
UNIVERSITY OF TARTU
Institute of Computer Science

 Software Engineering Curriculum

Isaac Agaba

Adaptive Process Distribution at the Edge
of IoT using the Integration of BPMS and

Containerization

 Master’s Thesis (30 ECTS)

Supervisor(s):

Dr. Chii Chang

Tartu 2017

2

Adaptive Process Distribution at the Edge of IoT using the Integration of

BPMS and Containerization

Abstract:

Emerging cloud-centric Internet of Things (IoT) system relies on distant data centers to

manage the entire processes, which raises the issue of latency. To address the issue, re-

searchers have introduced the Edge computing methodologies that carry out computation

closer to the edge network of IoT system. Among the numerous Edge computing ap-

proaches, Mist computing paradigm emphasises the mechanism that moves the computation

further to the front-end IoT devices. Although the architecture of Mist computing is prom-

ising, it raises a new challenge in how the Business Process Management System for IoT

(BPMS4IoT) distributes the business process workflow to the heterogeneous IoT devices?

In general, executing business process workflows relies on the common platform for exe-

cuting customized tasks. For example, if the management server defines a Python script task

in a workflow, which has been allocated to an IoT device, the workflow engine of the IoT

device must have the compatible execution method. Such a requirement is less flexible when

one considers the heterogeneity of the IoT devices. Therefore, in this thesis, the author pro-

poses a framework to decouple the workflow task execution method from the workflow

engines using the containerization technology. A proof-of-concept prototype has been de-

veloped and has been tested on several single-board computers-based IoT devices. Further,

a case study has been performed to demonstrate the performance of the proposed framework

comparing to the cloud-centric system.

Keywords:

Internet of Things, Edge Computing, Containerization, Mist Computing,

Business Process Systems
 CERCS: P170 Computer science, numerical analysis, systems, control

3

Konteinertehnoloogia ning protsessihaldussüsteemide integratsioonil

põhinev adaptiivne protsessijaotus värkvõrgu serval

Lühikokkuvõte:

Täna levivad pilvepõhised värkvõrgu (asjade interneti) süsteemid tuginevad protsesside

halduseks kaugel asuvatel andmekeskustel, mis toob endaga kaasa latentsusprobleeme.

Vastusena sellele probleemile on varem välja pakutud servaarvutuse lähenemine, kus ar-

vutused viiakse läbi asjade interneti süsteemi võrgule füüsiliselt lähemal. Mitmete servaar-

vutuse metoodikate seas on uduarvutus lähenemine, kus rõhk on arvutuste liigutamisel

värkvõrgu seadmetele endile. Ehkki uduarvutusel põhinev arhitektuur on paljutõotav,

tõstatab see küsimuse – kuidas värkvõrgu protsessihaldussüsteemid (BPMS4IoT-

süsteemid) äriprotsesse heterogeensetele värkvõrgu seadmetele jaotama peaksid? Levinud

on lähenemine, kus protsesside töövooülesannete käituseks tuginetakse ühisele plat-

vormile. Näiteks, kui haldusserver defineerib teatud töövoo ülesandena Pythoni skripti ja

määrab selle seadmele, siis peab seadme töövookäitusmootor toetama vastavat me-

hhanismi skriptide jooksutamiseks. Selline nõue ei ole paindlik, arvestades värkvõrgu

seadmete heterogeensust. Käesolevas magistritöös pakub autor välja raamistiku, mis eral-

dab töövoo ülesannete käitusmeetodi käitusmootorist kasutades selleks kon-

teinertehnoloogiat. Töö käigus arendati välja raamistiku prototüüp ning viidi läbi katseid

mikroarvutitel põhinevail seadmetel. Lisaks võrreldi väljapakutud uduarvutuse raamistiku

jõudlust pilvearvutusel põhineva süsteemiga.

Märksõnad:

Asjade internet, Värkvõrk, Servarvutus, Konteinertehnoloogia, Uduarvutus

CERCS: P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaat-

juhtimisteooria)

4

Table of Contents

1	 Introduction ... 7	

1.1	 Preamble ... 7	

1.2	 Motivation & Challenges .. 8	

1.2.1	 Motivation ... 8	

1.2.2	 Challenges ... 9	

1.3	 Research Objectives and Contribution .. 10	

1.4	 Thesis Outline ... 10	

2	 Review of the state of the art .. 11	

2.1	 Internet of Things .. 11	

2.2	 IoT Computing Methods ... 14	

2.2.1	 Cloud Computing .. 14	

2.2.2	 Fog and Edge Computing ... 15	

2.2.3	 Mobile Cloud Computing (MCC) ... 16	

2.2.4	 Mobile Edge Computing (MEC) .. 17	

2.3	 Virtualization .. 17	

2.3.1	 Full Virtualization ... 17	

2.3.2	 Container Virtualization .. 18	

2.4	 Peer to peer Communication ... 19	

2.4.1	 Bluetooth ... 20	

2.4.2	 Wi-Fi Direct .. 20	

2.5	 Business Process Workflow .. 20	

2.6	 Related Works ... 22	

3	 System Overview .. 23	

5

3.1	 Scenario ... 23	

3.2	 System Architecture .. 24	

3.3	 Container Manager .. 25	

3.4	 Proximity Communication .. 26	

3.5	 Execution Manager ... 26	

3.5.1	 Execution Server ... 26	

3.5.2	 Workflow Manager ... 26	

3.6	 WSAN Adaptor ... 27	

3.7	 Backend Communication .. 27	

3.8	 ESB Adaptor ... 27	

4	 System Implementation & Testing ... 28	

4.1	 System Implementation .. 28	

4.1.1	 Container Manager Implementation ... 29	

4.2	 Execution Manager Implementation ... 32	

4.3	 Workflow Manager Implementation ... 33	

4.4	 Aim of Testing .. 39	

4.5	 Test Experiments .. 40	

4.6	 Devices and their specifications .. 41	

4.7	 Test Analysis ... 42	

4.7.1	 Overall Time comparison ... 43	

4.7.2	 Overall CPU usage comparison. ... 44	

4.7.3	 Overall RAM usage comparison ... 45	

4.8	 Discussion ... 45	

5	 Conclusions ... 47	

6

5.1	 Future Works .. 48	

References ... 49	

Appendix ... 55	

I.	 Search Structure .. 56	

II.	 License .. 57	

7

1 Introduction

1.1 Preamble

Internet of things (IoT) [Ash09] refers to a global interconnection of objects (food, home

appliance, and vehicles) with unique identifiers such as Internet Protocol (IP) address with

the ability to communicate, interact or react to given changes with each other [Soma15].

As the number of IoT devices increases with time, it is predicted that by 2020, there will

be almost 50 billons physical devices being connected to the Internet [Rose04].

Various computing methods have been proposed in last decade to improve the IoT de-

vices related problems such as low performance and high resource usage.

Cloud computing method allows IoT devices to carry executions remotely with the In-

ternet accessible computer (Cloud). This gives IoT devices virtually unlimited capabilities

in terms of storage and processing power [Bpp14].

As the use of IoT devices increases in most critical environments such as homes, hospi-

tals, military, Cloud computing paradigm can hardly satisfy the requirements of high mo-

bility support, location awareness and low latency [Sw14]. To address some of these issues,

Edge computing was proposed.

Edge computing methodology shifted computation from remote cloud to the computa-

tional devices that are closer to the front-end IoT devices within edge networks [Phmsl16].

The closeness of edge devices has improved the efficiency IoT devices as it enables them

to do real-time operations with less latency limitation [Mb16].

Mist Computing an immerging methodology goes further beyond Edge computing as it

pushes the computation to the sensors and actuators. Hence, this even saves more power

since communication from a node to Edge nodes takes more power than computation at the

nodes [Ptjrc15].

Business Process Management Systems (BPMs) utilize workflow engines that provide

the management capabilities to the overall IoT system without getting involved in the low-

level complex programming languages [Drmr13].

This thesis address the problems associated with Mist Computing, such that it will enable

smooth process execution onto this constrained IoT devices which do differ in operating

system and platform wise [Cnb16].

8

1.2 Motivation & Challenges

1.2.1 Motivation

Let’s us take smart environments such as smart parks with several wireless sensors and

actuators devices deployed by researchers or companies. Actuators being single board com-

puters (SBCs) with minimal capacity compared to personal computers which do carry out

some computation on the data collected before it is submitted back to cloud data centres.

SBCs have limited capacity of storage and processing power thus if they have heavy

tasks executed they do consume resources such as memory and CPU usage.

1.2.1.1 Scenario	

Figure 1: Smart Park with SBCs.

9

In our scenario, we do consider to have a smart environment park that contains different

SBCs, which belong to different companies, collecting data such as air quality, temperature,

and humidity (see Figure 1).

At a given point of time, SBCA may be overloaded with continuous carrying out heavy

computations such as data filtering, sorting, and transformation before it’s submission to the

Cloud.

In the proximity of SBCA there exists SBCB which may be idle or even with more

processing capacity. It would be a good option for SBCA to take this advantage by offload-

ing some of its executions to SBCB.

There is a need of smooth collaboration computing model that could enable them man-

age the extending of a workflow process from one edge device to another.

1.2.2 Challenges

- Heterogeneity. In our scenario, as these SBCs may be from different vendors. These

devices can differ in hardware and operating system, so it may not feasible to deploy

straight away and run one workflow from one device to another as they may be a

need to have some dependency fixation.

Therefore, there is a need to address this heterogeneity issue by implementing a common

standard-based execution strategy which will enable cross-platform execution across all

edge devices.

- Lightweight. The deployed processes need to be light in size so that it can easily be

transferred between two devices, but the fact none of the devices needs to have prior

knowledge of resources required execute the deployed process. Packaging the entire

implementation would be a better option but this makes the deployed system size

heavier.

 Therefore, our approach needs to find a way of making deployable workflow process’s

size light but at the same time containing all the required implementation.

10

1.3 Research Objectives and Contribution

The goals of this thesis are:

1. Develop Mist Computing Resource Planning Framework (MRF) that will be used to

validate whether the workflow business process can be lightly transferred and exe-

cuted on edge devices without worries about the heterogeneity of the devices.

2. To evaluate what benefits does MRF add to the devices compared to the existing

computing methods.

1.4 Thesis Outline

The rest of the thesis is divided into sections: Section 2 which contains literature review,

background of the technologies being used and related works. Section 3 consists of the pro-

posed system architecture description. Section 4 describes system implementation, testing,

and discussion. This thesis is concluded in Section 5 together with future research directions.

11

2 Review of the state of the art

2.1 Internet of Things

Internet of Things (IoT) introduced by AutoID labs [Ash09] was initially used for radio

frequency identification (RFID) tags system. IoT is the global composition of things or ob-

jects which are active participants such as (food, vehicles, Fitbit) in processes [Gbmp13],

having unique identifiers that enable them to be discovered and to interact with other objects

using existing communication protocols [Zwclq10].

IoT is categorized into four major application domains namely Personal and Home, En-

terprise, Utilities, and Mobile. These domains scale respective to homes, community, na-

tional or regional scale, and mobile which spreads across other domains because of its con-

nectivity and scale nature [Gbmp13] (see in Figure. 2).

Figure 2: IoT Domain Adopted From [Gbmp13].

12

 In [Wllsd10], Wu et al categorized IoT architecture is into five layers (see in Figure. 3):

- Physical layer is the first and lowest layer that deals with hardware.

- Data layer acts as protocol layer which transfers data between adjacent network

nodes.

- Network layer deals with logical device addressing, data packaging, manipula-

tion and delivery, and routing. It handles communication between two devices.

- Transport manages communication of the two end-to-end applications that run

on the two devices that are on the internetwork.

- Application layer provides services that are required for the application programs

that are in communication.

Figure 3: IoT architecture Adopted From [Wllsd10].

13

• IOT Single Board Computer Devices

Single board computer (SBC) are tiny, low specification computers with single circuit

boards, microprocessor(s), little memory, capable of using input and output devices and that

fully operate just as a regular personal computer [Vm15, Cmlp14] (see in Figure 4).

Their limited consumption of power has increased their usage in IoT environments. They

are easily deployed anywhere as actuators in Wireless Sensor and Actuator Networks

(WSAN) a composition of sensors, that collect specified data in the surrounding, and actu-

ators that perform specific action [Mpga05].

Some of the widely-used SBCs, include Raspberry1, Odroid2, Cubie board3, and Ar-

duino4.

Figure 4: SBC Devices Adopted From [Ras16, Har16].

1 https://www.raspberrypi.org
2 http://www.hardkernel.com/main/main.php
3 http://cubieboard.org
4 https://www.arduino.cc

14

2.2 IoT Computing Methods

Since most IoT devices are constrained in hardware, storage and processing power. As the

workload becomes heavier this may lead to low efficiency and performance.

 Their increased usage in critical and real-time processes, that demand faster computa-

tion has brought forward a need for them to optimize the resources and improved, device

performance and efficiency.

Below are some of the profound IoT computing methods, being proposed to help these

IoT networks with these constrained IoT devices.

2.2.1 Cloud	Computing		

Cloud computing methodology usage in past decade in IoT networks has provided on-de-

mand access to shared computing resources pool (storage, applications, services, and soft-

ware) that are hosted in the cloud.

These are easily provisioned when needed by any authorised device in need of them with

minimal vendor interaction [Rsms12, Nist09]. See figure 5, the architecture of cloud com-

puting model.

The threat of insecurity of data transmitted between devices, service instability, and la-

tency are major drawbacks of Cloud computing[Wb10]. As Cloud computing participant’s

machines, may be many hops away from each other, some data packets can be lost or man

in middle attacks can be done on the transmitted data.

 To reduce on the drawbacks of far way cloud, usage of cloudlets was proposed as it

brought, a limited local Cloud nearby [Sbcd09].

Figure 5: Cloud Computing Adopted From [Zcb10].

15

2.2.2 Fog	and	Edge	Computing		

Fog computing pushes closer Cloud computing paradigm down to the edge net-

work by processing data at fog nodes or IoT gateway. This has solved some of Cloud com-

puting challenges such as high latency and failure ensure total location awareness [Frpj14,

SW14]. These fog nodes can be deployed at factories, parks, health care units, transport

stations [Cis15].

Edge computing brings, even more, closer the intelligence and application logic past the

fog nodes, as it directly does these computations at devices programmable automation con-

trollers that are in the edge networks [Pt04]. This increases the infrastructure efficiency as

it provides intermediate layers of computation, networking, and storage closer to IoT de-

vices [MB16].

However, in most cases, Fog computing and Edge computing terms are being inter-

changeably used. This is incorrect as they are completely different. Fog computing works

hand in hand with Cloud computing but Edge can work without Cloud [Ope17].

Figure 6 shows comparison of attributes from Cloud and Fog computing.

Figure 6: Computing Comparison Adopted From [Cis17].

16

2.2.3 Mobile Cloud Computing (MCC)

In [Flr13], Niroshinie et al describe Mobile Cloud computing as:

1. MCC gives applications ability to be run on remote machines in the cloud so that

they can be accessed by client mobile devices that use resources being served over

an internet connection.

2. MCC clusters resources in a peer network among mobile devices. This forms a local

cloud of mobile devices in the vicinity that provides different services to each other.

3. Mobile cloud computing enables mobile devices to use cloudlet computers with in

the proximity, to carry out executions that would have been carried out in the cloud.

 3

 1

2

 Figure 7: Adopted From [Flr13].

Even though Mobile cloud computing reduces high latency and bandwidth usage when

compared to Cloud computing though it self also has some drawbacks such as low reliability

and privacy related issues [KI10].

17

2.2.4 Mobile	Edge	Computing	(MEC)	

This brings Cloud computing services at the edge of the cellular network. MEC runs a cloud

server at the edge of a mobile network and performs specific tasks that could not be accom-

plished with traditional network infrastructure.

“Operators can open the radio network edge to third-party partners, allowing them to rap-

idly deploy innovative applications and services towards mobile subscribers, enterprises,

and other vertical segments” [Mec16].

2.3 Virtualization

Virtual machines are machines that are being fooled [Rose04], to think that they are being

run on a real hardware device. Therefore, on one device severally virtual machines can be

run all operating independently as if they are only one using the device hardware.

Below is the summarization of some of the common forms of virtualizations:

2.3.1 Full Virtualization

This type of virtualizations enables complete simulation of computer hardware parts.

This makes it easier to run different operating systems on a given device as it can virtualize

memory, processors, and I/O devices [Uhi05].

Most full virtualized machines use hypervisors which is a layer of software that can

implement instructions set on hardware as it can run directly on the hardware [Mlo97].

Hypervisors are classified into: Type 1 hypervisors which are placed directly on top of

the system hardware such as Microsoft Hyper-V5, Citrix XenServer6, and Type 2 hypervi-

sors which are hosted on top a host operating system, for example VMware Player 7, Paral-

lels8 [Dk13] (see in Figure .8).

5 https://www.microsoft.com/en-us/cloud-platform/server-virtualization
6 https://xenserver.org/
7 http://www.vmware.com/
8 http://www.parallels.com/

18

Figure 8: Hypervisor Types Adopted From [Hyp17].

2.3.2 Container Virtualization

Containerization is an operating system virtualization method which replaces the

tradition hypervisor virtualization methods as it allows the use of virtualized machines that

share the same kernel as the host operating system [Cmfvp16, Car15].

 Linux kernel virtualization is classified into: namespaces which isolates process groups

so that each process could only see processes resources that belong to the same group and

Control groups (Cgroups) which does limit how much of the resources a given process can

use for example reservation of memory, central processing unit (CPU) usage that is being

assigned to a given process [Pahl15].

Container Images are lightweight independent bundled and software with all the depend-

encies needed to be executed regardless of the computer platform (Linux, Windows) [Doc,

Phmsl16]. When container images are being executed the running instance of a container

image is called a container [Car15].

Runnable containers do add minimal overhead on the device being used compared to

hypervisors [RN16] because they do share the same kernel as the host machine [MB16].

Containers use namespaces for process isolation of processes. Different containers can

be interlinked through network interfaces [Pahl15]. This reduces creation or multiple guest

operating system which reduces overhead due to virtualization of both hardware and drivers

(figure 9).

19

Figure 9: Docker Architecture Adopted From [Dar17].

 Containers do use cluster managements techniques such as Mesos and Kubernetes

for management, scaling, and deployment of containers.

Kubernetes developed by Google sets several nodes made up containers with services

that can be accessed by other containers in other hosts by automatically scheduling

jobs to ensure that the applications run in the desired state, through its auto starting,

self-healing and rescheduling techniques [Amj15].

2.4 Peer to peer Communication

Most SBC’s IoT devices come pre-installed with the support of Bluetooth and WIFI tech-

nologies, which do enable these devices to interact locally and globally with other devices

in the network. Other technologies such as CoAP9, ZigBee10, MQTT11 that can be used for

device to device communications. The following subsections contain the review of some of

these devices to device communication technologies.

9 http://coap.technology
10 http://www.zigbee.org
11 http://mqtt.org

20

2.4.1 Bluetooth

 Bluetooth technology ordinary usage was in audio and stereo communications [Cha14],

however, in the past decades it has expanded its usage to many short-range wireless com-

munication markets such as the IoT and machine-to-machine (M2M) communications.

Bluetooth technologies include regular Bluetooth, Bluetooth EDR, Bluetooth HS and

Bluetooth low energy. Bluetooth LE devices do consume less energy consumption, memory

footprint. The ability that they can be used in end-to-end IP connectivity makes them suita-

ble to be used in critical areas [Cha14].

2.4.2 Wi-Fi Direct

Wi-Fi Direct12 technology by Wi-Fi alliance takes a different approach to enhance device to

device connectivity as it builds upon the successful IEEE 802.11 infrastructure mode and

lets devices negotiate who will take over the access point-like functionalities dynamically

[Css13].

 Wi-Fi Direct dynamically enables devices to act as a peer-to-peer group owner (P2P

GO) or a peer to peer client (P2P Client).

2.5 Business Process Workflow

Business Process Management (BPM) it is an art and science of how a workflow in an or-

ganization or systems are executed to ensure consistent outputs [Drmr13]. Business Process

Model and Notation (BPMN) expresses all the information in an IoT system process (see in

Figure 10).

In [Sac13], Sonja et al categorised the major components in the IoT Domain Model of

the IoT-Architecture as:

- IoT service: These interfaces allow access to other heterogeneous components at

native interfaces of the devices hence exposing devices functionality as a single unit

business process.

12 http://www.wi-fi.org/discover-wi-fi/wi-fi-direct

21

- Physical entity: This refers to a unique element within the proximity in which is of

central interest for the IoT.

- IoT device: This act as a mediator between the BPM process and the physical world

from which data is being collected from.

- Native service: These are hosted onto IoT devices collect information about entities

or perform actions on entities.

Figure 10: Adopted From [Drmr13].

22

2.6 Related	Works		

 In [Phal16], Pahl et al review about the impact container virtualization on edge devices

when being placed into clusters. As their study focused on how Edge clouds could move

heavy-weight computations to distributed lightweight resources close to users.

They used containerization technology to build clusters that consisted of customized

platforms of SBCs nodes, running different containers with orchestration services that ena-

bled the communication of these SBCs nodes in the clusters.

In [Pmlm15], Riccardo et al proposes the designing of gateways used in Cloud of Things

which distributes a collection of resources, enabled in a horizontal integration with various

IoT platforms and applications.

These gateways would oversee, manage data from IoT devices and act as endpoint for

the communication between cloud data-centers and local devices. The proposed gateways

in their study used container based virtualization which gave an improvement of 2.67%,

6.04% and 10% in CPU, memory performance and Disk I/O.

In [Rn16], Ramalho et al study evaluates the performance difference between contain-

erized based and the hypervisor-based virtualization at the network edge. The use of hyper-

visor-based virtualization had good results in regards of isolation in the last decade but con-

tainerization abilities such fast to boot up, fast migration and easy to maintain have taken

virtualization to next level.

From their study, the performance tests were run on CubieBoard2 with container based

vs hypervisor-based virtualization. Both NBENCH and SysBENCH tests showed that con-

tainer virtualization outperforms KVM in every situation when compared to the Native ex-

ecution.

23

3 System Overview

This section introduces our proposed framework and in the subsections, we will discuss the

architecture and overview of different components of our proposed system.

“Mist Computing (Mist) represents a paradigm in which edge network devices, that have

predictable accessibility, provide their computational and communicative resources as ser-

vices to their vicinity via Device-to-Device communication protocols. Requesters in Mist

can distribute software processes to Mist service providers for execution” [Lcs16].

 Mist Computing Resource Planning Framework (MRF), an open standard-based ser-

vice-oriented context-aware computing model that uses Mist Computing, virtualization, and

workflow management technologies.

 MRF implementation address challenges of the proposed “Adaptive Process Distribu-

tion at the Edge of IoT using the Integration of BPMS and Containerization”. It’s application

on SBCs devices will widen the device workflow execution scope. As it will enable collab-

orative distribution of sub process of a complex workflow to several Edge devices with in

the proximity.

3.1 Scenario

Figure 11: Edge With MRF.

24

The requirement at hand of a collaborative, cross-platform Edge computing model in Sec-

tion 1.2.1.1 that would address challenges described in Section 1.2.2.

Let’s take a scenario (Figure 11) that consists three SBCs identified as SBCA, SBCB

and SBCC that are within proximity of each other.

As mentioned before, that these devices may belong to different organizations. There is

low possibility that these devices to have similar or compatible hardware device platforms

and operating system.

 Installation of MRF on these devices will enable them to use each other’s resources such

as (computation power, memory). They will be to offload sub processes to each other freely

without the dependencies limitation. Therefore, the offloaded processes will be dynamically

executed out of the box, regardless of the device specifications in hardware and software.

In our scenario, MRF will dynamically enable these SBCs to interact, deploy, execute

the given processes and sending of the response call-back to the seeker SBC which did de-

ploy the sub process.

Therefore, SBCA will distribute its sub process to SBCB and SBCC.These would pro-

cess these executions and after each execution, a desired response will be sent back to

SBCA. This would reduce SBCA from being overloaded with heavy tasks or from being

fully reliable to some far away cloud.

3.2 System Architecture

MRF should be lightweight so that it can be easily run on all SBC devices with minimal

overhead on the existing resources to enable SBCs to dynamically communicate, deploy,

execute and manage business process tasks regardless of the heterogeneity of devices.

In the following subsections, we are going to discuss in detail about the various compo-

nents of the system in depicted in Figure 12.

25

Figure 12: System Architecture

3.3 Container Manager

 The system container manager section will use container virtualization techniques

to substituting native implementation some parts of the workflow processes with virtualiza-

tion containers. This will make workflows lighter in size.

Therefore, the responsibility of the Container Manager is to ensure successful operation

of containers that belong to workflows are executed.

Below are some of the functionality that could be done by Container Manager:

- Since an SBC can run different workflow processes that may belong to different

processes. The Container Manager should ensure that there is a complete isolation

of processes to avoid conflict of resources between processes.

- Container Manager is responsible for fetching and starting of required containers at

runtime to carry out the desired implementation at given part a workflow.

- The Container Manager ability to remove those containers that are not being used,

thus freeing system resources of an SBC.

- The Container Manager also allows communication between containers. This ena-

bles us to re-use resources available in some other containers or from the host ma-

chine.

26

3.4 Proximity Communication

Proximity Communication component takes the role of the discovery and communication

of SBC’s that are within the proximity.

Discovery and connection establishment should be automated. These connections can

only be active for a specific time during the collaboration between devices and are taking

down once workflow execution between SBCs is completed.

3.5 Execution Manager

The execution manager receives, sends, runs deployable workflow processes between SBC

devices. This component exposes resources of a given SBC to others through resource end-

points.

3.5.1 Execution Server

Sending, receiving and extracting encapsulated process out of their deployable form into it

a form that can be executed by workflow manager is done by the execution server.

The execution server will create all the necessary Representational state transfer (REST)

endpoints that can be accessed by other SBCs when they are deploying workflows or when

they are sending back responses after the executions completed.

It should run and manage simultaneously identified workflows that whose parts can be

accessed by other SBCs.

3.5.2 Workflow Manager

This component executes the deployable workflow received from the execution server. It

carries out the given business logic basing on the conditions that were being determined in

the workflow modelling description.

The Workflow Manager ensures the atomicity of the workflow as it caters that all re-

quired operations are executed in a controlled manner thus making the system more con-

sistent.

Since some parts of the workflow are to be substituted with containers. The Workflow

Manager needs to work in hand with the Container Manager so that it could dynamically

find out a way of executing these implementations that correspond to the given part of the

workflow.

27

3.6 WSAN Adaptor

This component interacts with constrained Wireless Sensor and Actuator Network (WSAN)

devices. This component enables SBCs to retrieve data from WSAN devices such as sensory

data.

There exist a couple of WSAN adaptors available in the IoT industry such as OpenHab

[Ope] that easily enables SBCs to access, read values and change the state of these IoT

WSAN devices.

3.7 Backend Communication

SBC devices communicate with their respective backend data centres through this compo-

nent. Hypertext Transfer Protocol (HTTP)13 connections can be established between SBC

and the backend data centre via Internet connections using 3G, Local area Network (LAN)

or WIFI.

3.8 ESB Adaptor

Because of the heterogeneity of SBC devices, there is a high possibility of difference re-

source request and communication format. For example, one SBC may be using Extensible

Markup Language (XML) and the other using JavaScript Object Notation (JSON) format.

Therefore, it’s through enterprise service bus (ESB) adapter that each SBC could be able to

translate or transform data sent or received in a form that it can use or the other SBC

[Ibm17].

13 https://www.w3.org/Protocols/

28

4 System Implementation & Testing

4.1 System Implementation

This section describes the implementation of Mist Computing Resource Planning Frame-

work built on existing open source technologies. The implementation can be found on

GitHub14. The following subsections describe how different components of the system were

implemented.

Figure 13: System Implementation

14 https://github.com/akaiz/mist-framework

29

4.1.1 Container Manager Implementation

Docker [Doc] was chosen to be our Container Manager. With Docker, we can package im-

plementation of some components of our workflow into Docker images so that, while wrap-

ping the deployable workflow we would substitute the actual implementation of some parts

of the workflow with a Docker image that would carry out the same functionality.

Runnable instances of Docker images, called containers can be run right away on any

device that has Docker installed. Therefore, this gives us assurance that our implementation

can be run on any of these devices without heterogeneity worries.

Docker uses namespace methodology containers isolation, which is done through pro-

cess-id, networking, mount, and through Control groups (cgroups) [Iigkts14] methodology

which uses UnionFS to limit hardware resources assigned to containers.

We did create a Docker image “akaiz/mist-image-procesor” that contained an image

processing spring boot application that would take an image as input and extracts out the

most dominant colours through iterating throughout all the pixels of the image.

The Docker image was being pushed to Dockerhub15, so that it could be accessed by any

SBC with Docker installed. Therefore, whenever the workflow manager could request the

container manager to execute some execution on a given Docker image. It could fetch this

image from Docker hub, if it didn’t exist locally, then it starts running this Docker image.

Docker is highly rich in commands that can be applied onto the containers when started,

such mounting, networking, security, management commands, for example, docker ([start,

stop, kill, ps, port, images, build]) ([-v, -a, -q, --link]).

15 https://hub.docker.com

30

Figure 14: Docker Command Manager.

In our case (figure 14) the Docker commands file has two functions stopContainers

which stops all containers belonging to a given Docker image and startContainers which

starts the execution of container with the provided container commands.

Instances of a given container can be run simultaneously, (see figure 15), running

“docker ps –a” results into two running instances of “akaiz/mist-image-procesor:latest”.

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS

NAMES

f2ff1af05451 akaiz/mist-image-procesor:latest /bin/sh -c 'exec doc 2 weeks ago Up 1 minutes

0.0.0.0:5000->5000/tcp docker-registry

ere2e3405450 akaiz/mist-image-processor:latest /bin/sh -c 'exec doc 2 weeks ago Up 12 minutes

0.0.0.0:5000->5001/tcp docker-registry

Figure 15: Docker Containers

31

Figure 16: Docker Effect SBC.

Figure 17: Virtualization Overhead Comparison Adopted from [Ffrr15].

Since Docker images share the same kernel with the host machine, they do add a negli-

gible effect towards the memory and CPU usage (see Figure 16). Usage of Docker added an

overhead 2% effect on performance as compared to KVM which gave a high overhead of

40% (see in Figure 17).

32

4.2 Execution Manager Implementation

 Spring boot16 application was chosen to be the system execution manager because of its

dependency management and auto-configuration ability that simplifies the application de-

velopment process.

Figure 18: Spring Boot.

Tiny spring boot applications could be run as micro services which would communicate

with each other to form complex business applications [Spg]. These are accessible by end

points that could be accessed locally and publically by other SBCs within the collaboration.

For example, end-point “[SBC-IP-ADDRESS]/deploy/final” does receive a war (de-

ployable workflow), mist (contains execution pre-defined commands), payload and other

parameters. This end-point will be called by any SBC that wishes to make collaboration

with this device (see in Figure. 18 line 375).

16 https://spring.io/guides/gs/spring-boot/

33

4.3 Workflow	Manager	Implementation	 	 	 	

We choose to use BPMN because it supports orchestration as well as choreography and

it because it has a larger set of workflow patterns and events [Dtbeg15].

 Camunda17 (Figure 20) an open source platform workflow and business process man-

agement system which runs on top of Tomcat18 (Figure 19) was chosen to be the Workflow

Manager. Therefore, it will manage the deployed business processes each identified by a

unique business process id, this will enable simultaneous workflow execution.

Figure 19: Tomcat.

17 https://camunda.org
18 http://tomcat.apache.org

34

Figure 20: Camunda Cockpit.

 Figure 21: BPMN Full.

Figure 22: BPMN Partial.

35

The table below describes some of the components of our BPMN illustrated in Table 1:

Id Element Use

1 Message start event The Execution server starts the workflow by making a
request to Camunda with the identifier of this message
event.

3 XOR Split This element holds the logical condition that checks if the
image payload was not being sent and if it is true it directs
the flow to image fetch component.

5 OR Join This element directs the workflow to the Docker Image
Process Task regardless of what was the previous deci-
sion at element.

4 Image Fetch Service Task This component fetches the image from a given URL in
cases were the image payload is not being sent.

6 Docker Image Process Task This component does image processing but this imple-
mentation is being done by a Docker container

7 Call Back Service Task This component sends back response to the respective
sender SBC once the processing has been done.

8 End event This is the ends of the workflow process.

Figure 23: Camunda Service Task.

Table 1: BPMN Elements.

36

Camunda adds more functionality to the regular BPMN as it adds the use of custom

extensions properties to service tasks. These extensions are used to pass input parameters to

the service tasks.

In our case, we passed the desired Docker image name and defined what commands

needed to be executed (figure 23). This is what makes our workflow light weight and free

heterogonous issues as Docker images can be run across all platforms.

This also makes modelling more flexible as business process modellers, would careless

of how to do the implementation. In figure 23, they could just add the service Task they

need for example image-processing by just adding “akaiz/mist-image-processing” and the

command they want in this case it was finding dominant color. These values would be

picked by the respective custom Docker service task (figure 24 line no 24 and 25).

Once this Docker image is started it would launch a light spring boot service with all the

required dependencies, that could carry out this computation (figure 25) to find out the de-

sired command onto the image.

Figure 24: Java Delegate.

37

Figure 25: Most Common Colour.

38

4.3.1.1 REST API

Representational State Transfer (REST) services help in machines can communicate with

each other. In our implementation who choose to use JavaScript Object Notation (JSON)19

requests for all internal and external communication requests of SBCs.

Figure 26 depicts contents of the mist file JSON data that is sent to the Workflow Man-

ager.

Figure 26: Mist File.

19 http://www.json.org/

39

4.4 Aim of Testing

Our major aim is to confirm whether the use of MRF which uses Mist computing had a

positive impact on execution time and system resources such as CPU usage, memory usage

of the edge SBCs compared to use of Sole computing or Cloud computing.

Sole computing involves executing everything locally on the SBC device. Cloud computing

involves offloading parts of the process to the cloud. Mist computing will offload sub pro-

cesses to other SBC devices within the edge network.

Figure 27: Computing Methods.

40

4.5 Test Experiments

Two tests experiments for each of the computing methods in section 4.4 (see in Table 2).

Table 2: Method and Devices.

During each of the test experiments in Table 2, the following tasks were being executed

and the results that were being collected:

• File Deploy

This part of the system involves:

1. Transferring of the listed files to the respective tomcat servlet running with Ca-

munda.

2. Unwrapping of the deployed files.

3. Deployment and auto starting of the Camunda application at the tomcat servlet.

Table 3 describes the description of files being sent

• Docker Image Processing

It’s through this part of the system where image processing computation of finding out

the most common colour patterns in an image.

• Call Back

When cloud or mist nodes complete execution of the deployed workflow they do send

back their response call back that contained processed result to the endpoint provided in the

Mist File.

One important hint to be noted is that for tests that used Mist computing, since these

tasks were being run parallel at the same time at different participant devices. The

mean of values attained from the devices was taken.

Devices/methods Seeker SBC Node 2 Remote SBC
Nodes

Cloud

Sole computing ü û û

Mist computing ü ü û

Cloud computing ü û ü

41

File Name Meta Data

Mist text 1. Description: This file contains all the execution commands.

2. Format: Json.

3. Size: 500b (apx).

Mist war 1. Description: This file contains all the execution workflow en-

gine.

2. Format: war.

3. Size: 3.7mb (apx).

Image Payload 4. Description: This is the image that is being sent in tests that de-

ploy with payload.

5. Format: jpeg.

6. Size: 15mb (to each of the two mist nodes) or 30mb (sole and

cloud tests)

 Table 3: Files Description.

4.6 Devices	and	their	specifications	

Our tests were being carried onto three SBCs and one cloud device. Below are the spec-

ifications of all the devices used.

Table 4: Devices Specifications.

Device Specification

SBC CPU: A 1.2GHz 64-bit quad-core ARMv8 CP
RAM:1GB
Bluetooth: Bluetooth 4.1 Classic, Bluetooth
Operating system: Raspbian Jessie
Storage: 8 GB

Cloud Provider: Digital Ocean
CPU: 1.7GHz, 1 core processor
Droplet: Ubuntu 16.10 x64
Memory: 1 GB
Hard disk: 30GB

42

4.7 Test	Analysis		

In this section, we will explain with help graphical representation generated from test

experiments data collected while running the test cases discussed in Section 4.4.

The following observation was made on the data collected when three computing meth-

ods namely Sole, Mist and Cloud computing were being used by the sender node device.

The first stage was for the sender node to deploy these three files mist.war, mist.txt and

image-payload which are described in Table 3. This deployment was made to the respective

receiver node that could dynamically unwrap out the intended execution instructions from

the mist.txt and it could immediately deploy the mist.war which did contain the BPMN

workflow it to its Camunda engine running on top of tomcat.

As Mist computing, could require the division of the workflow into parts that could be

parallel executed at receiver nodes. In our case, the BPMN workflow in figure 22 which

was a half of the complete workflow in figure 21 was being executed at each of the Mist

receiver nodes.

However, for Sole and Cloud computing since they didn’t require parallelism the com-

plete workflow was being used.

BPMN workflow contained the intended logic of execution to be carried out by the re-

ceiver and as it was a requirement for us to keep our system light weight and free from

heterogeneity. Our workflow did use custom service tasks that used Docker.

Therefore, when these service tasks could be run they would dynamically run the Docker

image required, provided from the service task properties. For proof of concept, akaiz/mist-

image-processor Docker image was node being executed at the Docker Image processing

task which extracted different most common colours from the payload image.

Once the executions were being finished the results were being returned to the respective

nodes.

The following sub sections of this thesis contains an overview and interpretation of the

data collected while using the three computing methods.

43

4.7.1 Overall	Time	comparison		

 Figure 28: Time Comparison.

Cloud computing had the highest File Deployment time of 20.62 seconds when compare

it to Mist and Sole computing which had low values of 9.9 seconds and 6.68 seconds re-

spectively.

This was anticipated as the sender node had to send this heavy payload of 30MB to a

remote cloud node in one post request. Faster file deploy to the cloud, would require the

node to have good system specifications and high internet bandwidth. In our case, the sender

node had limited specifications and with a 3G internet connection, these contributed to the

high time taken.

 In Mist computing as the workflow and payload were partially redistributed distributed

to two Mist nodes with in proximity. Because in this case instead of transmitting the 30MB

payload at once the payload and the workflow were broken into two parts. These were de-

ployed parallel to the respective receiver nodes. From our experiments, the average time of

9.9 seconds was recorded.

Image processing was our intended task and once the Camunda workflow was being pro-

cessed we could see that the high specification of the Cloud enabled it to have less time of

56 seconds compared to Mist nodes which had 84.4 seconds. As Sole computing does all

the execution at the sender node it had the highest value of 114.6 seconds.

44

 Comparing the total time taken while using the three computing options. Time of 128 se-

conds, 104 seconds, 82 seconds for Sole, Mist and Cloud computing. This shows that choos-

ing either Cloud or Mist the IoT edge node device would reduce the total execution time.

4.7.2 Overall	CPU	usage	comparison.	

Figure 29: Cpu usage comparison.

The file deployment of a 30MB payload to the cloud receiver, executed with the early

20 seconds, did consume up to 9% of Cpu usage. This is value could rise further as more

the value of payload size is increased.

 However, the usage of parallel distribution of the workflow and payload, mentioned in

section 4.7.1 by Mist computing added less Cpu usage was around 2% during the file de-

ployment stage.

 When using Mist or Cloud after the deployment of the workflow to the respective receiver

node, the sender node does attain very low Cpu usage values as the entire process would be

executed remotely as compared to Sole.

Therefore, among the available options, the usage of Mist computing enables the edge node

device to have the lowest usage of Cpu hence this can increase the overall performance of

the devices.

45

4.7.3 Overall	RAM	usage	comparison		

 Figure 30: Memory usage comparison.

In figure 30 we can see that Mist and Cloud are far much better than Sole computing when

we consider the memory usage of the sender edge node device.

 When using Sole computing the node is active carrying complex computation throughout

the entire time therefore this resulted to high memory usage increase. It’s values sometimes

went above 200000KB but for Mist and Cloud computing, there is a negligible memory

usage increase once the executions were deployed to their respective receiver nodes.

Using Mist computing at the stage of file deployment gave better results as it used a range

of 0 to 500KB memory compared to Cloud which used 0 to 4000KB.

4.8 Discussion

Considering the comparison of the different computing methods in section 4.4, Mist and

Cloud computing are good options for edge SBC devices compared to Sole as they do have

better total time, memory and CPU usage results.

 Total time comparison see section 4.7.1 does favors Cloud computing as it does have

less time spent compared to Mist computing this is because two minimal SBC devices were

being used as the Mist receivers compared to a high powerful Cloud machine instance (see

Table 4).

46

However, if the number of Mist receivers would be increased the total time for different

parts of the execution would reduce thus this will make Mist to have less total time than

Cloud.

Therefore, basing on our analysis based on time, Cpu, and Memory usage comparison

in section 4.7. IoT edge node devices would highly benefit from using MRF as it not only

enables them to quickly carry out executions faster but it also enables them to have low

system overhead in terms of memory, Cpu usage.

MRF could also benefit to already existing IoT environments that use Cloud as it would

reduce on the payload of data being sent to the Cloud see figure 31. Therefore, when the

Cloud data centres do receive this preprocessed data, this will reduce them from being over

processing. As it assumed that each Cloud instances at a given point of time may be carrying

out multiple executions from IoT edge nodes.

Figure 31: Payload Sent to Cloud.

47

5 Conclusions

This thesis targeted minimizing interaction and transmission of data between SBC and

Cloud data centres, the author approaches this requirement by suggesting that collaborative

distribution of workflow processes to nearby edge devices would be a better option because

this brings computation to devices that are few hops counts away.

Smooth execution of one workflow process across all devices in the Edge network cur-

rently has been greatly hindered by heterogeneity as these devices differ from each other in

terms of hardware and software.

The usage virtual containerization technologies (Docker) and business process manage-

ment technologies (Camunda). Enabled us to have a frictionless collaboration of execution

of workflows across edge devices as these deployed light weight workflows would dynam-

ically fetch containers that could carry out a specified implementation need at runtime.

Our containers contained implementation and required dependencies thus this made

them to a ready to be executed at any Mist node receiver device thus the heterogeneity factor

was being solved as our deployed workflows that use containers could be executed at any

device that supports Docker, irrespective of its system architecture and operating system.

 From our test experiments, the usage MRF distribution would reduce latency levels and

bandwidth usage of the IoT edge devices as most of the heavier tasks would be preprocessed

at the proximal Mist nodes. Thus, using this option would even free them from over usage

of system resources.

 Lastly, this adoption of MRF in IoT networks will enable IoT edge devices to send

preprocessed data to Cloud data centres. This will reduce the number continuous heavy sys-

tem resource consuming executions currently carried out at Cloud data centres on raw data.

48

5.1 Future	Works	
1. Mist Enterprise Service Bus

We aim to extend the implementation of Enterprise service bus of the Mist nodes

which would be a central control unit of the Mist nodes.

2. Mist Computing Peer to Peer Service Discovery and Communications

We aim to fully implement total service WSAN discovery technologies such as

use of WIFI Direct and Bluetooth Low energy.

49

 References

[Amj15] Ann Mary Joy. Performance comparison between Linux containers and virtual

machines 2015 International Conference on Advances in Computer Engineering and Ap-

plications, Ghaziabad, 2015, pp. 342-346.

[Am13] Arash Asadi, Vincenzo Mancuso.WiFi Direct and LTE D2D in action. 2013 IFIP

Wireless Days (WD), Valencia, 2013, pp. 1-8.

[Ash09] Kevin Ashton. That 'internet of things' thing. RFID Journal, 2009.

http://www.rfidjournal.com/articles/view?4986.

[Bpp14] Alessio Botta, Walter de Donato, Valerio Persico, Antonio Pescapé. On the Inte-

gration of Cloud Computing and Internet of Things. International Conference on Future

Internet of Things and Cloud, Barcelona, (2014), pp. 23-30.

[Car15] Carl Boettiger. 2015. An introduction to Docker for reproducible research. SI-

GOPS Oper. Syst. Rev. 49, 1 (January 2015), 71-79.

[Cccgm07] J. C. Cano, J. M. Cano, C. Calafate, E. Gonzalez and P. Manzoni. Evaluation

of the Trade-Off between Power Consumption and Performance in Bluetooth Based Sys-

tems. 2007 International Conference on Sensor Technologies and Applications (SENSOR-

COMM 2007), Valencia, 2007, pp. 313-318.

[Cha14] Kuor-Hsin Chang. Bluetooth: a viable solution for IoT? [Industry Perspectives].

in IEEE, Wireless Communications, vol. 21, no. 6, pp. 6-7, December 2014.

[Cis15] Cisco. Paper, White. Fog Computing and the Internet of Things: Extend the Cloud

to Where the Things Are (2015) [accessed 05 Feb. 2017].

[Cis17] Cisco. IoT http://cisco.com [accessed 15 Feb. 2017]

[Cmfvp16] Antonio Celesti, Davide Mulfari, Maria Fazio, Massimo Villari, Antonio Pu-

liafito. Exploring Container Virtualization in IoT Clouds.2016 IEEE International Confer-

ence on Smart Computing (SMARTCOMP), St. Louis, MO, (2016), pp. 1-6.

[Cmlp14] James J. Cusick, William Miller, Nicholas Laurita, Tasha Pitt. Design, Con-

struction, and Use of a Single Board Computer Beowulf Cluster: Application of the Small-

Footprint, Low-Cost, InSignal 5420 Octa Board, in arXiv.org, (2014)

[Cnb16] Chii Chang, Satish Narayana Srirama, Rajkumar Buyya. 2016. Mobile Cloud

Business Process Management System for the Internet of Things: A Survey. ACM Com-

put. Surv. 49, 4, Article 70 (December 2016), 42 pages.

50

[Css13] Daniel Camps-Mur, Andres Garcia-Saavedra, Pablo Serrano. Device-to-device

communications with Wi-Fi Direct: overview and experimentation. in IEEE, Wireless

Communications, vol. 20, no. 3, pp. 96-104, June 2013.

[Dk13] Fred Douglis, Orran Krieger.Virtualization .in IEEE Internet Computing, vol. 17,

no. 2, pp. 6-9, March-April 2013.

[Doc] Docker. https://docs.docker.com. [accessed 23 April. 2017].

[Drmr13] Marlon Dumas, Marcello La Rosa, Jan Mendling, and Hajo A Reijers. Funda-

mentals of business process management. Springer, 2013.

[Dtbeg15] Kashif Dar, Amir Taherkordi, Harun Baraki, Frank Eliassen, Kurt Geihs, A re-

source oriented integration architecture for the Internet of Things: A business process per-

spective, Pervasive and Mobile Computing, Volume 20, July 2015, Pages145-159.

[Ffrr15] Wes Felter, Alexandre Ferreira, Ram Rajamony, Juan Rubio. An updated perfor-

mance comparison of virtual machines and Linux containers, 2015 IEEE International

Symposium on Performance Analysis of Systems and Software (ISPASS), Philadelphia,

PA, 2015, pp. 171-172.

[Flr13] Niroshinie Fernando, Seng W. Loke, Wenny Rahayu, Mobile Cloud computing: A

survey, Future Generation Computer Systems, Volume 29, Issue 1, January 2013, Pages

84-106, ISSN 0167-739X.

[Frpj14] Bonomi Flavio, Milito Rodolfo, Natarajan Preethi, Zhu Jiang. Fog Computing: A

Platform for Internet of Things and Analytics. Big Data and Internet of Things: A

Roadmap for Smart Environments in Springer International Publishing Springer Interna-

tional Publishing (2014).

[Gbmp13] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, Marimuthu Pal-

aniswami, Internet of Things (IoT): A vision, architectural elements, and future directions,

Future Generation Computer Systems, Volume 29, Issue 7, September 2013, Pages 1645-

1660.

[Har16] Hardkernel. Odroid. http://www.hardkernel.com [accessed 17 May 2017]

[Hyp17] What Is Hypervisor? From Whatis.Com (2017) [accessed 4 Feb. 2017].

[Ibm17] IBM, Enterprise Service Bus.https://www.ibm.com/developerworks/library/ar-

esbpat1/ar-esbpat1-pdf.pdf. [04 April. 2017].

51

[Iigkts14] Ismail, Bukhary Ikhwan, Ehsan Mostajeran Goortani, Mohd Bazli Ab Karim,

Wong Ming Tat, Sharipah Setapa, Jing Yuan Luke, and Ong Hong Hoe. Evaluation of

Docker as Edge computing platform. In Open Systems (ICOS), 2015 IEEE Confernece on,

pp. 130-135. IEEE, 2015.

[KI10] Karthik Kumar,Yung-Hsiang Lu. Cloud Computing for Mobile Users: Can Of-

floading Computation Save Energy? in Computer, vol. 43, no. 4, pp. 51-56, April 2010.

[Lcs16] Liyanage M, Chang C, Srirama SN (2016).mePaaS: mobile-embedded platform as

a service for distributing fog computing to edge nodes. In: 17th international conference

on parallel and distributed computing, applications and technologies (PDCAT-16).

[Mcs16] Jakob Mass, Chii Chang, Satish N. Srirama. Workflow Model Distribution or

Code Distribution? Ideal Approach for Service Composition of the Internet of

Things, 2016 IEEE International Conference on Services Computing (SCC), San Fran-

cisco, CA, 2016, pp. 649-656.

[Mec16] Mobile-Edge Computing. White Paper Mobile and Wireless Networks (2016):

283-306. Portal.etsi.org. Web. 9 May 2017.

[Mlo97] T. Mitchem, R. Lu, R. O'Brien. Using kernel hypervisors to secure applications.

Proceedings 13th Annual Computer Security Applications Conference, San Diego, CA,

1997, pp. 175-181.

[Mb16] Roberto Morabito, Nicklas Beijar. Enabling Data Processing at the Network Edge

through Lightweight Virtualization Technologies. IEEE International Conference on Sens-

ing, Communication and Networking (SECON Workshops). London, United Kingdom,

(2016), pp. 1-6.

[Mpga05] Tommaso Melodia, Dario Pompili, Vehbi C. Gungor, and Ian F. Akyildiz.

2005. A distributed coordination framework for wireless sensor and actor networks. In

Proceedings of the 6th ACM international symposium on Mobile ad hoc networking and

computing (MobiHoc '05).

[Mpga07] Tommaso Melodia, Dario Pompili,Vehbi C. Gungor, Ian F. Akyildiz. Commu-

nication and Coordination in Wireless Sensor and Actor Networks in IEEE Transactions

on Mobile Computing, vol. 6, no. 10, pp. 1116-1129, (Oct. 2007).

[Nist09] NIST, Definition of Cloud computing v15 (2009), National Institute of Standards

and Technology: Gaithersburg Editor. 2009.

52

[Nmps15] Preeth E N, Fr. Jaison Paul Mulerickal, Biju Paul, Yedhu Sastri. Evaluation of

Docker containers based on hardware utilization,2015 International Conference on Control

Communication & Computing India (ICCC), Trivandrum, 2015, pp. 697-700.

[Ope] Openhab. Empowering the smart home. http://www.openhab.org. [accessed 04

April. 2017].

[Ope17] OpenFog, (2017). White paper OpenFog Reference Architecture for Fog Compu-

ting, http://www.openfogconsortium.org.

[Pahl15] Claus Pahl.Containerization and the PaaS Cloud in IEEE Cloud Computing, vol.

2, no. 3, pp. 24-31, May-June 2015.

[Phmsl16] Claus Pahl, Sven Helmer, Lorenzo Miori, Julian Sanin, Brian Lee. A Con-

tainer-Based Edge Cloud PaaS Architecture Based on Raspberry Pi Clusters. IEEE 4th In-

ternational Conference on Future Internet of Things and Cloud Workshops (FiCloudW),

Vienna, (2016), pp. 117-124.

[Ptjrc15] Jürgo S. Preden,Kalle Tammemäe, Axel Jantsch, Mairo Leier, Andri Riid,Emine

Calis. The Benefits of Self-Awareness and Attention in Fog and Mist Computing. in Com-

puter, vol. 48, no. 7, pp. 37-45, (July 2015).

[Pt04] H. H. Pang, K. L. Tan. Authenticating query results in edge computing. Proceed-

ings. 20th International Conference on Data Engineering, 2004, pp. 560-571.

[Pmlm15] Petrolo, Riccardo, Roberto Morabito, Valeria Loscrì, and Nathalie Mitton. "The

design of the gateway for the Cloud of Things." Annals of Telecommunications (2015): 1-

10.

[Ras16] Raspberry Pi. https://www.raspberrypi.org [accessed 17 May 2017].

[Rn16] Flávio Ramalho, Augusto Neto. Virtualization at the network edge: A performance

comparison, 2016 IEEE 17th International Symposium on A World of Wireless, Mobile

and Multimedia Networks (WoWMoM), Coimbra, 2016, pp. 1-6.

[Rose04] Mendel Rosenblum.2004. The Reincarnation of Virtual Machines.

Queue2,5(July2004),34-40.

[Rsms12] B. B Prahlada Rao, Paval Saluia, Neetu Sharma, Ankit Mittal, Shivay Veer

Sharma. Cloud computing for Internet of Things & sensing based applications, 2012 Sixth

International Conference on Sensing Technology (ICST), Kolkata, 2012, pp. 374-380.

53

[Sac13] Meyer Sonja, Ruppen Andreas, Magerkurth Carsten, Internet of Things-Aware

Process Modeling: Integrating IoT Devices as Business Process Resources: Advanced In-

formation Systems Engineering: 25th International Conference, CAiSE 2013, Valencia,

Spain, June 17-21, 2013.

[Spg] Spring Boot. https://spring.io/guides/gs/spring-boot. [accessed 25 Apr 2017].

[Sbcd09] Mahadev Satyanarayanan, Paramvir Bahl, Ramon Caceres, Nigel Davies. The

Case for VM-Based Cloudlets in Mobile Computing in IEEE Pervasive Computing, vol. 8,

no. 4, pp. 14-23, (Oct.-Dec. 2009).

[Soma15] Madakam, Somayya. International Journal of Future Computer and Communi-

cation; Singapore4.4 (Aug 2015): 250-253.

[Stan08] John A. Stankovic, When Sensor and Actuator Networks Cover the World.ETRI

Journal, vol. 30, no. 5, (Oct. 2008), pp.) 627-633.

[Sw14] Ivan Stojmenovic, Sheng Wen. The Fog computing paradigm: Scenarios and secu-

rity issues. Federated Conference on Computer Science and Information Systems, War-

saw, (2014), pp. 1-8.

[Uhi05] R. Uhlig, G. Neiger, D. Rodgers, A.L. Santoni, F.C.M. Martins, A.V. Anderson,

S.M. Bennett, A. Kagi, F.H. Leung, L. Smith. Intel virtualization technology. in Com-

puter, vol. 38, no. 5, pp. 48-56, May 2005.

[Vm15] Vladimir Vujović, Mirjana Maksimović, Raspberry Pi as a Sensor Web node for

home automation, Computers & Electrical Engineering, Volume 44, May 2015, Pages

153-171.

[Wb10] Yi Wei, M. Brian Blake. Service-Oriented Computing and Cloud Computing:

Challenges and Opportunities. In IEEE Internet Computing, vol. 14, no. 6, pp. 72-75,

Nov.-Dec. 2010.

[Wllsd10] Miao Wu, Ting-Jie Lu, Fei-Yang Ling, Jing Sun and Hui-Ying Du. Research on

the architecture of Internet of Things. 2010 3rd International Conference on Advanced

Computer Theory and Engineering(ICACTE), Chengdu, (2010), pp. V5-484-V5-487.

 [Zcb10] Qi Zhang, Lu Cheng, Raouf Boutaba. Cloud computing: state-of-the-art and re-

search challenges, Journal of Internet Services and Applications, 1 (2010), pp.7–8,

Springer, 2013

54

[Zwclq10] Qian Zhu, Ruicong Wang, Qi Chen, Yan Liu, Weijun Qin. IOT Gateway:

Bridging Wireless Sensor Networks into Internet of Thing. 2010 IEEE/IFIP International

Conference on Embedded and Ubiquitous Computing, Hong Kong, 2010, pp. 347-352.

55

Appendix

Test Results

Test Case ID: 1

Test Case Name: Sole payload available

Description: We are to collect values of CPU, total time taken and

memory at one SBC locally

Preconditions: Payload already available

Environment Raspberry pi 3

Status Success

Test Case ID: 2

Test Case Name: Cloud payload sent

Description: We are to collect values of CPU, total time taken and

memory when it offloads the workflow to Cloud

Preconditions: Payload sent with the Workflow process

Environment Raspberry pi 3 + Digital ocean droplet (Ubuntu)

Status Success

Test Case ID: 3

Test Case Name: Mist payload sent

Description: We are to collect values of CPU, total time taken and

memory when it offloads the workflow to SBC nodes when

payload was sent

Preconditions: Payload sent with the Workflow process

Environment Edge network (3 Raspberry pi 3)

Status Success

56

I. Search Structure

Source: Search parameter Link

Google Scholar Internet of Things Scholar.google.com

Google Scholar Containerization Scholar.google.com

Google Scholar IoT Computing Scholar.google.com

Google Scholar IoT Business Process Systems Scholar.google.com

Springer Link IoT communication link.springer.com

ACM Digital Business Process Management dl.acm.org

57

II. License

Non-exclusive licence to reproduce thesis and make thesis public

I, Isaac Agaba,

(author’s name)

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1. reproduce, for the purpose of preservation and making available to the public,

including for addition to the DSpace digital archives until expiry of the term of

validity of the copyright, and

1.2. make available to the public via the web environment of the University of Tartu,

including via the DSpace digital archives until expiry of the term of validity of the

copyright,

of my thesis

Adaptive Process Distribution at the Edge of IoT using the Integration of BPMS and

Containerization,

(title of thesis)

supervised by Chii Chang,

(supervisor’s name)

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual

property rights or rights arising from the Personal Data Protection Act.

Tartu, 15.08.2017

