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Adaptation to different types of environmental stress is a common part of life for today’s fungi. A deeper understanding of

the organization, regulation and evolution of fungal stress response systems may lead to the development of novel

antifungal drugs and technologies or the engineering of industrial strains with elevated stress tolerance. Here we present

the Fungal Stress Response Database (http://internal.med.unideb.hu/fsrd) aimed to stimulate further research on stress

biology of fungi. The database incorporates 1985 fungal stress response proteins with verified physiological function(s)

and their orthologs identified and annotated in 28 species including human and plant pathogens, as well as important

industrial fungi. The database will be extended continuously to cover other fully sequenced fungal species. Our database,

as a starting point for future stress research, facilitates the analysis of literature data on stress and the identification of

ortholog groups of stress response proteins in newly sequenced fungal genomes.

Database URL: http://internal.med.unideb.hu/fsrd
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Introduction

In terms of geological times and evolutionary events, plants

taking part in the terrestrialization in the Ordovician–

Devonian (�480–430 Mya) had to face a basically harsh

environment with water and nutrient limitations, UV radi-

ation, temperature stress, hostile microbes and the deleteri-

ous effects of the oxidative atmosphere (1). Adaptation to

this stressful environment altered the metabolism of the

pioneer terrestrial plants considerably, affected their cellu-

lar and organ diversification, but these events also

facilitated the establishment of evolutionarily new plant–

microbe symbiotic interactions including the formation of

arbuscular mycorrhiza (1–5). It is reasonable to assume that

adaptation to the versatile stress conditions including oxi-

dative stress also affected the diversification of terrestrial

fungi. In addition, reactive oxygen species are known to

play important functions in the development of both land

plants (1, 6) and fungi (7–10).

An increasing body of evidence indicates that organisms

belonging to the Kingdom of Fungi today are fairly success-

ful in adaptation to a great variety of environmental stress.

Fungal cells may acquire resistance to a wide array of im-

pending stress via adaptation to mild-stress conditions (11,

12), and their acquired capabilities may even be trans-

mitted to successor cell generations, which never experi-

enced stress (‘cellular memory’) (13). Undoubtedly,

acquired stress resistance will strengthen the competitive-

ness of fungi living in a rapidly changing and stressful en-

vironment (11–13). Such powerful and multifaceted stress

adaptation tools are needed for parasitic fungi to survive

the on-going defense attacks by the host organisms, like

plants (14–16) or humans (17–21). Stress adaptation is also

an important factor for industrial fungi cultured in biore-

actors under stressful conditions to produce valuable goods

in high yields (22–24).

It is worthy to note that the number of stress-related

publications on fungi has been increasing uninterruptedly,
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starting from the early 2000s. Considering the topics,

common stress types like osmotic stress, nutrient-depriv-

ation stress, heat shock, DNA damage and oxidative stress

have been dominating the majority of the articles pub-

lished on fungal stress responses in the past decade.

Interestingly, the annual number of articles focused on

DNA damage and repair decreased over the past few

years, whereas the number of reports on osmotic stress,

nutrient-deprivation stress and heat shock responses are

stagnating. Nevertheless, the number of publications on

oxidative stress has been growing remarkably resulting in

a significant overall increase in the number of stress-related

articles in this eukaryotic kingdom (Figure 1).

Undoubtedly, oxidative stress research has been flourish-

ing both in yeasts and filamentous fungi for several rea-

sons. First of all, successful adaptation to oxidative stress

seems to be an indispensible part of invading the host or-

ganisms by fungal parasites, and this interesting perception

initiated multilevel and diversified research in this field. The

baker’s yeast, Saccharomyces cerevisiae is regarded as a

useful model when human diseases associated with oxida-

tive stress like Alzheimer’s and Parkinson’s diseases (25) or

Friedreich’s ataxia (26, 27) are targeted. Important to note

that oxidative stress-related metabolic changes may lead to

the production of harmful secondary metabolites (28, 29)

requesting tight control in various technological processes.

Fungal saprophytes also need self-defense against

oxidative stress when they produce diffusible oxidizers to

disrupt the structure of plant biopolymers, like lignin (30).

In the past decade, the number of wholly sequenced

fungal genomes steadily increased. The wealth of informa-

tion extracted from genome sequencing and annotation

data is freely available to the scientific community through

databases like the Saccharomyces Genome Database (31),

the Candida Genome Database (32), the PomBase (33), the

Central Aspergillus Data REpository (CADRE) (34) or the

Aspergillus Genome Database (AspGD) (35). To facilitate

the identification and annotation of stress response genes

and proteins, our research team took part in the update of

the Aspergillus nidulans genome annotation in 2008 (36)

and established ASB, the Aspergillus Stress Database (37).

Considering the active and on-going interest in stress re-

search in fungi, we decided to make the Fungal Stress

Response Database, which incorporates now homology

search and annotation data gained for 28 species repre-

senting three major phyla in the Kingdom of Fungi (38).

We hope that this effort will also stimulate future research

aiming at a deeper understanding of organization, regula-

tion and evolution of fungal stress response systems.

Construction

Fungal stress response proteins were collected from the

AmiGO database (http://amigo.geneontology.org/) (39)

Figure 1. The number of stress-related articles published on fungi from 2000. Columns show the annual number of fungal stress
research articles; closed symbols connected by lines represent the number of articles grouped according to selected types of stress
(oxidative stress, osmotic stress, nutrients stress, DNA damage, heat shock and unfolded protein response ‘UPR’).
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and via literature search in NCBI PubMed (http://www.ncbi.

nlm.nih.gov/pubmed). Importantly, no putative stress re-

sponsive proteins annotated solely on the basis of sequence

homologies were taken into consideration, instead only

elements with a genuine functional characterization access-

ible through PubMed entries were used in this work.

Altogether 1848 publications were analyzed in this project.

Typical stress responsive proteins included stress signaling

and signal transduction proteins, stress responsive tran-

scriptional regulators and gene products of the stress

defense systems. As a result of the database and literature

search for stress response, as much as 1985 stress-

related proteins of the following fungal species was

collected: Aspergillus flavus, Aspergillus fumigatus,

A. nidulans, Aspergillus oryzae, Candida albicans, Candida

glabrata, Cryptococcus neoformans, Fusarium grami-

nearum, Fusarium oxysporum, Fusarium verticillioides,

Neosartorya fischeri, Neurospora crassa, S. cerevisiae,

Schizosaccharomyces pombe and Ustilago maydis (starter

database; Supplementary Table S1).

Whole proteome data for 28 fungus species (proteome

database) were obtained from publicly available Internet

sources (Supplementary Table S2). The ortholog groups of

stress response proteins were identified in the proteome

database using the Inparanoid 4.1 software (Figure 2)

(40–43). The orthologs were compared by Clustal Omega

software (44, 45). The identified orthologs are presented

in the Fungal Stress Response Database (Figure 3; http://in

ternal.med.unideb.hu/fsrd), where 29 723 orthologs of the

1985 stress response proteins can be found in 28 species.

FSRD is usable with any internet browser. Software consists

of the following components:

(i) On server side: MS SQL server database and IIS

webserver;

(ii) On client side: HTML, javascript with jquery.

Database interface and
visualization

In addition to gaining an easy access to basic information

on the stress response proteins and their function(s) (GO

stress terms, protein sequences, literature data) visitors of

the Fungal Stress Response Database can also navigate to

the appropriate species-specific databases. The database

entry side contains ‘Home’, ‘Species’, ‘Proteins’, ‘Stress

types’, ‘Browse’, ‘Search’ and ‘About us’ sections. ‘Home’

section contains general information about this project.

‘Species’ option is the list of fungal species currently cov-

ered by the Fungal Stress Response Database. Section

‘Protein’ incorporates all proteins with a verified role in

stress response. After clicking on the protein ID, visitors

can gain information on the type(s) of stress the actual pro-

tein is associated with; there are also links to the species-

specific database of the particular protein and to relevant

PubMed entries (via PMID numbers) providing further

knowledge about the protein’s function. Section ‘Stress

types’ summarizes GO stress terms grouped according to

the six main stress categories: oxidative stress, osmotic

stress, starvation, heat shock and unfolded protein

response, DNA damage and other stress. Stress terms are

linked to fungal stress response proteins. In ‘Browse’

section, visitors can identify the orthologs of the stress

response proteins and visitors can download multiple

sequence alignment of orthologs from this site. ‘Search’

option leads to a tool allowing any search based on protein

names, IDs, stress terms, etc.

Conclusion

The selection of other species was based on their biomed-

ical (e.g. Aspergillus spp., Candida spp., C. neoformans), in-

dustrial (e.g. Aspergillus spp., S. cerevisiae, Yarrowia

lipolytica, Kluyveromyces lactis) or agricultural (e.g. fusaria,

Magnaporthe grisea, U. maydis) importance. Species with

genuinely identified and characterized stress response pro-

teins like S. pombe and N. crassa were also preferred.

Considering the remarkable progress reached in the past

decade in deciphering the stress response systems of

fungi, as well as the on-going and foreseeable fungal

whole-genome sequencing and annotation efforts, we

want to stimulate and facilitate further research in this

Figure 2. Summary of the construction of the Fungal Stress
Response Database. Starter database was constructed from
the stress response proteins, which were collected from
AmiGO and PubMed databases. Protein sequences in the star-
ter database were used to identify the orthologs in the prote-
ome databases via homology search by the Inparanoid 4.1
software.
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important field by a continuous revision and expansion of

our Fungal Stress Response Database; data on genomes and

proteomes of newly sequenced fungal species will be regu-

larly incorporated into the database. Furthermore, we

would like to draw the attention of the international my-

cologist community to filamentous fungus models, like

A. nidulans and N. crassa (36, 46). A multilevel functional

analysis of the genome sequences of these fungi would

certainly lead to a deeper understanding of the molecular

background of stress response systems of all major fungal

phyla. Last but not least, such abundance of information on

the stress response systems in the Kingdom of Fungi will

hopefully help us to understand the stress adaptation pro-

cesses of other eukaryotes including humans.

Supplementary Data

Supplementary data are available at Database Online.
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29. Yin,W.B., Reinke,A.W., Szilágyi,M. et al. (2013) bZIP transcription

factors affecting secondary metabolism, sexual development and

stress responses in Aspergillus nidulans. Microbiology, 159(Pt 1),

77–88.

30. Bugg,T.D.H., Ahmad,M., Hardiman,E.M. et al. (2011) Pathways for

degradation of lignin in bacteria and fungi. Nat. Prod. Rep., 28,

1883–1896.

31. Cherry,J.M., Hong,E.L., Amundsen,C. et al. (2012) Saccharomyces

genome database: the genomics resource of budding yeast.

Nucleic Acids Res., 40, D700–D705.

32. Inglis,D.O., Arnaud,M.B., Binkley,J. et al. (2012) The Candida

genome database incorporates multiple Candida species: multispe-

cies search and analysis tools with curated gene and protein infor-

mation for Candida albicans and Candida glabrata. Nucleic Acids

Res., 40, D667–D674.

33. Wood,V., Harris,M.A., McDowall,M.D. et al. (2012) PomBase: a com-

prehensive online resource for fission yeast. Nucleic Acids Res., 40,

D695–D699.

34. Mabey Gilsenan,J., Cooley,J. and Bowyer,P. (2012) CADRE: the

Central Aspergillus Data REpository 2012. Nucleic Acids Res., 40,

D660–D666.

35. Arnaud,M.B., Cerqueira,G.C., Inglis,D.O. et al. (2012) The

Aspergillus genome database (AspGD): recent developments in

comprehensive multispecies curation, comparative genomics and

community resources. Nucleic Acids Res., 40, D653–D659.

36. Wortman,J.R., Gilsenan,J.M., Joardar,V. et al. (2009) The 2008

update of the Aspergillus nidulans genome annotation: a commu-

nity effort. Fungal Genet. Biol., 46 (Suppl. 1), S2–S13.
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