12,968 research outputs found

    Representations of specific acoustic patterns in the auditory cortex and hippocampus

    Get PDF
    Previous behavioural studies have shown that repeated presentation of a randomly chosen acoustic pattern leads to the unsupervised learning of some of its specific acoustic features. The objective of our study was to determine the neural substrate for the representation of freshly learnt acoustic patterns. Subjects first performed a behavioural task that resulted in the incidental learning of three different noise-like acoustic patterns. During subsequent high-resolution functional magnetic resonance imaging scanning, subjects were then exposed again to these three learnt patterns and to others that had not been learned. Multi-voxel pattern analysis was used to test if the learnt acoustic patterns could be 'decoded' from the patterns of activity in the auditory cortex and medial temporal lobe. We found that activity in planum temporale and the hippocampus reliably distinguished between the learnt acoustic patterns. Our results demonstrate that these structures are involved in the neural representation of specific acoustic patterns after they have been learnt

    Age differences in fMRI adaptation for sound identity and location

    Get PDF
    We explored age differences in auditory perception by measuring fMRI adaptation of brain activity to repetitions of sound identity (what) and location (where), using meaningful environmental sounds. In one condition, both sound identity and location were repeated allowing us to assess non-specific adaptation. In other conditions, only one feature was repeated (identity or location) to assess domain-specific adaptation. Both young and older adults showed comparable non-specific adaptation (identity and location) in bilateral temporal lobes, medial parietal cortex, and subcortical regions. However, older adults showed reduced domain-specific adaptation to location repetitions in a distributed set of regions, including frontal and parietal areas, and to identity repetition in anterior temporal cortex. We also re-analyzed data from a previously published 1-back fMRI study, in which participants responded to infrequent repetition of the identity or location of meaningful sounds. This analysis revealed age differences in domain-specific adaptation in a set of brain regions that overlapped substantially with those identified in the adaptation experiment. This converging evidence of reductions in the degree of auditory fMRI adaptation in older adults suggests that the processing of specific auditory “what” and “where” information is altered with age, which may influence cognitive functions that depend on this processing

    A unified model for recognition and prediction using a compressed internal timeline

    Full text link
    It has long been understood that there is a deep connection between time and memory. From episodic memory in humans to conditioning tasks in animals, temporal relationships play a crucial role in memory performance. While recognition memory is a subset of episodic memory, most recognition memory models disregard information about time and assume that memory is a composite store with a noisy record of items and their associations. Another class of models posits that memory depends on temporal representations in which ‘what’ and ‘when’ information is stored conjointly. Using three experiments, I found evidence for serially accessing memory (scanning) in both short-term and long-term memory and in predicting the future. These findings support the hypothesis that memories are stored in temporal representations. In Experiment 1, I hypothesized that scanning in a judgment-of-recency task is due to a compressed temporal representation. In 107 healthy young adults, response times depended only on the lag to the target and varied sub-linearly with lag. This result was consistent with the hypothesis. In Experiment 2, the hypothesis was that memory search on a long-term recognition task is driven by serially scanning a compressed representation. In a continuous recognition paradigm with 88 healthy young adults across three studies, the time at which information starts becoming accessible varied as a function of the logarithm of the lag. This result suggests that information in long-term memory is stored in a compressed representation that can be accessed using a serial backward scan. In Experiment 3, I tested the hypothesis that our ability to access what is going to happen a few seconds in the future is similar to our ability to access the immediate past. Sixty healthy young adults performed a relative order judgment task for future events. The response times in this novel judgment-of-imminence task showed that a search through prospective memory representation was serial and closely paralleled the serial search observed in the judgment-of-recency task (Experiment 1). Together, these results suggest that it is possible to generate a temporally ordered representation that can be scanned to access the past and the future

    Shifting visual perspective during retrieval shapes autobiographical memories

    Get PDF
    The dynamic and flexible nature of memories is evident in our ability to adopt multiple visual perspectives. Although autobiographical memories are typically encoded from the visual perspective of our own eyes they can be retrieved from the perspective of an observer looking at our self. Here, we examined the neural mechanisms of shifting visual perspective during long-term memory retrieval and its influence on online and subsequent memories using functional magnetic resonance imaging (fMRI). Participants generated specific autobiographical memories from the last five years and rated their visual perspective. In a separate fMRI session, they were asked to retrieve the memories across three repetitions while maintaining the same visual perspective as their initial rating or by shifting to an alternative perspective. Visual perspective shifting during autobiographical memory retrieval was supported by a linear decrease in neural recruitment across repetitions in the posterior parietal cortices. Additional analyses revealed that the precuneus, in particular, contributed to both online and subsequent changes in the phenomenology of memories. Our findings show that flexibly shifting egocentric perspective during autobiographical memory retrieval is supported by the precuneus, and suggest that this manipulation of mental imagery during retrieval has consequences for how memories are retrieved and later remembered

    Medial temporal lobe-dependent repetition suppression and enhancement due to implicit vs. explicit processing of individual repeated search displays

    Get PDF
    Using visual search, functional magnetic resonance imaging (fMRI) and patient studies have demonstrated that medial temporal lobe (MTL) structures differentiate repeated from novel displays—even when observers are unaware of display repetitions. This suggests a role for MTL in both explicit and, importantly, implicit learning of repeated sensory information (Greene et al., 2007). However, recent behavioral studies suggest, by examining visual search and recognition performance concurrently, that observers have explicit knowledge of at least some of the repeated displays (Geyer et al., 2010). The aim of the present fMRI study was thus to contribute new evidence regarding the contribution of MTL structures to explicit vs. implicit learning in visual search. It was found that MTL activation was increased for explicit and, respectively, decreased for implicit relative to baseline displays. These activation differences were most pronounced in left anterior parahippocampal cortex (aPHC), especially when observers were highly trained on the repeated displays. The data are taken to suggest that explicit and implicit memory processes are linked within MTL structures, but expressed via functionally separable mechanisms (repetition-enhancement vs. -suppression). They further show that repetition effects in visual search would have to be investigated at the display level

    The role of anterior cingulate cortex in the affective evaluation of conflict

    Get PDF
    An influential theory of anterior cingulate cortex (ACC) function argues that this brain region plays a crucial role in the affective evaluation of performance monitoring and control demands. Specifically, control-demanding processes such as response conflict are thought to be registered as aversive signals by ACC, which in turn triggers processing adjustments to support avoidance learning. In support of conflict being treated as an aversive event, recent behavioral studies demonstrated that incongruent (i.e., conflict inducing), relative to congruent, stimuli can speed up subsequent negative, relative to positive, affective picture processing. Here, we used fMRI to investigate directly whether ACC activity in response to negative versus positive pictures is modulated by preceding control demands, consisting of conflict and task-switching conditions. The results show that negative, relative to positive, pictures elicited higher ACC activation after congruent, relative to incongruent, trials, suggesting that ACC's response to negative (positive) pictures was indeed affectively primed by incongruent (congruent) trials. Interestingly, this pattern of results was observed on task repetitions but disappeared on task alternations. This study supports the proposal that conflict induces negative affect and is the first to show that this affective signal is reflected in ACC activation

    Altered Auditory BOLD Response to Conspecific Birdsong in Zebra Finches with Stuttered Syllables

    Get PDF
    How well a songbird learns a song appears to depend on the formation of a robust auditory template of its tutor's song. Using functional magnetic resonance neuroimaging we examine auditory responses in two groups of zebra finches that differ in the type of song they sing after being tutored by birds producing stuttering-like syllable repetitions in their songs. We find that birds that learn to produce the stuttered syntax show attenuated blood oxygenation level-dependent (BOLD) responses to tutor's song, and more pronounced responses to conspecific song primarily in the auditory area field L of the avian forebrain, when compared to birds that produce normal song. These findings are consistent with the presence of a sensory song template critical for song learning in auditory areas of the zebra finch forebrain. In addition, they suggest a relationship between an altered response related to familiarity and/or saliency of song stimuli and the production of variant songs with stuttered syllables

    Decoding information in the human hippocampus: a user's guide

    Get PDF
    Multi-voxel pattern analysis (MVPA), or 'decoding', of fMRI activity has gained popularity in the neuroimaging community in recent years. MVPA differs from standard fMRI analyses by focusing on whether information relating to specific stimuli is encoded in patterns of activity across multiple voxels. If a stimulus can be predicted, or decoded, solely from the pattern of fMRI activity, it must mean there is information about that stimulus represented in the brain region where the pattern across voxels was identified. This ability to examine the representation of information relating to specific stimuli (e.g., memories) in particular brain areas makes MVPA an especially suitable method for investigating memory representations in brain structures such as the hippocampus. This approach could open up new opportunities to examine hippocampal representations in terms of their content, and how they might change over time, with aging, and pathology. Here we consider published MVPA studies that specifically focused on the hippocampus, and use them to illustrate the kinds of novel questions that can be addressed using MVPA. We then discuss some of the conceptual and methodological challenges that can arise when implementing MVPA in this context. Overall, we hope to highlight the potential utility of MVPA, when appropriately deployed, and provide some initial guidance to those considering MVPA as a means to investigate the hippocampus

    Strategy Shift Affordance and Strategy Choice in Young and Older Adults

    Get PDF
    When skill acquisition involves a shift in strategy (such as from rule-based to retrieval-based processing), older adults typically shift later in practice than young adults do. We observed the shift from scanning-based to memory-based processing in a noun pair learning task. Young and older adults were trained in conditions in which the relationship between memory load and scanning load was manipulated by making the strategy shift more or less beneficial. Older adults in a condition with high shift affordance shifted to memory retrieval more fully and more rapidly than did older adults in conditions with lower shift affordance. Reluctance to rely on memory retrieval was related to meta cognitive reports of memory confidence. The present study indicates that age differences in skill acquisition reflect qualitative age differences in strategy choice in addition to quantitative age differences in component task processes
    corecore