modularity is a key notion in cognitive science [18, 27, 28, 31, 32, 33, 41]. It
might be some time before the issue of modularity and geometry is settled.

6.6 Concluding Remarks

In summary, the importance of geometric information in navigation arose from
a systematic error that rats made in a relocation task in a rectangular arena
[3]. The rat confused locations that stood in the same geometric relation with
respect to the shape of the arena. These locations are clearly distinguishable if
nongeometric information such as the grey levels on walls or smells in the cor-
ners is used to define a location. This work has led to research on the relocation
task in a number of other vertebrate animals, including fish, chicks, pigeons,
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monkeys, and human children and adults. Mammals make systematic rotational
errors under some circumstances. The other vertebrates do not make systematic
rotational errors, but prove to be adept at learning geometric information never-
theless. The systematic rotational errors have led to various and differing views
on modularity and geometric information, an issue that is still unsettled [12].
Gallistel [31] has suggested that the direction determining process is based not
on the entire shape, but on the shape parameters of the principal axes of space.
Gallistel and I have suggested recently that other axes, various axes of symme-
try, may be better candidates [6, 11]. The ideas in Cheng [3] have a played a
role in various programs of robotic navigation ([25, 43, 59], Jefferies this volume,
Yeap this volume).
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Cue and Goal Encoding in Rodents: A Source of
Inspiration for Robotics?

Etienne Save, Vincent Hok, Sophie Renaudineau, Carole Parron,
and Bruno Poucet

Summary. To navigate in their environment, rodents are able to rely on a variety
of behavioral strategies. The most flexible strategies result from their ability to form
spatial representations that encode information about spatial cues and about important
places (nest, goals, etc). In the present chapter, we address the issues of cue and
place encoding in the brain and suggest that they are crucial processes for behavioral
flexibility and adaptation to environmental changes. First, it is suggested that, due to
a different spatial distribution (distant vs. nearby) or nature (allothetic vs. idiothetic)
of spatial cues, animals use and have to coordinate the use of multiple spatial reference
frames. This involves activation of various brain regions including the hippocampus
and neocortical areas. In particular, location-specifc activity of hippocampal neurons
(place cells) has been shown to be controlled by different reference frames. Second,
we present new data suggesting that activity of prefrontal cortex neurons reflects goal
encoding. It is concluded that the knowledge of these mechanisms in animals may be
a source of inspiration to improve the adaptive capacities of navigating robots.

7.1 Space and Navigation

All our everyday actions take place in time and space. The nature of space, a
philosophical issue that has stirred up the minds since ancient times [40, chapter
1], remains enigmatic. Nevertheless, space is, above all, a substantial property of
the world with which we have to deal permanently. Virtually all animal species
are equipped with mechanisms that allow perception and processing of space.
Spatial behaviors, e.g. exploration, orientation, navigation, etc., result from ac-
tivation of these mechanisms. Moving in the environment is crucial for survival
(to fulfill fundamental needs such as hunger, thirst, etc.). Thus, spatial behav-
iors have a very strong adaptive value for all species. They have evolved so as to
allow animals to gain independence relative to environmental changes.

Current studies of spatial behaviors in animals owe much of their conceptual
background to the work of O’Keefe and Nadel [40]. Following Tolman’s early
suggestion [63], these authors basically proposed that animals are able to form a
representation of their environment in the brain, based on the encoding of multi-
ple spatial relationships between landmarks. Using an allocentric representation
(or spatial map), animals are able to exhibit flexible behavior, i.e. to adapt their
behavior to environmental changes. This endows them with the capacity of using
shortcuts, detours, or navigate to places from new starting locations, etc.

M.E. Jefferies et al. (Eds.): Robot. & Cogn. Approach. to Spat. Map., STAR 38, pp. 163–180, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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The issue of patial mapping is also relevant for roboticists whose purpose is
to build autonomous mobile robots. Indeed, to be autonomous, a robot must
exhibit a number of abilities that characterize animal navigation based on an
map-like representation. Thus, in the present chapter, we address the issue of
how space is represented in the brain by examining two basic aspects of spatial
mapping, namely cue encoding in different reference frames and goal encoding.
Lesion and electrophysiological studies in rodents reveal that these functions
correspond to activation of several brain regions that may be part of a large
functional network devoted to spatial cognition.

7.1.1 Spatial Perception and Strategies

The strategy an animal uses to navigate is determined in part by the sensory
information available. There are two sorts of information: idiothetic information
originating from the animal’s own movement (proprioceptive, vestibular infor-
mation), and allothetic information originating from the environment (visual,
auditory, somatosensory, or olfactory information). Using only idiothetic cues,
an animal is able to continuously calculate its position relative to a reference
location (e.g. the nest) and eventually return in a straight path to this location.
Signals generated by linear and angular acceleration are integrated during its
journey, therefore allowing the animal to maintain and update a vector oriented
toward the reference location. This strategy is called path integration and has
been described in many different species from ants to humans [14, for a review].
Path integration does not allow flexible navigation since it offers the animal only
one possible path to return to the nest. However, this is undoubtedly a strategy
which is a fundamental part of the spatial behaviour of rodents. Indeed, it allows
the maintenance of minimal navigational ability in absence of allothetic cues, i.e.
in darkness. Functionally, it is assumed that rats use path integration when they
have to explore a part of their environment they have not encountered before.
Because “spatial mapping takes time” [66], initial excursions in an unfamiliar
area have to be performed independently of allothetic cues. Rats therefore rely
on path integration to generate a direct trajectory back to the nest. Due to
accumulation of errors resulting from successive estimation of linear and angu-
lar movements however, path integration allows accurate navigation only across
short distances [15].

Exploration allows the animal to progressively acquire some spatial knowledge
of its whole environment [62, 44]. This supports the early hypothesis that at-
tributed a role to exploratory activity in building and updating spatial maps [40].
For example, during exploration rats are able to memorize the spatial arrange-
ment of a group of objects located in their environment. Experimentally, forma-
tion of a spatial representation is probed by examining the effects of changing
the spatial relationships between objects. Modification of the object configura-
tion induces an increase of exploration directed toward the displaced objects
[62, 56]. Such renewal of exploration indicates that the spatial change has been
detected and identified. This suggests that there exists in the brain a mecha-
nism that performs a comparison between the familiar configuration and the new
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configuration, allowing detection of a mismatch. The reactivation of exploration
is assumed to reflect an updating process of the representation.

Through exploration, an animal also encodes multiple spatial relationships
between distant cues. The spatial map thus allows the animal to use a global
frame of reference to encode important places and derive their spatial relation-
ships. Because it is independent on the animal’s position, the spatial map places
few restrictions on the trajectories across that space, thus enabling flexible nav-
igation. For example, a rat could be able to reach a familiar place from virtually
any novel starting location. Navigation based on a spatial map is classically
tested in the Morris water maze task [34]. The rat is released at the periphery of
a circular tank containing opaque water and has to swim until it comes across
a submerged, i.e. not visible, platform. In a few trials from different starting
places, the rat learns the position of the platform. That the animals exclusively
rely on distal room cues to reach the goal is tested during a probe trial with
the platform removed. Rats usually spend more time in the area that contained
the platform during training relative to other equivalent areas in the pool, thus
exhibiting clear place learning ability. In addition, a rat is still able to reach
the goal in a straight path when released from a starting place it has never
experienced before.

Although a spatial map appears to be the most powerful mechanism to allow
efficient navigation in any situation, it is likely that, when appropriate, ani-
mals use alternative strategies that require less cognitive demand than spatial
mapping. In the most favorable situation, the goal is visible from the animal’s
starting place. Navigation thus implies that the animal decreases the distance
between itself and the goal. Similarly, would the goal be an olfactory or audi-
tory source, the rat would reach it by following the concentration gradient. In
large environments however, the goal may be located beyond direct perception.
A possible navigational strategy is then to learn a route. To do so, the animal
has to memorize a sequence of associations between stimuli (landmarks) and
movements (turn right, turn left, go ahead, etc). Navigation based on a route
can be very fast as long as the animal can recall correctly the whole sequence.
However, if a landmark is missing, the sequence is interrupted and the animal
fails to reach the goal. This strategy does not allow adaptation to environmen-
tal changes. Note that path integration, visually-guided and route strategies are
based on the processing of egocentric spatial relationships, i.e. relationships that
are encoded in a reference frame centered on the animal whereas spatial mapping
is based on the processing of allocentric spatial relationships.

7.2 Cue Encoding and Spatial Reference Frames

7.2.1 Why Use Different Reference Frames?

Space appears as a continuous, coherent dimension within which we perform
our body or navigation movements. In fact, our sensation of a single spatial
continuum results from the integration of multiple spaces each with its own
reference frame. The reference frames are generated from a collection of stable
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environmental or internal cues that may be used as coordinate systems to com-
pute locations and movements. A place can be memorized in different systems
of reference which are usually coherent, thus allowing construction of an overall
integrated spatial representation. Two main classes of reference frames can be
considered, one is based on the processing of idiothetic information and the other
on the processing of allothetic information. Although these two frames may be
used independently to guide spatial behavior and allow specific strategies (see
Sect. 7.1.1), it is assumed that an animal’s navigational strategy results from
a complex interaction between allothetic and idiothetic cues. Allothetic infor-
mation has been recently shown to be encoded in different frames of reference,
based on the location, either proximal or distal, of environmental landmarks.
Proximal landmarks are usually three dimensional objects located in the ani-
mal’s locomotor space, which the animal can approach and closely investigate.
In contrast, distal cues are stimuli that are located in the remote environment.
They thus have a two dimension appearance and cannot be explored by the ani-
mal. For example, in the water maze task, distal cues are typically cues provided
by the experimental room (posters, cabinets, windows, etc.) whereas proximal
cues would be objects placed in the pool. Distal cues have been shown to be
readily used by animals to perform various spatial tasks [13, 60]. In contrast, al-
though “spatially separated intramaze cues can also serve as place cues” [38], it
seems that using proximal cues for place learning requires more extensive train-
ing [20, 22, 59]. This suggests that encoding spatial information using proximal
and distal cues activates distinct processes.

7.2.2 Hippocampal Place Cells

How the brain encodes the different frames of reference and manages their in-
teraction is a major issue that has been investigated in the last ten years. Most
studies have examined the contribution of the hippocampus in the use of ref-
erence frames using system and unit recording level approaches. The assertion
that the hippocampus plays a crucial role in spatial cognition dates back to
O’Keefe and Nadel’s work [40]. These authors proposed that spatial maps are
implemented in the hippocampus, based on data showing that hippocampal le-
sions disrupt spatial learning and above all, based on the existence of place cells
[39]. Place cells are pyramidal cells located in the CA1 and CA3 sub-fields of
the rat hippocampus. They are characterized by location-specific firing, that is
they tend to fire rapidly when the animal enters a restricted area in the environ-
ment, called either the place field or the firing field [35, 46, 3, for reviews]. Place
cells are virtually silent when the animal is outside the place field. Simultaneous
recording of a large population of cells shows that an environment is entirely
mapped at a neural level and can be described as a unique spatial pattern of
place fields. Because there is some degree of overlapping between place fields,
each location corresponds to activation of a large amount of place cells. Thus,
functional dynamics of the place cell system likely results from a interaction
between spatial and temporal firing properties of cell populations.



Cue and Goal Encoding in Rodents: A Source of Inspiration for Robotics? 167

7.2.3 Place Cell Activity is Controlled by Allothetic and Idiothetic
Cues

Place cell activity has been demonstrated to be controlled by environmental cues.
In a classical experiment, a rat has to continuously explore a circular arena to re-
trieve small food pellets that drop from a feeder fixed to the ceiling. Continuous
exploration allows correct sampling of unit activity in all locations of the arena
[37]. The arena is located in a cue-controlled environment, i.e. surrounded by
opaque curtains, and the only available cue is a large white cardboard (the “cue
card”) covering 100◦ of arc of the arena wall. A first recording session is con-
ducted to identify the location of the place field relative to the cue-card. Ninety
degree rotation of the cue-card in absence of the animal produces an equiva-
lent rotation of the place field in a second recording session, thus showing that
the cue-card exerts a control over place field location. Place cell activity is also
strongly influenced by environmental features such as the geometric shape of the
arena. Transporting a rat from a circular-shaped to a square-shaped apparatus
usually induces a dramatic change in the spatial pattern of place fields. Some
place cells begin to fire in a different location (e.g. south instead of north) while
others stop firing. New fields, developed by previously silent cells, also appear.
This phenomenon, known as remapping, reflects the capacity of the place cell
system to encode separate representations of distinct environments. Each spe-
cific representation is reactivated when the animal recognizes the corresponding
environment [36, 42]. Recent studies revealed that remapping may not occur on
the first exposure to a new environment but may result from learning [31].

Most popular spatial tasks (e.g. water maze, etc.) are based on the use of
visual cues while other sensory information, such as olfactory, auditory, tactile,
movement-related information are made irrelevant or eliminated. Thus, one of-
ten assumes that rats mainly rely on visual information to form spatial maps.
However, studies have accumulated indicating that various sensory modalities
collectively contribute to place cell firing. For example, we have shown that blind
rats that never had visual experience still exhibited normal place cell activity
when adults [51]. Indeed, place fields were found to be controlled by objects
located at the periphery of a circular arena. It was concluded that vision is not
crucial for normal development of the place cell system and that other modalities
may have compensated for the lack of vision. In particular, rats may have used
conjointly tactile, olfactory, and idiothetic information to allow for place field
stability. In another study, we compared the stability of place fields in darkness
when olfactory cues deposited by the animal were either eliminated or available
[52]. The results revealed that elimination of olfactory cues yielded unstable place
fields. In particular, most cells stopped firing. Overall, these result are consistent
with the idea that different sensory modalities can sustain place field stability.
When they provide coherent information, these modalities act in combination
and are able to compensate each other. Thus, the place cell system appears as
an opportunist system whose function is to maintain spatial mapping in spite of
environmental changes.
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Among the sensory information that plays an important role in maintaining
the stability of place fields, idiothetic information has been neglected for a long
time. The idea that place fields are controlled by such information was initially
supported by two observations. First, place cell activity was found to be influ-
enced by vestibular inputs. Rotation of the whole apparatus at a speed that is
detected by the rat vestibular system, resulted in fields remaining stable relative
to the experimental room reference frame [58, 67]. In contrast, for rotation speed
below threshold for vestibular detection, place fields were found to rotate with
the apparatus as the vestibular system was unable to detect the rotation of the
apparatus. Second, place fields were found to persist after the room light had
been turned off, i.e. in darkness, suggesting that the lack of visual inputs was
compensated for by other sensory information including idiothetic cues [47]. In
Save et al.’s study (2000), we also investigated the persistence of place fields
in darkness to determine how robust this persistence would be during a pro-
longed dark period. Manipulating sensory information indicated that the fields
remained stable provided olfactory cues (self-deposited odors) were available.
However, olfactory cues by themselves are not sufficient to support spatial map-
ping [28]. Thus, combining olfactory and idiothetic cues may be necessary to
keep stable spatial mapping.

A number of studies have suggested that allothetic and idiothetic reference
frames interact to control place field location. Gothard and co-workers [20]
recorded place cells as the animal was trained to shuttle on a linear track be-
tween a starting box and a fixed reward location. During the journey to the goal,
the starting box could be moved to any of five possible locations (including the
initial location) along the track so that after visiting the goal, the rat returned to
the box which was then in a new location. When the box was moved toward the
goal, a mismatch occurred in outbound journeys between the rat’s location as
estimated by path integration and its actual location relative to environmental
cues. Gothard et al. found that in all journeys, place fields located on the initial
part of the journey were controlled by path integration (relative to the starting
box) whereas place fields located on the final part of the journey were controlled
by external cues (Figure 7.1). For mismatch situations, place fields located at a
distance from the box were found to shift from an internal (path integration) to
an external (environmental) reference frame. This correction process was inter-
preted as revealing a competing interaction between the two reference frames.

One way to disentangle the respective influence of idiothetic and allothetic
cues on place cells is to conduct “conflict” experiments in which the two kinds of
information are in discrepancy. For example, Jeffery and O’Keefe [25] examined
which kind of information, allothetic or idiothetic predominated in controlling
place cell activity when a distal stimulus (a card) and the rat were rotated by
different angles (90 and 180◦). Prior to rotation trials, a number of training
trials were made during which the rats experienced manipulation of the card
(90◦ rotation). “Uncovered” rats could see the card moving from trial to trial
and “covered” rats could not see the card moving. In conflict trials, place cells in
uncovered rats displayed a switch from a control by idiothetic cues to a control
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Fig. 7.1. A schematic of the experiment by Gothard et al. [20]. Rats were trained to
shuttle on a linear track between a starting box and a food cup (goal). During outward
journeys, the starting box could be moved to a different location (bottom). On the
initial portion of the track, cells fired at a constant distance from the starting box
(place field of cell A) whereas on the final portion, they fired relative to fixed cues
(place field of cell B), suggesting a control by path integration and environmental cues,
respectively.

by the card whereas in covered rats, the card predominated in controlling the
place fields. This suggests that for uncovered rats the card was unreliable for
anchoring place fields, thus leading the animal to switch to idiothetic cues.

In studies using conflicts, the environmental cue is generally rotated while
the animal remains in a stationary arena. It was reported that for moderate
mismatch (45◦), place fields remain under the control of the visual cue [27, 50].
In contrast larger mismatch (e.g. 180◦) results in the fields remaining stable
suggesting a control by idiothetic cues [50] or in the formation of a new rep-
resentation (remapping), suggesting a re-organization of the spatial map with
respect to the environmental reference frame [20, 6, 27].

Overall, it is now acknowledged that place field stability basically results from
a dynamic interaction between idiothetic cues and allothetic cues. Some authors
have proposed that idiothetic cues are a primary drive for place cells resulting
from the intrinsic wiring of the hippocampus whereas, allothetic cues are progres-
sively embodied in the representation through experience-dependent modifiable
connections [32].

7.2.4 Far and Near: Two Allocentric Reference Frames Based on
Distal Cues and Proximal Objects

Although most spatial tasks are based on utilization of distal cues, a number
of studies have suggested that rats may also rely on proximal cues to form an
allocentric spatial representation. In a study by Gothard and colleagues [20],
rats were trained to locate a goal relative to two objects placed directly in the
circular arena that also contained distal cues, i.e. cues attached to the arena wall.
Most place cells were found to fire as a function of a specific reference frame.
Some of them were bound to the arena frame and others were bound to the
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reference frame defined by the two objects, thus indicating that place cells may
use different environmental reference frames to anchor their place fields. Another
interesting result from this study is that the rats needed a great number of trials
to be trained to find the goal relative to the object array. This suggests that
using a reference frame based on proximal objects is more difficult than using
a reference frame based on distal cues for place learning. Thus, an important
issue is to study the functional difference between these two reference frames
so as to get some insight on how environmental spatial information is encoded
in the brain. In our laboratory, Cressant et al. examined whether the control
that objects directly placed in the arena may exert on place fields is similar to
that exerted by distal cues. The recording arena contained three distinct objects
that were placed in a central position and formed an equilateral triangle [10].
A procedure similar to that previously used to determine the control exerted
by a two dimension cue card on the angular position of place fields was used
[36]. Thus, following an initial recording session, the effect on place fields of
rotating the object array 90◦ was tested. The main finding is that the objects
did not control the angular position of place fields, i.e. rotation of the object
array did not induce equivalent rotation of the fields. In contrast, control was
obtained when a) a wall-fixed cue card was added to the set of object, b) the three
objects were clustered and located near the periphery of the arena and, c) the
three objects were placed at the periphery, against the wall, and formed either
an equilateral [10] or an isosceles [11] triangle configuration. Thus, the results
demonstrate that place fields can be controlled by the object array. However,
only when located near or at the periphery of the apparatus do objects appear
to be used as landmarks, thus suggesting that their location is critical to their
landmark status. Objects may be taken as landmarks when they delimit a large
enough locomotor space. Because they induce more important parallax effects
than distal cues, they are less reliable and may not be spontaneously used.
Alternately, slender objects may not enable the animal to disambiguate the
geometrically equivalent places in a circular arena, although the array is made
of distinct objects forming an isosceles triangle configuration. This hypothesis
is supported by the observation that the animal may neglect the identity of the
objects [2] and that asymmetry of the array may be less easily detected when
the objects are at a close distance rather than far away [10, 11].

7.2.5 Effects of Conflicts Between Distal and Proximal Cues

In a study by Shapiro and co-workers [57], rats were trained to explore an ele-
vated cross maze surrounded by several distal cues and covered by inserts (prox-
imal cues) of different texture and visual aspect on each arm. They reported
that rotation of the proximal and distal cues in opposite direction produced
remapping in the majority of cells, thus reflecting that these cells encoded the
relationships between the two kinds of cues. A smaller proportion of cells were
found to be bound to distal cues and still fewer were bound to proximal cues. This
was interpreted as reflecting a hierarchy of influence of available cues on place
cell activity. Furthermore, the responses of small ensembles of simultaneously
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recorded neurons were discordant: some cells were seen to remap whereas other
cells were seen to be controlled by either distal or proximal cues [61, 26, 5]. That
only a few cells were controlled by proximal cues in Shapiro et al.’s study may
be accounted for by the fact that the animals paid little attention to these 2D
features. Thus, the hierarchy of influences proposed by these authors may be
specific to their study.

Recently, we examined the possibility that the hierarchy may be different if
the proximal cues available to the animal were more relevant for its behavior [48,
unpublished data]. To address this issue, we recorded place cells while the rats
explored an elevated circular arena containing three different objects (proximal
cues) and surrounded by curtains holding three large distinct stimuli (distal
cues). After two initial standard recording sessions, a double rotation (made
while the rat was in its homecage) of the proximal and distal cues was made,
with the two sets of cues rotated 90◦ in opposite directions. This resulted in a
conflict between the distal and proximal reference frames (Figure 7.2). It was
hypothesized that, if place fields are under control of the overall configuration of
proximal and distal cues, then they should remap. Similarly, if place fields are
under control of either proximal or distal cues, then they should rotate along with
the set of cues they are anchored to. Lastly, if place fields are under control of
background cues (e.g. folding or shades in curtains, etc.), then they should remain
stable relative to the room. Of the 111 recorded place cells, 66 % were found
to remap. This included cells whose fields shifted to an unpredictable location,
cells that stopped firing, and cells that were formerly silent and that developed
new fields. Eighteen percent of cells were found to be bound to proximal objects
whereas a smaller proportion (10 %) was controlled by distal cues. Note that
some cells remained stable relative to the room (7 %). Our results suggest that
most cells encode the spatial relationships between proximal and distal cues
and are thus consistent with Shapiro et al.’s findings [57]. Nevertheless, among
the cells that responded to the double rotation by “following” one kind of cue, a
majority were controlled by proximal objects. In contrast, Shapiro et al. [57] had
obtained control mostly by the distal cues. This suggests that the hierarchical
representation of cues within reference frames and therefore the relative strength
of these frames is not pre-established but is flexible, depending on the nature of
the cues available and, likely, on the task.

A nice demonstration that the animal is able to manage simultaneously mul-
tiple reference frames comes from Fenton and colleagues who developed a place
avoidance task [15]. Rats were trained to avoid footshocks that were delivered
when entering a portion of a circular arena that could be stable or rotated.
Rotation of the arena allowed dissociation of two reference frames, a reference
frame defined relative to the room and a reference frame defined relative to the
arena. In the rotating condition, the rats were thus trained to avoid two target
areas, one being in register with the room reference frame (non rotating target
area) and the other being in register with the arena reference frame (rotating
target area). Place cell recordings in this situation revealed that some fields
were bound to the room reference frame and other to the arena reference frame.
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Fig. 7.2. Experimental design of Renaudineau et al.’s study. The circular arena con-
taining 3 objects (shown as black square, white circle and gray pentagone) was sur-
rounded by curtains where 3 distal cues were attached (shown as 3 different patterns).
Upon isolation of place cells, four successive 16-minute recording sessions were con-
ducted. Between each session, the rat was returned to its home cage. The double
rotation resulted in a 180◦ mismatch between the objects and the distal cues.

Overall, these results support the hypothesis of distinct processes for coding
different reference frames [68].

7.2.6 Encoding of Proximal and Distal Cues Depends on Multiple
Brain Areas

Although hippocampal place cells play a pivotal role in spatial information
processing in rodents, spatial information is not generated ex nihilo in the hip-
pocampus. The hippocampus receives a large amount of inputs from cortical
areas, via the entorhinal cortex. In particular, the associative parietal cortex has
long been identified as an important area for the processing of spatial informa-
tion [54, for a review]. To investigate the nature of the interactions between the
parietal cortex and the hippocampus, we examined the effects of parietal cortical
lesions on place cell firing as the rat performed pellet-chasing in a circular arena
containing three objects placed at the periphery, and forming a isosceles triangle
configuration [53]. Manipulation of environmental cues included 90◦ rotation of
the objects (in the absence of the animal) to examine cue control and removal of
the objects (in the presence of the animal). In the latter test, it is usually found
that place fields remain stable relative to their position before removal, thus in-
dicating that the animals are able to maintain a spatial representation by using
other cues such as surface (e.g. olfactory) and idiothetic cues [52]. This aspect
was strongly altered in parietal rats. Thus, when the objects were removed, place
fields in parietal rats shifted from an arena to a room reference frame whereas
in control rats they remained aligned with the arena reference frame, therefore
suggesting that the associative parietal cortex plays a role in the establishement
of the reference frame provided by proximal cues. Such results are consistent
with a previous lesion study showing that rats with parietal lesions were unable
to locate a submerged platform in the water maze when they had to rely on
objects directly placed into the pool, whereas they exhibited control-like place
learning abilities when they had to use distal room cues [55]. This is also coherent
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with the fact that encoding of a configuration of objects located in the arena
was disrupted by parietal lesions [56]. Interestingly, rats with hippocampal le-
sions are impaired in using both proximal and distal cues [55] whereas rats with
entorhinal lesions were impaired in using distal cues while the use of proximal
cues was unaffected [41]. These results are consistent with the hypothesis of
two processing systems, one devoted to the encoding of proximal cues and the
other to distal cues. These systems are mediated by distinct functional networks
that may converge to the hippocampus. What other structures may be part of
each system has to be determined. Another issue is to investigate the respective
contribution of these structures and their interaction in cue processing.

7.3 Goal Encoding

Any representational system that guides the animal’s behavior [30] must incor-
porate not only the animal’s position but also the goal location, thus allowing
the animal to select efficient paths toward the goal. So far, how the goal is repre-
sented in the brain is poorly understood. For example, we do not know whether
goals are encoded in the hippocampus (by place cells) along with other loca-
tions or elsewhere in the brain. Hollup et al. [24] have recorded place cells in
rats trained to find a submerged platform in an annular water maze. Activity
was monitored as the animals performed a probe test with the platform re-
moved. They found that firing fields accumulated in the segment of the annulus
corresponding to the previous platform location. This suggests that the goal is
encoded in the hippocampus in the form of an over-representation of place fields
that differentiates it from other places. Some studies have indicated that place
fields tend to accumulate at reward locations. For example, place fields were
found to shift to a new corner of a square apparatus when the reward was deliv-
ered at that location [4]. In contrast, other studies failed to find any evidence of
goal encoding by place cells. For example, Lenck-Santini et al., recorded place
cells as the rats performed a place preference task in a circular arena [29]. In
this task, the animal is trained to locate an unmarked “trigger” zone and stay
in this zone for 2 sec. Satisfying this condition triggers a food dispenser fixed to
the ceiling, thus allowing delivery of a small food pellet that drops in the arena.
Upon landing, the pellet rolls randomly on the arena floor and ends its course
at an unpredictable location. The animal then searches for the pellet, eats it
and returns to the trigger zone for another trial [49]. In Lenck-Santini et al.’s
study, the only available cue was a white cue card attached to the arena wall.
The trigger zone could be located at a distance or very close from the cue card
thus allowing use of place navigation or cue navigation strategies, respectively.
In neither situation, however, did we found an accumulation of place fields at the
trigger location as compared with other locations in the arena. Overall, it is not
clear whether there is a representation of the goal in the hippocampus. Thus,
although it cannot be ruled out that this structure mediates some aspects of goal
encoding, one has to search correlates of such processes in other brain areas.



174 E. Save et al.

Among these areas, the medial prefrontal cortex (mPFC) including the pre-
limbic and infralimbic areas is a good candidate. Indeed, this structure has
been strongly involved in goal-directed behavior [12]. That the mPFC and
the hippocampus are functionally related is bolstered by the existence of a
direct monosynaptic, LTP-modifiable connection originating from the ventral
hippocampus [17]. This suggests that some spatial signal is transmitted from
the hippocampus to the mPFC. One possible effect of this connection may be
to endow prefrontal neurons with the ability to exhibit location-specific firing
in relation to the goal. To test this hypothesis, Poucet [43] recorded prefrontal
units as the rats performed a pellet-chasing task in a circular arena but failed to
observe location-specific firing. Note however, that pellet chasing is not a nav-
igation task since the animal has to simply wander about in the environment.
Because it is possible that frontal neurons are displaying location-specific ac-
tivity when the rat is explicitly trained to navigate in space, we trained rats
in the place preference task. We found that a substantial amount of cells in
the prelimbic/infralimbic areas had clear spatial correlates [23]. Interestingly,
the firing fields of prefrontal neurons were not homogeneously distributed across
the arena. Two goal zones were more represented than the rest of the arena,
namely, the “trigger” zone (the zone that the rat had to reach to trigger re-
lease of the reward) and the “landing” zone (the zone located under the food
dispenser, where the pellet drops). The spatial discharge of prefrontal neurons
was characterized by large and noisy firing fields, that were markedly different
from the small and crispy fields of hippocampal place cells. This observation
suggests that the two structures might have complementary roles. In addition to
the spatial dimension of goal encoding likely provided by the hippocampus, the
prefrontal representation of the goal may also allow integration of motivational,
and emotional dimensions through its interactions with the amygdala complex
and the nucleus accumbens [9]. Overall, these results support the hypothesis
that prefrontal neurons encode goals and suggest that the mPFC is part of a
functional network that allows animals to select an appropriate strategy and to
generate efficient paths toward the goal [19].

7.4 What Might Be Useful for Robots?

To be autonomous a mobile robot needs to be implemented with mechanisms al-
lowing adaptation to changes. Current mobile robots are capable to some extent
of learning and interacting with their environment to exhibit flexible behavior.
However, they are generally tested in specific controlled laboratory environments
while performing specific tasks, conditions that require relatively little behav-
ioral flexibility. Thus, versatile robots have to be endowed with larger adaptive
capacities.

In the present chapter, we have shown that cue and goal encoding are fun-
damental processes that contribute to behavioral flexibility in animals. They
allow the animal to continue navigating effectively in spite of environmental
changes. The functional properties that result from these processes may enable
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robots to exhibit greater adaptation and autonomy. We thus suggest a number of
properties that may be relevant to robot adaptive navigation.

7.4.1 The Conjoint Use of Allothetic and Idiothetic Cues

Perception in robots is based on multiple sensors that provide information on
their environment. Thus, like in animals, two sources of information, idiothetic
and allothetic, are available to the robot. Idiothetic information corresponds to
odometry and allothetic information is provided by laser range finders, sonars
or vision. Most biologically-inspired models and robots (for example in the an-
imat approach) use a combination of allothetic and idiothetic information to
exhibit spatial behavior. Based on this combination, they are endowed with
the capacity of constructing a topological or metric map, localizing themselves
within this map and planning paths to reach goals [65, 18, 33]. One consequence
of integrating these two kinds of information is that they can compensate for
each other to some extent. Allothetic cues may compensate for cumulative errors
resulting from the use of idiothetic information. On the contrary, idiothetic cues
may serve to disambiguate distinct locations that appear the same to the robot’s
sensors. Such mechanisms however, do not necessarily reflect an actual adaptive
response to environmental changes but rather apply to planned situations occur-
ing in a stable environment. Adaptation to unexpected changes requires more
sophisticated interactions.

Animal studies have suggested that allothetic and idiothetic information are
processed in such an interactive way that animals can readily rely on one or the
other or both kinds of information to maintain navigational ability, depending
on which is more appropriate at the time. In other words, permanent and flex-
ible interactions between different sources of information are key processes for
adaptation to environmental changes. Among changes, those that yield conflict
between idiothetic and allothetic information are not frequent, however. In ani-
mals and robots, the several reference frames are usually congruent. In contrast,
situations in which a category of sensory information becomes suddenly unavail-
able are more likely to occur. For example, when visual information comes to
be lacking or irrelevant, olfactory and idiothetic information may be used to
maintain a stable spatial representation. Another critical situation that requires
complex interaction between idiothetic and allothetic information is when the
animal faces an unfamiliar environment (see Sect. 7.1.1). Thus, elaboration and
use of a spatial representation in unstable environments requires integration of
multimodal information that is coordinated, dynamically-adjusted and experi-
ence dependent.

7.4.2 The Distinction Between Proximal and Distal Cues

The distinction between proximal and distal cues is particularly relevant for
navigation in large, i.e. natural, environments. These two kinds of cues do not
provide redundant information but rather complementary spatial information.
Due to motion parallax effects, distal cues such as distant mountains, provide
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the animal with more stable directional information but poorer positional
information than proximal cues. In contrast, proximal cues such as nearby rocks
or trees, provide more precise positional information but poorer directional in-
formation than distal cues [41]. Thus, maintaining a goal-directed trajectory is
aided more by distal cues whereas accurate place-learning is aided more by prox-
imal cues. As far as we know, the functional distinction between proximal and
distal cues is not usually implemented in mobile robots. Detection and catego-
rization processes that are needed to perform such discrimination are likely not
trivial. This is probably not critical for navigation in laboratory-sized environ-
ments but may improve accurate long distance travels in larger environments.

7.4.3 Distributed Organization of Space Representation in the
Brain

Spatial navigation results from the interaction of multiple systems which are
mediated by multiple brain regions [64]. Among these regions, the hippocampus
plays a central role but recent work has emphasized the importance of a co-
operation between the hippocampus and the neocortical areas. Thus, functions
such as cue and goal encoding require permanent cortico-hippocampal interac-
tions. For instance, cue encoding involves contribution of numerous cortical areas
including, primary, parietal and entorhinal cortices and goal encoding involves
the contribution of prefrontal areas. Such a distributed organization reflects not
only the intricacy of the processes subserving spatial navigation but may be also
crucial for flexibility.

Do robots need to be implemented with a functional architecture resembling
as close as possible to the biological organization to exhibit autonomy? The
increasing number of models of the hippocampus and its place cells, allowing
robotic implementation of spatial representations, are consistent with this view
[65, 8, 19]. These models constitute a basis for more complex neural architectures
involving cortical and sub cortical modules such as that proposed by Banquet and
colleagues in which hippocampo-prefronto-basal interactions were incorporated
[1, 45]. Overall, implementing mechanisms inspired by biological systems may
endow robots with sufficient autonomy to deal with unexpected environmental
changes and achieve their mission. It may also help to understand the nature of
the processes that enable animals to be autonomous.
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These Maps Are Made for Walking – Task
Hierarchy of Spatial Cognition

Sabine Gillner and Hanspeter A. Mallot

Summary. Spatial behaviours and abilities do not form a monolithic module of
cognition but can be subdivided into a hierarchy of behaviours, mechanisms, and repre-
sentations. This hierarchical structure is a result of cognitive evolution. Therefore, the
ordering of the individual modules will follow the general rules of phylogeny. In partic-
ular, the complexity of spatial tasks to be solved by an organism and the behaviours
evolved as adaptation to these tasks is of great relevance. In this paper, we present
an approach to spatial hierarchy based on the complexity of the tasks, rather than on
the complexity of the underlying mechanisms. Individual levels of the task hierachy
are discussed from a theoretical point of view and specific experimental examples are
given. In conclusion, hierachies based on tasks seem to differ from representational hi-
erarchies in three respects, the treatment of landmarks, the role of metric information,
and the relation of language and space.

8.1 Introduction

Among the cognitive abilities found in the animal kingdom, spatial cognition
is probably the most common one. Animals with rather limited capacities in
domains such as object recognition, communication, or problem solving may still
be able to perform surprisingly well in spatial tasks. As an example, consider
the desert ant Cataglyphis [50] which is able to solve complex navigational tasks
with a minimum of processing power. The key to this efficiency seems to be
task specificity, i.e. the reduction of the information processing machinery to the
very essentials required to perform the behaviour. Other information processing
abilities, which are not required in navigation behaviour, are not implemented
in the ant’s brain. Task specificity is a general theme of systems generated by
evolution and will therefore not be limited to ants.

In this paper, we discuss human spatial cognition with an eye on evolution. Of
course, this is not a new idea, other authors already pointed out that navigational
mechanisms found in animals may also be operating in humans [49, 48]. For spa-
tial cognition in birds and mammals, a “parallel map theory” has been presented,
suggesting the evolution of modern cognitive maps from a large scale bearing
map and a local scene map [28]. The goal of such enterprises is to eventually
come up with a phylogenetic tree of spatial behaviours showing different capac-
ities as traits arising at some point in evolution and developing from there on.
Since existing cognitive systems are the result of this evolution, understanding
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cognitive evolution will also enhance the understanding of human spatial cogni-
tion as it stands today.

Investigations into the evolution of behavioural traits generally suffer from
two problems. First, we have virtually no fossil records of behaviour. Second,
the two Darwinian driving forces of evolution, i.e., adaptative value of traits on
the one hand and variation in the genes controlling those traits on the other
hand, are only loosely coupled via a complex chain of steps including the sen-
sory, neural, and motor system of the animal. In this situation, evidence for
the evolutionary relatedness of traits found in two animal species has to come
both from the selection side of evolution, i.e. tasks and behaviour, and from the
genetic variation side of evolution, as it shows in the underlying neural mecha-
nisms. Both sides can be linked by the idea of evolutionary scaling: evolutionary
sequences of cognitive (or other) traits must involve small steps that can be re-
alized by genetic variation, but at the same time lead to some gain in adaptivity.
Therefore, we suggest that evolutionary hierarchies of cognitive abilities must
take into account both a hierarchy of mechanisms and a hierarchy of tasks.

A similar conclusion can be drawn from the synthesis of behaving systems,
i.e. from robotics. In an influential paper, Brooks [5] discussed the question of
how to build a robot with complex behavioural abilities. Rather than adding
up information processing modules to form a general problem solving machine,
Brooks suggested to structure the problem from specific “task-achieving behav-
iours”. Once the robot is able to perform some basic behaviour, more complex
ones can be added in what Brooks termed the subsumption architecture. We
think that this is also a useful approach to investigate animal and human spa-
tial cognition. If the correct phylogenetic sequence of the evolution if cognitive
tasks is identified for a given species, the underlying neural mechanisms can be
expected to follow some sort of subsumption architecture.

Fig. 8.1. The Hexatown virtual environment. Street segments are of equal length
and meet at angles 120 degrees. Three landmarks (buildings) are located around each
junction. Subjects can move through the environment by selecting “ballistic” movement
sequences (60 degree turns or translations of one street segment) initiated by clicking
a button [20].
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This goal, however, seems still far down the line. In this paper, we will review
a series of behavioural experiments on human cognition that have been designed
in the general logic sketched out above. Most of the experiments have been
carried out in various versions of the “Hexatown” virtual environment depicted
in Fig. 8.1. We will extend on the general logic in the individual sections. As
a result, we will suggest a task hierarchy for spatial behaviour starting from
recognition of special places (“home”) and leading on to excursions from and
homing to this place, adding more places, chaining of excursions into routes,
recombining segments of known routes to novel routes, planning of alternative
routes and usage of large scale spaces.

8.2 Recognizing Places

The most basic task in spatial behaviour is probably recognizing places. Even in
simple search behaviour, the goal has to be recognized once it has been reached.
In its simplest form, place recognition may be restricted to one or a few special
places such as nest entries or feeding sites, but more complex spatial memories
will contain larger numbers of known places. Place recognition has to rely on
some sort of landmark information, i.e. sensor data characteristic of each place.
Thus, the problem of place recognition is largely identical to the problem of
landmark recognition. Let us define a landmark as a piece of sensory information,
characteristic of a place, that is stored in memory and used in place recognition.
Based on this definition, three questions about landmarks can be asked:

1. Depth of processing: What codes are generated from the sensory input to be
stored in memory?

2. Landmark selection: Which parts of the input information are used to form
landmark codes?

3. Landmark usage: How are landmarks used in spatial behaviour?

For the last question, we follow the distinction between guidance (piloting)
and direction (recognition-triggered response) [40, 48]. In place recognition, land-
marks are used as guidance to pinpoint the location of a place, not as pointers,
directing the navigator elsewhere. Landmarks used as pointers to other places
(“direction”) will be considered in Sect. 8.4. We will now turn to the discussion
of landmark processing and landmark selection.

8.2.1 Landmarks and Depth of Processing

The most general account of landmark information is the notion of “local position
information”, defined as the sum of all sensory inputs perceivable at a certain
location [48]. Although this definition is not restricted to the visual modality,
local views or snapshots will often be the most important type of local position
information. In an extended environment, the local position information is a
vector-valued function of position and pose (orientation of body and sensors);
the components of the vector are the sensor readings currently obtained. For
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the visual modality, the local position information is the image or view locally
obtained. These views, parameterized with the agent’s position and pose, thus
form a manifold containing all visual landmark information available in the en-
vironment ([16] and Franz et al., this volume). More specific kinds of landmarks
can be derived by applying various amounts of image processing (see Table 8.1).
For robots, low-frequency Fourier components od the panoramic image can be
used to bring to snapshots into register for subsequent image comparison [46].
Honey-bees have been shown to use raw image information (“snapshots”) and
find places by matching currently visible and remembered snapshots [7]. The us-
age of raw snapshot information in humans has not been clearly demonstrated.
However, Christou and Bülthoff [11] have shown the landmark objects are recog-
nized faster and more accurately if they are presented in a familiar rather than in
a novel orientation, indicating that views rather than 3D objects are remembered
in the navigation task.

In a mechanism called the geometric module ([9] and Cheng, this volume),
rats determine their position from local depth maps, i.e. the distances to the
surrounding walls. This information is also derived from visual input but requires
more elaborate processing. In rats, possible cues to determine the distance of
walls include motion parallax, the elevation of the lower edge of the wall in
the rat’s visual image, and maybe some stereopsis. In humans, it was shown
that young children [25] as well as non-attentive adults [26] also use geometric
information to find a hidden object in a room.

In everyday language, a landmark is an identified, nameable object or sight,
whose recognition in an image requires a fully-fledged object recognition system.
This type of information indeed increases navigation performance [24]. The re-
lation between landmark recognition and object recognition in general is not en-
tirely clear. While many computational problems are identical, neural processing
of the two recognition systems in humans shows an interesting dissociation [29]:
The recognition of attentively perceived objects is associated with activation in
the right fusiform cortex, whereas objects at decision points are processed mainly
in the parahippocampal region, indicating a difference in the neural processing
underlying landmark- and object recognition.

The level with the largest depth of processing in the sketched landmark hier-
archy consists in the assignment of names to the recognized landmarks. Name-
ability of landmarks may be more relevant in spatial language and direction
giving, than in actual navigation.

8.2.2 Landmark Selection

As compared to the complete view manifold, landmark information must be
limited in two ways. First, only parts of each image should be stored as a memory.
Second, landmarks should be recorded only at selected observer locations. Both
selections will be guided by the following criteria:

1. Salience: Landmarks should be well recognizable. In a verbal recall task,
named objects are usually those standing out from the environment in size,
shape, or functionality [2].
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Table 8.1. Depth of processing in landmark recognition

input image processing output

view manifold local recording raw snapshot at discrete points

depth estimate depth signature (geometric module)

object recognition identified landmarks

associating a text named landmark

2. Relevance: Landmarks should be remembered at places where navigational
decisions are required. If adult subjects are asked to choose objects with
potential landmark value they tend to name objects in the vicinity of road
crossings [1] where a decision has to be made. Note that the distinction of
landmark and object recognition in [29] was based on this criterion.

3. Permanence: The landmark and its position should be constant over time.
In children, navigational errors have been shown to result from choosing as
landmarks salient but non-permanent objects such as fancy cars, which may
be gone when visiting their original location again [12]. Rat head direction cells
follow the more distant of two independently moving landmarks even if they
cover the same visual angle. A possible interpretation of this prefrence is that
the more distant object will be larger and therefore less likely to move [55].

8.2.3 Eye-Movements in a Navigation Task

A behavioural approach to landmark selection and landmark usage is the study
of eye-movements in navigation tasks. As compared to landmark naming tasks,
behavioural measures should be more general, allowing to access also non-named
landmarks in the sense of Table 8.1. Furthermore, even if a particular landmark
is verbally reported, this does not proove its actual usage in the navigation task.
Behavioural measures of landmark usage therefore seem desirable.

The relevance of eye-movement studies for analysing sequential tasks has been
demonstrated in every-day activities such as preparing tea or sandwiches [32, 23].
Here, eye-movements have been shown to precede an ongoing behaviour by sev-
eral milliseconds such that features relevant for the next subtask are fixated. Fur-
thermore, it has been known for decades that eye-movements are task-dependent,
also when directed at static images or paintings [54]. When asked different ques-
tions about the content of a painting, subjects’ eye-movements vary widely in
ways that seem to be indicative of the visual features used in answering these
questions. Turning to navigation tasks, we therefore hypothesize that objects
which are used as landmarks are fixated more often than non-landmarks.

In an experiment using a modified version of Hexatown, Jin and Gillner used a
route learning paradigm while measuring eye movements [30]. At each junction,
one unique building was placed together with two identical instances of a so-
called distractor. The distractor is just one object used repetitively throughout
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Fig. 8.2. (a) Screenshot of the experiment of Jin and Gillner [30]. In a modified ver-
sion of Hexatown, one unique building (landmark) and two instances of the distractor
building are placed at each junction. In a navigation task, subjects directed their gaze
longer (b) and more often (c) towards landmarks than to distractors. Figures are av-
erages over all landmark objects (filled columns) and all instances of the distractor
object (open columns).

the whole environment and therefore does not provide landmark information. In
this experiment, subjects were driven passively along a certain route which had
to be replicated in a later testing phase. It turns out that subjects directed their
gaze more often and longer to landmarks than to distractors (cf. Fig. 8.2). This
result is consistent with the idea that eye-movements are indicative of landmark
usage. In an ongoing experiment, we address the question whether the removal
of frequently fixated objects from the environment leads to reduced navigation
performance.

8.3 Homing: Returning to Places

8.3.1 Landmark-Based Homing

Places in an open space, lacking proximal cues, can be remembered by the con-
figuration of distal cues. Jacobs et al. [27] have suggested that this performance
is based on a map-like representation storing the positions of the individual land-
mark cues together with the goal location. In a virtual environment representing
a courtyard with four different side walls, human subjects were asked to locate
a hidden goal location on the floor. In the test condition, one or more of the
surrounding walls were removed. Interestingly, no significant performance drop
was found as long as at least one wall remains.

An alternative mechanism for landmark-based homing is the snapshot guid-
ance discussed in Sect. 8.2. In order to exclude object-based landmark infor-
mation, we designed a virtual environment representing a circular room with
grey floor and ceiling and a smooth, featureless cycle of colors covering the wall
[21]. Subjects were placed in the virtual room and asked to look around and
remember their location. They were then virtually replaced (“teleported”) to
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another location and asked to home to the previously inspected place. Results
show that homing in this featureless environment is possible. In addition, if the
color contrast of the wall pattern is reduced, homing performance drops, as is
predicted by quantitative models of snapshot-based homing (e.g., [16, 46]). On
the other hand, if object-based landmarks are introduced, homing performance
is improved [6]. We conclude that visual homing can be based on landmark infor-
mation obtained by different amounts of visual processing, including featureless
snapshot information as well as recognized landmark objects.

8.3.2 Homing by Path Integration

Path integration is a concept well investigated in the animal kingdom. It is
based on the perception of egomotion, which, besides landmarks, is the second
major source of spatial information. It is also the simplest mechanism allowing
short-cut or pointing behaviour. The occurrence of these behaviours is often
taken as evidence for a metric cognitive map, which is considered a much more
sophisticated level of representation in our hierarchy (see Sect. 8.6).

The discussion of metric information in spatial memory can be clarified by
the distinction between a working and a reference memory for space. In simple
path integration, instantaneous egomotion estimates are vectorially added to an
egocentric representation of the start position such that the current distance and
direction of the start point are always available. The home vector thus consitutes
a working memory, it does not provide information on places visited along the
route. This sort of path integration is best studied in ants but has been shown
to occur also in many other animals and in humans (see [50, 37, 39] for review).
Some evidence for metric knowledge in spatial long term memory, i.e. a metric
cognitive map, will be dicussed later.

There seems to be no direct demonstration of the usage of plain home vectors by
humans. Still, humans are able to navigate to a goal, relying on egomotion percep-
tion. The predominant cue for perceiving egomotion seems to be vision, as sub-
jects relying on proprioreception and vestibular input, i.e. blind-folded or blind
subjects make substantial errors [34]. If human subjects base their homing on op-
tical flow information, the performance is much better, as long as the visual input
is presented on a display with a large (e.g., 180◦) horizontal field of view [42].

As an alternative to continuous updating of the home vector, Fujita et al.
[17] have suggested that humans remember the walked path in working memory,
while home vectors are calculated only when required (encoding error model).
This idea was originally based on an analysis of homing errors in the Loomis et
al. study [34]. However, the decrease in performance for more complex paths,
which is prediced by the encoding error model, could not be demonstrated ex-
perimentally [52].

While this last result argues for continuous updating and is thus consistent
with the insect-like home-vector idea, there is further evidence that humans
remember more than the vector to the home position. Blind-folded subjects were
seated on a robot platform and moved passively for short distances. Later, they
were asked to reproduce the trip by controlling the robot with a joystick. Besides
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Fig. 8.3. (a) Screenshot of the homing-experiment [19]: a cone (originally colored in
red) served as a landmark in an otherwise empty environment, the floor was textured
to obtain optic flow information. This view has been taken from the starting point.
After the passage of the landmark it was not visible to the subjects again until they
started homing. In part of the trials the landmark has been translated to the right
or to the left (b) Homing positions and corresponding scatter ellipses. Light grey (◦):
no translation of the landmark, middle grey (�): translation to the left, black (∗):
translation to the right. The big black triangles indicate the three possible positions of
the landmark, only one position was occupied during each trial.

the distances, subjects also reproduced the velocity profile, indicating that the
distance together with temporal information had been stored, presumably in
some sort of longterm memory [4]. To what extent this metric knowledge enters
long-term memory, however, is an open question.

8.3.3 Integration of Egomotion and Landmark Knowledge

In experiments where subjects had to solve a simple triangle-completion task,
Gillner and Jin [19] showed that landmark information dominates path inte-
gration. In these experiments a prominent landmark was placed in the vicinity
of the starting point (cf. Fig. 8.3). After the subject passed the landmark, the
landmark was moved several meters away from its original position, without in-
forming the subject. The final homing positions indicated that the subjects rely
more on the information of the landmark than on the optic flow information.
Landmark dominance is not complete, however, as is indicated by the scatter
ellipses in Fig. 8.3.

8.4 Travelling a Known Route

The next level in the task hierarchy is the storage and reproduction of multistep
routes, where each step can be considered a homing to a place functioning as an
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Fig. 8.4. Route leraning experiment by Mallot and Gillner [36]. After learning a route
in Hexatown, subjects are tested by releasing them at some point on the route and
translating them towards an adjacent place. Here the subjects are asked to decide
whether the route continues left or right. In the control condition (no landmark re-
placements) 82 % of 160 decisions (40 subjects, 4 decisions at different places) were
correct. Landmark replacements had no effect as long as all landmarks had been asso-
ciated with the same movement decision during the training phase (middle panel). If
landmarks are combined that “point into different directions”, a significant reduction
in performance is found. We conclude that place recognition is not required in route
behaviour. Rather, recognition of individual landmarks, or views, suffices.

intermediate gial. Route knowledge can be modelled as a sequence of stimulus-
response (S-R) associations or recognition-triggered responses, which results in
a stereotyped behaviour. Alternatively, S-R-S associations have been suggested,
predicting that a navigator not only generates a motor response at a certain
location but also forms some expectations about the ongoing location [48].

What is the landmark information used in route navigation? In experiments
with landmark transpositions after route learning, we showed that the behav-
ioural response is triggered by the recognition of individual landmark objects or
views, not of the configurations of objects making up a place [36]. When learning
a route, each object together with its retinal position when viewed from the de-
cision point (left peripheral, central, right peripheral) is associated with a move-
ment triggered by the recognition of this object. When objects from different
places are recombined in a way that their associated movements are consistent
(i.e. all objects are associated with the movement decision “go right”), no effect
in subjects’ way finding performance was found. A decision was evaluated ar-
bitrarily as “correct”, if a subject chose the movement decision associated with
the central view. If, however, objects are combined in inconsistent ways (i.e.
one object is associated with the movement decision “go left”, the other two
objects with the movement decision “go right”), subjects get confused and the
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distribution of motion decisions approaches chance level (see Fig. 8.4). In con-
clusion, landmark information used in route navigation seems to be dependent
on the viewing and travel direction.

Further evidence for this dependence of place recognition on travel direction
comes from experiments with a spatial priming paradigm [38, 44]. If the sequence
of prime and targets corresponds to the occurrence in a previously learned route,
the target is recognized faster than control stimuli, indicating that the spatial
representation contains information about the direction of travel. Interestingly,
this “route direction effect” [44] has a specific spatial component and can not be
replicated with the same objects shown in a purely temporal order.

8.5 Path-Planning and Way-Finding

The behaviours described so far allow the approach of a known goal following
a formerly learned route. But surviving in a changing environment requires an
adaptive and flexible behaviour, by developing new solutions based on present
knowledge. In the domain of spatial cognition these flexible behaviours are (i)
the planning of novel routes by recombining sections of known routes and (ii) the
inference of metric information for finding shortcuts and detours. In this section,
we will discuss the first idea, which is also known as topological navigation.
Metric navigation will be discussed in Sect. 8.6.

8.5.1 Topological Shortcuts: Recombining Route Sections to Novel
Routes

The planning of pathes depends on the goals of the current excursion and on ex-
plicit, or declarative, knowlegde of space. The memory structure supporting this
sort of flexible route-planning, rather than stereotyped route-following, is called
a cognitive map in the definition of O’Keefe and Nadel [40]. Direct evidence for
the disctinction between route-following and finding of novel routes was recently
presented by [22]. If subjects are requested to replicate a certain route several
times, neural activation is found predominatly in the caudate nucleus. In con-
trast, hippocampal activation is found in a way-finding task, where novel routes
had to be infered from memory.

In an experiment using the Hexatown environment (Fig. 8.1), we demon-
strated that human navigators indeed have the ability of recombining sections
of known routes into novel ones [20]. In a way-finding paradigm, subjects were re-
leased at some location in Hexatown and asked to find certain landmarks shown
them as a print-out on a sheet of paper. Each individual search corresponded
to a route learning task. For each of twelfe different route tasks, we measured
the number of trials need to reach a criterion. The results show that routes
performed later in the task sequence are learned faster, indicating that some
goal-independent knowledge was transferred from the known routes to the novel
tasks. At the same time, the persistence of stereotyped recognition-triggered re-
sponse behaviour could also be demonstrated. That is to say, if errors were made,
they often resulted from taking the stereotyped route decision at a given place.
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Fig. 8.5. Place- and view-graph after [43]. (a) Simple maze shown as a directed
graph with places pi and corridors cj . (b) Associated view-graph where each node vi

corresponds to one view, i.e. one directed connection in the place graph. Edges indicate
view sequences occurring in locomotion.

8.5.2 Graph Memory

Topological shortcut behaviour can be modelled by a graph structure integrating
the knowledge from a number of routes [31, 43]. Two alternative graph structures
(place graph and view graph) are presented in Fig. 8.5. Although the landmark
replacement experiment [36] (Fig. 8.4) presents some evidence for the view-graph
approach, the distinction between the two graph types is experimentally brittle.
However, another implication of both graph models is much more accessible by
empirical research. As compared to true maps (such as street maps printed on
a sheet of paper), graph maps can much more easily accommodate uncomplete
or inconsistent knowledge.

An experiment addressing the issue of inconsistent knowledge was performed
by Steck and Mallot [45]. In order to study the integration of different types of
landmark information, distal landmarks, placed on a mountain ridge surround-
ing the village, were added to the Hexatown environment. In this configuration,
various strategies can be used to find a goal: subjects could ignore the distant
landmarks altogether, they could rely on the distant ones exclusively, or they
could use both types in combination. Steck and Mallot tried to identify these
strategies by replacing the distant landmarks after learning (cue-conflict ex-
periment), so that different patterns of movement decisions could be expected
for each of the above strategies. Results indicate that different strategies were
used by different subjects and by the same subject at different decision points.
In a second experiment, one landmark type was removed from the maze after
learning. In this cue-reduction experiment, subjects who had relied on the now
removed landmark type when doing the cue-colict experiment, were still able
to use the previously neglected landmark type. This indicates that both types
of information were present in memory but one was ignored in the cue-conflict
situation (see Fig. 8.6). In spite of both informations being present, landmark
transpositions had not been reported in the first experiment.
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Fig. 8.6. Panoramic views of Hexatown used in the interaction experiments [45]. Top:
Training condition: both distant (mountain peak, distant tower in the left panel) and
local landmarks (building) are visible. Middle: “Dawn” condition. Only the silhouette
of the landscape and tower (distant landmarks) are visible. Bottom: “Night” condition.
Only local landmarks are visible. Subjects who ignored one landmark type (distant or
local) in a landmark transposition experiment with cue conflict, were still able to use
the previously ignored landmark type in these environments.

8.5.3 Path Planning

On a behavioural level, path planning is the most important competence relying
on declarative memory. Surprisingly, the number of investigations in the field of
path planning is rather low. There are some results which show that humans
try to minimize the effort during path planning—on a physical as well as on a
cognitive level. Gärling and Gärling [18] investigated the shopping behaviour of
pedestrians and showed that most shoppers prefer to first choose the location
farthest away, probably due to the fact that by doing this they minimize the
effort of carrying their shopping goods. Christenfeld [10] showed that subjects
prefer routes with the longest initial segment in the right direction. Subjects
delayed a turning decision as long as possible in order to keep the cognitive load
low. That is, they do not turn until they have to.

Wiener and co-workers [51, 53] carried out a series of experiments indicat-
ing that path planning is not based on place knowledge alone but also relies
on knowledge of regions in the environment. These regions could be defined by
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Fig. 8.7. Experimental setup of the path planning experiment. left: Schematic map,
places are marked by numbers, regions by the grey rectangles. middle: bird’s eye view
of the environment right: Subjects perspective within an experiment, looking on a
landmark.

natural borders like streets or rivers as well as by their specific function, such
as topical sections of an exhibition park. In the experiments, Wiener et al. used
a regular, rectangular environment (Fig. 8.7) constructed in virtual reality, con-
sisting of places and connecting streets. Each place is marked by one unique
landmark, which was invisible until the subject enters a small neighborhood of
the landmark. Regions are defined as two islands, each containing semantically
grouped landmarks. The landmarks on one island were all cars, whereas the
landmarks on the second island were of the category “animals”.

After an exploration phase, subjects had to plan and execute the shortest
routes from a given starting place to a goal. For each route there exist at least
two alternative solutions which did not differ by means of the overall length.
The difference between the two routes is the distance they covered in the target
region. The variable of interest was the subject’s preference to approach the
target region as fast as possible. The tendency to reach the target region as
soon as possible is significantly above chance level, indicating that subjects base
their planning decisions not only on place knowledge but also on knowledge
about regions. Wiener et al. suggested a fine-to-coarse planning strategy which
postulates a focal representation in spatial working memory. In this focal map,
places from the currently visited region are represented individually while more
distant regions are only represented by an overall “region node”. Planning toward
these region nodes predicts the effects found in the experiments.

8.6 Finding Cross-Country Shortcuts

8.6.1 Metric Place Knowledge

Leaving known routes and finding cross-country shortcuts or using detours
caused by a blocked path requires the knowledge of metric relations in an en-
vironment. Metric information can be obtained via path integration which was
discussed as in Sect. 8.3.2 as a kind of working memory. In this section we will
focus on behavioural data showing that humans are able of gathering metric in-
formation which is encoded in a rather more enduring manner, i.e. in longterm
memory. Ecologically valid behaviours, which cannot be explained without the
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assumption of metric information are rare, the most common paradigms in psy-
chological experiments are pointing to an invisible goal or judging the metric
distance between two locations in space.

The accuracy of pointing to unseen targets is typically between 20◦ to 49◦

[41, 8] which is rather imprecise. Imagine trying to reach a goal 100m away,
this direction accuracy would result in deviations up to 119m to the right or
to the left of the goal location. Therfore, metric information is only useful in
combination with other spatial cues. For example, in channelled environments,
metric information on an ordinal scale may support movement decisions like “go
right” or “go left”.

In a long-term memory task similar to triangle completion, Foo et al. [15]
trained subjects on two legs of a triangle. The corner places of the triangle could
be recognized from independent landmark cues. After learning the individual
legs, subjects were released at the end of one leg and asked to walk to the end
of the other leg, thus shortcutting over the unknown third leg of the triangle.
Results show that this task can be performed, but again with fairly high error
rate. Still, some metric information seems to be included in spatial long-term
memory.

8.6.2 Using Compasses

The performance of shortcutting behaviour can be improved by the usage of
compass information. By compass information, we mean a cue to heading or
body orientation, independent of path integration, and available everywhere in
the environment. Except from nautical compasses, such information is at least
approximately provided by distant landmarks, geographical slant, or the sun
azimuth in connection with the time of day. Using compass information will
improve path integration since the heading direction need not be inferred from
rotation increments but can be read from the compass. Indeed, desert ant path
integration relies heavily on the well-known polarization compass of insects [50].
Storing compass information in long-term memory should improve performance
in pointing to invisible landmarks and the production of sketch-maps.

As one type of compass information, Restat et al. [41] investigated the role of
geographical slant in the Hexatown virtual environment (Fig. 8.8). The whole
environment was either planar or slanted by an angle of 4◦ in one of two direc-
tions. Subjects could interact with the virtual environment by pedalling with
force-feedback on a bicycle simulator (translation) or by hitting buttons (dis-
crete rotations in 60◦ steps). After memory acquisition, spatial knowledge was
accessed by three tasks: (i) finding routes between certain landmarks, either
the return path of formerly learned routes (return-path in Fig. 8.9) or novel-
paths; (ii) pointing from various positions to the learned goals; (iii) choosing the
more elevated of two presented landmarks. The number of navigation errors
(wrong motion decisions with respect to the goal) was significantly reduced in
the slanted conditions. Furthermore, Restat et al. found that subjects were able
to point more accurately to currently invisible targets in the slanted virtual en-
vironments (cf. Fig. 8.9). The number of correct answers for judging the relative
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height of two landmarks in the slanted conditions was between 80 - 90 %, i.e.
it was highly above chance level. There was a correlation between the height
difference and the reaction time for this task: with increasing height difference
the reaction time was decreased.

In summary, we conclude that metric information is present in spatial long-
term memory, probably for all three dimensions of space. However, this infor-
mation may be rather noisy. Still, it helps improving navigation performance.

8.7 Communication About Space

Communication about space is not in itself a navigational behavior. Still, by giv-
ing route instructions or publishing maps, we do support navigational behavior
in other people and influence their ways of route planning and spatial reasoning.
In building spatial memories, it is conceivable that namebale information is more
readly encoded and used.

One line of evidence concerning the relation of language and spatial behavior
comes from the work of Levinson and co-workers on intercultural comparisons,
see [35]. For example, the Tenejapa language from India does not use egocentric
spatial descriptions (like “left” or “right”), but uses allocentric verbal descrip-
tion (“west”, “east”). Native speakers of Tenejapan and Dutch were tested in
non-linguistic spatial tasks, where subjects were asked to compare simple stimuli
(cards) after a whole-body rotation (see Fig. 8.10). The Tenejapa speakers used
an allocentric reference frame also in the non-verbal task whereas the Dutch
speakers used an egocentric reference frame. Levison concludes from these ex-
periments that language not only reflects the way humans think about spatial
relation but also influences spatial behavior. It should be noted, however, that
the role of the verbal instruction given to the subjects is not entirely clear. It
is well conceivable that the phrase “most similar card” means different things
to speakers of different language while the underlying representation of space is
indeed the same.

A second line of evidence concerns the spatial memories built from texts as
compared to memories built from visual inspection or active exploration. Behav-
ioral differences between verbal and visual acquisition groups are minor, leading
to the idea of an amodal spatial memory used in both cases (e.g., [3]). On the
other hand, neural activities during spatial imagery tasks performed in memories
acquired either verbally or visually from looking at maps, do show differences [47].

The usability of verbal directions for actual navigation provides yet another
view on the interaction of space and language. Daniel et al. [13] evaluated “good”
and “poor” route description by means of navigational performance of naive sub-
jects using these descriptions for wayfinding. The effectiveness of spatial phrases
depended on their ability to connect actions to landmarks, which fits very well
in the above mention hierarchical structure of spatial memory.

In an evolutionary view, language-based navigational performances build on
the pre-lingual wayfinding hierarchy found already in animals. These abilities
seem to be preserved in what has been called the spatial core knowledge of the
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Fig. 8.10. After learning a card on table 1, subjects were asked to turn 180◦ to table
2. They then indicated which card on table 2 was most similar to the card on table
1. Coding in an allo– or egocentric coordinate system will lead to different choices.
Redrawn from Levinson [33].

human cognitive system [14]. Simple reasoning abilities such as needed for route
planning are already part of the wayfinding hierachy. However, language adds
on this its advanced capacities for general reasoning as well as the ability of
communication about space.

8.8 Discussion

8.8.1 Repertoires vs. Ontologies

In this paper, we have described a behavioural approach to spatial cognition,
characterized by the hierarchy of spatial tasks summarized in Table 8.2. From
this task hierarchy, a hierarchy of representations can be derived that is similar
to the semantic hierarchy of Kuipers [31] or the way-finding hierarchy of Trullier
et al. [48]. However, when compared to hierarchies based primarily on the com-
plexity of representations (or “ontologies”), different views emerge with respect
to three issues, landmarks, metric information, and language.

Landmarks. In the task hierarchy approach, a landmark is piece of data
taken from the sensory input and stored as a property, or label, of a place repre-
sentation. The spatial representation may thus consist only of place and action

Table 8.2. Tasks and representations in spatial cognition

Task Representation

recognizing places snapshot, depth signature (Sect. 8.2)

finding home after excursions vector; guidance (Sect. 8.3)

following a route chains of recognition triggered responses (Sect. 8.4)

recombining route segments graphs (networks) of S-R-S associations (Sect. 8.5)

route selection and planning fine-to-coarse planning in focal map (Sect. 8.5.3)

cross-country shortcuts metric embedding of places (Sect. 8.6)

communicating about space naming places and actions (Sect. 8.7)
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tokens, where all prepresented places have been visited by the observer. In con-
trast to places, landmarks need not have their own locations in the cognitive
map but are pieces of local position information characterizing the place they
were sensed from. This view of landmark representation differs from the the
occpancy grid and SLAM-approaches in robot navigation (see Thrun, this vol-
ume), where landmarks are localized objects with coordinate values. The local-
position-information approach to landmarks has two advantages. First, it allows
for relatively low depth of processing in landmark recognition. Second, views or
vistas, such as the lining up of objects from a particular viewpoint or lines of
sight can easily be treated as landmarks.

Metric Information. In an ontological approach, it is tempting to treat metric
information such as distances and angles as one type of data that jointly enters
the hierarchy at some level of complexity. In the task hierarchy, it seems that
metric information is relevant at different task levels to different extent. Path
integration is a simple way of using metrics for returning to a nest or “home”
after an excursion. Metric embedding of topological knowledge, i.e. assigning
coordinates to places is a much more advanced mechanism required in finding
what we called cross-country shortcuts. Clearly, many animals with simple path-
integration abilites do not have an elaborated long-term memory of space, let
alone a metric embedding of known places.

Language and Space. The relation of language and space is a matter of
ongoing debate. From an evolutionary point of view, it is clear that most, if
not all, spatial abilities are already found in animals lacking language. There-
fore, spatial behaviour cannot generally be based on language abilities. Spatial
language, then, is a further task level concerned with spatial cooperation and
communication about space, i.e. a task level at the intersection of spatial and
social behaviour. The same is probably true for map drawing, another ability
relevant mostly for communication. Clearly, this “spatio-social” task level plays
an extremly important role in human spatial behaviour, for example in finding
our way to a destination we never have visited before. Still, we suggest that this
ability belongs to task level that should be well distinguished from way-finding
behaviour as defined in the animal literature.

8.8.2 Other Hierarchies

One final point that we would like to make is that hierachies can be defined along
various criteria, which, as discussed above, will not always lead to the same re-
sults. Here, we have focussed on the hierarchy of tasks and compared it to the
hierarchy of mechanisms and representations derived mainly from computational
arguments. Two additional axes that have been proposed for scaling navigational
mechanisms are ontogenetic development and the sequence of knowledge acquisi-
tion in a new environment. These different hierarchies and their relation to each
other are of course to be elucidated by future research. However, one unifying
approach is to look at such hierarchies as paths through a broader evolutionary
tree, whose leaves are the spatial abilities of the respective species.
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Landmarks for Navigation in Human and Robots

Stephen C. Hirtle

Summary. One determinant of navigation concerns the ability to use landmarks.
However, despite wide acceptance of the concept of landmarks, there is considerable
debate as to what is meant by the term ‘landmark’ and how landmarks are used to assist
in navigation. Sorrows and Hirtle [30] introduced a tripartite theory of landmarks that
can be applied to navigation by humans in real and electronic spaces. Their approach
was to classify landmarks along three dimensions: visual, semantic, and structural.
These dimensions can be defined independently for navigation in physical space and
for navigation in electronic spaces, such as the World Wide Web. It is argued in this
paper, that the same framework can be extended to robot navigation, but with the
realization of the dimensions appearing quite different in robotics world. The term
landmark remains a fundamental concept of navigation and can provide a theoretical
bridge between scientific camps of researchers.

9.1 Introduction

In this paper, the role of landmarks is examined for two distinct populations,
humans and robots. Through this analysis, we will delineate the varied definitions
and uses of landmarks. However, rather than produce just a list of differences, it
is argued that such a synthesis can add to the theory of landmarks and identify
important areas of cross-fertilization for research.

Landmarks have proven to be one of the most fundamental concepts in
building models of navigation and spatial representation [1, 7, 16, 25]. For this
chapter, it is assumed that a landmark is an object or location external to
the observer, which serves to define the location of other objects or regions.
This definition, while general in scope, will ignore uses in the literature where a
landmark is defined to represent any point or location in space. Landmarks, as
defined here, need to be extracted from a rich environment and will be stored
for use in later navigation or identification. What makes a landmark useful to
an agent is dependent on a large number of factors including the nature of the
space, the goal of the agent, the representational database, and computational
complexity.

In this chapter, we begin with a look at landmarks in human spaces and
present a general theory of landmarks from Sorrows and Hirtle [30]. The ex-
amination of landmarks for humans covers both landmarks in real-space and in
cyberspace. Research on landmarks for robotic spaces is examined in Sect. 3.
The final section concludes by revisiting the general theory of landmarks and
discussing how each field can learn from advances in the other.

M.E. Jefferies et al. (Eds.): Robot. & Cogn. Approach. to Spat. Map., STAR 38, pp. 203–214, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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Fig. 9.1. Example of a strong visual landmark from the University of Pittsburgh
campus

9.2 Landmarks in Human Spaces

The ability to navigate in an environment is dependent upon one’s ability to form
a spatial representation of that environment, and landmarks play a key role in
the creation of such a cognitive map [16]. A landmark is an object or location
external to the observer, which serves to define the location of other objects or
regions. Determining an exact definition of a landmark is difficult [23], but there
have been several recent survey papers that have developed useful frameworks for
understanding landmarks [7, 30]. Heth et al. [10] describe two ways landmarks
are fundamental to navigation. First, landmarks are the memorable cues, which
are selected along a path, particularly in learning and recalling turning points
along the path. Second, landmarks enable one to encode spatial relations between
objects and paths, enabling the development of a cognitive map of a region.
This distinction can also be described as landmark-goal relationships, where
landmarks are cues along a path to a goal, and landmark-landmark relationships,
which provide a global understanding of the environment for navigation, even in
lower species [21].

9.2.1 A Theory of Landmark Use by Humans

Sorrows and Hirtle [30] have extended the typologies of landmarks to include
three distinct categories: visual, structural and semantic. These overlapping cat-
egories are described in detail below.

Visual landmarks are those that are visually distinctive from the surrounding
environment, as shown in Fig. 9.1. These landmarks are easily recognized by
individuals who are unfamiliar and familiar with the environment. Visual land-
marks are noted by the contrast they provide with the surrounding environment
and most likely are noted for their prominent location.

Semantic landmarks are those in which the meaning stands out, as shown in
Fig. 9.2. The photograph in Fig. 9.2 shows a doorway to a building on the Uni-
versity of Pittsburgh campus that is visually non-distinct. However, the doorway
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Fig. 9.2. Example of a semantic landmark as the door is visually and structurally
unimportant, but leads to the primary registration office for students

becomes important to students on campus as it leads to the main registration
office on campus. Such landmarks had been called cognitive landmarks in the
original article by Sorrows and Hirtle [30], but the equivalent term semantic
landmarks, coined by Raubal and Winter [24], is now preferred. They have also
been referred to as symbolic landmarks by Portugali [22]. A semantic landmark
may have a well-defined role in the environment, such as an information kiosk.
They also may be quite personal with meaning to only a few individuals, who
are very familiar with the space, such as the copy room or coffee lounge in an
office complex. Portugali [22] has extended his definition of symbolic landmarks
to include legendary landmarks, such as the Verona balcony where the famed
dialogue between Romeo and Juliet was said to have taken place. It is a land-
mark to locals and tourists alike, even if the actual conversation never occurred
at this spot, but is only mentioned in the legend.

Structural landmarks are those in which the location is central in terms of
the topology of the space. Structural landmarks, such as a downtown plaza or a
major transit stop, are highly accessible and often used as point of departure or
arrival. Structural landmarks can be seen in terms of a network graph indicating
the connectivity of the nodes. Dupont Circle in Washington, DC is a well-known
structural landmark where ten streets converge around a traffic circle. It is in-
teresting to note that an organization of art galleries in the Dupont Circle area
chose to represent the circle by the road network, as shown in Fig. 9.3, and not
the visually distinctive fountain in the center of the circle. Thus, Dupont Circle
has become known as a landmark for its structural significance.

These three dimensions of landmarks, visual, semantic, and structural, can
be present in a single landmark and together boost the “landmarkness” of a
location. At the same time, many well-known landmarks are landmarks because
of a strong value on only one of the dimensions.
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(a) (b)

Fig. 9.3. A logo, shown on the left, chosen by the Galleries of Dupont Circle
(http://artgalleriesdc.com/), based on the structural relationships of 10 roads con-
verging on the circle, rather than on the visual image of fountain in the center of the
circle as shown on the right. Reprinted with the permission of (a) the Galleries of
Dupont Circle, Washington, DC and (b) Stapleton-Gray Associates, Inc.

9.2.2 Landmarks in Cyberspace

Sorrows [29] goes on to describe how each of these three classes of landmarks
can apply not only to physical environments, but also to cyberspace and the
World Wide Web (WWW). In an electronic space, visual landmarks are visually
distinctive pages, such as a home page of a University, which has a distinctive
look and feel from all other pages on a website. A semantic landmark may look
similar to other pages, but for an individual has critical significance, which makes
it stand out. Finally, a structural landmark might provide a large number of in
and/or out links, which makes it particularly useful in navigating through a
site. The structural dimension has been used by Mukherjea and Hara [18] to
define a landmark as a node which is important to the user because it helps to
provide an understanding of both the organization and the content of that part
of the information space. Glenn and Chignell [6] describe landmarks as part of
a symbol system which is both visual and semantic, and in which the visual
and semantic functions are intricately tied. Although these and other definitions
of landmarks in the WWW seem compatible, a key problem exists in how to
determine specifically what nodes are landmark nodes. Algorithms have been
proposed which use the connectivity of a node, the frequency of use of a node,
and the depth of the node in the local WWW directory structure.

Sorrows [29] has used memory experiments for cyberspace in a novel way
to demonstrate the use of landmarks. Among other tasks, she asked subjects
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Fig. 9.4. A path graph showing a dominant landmark page, circled in small, black
dots. Modified from [29]. Used with permission.

to recall well-known paths in cyberspace, just as one might ask someone to
give directions from memory to a well-known building on campus. Figure 9.4
shows a path graph for the answer to one of the questions: “How would find the
holiday hours for the SIS library at the University of Pittsburgh.” The circles
indicate web pages that were recalled. Each solid link indicates a sequence of
a correct link recalled by at least one subject. Dotted links indicate recall of
imaginary links; that is, links that don’t exist, but subjects assume that they
must. Of importance for this discussion are the paths and the small numbers,
which indicate the number of subjects recalling a specific page. Note that no
matter which path the subjects describe, most end up passing through a central
node for the School of Information Sciences homepage, circled in small, black
dots. Thus, this page forms a central landmark for these subjects, from which
additional, varied paths are taken. Berendt and Brenstein [2] show a comparable
graphical technique from a tool called STRATDYN, which can also highlight the
search strategy used by participants while browsing websites. Finally, Sorrows
[29] showed how the landmark pages from the path graphs are also ranked high in
terms of the three dimensions of visual, semantic and structural distinctiveness.

9.2.3 An Application to Direction Giving

In this section, an application of how landmarks might be used in direction giv-
ing is described in detail. Of course, this is just one use of landmarks by humans.
Golledge [7] makes the distinction between landmarks as a navigational aid and
landmarks as an organizing concept of space. The second meaning has been called
an anchor point [7] or reference point [25]. In the sense of an organizing con-
cept, landmarks act to facilitate environmental understanding. Neighborhoods
or regions will often emerge around one or more landmarks, with the landmark
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then serving as a superordinate feature in hierarchical representation of space
[7]. This sense, which is not discussed further in this chapter, leads to districts
named for the prominent landmark, such as Capitol Hill or Dupont Circle in
Washington or the Water Tower District in Chicago.

In terms of using landmarks for navigation, Raubal, Winter and Nothegger
[20, 24] extended the framework proposed by Sorrows and Hirtle [30] to the
practical problem of automatically generating local landmarks to enrich wayfind-
ing instructions. The dimensions of visual attraction, semantic attraction, and
structural attraction were considered the additive components to determine the
overall “landmarkness” of a building. Each of these ideas was further quantified
as described below.

Visual attraction was measured by the visual saliency of an object in regard
to its surroundings, through the measurement of four variables: facade area,
shape, color and visibility. Shape was measured in two different ways. The shape
factor was the ratio of height/width, so tall buildings would have strong vi-
sual attraction. Shape deviation was measured by percentage not covered by
the bounding rectangle. A perfectly rectangular facade would result in a shape
deviation of zero, while an irregular shaped building would result in a shape
deviation greater than zero. Color was measured by the three RGB values. The
final variable included in visual attraction was visibility, which is an area from
which the building is visible to pedestrians. Raubal and Winter [24] note that
it is possible to differentiate between day landmarks and night landmarks, by
including illumination. However, this extension has not been incorporated into
their model. The visual saliency is derived from the geo-referenced images pro-
vided by TeleInfo at http://www.teleinfo.de.

Semantic attraction was measured in two ways: cultural and historical impor-
tance, and explicit signage on the building indicating its name or purpose. The
current implementation codes both of these variables with the Boolean value of
true or false, but could be expanded to a predefined scale of significance.

Finally, the structural attraction was measured by Lynch’s elements of nodes
and boundaries [14]. Nodes were measured by the sum of the weighted incoming
and outgoing paths from the landmark, where weights increase with the promi-
nence of the path. Thus, a landmark on a corner is going to be more notable
than landmarks in the middle of a block. Boundaries are measured by the effort
to cross the boundary by multiplying the size of the cell by the ratio of the long
to short side.

An overall value of landmark saliency is then calculated by the weighted sum
of these three measures. Given a shortest path, which is generated using standard
algorithms, this method can extract the most salient landmarks to integrate into
the route description.

9.3 Landmarks for Robots

Within the robotics literature, the term “landmark” is also widely used. For
some authors, the term is used in a very general way to refer to almost any
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Fig. 9.5. Five vertical line segments identified as potential landmarks based on stereo
matching. Reprinted from [17] with permission from IEEE.

point in the space. However, of more interest here, are those that use it more
selectively, referring to critical decision points or points used to help orient the
robot in space. Landmarks can also provide a kind of ground truth, similar to
how a surveyor’s mark provides alignment between the actual environment and
a map of the environment.

In terms of selective landmarks, Thrun [31] makes a distinction between ar-
tificial landmarks (often bar codes) that have been placed in the environment
and natural landmarks, which need to be discovered (e.g., [5, 26]). Natural land-
marks can consist of a variety of possible cues in the environment. Moon, Miura,
and Shirai [17] propose a method of selecting natural landmarks consisting of
vertical line segments on a planar surface, as these tend to be more stable than
points. An example is shown in Fig. 9.4, where five vertical line segments are
identified through stereo matching of the images. Other researchers do not re-
strict the type of visual landmark to any one class, but instead examine the
environment for distinctive visual features. For example, Sim and Dudek [27]
use principal components analysis to generate a low-dimensional description of
possible landmarks, which place no restrictions on the landmark position in the
world. Greiner and Isukapalli [8] model the environment using real-world objects
that are also useful in navigation, such as doors and corners within a building.
In addition, pictures on the wall can serve as landmarks, just as a sign in a street
environment might serve as the significant landmark for an intersection.

While much of the research on natural landmarks is using cameras and visual
pattern recognition of a scene to determine novel or important characteristics,
several authors argue that machine-learning techniques, such as Bayesian ap-
proaches or neural networks, will do a superior job of uncovering landmarks in
sensor data [31]. Finally, some authors have mixed artificial and natural land-
marks by identifying unique planar textures found in door signs, posters, and
light switches (e.g., [15]). Figure 9.5 shows the stored landmarks in the top row
and a remapping based on camera angle in the bottom row.

Together, these studies can be described by the same typology that was out-
lined above, consisting of visual, structural and semantic landmarks. Visual
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Fig. 9.6. Stored landmarks in the top row and a remapping based on camera angle in
the bottom row. Reprinted from [15] with permission from Elsevier.

Table 9.1. Typology of landmark type by navigational goal given by [30]. Note that
each landmark type is excluded from one navigational goal.

Type of Landmark
Navigation Visual Semantic Structural
To a specific known new goal × ×
To a familiar goal × ×
In an unfamiliar environment × ×

landmarks might be extended to the category of sensory landmarks, where sen-
sors can be any of a variety of different modalities, including vision and sonar.
Structural landmarks are easiest to describe in the topology of the space. These
landmarks are key decision points for navigation, including doorways and in-
tersecting hallways. The final category of semantic landmarks may appear to be
more difficult to translate, but still has a strong correspondence. There are often
objects in the environment, which need to be known for their content, such as
a recharging station or a mail drop location, where a particular kind of event is
to occur. Such locations would serve as semantic landmarks for the robot. Just
as semantic landmarks for humans must be learned, the semantic landmarks
for robots may need additional information, such as a bar code, or an initial
acquisition phase to be properly learned.

The relationship between navigational task and types of landmarks used
are shown in Table 9.1. As noted in the table, semantic landmarks for robots are
useful only in well-learned spaces, whereas visual and structural landmarks are
important in novel spaces. This becomes clear if you equate semantic landmarks
with barcodes, structural landmarks with topography, and visual landmarks with
visual features. Robots mapping a new underground mine or involved in a search
and rescue mission, such as those exploring the devastation after the World Trade
Center attacks on Sept 11, 2001, would be navigating through an unfamiliar en-
vironment. Barcoding would be of little help in determining where the robot has
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been and or where the robot should go, as there is no pre-established knowledge
or ground truth. In contrast, robots performing repetitive navigation tasks, such
as an automated mail delivery robot, would be most effective following semantic
and visual cues placed in the environment.

9.4 Discussion

The tripartite theory of landmarks first introduced by Sorrows and Hirtle [30]
classifies landmarks along three dimensions: visual, cognitive or semantic, and
structural. These dimensions can be defined independently for navigation in
physical space and for navigation in electronic spaces, such as the World Wide
Web. It is argued in this paper, that the same framework can be extended
to robot navigation. While there are some differences, the relation between
landmark type and landmark function remains fixed across each of the target
domains.

So what can each community learn from the other? First, robotics researchers
have a much stronger track record of generating optimal sets of landmarks, as
the ability to pick an optimal set of robotic landmarks is a particularly difficult
problem. Much of the robotics literature on landmarks has focused on meth-
ods for the extraction of landmarks from a set of potential candidate landmarks
(e.g., [8, 15, 17, 31]). Surprisingly, there are relatively few studies in the human
navigation literature that have focused on automated techniques for the extrac-
tion of useful landmarks. One notable exception is the recent work, using ID-3
to generate the best set of predictors given a large set of attributes that char-
acterize potential landmarks in a neighborhood [4]. The use of data mining and
machine learning techniques with human data is still relatively new. More re-
search in this area could prove to be beneficial, especially if complemented with
user studies measuring the usefulness of the automatic generation of landmarks.
In contrast, human researchers are more likely to take a multifaceted view of
landmarks and their role in navigation [7, 24, 30]. The work of Madsen and
Anderson [15], which mixes natural and artificial landmarks, is reflective of the
possible extensions that should be considered by robotics researchers.

In this chapter the discussion has focused on landmarks, but clearly landmarks
are just one representation object to be modeled in the navigation process. Ex-
tensions of landmarks are worth considering from both camps. For example, the
notion of examining the environment for local landmarks has been extended by
Simhon and Dudek [28] to include local islands of reliability. These are based on
identifying distinctive regions, where in a sense the region becomes a landmark,
just as a human traveler might use a town square as a important landmark re-
gion. Simhon and Dudek’s implementation builds on more general theories of
cognitive mapping of Yeap [32] and of Kuipers and Byun [13].

Landmarks can also result in difficulties for navigation. Unreliable or moveable
landmarks are not useful for repeated navigation in the same space. Part of the
human developmental process is to recognize that useful landmarks are those
that are permanent, stable and visible from multiple viewpoints [10]. In fact,
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one reason that online navigation systems, such as www.mapquest.com, do not
use landmarks is the problem of keeping the database up-to-date. The road
network is also dynamic, but the changes to the road network in terms of both
topology and identifiers are far less frequent then the changes to the buildings,
signs and other potential landmarks within the space. Thus, the old tale of
turning left where the red barn use to be, would become common place without
careful consideration to the difficult problem of updating the data tables and
reparameterizing the landmark space on a regular basis.

Finally, as specific applications are pursued in both the human and the robot
domains (e.g., [3, 9, 19]), additional principles of navigation and of landmarks
will emerge. For example, Klippel et al. [12] has considered the use of schematic
information for mobile-based navigation systems, which typically use very small
screens with limited readability. In such environments, landmarks must be used
sparingly and detailed instructions will be replaced with sparse instructions,
such as head toward the church, or the equivalent visual command known as
a map gesture [11]. Such impoverished instructions can only make sense in the
context of some local intelligence to make intermediate navigational decisions,
which both camps of researchers need to explore further.
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Learning Cognitive Maps:
Finding Useful Structure in an Uncertain World

Eric Chown and Byron Boots

Summary. In this chapter we will describe the central mechanisms that influence
how people learn about large-scale space. We will focus particularly on how these
mechanisms enable people to effectively cope with both the uncertainty inherent in
a constantly changing world and also with the high information content of natural
environments. The major lessons are that humans get by with a “less is more” approach
to building structure, and that they are able to quickly adapt to environmental changes
thanks to a range of general purpose mechanisms. By looking at abstract principles,
instead of concrete implementation details, it is shown that the study of human learning
can provide valuable lessons for robotics. Finally, these issues are discussed in the
context of an implementation on a mobile robot.

10.1 Introduction

One of the key debates surrounding the relationship between human cognitive
mapping and robotics focuses on whether there is any common ground. After all,
robots and humans have very different capabilities. Human cognitive mapping re-
lies on a highly developed visual system that can recognize objects and landmarks
with ease. Computer vision, by contrast, provides inaccurate and often inefficient
perception for robots. As a result, robotic systems frequently rely on other sen-
sors including laser range finders, infrared switches, and sonar arrays. Indeed,
one of the apparent advantages robots enjoy is that they can be fitted with a wide
range of sensing devices that give them abilities humans lack; some prominent
examples are accurate range estimation and dead-reckoning. Despite many other
advantages – astonishingly fast processors and flawless information retrieval – ro-
botic navigation abilities still pale in comparison to those found in humans. The
gap between human and computer vision promises to remain large for the fore-
seeable future. The obvious questions remain: What can robotics gain, as a field,
from the study of human cognitive mapping? How may human cognitive mapping
be informed by the practical considerations found in robotics?

Despite many differences between cognitive mapping and robotics, there are
success stories indicating that a cross-pollination of ideas between these two
fields may produce exciting results. One influential development, the topologi-
cal representation, lies at the heart of virtually every theory of cognitive map-
ping. A topological representation consists of elements corresponding to visual
landmarks, and connections between elements indicating the order in which the

M.E. Jefferies et al. (Eds.): Robot. & Cogn. Approach. to Spat. Map., STAR 38, pp. 215–236, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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landmarks have been experienced. Path planning is performed by extracting
a sequence of landmarks from a starting location to a goal. Inspired in part
by cognitive mapping, topological representations are now commonly used in
robot navigation. Given the differences in human and robotic perceptual ca-

pabilities, landmarks recognized by robots differ significantly from landmarks
typically recognized by humans. In this case one of the basic ideas inherent in
cognitive maps, that landmarks are connected in a network, is so powerful that
it works well despite the differences in the perceptual abilities of robots and hu-
mans. This should not be surprising: cognitive maps are capable of supporting
effective navigation in extremely diverse conditions including times when vision
is only of marginal help, such as in fog or at night. Because humans face so many
possible environments, and because effective navigation is so important to sur-
vival, humans have necessarily evolved highly adaptive spatial representations.
A key aspect of this type of adaptation is reliance on multiple representational
paradigms – in the absence of good landmarks, for example, humans are able
to navigate extremely well using other visual information. One of the primary
theses of this chapter is that potential gain for robotics in drawing ideas from
cognitive mapping will come from identifying the characteristics that make hu-
man spatial representations so flexible and adapting them to robotic platforms
and tasks. Thrun et al., for example, found that a hybrid topological-metric
map converged faster and was more accurate than a pure metric approach [28].
Landmarks make global metric maps more useful because of two properties – 1)
They occur at fixed locations, and 2) They are unique – not because of anything
specific about how human object recognition works.

Another example of cross-pollination of ideas between cognitive mapping and
robotics was the development of the gateway construct in the PLAN (Proto-
types, Locations, and Associative Networks) [6] and R-PLAN (Robot-PLAN)
[13] architectures. Informally, a gateway is a point where a person leaves one
region of space and enters another. Gateways can be recognized by certain en-
vironmental characteristics usually involving a sensory occlusion followed by an
opening. Since they mark exits and entrances, gateways are extremely useful
for parsing large environments into smaller, more manageable chunks. Gateways
have a variety of other cognitive uses including providing the basis for more met-
ric representations of space than are possible with a purely topological model.
In robotics gateways have proven very useful in indoor environments [16] where
they can be used to anchor representations and can also serve as de facto land-
marks in topological representations. As with topological representations, the
basic notion of gateway was taken from a cognitive mapping theory but has
been modified in accordance with the capabilities of robots (gateways were
originally identified purely with sonar).

What makes the gateway example even more interesting is that it was a case
where robotics helped to drive cognitive theory. In this case a roboticist (David
Kortenkamp) was interested in implementing a cognitive theory on a robot but
did not think that cognitive mapping theory was sufficiently well developed to
serve as the basis for a working model. The questions he asked the theorists
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forced them to fill holes in their theory. Some of the questions touched on what
has been a long debate in the spatial representation community about whether
human representations of space are coded egocentrically or are viewpoint inde-
pendent. The practical considerations of robot implementation cast the problem
in a new light. One model at the time [3], not very different from many of the
grid-style representations in use today, stored “views” of space at fixed inter-
vals. The strategy was not adaptive in that it required an enormous amount of
computation and storage, but it raised questions about which views of space a
person would be most likely to store. A second influential model of the time [31]
explicitly focused on exits and entrances. Bringing the two robotic strategies to-
gether helped lead to the development of the gateway idea which in turn brought
support to the egocentric model of spatial representation. Since that time there
has been growing evidence that humans have egocentric representations [25].

The events surrounding the conception of the gateway illustrates the poten-
tial value of robotics to cognitive theory. From the perspective of a cognitive
theorist an implementation is not only a chance to test out the theories, but it is
also an opportunity to push theory into unexpected directions. Cognitive map-
ping theory offers strategies proven capable of dealing with issues that robots
still struggle with, including scaling to very large environments (e.g. outdoor
environments), and dealing with highly dynamic surroundings. An important
common element of the implementations discussed here is the abstraction of
ideas. In both cases the cognitive strategies were implemented in ways that are
most appropriate for the computational strengths of robots instead of a slavish
imitation of human physiology. From this perspective, implementations should
be appropriate to the physical realities of the agent and robotics should look to
cognitive mapping as a source of abstract ideas about how to address some of
the difficulties arising as robots move into larger and more varied environments.

A common practice in robotics is allowing a robot to explore its environment
in idealized conditions (e.g. no people, good lighting, etc.) before it becomes
operational. A well known example of this is Minerva, a robot that provided
tours of the Smithsonian [27]. Minerva was able to thrive in the chaos of a busy
museum because it had previously acquired an excellent internal map of the
environment. Ideally robots will begin to drop such restrictions and have the
ability to learn new environments on the fly, even in the face of less than ideal
conditions. To do this robots will need to improve how they learn. One way to
accomplish this might be to draw on theories of how humans learn and represent
environments, and distill strategies that robots could adopt in ways suitable to
their own abilities. The bulk of the rest of this chapter is devoted to discussing
how humans learn about large-scale space. This is done with an eye towards
lessons that could be used in robot implementations. Such work is part of the
co-authors’ ongoing research and an example is briefly described in Sect. 10.4.
It must be noted, however, that the techniques outlined in this chapter are not
offered as replacements for what is currently done in robotics. In most applica-
tions, particularly in the near term, robots will perform better using standard
methodologies specifically tailored to their abilities. The strategies put forth in
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this chapter come from a general purpose architecture, namely the human cog-
nitive architecture, and therefore would be best suited for extremely general
purpose robots.

10.2 The Creation of Spatial Structure

The theories presented in this chapter are presented in the context of the PLAN
model of cognitive mapping [6]. Complete coverage of the material is well beyond
the scope of a single chapter so we will necessarily present a simplified view in the
name of getting the important ideas across. This is keeping with the following
theme: robotics is not likely to be informed by the low level details of how the
human cognitive architecture works, but rather by some of the abstract ideas
inherent within it.

In PLAN, as in several other theories of cognitive mapping, it has been pro-
posed that humans have two fairly different modes of spatial functioning based
upon two distinct underlying representations. One representation is called a route
map and corresponds to the topological network of landmarks already discussed.
The other is often called a survey map and is more metric in character. Chown
et al. theorized that each representation roughly corresponds to the processing
done in the two distinct pathways found within the human visual system [30],
namely the what and where pathways (more recently these have been labeled
the ventral and dorsal pathways [19]). The “what” pathway is mainly concerned
with object recognition. In spatial terms the objects are landmarks, which form
the basis for topological networks or route maps. The “where” pathway is more
directly spatial and deals with where things are in relationship to each other
and to the observer. The theory in PLAN is that the metric quality of survey
maps arises from the fact that information stored is roughly equivalent to ac-
tual views of the environment. The corresponding representational structures
are called local maps. Just as landmarks are connected together to form route
maps, local maps are connected together to provide the basis for survey maps.
In PLAN the networks of local maps are called R-Nets, while more global sur-
vey maps are called regional maps or R-Maps. Although the basic elements that
comprise route and survey maps are different, the way learning occurs to build
each representation is essentially the same.

This section is divided into two major parts. In the first part pure associative
learning is discussed. While it is the case that both survey maps and route
maps have associative components, the focus will be on route maps since they
are purely associative and survey maps have additional machinery. Associative
learning is particularly well suited to dealing with changing environments so an
emphasis will be placed upon that in the discussion. In the second section the
focus turns to survey maps, and in particular how they are adapted to help
people cope with large-scale environments.

The associative learning model discussed in this chapter is based upon a learn-
ing rule originally proposed by Hebb in The Organization of Behavior [8]. Hebb’s
rule applies to learning at the level of neurons, but he also provided a mechanism
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– the cell assembly – to bootstrap the rule up to the “symbolic” level. Hebb’s
rule, was actually a mechanistic version of an associative learning rule that goes
back to William James [10]. Both proposed that when two elements (be they neu-
rons, cell assemblies or other) are simultaneously active, then an associative link
between them is strengthened. In spatial terms the cognitive elements are gen-
erally landmarks (or local maps) and the associative connections between them
provide the structure that forms them into coherent representations of space.

Associative learning and topological networks are already well established
tools in computer science and robotics. While associative learning rules are fairly
common, they rarely realize the full potential of association on display in the
human cognitive architecture. By itself an associative learning rule specifies that
two landmarks near each other should be linked. The subtlety and flexibility of
human learning is due to the variable strength of the associative links. The next
subsection begins with the pure associative rule and then proceeds to discuss
some of the critical ways that the human cognitive architecture can modify the
associative process as suitable to the situation at hand. In particular, emphasis
is placed on modifications that help humans deal with dynamic, and very large,
environments.

10.2.1 The Synthesis of Structure Through Association

In The Organization of Behavior Hebb showed how his learning rule could
generate neural structure called cell assemblies. The basis for this idea is that
when an object in the world is seen, neurons corresponding to its component
features will become active. Hebb’s learning rule will then tend to bind these
neurons together into an assembly. As the object is subsequently seen, these
bindings will become stronger and the neurons that comprise the individual
features will begin to act as a unit. The associative nature of this structure is such
that even when the object is only partially seen, the tight internal connections
of the cell assembly will tend to activate the entire structure.

The same principles hold at the level of cognitive maps. When two landmarks
are simultaneously active (as would be the case when one landmark follows an-
other in a journey) an associative bond will be strengthened between them (based
on the learning rule at the neural level). Just as the features of an object can
activate each other in a cell assembly, so too can the landmarks that comprise a
cognitive map. This property is especially advantageous because it can be used
both to remember and to plan journeys. For example, a recent journey will effec-
tively be indexed by its starting point. Once that cognitive element is activated
it will naturally tend to activate the subsequent landmark in the journey.

As landmarks present themselves in multiple journeys this sequential struc-
ture will begin to form a network. The critical step is that the landmark in
common is recognized as being the same even though it may be viewed from an
altogether different orientation. The ability to create networks of landmarks
gives an organism a great deal of power in planning routes. Specifically, it
may become possible to extract routes that were never explicitly experienced
(see Fig. 10.1).
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Fig. 10.1. Network creation. After experiencing sequences A-B-X-C-D and L-M-X-
N-O a network can be created provided that X can be recognized as common to both
sequences. This creates the possibility of extracting routes such as A-B-X-N-O that
have never been experienced.

One of the biggest challenges in building a useful internal representation of
a natural environment is that most environments are not static, but change
over time. The human brain appears to have multiple mechanisms in place to
cope with the difficulties this presents. The most important is the nature of the
connections made between representations. These connection strengths are not
binary, but exhibit a graded continuum. At first blush it might seem that the
strength of a connection between elements should represent a kind of probability
that the two elements will co-occur in the future. It is well known, however, that
humans do not make decisions in a manner consistent with a simple underlying
model of probability [18] and there are a number of very good reasons why this
is not the case. Connection strength should reflect what is meaningful as well as
what is experienced. For example, an encounter with a bear may not be probable,
but it is meaningful enough that it is best to overestimate the chances of running
into the bear in the same location in the future. For these reasons, changes in
connection strength are not based purely upon statistical factors, but are also
impacted by heuristic factors. The basic building blocks of associative learning,
contiguity and repetition, are statistical – the more times two things are experi-
enced together the stronger the linkage between them – but there are a number
of modifiers in the human cognitive architecture. The rest of this subsection is
devoted to some of the heuristic factors that impact associative learning.

Compensatory Learning

The most obvious problem with a pure associative learning rule is that all it
does is strengthen connections. Over time even elements that co-occur infre-
quently will become strongly connected. This problem was found in the earliest
simulation of Hebb’s rule in which learning consisted solely of strengthening
connections; the inevitable result was that eventually everything was strongly
connected to everything else [23].
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Fig. 10.2. Compensatory Learning. The thickness of the arrows denotes the
strength of connection between elements. (a) node 1 is uniformly connected to all
of the other nodes; (b) after 1 has co-occurred with nodes 3 and 4 the linkages between
them have been increased while the link strengths to the other nodes have decreased;
(c) it is possible that some of the connections will eventually disappear altogether
because they have lost all of their strength.

A solution to the problem of ever increasing connection strength between
elements, one that naturally addresses some of the challenges presented by dy-
namic environments, is to view connection strength as a fixed resource. Under
this view, learning can be seen as a reallocation of resources based on experience:
when connection strength is increased between two cognitive elements, it must
also be decreased between others. A learning rule of this type is called compen-
satory. Consider a pair of associative elements that do not ever co-occur. Since
the elements never co-occur the connections between them never increase. Fur-
ther, any connection strength between them will occasionally decrease as other
connections are strengthened. Eventually the connection between two elements
will disappear, or, as some have theorized, the connection strength may become
negative or inhibitory. Elements that only occasionally co-occur will normally
suffer the same fate (an exception will be discussed later). Figure 10.2 shows how
a compensatory rule normally works. The high density of neural connections
present in the brain of a young child reflects a world of possibilities where vir-
tually anything can be connected to anything else (although other architectural
factors discussed later in the chapter show that some kinds of connections are
easier to make than others). Through associative learning, possibilities are culled
and structures are formed that reflect experience in the world. A compensatory
rule is crucial in this process.

A system with compensatory learning must be recency-based since new con-
nections come at the expense of older ones. In a cognitive map this is a sensi-
ble heuristic. New information must be rapidly incorporated into the map. For



222 E. Chown and B. Boots

example, let’s say you go to a friend’s house twenty times and the first ten
times there is a tree in front of it. Before the eleventh trip the tree is removed.
Common sense indicates that the probability of seeing the tree the twenty-first
time should not be 50%. A more sophisticated process than a simple frequency-
based strategy must be at work. Many computer learning algorithms try to
achieve this effect by attaching a decay mechanism to connection weights. The
problem with uniformly applying decay to a system’s weights is that all old
memories will eventually become undone. In a compensatory system the weight
changes are locally limited so forgetting is not universal. This is one reason why
certain unique environmental cues, such as particular smells, can so powerfully
evoke old memories – in most cases forgetting occurs due to the similarity of
events, the more unique an experience the more likely the memory is to be
preserved.

Arousal

An often cited drawback of learning systems that rely so much on contiguity and
repetition is lack of speed. People require repeated exposure to complex environ-
ments before they feel comfortable navigating in them. This can be frustrating
from a practical standpoint when one’s goal is to learn as quickly as possible. The
system is, however, the product of a conservative behavioral strategy that im-
plicitly places a premium on safety. Normally, strong connections are a product
of repeated experience, and repeated experience implies familiarity and safety.
Sometimes, though, it is necessary to short-circuit this basic paradigm when the
lessons to be learned are too important to be forgotten.

Very few situations and environments are the same. Some are confusing or
dangerous, while others can be dull and boring. In adaptive terms, some situa-
tions are more important than others. Consequently learning should be faster at
those times. In a neural system with an associative learning rule this is accom-
plished by increasing the activation intensity of its elements. In most animals,
including humans, accelerated learning is accomplished through the arousal sys-
tem (for a discussion of some of the issues surrounding this see [5]). When some-
one is highly aroused their focus and intensity increases correspondingly with
the effect of learning faster. From an adaptive perspective this is useful because
it means that an encounter with a bear will stick out in one’s mind much more
than a quiet walk in the woods. In neural terms this increase in learning occurs
because of the increase in the firing intensity of neurons. As neurons fire more
rapidly the individual applications of Hebb’s rule increase. In a sense arousal
acts as a kind of gain mechanism for learning; when arousal is high learning is
fast, when it is low learning is slow. This is a clear case of how human learning
situationally short-circuits a purely probability-based approach.

In a sense the arousal system tracks importance. Factors that impact arousal
range from the hard-wired (e.g. pleasure and pain), to the instinctive (e.g.
snakes), to the predictive (e.g. anticipation of a big event). Heuristically the
more important the event the better learned it should be.
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Short-Term Memory

One of the great benefits of associative structure at all levels of cognition is that
it can automatically fill-in missing information. At the level of an object this
means that even if much of the object is obscured the cognitive system will treat
it as though it is whole. This is true for cognitive maps as well. Seeing a familiar
landmark can immediately and automatically call to mind an entire environment.
This can be problematic, however, as the well-connected cell assemblies that
comprise the cognitive map will tend to act as attractors and become active
even when they should not. In the extreme case even a poor perceptual match
might provide enough impetus to activate a well-learned assembly. Children
sometimes display such behavior when learning new categories; a child that has
just learned about zebras may be inclined to call anything with four legs a zebra.
The problem of judging when something is really new or merely a poor example
of something that is known has been termed the plasticity/stability dilemma by
Grossberg [7]. The solution proposed by Kaplan et al. [11] was a mechanism
called short-term connection strength (STCS). The basis for STCS is that once
neurons reach a certain threshold of activity they become temporarily more
sensitive to firing again. For a cell assembly this means a group of features that
is not well-connected may, nevertheless, generate enough feedback to become a
coherent active representation. The combination of direct perceptual stimulation
and STCS is enough to provide a competitive edge against more well-learned
assemblies.

STCS also provides the basis for short-term memory. Since active neurons are
temporarily more sensitive, much less stimulation is required to reactivate a cell
assembly once it has been active. Among the benefits of this is that the networks
comprising cognitive maps can be more fluid than static network structures.
Imagine walking into a familiar office where the housekeepers have rearranged
everything in order to wax the floors. For you to effectively function, what is in
your head needs to reflect the current state of the room rather than what you
remember. It is unlikely your internal map of the room should change perma-
nently, however, since the office is likely to be back in its old configuration the
next time you are there. STCS provides a temporary structure that can over-
ride the long-term structure without the need to discard the long-term structure.
This is one way that humans can cope with the issue of integrating knowledge
into long-term structure, particularly when new knowledge seems to be at odds
with what is known. This issue will be discussed in more detail in the discussion
of the hippocampus in the next subsection.

The Functional Distance Principle

Some of the factors that impact activity in cognitive elements go under the head-
ing of “wiring.” One such factor, which will turn out to be extremely important
to learning about large-scale space, is what Kinsbourne [12] called the functional
distance principle. This principle has two parts; the first is that brain activities
that are close together will tend to inhibit each other. The second part is that
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Fig. 10.3. Functional Distance Principle. Nodes A through G are all very similar
to each other, and therefore are processed near each other in the brain. Node H is
slightly farther away because of its differences. Because it is away from the other nodes
it will tend to become more active.

similar items will be processed in similar locations in the brain. This principle
has a number of important implications for spatial learning.

First, the functional distance principle helps explain what makes something
a landmark in the first place. Landmarks are central to virtually every cog-
nitive mapping theory, yet very little is known about what makes something
a landmark beyond “uniqueness.” Imagine walking down a corridor full of red
doors. Since all of these doors are perceptually similar they will all be processed
in the same portion of the brain. The similarity of these representations means
that they will tend to inhibit each other. This inhibition will, in turn, limit how
active the representations become. Since activity is the basis of learning, these
representations will be only weakly connected to the active cognitive map as
shown in Fig. 10.3. Now imagine coming upon a distinctly different door. Per-
haps it is blue. The perceptual difference will mean that the representation for
the door will be shifted away, even if only slightly, from where red doors are
processed in the brain. This will automatically reduce the amount of inhibition
that the new representation faces, meaning it will naturally be more active than
the representations of the red doors. Since learning comes as the result of activ-
ity, the representation of the blue door will be more strongly connected into the
cognitive map.

In some cases the change in perception is even more dramatic. An example of
such a change is when a view is occluded and subsequently opens up into a new
space. Such locations serve as the basis for the gateway structures discussed in
the introduction which in turn form the basis for survey maps in PLAN.

10.2.2 Survey Structures

By itself topology provides limited spatial information, specifically proximity and
ordering. A pure topological map would not be useful for spatial operations that
rely on the relationships of distal objects. In humans the representations that
serve this purpose are survey maps. In PLAN the core representational element
of a survey map is the local map. Gateways are usually the locations at which
local maps are generated.
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Functional Distance Revisited

Gateways occur where there is a significant change in what is perceived. With a
great enough difference what is currently perceived will no longer be considered
a part of what was previously perceived. The cognitive separation between what
is perceived and what was percieved appears to allow humans to use gateways to
parse large-scale space into smaller regions. As a person approaches an archetypal
gateway their perception goes from being occluded, perhaps by wall, to opening
up to a new area. Just as this opening usually marks a shift in one region of space
to another, the locus of processing in the brain is marked by a shift from one area
to another by means of the functional distance principle. The shift in the locus
of processing automatically reduces the level of inhibition between processes
thereby naturally increasing the amount of learning. In classical psychology this
leads to learning effects known as primacy and recency: people tend to best
remember the first and last things in new environments, lists, etc. In spatial terms
the first and last things in an environment are entrances and exits, locations of
extreme import for organisms in a dangerous world.

Entrances and exits have other implications. They serve to break up large-
scale space into smaller chunks. The gateway construct takes its name from
the design literature in honor of Christopher Alexander’s construct of the same
name [2]. Alexander et al. describe the importance of breaking a large space into
smaller regions:

Many parts of a town have boundaries drawn around them. These bound-
aries are usually in people’s minds. They mark the end of one kind of
activity, one kind of place, and the beginning of another. In many cases,
the activities themselves are made more sharp, more vivid, more alive,
if the boundary which exists in people’s minds is also present physically
in the world. (p. 277)

Alexander goes on to note that boundary crossings must be marked by gate-
ways. Among the many uses of breaking a large space into smaller chunks is
that it serves as the basis of hierarchy. The bound regions essentially become
the nodes in a higher-level network. Long routes need not be extracted from a
huge low-level network, but can be found in a two-stage process. First a path can
be found from one region to the next. Then at the lower level the paths within
regions can be extracted. This strategy mirrors what Parisean taxi drivers were
found to do in a well-known study by Pailhouse [22].

Gateways also serve as the basis for an alternative to route maps. People
are naturally inclined to stop and look around where gateways are considered
to occur. Further, as entrances, they are places that people cannot help but
visit when they go to that region of space. For these reasons, and because of
the functional distance principle, people will have stronger visual memories at
gateways than at other locations. These visual memories will not simply be
landmarks, but are more like full-fledged views. Such views afford more spatial
information than a purely topological map.
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Interfacing Memories – The Hippocampus

One of the roles of STCS is to help differentiate what is perceived from what is
merely remembered. This works well for landmarks partly because they tend to
be very stable features of an environment. Views of an environment, on the other
hand, are much less stable – individual objects move, people move about, etc.
This raises a number of issues for view-based representations such as PLAN’s
local maps. One of the most crucial is that view recognition cannot work in
exactly the same way as landmark recognition. Robots face a similar problem
known as localization. The localization problem for a robot is characterized by
the problem of reconciling what its sensors are providing with what it has stored
in memory. In a nutshell: How does the robot know where it is based on what it
sees? Even when a person recognizes where they are, their cognitive system still
must reconcile the current state of that environment against what they have in
their memory. Cognitive maps provide another way of looking at this: “maps”
in a person’s head are only approximations of real environments. While this
is useful for planning in the abstract, as cognitive maps code the most likely
environmental configurations, it is potentially confusing in practice. Cognitive
maps may contain elements that no longer exist in the environment and may
not contain newer elements that do exist. The compensatory learning rule will
help the cognitive map better reflect this over time, but it does not overcome
the need for an internal representation that reflects the current state of the
world. Internal representations should have the ability to augment perception
and occasionally even stand in for perception, but what is stored should never
dominate what is perceived.

For humans localization appears to occur in the hippocampus. The hippocam-
pus is connected to both the vision system (and specifically the “where” system)
as well as to cortical memory structures and has been extensively studied for its
role in spatial processing [20, 21] as well as its central role in memory [26, 17].
What is crucial to this discussion is that the hippocampus appears to resolve
stored locations against perceived locations thereby solving the localization prob-
lem (for more on this see the Save et al. article in this volume). In many cases
what is perceived will be similar enough to a stored memory that resolving them
will be simple. Standing in the doorway of a familiar room, for example, should
evoke a prototypical memory that is similar in configuration to what is being
viewed. This is another reason why gateways are so important: gateways provide
a canonical, repeatable, view of a space, so such resolution can normally be done
without the need for transformations of the views.

Gateways make the localization problem simpler in two important ways. First,
they reduce the number of views to be stored. Second, they occur at very spe-
cific and important locations. You cannot normally enter a space without passing
through a gateway. Further, a view from a gateway can easily be matched against
a previous view from the same gateway. For example, in the original robot exper-
iments with gateways a robot using sonar was able to repeatably get within 3.5
degrees of orientation and 70 millimeters of position of its stored location [14].
Even though that robot used extremely simple “views” (it extracted vertical
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lines) it was able to effectively use that information for localization. For humans
then, localization is a two-stage process. Individual regions are identified when
gateways are passed through. Landmarks can then serve the localization function
within a region. Note that landmarks are often not sufficient for global localiza-
tion on their own. An oak tree might tell one where one is within a neighborhood
otherwise bereft of oak trees, but simply seeing an oak tree with no other context
is unlikely to provide enough information for localization.

Abstraction to Higher-Level Representations

One of the least well developed aspects of our understanding of how cognitive
maps work is how the basic pieces of cognitive maps are abstracted into higher-
level representations to become part of a larger hierarchy. This is particularly
important with regard to survey maps because when local maps are abstracted
and combined they can yield large-scale representations with a number of useful
properties. One such property is sometimes called “where-to-look.” In PLAN
where-to-look information is naturally coded by the nature of the stored views.
Each view in PLAN represents what a person would see from a particular point
in space with a particular body and head orientation. In turn, relative positions
of objects can be extracted from a given view. Because the local maps are as-
sociative in character activating the representation of an object will naturally
activate the corresponding local map. This will automatically give a person the
necessary body, head and eye positions for seeing the object from a particular
view. This provides a basis for the ability to point to an object without looking
at it. When scaled up from what can be directly perceived, a map of this char-
acter would give a person the ability to point at things that cannot be directly
perceived because of distance, intervening obstacles, etc. This ability provides a
basis for spatial reasoning at more than just a local level. For example, based
on directional information a person might guess that there is a better route to
their goal than the one they are familiar with. In robotics having information of
this nature would help solve the closed loop problem discussed in several other
chapters in this volume; which is yet another variation of localization and en-
tails recognizing when one has re-entered a previously visited environment from
a different route.

PLAN provides a rudimentary theory for how such maps are learned but has
little concrete evidence to support it. The idea is grounded in associative learning
theory and takes advantage of the predictive nature of associative representa-
tions. Chown et al. speculate that as people mentally run through journeys, as
they might when they make a plan, the sequences can become very fast when
the journey is a familiar one. Eventually the intermediate locations can be con-
sidered right along with where one is. This allows them to be incorporated with
the current local map into R-Maps. The fact that people report having a kind
of bird’s eye view of familiar locations is seen as an artifact of having an ego-
centric representation from a particular location where distal objects can be
“seen.” Since the transformation from local map to regional map involves com-
bining what is perceived and what is stored, it is reasonable to suppose that the
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transformation is yet another function of the hippocampus, but there is no
concrete evidence to support the theory yet.

10.3 Related Work

The learning theories presented in this chapter are broader in scope than what
can typically be found in the spatial representation literature. The closest analogs
would come from the large community that works on the hippocampus and in
particular the role the hippocampus plays in spatial processing. Many of the
ideas about the role of the hippocampus in this chapter derive from a long line
of research going back to O’Keefe and Nadel’s seminal work [21]. In robotics
learning is typically framed in terms of Kalman filters, Monte Carlo localization
and the like. Such methods work exceptionally well for what they are designed
to do. However, as robots become more general purpose and face more diffi-
cult tasks, such as learning on the fly in large, dynamic, environments, it will
undoubtedly be necessary to incorporate many of the same learning heuristics
as the human cognitive architecture. Outside of robotics there has been some
effort to adapt symbolic systems, such as the Soar architecture, along these
lines in order that they might become more flexible and realistic [9]. In terms
of the cognitive mapping community there are also few analogs to this work.
The focus in that community is generally on what is learned rather than the
mechanics of learning. In that sense PLAN benefits from being embedded in a
cognitive architecture called SESAME that contains theories on representation
and learning independent of the spatial components. The added perspective of
an entire cognitive architecture helps make connections that could otherwise be
lost (for example, the development of gateways was helped immensely by having
an architecture that already included the functional distance principle).

In terms of representational structure, what made PLAN unique was its con-
ception of the structure of survey maps and how it related survey and route maps
through the two paths of the visual system. As already noted, the survey maps
in the PLAN architecture drew partial inspiration from Yeap’s work on Absolute
Space Representations (ASRs) [31]. In turn PLAN’s local maps helped to inspire
some of the development of Kuiper’s Spatial Semantic Hierarchy (SSH) archi-
tecture [15]. In many ways SSH is built in the spirit suggested in this chapter
in that it is strongly inspired by human cognitive mapping, but also with an
eye towards the practical issues required for implementation on a mobile ro-
bot. The local map idea also has a great deal in common with the view graph
representation that was developed around the same time as PLAN [24] and is
described in several other chapters in this volume. Since Kortenkamp’s initial
work on R-Plan, a number of other systems have incorporated gateways into
their architectures [1, 33] and hybrid topological-metric systems have become
increasingly common in robotics including work by some of the contributors to
this book [28, 32, 29].

Despite all of the advances in robot hardware and theory, there has been no
major effort to continue the development of the robot implementation of PLAN



Learning Cognitive Maps: Finding Useful Structure 229

until recently. The system described in Sect. 10.4 is exploratory in the same
sense that R-Plan was. The main questions being asked this time have to do
with how systems can cope with highly dynamic environments. The principles
that the system is built on are that humans do this is by building relatively sparse
representations that fluidly adapt to changing worlds both by the nature of the
learning process as well as through specialized mechanisms such as short-term
memory and the hippocampus.

10.4 Adapting Architectural Principles for Robotics

Many of the theories about spatial representation and learning discussed in the
previous sections can be used to drive research in autonomous mobile robotics.
As stated in the introduction, behavioral strategies for navigation and vision are
a natural place to look for inspiration when designing robotic navigation capa-
bilities: animals appear to effortlessly solve many of the problems that continue
to plague robotics as a field. Several examples of these unresolved problems in-
clude: localization, environmental representation, visual object recognition, and,
in general, operating with uncertain knowledge in real-world situations. A com-
mon misconception in robotics is that neurobiological strategies are ill suited to
the practical problems of robotics. This is hardly surprising given the elaborate,
messy, and impractical models that are often proposed for neural behavior. A
more plausible way to draw on the lessons of biology is to extract strategies in
an abstract sense and apply them to robotics in the manner that best suits the
underlying hardware and the challenge at hand. One need not develop a detailed
cortical map, for example, in order to implement the functional distance principle
on a robot. The abstract idea – a major shift in the character of perceptual in-
puts can be interpreted as a conceptual break – is not beholden to a specific type
of underlying structure. For example, a sonar sensor might consistently report
readings indicating that a wall is three feet away. A sudden shift in the readings
indicating the wall at twenty feet away might signify a conceptual break. This is
exactly the sort of logic used to develop the use of gateways in robotics [6, 13].
In human cognitive mapping the gateway is a visual construct, but generalizing
the concept allows one to translate the idea to any sensory modality for use
in many different types of environments [4]. In this section we will discuss an
example of how this idea of generalizing cognitive principles can be adopted to
a robotic system with an eye towards the design of robots that can effectively
cope with real-world situations in dynamic environments.

C-Plan (for Corner-Plan), is a robotic navigation system developed at Bow-
doin College. It is inspired by PLAN in structure but deviates from PLAN in
implementation in several important respects. The goal of the project is to de-
sign a “cognitive” architecture for a robot that can create representations of an
indoor environment capable of supporting navigation in realistic (e.g. dynamic)
domains. Rather than trying to create extremely detailed maps of the environ-
ment, as most simultaneous localization and mapping (SLAM) methods do, the
robot will rely on relatively sparse representations similar to those proposed in
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human cognitive mapping theories. Objects in indoor environments range from
the ephemeral (people that move around a great deal), to the relatively sta-
ble (furniture moves less frequently), to the more or less permanent (walls rarely
change location). A good map of highly dynamic environments, including indoor
environments, should be built with an emphasis on permanence. One benefit of
this approach is that such maps are less likely to be wrong when the environ-
ment changes and, therefore, will need to be updated less often. What follows
are some highlights of the system that were inspired by some of the cognitive
principles outlined in the preceding sections.

The system was run on an ActivMedia Pioneer 2-DX mobile robot equipped
with a SICK LMS-200 laser rangefinder and wheel encoders that serve as a
primitive dead-reckoning system. The laser-based perceptual system differs
significantly from the optical visual systems found in most mammals. Laser
rangefinders, however, represent the state-of-the-art in robotic sensing. They
are a significant improvement over sonar being both more flexible and more ac-
curate. While still prone to errors and providing limited information (distance to
a surface along a straight line), laser rangefinders are the most popular and reli-
able sensor available. In practice the software navigation system that we outline
shares a number of features with the system described by Tomatis et al. in this
volume. Like that system the crucial features extracted from the environment
are corners. In most indoor locations corners are a cheap way of providing a
relatively accurate description of the environment. A second important feature
of the system is the use of a topological map that encodes the relative positions
of simultaneously viewed corners. This map serves as the primary representa-
tion of the robot’s environment and is used as a reference during localization
and navigation. In C-Plan, “views” of the environment are efficiently encoded
within the associative structure of the network and gateways occur at narrow
points within the graph (see below for details). Local collision avoidance was
performed without regard to the structure of the “map” that the robot was de-
veloping, making the explicit representation of walls and obstacles unimportant.
The representation (cognitive map) generated ensured that the paths between
gateways did not cross physical boundaries like walls.

Since the representation in storage is highly abstract, a crucial feature of
the system is the ability to extract essential information from detailed laser
readings of the environment. In the following description we will discuss the
influence of cognitive mapping strategies on the design of C-Plan. Technical
details about localization, how dead-reckoning resolves stored structures against
perceived structures, the geometry of stored maps, etc. are left to a future article.

10.4.1 Features – Corners

2-D lasers are not well suited for landmark recognition or for extracting unique
perceptual information from a three dimensional environment, so we chose to
focus on useful points in the environment that lasers could reliably identify (in
this case the environment consisted of the Searle science building on the Bowdoin
College campus). Our choice was corners, a frequent and stable environmental
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Fig. 10.4. Wall detection. Even when a surface is relatively smooth, sensor readings
will rarely lineup perfectly. The straight line represents the wall being sensed. The boxes
represent laser readings. Factors such as alignment, sensor error, small outcroppings,
etc. all impact what is detected.

Fig. 10.5. Potential Corners. On the left the squares are the raw laser readings.
The circled point on the right represents a potential corner that has been identified
due to the angle between it and its nearest neighbors.

feature in most buildings. In order to determine when the robot was viewing a
corner, a series of abstractions was performed on the raw laser data.

Corners exist where two flat surfaces come together, so one of the basic ele-
ments of our system is identifying walls. To call the walls in a typical building
“flat” is actually misleading. Walls are rarely smooth and are often covered with
outlets, pictures, etc. that stick out. Even more confounding is the fact that
even perfectly smooth walls will not be percieved as such with laser readings
(Fig. 10.4).

The robot attempts to recognize features in a hierarchy of abstractions with
the aim of turning these jagged readings into walls. First the robot examines
triples of laser readings. The readings are not adjacent due to the high degree
of variation in adjacent readings, but are two readings away. This allowes a
minimal amount of smoothing of the raw readings to take place before any sort
of evaluation. If the angle formed around the middle of the three points is close
to 90 degrees, that point is a good candidate to be a corner (Fig. 10.5).

If, however, the angle is close to 180 degrees the points are considered as
candidates for a segment of a wall. Triples of this type are put into a line segment
data structure. This data structure is a kind of sensory information store or
“buffer” of what the robot has recently seen. If the line segment appears to be
an extension of one already in the data structure the two are merged (Fig. 10.6).
In a reflection of the attention and capacity limits of humans, the data structure
is limited to a short period of time (line segments that continue to be updated
stay in the buffer, ones that do not are removed).
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Fig. 10.6. Abstracting walls. Readings that are relatively well lined up are combined
to form wall segments. In the diagram the laser readings are shown as squares. Points
that have been identified as “interesting” are circles. These points are typically potential
corners.

From this point it is easy to extract corners. Triples of points with the ap-
propriate characteristics (i.e. an angle close to 90 degrees) are checked against
the line segment data structure. If the triple exists at the junction of two line
segments it is flagged as a corner.

It is important to note that this system relies on a fair number of assumptions
about indoor environments – namely that they consist of straight walls and
contain corners that are usually at 90 degree angles. This means that C-Plan
will be ill-suited for some indoor environments. This, however, is not in conflict
with human navigational abilities as people are not well-suited for certain types
of environments and can be easily fooled by environments that play against
expectations (e.g. funhouses).

In a series of tests run at Bowdoin College C-Plan was allowed to explore
a building heavily used by students for classes. The robot’s abstraction system
was first calibrated when the halls were empty, purely to determine appropriate
parameter settings. Then the robot was allowed to explore during a normal
working day when classes were held in the building.

In one set of tests the robot was kept stationary for an hour while people
walked past it in a hallway. Since people tended to move around they made it
into the robot’s sensory information store, but never into its long-term structures.
In another set of tests the robot attempted to explore the building and create a
map. The robot was able to correctly identify walls and corners with very little
error while navigating around people and even while being herded by onlookers.
Because people tended to clump together while watching the robot there were
occasionally cases where groups would show up as walls, but only in one case
did this lead to a mis-identified corner. In that case the corner did not make it
to the long-term data structures (described later in this section) because it was
not found in subsequent passes through the environment.

10.4.2 Memory Hierarchy

C-Plan implements a cognitive map for navigation and localization. This map
consists of a network of nodes and edges. Recall that the corner is the only
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feature to make it out of short-term memory. A perceived corner is defined
as two intersecting line segments at an angle close to 90 degrees. Each corner
that is perceived directly corresponds to a node within the network. Corners
that are viewed together, i.e. occur simultaneously within the sensory informa-
tion store, are associated by means of a topological connection, helping to form
the network. This topological connection encodes the geometrical relationship
between corners. In this sense, the network can be thought of as efficiently en-
coding multiple “views” of the environment. The connection between corners is
strengthened with repeated simultaneous viewings and weakened when only one
of the corners is perceived at a time; an example of locally limited compensatory
learning. This activity, taking place within the timeframe of the sensory informa-
tion store, is the first and lowest level of what roughly corresponds to a memory
hierarchy. The hierarchy consist of three states: the aforementioned active state,
a recently seen state, and a not seen in a while state. These states resemble the
sensory information store, short-term memory, and long-term memory respec-
tively. When a node hasn’t been directly perceived for a short period of time it
moves into the recently seen state. This is a form of short-term memory that
creates an expectation of perception thereby changing some of the thresholds
involved in recognizing important points and lines in the sensory information
store. It does not, however, lead to perception of corners in the complete ab-
sence of concrete sensory information. Finally, after a short time without being
seen, corners move out of short-term memory and into long-term storage. Ele-
ments in long-term storage are used in planning and localization, but are not
relied upon for execution.

10.4.3 Gateways

In C-Plan, the functional distance principle is at work within the robot’s cog-
nitive map, but gateways are not explicitly represented as they are in R-Plan.
Despite this difference, conceptual breaks in the robot’s spatial representation
do occur and can be identified.

Corners located in open areas within the robot’s environment tend to have a
high degree of interconnectedness. This is because a large number of corners are
usually visible in a relatively open unoccluded space, and the robot is recording
many “views” within the network. Narrow openings in the environment includ-
ing doorframes, hallways, and other structural constraints that partition space
occlude the robot’s perception and severely restrict the number of corners that
can be simultaneuously viewed by the robot between open spaces. This cuts
down on the number “views” that can be recorded. For example, a robot in a
foyer may see many corners concurrently (including those created by a door-
frame if the walls are thick enough), but not the corners in the room located
through the door-frame. If the robot moves through the door-frame and into a
room, it will see several corners in the room but not those outside of the room
due to the occluding wall. Thus, the topological networks (cognitive maps) gen-
erated by the robot will have highly interconnected clusters of nodes linked to
one another by a much sparser set of connections. These “narrow” portions of
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the network can be readily identified as gateways. Gateways in turn serve as im-
portant “landmarks”: areas in the perceived environment that constrain space
and limit the robot’s navigational options.

10.4.4 Summary

C-Plan is still under development, but it shows a great deal of promise in being
able to deal with highly dynamic indoor environments in a novel and interesting
way thanks mainly to borrowing a number of ideas from theories of cognitive
mapping and human learning.

10.5 Concluding Remarks

Advances in robotics and robot hardware afford tremendous opportunities to
cognitive scientists interested in representations of large-scale space. There are
numerous important questions about human spatial representations that robot
implementations could help answer. For example, while it is widely agreed that
humans have at least two modes of spatial functioning (based on route maps
and survey maps) the developmental sequence involved is less understood as
are issues surrounding how and why people switch from one mode to the other.
Jefferies et al. argue in this volume, for example, that the metric information of
survey maps can be acquired at least as early as route maps are. Others have
argued that route maps probably proceed survey maps. Robot implementations
allow exploration of such ideas. The majority of the learning theory in this paper
comes out of psychology and neuroscience, but there are still gaps in our un-
derstanding of how people learn about space. Probably the most crucial missing
area is concerned with how people build hierarchies, both in their route maps
and, more importantly, in their survey maps. In the original PLAN paper Chown
et al. speculated on how this might occur [6], but it has yet to be simulated and
there is still no concrete theory to draw from neurophysiological data. The whole
subject of learning is also a virtually untapped area where the understanding of
cognitive maps could benefit from simulation on robots.

From the other side there is still a great deal for robotics to profit from cogni-
tive theory and issues in learning and memory are one source of great potential
gain. It is easy, for example, for a robot to extract information from an environ-
ment and keep it in storage as long as it wants. In highly dynamic environments,
however, it is obvious that this is probably not a good strategy. Robots, even
more than other artificial intelligence systems, face a tremendous knowledge in-
tegration challenge – the question of how representations should be updated in
the face of new information, especially when that information might be contra-
dictory, is far from trivial. This problem will only grow worse as robots are used
in larger-scale environments. Purely mathematical approaches are unlikely to
be effective in many situations because it is difficult to incorporate knowledge
and context into them in a general purpose system. Humans have evolved a large
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number of factors that impact learning, each aimed at gleaning what is meaning-
ful out of what is otherwise just information. Just the arousal system, for exam-
ple, can be stimulated on a purely instinctual level or by predictions based upon
experience. There are also special purpose systems, such as the hippocampus,
that appear to be designed specifically to facilitate knowledge integration. Again,
robotics offers a chance to explore how such systems work, but the field will also
gain by such understanding as the answers will be beneficial for the increasingly
complex tasks and environments that robots will be facing in the future.
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Cognitive Robot Mapping: An Introduction

Benjamin Kuipers

It is now generally accepted that an adequate computational theory of the cog-
nitive map must include multiple representations for knowledge of space. This
third section of the book discusses implementations, with physical or simulated
robots, of such theories of the cognitive map.

These papers deal with three levels of spatial representation — control, topol-
ogy, and survey — each in its own way.

Chapter 11: Kuipers

In Chap. 11, Kuipers1 describes the history of the development of his Spatial
Semantic Hierarchy model of the cognitive map over more than three decades.
The need for multiple representations of spatial knowledge was present from
the beginning. However, as the TOUR model evolved into the Spatial Semantic
Hierarchy (SSH) and then into the Hybrid SSH, different representations and
capabilities were added to the model.

In addition, the original focus on the cognitive map — restricted to knowledge
of large-scale space — was broadened to include knowledge of small-scale space
within the agent’s perceptual horizon. The research program also broadened to
include an investigation of how foundational representations for space are learned
in the first place. This research explores a thought experiment by assuming that
an agent with uninterpreted sensors and effectors, exploring an unknown envi-
ronment, can search for statistical regularities that motivate the creation of new
descriptive terms. These new terms become a new ontology for describing space.

Chapter 12: Jefferies, Baker and Weng

Both Jefferies, Baker & Weng (Chap. 12) and Yeap, Wong & Schmidt (Chap. 13)
work in the framework of the Absolute Space Representation (ASR) of Yeap and
Jefferies [6, 5]. An ASR is a metrical representationof local space, with its own local
frame of reference. Adjacent ASRs are linked together into a topological graph,
connected by their exits.

Jefferies et al. (Chap. 12) show how a collection of linked ASRs can be merged
into a non-local metrical map called the Memory for Immediate Surroundings
(MFIS), with a single frame of reference. The MFIS has a limited extent, so it is
not necessarily a global metrical map, but constructing the MFIS typically does
involve closing large exploration loops by recognizing when the same ASR has
1 In this introduction, I use the third person to discuss my own chapter.
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been encountered through a different path. This paper discusses the use of both
topological and metrical information to constrain the identification of matching
ASRs and the construction of the MFIS.

It is interesting to compare the ASR/MFIS representation with the elements
of the Hybrid Spatial Semantic Hierarchy [1, 4] described by Kuipers in Chap. 11.
Like the ASR (which preceded it by several years), the Local Perceptual Map
(LPM) in the Hybrid SSH is a local metrical map with its own local frame of
reference. However, the LPM scrolls continuously with the agent as it moves
through the environment. When a topological place is identified, a snapshot of
the LPM is used to initialize a local metrical map of the place neighborhood.
This place neighborhood map serves a role very similar to the ASR.

The ASR approach assumes that the agent’s experience is tiled by a sequence
of adjacent and overlapping ASRs. In contrast, the Hybrid SSH assumes that
places and their neighborhoods are typically isolated, and are connected by path
segments that are associated with trajectory-following control laws that take the
agent from one place neighborhood to the next. In part, this difference seems
to reflect the examples that motivated the researchers. Kuipers (Chap. 11) was
initially inspired by descriptions of the urban cognitive map, such as Kevin
Lynch’s classic Image of the City [3]. Yeap and Jefferies [6, 5] are clearly inspired
by their experience with robot exploration of indoor office environments. This
difference is not fundamental, since each approach can express the other as a
limiting case.

Kuipers’ SSH approach emphasizes the use of topological information to make
loop-closing decisions [2, 1], followed by global metrical map-building on the topo-
logical skeleton [4]. The ASR/MFIS approach of Jefferies et al. (Chap. 12) empha-
sizes the use of metrical information in the MFIS to constrain potential matches
that could close loops.

Chapter 13: Yeap, Wong and Schmidt

Any approach to topological mapping must address the critical issue of robust-
ness in abstracting the continuous environment to a set of discrete structures
such as places or ASRs. That is, the set of places or ASRs that are identified on
one occasion might be different from the set identified in the same environment
on a different occasion.

Yeap, Wong & Schmidt (Chap. 13) take an interesting approach to this prob-
lem by demonstrating a method that makes robust estimates of a homing vector
without requiring consistent identification of ASRs. In their experiments, the
robot traverses a loop in a large environment, first in one direction, and then
retracing its steps in the opposite direction. The ASRs identified in the two di-
rections may or may not be the same. The first sequence of ASRs defines the
topological/metrical map of the environment, and then the sum of the local
distances along the ASRs identified on the return trip is used to estimate the
current position in the map. That position in the semi-global MFIS is used to
estimate the vector toward the starting point. In spite of arbitrary mismatches
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between the ASRs in the two map traversals, the errors in the estimated homing
vectors are quite small.

Chapter 14: Franz, Stürzl, Hübner and Mallot

Franz, Stürzl, Hübner & Mallot (Chap. 14) summarize their extensively devel-
oped cognitive mapping approach based on view graphs. The authors discuss the
capabilities of the cognitive map representation in terms of three major compo-
nents: route navigation, topological navigation, and survey navigation. Central
to this approach is the view: the sensory image or snapshot obtained at a par-
ticular pose during exploration. This sensory image could be a laser or sonar
range-image or, as in these experiments, an omni-directional camera image.

The route navigation component describes local motion control, as the ro-
bot moves from the pose associated with one view to the pose associated with
another. Local motion is along the gradient of image similarity between the cur-
rent view and that of the goal. That is, the robot moves so as to increase the
correspondence between its current sensory image and the goal view.

Topological navigation takes place in the view graph, a topological map where
nodes correspond to views (or more properly, to the poses in the environment
where the views are obtained), and the edges correspond to successful travel
by route navigation between adjacent views. To simplify the identification of
loops, Franz et al. (Chap. 14) assume that views are unique, so that observ-
ing a matching view after traveling along a new edge is sufficient evidence for
closing a topological loop. It seems that this method could be strengthened by
including loop-closing by hypothesis-testing using topological search (Kuipers,
Chap. 11) or by including metrical structuring of the semi-global environment
encompassing the current loop (Jefferies et al., Chap. 12).

This also raises the question of when new views are added to the view-graph.
Franz et al. (Chap. 14) create a new view when the dissimilarity with the previous
view (or with all other known views) exceeds a fixed threshold. This is necessary
to allow the similarity-based route navigation strategy to work. The creation of
new ASRs in Jefferies et al. (Chap. 12) follows a similar criterion. However, this
contrasts with Kuipers’ approach in the Spatial Semantic Hierarchy (Chap. 11),
where places are defined according to local distinctiveness, and places can be
linked by arbitrarily long trajectory-following control laws. Survey navigation is
done by multi-dimensional scaling and relaxation of the layout of the topological
map into a metrical map with a single frame of reference.

Chapter 15: Hafner

Hafner (Chap. 15) considers the same three cognitive map layers — route, topo-
logical, and survey — and discusses their relationship with recent results in
cognitive neuroscience. She describes simulation results from a computational
model of the cognitive map that predicts the activity of place cells as a function
of the agent’s pose in the environment.
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The approach taken here is similar to the view-graph approach of Franz et al.
(Chap. 14), with place cells representing sensory views. A self-organizing map
(SOM) with adaptive connectivity is used to identify clusters of sensory images
that can serve as views in the view-graph. One prediction from this model is that
place cells will be denser near objects, and this appears to match experimental
data from a variety of animals.

The learned place cells can be relaxed into a single frame of reference, using
information about the connections between the cells as data about how close or
far they should be from each other.

Hafner (Chap. 15) discusses evidence that distinguishes between place cells
and “view cells” that respond to particular sensory images. This raises the ques-
tion of whether there is a third category of “pose cells” that respond to position
and orientation, but not primarily to the sensory view. Environments with per-
ceptual aliasing (different poses with the same view) should be able to discrim-
inate among the responses of these types of cells.
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An Intellectual History of the
Spatial Semantic Hierarchy

Benjamin Kuipers

Summary. The Spatial Semantic Hierarchy and its predecessor the TOUR model are
theories of robot and human commonsense knowledge of large-scale space: the cognitive
map. The focus of these theories is on how spatial knowledge is acquired from experience
in the environment, and how it can be used effectively in spite of being incomplete and
sometimes incorrect.

This essay is a personal reflection on the evolution of these ideas since their beginning
early in 1973 while I was a graduate student at the MIT AI Lab. I attempt to describe
how, and due to what influences, my understanding of commonsense knowledge of
space has changed over the years since then.

11.1 Prehistory

I entered MIT intending to study pure mathematics. I was generally steeped
in the ideology of pure mathematics, and I had every intention of staying com-
pletely away from practical applications in favor of abstract beauty and elegance.
However, on a whim, in Spring of 1973 I took Minsky and Papert’s graduate in-
troduction to Artificial Intelligence. I was immediately hooked. I had always
been fascinated by the idea of a science of the mind. But then in college I took a
course in psychology, which was a crashing disappointment. The interesting parts
weren’t scientific, and the scientific parts weren’t interesting. Now, in artificial
intelligence, symbolic computation promised mathematical methods capable of
rigorously modeling interesting aspects of the mind.

I spent that summer at the MIT AI Lab, reading papers and getting more and
more excited. Marvin Minsky was circulating drafts of his “frames paper” [41],
which advocated that research focus on representation and inference about com-
plex symbolic descriptions of meaningful objects and situations, rather than on in-
dividual propositions and logical inference. Such a description was called a frame.
It had a number of slots, which could contain values, and could be associated with
symbol manipulation procedures for doing inference, including providing default
values for empty slots. I recall telling Pat Winston once that I found the frames
concept to be very compelling, but I wondered where the slots come from.

Minsky’s classes introduced me to Piaget’s theories of the development of
children’s knowledge of foundational domains, including space, time, causality,
and so on. His and John McCarthy’s writings [39, 42] also convinced me that
the nature and representation of commonsense knowledge was a bottleneck issue
for artificial intelligence. This was the problem I wanted to work on.

M.E. Jefferies et al. (Eds.): Robot. & Cogn. Approach. to Spat. Map., STAR 38, pp. 243–264, 2008.
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Following up on an idea of Minsky’s for model-based object recognition, and
using the edge-and-vertex representation from Blocks World vision, I wrote a pa-
per showing how a vision system could discriminate among a small set of block
models, tracing a hypothesis from vertex to vertex along edges, and using con-
tradictory evidence to force a jump to an alternate hypothesis when necessary.1

This paper earned me an invitation to spend Summer 1974 at Xerox PARC
as a summer student working with Danny Bobrow and Terry Winograd. I im-
plemented and demonstrated my recognition system in Smalltalk on the Alto,
alternately marveling at the wonderful new technology and taking it totally for
granted. The revised paper was named “A frame for frames” [23] in conscious
homage to Fillmore’s far more influential “The case for case” [11].

As the end of the summer approached, before returning to MIT, I met with
Danny Bobrow to ask his advice on research topics. I explained that I had enjoyed
working on model-based object recognition, but I really wanted to work on the
problem of commonsense knowledge, and I didn’t know where to begin. Danny
suggested that I look at some work being done by Joe Becker and Bill Merriam
at BBN on a simulated robot learning the structure of a simulated city [3, 4].

I knew immediately that this was the right problem: How can a robot learn a
cognitive map from its own experience of the environment? It focuses on spatial
knowledge, which is not only important, but is arguably the foundation for most
other kinds of commonsense knowledge [34]. It also looked like it would factor
well, in the sense that I could define interesting sub-problems that were small
enough to solve, but which could be assembled into solutions to larger problems
as I made progress. It would make a great PhD thesis topic, and I went back to
MIT happy.

11.2 Cognitive Background

Quite a bit was already known about how human knowledge of space is struc-
tured, and how people use spatial knowledge to solve problems. I immersed
myself in that highly diverse literature, reading papers from cognitive and de-
velopmental psychology, urban planning, geography, linguistics, and the visual
arts. Two books that particularly influenced me were The Image of the City2 by
Kevin Lynch [37] and Image and Environment, a new collection of papers edited
by Downs and Stea [9]. Also, among the more cognitively oriented denizens of
the MIT AI Lab, Piaget’s “genetic epistemology” approach to developmental
psychology (e.g., [47]) permeated the atmosphere.

What quickly emerged from all this reading was a view of spatial knowledge
consisting of several quite different types of knowledge. Some was procedural,
“how-to” knowledge about getting from one place to another. Some consisted
1 Only with the benefit of much hindsight do I recognize the similarity with the process

of building topological maps.
2 I later learned that both Lynch’s The Image of the City [37] and Miller, Galanter,

and Pribram’s influential Plans and the Structure of Behavior [40] were inspired by
Kenneth Boulding’s seminal book, The Image [6].
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of topological connections between places and travel paths. And some consisted
of metrical layouts approximately analogous to the environment itself or to a
printed map. But it was clear that accurate metrical layout descriptions came
last, if at all, and depended on the earlier types of knowledge. Furthermore,
spatial reasoning methods varied across individuals, with developmental stage,
with experience in a particular environment, or simply with individual cognitive
style. A year or so later, Siegel and White’s masterful survey of the development
of spatial knowledge [61] confirmed and deepened this view.

Since the differences between the representations for spatial knowledge are
so central, I started collecting route directions and sketch maps from anyone
available. These were informal probes, designed to elicit a wide range of behav-
ior I could examine for qualitative features, not formal experiments designed
to test or refute hypotheses. What I needed was to complement the literature
review with an intimate sense of the phenomenon itself, as a basis for building
a computational model.

One immediate conclusion was that there is a lot of individual variation in the
amount, nature, and accuracy of spatial knowledge that different people have,
and in how they express it. Another is that neither verbal directions nor sketch
maps tend to be particularly accurate about absolute distances or directions.
On the other hand, topological relations such as the order of places on a path,
or the connections between paths at a place, tend to be represented accurately
and when errors do creep in, they are usually detected.

A common style for drawing a map was to follow a mental route, drawing
those places and paths needed for the route, and perhaps nearby structures.
When the subject made an error in translating the route into the graphical map
representation, the error was usually metrical, and could go unnoticed for quite
some time as the map was elaborated in an incorrect direction. The error would
be detected when it finally came time to close a loop, and two occurrences of the
same place would be drawn far apart, sometimes separated by other structures.
At this point, detecting the problem became easy, but identifying the specific
error or correcting it could still be quite difficult.

Some subjects used a different style3, sketching the overall structure of a
region, such as the rectangular grid structure in Boston’s Back Bay. Fortunately
for my research, the geography of the Boston-Cambridge area abounds with
interesting local structures that fail to generalize over larger regions, leading to
easily detectable geographical fallacies and paradoxes in people’s cognitive maps.

The overwhelming impression from both my own investigations and the pub-
lished experimental studies is that human spatial knowledge consists of a number
of distinct representations for different aspects of space. Some people have many
of these cognitive modules, and they work together well, while others may have
fewer of them, or they don’t work together so well. As a working hypothesis, I
took the position that there is a single “complete” structure for all of these mod-
ules, working well together, and that all the variants — with individual style,
3 These two styles were also identified by Linde and Labov [36] in subjects’ descriptions

of their apartment layouts.
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developmental stage, or amount of experience in a particular environment — are
modified or restricted versions of the ideal. This is similar to both Piaget’s “ge-
netic epistemology” and to current notions of “ideal observer” models [12].

Since the target of my efforts was a structure of interacting modules, it was
natural to do the research by identifying an interesting aspect of the phenomenon
of the cognitive map, constructing and testing individual modules to explain
that aspect, and then looking for further parts of the natural phenomenon not
adequately explained by existing modules.

11.3 The TOUR Model

My doctoral thesis described the representation of knowledge of large-scale space
— the cognitive map [24, 25]. Space is considered large-scale if its relevant struc-
ture is at a scale larger than the sensory horizon, so knowledge of the structure
must be acquired from exploration within it. The focus on large-scale space
allowed me to avoid the difficult problems of computer vision and scene under-
standing. I focused my attention on spatial representation and inference, and
specifically, on the problem of how global spatial structure can be inferred from
local sensory experience. The TOUR model is a computational model of this
kind of knowledge, including in most cases how that knowledge is learned from
experience.

The TOUR model describes an agent4 that receives a sequence of experiences
as it travels through the environment, and builds its own cognitive map of that
environment. The cognitive map is a symbolic representation, consisting of a
set of frames for describing different types of objects such as places, paths, and
regions; each type with its own collection of attributes; each instance with values
for some or all of those attributes.5 A place includes an attribute for the set of
paths it is on, and a path includes an attribute for the partially-ordered set of
places on it. An agent on a path faces in one of two directions: up or down the
place-ordering on that path.

As the agent receives experiences, it draws only those conclusions that can
be inferred efficiently with information available at the time. This kind of “op-
portunistic” inference puts a premium on representations capable of expressing
incomplete knowledge, so the results of small inference steps can be represented
and stored, rather than being lost if attention moves elsewhere. Because of this
strategy, inference is very efficient, but several travels along a particular route
may be necessary for the TOUR model to infer all of the conclusions that follow
logically from the experience.
4 The TOUR model and the Spatial Semantic Hierarchy are intended to describe both

human and robotic agents.
5 The equivalence between frames and first-order predicate logic is now well under-

stood [15]. James Crawford and I later formalized the intuitions behind this version
of frames as “Access-Limited Logic” and its implementation, Algernon [7, 8].
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The TOUR model divides spatial representation into three levels: procedural,
topological, and metrical.6 At the procedural level, experience is modeled as
a sequence of GO-TO and TURN actions, with associated distance or angular
magnitudes, respectively. The action description can be augmented with descrip-
tions of the states before and after the action, each modeled as place, path, and
direction along the path. When not provided explicitly, these may be inferred
from context.

The inferential heart of the TOUR model is the “TOUR machine”, a finite-
state, rule-driven automaton. It has a set of registers called the “You-Are-Here
pointer” describing the current place, path, direction, etc. Instead of an infinite
tape, its memory is a potentially infinite set of frames reachable through the
attributes of existing frames. Knowledge of the current state fills in the initial-
state description in the current action. If the current place or path description
can predict the final-state of the current action, it does; if not, new descriptions
are created. In either case, the results update the You-Are-Here pointer, and
they are stored as part of the action, place, and path descriptions, extending
or confirming what was previously stored. Since the world itself is assumed to
have a single consistent structure, and since the representation is supposed to be
sufficiently expressive of incomplete knowledge for the results of opportunistic
inference, contradictions between stored and newly-inferred information should
be rare. The problem of more extensive reorganization and correction of the map
when such an error is detected was beyond the scope of this research.

The sequence of GO-TO and TURN actions representing the agent’s experi-
ence is provided by a simple natural language interface. The interface is based on
Vaughan Pratt’s elegant LINGOL parser [53], which allows context-free gram-
mar rules to be annotated with semantic interpretation routines. The grammar
makes it easy to describe the agent’s experiences in natural-sounding route in-
structions, such as:

Start on Broadway, at the intersection of Broadway and Prospect Street,
facing Kendall Square.

Turn right onto Prospect Street.
Take Prospect Street to Central Square.
Turn right onto Mass Ave.
Take Mass Ave to Putnam Circle.

The topological level of the TOUR model is based on the connectivity of
places and paths, the circular order of directed paths at each place, and the par-
tial ordering of places on each path. It also includes boundary relations, whereby
places can be described as “to the right” or “to the left” of a path. Boundary re-
lations can be used to define regions in terms of bounding paths. All of these are
learned by the TOUR model through opportunistic inference from experience
in the form of GO-TO and TURN actions. Another form of topological knowl-
edge is a region hierarchy, which allows the environment to be described, and
6 This division into levels is updated to reflect the later perspective of the Spatial

Semantic Hierarchy [33, 18].
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route-planning problems to be solved, at many different levels of abstraction.
For the region hierarchy, the TOUR model describes the representation and use
of the knowledge, but provides no learning theory.

The metrical level of the TOUR model consists of attributes and relations with
continuous values, like distance and direction. Analog spatial representations
such as 2D occupancy grids [46] were still far in the future. Every GO-TO action
includes a description of the magnitude of travel from one place to another along
a given path. This provides a constraint on the relative location of the two places
in the 1D frame of reference of that path. Enough observations of distances
between pairs of places on the same path determines the layout of places within
the path. Similarly, observations of TURN magnitudes at a given place provides
a radial layout of the directed paths at that place. These radial layouts can
be interpreted as defining the heading of an agent at that place, path, and
direction, but only in a frame of reference local to the place, so headings cannot
be compared from place to place. However, if the GO-TO action magnitude
is extended to include a “net angular displacement” attribute Δθ, then a single
frame of reference can propagate along GO-TO actions to include multiple places.
For places within a single frame of reference, GO-TO and TURN actions provide
relative distance and direction measurements, from which a 2D layout of places
can be inferred.

The TOUR model [24, 25] was the first computational model of the cogni-
tive map that explicitly addressed the multiple types of spatial knowledge that
must be represented. It specifically focused on the topological representations
whose importance was well-understood by researchers deeply familiar with hu-
man cognitive mapping, but which was widely overlooked by many others in
psychology, geography, and robotics. The major limitations of the TOUR model
were the oversimplified interface to the agent’s actual sensorimotor experience
in the world, and the inadequate treatment of analog metrical representations.

11.4 Explicit Representation of Sensory Views

One problem with the original TOUR model is that the procedural level too
thoroughly abstracts away the agent’s sensory input from the environment. The
route-direction-like input representation was unable to express either gaps in
the sequence of experience or perceptual aliasing (different places that look the
same). Part of solving this was to provide an explicit representation for sen-
sory experience [26]. A view is an abstracted description of the sensory image
experienced by the agent at a particular state (i.e., place, path, and direction).
The TOUR model avoids the problem of interpreting input from any particular
sensor (e.g., vision, sonar, laser) by treating views as atomic symbols that can
only be used as retrieval keys or matched for identity. The specific representation
or implementation of views is outside the scope of the theory (until later; see
Sect. 11.7).
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Given the concept of view we can define a more natural interface, representing
the agent’s experience as an alternating sequence of views and actions:

v0, a0, v1, a1, v2, · · · vn−1, an−1, vn.

An action ai can have type Turn or Travel, with an associated magnitude.
We can now replace the procedural description of travel experience with a

collection of causal schemas 〈v, a, v′〉, where the view v describes the context
when action a is initiated, and v′ describes the result after a has completed
[26]. A schema 〈v, a, v′〉 has the declarative interpretation that in context v,
after performing action a, one can expect resulting view v′, and the imperative
interpretation that if the agent experiences the context view v, it should do
action a.

Knowledge of an experienced route is represented as a collection of schemas,
indexed by their context views. This representation can express several very
plausible states of incomplete knowledge. A gap in the route, perhaps due to
inattention during exploration, corresponds to omitted schemas in the route
description. If all the schemas 〈v, a, v′〉 in a route description are complete, they
form a linked list, as the result v′ of each schema allows retrieval based on the
context v of the next schema along the route. However, incomplete schemas
〈v, a, 〉 can be constructed if working memory is disrupted during the possibly-
extended time while a is taking place, before the result v′ becomes available.
Incomplete schemas still have their imperative meanings intact, and can still be
used to traverse the route physically in the environment, since the environment
will provide the result of each action. What is lost is the ability to review the
route in the absence of the environment.

In these ways and others, the schema representation is very expressive of states
of incomplete knowledge of a route. Variations may depend on developmental
stage, amount of experience with this route, amount of computational resources
available, and frequency of disruptions. We extended this concept to describe
one aspect of individual variation in cognitive style, corresponding to the set of
rules available for constructing partial schemas [27].7

As it happens, it took a while to recognize that a good formal structure for
representing route experience is the familiar finite-state automaton, or more
generally, the partially-observable Markov decision process (POMDP) [10, 1, 2].
We require a set of underlying states x, that are themselves unobservable, but
which map to observable views v. The set of schemas 〈x, a, x′〉 represents the
transition function for the automaton, and the relation view(x, v) represents the
mapping from unobservable state to observable view. In full generality, POMDP
learning of automata with stochastic transition and observation functions is in-
tractable. However, this direction of investigation takes us farther away from an
understanding of human commonsense spatial knowledge.
7 Starting around 1978-79, I decided to change research direction for a variety of rea-

sons [19]. This led to a productive line of work on medical reasoning and qualitative
simulation [32, 16, 17, 29]. Spatial knowledge became a secondary concern until the
mid-1990s.
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In the Spatial Semantic Hierarchy [18, 55], we assume that transitions 〈x, a, x′〉
among states are deterministic (reflecting the error-correcting capabilities of
feedback control laws), and that the relation view(x, v) is a function, though
not necessarily one-to-one. With these assumptions, and when exploring physical
space, learning a minimal underlying automaton from observational experience
is generally feasible in practice.

11.5 Abstracting Continuous Experience to Discrete
States

A second problem with the original TOUR model is that it presupposes that
the continuous experience of the agent has already been abstracted to a discrete
sequence of states and transitions. This was justified by Kevin Lynch’s obser-
vation that humans tend to represent knowledge about decision points, with
much less about the spaces between them [37]. Nonetheless, this unexplained
abstraction remained a gaping hole in the theory, and it was a barrier to robot
implementation.

My cognitive mapping research had been on hiatus for several years, with
QSIM receiving all of my attention, when a new grad student named Yung-Tai
Byun approached me in 1986, wanting to do research on robot exploration and
mapping. In the course of our discussions, we ran directly into the problem of
relating the robot’s continuous behavior to the kind of discrete topological map
that the TOUR model creates. When we contemplated the simplest non-trivial
environment I could think of — two corridors joined to form a T (Fig. 11.1) —
the concept of distinctive place became clear. If we overlay the obvious T-shaped
topological map onto the continuous polygonal environment, the natural loca-
tions for the four topological places are at the dead-ends and the intersection, at
locations equidistant from the nearest obstacles. The segments connecting places
are clearly corridor midlines. These loci corresponding to topological places and
topological paths naturally suggest the attractors of hill-climbing and trajectory-
following control laws, respectively. This basic idea, of letting the attractors of
continuous control laws define the topological features of large-scale space, led
to several influential papers, including [30, 31]. Our focus was on the topological
map, but we did show how the topological map (Fig. 11.2(a)) could provide a
skeleton for a global metrical map (Fig. 11.2(b)), foreshadowing later work.

The selection of a control law couples the robot and its environment into
a continuous dynamical system, which moves through its state space toward
an attractor. The selection, execution, and termination of these control laws
can be defined based entirely on sensory features available “from the inside” of
the agent, without any appeal to the external semantics of the sensors or of the
features. (It wasn’t until later that we actually tried to learn the sensors, features,
and control laws without appeal to external semantics [51]. See Sect. 11.8.) This
method for defining symbolic entities referring to topological places and path
segments in terms of the behaviors of control laws is a concrete example of a
solution to the Symbol Grounding Problem [14].
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By physically hill-climbing to the local optimum of a “distinctiveness measure”
defined over the local neighborhood, the robot localizes itself within that neigh-
borhood with minimal assumptions about the nature of its sensors (Fig. 11.3).
Because the dynamical system defines motion over the robot’s state space (lo-
cation plus orientation), rather than over the work space (location alone), we
came to realize that what is distinctive is the state, rather than the place, so we
began to refer to distinctive states rather than distinctive places. For example,
the single topological place at a T-intersection corresponds to four distinctive
states, with the same location and different orientations. The Turn actions that
link them correspond to trajectory-following control laws that change only ori-
entation, followed by hill-climbing control laws to align with the walls of the
corridors. (Later, in Sect. 11.7, we will see a new conception of places and place
neighborhoods.)

Motion among distinctive states avoids the problem of cumulative error that
typically plagues robot mapping. There is no attempt to maintain an accurate
location in a single global frame of reference. Rather, the purpose of an action
is to move reliably from one distinctive state to another one. Any error that
accumulates during trajectory-following is eliminated by the hill-climbing step,
as long as the error is not so large as to miss entirely the basin of attraction of
the destination distinctive state.

11.6 The Spatial Semantic Hierarchy

We started with the idea that the cognitive map consists of different repre-
sentations for knowledge of space. As we come to understand spatial knowledge
more deeply, the actual representations have evolved. We can best organize these
different representations by grouping them according to ontology: the types of
objects that can be described and the relations that can hold among them.

The Spatial Semantic Hierarchy (SSH) describes the cognitive map as consist-
ing of four different levels, each with its own ontology, and each level grounded
in the ones below [33, 31, 18, 55].

• At the control level, the agent and its environment are described as parts
of a continuous dynamical system. The agent acts by selecting trajectory-
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Fig. 11.1. A T-shaped space, and its topological model
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Fig. 11.2. A simulated robot applies the SSH exploration and mapping strategy [31].
(a) The robot’s exploration trajectories (black spots and thin lines) reveal the locations
where it identifies distinctive places and follows path segments. (b) Local metrical
information about place neighborhoods and path segment length and curvature can be
used to relax local frames of reference connected by a topological map into a single
global frame of reference.

Trajectory-following

Hill-
climbing

ds1 ds2

V1

A

V2

Fig. 11.3. Motion from one distinctive state to another via trajectory-following and
hill-climbing control laws eliminates cumulative error. Reliable behavior can be ab-
stracted to the causal schema 〈V1, A, V2〉.

following and hill-climbing control laws, subject to their applicability and
termination conditions, so the agent-environment system moves toward an
attractor. The stable attractor of a hill-climbing control law is called a dis-
tinctive state.

• At the causal level, the agent and its environment are described as a par-
tially known finite-state automaton, whose states correspond to the distinc-
tive states identified at the control level, and whose actions correspond to
sequences of control laws. Views are the observable properties of states. A
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discrete state transition at the causal level corresponds to the extended evo-
lution of dynamical systems at the control level.

• At the topological level, the environment is described in terms of places, paths,
and regions, with relations such as connectivity, order, and containment. A
state of the agent, described at the causal level, corresponds to being at a
place, on a path, and facing along the path in one of two directions. The
topological map is created by a process of abduction, to explain the sequence
of views and actions that represent the agent’s experience at the interface
between the control and causal levels [55].

• The metrical level has several different aspects. The causal and topological
levels may include attributes with quantitative values, such as the magnitudes
of actions, distances between places along paths, and angles between paths
at places. A local place neighborhood can be described by a two-dimensional
spatial analog such as an occupancy grid, with a single frame of reference. A
spatial analog model of the large-scale environment can be created, based on
the skeleton provided by the topological map.

There are logical dependencies (Fig. 11.4) among the levels, which constrain
the combinations of representations that can occur. Different parts of the cog-
nitive map may represent knowledge at different SSH levels, but each part of
the map must respect the dependency structure. The agent’s cognitive map may
have a global metrical map of one portion of the environment, a topological
map of another, simply causal knowledge of the sequence of actions to take in
a third, and then use the control level to explore unknown territory. Or, when
pressed for time or preoccupied with other concerns, the agent may access only
causal knowledge to follow a familiar route even though topological and metrical
knowledge may be available.

Emilio Remolina’s doctoral work [55] provided a major step forward in the
clarity of the SSH. He provided a formal axiomatization for the SSH causal and
topological levels, plus the quantitative attribute portion of the metrical level.
Since the topological map is the result of an abduction process, finding the best
consistent explanation of the available observations, the formalization required
a non-monotonic logic, in this case circumscription as embodied in Vladimir
Lifschitz’ nested abnormality theories [35]. The axioms express the consistency
requirements for topological maps, and the nesting structure and the prioritized
circumscription policy express the preference ordering on consistent maps. If a
new observation should refute the current most preferred consistent map, then
the preference ordering can be used to help select a preferred map from those
still considered consistent.

This non-monotonic logical inference is implemented as an algorithm that
creates a tree of all possible topological maps and imposes a preference order
on the leaves.8 At any point in time, the leaves of the tree represent the topo-
logical maps consistent with experience so far. After a travel action reaches and
8 Strictly speaking, the abduction searches for the best set of equality and inequal-

ity axioms over the symbols representing distinctive states. The algorithm creates
models of those sets of axioms, and tests them for consistency.
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Fig. 11.4. The Spatial Semantic Hierarchy. Closed-headed arrows represent depen-
dencies; open-headed arrows represent potential information flow without dependency.

describes a new place neighborhood, some maps at the leaves of the tree are re-
futed as inconsistent, some are confirmed as consistent, and others branch on all
consistent extensions. Branches only take place when there is perceptual alias-
ing; that is, when different places can have the same appearance. Then if a travel
action reaches a place that appears the same as a previously-known place, two
hypotheses must be created: one that the new place really is the same as the
old one, and a second that the new place is genuinely new, but has the same
appearance as the old one.

By initially creating all possible consistent successors, and refuting only the
inconsistent ones, we maintain the guarantee that the correct topological map is
present in the tree [55, 22]. In subsequent work, Francesco Savelli augmented the
existing topological axioms with a test for the planarity of the topological map,
which could be applied either as a consistency requirement or as a preference
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criterion [60]. It will also be important to use probability as well as prioritized
circumscription policies to order the consistent maps [13].

The SSH treats observations gathered during exploration as the fundamental
source of experience for building a cognitive map of large-scale space. However,
there are other ways to obtain information about the structure of the envi-
ronment. Verbal route directions translate naturally into sequences of actions
(and minimal descriptions of views) at the SSH causal level [38]. Informal sketch
maps translate naturally into subgraphs at the SSH topological level. And pre-
cise graphical maps provide information at the SSH metrical level. These and
other forms of spatial communication are a topic for active research in psychol-
ogy, linguistics, and cognitive science. One role for the SSH is to provide a useful
description of the target representation for such communication.

11.7 The Hybrid Spatial Semantic Hierarchy

The four levels of the basic SSH framework start to look pretty satisfactory. This
lets us turn our attention to certain assumptions and issues whose resolution will
help us broaden and improve the Spatial Semantic Hierarchy.

First, the basic SSH treats perception as a black-box process that returns
“view” symbols, abstractions of the full sensory image, capable only of being
matched for equality or used as retrieval keys. We are ready to break down the
hard separation between large-scale space and small-scale perceptual space. A
more realistic theory of perception of the local environment, with both laser
range-finders and computer vision, needs to be integrated with the cognitive
mapping process.

Second, the basic SSH assumes that distinctive states are identified through
the agent’s physical motion, hill-climbing to the location in the environment
that maximizes the current distinctiveness measure. This physical motion seems
awkward and unnecessary.

Third, there has been an explosion of successful work on the SLAM (simulta-
neous localization and mapping) problem, building metrical maps of increasing
size directly from sensory input within a single global frame of reference [63].
This approach differs significantly from the human cognitive map and from the
multi-representation approach of the SSH. Do the two approaches compete? Are
they complementary? Is one suitable for modeling humans while the other is
for building robots? We need to understand the relationship between these two
approaches.

Fortunately, there is a synergy between these three concerns that leads to
their resolution [22]. Having defined large-scale space as space whose structure is
larger than the sensory horizon, it is natural to define small-scale space as space
whose structure is within the sensory horizon. Small-scale space is described by a
local perceptual map that is metrically accurate and is constructed directly from
sensory input. Recently developed SLAM methods are well suited for creating
such a local perceptual map. We avoid the problem of closing large loops by
confining the map to the agent’s local perceptual surround, where we can apply



256 B. Kuipers

the strengths of existing SLAM methods. When reasoning about small-scale
space, we are concerned only with the frame of reference of the local perceptual
map, and not with its inevitable drift with respect to the world frame of reference.
We call the resulting combined model of large-scale and small-scale space, the
hybrid SSH.

Local SLAM methods continually maintain the agent’s localization in the
frame of reference of the local map. Accurate incremental localization supports
accurate incorporation of observations into the local map, and accurate local
motion planning. In the basic SSH, hill-climbing provides the same benefit of
accurate localization under weaker assumptions about sensors and effectors, but
at the cost of physical motion to the distinctive state. In the hybrid SSH, when
the agent has enough knowledge about its sensors and effectors to maintain
its localization within the local perceptual map, it no longer requires physical
hill-climbing.

Where the basic SSH treats views as atomic symbols, matched only for equal-
ity, the hybrid SSH treats the local perceptual map as the observable manifesta-
tion of a topological place [22]. The local perceptual map of a place neighborhood
is parsed to define a local topology that describes how directed path segments
join at that place. Distinctive states in the basic SSH causal level correspond
to gateways within the local perceptual map of the place. Two local perceptual
maps are matched by first matching their local topology descriptions, and then
matching their perceptual maps to give a probability that they correspond to the
same state. The local perceptual map with its local topology description bind to-
gether the small-scale-space and large-scale-space descriptions of the same place
neighborhood, and thus bind together the continuous sensorimotor ontology and
the discrete topological ontology.

The agent’s experience in the environment is an alternating sequence of views
and actions. However, in the hybrid SSH, a view corresponds to a pose within
the local perceptual map, a turn action corresponds to motion within the local
perceptual map of the current place neighborhood, while a travel action moves
from one place neighborhood with its local perceptual map, to another place
neighborhood. In addition to fixed local perceptual maps of place neighborhoods,
a scrolling local perceptual map is used by trajectory-following control laws as
an “observer” process to model obstacles in the agent’s immediate surround. A
topological place is detected at a change in the qualitative properties of the local
topology of the scrolling local perceptual map during execution of a trajectory-
following control law [5]. The topological map is built by abduction to explain
this sequence of experiences. Where it is possible to have perceptual aliasing (two
different places look the same), we build a tree of topological maps consistent
with the same sequence of experiences. After sufficient exploration, inconsistent
maps are refuted, and a single simplest or most probable map can be identified.

At this point, we can combine the global topological map with local perceptual
maps of place neighborhoods to build a global metrical map of the large-scale en-
vironment in a single frame of reference [43]. Each local perceptual map defines a
local frame of reference for accurate metrical knowledge at a place neighborhood,
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(a) (b) (c)

Fig. 11.5. The Hybrid SSH builds a global metrical map: (a) The robot explores an
office environment with multiple nested large loops, identifying places in the sequence
shown. (b) After inferring the correct topological map, the layout of local place maps in
the global frame of reference. (c) The global map is created by localizing the trajectory
poses in the global frame of reference, anchored by the poses in the local place maps,
then creating the global map from the laser range-finder observations.

but the frame of reference will drift enough during travel to make it unusable
globally. A consistent topological map hypothesis embodies a decision about
which experiences of perceptually similar places were actually visits to the same
place. Travel along each path segment between places can be used to estimate
the displacement of each place in the local frame of reference of its predecessor.
These local displacements between adjacent places can then be merged into a
layout of the local place frames within a single global frame of reference, typ-
ically by applying a relaxation algorithm to the displacements. (The resulting
probability of the global layout given the topological map and the displacements
can be used as part of the preference ordering of topological maps in the tree
of consistent maps.) The entire trajectory of robot poses can now be described
in the global frame of reference, anchored by the poses at both ends of each
path segment, which already have accurate localization within the local frames
of reference. Finally, an accurate global metrical map can be constructed, given
the accurately localized trajectory of poses. This factors the problem of global
metrical mapping into three tractable steps.

Part of the original motivation for the TOUR model of the cognitive map was
the observation that humans do not typically create an accurate global metrical
map from observations during travel. However, with increasing experience in
the environment, they can lean a cognitive map that is increasingly faithful
to the correct Euclidean model of the world [47]. Furthermore, accurate global
metrical maps are valuable engineering and scientific tools, so it is useful for a
robot to be able to build them. We demonstrate the value of combining different
representations of space by showing how to build a correct global metrical map on
the skeleton provided by an accurate global topological map, using observations
from experience in the local perceptual map.
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11.8 Foundational Learning

We have jumped over a research thread that has important implications for the
future. The Spatial Semantic Hierarchy, both basic and hybrid, presumes that
the agent has a collection of control laws for coupling its sensors, effectors, and
environment together. This, in turn, presumes that the agent possesses (or em-
bodies) knowledge of which sensory features are useful, and how its effectors
change those features. In an artificially constructed robot, much of this knowl-
edge is built in by the designer. In a biological creature, some of this knowledge
is innate. We ask, how can this knowledge be learned? Biologically, some of the
learning is done by the species over evolutionary time, while the rest is done by
the individual.

This question was inspired by a challenge problem proposed by Ron Rivest at
MIT in 1984 [28]. Suppose an agent wakes up in an unknown world, with a sense
vector and a motor vector, but with no knowledge of how they are related to its
world. How can such an agent learn to predict the results of future actions? This
challenge led Rivest, Sloan, and Schapire to a series of results about learning
finite automata from observations [56, 59, 57, 58]. My own approach was to
try to learn the sensorimotor foundation for the TOUR model from exploration
experience [28].

Around 1988, David Pierce and I began to investigate this question for an
agent with continuous experiences in a continuous world. After developing some
preliminary pieces of the puzzle [49, 52, 50], we demonstrated a learning agent
that started with an uninterpreted sensorimotor system in an unknown world,
and learned: (a) to separate the sense vector into distinct sensory modalities; (b)
to learn a low-dimensional spatial structure for the sense elements (“pixels”) in a
particular modality; (c) to identify primitive actions from the sensory flow fields
induced on this spatial structure; (d) to identify a set of stable sensory features
that can be extracted and tracked in the sensory image; (e) to learn which ac-
tions cause reliable changes to which perceptual features in which contexts; (f)
to construct useful homing (i.e., hill-climbing) and trajectory-following control
laws from those actions; and (g) to define distinctive states and actions linking
them [48, 51]. Thus, by bootstrapping through a number of intermediate repre-
sentations, the agent learned a sufficient foundation to reach the “bottom rung”
of the SSH ladder. While there were a number of assumptions and limitations
in this work, it genuinely demonstrated that a computational agent could learn
its own sensorimotor grounding from its own interaction with the environment
(Fig. 11.6).

This research thread returned to the back burner for several years, until
Patrick Beeson and I started looking at the problem of place recognition [20].
A realistic robot receives a high-dimensional sensory image at any given mo-
ment. For the basic SSH causal level, that image must be abstracted to one
of a discrete set of views. Our goal was to learn a view representation such
that each view correctly determines a unique distinctive state. We build on the
fact that perceptual aliasing of distinctive states can be overcome by continued
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(a) (b) (c)

Fig. 11.6. Exploring a simple world at three levels of competence. (a) The robot
wanders randomly while learning a model of its sensorimotor apparatus. (b) The robot
explores by randomly choosing applicable homing and open-loop path-following behav-
iors based on the static action model while learning the dynamic action model. (c) The
robot explores by randomly choosing applicable homing and closed-loop path-following
behaviors based on the dynamic action model.

exploration, proposing candidate topological maps and refuting the incorrect
ones when predictions are violated.

We gave the name bootstrap learning to the learning method we developed.9

Start by creating an over-abstract but usable view representation: cluster sen-
sory images aggressively enough that each distinctive state corresponds to only
one view, even at the cost of multiple states having the same view (percep-
tual aliasing). Then the standard SSH exploration and mapping methods can
converge to the correct topological map after enough exploration. The correct
topological map provides a correct association between distinctive states and
the high-dimensional sensory images, even if the views are aliased. So now we
can use supervised learning (more powerful than unsupervised clustering), to
learn correct associations between sensory images and distinctive states. In two
experiments with rich sensors and real environments, the learning agents rapidly
reached 100% accurate place recognition [20].

The generic structure of this bootstrap learning scenario is: (1) approximately
abstract the problem using an unsupervised method; (2) use a much more expen-
sive inference method to find the correct answer; (3) use supervised learning to
find the correct level of abstraction. We believe that this pattern can be applied
to other abstraction-learning problems [21].

Jefferson Provost and I have been investigating how an unsupervised agent
can learn a high-level ontology of perceptual features, distinctive states, and
extended actions from uninterpreted “pixel-level” experience. Provost’s Self-
Organizing Distinctive-state Abstraction (SODA) starts by training a self-
organizing map (SOM) with adaptive topology to define a set of distinctive
sensory images. The agent can then learn to climb the gradient of the activation
9 We have since extended the term “bootstrap learning” to apply to this general

approach to foundational learning.
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level of the currently-leading SOM unit to move to, and define, distinctive states.
Finally, it learns trajectory-following control laws to move from one distinctive
state to the neighborhood of a different one, where hill-climbing brings it to the
destination distinctive state. Both sets of control laws are learned by reinforce-
ment learning [62] where the reward signal (e.g. the SOM unit activation level)
is internally generated and has been autonomously learned. The result is an au-
tonomous abstraction of a large continuous environment into a discrete set of
distinctive states with actions (“options”) for moving among them. This abstrac-
tion achieves large speedups when learning to solve high-diameter reinforcement
learning problems [54].

Joseph Modayil and I have been investigating how a higher-level ontology
of objects and actions can be learned from experience with a lower-level ontol-
ogy of individual sense elements (“pixels”) and motor signals [44]. This, too,
requires a multi-stage learning process. It was developed and demonstrated us-
ing the range-sensor-based local perceptual map (implemented as an occupancy
grid) used by our exploring robots. First, we identify those sensor returns in the
current sensor image that are explained by static features of the environment,
represented by cells in the occupancy grid that have high confidence of being
occupied, and have never had high confidence of being free space. The remaining
sensor returns are explained by cells whose occupancy has changed at some time
in the past. Second, we cluster these “dynamic” sensor returns in the current
sensory image frame; and third, we attempt to track these clusters from frame to
frame over time. These trackable clusters are hypothesized to be explainable as
images of objects. The fourth step is to collect a sequence of images of an object
from different perspectives to describe its shape [45]; and the fifth is to create a
classification hierarchy of object types based on this described shape. Ongoing
work considers the abstraction of actions applied to these learned objects.

These foundational learning methods autonomously discover regularities in
the agent’s continuous sensorimotor experience that can be abstracted and de-
scribed by symbolic expressions. That is, they provide tangible solutions to par-
ticular instances of the “Symbol Grounding” problem [14].

11.9 Conclusions

I began studying the cognitive map as a manageable subset of commonsense
knowledge. I hoped that this problem would not be “AI Complete” — that is, it
could be sufficiently separated from other major issues in AI and cognitive sci-
ence that it would be possible to make useful progress without simultaneously
solving every other major problem in AI. At the same time, knowledge of space
is clearly a fundamental part of commonsense knowledge [47, 34], so progress in
understanding the cognitive map contributes to the overall enterprise of under-
standing commonsense knowledge, and hence the nature of mind.

It seems to me that these hopes were well justified, and the research efforts
have paid off. Boundaries separating one scientific problem from another are
always artificial scaffolding, used to make a problem tractable for human minds.
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Once enough progress has been made on one formulation of a problem, it becomes
time to move the scaffolding so progress can be made on a larger formulation.
The progress from the TOUR model to the Basic SSH and then to the Hybrid
SSH seems to me to have exactly this character. Each problem definition served
its purpose, led to an improved understand of the nature of spatial knowledge,
and was replaced by a new, larger, problem definition. The focus of the TOUR
model was primarily on the role of topological knowledge of space. The focus of
the Basic SSH was on the role of control laws and dynamical systems. The focus
of the Hybrid SSH is on the role of metrical knowledge and perception.

When I first learned about Minsky’s frames for knowledge representation, I
wondered where the slots come from. The multiple representations of the TOUR
model and the Spatial Semantic Hierarchy are clearly distinct theories with
distinct ontologies. The flexibility and robustness of commonsense knowledge
depends on having multiple ontologies for the same domain of knowledge. The
question of where the slots come from has been transformed into the question,
How can an agent learn, not just new knowledge within an existing ontology, but
a new ontology it does not already possess?

The foundational learning problem is not simply an enlarged version of the
cognitive mapping problem. Rather, now that we have a reasonably solid the-
ory of spatial knowledge in the cognitive map, we can ask questions about its
foundation with a degree of specificity that was not possible before. We can also
evaluate foundational learning methods according to their ability to support
higher-level theories that we already understand. In my own case, the theory of
the cognitive map serves this role. However, the learning methods we seek will
serve as foundations for a much larger body of commonsense knowledge.
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Robot Cognitive Mapping – A Role for a Global
Metric Map in a Cognitive Mapping Process

Margaret E. Jefferies, Jesse Baker, and Wengrong Weng

Summary. In robotics it would be argued that we are closing the loop in a topological
map using a global metric map. Drawing on our studies of human and animal cognitive
mapping we proposed that a cognitive map comprises a topological map of metric local
space representations [24]. Each local space defines a part of the environment that
appears to enclose the animal/robot. Recently our Pioneer 2 robot has been computing
such a map during its travels around our department. The advantage of such a map for
a robot is that cumulative positional error is constrained to the local representation.
Simpler localisation methods will often suffice for the local environment as global metric
consistency is not required. The trade-off is that one cannot easily detect that one is
re-entering a previously visited part of the environment via a new route (i.e. closing
a loop) as is the case with a global metric map. The question we asked was: could
we combine the local and global representations, exploiting the advantages of both -
local representations for simpler localisation and no global metric consistency; global
representation for easy loop detection. While a simple localisation method suffices for
the local representation it would be inadequate for a global metric map. However the
error could not grow unbounded if it were to be useful in the task of detecting loops.
Our solution was to limit the size of the global map and have it move with the robot as
it traversed its environment. We will describe the implementation of such a map and
show that it can detect loops over a reasonable distance.

12.1 Introduction

For researchers grappling with the basic issues involved in representing an au-
tonomous mobile individual’s (robot or animal’s) experience of their spatial en-
vironment, the nature of the underlying representation is at the core of the
problem. Psychologists and geographers examine the behaviour of the animal or
human and neuroscientists the behaviour of cells in certain parts of the animal’s
brain to determine the nature of the information that has been stored and how it
is being used [7, 18, 22]. Artificial Intelligence and robotics researchers are con-
cerned with computational issues, developing computational theories [11, 23, 24]
and from a practical point of view how best to compute a representation for a
robot with poor sensors and odometry [21]. Two themes which emerge from the
studies of both groups are: (i) the notion of a representation for the local space
i.e. the small area of the environment the individual occupies, versus (ii) a global
representation in which conceivably their total experience could be represented
using a single frame of reference. Related to these is the idea of a metric rep-
resentation, where properties such as size, distance and location are explicitly

M.E. Jefferies et al. (Eds.): Robot. & Cogn. Approach. to Spat. Map., STAR 38, pp. 265–279, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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or implicitly represented, versus a topological representation where relationships
such as connectivity between individual elements are represented. Global rep-
resentations in the sense the term global is used in this paper are metric. The
advantage of a global representation is that it is easy to detect when one is re-
entering a part of the environment one has been to previously. The disadvantage
is that complex error correction is required to eliminate accumulating sensing
and odometric errors. The local space could be represented topologically, as in
for example, the relationships between some key landmarks, or metrically where
the structure of the space itself would be identified within some reference frame
(see [25] for a discussion of object or landmark representations versus space-
based representations of local space). One’s total memory for the environment
could be stored in a topological representation, as a collection of local space rep-
resentations each with its own reference frame. The connections between pairs
of local space representations would indicate that one could travel directly from
one to the other. Representing the environment as a topological map of local
spaces has the advantage that accumulating error is constrained to each local
space. The trade-off is that one cannot detect, from one’s location, when one is
re-entering a previously visited part of the environment via a different route. It
is this feature of global maps which makes them attractive (see Fig. 12.1). In
robotics this is termed the closed loop problem. It is this problem which is the
main focus of this paper.

This idea of a topological network of metric local space representations is
central to the computational theory of cognitive maps developed by Yeap and
Jefferies [24] and on which this work is based. It is argued in [24] that as one
traverses an environment one must initially compute a representation which
identifies the space one currently occupies. The algorithm we use emphasises the
importance of detecting exits in view from the surfaces perceived and from these
exits a boundary for the local space is computed. Each local space is computed
using its own cartesian coordinate reference frame. The resulting representation
is called an Absolute Space Representation (ASR), a term which emphasises the
independent, local nature of each local space visited. See [24] for a discussion of
the psychological support for the local space representation. If one remembers
how one passed from one ASR into another they will be connected to form
a topological representation of the traversed environment (see Fig. 12.1(b)),
which we term a cognitive map. We have recently shown that the cognitive
map is a suitable representation for an autonomous mobile robot mapping its
environment. This implementation is described briefly in Sect. 12.2.

Our investigations into the closed loop problem have led us to propose the
use of a size limited metric global map used in conjunction with the topological
network [24]. We call this a Memory For the Immediate Surroundings (MFIS).
We can thus exploit the advantages of both types of representation. The robot’s
location in the global map is used to detect that the robot is re-entering a part
of the environment it has been to before; each time it detects this a loop in the
topological map can be closed. Fig. 12.2 shows how the viewer can use the global
MFIS to determine when a previously visited ASR is re-entered.
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(a) (b)

(c)

Fig. 12.1. The viewer has traversed a circuitous route arriving back in the same room
from which it started. (b) Using a topological representation in which each ASR has
its own coordinate system the viewer cannot use its location to determine that ASR1
is being revisited and it thus constructs a new ASR, ASR12, for the same physical
space. (c) An MFIS. The ASRs are laid out side by side to indicate a single coordinate
system. Using this global representation one can detect from the viewer’s location that
ASR1 is being re-entered. We use output from an earlier simulator which is error free
to better illustrate the basic principles.

12.2 Constructing the Absolute Space Representation
from 180◦ Laser Scans

The first step is to turn the raw laser data into lines representing surfaces in
the robot’s view of its environment. From this “view” the ASR algorithm firstly
works out where the exits are. It does this by looking for surfaces which occlude
other surfaces as it is here that the gaps in the boundary of the local space,
i.e. the exits, occur. The occlusions are the lines labelled occ in Fig. 12.1(c). An
occlusion map is constructed from the surfaces in view (see Fig. 12.2(c). The
first occlusion map obtained for a local space is termed the master occlusion
map as it is updated and used to recompute the ASR as the robot explores its
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(a) (b)

(c) (d)

(e)

(f) (g)

(h) (i)

Fig. 12.2. Computing the first ASR. (a) The environment (b) The laser scan. (c) The
first occlusion map constructed from the points in (b). The occlusions are marked occ.
The black lines are surfaces formed by connecting points between the occluding points.
(d) The ASR constructed from the master occlusion map in (c). E1 and E2 are known
exits, T1 and T2 temporary exits. (e) the occlusion map obtained when the robot turns
towards the temporary exits behind the robot. (f) The master occlusion map after (e)
has been incorporated into (c). (g) The ASR generated from the master occlusion map
in (f). U1 is an unknown exit. (h) the updated occlusion after the robot moves to
position x to explore the unknown region U1. (i) The final ASR. Note different scales
have been used to make the figures fit the space available.
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local environment. The ASR depicted in Fig. 12.2 is the very first ASR the robot
computed at startup. From its initial 180◦ view of its environment the robot has
no notion of what is behind it. However, one can safely add a temporary point
directly behind the robot to the occlusion map, so that the ASR algorithm will
form a complete closure around the robot. As the robot enters subsequent ASRs
the robot will have the exit just traversed directly behind it.

Exits are then created from the occlusions and surfaces in the master occlusion
map. For each occlusion in the master occlusion map the algorithm determines
which part of the gap associated with it is the actual exit. The exit computed is
the shortest “virtual surface” which “covers” the occlusion. We refer the reader
to [24] for an in depth description of this part of the algorithm. Surfaces outside
the exit are eliminated. The point behind the robot ensures that two temporary
exits are added to form a complete enclosure (see Fig. 12.2(d)).

Exits computed as above have a dual role, in the traditional sense to indi-
cate where the robot can leave the current space and to indicate parts of the
environment which are yet to be uncovered. These two roles are distinguished
by labelling the latter as unknown (see U1 in Fig.12.2(g)) and the former as
known (see E1–E3 in Fig. 12.2(g)). As the robot moves about the local space
parts of it that were once unknown are no longer so, and the exits covering these
areas are updated. See [9, 24] for a description of this updating process. Fig.
12.2(h) shows the updated master occlusion map and Fig. 12.2(i) the resulting
ASR. Currently we limit the range of the laser scan to 8 metres. Gaps in the
boundary which result from surfaces that are outside this range are marked as
unknown exits as they perform a similar function as the unknown exits described
above.

Lastly, a simple method is employed to correct for error in the robot’s po-
sition. The disparity between corresponding occlusions in the overlap between
successive views is used to determine the robot’s true location. Note the ASR
computed here is a robot-centred representation, i.e. ASRs do not look very
“room like”. Clutter such as desks and chairs are significant objects to a small
robot and appear to enclose it. A typical cluttered laboratory could give rise to
several ASRs.

12.3 A Global Memory for the Immediate Surroundings
– The MFIS

There are two significant problems in maintaining a global memory of the im-
mediate surroundings. The first concerns the definition of the immediate sur-
roundings itself. When the robot moves a step, has its immediate surroundings
changed? If it has, the representation could be computationally very expensive
to maintain. The second concerns the amount of information that needs to be
tracked. How could one then maintain a reasonably accurate representation given
that one’s perception of the world is inherently very noisy?

Technically, the first problem concerns what frame of reference is appropriate
for the MFIS. One could use either an egocentric or an allocentric frame of
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reference. It is clear from an implementation viewpoint it is inefficient to use
an egocentric reference frame. To use an allocentric reference frame, one has to
specify where the reference frame should be centred. The choice of this external
point need not be chosen arbitrarily if we use the current ASR as the frame of
reference. An ASR has an extent and any part of it would be suitable. We chose
the centre of the current ASR as the centre of the MFIS. When one moves out
of the current local space, the origin of the MFIS is shifted to the centre of the
next ASR.

The extent of the MFIS need not be defined exactly in metric terms. Varying
its size is a trade-off between how much information is remembered and (i) how
much error will accumulate and (ii) how much effort is required to compute it.
Given an MFIS with a fixed size, part of an ASR will often be excluded as it
lies outside the area covered by the MFIS. The advantage of having the MFIS is
to help recognise that nearby local spaces were visited before. We, therefore, do
not want to remove a part of an ASR (from the MFIS) because it falls outside
the area covered by the MFIS. It is better to include the whole ASR if a part of
it lies within the area covered by the MFIS.

The second problem, which concerns the vast amount of information that
needs to be tracked, can now be solved by observing that the spatial arrange-
ment of individual surfaces in each ASR is already maintained in the ASRs
themselves. Tracking them becomes effortless as long as we treat the ASR as a
whole when maintaining the MFIS. We thus propose a limited global memory
(the MFIS) containing the last few local spaces visited. It contains the same
basic representation for the local space as the topological map, but in addition
it contains global location information that allows the viewer to determine when
a recently encountered local space is being revisited.

Because the localisation method we use for ASRs is not perfect the MFIS will
always contain a certain amount of error. This will result in some overlapping
ASRs and possibly more than one ASR in the MFIS matching the newly entered
ASR! To reduce the effect of this we cross match the centres of the ASRs. If the
centre of one or more of these ASRs (in the MFIS) is contained inside this newly
entered ASR we perform a check to ensure that the centre of the new entered
ASR is also inside the matched ASR. The advantage of this method is that only
the centre of each ASR needs to be recorded in the global coordinates of the
MFIS.

Figures 12.3 to 12.6 show the MFIS being used to recognise previously visited
ASRs. In Fig. 12.3 The robot has reached ASR7 and is about to go back into
ASR3. In Fig. 12.3(b) it can be seen that there is already an overlap between
ASR7 and ASR3 resulting from both ASRs claiming the underneath of a table
as their own. This does not pose a problem as we do not look for a match until
the robot leaves ASR7. In Fig. 12.4 it can be seen that the newly entered ASR
covers ASR3. It also covers part of ASR4. In this case the centre cross check
succeeds for ASR3 and fails for ASR4. However, it is feasible that the newly
computed ASR could have extended across ASR4 to the extent that the centre
cross check would have succeeded for ASR4 as well. Currently, the reason we can
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(a)

(b)

Fig. 12.3. (a) The topological map (b) The MFIS. The robot is about to re-enter
ASR3 from ASR7.
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(a)

(b)

Fig. 12.4. (a) The topological map. (b) The MFIS. The robot has re-entered ASR3
from ASR7 and is detected in the MFIS. ASR3 and ASR7 are linked in the topological
map.
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compute such widely different ASRs for the same space is twofold. Firstly we
are able to compute nonconvex ASRs where the robot can “see” around corners.
Approached differently the corner will occlude and consequently a convex ASR
will be computed instead. We don’t see this as a problem. Spaces often look
different when viewed from different sides. The trick is to get the relationships
right to preserve the integrity of the topological map. Secondly, in our robot’s
environment the state of the environment changes rapidly. Chairs move; bags are
dropped and picked up; students and colleagues invariably will try to confound
the robot. The difficulty is that in the former case we want to preserve the
different views, in the latter we don’t -it is only the current view that counts.
We are currently investigating this problem.

In Fig. 12.5 the robot has travelled from ASR1 to ASR12 and back again and
then enters ASR13. At ASR13, ASR12 is about to re-entered. The drift in the
representation can be seen in the discrepancy between ASR12 and ASR13. They
should be aligned. In Fig. 12.6 the robot re-en-ters ASR12 and this is detected
in the MFIS. However the problem is that in the earlier version of ASR12 the
door linking ASR12 and ASR13 was closed. Currently we are maintaining the
two representations simultaneously for the same space. When the door is open
it is appropriate to use the later version, when it is closed the earlier version.

We are considering how to limit the size of the MFIS. Some issues to be
considered are:

1. How much error is acceptable? The impact of error will be greater on small
ASRs

2. How conservative should the approach be towards false positives. There is a
trade-off between how much the MFIS is limited and the need to verify false
positive matches.

3. Will need to consider both the number of rotations and distance travelled.

12.4 Related Work

12.4.1 Global Spatial Representations in Animals

In many animals including humans the mechanism by which the animal keeps
track of its location in a global framework is called path integration [2, 4, 6, 12,
14]. It involves the animal maintaining a fix on its position by updating each
change in its position in a geocentric coordinate system [7]. Using it animals are
able to compute a direct path “home” after following a circuitous route on the
way out. Gallistel and Cramer [7] describe how an animal constructs a global
metric map by converting a landmarks’ position vector in the animal’s egocen-
tric coordinate system to a position vector in the path integration’s geocentric
coordinate system.

However the usefulness of this global position in path integration coordinates
is limited by its accuracy which gradually worsens as random and systematic er-
rors accumulate. Gallistel and Cramer [7] suggest that to overcome the problem
of accumulated error, the animal takes a positional fix computing the discrepancy
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(a)

(b)

Fig. 12.5. (a)The topological map. (b) The MFIS. The robot travelled from ASR1
through to ASR12 and back to ASR3 from where it entered ASR3. It is about to
re-enter ASR12 from ASR13.
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(a)

(b)

Fig. 12.6. (a) The topological map. (b) The MFIS. The robot has re-entered ASR12
from ASR13.
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between its current position and orientation and what the animal thinks these
values are. It uses the discrepancy to realign itself with the environment. Cheng
[3] and Margules and Gallistel [13] showed that rats and Hermer [8] showed that
young children, on becoming disoriented use the shape of the surrounding envi-
ronment to reorient themselves. McNaughton [15] reports that research with rats
suggests that when the environment is new the animal relies on path integra-
tion. As it becomes more familiar with the environment visual features are coded
within the path integration framework. These features can be used to confirm or
deny the results of the path integration system and can be used to realign the
location obtained from path integration with the physical environment.

Several models of the path integration system have been proposed [1, 16, 17,
19]. In some way they all attempt to account for the mathematics of the inte-
gration process. Some even attempt to account for random [1] and systematic
errors [17]. Redish and Touretzky [19] represent the different locations the rat
visits by individual place codes. However, the fact that each one of these place
codes is tied to the location represented in path integration coordinates, means
that Redish and Touretzky have constructed a global representation of the en-
vironment with all the inherent difficulties of error accumulation. Significantly
though, they have realised the importance of explicitly tying the path integration
system to what is actually observed in the environment. While the definition of
the path integration system is that it operates independently of vision, at some
point the animal will be aware that where it thinks it is, is not where it really
is. To know this, there must be a strong link between the location recorded,
the structure of the surrounding space and its identifying features. Redish and
Touretzky [19] and McNaughton et. al. [15] address this issue, proposing that
the representation for the environment is built around the different locations the
animal visits. It is difficult to imagine that an animal could remember its total
experienced environment in this way within a single framework. The environ-
ments used by Redish and Touretzky in their simulations and by their robot,
and those in the experiments McNaughton et. al. refer to, are extremely small
compared to the part of the world the animal could be expected to be familiar
with. McNaughton et. al., however, suggest that the animal would typically use
several reference frames for different parts of its environment, and Redish and
Touretzky discuss the significance of multiple reference frames for their model.
This notion is closer to the idea we have for a global memory which is lim-
ited in size, and which follows the viewer traversing the environment constantly
changing the frame of reference.

12.4.2 Robot Systems Combining Topological and Global Metric
Maps

A few robotics approaches combine topological and global metric maps. Thrun’s
[21] global map is an occupancy grid with a single frame of reference. The topo-
logical map is derived from the occupancy grid using a partitioning algorithm
based on voronoi diagrams. Using the global map the robot can always determine
where it is in relation to other parts of its environment. The topological map is
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useful for planning. Kuipers [11] Spatial Semantic Hierarchy comprises several
layers of interacting representations however it is the final two, the topological
and metric layers which are relevant here. Kuipers stresses the importance of
computationally less expensive and more robust representations, i.e. the topo-
logical layer, preceding the more expensive and error prone representations, i.e.
the metric layer, in the computational process. To close loops in the topological
map Kuipers employs topological matching [10]. They use local metric informa-
tion to loosely match a robot’s representation for the place it is currently at with
those of places already visited. If it appears that a match is possible its validity
is checked by getting the robot to follow known routes to adjacent places and
back to the current place. If the routes can be followed as expected then the cur-
rent place is identified as the one encountered previously. Franz et al. [5] employ
a similar hierarchical scheme. It begins with routes which are then integrated
into a “graph-like representation”. A survey map, in other words a global metric
map, follows when the elements of this graph can be expressed in a single frame
of reference. Loop closing occurs with route integration. Like Kuipers, Franz et
al. take a conservative approach so as to eliminate false positive matches. When
the current view appears to match a previous view the robot tries to follow the
route associated with this view to verify the match. Both Kuiper’s and Franz
et al.’s schemes follow a popular representation scheme propounded by Siegel
and White [20] and which argues that landmarks are computed first, followed
by routes of connected landmarks and lastly survey knowledge emerges. Such a
progression is appealing, especially given the complexity of survey knowledge as
opposed to pure landmark and route knowledge. However, we are argue that it
is an oversimplification of how the different forms of spatial knowledge emerge.
From a computational point of view the information required to compute metric
knowledge (local and global) is as abundantly available as that for landmark and
route knowledge (see [25] for a discussion on this).

12.5 Conclusion

We have described how a robot can utilise somewhat inaccurate global metric
information to detect loops in its topological map. While it provides some useful
recognition in its own right it could also be used in conjunction with other
approaches to help verify matches, for example landmark matching.
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Using a Mobile Robot to Test a Theory of
Cognitive Mapping

Wai K. Yeap, Chee K. Wong, and Jochen Schmidt

Summary. This paper describes using a mobile robot, equipped with some sonar
sensors and an odometer, to test navigation through the use of a cognitive map. The
robot explores an office environment, computes a cognitive map, which is a network of
ASRs [36, 35], and attempts to find its way home. Ten trials were conducted and the
robot found its way home each time. From four random positions in two trials, the robot
estimated the home position relative to its current position reasonably accurately. Our
robot does not solve the simultaneous localization and mapping problem and the map
computed is fuzzy and inaccurate with much of the details missing. In each homeward
journey, it computes a new cognitive map of the same part of the environment, as seen
from the perspective of the homeward journey. We show how the robot uses distance
information from both maps to find its way home.

13.1 Introduction

A cognitive map is more than just a representation of the physical environment
traversed. It should include, among other things, one’s own experiences in the
environment. For humans, this includes much of one’s high-level interpretations
of the environment itself. For this reason, roboticists seldom refer to the map
they compute as a cognitive map. Yet, a mobile robot’s ability to move about
autonomously and sense its environment by various means implies we should
use a robot for testing different theories about cognitive mapping. However, re-
searchers interested in developing computational theories of cognitive mapping
rarely test their theories on a mobile robot, at least not initially, because imple-
menting such a theory on a mobile robot is not a straightforward task. A few
attempts have been made recently [18, 21, 22].

When discussing cognitive maps, one is concerned with epistemic and seman-
tic issues. This is true even at the level close to perception. To illustrate, consider
the notion of an egocentric representation of space. Roboticists would think of
an egocentric representation of space as the equivalent of any representation
computed from the viewpoint of a robot. Furthermore, its transformation to
an object-centred representation is nothing more than a straightforward mathe-
matical transformation. The egocentric representation of space becomes a special
case of an object-centred representation, where the object is the viewer’s body.
Such a mathematical interpretation of an egocentric view ignores the fact that
a view relates how a cognitive agent perceives its immediate space.

Philosophers such as Evans [10] and Campbell [2] have argued that the im-
portance of an egocentric view is not that the representation is centred on the
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springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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self but rather that the representation is action-guiding. Hence, although the
representation is described mathematically as centring upon the self, the self is
not identified in it. They argued that the actions afforded in each view are what
matter most. Similarly, when humans perceive an object-centred representation
of space, what is important is the realisation of the self as one of the objects in it
and that space exists in an absolute sense. Space becomes something an individ-
ual moves into and space contains other objects. Interestingly, and as Pacherie
[26] noted, since the self becomes one of the objects in such a representation, it
could also then be used as its centre.

Out of a perceptual space, which is a relative view of space, animals (especially
humans) are able to conceive space as absolute. Yeap [35] has argued that the
cognitive mapping process should begin with the latter, which he referred to as
an Absolute Space Representation (or ASR in short). However, investigations to
date into the nature of ASR computations [16, 19, 20, 23] have focused primarily
on its physical aspects, i. e., information about an ASR that can be derived at
a perceptual level. Such information includes its shape, its boundary surfaces,
surfaces inside or outside the ASR, exits, etc. Such ASRs are then shown to be
interconnected as a network of traversable regions, thus forming a cognitive map
of the environment.

From a roboticist’s point of view, computing a (cognitive) map in this way
is but another method of partitioning the environment into traversable regions.
The role such a map plays as a cognitive map is little realized. This is particularly
true if the (cognitive) map is then used like a cartographic map; successful use
depends very much on the metric accuracy of the ASRs and less so on any kind
of heuristic reasoning that animals (especially humans) aptly apply. So, where
lies the cognitive sense of the map computed?

Just like the mathematical notion of egocentric representation, computing
ASRs is indeed equivalent, mathematically, to the partitioning of space into
separately identifiable regions. Since the introduction of the first mobile robots
such as Shakey [25], roboticists have devised many such algorithms (see Part
I of this book on robot mapping and for some classic examples see [3, 8, 28]).
However, just like an egocentric view of space, what matters most in an ASR
computation is not the partitioning of space per se into separately identifiable
regions for the individual to traverse between them, but the formation of a
foundation for developing a much higher-level description of space. If returning
to a given place were important, animals could, and have been shown to, evolve
more direct algorithms for arriving home (such as the various methods for path
integrations, see [7, 9]). An ASR affords the development of one of the most
basic elements in cognitive maps, namely the notion of a place.

The word “absolute” in the acronym, ASR, emphasizes the existence of the
space itself into which one has entered. One computes a new ASR as soon as
one enters a new local space, presumably to quickly identify the new local space
into which one has just entered. Depending on the cognitive capabilities of the
individual species, the new ASR would rapidly be transformed from a space-sense
to a place-sense, i. e., from a purely perceptual sense to an increasingly conceptual
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one. For example, in humans, once the exits and boundaries are identified, the
cognitive mapping process does not stop there. Boundaries could be interpreted
as closed doors (which imply they are actually exits) and gaps that are perceived
as exits might be interpreted as gaps between, say, two pillars inside the ASR
(which imply they are not exits). Surfaces will be interpreted as objects and
their functional significance realised. Objects could become landmarks. Events
might be unfolding which then draw the attention of the individual further away
from attending to the physical qualities of its environment. The notion of a place
which begins with a single ASR could become a collection of ASRs, the map a
network of places.

Ideally, for cognitive mapping, we have to show how ASRs are turned into
places and the map used to solve various spatial tasks. Computing place repre-
sentations provides a far more useful basis for reasoning about one’s environment
than computing the physical shape of ASRs alone and can only come with pow-
erful reasoning capabilities, which, for now, the robot lacks. A blind rat can find
its way in a maze. What we could investigate now are the different (cognitive
mapping) ways in which the map could be used by the robot. Just like birds
have a mapping process different from a rat, and rats from humans, robots can
have their own cognitive mapping process 1. By studying the cognitive mapping
process of the different species (robots included), we gain better insights into the
nature of the cognitive mapping process.

What would a cognitive mapping process of a robot be, given the sensors
it has? Note that existing works (e. g., see Jefferies et al. in Chap. 12) have
shown how a robot can compute a network of ASRs and use it to navigate in
its environment. The ASRs computed are reasonably precise in metric terms
and none is missing from the robot’s memory. Such a robot is analogous to a
cognitive agent navigating in a familiar part of the environment (where things
are remembered fairly precisely).

In this paper, we show another example of how a robot computes and uses
cognitive maps. In particular, we ask what would the process be like if, at the
end of an initial exploration of a new environment, the robot does not have a
well-formed network of ASRs? What if some of, or all the ASRs computed are
incomplete and contain inaccurate information? Presumably, the robot could not
localise itself in the environment using the map computed. What should it do
to find its way home? Note that the ASRs computed when finding its way home
could be very different from those computed during the initial exploration. How
are the different maps, one in the memory and the other currently experienced,
being used? How do we set up an experiment with our robot to investigate some
of these questions?

The remainder of this paper describes an experiment with a mobile robot
doing cognitive mapping. Our mobile robot is equipped with some sonar sen-
sors and an odometer. Sonar sensors provide very inaccurate and unreliable
1 Strictly speaking, a robot, not being a cognitive agent, cannot have a cognitive

mapping process. However, rather than being verbose and say “simulating a cognitive
mapping process”, we will simply say the robot has a cognitive mapping process.
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measurements. They were deliberately chosen so that the network of ASRs com-
puted cannot function as an accurate map. Instead, these ASRs serve more like
fuzzy memories of places visited. In the experiment, the fuzziness of the ASR is,
of course, due to the poor sensors used. It is meant to simulate the typical kind
of fuzzy memory of a place humans recall about the new environment they have
just visited.

Section 13.2 describes how we set up our robot to explore its environment
and compute fuzzy ASRs. Section 13.3 describes the problem faced by our ro-
bot. Section 13.4 describes the algorithms the robot used and the results of our
experiment. Section 13.5 concludes with a discussion of cognitive and robotic
mapping in the context of our experiments.

13.2 The Robot and Its Cognitive Map

The robot we used is a Pioneer 2 robot from ActivMedia and it came with a
ring of 8 sonar sensors. The robot was positioned somewhere in the corridor in
an office environment and was allowed to explore the environment until it was
told to stop. No modifications to the environment were done. Everything already
in the environment (such as rubbish bins, flower pots, cabinets, etc.) remained
where they were and doors leading into offices were left as they were found,
closed or open, at the time of the experiment.

Fig. 13.1. The environment and the path traversed. The total distance traveled is
about 70m.



Using a Mobile Robot to Test a Theory of Cognitive Mapping 285

Fig. 13.2. ASRs computed for the journey as shown in Fig. 13.1. An ASR is between
two adjacent dots and surfaces located to the left and to the right of the path inside
the ASR are its boundary surfaces. The path is the solid line connecting the dots.
(0, 0) indicates the starting position of the robot.

The environment used and one of the paths the robot took is as shown in
Fig. 13.1. It does not use a wall-following procedure to navigate. It simply moves
forward until it could not and then it “looks” for an empty space to move
forward again. “Looking” is done using all eight sensors but information about
the environment is sensed only via the two side sensors. That is, the robot uses
its eight sensors to decide where to move next but only its two side sensors to
gather information about the environment. The exploration algorithm used is as
follows:

1. move in a “straight” line and collect sonar data from the sides;
2. stop when an obstacle is encountered; and
3. turn away from the obstacle but maintain a forward-going direction

The details of our new algorithm for computing ASRs for the experiments
conducted here can be found in [29, 30, 32, 34]. Briefly, the key ideas underlying
our new algorithm are:

1. ASRs are computed for each path traversed – a path is a single continuous
movement of the robot through the environment (i. e., without any stopping
or turning);
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2. The important exits found in a path are the exits at both ends of it (i. e.,
given the poor sensing, it cannot trust the side exits detected). This means
that the required ASR for a path is the bounded region for the path;

3. To compute the bounded region, preference is given to using the large sur-
faces as opposed to the smaller ones – the algorithm thus uses all the larger
surfaces, say, greater than 700mm in length, to compute a boundary. If the
resulting boundary is greater than, say, 70% of the distance traveled, then
that is an acceptable boundary for the current ASR; If not, more of the small
surfaces are added until a reasonably sized boundary is obtained.

4. An ASR computed for a path represents an ASR computed from a single view
of the robot. The next step is to merge or split ASRs obtained from individual
paths into the final network of ASRs for the environment experienced.

Figure 13.2 shows the final ASRs computed for the journey shown in Fig. 13.1.
The start and end point of an ASR are marked with a dark circle. The surfaces
in between indicate the rough shape of the ASR computed. Note that in the
area marked A the robot is shown moving through that part of the environment
in a single path. That single ASR was split into three ASRs for that part of the
environment. In the area marked B, it shows the robot moving through it using
five paths. These five ASRs are later merged to form the final single ASR. Such
merging and splitting is done in step 4 of the algorithm as discussed above.

13.3 The Experiment

You could imagine that our robot is a blind “rat” with a special sense. It could
stretch out a pair of imaginary arms from its side to infinity, or until it “believes”
its arm touches an object. Consequently, what it senses might not be correct.
The object might or might not be there. In this manner, it gathers information
about the shape of the environment as it moves down a path. ASRs are then
computed from the information gathered. Without vision, ASRs are computed
after the robot has left that part of the environment.

Like a typical rat experiment, our experiment is to let our robot wander freely
between two points in an office environment, imagining them to be the home and
food locations in a maze. The robot must then find its way home and the question
is how. The robot has a cognitive map of its environment computed during its
outward journey. During its homeward journey, it will compute another cognitive
map.

Figure 13.3 shows an example of a network of ASRs generated during one of
its homeward journeys. The network is not the same as that computed during
the outward journey. In particular, nine ASRs are computed instead of ten and
the sixth ASR computed in the outward journey is now perceived as three ASRs
in the homeward journey.

Our robot cannot confidently re-compute incoming ASRs and match them
with those in memory. Thus, it does not solve the widely accepted problem
among robotics researchers, namely the simultaneous localization and mapping
problem (famously known as the SLAM problem – see for example, [6]). Our
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Fig. 13.3. ASRs computed in the homeward journey. (0, 0) indicates the starting
position of the robot.

robot is at a very early stage of (cognitive) mapping of its environment. In many
studies of cognitive mapping (for example, see [13]), much has been said about
the use of distance and direction information in the process. We implemented
an algorithm for our robot to find its way home that uses distance information
implicit in each cognitive map. Given the cognitive maps computed, how good is
the robot’s sense of direction? We also implemented an algorithm for the robot
to estimate its orientation in its current position to the home position.

13.4 Implementations and Results

Section 13.4.1 presents the implementation of our home-going algorithm that
makes use of the ASR distance traveled as opposed to the actual distance traveled
by the robot in its zigzag moves home. A total of ten experiments were conducted
using this algorithm; the results for two of them are described in more detail.
Section 13.4.2 presents an algorithm for the robot to estimate its orientation
towards home and the result is compared with its actual orientation from where
it is physically located in the environment.
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Fig. 13.4. ASRs computed in the homeward journey. (0, 0) indicates the starting
position of the robot.

13.4.1 Going Home

The algorithm for returning home is:

1. Compute ASRs (up to the current position) in the homeward journey.
2. Measure the length of each ASR computed (as opposed to the actual distance

the robot traveled).
3. Map the ASR-distance traveled onto the network of ASRs computed in the

outward journey.

The last step provides an estimate for how far the robot has re-traced its steps
towards home. The robot stops when it believes it has completely retraced its
steps.

Figure 13.2 shows the cognitive map computed by the robot for its outward
journey. Ten experiments were conducted using our “Going Home” algorithm
for the robot to find its way home. Figures 13.3 and 13.4 show two cognitive
maps computed in two different attempts to go home.

We measured the distance between the robot’s final position and the real home
position. For the two experiments presented in the figures, the robot was 1.5m
short of the true home position in the experiment corresponding to Fig. 13.3,
and 1m short for the experiment corresponding to Fig. 13.4. For the remaining
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Fig. 13.5. Robot’s estimations of home position (indicated by the shorter arrows) at
four randomly selected positions during the first homeward journey. The longer arrow
shows the correct orientation.

eight experiments, the robot ended within 3m of home, which is less than 5%
of the total distance traveled. The robot’s positions in the physical environment
during the homeward journeys shown in Figs. 13.3 and 13.4, can be seen in
Figs. 13.5 and 13.6 in the next section.

13.4.2 Orientation

During the homeward journey, the robot estimates where it is in the cognitive
map it computed for the outward journey. It estimates its orientation to home
from its current position using the information contained in the outward jour-
ney’s map. This part of the experiment is to investigate how accurate is the
robot’s sense of home direction.

The robot can estimate the direction to home at any intermediate position.
Four randomly-selected positions were chosen in each of the maps shown in
Figs. 13.3 and 13.4, and the estimated home direction from each position was
compared to the real world direction.

The results are visualized in Fig. 13.5 (corresponding to Fig. 13.3) and
Fig. 13.6 (corresponding to Fig. 13.4), which show a map of the real environ-
ment containing the path the robot actually took to return home. The estimated
direction to home is depicted as a short arrow, the correct one as a long arrow.
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Fig. 13.6. Robot’s estimations of home position during the second homeward journey

The estimated and correct angles with respect to the coordinate system of the
map computed during the outward journey are given as well.

It can be observed that the direction estimated is fairly accurate; it has not
been affected by errors due to odometer measurements and drift.

13.5 Discussion

Our robot has a very limited capability for sensing its environment. It uses cheap
sonar sensors (as opposed to the more advanced sonar sensors used in [1, 5, 27]
or those with powerful pre-processing software [31]. Nonetheless, even with such
limited sensing, we have shown that it is possible to implement an algorithm for
our robot to compute a network of ASRs. The notion of an ASR is versatile and is
not restricted to having accurate or powerful sensors. Our work thus highlighted
one significant difference between partitioning the environment into traversable
regions (robot mapping) and into ASRs (cognitive mapping). Robot mapping
is more concerned with dividing a large-scale space into smaller ones and their
physical qualities whereas cognitive mapping is about the identity and character
of each local space visited. For cognitive mapping, the more versatile notion of
space is preferred.

We have implemented a very basic algorithm for the robot to find its way
home, namely exploit ASR-distance traveled to re-trace its movements to return
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home. Much has been discussed with respect to the use of distance information
in cognitive mapping. For example, numerous experiments with chickens and pi-
geons have shown that they are able to use both absolute and relative distance in
their search for food (see [14]) for an example of recent work). Experiments with
bees and ants have shown that they can perform internal calculations of the dis-
tance and direction traveled to perform path integration (see [7, 9] for a general
discussion). Most of these experiments were concerned with the actual distance
traveled and how the individual species deal with the errors in their measure-
ments, as do most work on robot mapping to date. Using our robot, we have
shown another way of using distance information, namely ASR-distance traveled
as opposed to actual distance traveled. The method appeared to be useful.

ASR-distance is obtained from the shape of the ASR computed. In the past,
there has been scant evidence that humans/animals do pay attention to the
shape of each local environment (or, in our terminology, ASR) very early on in
their initial exploration of a new environment [4, 11, 12, 15, 17, 24]. However,
the debate has now intensified and this is especially true in the animal litera-
ture where the problem is commonly referred to as geometry in animal spatial
behavior (see Cheng in Chapter 6). In a relocation task using a box-shaped
environment, the principal axes of the environment appear to be most useful.
However, Cheng questioned the general applicability of the principal axes and
suggested other ways of utilizing the shape of “ASRs” computed. Our work here
emphasized yet another possibility, namely using a straight line distance between
exits of interests in an ASR.

Two remarks are worth making regarding the surprisingly good results ob-
tained in our experiment. First, although our robot was allowed to wander on
its own during all the trials, it managed not to enter any of the rooms. Conse-
quently, the robot appears to be constantly moving forward along the corridor
and this might have accounted for much of the success of the experiment. This
was not planned. It would be interesting to see how the resulting ASRs would
be if the robot enters the middle room and follows a path such as that shown in
Fig. 13.7.

The ASR algorithm would have to be made more powerful so that it could
reason about the overall shape of the ASRs computed. If no other kinds of sen-
sors are used, this robot would not be able to learn much about its environment;
it could not identify any objects in it. In the future we are planning to add other
kinds of sensors (e. g., compass) to our robot to investigate how the extra infor-
mation made available will enhance the robot’s reasoning about its environment.

Second, it is interesting to note that in an earlier experiment [33], the following
strategy is used:

1. Do not compute ASRs during the homeward journey.
2. Use the ASRs computed for the outward journey in reverse order.
3. Measure the length of the ASR that the robot thinks it is in and travel

similar distances to reach the end of that ASR.
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Fig. 13.7. Robot’s possible navigation inside a room – Will it compute a single ASR
for the room or multiple ASRs?

4. Once it believes it has reached the end of the ASR, search for the entrance
to the next ASR. If the next ASR is on its left, turn left. Otherwise turn
right.

The robot did not perform as well using the above strategy (4 out of 6 trials
were successful). However, it does cause the robot to exhibit some interesting
behavior at each decision point (step 4 in the above algorithm). In trying to find
the exit, the robot makes small turns and movements, appearing to be cautious
in its search for an exit. Figure 13.8 shows an example of a path taken by the
robot using the above algorithm.

Given the current restricted paths through the environment and the small
number of trials conducted, it is not interesting comparing the performance of
the two algorithms. Rather, what is interesting is to observe that the two different
algorithms represent two different approaches to using and updating a cognitive
map. The first approach is to always compute an ASR from the input and then
extract information from it for comparisons or updating with those held in one’s
cognitive map. The other is to directly use information from the input with those
held in one’s cognitive map.

We need to investigate many more different strategies before we can under-
stand how the different strategies interact in a cognitive mapping process.
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Fig. 13.8. The path the robot took on its way home. The points marked X, Y, and Z
are critical decision points in the journey home.

Finally, we implemented an algorithm for the robot to tell us where it be-
lieves its goal is from its current position in its cognitive map. We compare that
with the actual orientation of the goal from the robot’s physical location in the
building. The fact that the robot does not forget any of the ASRs along the way
might help to explain the robot’s ability to accurately orient itself. In the future,
we would like to explore how the robot might use the orientation information
to compute a short cut to home. It would also be useful to investigate means to
orient itself if the network is not well-connected (i. e., with some ASRs missing,
for example).
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A Robot System for Biomimetic Navigation –
From Snapshots to Metric Embeddings of View
Graphs

Matthias O. Franz, Wolfgang Stürzl, Wolfgang Hübner,
and Hanspeter A. Mallot

Summary. Complex navigation behaviour (way-finding) involves recognizing several
places and encoding a spatial relationship between them. Way-finding skills can be clas-
sified into a hierarchy according to the complexity of the tasks that can be performed
[8]. The most basic form of way-finding is route navigation, followed by topological
navigation where several routes are integrated into a graph-like representation. The
highest level, survey navigation, is reached when this graph can be embedded into a
common reference frame.

In this chapter, we present the building blocks for a biomimetic robot navigation
system that encompasses all levels of this hierarchy. As a local navigation method, we
use scene-based homing. In this scheme, a goal location is characterized either by a
panoramic snapshot of the light intensities as seen from the place, or by a record of the
distances to the surrounding objects. The goal is found by moving in the direction that
minimizes the discrepancy between the recorded intensities or distances and the current
sensory input. For learning routes, the robot selects distinct views during exploration
that are close enough to be reached by snapshot-based homing. When it encounters
already visited places during route learning, it connects the routes and thus forms
a topological representation of its environment termed a view graph. The final stage,
survey navigation, is achieved by a graph embedding procedure which complements the
topologic information of the view graph with odometric position estimates. Calculation
of the graph embedding is done with a modified multidimensional scaling algorithm
which makes use of distances and angles between nodes.

14.1 Way-Finding

The different types of navigation behaviour can be roughly divided into two
groups: local navigation behaviours and way-finding behaviours. Local navigation
behaviours such as aiming, guidance, path integration etc. are used to find a
single goal by using only currently available sensory information, without the
need of representing any objects or places outside the current sensory horizon
[22]. Local navigation requires the recognition of only one location, namely the
goal. In the Spatial Semantic Hierarchy (SSH) described by Kuipers in this
volume, local navigation corresponds to the continuous control level. Way-finding
involves the recognition of other places besides the goal, and the representation
of relations between these places [19]. It relies on local navigation skills to move

M.E. Jefferies et al. (Eds.): Robot. & Cogn. Approach. to Spat. Map., STAR 38, pp. 297–314, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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from one place to another, but it allows the animal to find places that could not
be found by local navigation alone. In the SSH, way-finding is associated with
the causal and topological levels of the hierarchy.

Way-finding behaviours can be further categorized into three subsequent lev-
els: recognition-triggered response, topological navigation and survey navigation.

Recognition-triggeredresponses.Connect two locations by a local navigation
method, i.e., an association between a sensory pattern defining the start location
and a motor action. In this context, a location is defined as a certain sensory sit-
uation in which the same local navigation method is selected. The recognition of
the starting location triggers the activation of a local navigation method leading
to the goal. There is no planning of a sequence of subsequent movements, only
the selection of the very next action. Thus, the animal responds in an inflexible
manner to the current situation. In spite of their apparent simplicity, recognition-
triggered responses are already considered as way-finding behaviour since they
need the recognition of two places (the start and the goal location), and the en-
coding of their spatial relation by a local navigation behaviour.

Several recognition-triggered responses can be concatenated to routes. Routes
are sequences of recognition-triggered responses, in which the goal of one step
is the start of the next. The local navigation method can be different in each
step according to the local environment. Still there is no planning involved, as
knowledge is limited to the next action to perform. If one route segment is
blocked, e.g. by an obstacle, the animal has to resort to a search strategy until
it reaches a known place again.

Topological navigation. An animal using recognition-triggered responses is
confined to always using the same sequences of locations. Routes are generated
independently of each other and each goal needs its own route. Navigation is
more adaptive if the spatial representation is goal-independent, i.e. if the same
representation can be used for navigating to multiple goals. To this end, the
animal must have the basic competence of detecting whether two routes pass
through the same place. Two possibly different sensory configurations associated
with the different routes leading through the same place have to be merged by
route integration. A collection of integrated routes thus becomes a topological
representation of the environment. This can be expressed mathematically as a
graph, where vertices represent places and edges represent a local navigation
method connecting two vertices.

Any vertex can become the start or the goal of a route, so that, in the case
of obstacles, alternative intersecting routes may be found. The fact that alter-
native routes may lead to one goal requires planning abilities which generate
routes from the graph. Planning together with route integration are the capa-
bilities required for topological navigation. The resulting routes are concatena-
tions of sub-sequences from already visited routes. As a consequence, an animal
relying on topological navigation cannot generate novel routes over unvisited
terrain.
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Survey navigation. Whereas for topological navigation different routes have
to be integrated locally, survey navigation requires the embedding of all known
places and of their spatial relations into a common frame of reference. In this
process, the spatial representation must be manipulated and accessible as a
whole, so that the spatial relation between any two of the represented places can
be inferred. In contrast, topological navigation needs only the spatial relations
between connected places. An animal using survey navigation is able to find
novel paths over unknown terrain, since the embedding of the current location
into the common frame of reference allows the animal to infer its spatial relation
to the known places. Examples include finding of shortcuts in unknown terrain
between unconnected routes, or detours over unknown terrain around obstacles.

Biomimetic navigation. Generally, each level of the navigation hierarchy
requires new skills on top of the lower level skills. This could also indicate the
direction taken during evolution, since new behavioural capabilities are usually
built on pre-existing simpler mechanisms. A distinctive feature of a biomimetic
robot way-finding system is, therefore, the use of a hierarchy of competences
and their underlying mechanisms that should reflect an “evolutionary scaling”
as discussed in [17]. Many navigation approaches in robotics (see, e.g., Thrun
or Scheding et al. in this volume) are reminiscent to survey navigation since
spatial knowledge is represented in a common global map. This contrasts with
the above considerations in which survey navigation is the very last stage of
the evolutionary development. Biomimetic approaches are therefore constructed
in a bottom-up manner: Higher navigation abilities are used on top of simple,
but reliable mechanisms. Sometimes these simpler mechanisms turn out to be
sufficient for a given task, so that the higher levels need not to be implemented.

Several biomimetic navigation systems for recognition-triggered responses
and topological navigation exist in the literature (see, e.g., Jefferies et al. in this
volume, and the overview in [8]). The final step to survey navigation still awaits
its robotic implementation. In the following, we present the building blocks for
such a robotic survey navigation system that encompasses all three levels of way-
finding. Route and topological navigation are already implemented on a mobile
robot, survey navigation works so far only in simulations. All experiments were
done using a Khepera miniature robot in a toy house arena of approximately
1m2 size. We use a scene-based homing procedure as local navigation method
(Sect. 14.2). The implementation and algorithms for the subsequent levels of
recognition-triggered response, topological and survey navigation are described
in Sects. 14.3, 14.4 and 14.5. We conclude in Sect. 14.6 by discussing the results
obtained so far.

14.2 Scene-Based Homing

Bees or ants are able to use visual guidance (scene-based homing) as they find a
location which is only defined by its spatial relationship an array of locally visi-
ble landmarks (for review, see [5]). The experimental evidence suggests that these
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insects store a relatively unprocessed snapshot of the surrounding panorama as
seen from the goal. Cartwright & Collett [3] developed a computational model
that allowed to find the goal by matching the snapshot with the current view.
Computer simulations showed that the model could indeed account for the ob-
served search behaviour of honeybees.

This simple form of visual guidance has inspired several robot implemen-
tations since no complex scene representations have to be handled to find an
inconspicuous goal (overview in [8]). As robots usually move in the open space
between obstacles, scene-based homing is especially suitable for robot naviga-
tion. Our own approach [10] used unprocessed panoramic images of the light
intensities seen at the horizon. Under constant lighting conditions, our robot
showed robust homing performance. However, when lighting conditions changed
completely between taking the snapshot and homing (as, e.g., from sunlight to
artificial illumination), the performance broke down [21]. This suggested that
- instead of using unprocessed grey values - one could use a “snapshot” of the
distances to the surrounding objects at the goal position since the distance dis-
tribution in a scene is invariant under illumination changes. There is also strong
evidence that rodents, see e.g. [4], [6], and also humans, e.g. [14], use memorized
geometric cues to return to already visited places.

The resulting homing algorithm used inverse distances (disparities) to the
surrounding objects as snapshots for computational reasons (cf. Sect. 14.2.1). It
showed robust performance with respect to changes in the lighting conditions.
However, the area around the goal from which the goal can be found, i.e., the
catchment area of the goal, was slightly smaller than in the original, grey-value
based scheme [21]. Homing accuracy depends mainly on the noise properties of
the imaging device, since a displacement can only be detected if it generates
sufficient change in the image. In our experimental setup, this was usually the
case at distances from the goal in the range of 1 to 3 cm, depending on the
distances of the surrounding landmarks. The size of the catchment area for a
single snapshot is mainly determined by the layout of the environment. In our
toy house arena, maximum homing distances of 45 cm were achieved. The success
rate was 95 % for homing distances smaller than 15 cm, and dropped to 50 %
in the range of 20 to 25 cm. In the remainder of this section, we describe the
disparity-based homing scheme in detail. Both homing schemes, view-based and
disparity-based, are used as local navigation method in the way-finding system
described in the subsequent sections.

14.2.1 Disparity Signatures of Places

In order to acquire geometric information of the robot’s current place we have
built a panoramic stereo sensor. Mounted on top of a Khepera miniature robot,
a CCD-camera is directed vertically towards a bipartite conic mirror (see Fig.
14.1(a). It consists of two conical parts with slightly different slopes yielding an
effective vertical stereo base line of ≈ 8 mm (Fig. 14.1(b).
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Fig. 14.1. (a) Khepera with panoramic stereo camera on top (diameter ≈ 5 cm,
height ≈ 13 cm). (b) Schematic diagram of the bipartite mirror for an axial plane (not
to scale). The imaging can be considered as “looking” through two vertically separated
points (A, B) which are mirror images of the nodal point of the camera (F). The inset
shows the resulting panoramic stereo image: The inner filled circle (light grey) depicts
the part imaged through the lower cone; the outer part (dark grey) is imaged through
the upper cone.
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Fig. 14.2. Disparity estimation. (a) Raw stereo image. In the marked sector ele-
ment (1), a horizontal line on a wall of the toy house arena is imaged twice (arrows).
Images of toy houses can be seen in the lower right part (2). (b) Grey values correspond-
ing to the sector element in a. Linear search for maximum correlation (error function
plotted in (c) between the inner and outer part yields the disparity. The hatched parts
are excluded because of low horizontal resolution in the image center (left) and because
of imaging distortions at the transition area of the two different slopes of the mirror
(middle).
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As depicted in Fig. 14.2(a), raw stereo images, taken by the panoramic stereo
sensor, are divided into N = 72 sectors (representing a 5◦ range horizontally).
Each sector is subdivided into radial elements resulting in an array of 100 grey-
scale pixels I(x), x = 0, 1, . . . , 99 (Fig. 14.2(b).

We have implemented a simple correlation based stereo algorithm to estimate
the mean shift d (disparity) of the two image parts by minimizing the matching
error (see Fig. 14.2(b), (c),

dmin := arg min
d

Em(d) (14.1)

Em(d) :=
NA−1∑

x=0

(
I(xA + x) − I(xB − d + x)

)2
, (14.2)

where NA = 20 is the width of a window taken from the inner image, xB is
the outer image which has zero disparity with respect to xA (start of inner
image). Due to the setup of the imaging mirrors only a one-dimensional cor-
respondence search is needed yielding a disparity range of Nd = 30 pixels, i.e.
d ∈ {0, 1 . . . , 29}.

For each estimated disparity dmin,i, i = 0, 1, . . . , N −1, we compute a value v
(“variance”) which depends on the uniqueness and reliability of the found match.
Low values of v correspond to high reliability. After the stereo computation, the
current place can be represented by N = 72 disparities and their corresponding
v-values1, [d,v] = {(di, vi), i = 0, 1, . . . , N − 1}, which we call a “disparity
signature” of the considered location.

Using elementary trigonometry, distances to surrounding objects can be com-
puted according to

r(d) ≈ α/d − r0 , α ≈ 2010 mm , (14.3)

where r0 = 29.5 mm is the distance between the effective view points (A, B) and
the robot axis (see Fig. 14.1(b).

14.2.2 Homing Algorithm Using Disparities

By comparing the current signature with a stored one, it should be possible
to return to the place where the signature has been memorized within a cer-
tain neighborhood. For this purpose we have extended the homing algorithm
described in [10] for the use of disparities:

Using the current disparity signature [d,v], we compute for several possi-
ble movements of the robot (rotations about an angle ϕ followed by a straight
move of length l) predicted or expected signatures [de(ϕk, lk),ve(ϕk, lk)], k =
0, 1, . . .Ne − 1} using (14.3) and trigonometric calculus. In the current imple-
mentation the considered positions (Ne = 132) lie on a hexagonal grid within a
radius of 30 cm.
1 To simplify notation we omit the index ’min’ in the following.
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The similarities of the expected signatures to the stored signature at the home
position, [dh,vh], are estimated according to

Ed(ϕk, lk) = min
s=0,1,...N−1

∑N−1
i=0 w(i, s)

(
dh

i − de
i[s](ϕk, lk)

)2

∑N−1
i=0 w(i, s)

, (14.4)

w(i, s) :=
(
vh

i + ve
i[s](ϕk, lk)

)−1
,

i[s] := (i + s) mod N .

Subsequently the robot moves to the position (ϕopt, lopt), which minimizes
(14.4). (ϕopt, lopt) is called “homing vector”.

To reduce the influence of single wrong decisions, the covered distance is lim-
ited to l < 5 cm. These steps are repeated until the position of highest similarity
deviates only marginally from the current position, i.e. lopt < lthresh = 5 mm.

14.3 Route Learning

In our robot implementation, the recognition-triggered responses consist of pairs
of panoramic views and scene-based homing steps [9]. The views can be one-
dimensional 360◦ records of either the grey values at the horizon, or of the stereo
disparities of the surrounding objects, depending on the used homing scheme. For
simplicity, we use the terms snapshot or view for both types of place signatures
in the remainder of the text.

The set of snapshots taken to represent a route should satisfy two criteria:
First, a large distance should be covered with a small number of snapshots to
keep processing requirements small. Second, the spatial distance of neighbouring
views should be small enough to allow reliable navigation between them. If one
intends to use the learned routes in a topological navigation system, a third
criterion has to be added: the views should be distinguishable. In purely view-
based routes, this is the only way to guarantee that route integration can be
done properly. One way to fulfil this criterion is to incorporate only distinct
views into the routes.

The selection of the snapshots is based on the current view and the stored
snapshots. The criteria can be fulfilled by measuring the degree of similarity be-
tween views: Dissimilar views tend to be distant in space and are distinguishable
by definition, and similar views often are spatially close.

Measuring similarity can be viewed as a pattern classification problem. We take
a minimalistic approach by using the maximal pixel-wise cross–correlation as a
measure of similarity. This is equivalent to the Euclidean distance of two view
vectors (containing either grey values or disparities as entries), after first rotat-
ing one of them such as to maximize the overlap with the other one. Whenever a
threshold of the view distance to all stored snapshots is exceeded by the current
view, a new snapshot is taken. The threshold is chosen to ensure that the snap-
shots are both distinguishable and close enough to allow safe navigation between
them. The number of snapshots that can be distinguished using this classifier usu-
ally falls in a range between 25 and 40, depending on the start position. Clearly,
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such a classifier can also be used to detect the proximity of already recorded snap-
shots and thus allows us to find already visited locations. We use this classifier for
both tasks in our topological navigation system (see Sect. 14.4).

Using this simple classifier, the recording of routes is straightforward. If the
view distance of the current view to the stored snapshots exceeds a threshold
value, the robot takes a new snapshot and connects it to the last one. In this
way, the classifier adapts the spacing between the snapshots to the rate of change
in the optical input. Thus, areas which have to be covered by a denser net of
snapshots, due to a rapid change of views, are also explored more thoroughly.
After having taken a snapshot, the robot has to decide where to go next. The
simplest conceivable rule is to choose a random direction and then to go straight
until the next snapshot. The resulting Brownian motion pattern has the advan-
tage that eventually every accessible point of the environment will be explored
without the danger that the exploring agent is caught in an infinite loop. Good
results can also be achieved if one uses a fixed turning angle. Using smaller an-
gles distant areas are reached faster, whereas angles closer to π lead to a more
thorough exploration of the local neighbourhood.

Distance sensors, together with low-level obstacle avoidance behaviours, are
used to keep the robot away from obstacles. Typically, the visual input changes
very rapidly near objects. Exploration of these areas thus requires a large num-
ber of snapshots which, in complex natural environments, would ultimately lead
to a fractal graph structure near objects. To prevent the navigation system from
becoming ineffective, the robot is not allowed to take new snapshots if nearby
objects are detected by proximity sensors. The resulting routes tend to concen-
trate in the open space between obstacles.

REPEAT {
compute view distance d of current

view to all snapshots
read out proximity detection
IF no obstacle AND d < threshold THEN

move into current exploration direction
IF no obstacle AND d > threshold THEN {

take new snapshot
choose new exploration direction

IF obstacle THEN
modify exploration direction

}
UNTIL dead end reached OR

maxtime between snapshots exceeded

After a route has been recorded, using it for route navigation is again straight-
forward as the route consists of a chain of recognition-triggered responses: start-
ing from the first snapshot in the route, the robot tries to find the next snapshot
in the route by scene-based homing. As soon as the current view becomes suffi-
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cient similar to the goal snapshot, this event triggers a homing run to the next
snapshot in the route as goal. This procedure is continued until the last snapshot
of the route is reached.

14.4 View Graph

As pointed out in the introduction, a topological navigation system needs the
capability of route integration to form a graph-like representation of the envi-
ronment. In our case, detecting whether two routes run through the same place
amounts to detecting identical views in two different routes. This, however, can
only be done if all recorded views are unique. In our system, this is ensured by the
view classifier which allows only sufficiently distinct snapshots to be recorded.
The resulting graph-like representation is termed view graph [20] (see also Mallot
et al. in this volume) with snapshots as vertices and connections traversable by
scene-based homing as edges.

In principle, connecting two routes whenever two views are sufficiently similar
would be enough for route integration. This, however, turned out to be sensitive
to false positives since the views at the low resolution used by the robot tend
to be similar in several places in the toy house arena. Therefore, we resorted
to a more cautious strategy: Whenever the view distance between the current
view and an unconnected snapshot drops below a threshold, the robot decides
to home to this snapshot. If homing is successful, route integration is performed,
i.e., a newly learnt edge is included into the graph. In cases where the robot gets
lost or bumps into obstacles, we start a new exploration run, which will typically
get connected to the old one in due course. Thus, the classifier has two tasks
in our system: to decide when to take snapshots and to detect candidates for
overlaps between routes.

Our navigation scheme is designed such that all vertices of the view graph
remain in the catchment areas of their respective neighbours. This property
can be used to choose the next exploration direction after a successful route
integration: The system determines the directions of all neighbouring vertices
and directs the next exploration step to the largest open angle. In addition, we
use a several other routines that basically limit the connectivity of the vertices
and prevents intersection of edges. This leads to an exploration behaviour that
tends to concentrate on the least explored regions of the view graph, i.e., regions
with a smaller number of snapshots and less connections between them. Further
details can be found in [9].

The main loop of the route learning algorithm has to be expanded accordingly:

REPEAT {
:
compute view distance d2 to all

unconnected snapshots
IF no obstacle AND d2 < threshold THEN {

home to snapshot
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Fig. 14.3. Formation of random odometry errors. This figure illustrates the
formation of random odometry errors during a translation. Due to non–systematic
factors [1] the agent deviates from the straight path (black path). The instantaneous
pose is derived from the integration of many small wheel revolutions, determined by
the odometers resolution (indicated by the time index). It is assumed that each of
these small steps is affected by a small translational and rotational error, causing the
deviation (red path) from the intended path (black path). The deviation between the
assumed position (Po

n) and the real world location (Pw
n ) could be corrected by scene

based homing.

IF vertex reached THEN {
connect routes
compute new exploration direction

}
ELSE start new graph

:
}

UNTIL ...

Fig. 14.4. Generalizing from path integration to pose relation networks.
The agents odometry is used to measure recording poses of snapshots (gray dots) and
their uncertainties (dashed ellipses) along a trajectory (dashed curve). Path integration
is generalized to a pose relation network by adding additional links (dashed red lines).
Estimating global poses, by integrating local pose relations along different routes may
lead to inconsistent pose estimates for some nodes (red arrows).
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For using the recorded view graph for topological navigation, one needs an
additional planning module that can generate routes between a chosen starting
view and a goal view. This can be achieved by standard graph search algorithms,
e.g., as described in [20]. The generated routes can be navigated by using the
route navigation module described in the last section.

The recorded view graphs typically contained 20 to 50 snapshots and 30 to
60 edges, covering about two thirds of the toy house arena. Since we required
the snapshots to be distinguishable, a single graph could cover only areas with
unambiguous view information. This general problem of topological navigation
is known as perceptual aliasing [18]. One way to cope with this problem is to use
context information, e.g., by embedding the view graph into a metric map with
the help of additional metric information from path integration. This leads us
to the final layer of the navigation hierarchy: survey navigation.

14.5 Metric Embedding of a View Graph

A possible way to distinguish between similar views seen at different locations
is to label the snapshots with their respective recording poses. The consistent
embedding of this pose information into a global metric map gives the agent
the ability to perform survey navigation, i.e. the agent is able to find shortcuts
apart from the learned routes. In the following, we assume that the robot collects
pose information from its odometry in addition to the snapshots, such that each
vertex of the view graph contains a snapshot and an odometric pose estimate.

To account for odometry errors, the state of the odometer is modeled as a
three dimensional normal distribution GPt

(P), with the assumed instantaneous
pose (Pt = (xt, yt, φt)�) as the mean and the co–variance matrix Ct ∈ IR3×3.
Parameters for the distribution have to be updated after each movement of
the robot. It is assumed that the robots movements are given as a sequence
M = {ϕ0, l0, . . . , ϕt, lt} of translations and rotations. Figure 14.4 illustrates the
formation of random errors for one translation, using a simple model for a two
wheel drive, as used in the Khepera–robot. These random errors have to be
propagated along the sequence M in order to get an estimate of Pt and Ct.
Using odometry and vision, the total state vector of the agent is extended to
St = (It, xt, yt, φt)�, where It is the instantaneously perceived snapshot.

If the robot returns to an already known place by scene-based homing, it closes
a loop in the graph. Considering the cumulative error in the robot’s odometry,
it is clear that a simple vector addition will lead to erroneous position estimates
along the path and to contradicting position estimates at the starting vertex
(see Fig. 14.4). Instead of calculating path integration along single paths we use
a graph–embedding procedure which takes all available routes into account and
prevents the accumulation of errors [15].

14.5.1 Multidimensional Scaling

Multidimensional scaling (MDS) problems [2] are directly related to the problem
of deriving globally consistent pose estimates from uncertain local pose relations.
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A local pose relation is the change in the pose vector between two nodes (vi, vj),
i.e. ΔPij = Pj − Pi. In this context, the MDS problem is defined as follows:
Given a set of local pose relations (D = {ΔPm

ij = (Δxm
ij , Δym

ij , Δωm
ij )�})2, what

is the most probable global pose configuration (X0 = {Pi}) fitting into the local
relations.

Mathematical this is described by a least square minimization:

Q(X, D) =
∑

(i,j,m)

(Pj − Pi − ΔPm
ij )�C−1

ij (Pj − Pi − ΔPm
ij ),

and X0 = argmin
X

Q(X, D)
(14.5)

Since MDS solutions are only unique except for rigid body transformations [2]
of the whole pose configuration, it is necessary to setup a fixed reference frame.
Therefore, the first node is always used as the origin (P0 = (0, 0, 0)�) and the
second node is located on the x–axis (P1 = (x1, 0, φ1)�). The remaining vertices
will be consistently integrated into the ego–centric reference frame, spanned by
the first two vertices.

MDS solutions usually use local metric relations like distances or angles in
order to define an error term for the least square minimization. In order to
incorporate angles, it is necessary to derive pose relations over two edges sharing
a common vertex. For three vertices vi,vj and vk, with (vi, vj) ∈ E and (vj , vk) ∈
E, two local pose relations, ΔPij and ΔPik, are recorded.

The dot product is used as a dissimilarity measure, accounting for distances
and the inner angle of the triangle patch spanned by the three vertices:

s(Δxm
ij ,Δxm

ik) = Δxm
ij ◦ Δxm

ik = ‖Δxm
ij ‖‖Δxm

ik‖ cosαijk (14.6)

The cross product is used in the same way, in order to make the inner angle
unique

d(Δxm
ij ,Δxm

ik) = det(Δxm
ij ,Δxm

ik) = ‖Δxm
ij ‖‖Δxm

ik‖ sinαijk (14.7)

Altogether, objective function (14.5) becomes:

Qp(X, D) =
∑

(i,j,k,m)∈D

1
σ2

sm
ijk

[
s(xj − xi,xk − xi) − s(Δxm

ij ,Δxm
ik)

]2 +

1
σ2

dm
ijk

[
d(xj − xi,xk − xi) − d(Δxm

ij ,Δxm
ik)

]2
=

∑

(i,j,k,m)∈D

E(xi,xj ,xk,Δxm
ij ,Δxm

ik)2

(14.8)

Equations (14.6) and (14.7) could be interpreted as local dissimilarity measures,
which are invariant under rigid body transformations. Therefore, this method
2 The index m indicates the possibility to record different local measurements for one

edge.



A Robot System for Biomimetic Navigation 309

differs from other dissimilarity measures, e.g. used in [16, 7, 13, 11], which use
coordinate transformations between local and global reference frames in order
to define the mismatch between local measurements and the global map. Un-
certainties (σ2

sm
ijk

,σ2
dm

ijk
) for local pose relations used in (14.8) depend on the

trajectory followed by the agent while moving between the vertices. Therefore,
recordings taken from straight paths are more certain than recordings taken
during a homing trail.

Since (14.8) is independent of the global heading, it is possible to separate
position estimates from estimating recording directions of the snapshots. Instead
of assuming a compass, it is possible to estimate the global heading from allo-
centric landmark information, again by formulating the estimation process as an
optimization problem. The question is, what is the best set of recording direc-
tions Φr = {φr1, . . . , φrn} fitting into the set of local pose changes Ω = {Δωm

ij }.
The solution is found by minimizing the following objective function:

Qr (Φ, Ω) =
∑

(i,j,m)∈Ω

1
σ2

Δωm
ij

[(
φrj − φri − Δωm

ij

)
mod2π

]2 (14.9)

In (14.9) it is assumed that the local heading changes (Δωm
ij ) result from a mo-

tion, which always turns the agent back into the original recording direction after
a successful homing trial, i.e. Δωm

ij = Δφm
ij + μm. The additional rotation (μm)

could be derived from the home snapshot (Ih) and the instantaneous snapshot
(It) according to:

μm = (φw
t − φw

r )mod2π = arg max
φs∈(0,2π)

(It ◦ Ih(φs)) (14.10)

φw
r and φw

t are the true orientations in the world–coordinate system, which in
fact are unknown to the agent. Equation (14.10) allows the difference between
both values to be measured, which in the ideal case is only limited by the visual
resolution of the snapshots.

14.5.2 Application to Large Graphs

The method described in the previous section is applicable only in the case where
all local measurements are available. Since local measurements are collected dur-
ing exploration and the complexity of minimizing (14.8) increases with the num-
ber of stored locations, a direct minimization of (14.8) is not applicable. It is
crucial to have a good estimate of the map on hand any time during exploration,
since the path integrator requires regular recalibration. This is often referred to
as the problem of “Simultaneous Localization and Mapping” (see e.g. [12]).

In [7, 11] a relaxation method has been used to iteratively approximate the
minimum of the objective function. Following this idea we rewrite the original
objective function (14.8) in the following way:

Q(Xf , Xv, D
′
) =

∑

(i,j,k,m)∈D′

E(xi,xj ,xk,Δxm
ij ,Δxm

ij )2 (14.11)
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Fig. 14.5. Final map and clustering. (a) The final graph covers an environment
of 9m2 with a total of 191 nodes. Gray dots indicate the estimated node positions. Red
dots indicate the true recording locations. (b) This figure shows trajectories from the
route following behavior based on a graph, which has been extracted from the graph
shown in Fig. (a). Edges in the reduced graph may correspond to shortcuts (see text
for explanation). It can be seen that the agent corrects deviations from the planned
course during route following.

E(.) is the sameerror termas in (14.8).Xv ⊆ X\Xf is a set of vertices forwhichnew
position estimates are calculated according to: ΔXv = arg minXv Q(Xf , Xv, D

′
).

Xf ⊆ X\Xv is a set of fixed vertices, which build a reference frame for locally inte-
grating the vertices Xv. Depending on the available local measurements, the choice
of Xf could be determined by Xv, so that Xf consists of all vertices which could
make predictions of the locations of vertices in Xv. D

′
is a subset of D, selected ac-

cording to the vertices Xv ∪Xf . As applied here, Xv consists, in one iteration step,
only of the vertex forwhich a new local pose relationhas been recorded.Xf includes
all first and second neighbors of Xv.

After position estimates for Xv have been updated, the above procedure is
repeated for all neighbors of Xv which have been significantly moved. This it-
eration cycle is aborted if the total movement of vertices is below a certain
threshold, i.e. if the gradient of objective function (14.8) has entries close to zero
for all elements of Xv.

14.5.3 Results: Exploration and Shortcuts

We use a simulation of a Khepera–robot in order to test the ability to explore
environments which are much larger than the toyhouse–arena. Parameters for
the simulated odometry (i.e. σ2

sm
ijk

,σ2
dm

ijk
in (14.8) were adapted to the real robot.

First, the odometry of the real robot has been calibrated in order to remove
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systematic errors [1]. Then, the remaining random errors were used to determine
the parameters for the motion model (see Fig. 14.4).

Exploration is done in the same way as in topological navigation. In addition
to the view distance, a metric distance to the recorded snapshots dM (xt,xi) =
mini∈V ||xt − xi|| is calculated at each time step. The classifier which decides
when to take a new snapshot now also takes the metric distance into account.
Even if the view distance stays below a certain threshold, a new vertex is added
if dM is greater than 18cm. After adding a new vertex the agent selects a new
exploration direction by rotating about a fixed angle of 85◦. As before, route
integration is performed by homing when both view and metric distance fall
below a certain threshold. After a successful homing run, a new edge is added.
Finally, the position estimates are updated with the MDS–algorithm and the
path integrator is reseted to the improved position estimation.

In the pseudocode examples given above, survey navigation leads to a further
expansion of the main loop (besides complementing the view classificator with
metric distances):

REPEAT {
:
IF no obstacle

AND view distance < threshold1
AND metric distance < threshold2 THEN {
home to snapshot
IF vertex reached THEN {
connect routes
compute new exploration direction
update all positions using MDS-relaxation
recalibrate path integrator

}
:
}

UNTIL ...

Figure 14.5(a) shows the resulting map after an area of 9m2 has been explored.
Gray dots indicate the true recording locations, red dots illustrate locations
estimated by the graph embedding procedure. Due to the combined homing
scheme (see Fig. 14.4), i.e. the combination of path integration and scene based
homing, position errors can be tolerated, as long as the estimated metric home
vector guides the robot into the catchment area of the target snapshot.

Path planning, especially the calculation of shortcuts over graph meshes is
problematic, since the embedded view graph does not contain information about
the location of obstacles. Therefore, if the robot had to avoid obstacles near a
vertex, this vertex has been labeled as an “obstacle vertex”. Figure 14.5(b)
shows a subgraph, which has been extracted from Fig. 14.5(a). The node set
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Fig. 14.6. Example trajectories. These figures show two example trajectories taken
from Fig. 14.5(b). Blue dots indicate the original planned route from the origin to the
target node. (a) This example illustrates the ability of course corrections by scene
based homing. (b) This example shows the ability to replan routes (green nodes) after
avoiding an obstacle (dotted part of the trajectory).

of the reduced graph consists for the most part of “obstacle vertices”3. Each
edge, which has been added from Fig. 14.5(a) to 14.5(b) represents a shortcut.
Shortcuts are located more frequently in open space, since the reduced graph
mostly consists of vertices near obstacles. This is an important property, since
navigation in narrow passages requires more frequent recalibration than in open
space.

In order to test the shortcut ability, the agent’s task was to follow routes from
the center node to a set of randomly selected target locations. The resulting
trajectories are illustrated in Fig. 14.5(b). Figures 14.6(a) and 14.6(b) show two
of these trajectories in more detail, illustrating course correction and replanning
capabilities. The blue nodes in Fig. 14.6(a) show the planned path. Deviations
from the route occur for three reasons. First, due to odometry errors the agent is
not able to follow precisely a calculated path. Second, the global pose estimates
are still erroneous (see Fig. 14.5(a)). Third, the scene-based homing algorithm
has a limited spatial resolution. Therefore, the path integrator is not accurately
rested at intermediate vertices and furthermore the trajectory does not end
precisely at the desired goal location.

Figure 14.6(b) shows a second example where the agent tries to move through
a small pathway and hits an obstacle. After avoiding the obstacle (dotted part
of the trajectory) the agent relocalizes on the map and calculates an alternative
route (green nodes) to the target location.

3 The graph shown in Fig. 14.5(b) has been generated in three steps. First, the induced
subgraph [23], with respect to the “obstacle nodes” has been calculated. Second,
some additional vertices have been added, in order to allow localization in open
space. Third, new edges have been added in order to make the graph connected.
The last two steps have been done manually. Automatic generation of such reduced
graphs is the issue of ongoing work.
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14.6 Concluding Remarks

In the above section, we have presented all building blocks for a biomimetic
survey navigation system, from scene-based homing as local navigation method
to metric embedding of view graphs. All levels up to topological navigation have
been implemented on mobile robots, only the final level, survey navigation, still
runs only in a Virtual Reality environment.

The system is biomimetic in the sense that all behaviours of the naviga-
tion hierarchy are implemented in a bottom-up manner, such that each level
of the hierarchy relies on the capabilities of the lower levels. Moreover, all the
implemented behaviours can be observed in nature, although the biological al-
gorithms and neural implementation will certainly be different from ours. In this
sense, our work is not intended to model a specific animal, but to test whether
the hierarchical layering of navigation behaviours can lead to a functional robot
navigation system.

Although it is still a long way until such a biomimetic system can be used in
practical applications, there are already some features that might be interesting
from an engineering point of view: First, simple behaviours tend to be robust
with respect to non-stationary environments and sensor errors. This inherent
robustness is propagated in a certain sense to the higher layers since these are
based on them and do not add low level behaviours on their own. Second, the
lower layers provide a backup solution when higher levels fail. For instance,
when the global metric map becomes incorrect, the robot still can use the graph
structure to find its goal.
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Robots as Tools for Modelling Navigation
Skills – A Neural Cognitive Map Approach

Verena V. Hafner

Summary. This chapter attempts to show how cognitive map models can be com-
bined with robotic navigation strategies. A neural cognitive mapping strategy that
is inspired by place cells but still abstract enough to be interpreted in a meaningful
way is implemented in different experiments with both mobile robot and simulation
experiments.

15.1 Introduction

The ability to navigate in a complex environment is one of the most challenging
skills for every animal on this planet. It is crucial for survival, and is even seen
as the evolutionary pressure to develop brains. The reason why plants do not
have a brain is that they do not have to move [25].

There are different amounts of cognition involved in navigation when consid-
ering different species and different goals. This starts with simple aiming and
obstacle avoidance already present in one-cell organisms, over route-following for
example in insects, to high-level survey navigation which includes both topolog-
ical and metric information. A useful categorisation of these different skill levels
of navigation is presented by Franz et al. in this volume.

The approaches to navigation involving cognitive mapping that this book
focuses on, are mainly found at the levels of topological and survey navigation.
These approaches require some kind of internal representation of the space the
animal is navigating in. However, complex navigation, such as finding back home
from various locations on paths never travelled before, is also possible without a
full representation of the environment, for example in insect visual homing. Here,
the animal can reach the goal position from its current position by comparing
visual snapshots in memory without knowing about the location of the goal
position nor the current position [10].

There is also evidence from the neurosciences for an internal spatial map: In
these experiments (see for example [16], cells have been found in the rat’s brain
that represent a certain place within the environment, and may therefore be part
of a so-called cognitive map for the animal. These cells are called ‘place cells’
and are located mainly in the hippocampus, an area in the brain which is also
responsible for memory [19]. Such cells have been found in rats, mice, and even
primates including humans. However in primates, additional cells, called ‘view
cells’, that are related both to a particular place and view have been found.

M.E. Jefferies et al. (Eds.): Robot. & Cogn. Approach. to Spat. Map., STAR 38, pp. 315–324, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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Biologists [23] and neuroscientists [16] have been studying navigation be-
haviour in animals for several decades, coming up with different hypotheses
of how the navigation skills are acquired and implemented in the animal’s brain
and body. With the advent of behavioural [3] and biomimetic [22] robotics, a
new field of research got interested in navigation behaviour. These subfields of
robotics are inspired by biology, in particular using behavioural experiments. In
these experiments, the interaction between the agent and the environment plays
a major role. The morphology of the agent with the arrangement of different
sensors along its body is also very important for the interaction [17]. Tradi-
tional or industrial robotics in contrast is only interested in fulfilling a task in
a controlled and predictable way using methods such as planning. Along with
biorobotics came several advantages which promised to strengthen or falsify
the hypotheses of biologists by repeatable experiments using mobile robots. A
good review on bio-inspired robot navigation can be found in [21]. Recently, the
robotics community is focussing more and more on hybrid approaches [1, 20] to
find a good balance between engineering and biological plausibility.

In this chapter, a neural cognitive map model inspired by place cells, im-
plemented on a mobile robot is presented. In Sect. 15.2, the neuroscientific
foundations of place cells are explained and some particular properties are dis-
cussed. Section 15.3 presents the neural cognitive map algorithm and structure,
and different experiments on a mobile robot and in simulation are shown and
their results discussed.

15.2 Neuroscientific Foundations: Place Cells

Place cells were first discovered in the hippocampus of rats [16]. They are cells
whose firing activity depends on the spatial position of the animal in its envi-
ronment. This implies some sort of internal representation of the outside envi-
ronment in the brain. There is similar evidence of cognitive maps in humans.
We present some of the experiments measuring cells in the human hippocampus
in the next subsection. Spatial information is an important part of long-term
memory, therefore it is also interesting that the place cell activity seems to be
transferred into long term memory during sleep, which is presented in the sub-
section after that.

15.2.1 Place Cells in the Human Hippocampus

Place cells have also been found in the hippocampi of humans recently [6, 5].
Cells in the hippocampal and parahippocampal region of patients with epilepsy
were recorded with implanted clinical depth electrodes. During the recording, the
subjects were exploring and navigating a virtual town in a taxi driver computer
game, searching for passengers and delivering them to fixed target locations. Out
of 317 recorded neurons, 26% responded to a place, 12% responded to a view,
and 21% to a goal. Eleven per cent of the cells were true place cells, which only
responded to a place. From the 67 neurons measured in the hippocampus, 24%
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were true place cells. These findings can be seen as evidence for a neural code
of human spatial navigation, a cognitive map.

15.2.2 Place Cells During Sleep

Hippocampal place cells have also been recorded during rat’s rapid eye movement
(REM) sleep1. Wilson and McNaughton [24] discovered that cells that fired
together when the rat occupied a particular location exhibited an increased
tendency to fire together during subsequent sleep, in comparison to sleep episodes
preceding the behavioural tasks. In these experiments, 50 to 100 single cells in
area CA1 were recorded. They suggest that the neural states encoded within
the hippocampus are “played back” as part of a consolidation process by which
information is gradually transferred to the neocortex.

15.3 Robotic Experiments: Cognitive Maps

This section describes experiments performed with navigating artificial agents.
The experiments are inspired by the findings of place cells in rats, and aim to

produce a cognitive map of an environment during exploration. The question
is, whether a neural representation can be found that explains the findings and
properties of place cells for navigation in rats.

15.3.1 Experimental Setup

The experimental setup consists of an artificial agent (mobile robot or simu-
lated agent) that performs random exploration tours within a newly encountered
open environment with objects functioning as obstacles. The agent has omni-
directional sensory stimulation, either panoramic vision or distance sensors. A
benefit of omnidirectional vision is that it approximates more closely the rat’s
field of view spanning 320◦, making the sensory input more comparable between
rat and robot. The agent gets proprioceptive feedback about its heading direc-
tion, but does not have access to any exact metric distance information, nor does
it know its position within the environment. The learning of a cognitive map is
purely based on neural plasticity (changing weights) within the agent’s brain,
using a variant of a self-organising map (SOM). The number of recruitable place
cells, i.e existing cells that could function as place cells, is fixed at the beginning
of the experiment. During exploration, the agent gets a new visual input every
few time steps. The exploration of the environment is open-ended without being
task-specific. There is no reward during learning nor is there a goal state. This
setup is comparable to rats exploring a newly encountered environment before
eating even if they are hungry [18]. The attributed motivation for this behaviour
is curiosity.

The neural network representing the cognitive map is similar to Kohonen’s
[14] self-organising map (SOM), where the map layer neurons represent the place
1 REM sleep: periods of mental activity during sleep.
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Fig. 15.1. Cylinder environment and visual information of the agent. In this figure, the
omnidirectional binary view of an agent at two different positions is shown (connected
by the line). Filled circles are obstacles of different sizes.

!∀

Fig. 15.2. Neural Network structure for learning of place cells and their connections.
The cells in the output layer are place cells. The input layer consists of the sensory
input from the robot.

cells. As in Kohonen’s SOM, there is a winner neuron for each visual input with
the strongest activation in the map layer whose connections to the input layer
will get strengthened. The main difference, however, is that the neighbourhood
relationship in this cognitive map model is not fixed. This follows from properties
of neural place cells: they do not have a geometric connectivity as standard SOMs
do have. During learning, the connections between the current winner cell wt and
the previous winner cell wt−1 are strengthened, resulting in a topological map of
place cells with a variable number of connections per cell. One of the reasons for
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Fig. 15.3. Visual processing of the omnidirectional camera data from the mobile robot.
The three steps are projection, horizontal averaging and low-pass filtering.

this choice is that there is no apparent relation between the spatial positions of
place cells within the hippocampus and their corresponding place fields within
the environment. Since the movement of the agent is continuous in space over
time, place cells representing adjacent places get connected. The topological
map represents a relationship within the sensory space of the agent, and does
not explicitly map the two-dimensional Cartesian space (we only consider agents
moving on a plane). The map learning parameters were selected empirically in
one experiment [11], and evolved using evolutionary strategies in another one
[12]. The parameters are the learning rates of both connection and input weights.

The available sensory information varied between the different experiments.
In the case of the mobile robot that navigated in a standard office room using
a compass and an omnidirectional camera, a 16-dimensional transformation of
the omnidirectional camera image serves as sensory input to the neural network
(see Fig. 15.3). These are equidistant visual input features based on an angular
resolution of 22.5 degrees, horizontal averaging and low-pass filtering. In the
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Fig. 15.4. Place fields after an exploration tour in a virtual environment with random
learning parameters (left) and evolved learning parameters (right). The cylindrical
objects (dark blue) are obstacles of different size. The coloured regions represent the
different place fields. The black lines connect the centres of mass (the most sensible
definition of a centre for an area with undefined shape) of the connected place cells
within the environment.

simulation environment, 90-dimensional binary input from the cylinder world
(see Fig. 15.1) has been used. Here we use only the information whether there
is an obstacle in view at a certain angle or not. The problem of choosing the
right sensory information is directly related to two complementary problems
of reliable place recognition [15]: The first is perceptual aliasing, which means
that different places may have similar or even identical sensory information.
The second is image variability. The same position and orientation may have
different sensory information at different points in time. Possible reasons are
sensory noise, motor noise, or simply change in illumination.

In contrast to the sparse topological representation of this approach, Arleo
and Gerstner [2] use a population of place cells with overlapping place fields. A
similar approach has also been taken by Gaussier et al. [8].

15.3.2 Density of Place Fields

After an exploration tour in the simulated environment of Fig. 15.1, we can
see that the same place cell is firing in certain restricted areas. We call these
areas ‘place fields’. An interesting aspect of the learned place fields after the
exploration tour is that their number is significantly higher in the vicinity of
objects (see Fig. 15.4 right, or other place field figures in [11]). This property has
also been observed during electrophysiological recordings in rats, and tends to
be explained by rats using a higher proportion of their place cells for ‘interesting’
places (for a review see [13]). Since neither the simulated nor the physical mobile
robot have any concept of what counts as interesting, the explanation is simple:
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!

Fig. 15.5. Force model based on different forces applied on the place cells: an attractive
spring force, a repulsive force and a third force caused by the preferred orientation of
the connecting weight

The visual input (sensory information) is changing more rapidly when moving
close to convex obstacles, and therefore more place cells will be recruited for this
space. This effect has been explicitly encoded as a threshold for building new
nodes in the graph algorithm by Franz et al. [7].

15.3.3 Extracting Metric Information

The map of the agent built from the place cell information and their connec-
tions is purely topological. However, it can be extended by using the additional
information on heading directions between two place cells. Physiologically, this
additional information might be accomplished by intersynapse connections be-
tween head direction cells and place cell connections. To enable the extraction
of metric information from a topological map, a theoretical force model [9] is
introduced, which is ideal for energy minimisation and assumes place cells as
repulsive charges ci and connections as springs sjk connecting the cells (see Fig.
15.5). The spring constant for all springs is set to the same value based on the
assumption that all directly connected places have the same distance. This is a
generalisation since we have seen that there are place fields of different shape
and size, however it is also clear that the distances of connected places are not
too different, since two far-away places are linked by places between them. The
initial position of the cells is random in R

2. By repeatedly applying forces to the
charges, their position converges to an energy minimum. The forces consist of
an attractive spring force, a repulsive force and a third force caused by the pre-
ferred orientation of the connecting weight. Duckett et al. [4] proposed a slightly
different algorithm called the ‘relaxation algorithm’ which is based on similar
principles, but additionally assumes distance information between the nodes,
and assigns a position likelihood to them. The algorithm is computationally
cheap, and ensures that an optimal solution will be found.
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Fig. 15.6. Activation of six different place cells after an exploration tour in the virtual
environment. The dark blue circles represent the obstacles.

15.3.4 Evaluation Methods

Evaluating the usefulness of the learned cognitive map for robot navigation is
difficult. In principle, we can distinguish three main approaches to the problem
of evaluating the cognitive maps. First, the evaluation can be based on the
properties of the map itself, such as the shape of place fields or the properties of
connections between place cells (see Fig. 15.4). Second, the learning strategy of
the cognitive map can be evaluated by assessing the behaviour of a navigating
agent after exploration. And third, both properties of the cognitive map and
the resulting navigation behaviour can be directly compared with those of a
navigating animal. Let us first consider the method of analysing properties of
the cognitive map: Statistical properties such as density, shape, and number of
place fields; activity and number of connections per place cell, or metric versus
graph distance in the topological map can be collected and analysed easily in
simulation. On a mobile robot, additional difficulties arise since these data can
only be collected having an accurate tracking system and having access to the
sensory input for every position of the robot in space, ideally requiring a large
image database.

The activity shapes of single place cells after an exploration tour in the virtual
environment using the optimised cognitive map learning strategy can be seen in
Fig. 15.6. The place field shapes are very similar to place fields of cells in the rat
hippocampus, also showing a general exponential decay of activity away from

the centre of the place field. Place fields near walls also have a tendency to be
more elongated than place fields in the centre of the area, which tend to be more
circular.

Assessing the behaviour of an agent to evaluate the cognitive map gives a
good fitness measure, since it is focused on the behaviour, but has additional
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difficulties, since the number of exploration runs and navigation runs between
two arbitrarily chosen places within the environment has to be huge in order
to be meaningful. The problem with comparing robot and animal behaviour
is, that both the environment and the available sensory information should be
comparable. An approach for evaluating a cognitive map learning strategy where
the parameters have been evolved using evolutionary strategies can be found in
[12].

15.4 Conclusions

This chapter has given an example of how neural cognitive maps can be imple-
mented in robotic experiments. For simplicity, some of these experiments were
performed in simulation. One of the important features of the resulting neural
cognitive maps is that it includes both topological and metric information about
places. The difficulty is to realise the integration of these informations with a
restricted amount of memory (number of place cells and their connections), and
without building a geometric world model.

On the one hand, research on cognitive maps for robots has the advantage of
exploiting biological principles of navigation for building more reliable robots,
and on the other hand, robots are ideal tools to test specific hypotheses on
the underlying functions of navigation behaviour in animals. The first point is
important in particular for robot navigation in dynamic environments, and in en-
vironments, where GPS is not applicable, such as in many indoor environments,
underwater and extraterrestrial. To test biological hypotheses, the important ar-
gument is the repeatability of robotic experiments and the easy access to internal
states.
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