847 research outputs found

    The Aspergillus Genome Database, a curated comparative genomics resource for gene, protein and sequence information for the Aspergillus research community

    Get PDF
    The Aspergillus Genome Database (AspGD) is an online genomics resource for researchers studying the genetics and molecular biology of the Aspergilli. AspGD combines high-quality manual curation of the experimental scientific literature examining the genetics and molecular biology of Aspergilli, cutting-edge comparative genomics approaches to iteratively refine and improve structural gene annotations across multiple Aspergillus species, and web-based research tools for accessing and exploring the data. All of these data are freely available at http://www.aspgd.org. We welcome feedback from users and the research community at [email protected]

    New resources for functional analysis of omics data for the genus Aspergillus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Detailed and comprehensive genome annotation can be considered a prerequisite for effective analysis and interpretation of omics data. As such, Gene Ontology (GO) annotation has become a well accepted framework for functional annotation. The genus <it>Aspergillus </it>comprises fungal species that are important model organisms, plant and human pathogens as well as industrial workhorses. However, GO annotation based on both computational predictions and extended manual curation has so far only been available for one of its species, namely <it>A. nidulans</it>.</p> <p>Results</p> <p>Based on protein homology, we mapped 97% of the 3,498 GO annotated <it>A. nidulans </it>genes to at least one of seven other <it>Aspergillus </it>species: <it>A. niger</it>, <it>A. fumigatus</it>, <it>A. flavus</it>, <it>A. clavatus</it>, <it>A. terreus</it>, <it>A. oryzae </it>and <it>Neosartorya fischeri</it>. GO annotation files compatible with diverse publicly available tools have been generated and deposited online. To further improve their accessibility, we developed a web application for GO enrichment analysis named FetGOat and integrated GO annotations for all <it>Aspergillus </it>species with public genome sequences. Both the annotation files and the web application FetGOat are accessible via the Broad Institute's website (<url>http://www.broadinstitute.org/fetgoat/index.html</url>). To demonstrate the value of those new resources for functional analysis of omics data for the genus <it>Aspergillus</it>, we performed two case studies analyzing microarray data recently published for <it>A. nidulans</it>, <it>A. niger </it>and <it>A. oryzae</it>.</p> <p>Conclusions</p> <p>We mapped <it>A. nidulans </it>GO annotation to seven other <it>Aspergilli</it>. By depositing the newly mapped GO annotation online as well as integrating it into the web tool FetGOat, we provide new, valuable and easily accessible resources for omics data analysis and interpretation for the genus <it>Aspergillus</it>. Furthermore, we have given a general example of how a well annotated genome can help improving GO annotation of related species to subsequently facilitate the interpretation of omics data.</p

    CADRE: the Central Aspergillus Data REpository 2012

    Get PDF
    The Central Aspergillus Data REpository (CADRE; http://www.cadre-genomes.org.uk) is a public resource for genomic data extracted from species of Aspergillus. It provides an array of online tools for searching and visualising features of this significant fungal genus. CADRE arose from a need within the medical community to understand the human pathogen Aspergillus fumigatus. Due to the paucity of Aspergillus genomic resources 10 years ago, the long-term goal of this project was to collate and maintain Aspergillus genomes as they became available. Since our first release in 2004, the resource has expanded to encompass annotated sequence for eight other Aspergilli and provides much needed support to the international Aspergillus research community. Recent developments, however, in sequencing technology are creating a vast amount of genomic data and, as a result, we shortly expect a tidal wave of Aspergillus data. In preparation for this, we have upgraded the database and software suite. This not only enables better management of more complex data sets, but also improves annotation by providing access to genome comparison data and the integration of high-throughput data

    FungiDB: an integrated functional genomics database for fungi

    Get PDF
    FungiDB (http://FungiDB.org) is a functional genomic resource for pan-fungal genomes that was developed in partnership with the Eukaryotic Pathogen Bioinformatic resource center (http://EuPathDB.org). FungiDB uses the same infrastructure and user interface as EuPathDB, which allows for sophisticated and integrated searches to be performed using an intuitive graphical system. The current release of FungiDB contains genome sequence and annotation from 18 species spanning several fungal classes, including the Ascomycota classes, Eurotiomycetes, Sordariomycetes, Saccharomycetes and the Basidiomycota orders, Pucciniomycetes and Tremellomycetes, and the basal ‘Zygomycete’ lineage Mucormycotina. Additionally, FungiDB contains cell cycle microarray data, hyphal growth RNA-sequence data and yeast two hybrid interaction data. The underlying genomic sequence and annotation combined with functional data, additional data from the FungiDB standard analysis pipeline and the ability to leverage orthology provides a powerful resource for in silico experimentation

    CharProtDB: a database of experimentally characterized protein annotations

    Get PDF
    CharProtDB (http://www.jcvi.org/charprotdb/) is a curated database of biochemically characterized proteins. It provides a source of direct rather than transitive assignments of function, designed to support automated annotation pipelines. The initial data set in CharProtDB was collected through manual literature curation over the years by analysts at the J. Craig Venter Institute (JCVI) [formerly The Institute of Genomic Research (TIGR)] as part of their prokaryotic genome sequencing projects. The CharProtDB has been expanded by import of selected records from publicly available protein collections whose biocuration indicated direct rather than homology-based assignment of function. Annotations in CharProtDB include gene name, symbol and various controlled vocabulary terms, including Gene Ontology terms, Enzyme Commission number and TransportDB accession. Each annotation is referenced with the source; ideally a journal reference, or, if imported and lacking one, the original database source

    Fungal cytochrome P450 database

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cytochrome P450 enzymes play critical roles in fungal biology and ecology. To support studies on the roles and evolution of cytochrome P450 enzymes in fungi based on rapidly accumulating genome sequences from diverse fungal species, an efficient bioinformatics platform specialized for this super family of proteins is highly desirable.</p> <p>Results</p> <p>The Fungal Cytochrome P450 Database (FCPD) archives genes encoding P450s in the genomes of 66 fungal and 4 oomycete species (4,538 in total) and supports analyses of their sequences, chromosomal distribution pattern, and evolutionary histories and relationships. The archived P450s were classified into 16 classes based on InterPro terms and clustered into 141 groups using tribe-MCL. The proportion of P450s in the total proteome and class distribution in individual species exhibited certain taxon-specific characteristics.</p> <p>Conclusion</p> <p>The FCPD will facilitate systematic identification and multifaceted analyses of P450s at multiple taxon levels via the web. All data and functions are available at the web site <url>http://p450.riceblast.snu.ac.kr/</url>.</p

    Ensembl Genomes: Extending Ensembl across the taxonomic space

    Get PDF
    Ensembl Genomes (http://www.ensemblgenomes.org) is a new portal offering integrated access to genome-scale data from non-vertebrate species of scientific interest, developed using the Ensembl genome annotation and visualisation platform. Ensembl Genomes consists of five sub-portals (for bacteria, protists, fungi, plants and invertebrate metazoa) designed to complement the availability of vertebrate genomes in Ensembl. Many of the databases supporting the portal have been built in close collaboration with the scientific community, which we consider as essential for maintaining the accuracy and usefulness of the resource. A common set of user interfaces (which include a graphical genome browser, FTP, BLAST search, a query optimised data warehouse, programmatic access, and a Perl API) is provided for all domains. Data types incorporated include annotation of (protein and non-protein coding) genes, cross references to external resources, and high throughput experimental data (e.g. data from large scale studies of gene expression and polymorphism visualised in their genomic context). Additionally, extensive comparative analysis has been performed, both within defined clades and across the wider taxonomy, and sequence alignments and gene trees resulting from this can be accessed through the site

    Curation of characterized glycoside hydrolases of Fungal origin

    Get PDF
    Fungi produce a wide range of extracellular enzymes to break down plant cell walls, which are composed mainly of cellulose, lignin and hemicellulose. Among them are the glycoside hydrolases (GH), the largest and most diverse family of enzymes active on these substrates. To facilitate research and development of enzymes for the conversion of cell-wall polysaccharides into fermentable sugars, we have manually curated a comprehensive set of characterized fungal glycoside hydrolases. Characterized glycoside hydrolases were retrieved from protein and enzyme databases, as well as literature repositories. A total of 453 characterized glycoside hydrolases have been cataloged. They come from 131 different fungal species, most of which belong to the phylum Ascomycota. These enzymes represent 46 different GH activities and cover 44 of the 115 CAZy GH families. In addition to enzyme source and enzyme family, available biochemical properties such as temperature and pH optima, specific activity, kinetic parameters and substrate specificities were recorded. To simplify comparative studies, enzyme and species abbreviations have been standardized, Gene Ontology terms assigned and reference to supporting evidence provided. The annotated genes have been organized in a searchable, online database called mycoCLAP (Characterized Lignocellulose-Active Proteins of fungal origin). It is anticipated that this manually curated collection of biochemically characterized fungal proteins will be used to enhance functional annotation of novel GH genes

    FSRD: fungal stress response database

    Get PDF
    Adaptation to different types of environmental stress is a common part of life for today's fungi. A deeper understanding of the organization, regulation and evolution of fungal stress response systems may lead to the development of novel antifungal drugs and technologies or the engineering of industrial strains with elevated stress tolerance. Here we present the Fungal Stress Response Database (http://internal.med.unideb.hu/fsrd) aimed to stimulate further research on stress biology of fungi. The database incorporates 1985 fungal stress response proteins with verified physiological function(s) and their orthologs identified and annotated in 28 species including human and plant pathogens, as well as important industrial fungi. The database will be extended continuously to cover other fully sequenced fungal species. Our database, as a starting point for future stress research, facilitates the analysis of literature data on stress and the identification of ortholog groups of stress response proteins in newly sequenced fungal genomes. Database URL: http://internal.med.unideb.hu/fsr
    corecore