695 research outputs found

    Adaptive Process Distribution at the Edge of IoT using the Integration of BPMS and Containerization

    Get PDF
    Täna levivad pilvepõhised värkvõrgu (asjade interneti) süsteemid tuginevad protsesside halduseks kaugel asuvatel andmekeskustel, mis toob endaga kaasa latentsusprobleeme. Vastusena sellele probleemile on varem välja pakutud servaarvutuse lähenemine, kus arvutused viiakse läbi asjade interneti süsteemi võrgule füüsiliselt lähemal. Mitmete servaarvutuse metoodikate seas on uduarvutus lähenemine, kus rõhk on arvutuste liigutamisel värkvõrgu seadmetele endile. Ehkki uduarvutusel põhinev arhitektuur on paljutõotav, tõstatab see küsimuse – kuidas värkvõrgu protsessihaldussüsteemid (BPMS4IoT-süsteemid) äriprotsesse heterogeensetele värkvõrgu seadmetele jaotama peaksid? Levinud on lähenemine, kus protsesside töövooülesannete käituseks tuginetakse ühisele platvormile. Näiteks, kui haldusserver defineerib teatud töövoo ülesandena Pythoni skripti ja määrab selle seadmele, siis peab seadme töövookäitusmootor toetama vastavat mehhanismi skriptide jooksutamiseks. Selline nõue ei ole paindlik, arvestades värkvõrgu seadmete heterogeensust. Käesolevas magistritöös pakub autor välja raamistiku, mis eraldab töövoo ülesannete käitusmeetodi käitusmootorist kasutades selleks konteinertehnoloogiat. Töö käigus arendati välja raamistiku prototüüp ning viidi läbi katseid mikroarvutitel põhinevail seadmetel. Lisaks võrreldi väljapakutud uduarvutuse raamistiku jõudlust pilvearvutusel põhineva süsteemiga.Emerging cloud-centric Internet of Things (IoT) system relies on distant data centers to manage the entire processes, which raises the issue of latency. To address the issue, researchers have introduced the Edge computing methodologies that carry out computation closer to the edge network of IoT system. Among the numerous Edge computing approaches, Mist computing paradigm emphasises the mechanism that moves the computation further to the front-end IoT devices. Although the architecture of Mist computing is promising, it raises a new challenge in how the Business Process Management System for IoT (BPMS4IoT) distributes the business process workflow to the heterogeneous IoT devices? In general, executing business process workflows relies on the common platform for executing customized tasks. For example, if the management server defines a Python script task in a workflow, which has been allocated to an IoT device, the workflow engine of the IoT device must have the compatible execution method. Such a requirement is less flexible when one considers the heterogeneity of the IoT devices. Therefore, in this thesis, the author proposes a framework to decouple the workflow task execution method from the workflow engines using the containerization technology. A proof-of-concept prototype has been developed and has been tested on several single-board computers-based IoT devices. Further, a case study has been performed to demonstrate the performance of the proposed framework comparing to the cloud-centric system

    A Simulation-based Performance Evaluation of Heuristics for Dew Computing

    Get PDF
    The evolution of smartphones allows the continuous exploitation of computing resources. This increasingly applies also to distributed environments as exemplified through utilization of network router loads in edge computing and fog computing. Combining cloud computing and mobile smart devices in dew computing contexts enables new techniques for resource utilization, data collection and data processing. However, new challenges regarding job scheduling arise. Smartphones may be used in ad-hoc networks in this context, but their heterogeneity and energy usage must be considered. We propose novel heuristics for performance measuring of distributed computing systems integrated with mobile devices and compare them with previous heuristics in a simulation environment. Our results show an overall improvement in job completion and load balancing metrics compared to previous approaches. They highlight the usefulness of pursuing this research stream for aiming at industrial implementation and evaluation

    Twenty security considerations for cloud-supported Internet of Things

    Get PDF
    To realise the broad vision of pervasive computing, underpinned by the “Internet of Things” (IoT), it is essential to break down application and technology-based silos and support broad connectivity and data sharing; the cloud being a natural enabler. Work in IoT tends towards the subsystem, often focusing on particular technical concerns or application domains, before offloading data to the cloud. As such, there has been little regard given to the security, privacy and personal safety risks that arise beyond these subsystems; that is, from the wide-scale, crossplatform openness that cloud services bring to IoT. In this paper we focus on security considerations for IoT from the perspectives of cloud tenants, end-users and cloud providers, in the context of wide-scale IoT proliferation, working across the range of IoT technologies (be they things or entire IoT subsystems). Our contribution is to analyse the current state of cloud-supported IoT to make explicit the security considerations that require further work.This work was supported by UK Engineering and Physical Sciences Research Council grant EP/K011510 CloudSafetyNet: End-to-End Application Security in the Cloud and Microsoft through the Microsoft Cloud Computing Research Centre

    A task execution scheme for dew computing with state-of-the-art smartphones

    Get PDF
    The computing resources of today’s smartphones are underutilized most of the time. Using these resources could be highly beneficial in edge computing and fog computing contexts, for example, to support urban services for citizens. However, new challenges, especially regarding job scheduling, arise. Smartphones may form ad hoc networks, but individual devices highly differ in computational capabilities and (tolerable) energy usage. We take into account these particularities to validate a task execution scheme that relies on the computing power that clusters of mobile devices could provide. In this paper, we expand the study of several practical heuristics for job scheduling including execution scenarios with state-of-the-art smartphones. With the results of new simulated scenarios, we confirm previous findings and better comprehend the baseline approaches already proposed for the problem. This study also sheds some light on the capabilities of small-sized clusters comprising mid-range and low-end smartphones when the objective is to achieve real-time stream processing using Tensorflow object recognition models as edge jobs. Ultimately, we strive for industry applications to improve task scheduling for dew computing contexts. Heuristics such as ours plus supporting dew middleware could improve citizen participation by allowing a much wider use of dew computing resources, especially in urban contexts in order to help build smart cities.publishedVersio

    The Study and Replication of Plant Surfaces

    Get PDF
    The analysis and replication of surfaces which mimic the behaviour of plants is of importance as it can have a variety of applications. These applications, such as the collection of fog for drinking water, waterproof electronics, and antibiofouling devices have the potential to improve the day to day lives of millions of people. In this thesis the surfaces of multiple plants were analysed and replicated using a variety of techniques to better understand and replicate their wetting mechanisms. Also developed were a range of new analysis and replication techniques which have many potential applications in future projects. The wetting mechanism and surface of Xanthosoma sagittifolium was investigated through the use of analytical techniques such as scanning electron microscopy and time of flight secondary ion mass spectrometry, before being replicated using a nanoimprinting process. This led to the successful production, and testing, of replicas of the leaves of Xanthosoma sagittifolium. These techniques were also employed to aid in the analysis of other plant surfaces, such as that of Eremopyrum orientale and Phyllostachys aurea, and led to the development of a new technique by which plant surfaces could be analysed using time of flight secondary ion mass spectrometry without the need for a live specimen. Also developed was a new replication method employing 3D printing to replicate the surfaces of Phyllostachys aurea. The development of these techniques should prove useful in future analysis and replication of plant surfaces, particularly in countries where resources are limited, or where the plant of interest is in an isolated location

    Proceedings of the 2nd Annual Workshop on Meteorological and Environmental Inputs to Aviation Systems

    Get PDF
    The proceedings of a workshop held at the University of Tennessee Space Institute, Tullahoma, Tennessee, March 28-30, 1978, are reported. The workshop was jointly sponsored by NASA, NOAA, FAA, and brought together many disciplines of the aviation communities in round table discussions. The major objectives of the workshop are to satisfy such needs of the sponsoring agencies as the expansion of our understanding and knowledge of the interactions of the atmosphere with aviation systems, as the better definition and implementation of services to operators, and as the collection and interpretation of data for establishing operational criteria, relating the total meteorological inputs from the atmospheric sciences to the needs of aviation communities

    LiDAR-based Weather Detection: Automotive LiDAR Sensors in Adverse Weather Conditions

    Get PDF
    Technologische Verbesserungen erhöhen den Automatisierungsgrad von Fahrzeugen. Der natürliche Schritt ist dabei, den Fahrer dort zu unterstützen, wo er es am meisten wünscht: bei schlechtem Wetter. Das Wetter beeinflusst alle Sensoren, die zur Wahrnehmung der Umgebung verwendet werden, daher ist es entscheidend, diese Effekte zu berücksichtigen und abzuschwächen. Die vorliegende Dissertation konzentriert sich auf die gerade entstehende Technologie der automobilen Light Detection and Ranging (LiDAR)-Sensoren und trägt zur Entwicklung von autonomen Fahrzeugen bei, die in der Lage sind, unter verschiedenen Wetterbedingungen zu fahren. Die Grundlage ist der erste LiDAR-Punktwolken-Datensatz mit dem Schwerpunkt auf schlechte Wetterbedingungen, welcher punktweise annonatatierte Wetterinformationen enthält, während er unter kontrollierten Wetterbedingungen aufgezeichnet wurde. Dieser Datensatz wird durch eine neuartige Wetter-Augmentation erweitert, um realistische Wettereffekte erzeugen zu können. Ein neuartiger Ansatz zur Klassifizierung des Wetterzustands und der erste CNN-basierte Entrauschungsalgorithmus werden entwickelt. Das Ergebnis ist eine genaue Vorhersage des Wetterstatus und eine Verbesserung der Punktwolkenqualität. Kontrollierte Umgebungen unter verschiedenen Wetterbedingungen ermöglichen die Evaluierung der oben genannten Ansätze und liefern wertvolle Informationen für das automatisierte und autonome Fahren

    Inspection of Biomimicry Approaches as an Alternative to Address Climate-Related Energy Building Challenges: A Framework for Application in Panama

    Get PDF
    In the Panama context, energy consumption in the building sector is mostly related to the conditioning of indoor spaces for cooling and lighting. Different nature strategies can be mimic to strongly impact these two aspects in the building sector, such as the ones presented here. A comprehensive analysis regarding literature related to biomimicry-based approaches destined to improve buildings designs is presented here. This analysis is driven by the increasing energy regulations demands to meet future local goals and to propose a framework for applications in Panama. Such biomimicry-based approaches have been further analyzed and evaluated to propose the incorporation of organism-based design for three of the most climate types found in Panama. Consequently, a SWOT analysis helped realized the potential that biomimicry-based approaches might have in improving the odds of in meeting the local and global regulations demands. The need for multidisciplinary collaboration to accomplish biomimicry-based-designed buildings, brings an increment in the competitivity regarding more trained human-assets, widening the standard-construction-sector thinking. Finally, the analysis presented here can serve as the foundation for further technical assessment, via numerical and experimental meansIn the Panama context, energy consumption in the building sector is mostly related to the conditioning of indoor spaces for cooling and lighting. Different nature strategies can be mimic to strongly impact these two aspects in the building sector, such as the ones presented here. A comprehensive analysis regarding literature related to biomimicry-based approaches destined to improve buildings designs is presented here. This analysis is driven by the increasing energy regulations demands to meet future local goals and to propose a framework for applications in Panama. Such biomimicry-based approaches have been further analyzed and evaluated to propose the incorporation of organism-based design for three of the most climate types found in Panama. Consequently, a SWOT analysis helped realized the potential that biomimicry-based approaches might have in improving the odds of in meeting the local and global regulations demands. The need for multidisciplinary collaboration to accomplish biomimicry-based-designed buildings, brings an increment in the competitivity regarding more trained human-assets, widening the standard-construction-sector thinking. Finally, the analysis presented here can serve as the foundation for further technical assessment, via numerical and experimental mean

    A Platform as a Service for Concurrency-based Applications Provisioning in Internet of Things

    Get PDF
    The Internet of Things (IoT) is becoming ubiquitous with sensor nodes getting more intelligent and capable of transmitting their processed data to a cloud. Concurrency-based applications play a vital role in the rise of the IoT. A concurrency-based application has multiple processes running independently and interacting with each other. An example of the concurrency-based application in IoT is wildfire management application. In a forest, various sensor devices are deployed in the different areas. The processes of the wildfire management application are running on the sensor devices of different areas independently. The process of a particular area monitors the temperature and interacts with the processes in the neighboring areas. This interaction is based on the fire contour algorithm, which allows the application to provide the real-time direction and evolution of the fire in case of the fire incident. Cloud computing is a paradigm for swiftly provisioning a shared pool of configurable resources (e.g., services, applications, network, and storage) on demand. Cloud computing can help to tackle the challenges of IoT-based applications provisioning by offering the Platform as a Service (PaaS). Therefore, developers of such concurrency-based applications can use cloud's PaaS for faster development as well as cost efficiency. However, the PaaS faces several challenges at the time of provisioning of concurrency-based application (i.e., development, deployment, and management). For the concurrency-based application development phase, PaaS should support the various API and frameworks for the development of multiple processes of the concurrency-based application, which helps to start development quickly. For the deployment of the concurrency-based application, the PaaS must offer the facility of hosting of different processes in an isolated environment and enable process's edges to allow inter-process communication. In management phase of the concurrency-based application, PaaS should be able to orchestrate the chain of processes defined during the development phase. The main intent of this dissertation is to provide a PaaS solution for concurrency-based applications provisioning in IoT to solve the challenges as mentioned above. The major contributions of the thesis are in twofold. First, we propose a PaaS architecture for concurrency-based applications provisioning in IoT. Second, we provide a proof of concept in which a prototype is built using as basis Cloud Foundry, an existing PaaS platform, and TelosB as the IoT Infrastructure devices. The performance measurements have also been made to validate the results claimed
    corecore