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Adaptive Process Distribution at the Edge of IoT using the Integration of 

BPMS and Containerization 

Abstract: 

Emerging cloud-centric Internet of Things (IoT) system relies on distant data centers to 

manage the entire processes, which raises the issue of latency. To address the issue, re-

searchers have introduced the Edge computing methodologies that carry out computation 

closer to the edge network of IoT system. Among the numerous Edge computing ap-

proaches, Mist computing paradigm emphasises the mechanism that moves the computation 

further to the front-end IoT devices. Although the architecture of Mist computing is prom-

ising, it raises a new challenge in how the Business Process Management System for IoT 

(BPMS4IoT) distributes the business process workflow to the heterogeneous IoT devices? 

In general, executing business process workflows relies on the common platform for exe-

cuting customized tasks. For example, if the management server defines a Python script task 

in a workflow, which has been allocated to an IoT device, the workflow engine of the IoT 

device must have the compatible execution method. Such a requirement is less flexible when 

one considers the heterogeneity of the IoT devices. Therefore, in this thesis, the author pro-

poses a framework to decouple the workflow task execution method from the workflow 

engines using the containerization technology. A proof-of-concept prototype has been de-

veloped and has been tested on several single-board computers-based IoT devices. Further, 

a case study has been performed to demonstrate the performance of the proposed framework 

comparing to the cloud-centric system. 

Keywords: 

Internet of Things, Edge Computing, Containerization, Mist Computing, 

Business Process Systems 
 CERCS: P170 Computer science, numerical analysis, systems, control 
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Konteinertehnoloogia ning protsessihaldussüsteemide integratsioonil 

põhinev adaptiivne protsessijaotus värkvõrgu serval 

Lühikokkuvõte: 

Täna levivad pilvepõhised värkvõrgu (asjade interneti) süsteemid tuginevad protsesside 

halduseks kaugel asuvatel andmekeskustel, mis toob endaga kaasa latentsusprobleeme. 

Vastusena sellele probleemile on varem välja pakutud servaarvutuse lähenemine, kus ar-

vutused viiakse läbi asjade interneti süsteemi võrgule füüsiliselt lähemal. Mitmete servaar-

vutuse metoodikate seas on uduarvutus lähenemine, kus rõhk on arvutuste liigutamisel 

värkvõrgu seadmetele endile. Ehkki uduarvutusel põhinev arhitektuur on paljutõotav, 

tõstatab see küsimuse – kuidas värkvõrgu protsessihaldussüsteemid (BPMS4IoT-

süsteemid) äriprotsesse heterogeensetele värkvõrgu seadmetele jaotama peaksid? Levinud 

on lähenemine, kus protsesside töövooülesannete käituseks tuginetakse ühisele plat-

vormile. Näiteks, kui haldusserver defineerib teatud töövoo ülesandena Pythoni skripti ja 

määrab selle seadmele, siis peab seadme töövookäitusmootor toetama vastavat me-

hhanismi skriptide jooksutamiseks. Selline nõue ei ole paindlik, arvestades värkvõrgu 

seadmete heterogeensust. Käesolevas magistritöös pakub autor välja raamistiku, mis eral-

dab töövoo ülesannete käitusmeetodi käitusmootorist kasutades selleks kon-

teinertehnoloogiat. Töö käigus arendati välja raamistiku prototüüp ning viidi läbi katseid 

mikroarvutitel põhinevail seadmetel. Lisaks võrreldi väljapakutud uduarvutuse raamistiku 

jõudlust pilvearvutusel põhineva süsteemiga. 

Märksõnad: 

Asjade internet, Värkvõrk, Servarvutus, Konteinertehnoloogia, Uduarvutus 

CERCS: P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaat-

juhtimisteooria) 
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1 Introduction 

1.1 Preamble 

Internet of things (IoT) [Ash09] refers to a global interconnection of objects (food, home 

appliance, and vehicles) with unique identifiers such as Internet Protocol (IP) address with 

the ability to communicate, interact or react to given changes with each other [Soma15]. 

As the number of IoT devices increases with time, it is predicted that by 2020, there will 

be almost 50 billons physical devices being connected to the Internet [Rose04]. 

Various computing methods have been proposed in last decade to improve the IoT de-

vices related problems such as low performance and high resource usage. 

Cloud computing method allows IoT devices to carry executions remotely with the In-

ternet accessible computer (Cloud). This gives IoT devices virtually unlimited capabilities 

in terms of storage and processing power [Bpp14]. 

As the use of IoT devices increases in most critical environments such as homes, hospi-

tals, military, Cloud computing paradigm can hardly satisfy the requirements of high mo-

bility support, location awareness and low latency [Sw14]. To address some of these issues, 

Edge computing was proposed. 

Edge computing methodology shifted computation from remote cloud to the computa-

tional devices that are closer to the front-end IoT devices within edge networks [Phmsl16]. 

The closeness of edge devices has improved the efficiency IoT devices as it enables them 

to do real-time operations with less latency limitation [Mb16]. 

Mist Computing an immerging methodology goes further beyond Edge computing as it 

pushes the computation to the sensors and actuators. Hence, this even saves more power 

since communication from a node to Edge nodes takes more power than computation at the 

nodes [Ptjrc15].  

Business Process Management Systems (BPMs) utilize workflow engines that provide 

the management capabilities to the overall IoT system without getting involved in the low-

level complex programming languages [Drmr13]. 

This thesis address the problems associated with Mist Computing, such that it will enable 

smooth process execution onto this constrained IoT devices which do differ in operating 

system and platform wise [Cnb16]. 
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1.2 Motivation & Challenges 

1.2.1 Motivation 

Let’s us take smart environments such as smart parks with several wireless sensors and 

actuators devices deployed by researchers or companies. Actuators being single board com-

puters (SBCs) with minimal capacity compared to personal computers which do carry out 

some computation on the data collected before it is submitted back to cloud data centres. 

SBCs have limited capacity of storage and processing power thus if they have heavy 

tasks executed they do consume resources such as memory and CPU usage.  

1.2.1.1 Scenario	

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Smart Park with SBCs. 
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In our scenario, we do consider to have a smart environment park that contains different 

SBCs, which belong to different companies, collecting data such as air quality, temperature, 

and humidity (see Figure 1).  

At a given point of time, SBCA may be overloaded with continuous carrying out heavy 

computations such as data filtering, sorting, and transformation before it’s submission to the 

Cloud. 

In the proximity of SBCA there exists SBCB which may be idle or even with more 

processing capacity. It would be a good option for SBCA to take this advantage by offload-

ing some of its executions to SBCB. 

There is a need of smooth collaboration computing model that could enable them man-

age the extending of a workflow process from one edge device to another. 

1.2.2 Challenges 

- Heterogeneity. In our scenario, as these SBCs may be from different vendors. These 

devices can differ in hardware and operating system, so it may not feasible to deploy 

straight away and run one workflow from one device to another as they may be a 

need to have some dependency fixation. 

Therefore, there is a need to address this heterogeneity issue by implementing a common 

standard-based execution strategy which will enable cross-platform execution across all 

edge devices. 

- Lightweight. The deployed processes need to be light in size so that it can easily be 

transferred between two devices, but the fact none of the devices needs to have prior 

knowledge of resources required execute the deployed process. Packaging the entire 

implementation would be a better option but this makes the deployed system size 

heavier. 

  Therefore, our approach needs to find a way of making deployable workflow process’s 

size light but at the same time containing all the required implementation. 
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1.3 Research Objectives and Contribution 

The goals of this thesis are: 

1. Develop Mist Computing Resource Planning Framework (MRF) that will be used to 

validate whether the workflow business process can be lightly transferred and exe-

cuted on edge devices without worries about the heterogeneity of the devices. 

2. To evaluate what benefits does MRF add to the devices compared to the existing 

computing methods.  

1.4 Thesis Outline 

The rest of the thesis is divided into sections: Section 2 which contains literature review, 

background of the technologies being used and related works. Section 3 consists of the pro-

posed system architecture description. Section 4 describes system implementation, testing, 

and discussion. This thesis is concluded in Section 5 together with future research directions. 
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2 Review of the state of the art 

2.1 Internet of Things 

Internet of Things (IoT) introduced by AutoID labs [Ash09] was initially used for radio 

frequency identification (RFID) tags system. IoT is the global composition of things or ob-

jects which are active participants such as (food, vehicles, Fitbit) in processes [Gbmp13], 

having unique identifiers that enable them to be discovered and to interact with other objects 

using existing communication protocols [Zwclq10].  

IoT is categorized into four major application domains namely Personal and Home, En-

terprise, Utilities, and Mobile. These domains scale respective to homes, community, na-

tional or regional scale, and mobile which spreads across other domains because of its con-

nectivity and scale nature [Gbmp13] (see in Figure. 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: IoT Domain Adopted From [ Gbmp13]. 

 

 

  



12 

 

 

 

 In [Wllsd10], Wu et al categorized IoT architecture is into five layers (see in Figure. 3): 

- Physical layer is the first and lowest layer that deals with hardware. 

- Data layer acts as protocol layer which transfers data between adjacent network 

nodes. 

- Network layer deals with logical device addressing, data packaging, manipula-

tion and delivery, and routing. It handles communication between two devices. 

- Transport manages communication of the two end-to-end applications that run 

on the two devices that are on the internetwork. 

- Application layer provides services that are required for the application programs 

that are in communication. 

 

 

 

 

 

 

 

 

 

 

Figure 3: IoT architecture Adopted From [Wllsd10]. 

 

 

 

 

 

 

 

 

 

 



13 

 

 

 

• IOT Single Board Computer Devices 

Single board computer (SBC) are tiny, low specification computers with single circuit 

boards, microprocessor(s), little memory, capable of using input and output devices and that 

fully operate just as a regular personal computer [Vm15, Cmlp14] (see in Figure 4).  

Their limited consumption of power has increased their usage in IoT environments. They 

are easily deployed anywhere as actuators in Wireless Sensor and Actuator Networks 

(WSAN) a composition of sensors, that collect specified data in the surrounding, and actu-

ators that perform specific action [Mpga05].  

Some of the widely-used SBCs, include Raspberry1, Odroid2, Cubie board3, and Ar-

duino4.  

 

 

 

 

 

 

 
 

 

 

 

Figure 4: SBC Devices Adopted From [Ras16, Har16]. 

 

                                                

 

 
1 https://www.raspberrypi.org 
2 http://www.hardkernel.com/main/main.php 
3 http://cubieboard.org 
4 https://www.arduino.cc 
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2.2 IoT Computing Methods      

Since most IoT devices are constrained in hardware, storage and processing power. As the 

workload becomes heavier this may lead to low efficiency and performance.  

     Their increased usage in critical and real-time processes, that demand faster computa-

tion has brought forward a need for them to optimize the resources and improved, device 

performance and efficiency.  

Below are some of the profound IoT computing methods, being proposed to help these 

IoT networks with these constrained IoT devices.  

2.2.1 Cloud	Computing		

Cloud computing methodology usage in past decade in IoT networks has provided on-de-

mand access to shared computing resources pool (storage, applications, services, and soft-

ware) that are hosted in the cloud.  

These are easily provisioned when needed by any authorised device in need of them with 

minimal vendor interaction [Rsms12, Nist09]. See figure 5, the architecture of cloud com-

puting model. 

The threat of insecurity of data transmitted between devices, service instability, and la-

tency are major drawbacks of Cloud computing[Wb10]. As Cloud computing participant’s 

machines, may be many hops away from each other, some data packets can be lost or man 

in middle attacks can be done on the transmitted data.  

 To reduce on the drawbacks of far way cloud, usage of cloudlets was proposed as it 

brought, a limited local Cloud nearby [Sbcd09].  

     

                        

 

 

 

 

 

 

Figure 5: Cloud Computing Adopted From [Zcb10]. 
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2.2.2 Fog	and	Edge	Computing		

Fog computing pushes closer Cloud computing paradigm down to the edge net-

work by processing data at fog nodes or IoT gateway. This has solved some of Cloud com-

puting challenges such as high latency and failure ensure total location awareness [Frpj14, 

SW14]. These fog nodes can be deployed at factories, parks, health care units, transport 

stations [Cis15]. 

Edge computing brings, even more, closer the intelligence and application logic past the 

fog nodes, as it directly does these computations at devices programmable automation con-

trollers that are in the edge networks [Pt04]. This increases the infrastructure efficiency as 

it provides intermediate layers of computation, networking, and storage closer to IoT de-

vices [MB16]. 

However, in most cases, Fog computing and Edge computing terms are being inter-

changeably used. This is incorrect as they are completely different. Fog computing works 

hand in hand with Cloud computing but Edge can work without Cloud [Ope17]. 

Figure 6 shows comparison of attributes from Cloud and Fog computing.  

 

 

 

 

 

 

 

 

 
 

Figure 6: Computing Comparison Adopted From [Cis17]. 
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2.2.3 Mobile Cloud Computing (MCC) 

In [Flr13], Niroshinie et al describe Mobile Cloud computing as: 

1. MCC gives applications ability to be run on remote machines in the cloud so that 

they can be accessed by client mobile devices that use resources being served over 

an internet connection. 

2. MCC clusters resources in a peer network among mobile devices. This forms a local 

cloud of mobile devices in the vicinity that provides different services to each other. 

3. Mobile cloud computing enables mobile devices to use cloudlet computers with in 

the proximity, to carry out executions that would have been carried out in the cloud. 

 3    

 1    

                                      

                       

                                                

 

2    

  Figure 7: Adopted From [Flr13]. 

Even though Mobile cloud computing reduces high latency and bandwidth usage when 

compared to Cloud computing though it self also has some drawbacks such as low reliability 

and privacy related issues [KI10]. 

 

 

 

  



17 

 

 

 

2.2.4 Mobile	Edge	Computing	(MEC)	

This brings Cloud computing services at the edge of the cellular network. MEC runs a cloud 

server at the edge of a mobile network and performs specific tasks that could not be accom-

plished with traditional network infrastructure. 

“Operators can open the radio network edge to third-party partners, allowing them to rap-

idly deploy innovative applications and services towards mobile subscribers, enterprises, 

and other vertical segments” [Mec16].  

2.3 Virtualization 

Virtual machines are machines that are being fooled [Rose04], to think that they are being 

run on a real hardware device. Therefore, on one device severally virtual machines can be 

run all operating independently as if they are only one using the device hardware. 

Below is the summarization of some of the common forms of virtualizations: 

2.3.1 Full Virtualization 

This type of virtualizations enables complete simulation of computer hardware parts. 

This makes it easier to run different operating systems on a given device as it can virtualize 

memory, processors, and I/O devices [Uhi05]. 

Most full virtualized machines use hypervisors which is a layer of software that can 

implement instructions set on hardware as it can run directly on the hardware [Mlo97]. 

Hypervisors are classified into: Type 1 hypervisors which are placed directly on top of 

the system hardware such as Microsoft Hyper-V5, Citrix XenServer6, and Type 2 hypervi-

sors which are hosted on top a host operating system, for example VMware Player 7, Paral-

lels8 [Dk13] (see in Figure .8). 

                                                

 

 
5 https://www.microsoft.com/en-us/cloud-platform/server-virtualization 
6 https://xenserver.org/ 
7 http://www.vmware.com/ 
8 http://www.parallels.com/ 
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Figure 8: Hypervisor Types Adopted From [Hyp17]. 

2.3.2 Container Virtualization  

Containerization is an operating system virtualization method which replaces the 

tradition hypervisor virtualization methods as it allows the use of virtualized machines that 

share the same kernel as the host operating system [Cmfvp16, Car15].  

       Linux kernel virtualization is classified into: namespaces which isolates process groups 

so that each process could only see processes resources that belong to the same group and 

Control groups (Cgroups) which does limit how much of the resources a given process can 

use for example reservation of memory, central processing unit (CPU) usage that is being 

assigned to a given process [Pahl15].  

Container Images are lightweight independent bundled and software with all the depend-

encies needed to be executed regardless of the computer platform (Linux, Windows) [Doc, 

Phmsl16]. When container images are being executed the running instance of a container 

image is called a container [Car15]. 

Runnable containers do add minimal overhead on the device being used compared to 

hypervisors [RN16] because they do share the same kernel as the host machine [MB16].  

Containers use namespaces for process isolation of processes. Different containers can 

be interlinked through network interfaces [Pahl15]. This reduces creation or multiple guest 

operating system which reduces overhead due to virtualization of both hardware and drivers 

(figure 9).    
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Figure 9: Docker Architecture Adopted From [Dar17]. 

    Containers do use cluster managements techniques such as Mesos and Kubernetes 

for management, scaling, and deployment of containers.  

Kubernetes developed by Google sets several nodes made up containers with services 

that can be accessed by other containers in other hosts by automatically scheduling 

jobs to ensure that the applications run in the desired state, through its auto starting, 

self-healing and rescheduling techniques [Amj15]. 

2.4 Peer to peer Communication 

Most SBC’s IoT devices come pre-installed with the support of Bluetooth and WIFI tech-

nologies, which do enable these devices to interact locally and globally with other devices 

in the network. Other technologies such as CoAP9, ZigBee10, MQTT11 that can be used for 

device to device communications. The following subsections contain the review of some of 

these devices to device communication technologies. 

                                                

 

 
9 http://coap.technology 
10 http://www.zigbee.org 
11 http://mqtt.org 
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2.4.1 Bluetooth 

      Bluetooth technology ordinary usage was in audio and stereo communications [Cha14], 

however, in the past decades it has expanded its usage to many short-range wireless com-

munication markets such as the IoT and machine-to-machine (M2M) communications. 

Bluetooth technologies include regular Bluetooth, Bluetooth EDR, Bluetooth HS and 

Bluetooth low energy. Bluetooth LE devices do consume less energy consumption, memory 

footprint. The ability that they can be used in end-to-end IP connectivity makes them suita-

ble to be used in critical areas [Cha14]. 

2.4.2 Wi-Fi Direct   

Wi-Fi Direct12 technology by Wi-Fi alliance takes a different approach to enhance device to 

device connectivity as it builds upon the successful IEEE 802.11 infrastructure mode and 

lets devices negotiate who will take over the access point-like functionalities dynamically 

[Css13]. 

 Wi-Fi Direct dynamically enables devices to act as a peer-to-peer group owner (P2P 

GO) or a peer to peer client (P2P Client).   

2.5 Business Process Workflow 

Business Process Management (BPM) it is an art and science of how a workflow in an or-

ganization or systems are executed to ensure consistent outputs [Drmr13]. Business Process 

Model and Notation (BPMN) expresses all the information in an IoT system process (see in 

Figure 10).  

In [Sac13], Sonja et al categorised the major components in the IoT Domain Model of 

the IoT-Architecture as: 

- IoT service: These interfaces allow access to other heterogeneous components at 

native interfaces of the devices hence exposing devices functionality as a single unit 

business process. 

                                                

 

 
12 http://www.wi-fi.org/discover-wi-fi/wi-fi-direct 
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- Physical entity: This refers to a unique element within the proximity in which is of 

central interest for the IoT. 

- IoT device: This act as a mediator between the BPM process and the physical world 

from which data is being collected from. 

- Native service: These are hosted onto IoT devices collect information about entities 

or perform actions on entities. 

 

Figure 10: Adopted From [Drmr13]. 
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2.6 Related	Works		

 In [Phal16], Pahl et al review about the impact container virtualization on edge devices 

when being placed into clusters. As their study focused on how Edge clouds could move 

heavy-weight computations to distributed lightweight resources close to users.  

They used containerization technology to build clusters that consisted of customized 

platforms of SBCs nodes, running different containers with orchestration services that ena-

bled the communication of these SBCs nodes in the clusters.  

In [Pmlm15], Riccardo et al proposes the designing of gateways used in Cloud of Things 

which distributes a collection of resources, enabled in a horizontal integration with various 

IoT platforms and applications.  

These gateways would oversee, manage data from IoT devices and act as endpoint for 

the communication between cloud data-centers and local devices. The proposed gateways 

in their study used container based virtualization which gave an improvement of 2.67%, 

6.04% and 10% in CPU, memory performance and Disk I/O. 

In [Rn16], Ramalho et al study evaluates the performance difference between contain-

erized based and the hypervisor-based virtualization at the network edge. The use of hyper-

visor-based virtualization had good results in regards of isolation in the last decade but con-

tainerization abilities such fast to boot up, fast migration and easy to maintain have taken 

virtualization to next level. 

From their study, the performance tests were run on CubieBoard2 with container based 

vs hypervisor-based virtualization. Both NBENCH and SysBENCH tests showed that con-

tainer virtualization outperforms KVM in every situation when compared to the Native ex-

ecution. 
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3 System Overview 

This section introduces our proposed framework and in the subsections, we will discuss the 

architecture and overview of different components of our proposed system. 

“Mist Computing (Mist) represents a paradigm in which edge network devices, that have 

predictable accessibility, provide their computational and communicative resources as ser-

vices to their vicinity via Device-to-Device communication protocols. Requesters in Mist 

can distribute software processes to Mist service providers for execution” [Lcs16]. 

 Mist Computing Resource Planning Framework (MRF), an open standard-based ser-

vice-oriented context-aware computing model that uses Mist Computing, virtualization, and 

workflow management technologies. 

 MRF implementation address challenges of the proposed “Adaptive Process Distribu-

tion at the Edge of IoT using the Integration of BPMS and Containerization”. It’s application 

on SBCs devices will widen the device workflow execution scope. As it will enable collab-

orative distribution of sub process of a complex workflow to several Edge devices with in 

the proximity. 

3.1 Scenario 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Edge With MRF. 
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The requirement at hand of a collaborative, cross-platform Edge computing model in Sec-

tion 1.2.1.1 that would address challenges described in Section 1.2.2.  

Let’s take a scenario (Figure 11) that consists three SBCs identified as SBCA, SBCB 

and SBCC that are within proximity of each other.  

As mentioned before, that these devices may belong to different organizations. There is 

low possibility that these devices to have similar or compatible hardware device platforms 

and operating system.  

 Installation of MRF on these devices will enable them to use each other’s resources such 

as (computation power, memory). They will be to offload sub processes to each other freely 

without the dependencies limitation. Therefore, the offloaded processes will be dynamically 

executed out of the box, regardless of the device specifications in hardware and software.  

In our scenario, MRF will dynamically enable these SBCs to interact, deploy, execute 

the given processes and sending of the response call-back to the seeker SBC which did de-

ploy the sub process.  

Therefore, SBCA will distribute its sub process to SBCB and SBCC.These would pro-

cess these executions and after each execution, a desired response will be sent back to 

SBCA. This would reduce SBCA from being overloaded with heavy tasks or from being 

fully reliable to some far away cloud. 

3.2 System Architecture 

MRF should be lightweight so that it can be easily run on all SBC devices with minimal 

overhead on the existing resources to enable SBCs to dynamically communicate, deploy, 

execute and manage business process tasks regardless of the heterogeneity of devices.  

In the following subsections, we are going to discuss in detail about the various compo-

nents of the system in depicted in Figure 12. 
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Figure 12: System Architecture 

3.3 Container Manager 

  The system container manager section will use container virtualization techniques 

to substituting native implementation some parts of the workflow processes with virtualiza-

tion containers. This will make workflows lighter in size.  

Therefore, the responsibility of the Container Manager is to ensure successful operation 

of containers that belong to workflows are executed. 

Below are some of the functionality that could be done by Container Manager: 

- Since an SBC can run different workflow processes that may belong to different 

processes. The Container Manager should ensure that there is a complete isolation 

of processes to avoid conflict of resources between processes. 

- Container Manager is responsible for fetching and starting of required containers at 

runtime to carry out the desired implementation at given part a workflow. 

- The Container Manager ability to remove those containers that are not being used, 

thus freeing system resources of an SBC. 

- The Container Manager also allows communication between containers. This ena-

bles us to re-use resources available in some other containers or from the host ma-

chine. 
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3.4 Proximity Communication  

Proximity Communication component takes the role of the discovery and communication 

of SBC’s that are within the proximity. 

Discovery and connection establishment should be automated. These connections can 

only be active for a specific time during the collaboration between devices and are taking 

down once workflow execution between SBCs is completed.  

3.5 Execution Manager 

The execution manager receives, sends, runs deployable workflow processes between SBC 

devices. This component exposes resources of a given SBC to others through resource end-

points. 

3.5.1 Execution Server 

Sending, receiving and extracting encapsulated process out of their deployable form into it 

a form that can be executed by workflow manager is done by the execution server.  

The execution server will create all the necessary Representational state transfer (REST) 

endpoints that can be accessed by other SBCs when they are deploying workflows or when 

they are sending back responses after the executions completed. 

It should run and manage simultaneously identified workflows that whose parts can be 

accessed by other SBCs.  

3.5.2 Workflow Manager 

This component executes the deployable workflow received from the execution server. It 

carries out the given business logic basing on the conditions that were being determined in 

the workflow modelling description.  

The Workflow Manager ensures the atomicity of the workflow as it caters that all re-

quired operations are executed in a controlled manner thus making the system more con-

sistent. 

Since some parts of the workflow are to be substituted with containers. The Workflow 

Manager needs to work in hand with the Container Manager so that it could dynamically 

find out a way of executing these implementations that correspond to the given part of the 

workflow. 
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3.6 WSAN Adaptor 

This component interacts with constrained Wireless Sensor and Actuator Network (WSAN) 

devices. This component enables SBCs to retrieve data from WSAN devices such as sensory 

data.  

There exist a couple of WSAN adaptors available in the IoT industry such as OpenHab 

[Ope] that easily enables SBCs to access, read values and change the state of these IoT 

WSAN devices. 

3.7 Backend Communication  

SBC devices communicate with their respective backend data centres through this compo-

nent. Hypertext Transfer Protocol (HTTP)13 connections can be established between SBC 

and the backend data centre via Internet connections using 3G, Local area Network (LAN) 

or WIFI. 

3.8 ESB Adaptor 

Because of the heterogeneity of SBC devices, there is a high possibility of difference re-

source request and communication format. For example, one SBC may be using Extensible 

Markup Language (XML) and the other using JavaScript Object Notation (JSON) format. 

Therefore, it’s through enterprise service bus (ESB) adapter that each SBC could be able to 

translate or transform data sent or received in a form that it can use or the other SBC 

[Ibm17]. 
 

 

                                                

 

 
13 https://www.w3.org/Protocols/ 
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4 System Implementation & Testing 

4.1 System Implementation 

This section describes the implementation of Mist Computing Resource Planning Frame-

work built on existing open source technologies. The implementation can be found on 

GitHub14. The following subsections describe how different components of the system were 

implemented. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: System Implementation 

                                                

 

 
14 https://github.com/akaiz/mist-framework 
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4.1.1 Container Manager Implementation 

Docker [Doc] was chosen to be our Container Manager. With Docker, we can package im-

plementation of some components of our workflow into Docker images so that, while wrap-

ping the deployable workflow we would substitute the actual implementation of some parts 

of the workflow with a Docker image that would carry out the same functionality. 

Runnable instances of Docker images, called containers can be run right away on any 

device that has Docker installed. Therefore, this gives us assurance that our implementation 

can be run on any of these devices without heterogeneity worries.  

Docker uses namespace methodology containers isolation, which is done through pro-

cess-id, networking, mount, and through Control groups (cgroups) [Iigkts14] methodology 

which uses UnionFS to limit hardware resources assigned to containers. 

We did create a Docker image “akaiz/mist-image-procesor” that contained an image 

processing spring boot application that would take an image as input and extracts out the 

most dominant colours through iterating throughout all the pixels of the image. 

The Docker image was being pushed to Dockerhub15, so that it could be accessed by any 

SBC with Docker installed. Therefore, whenever the workflow manager could request the 

container manager to execute some execution on a given Docker image. It could fetch this 

image from Docker hub, if it didn’t exist locally, then it starts running this Docker image. 

Docker is highly rich in commands that can be applied onto the containers when started, 

such mounting, networking, security, management commands, for example, docker ([start, 

stop, kill, ps, port, images, build]) ([-v, -a, -q, --link]). 

                                                

 

 
15 https://hub.docker.com 
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Figure 14: Docker Command Manager. 

In our case (figure 14) the Docker commands file has two functions stopContainers 

which stops all containers belonging to a given Docker image and startContainers which 

starts the execution of container with the provided container commands. 

Instances of a given container can be run simultaneously, (see figure 15), running 

“docker ps –a” results into two running instances of “akaiz/mist-image-procesor:latest”. 

 
CONTAINER ID        IMAGE                               COMMAND                CREATED             STATUS              PORTS                    

NAMES 

f2ff1af05451        akaiz/mist-image-procesor:latest      /bin/sh -c 'exec doc   2 weeks ago        Up 1 minutes         

0.0.0.0:5000->5000/tcp   docker-registry 

ere2e3405450      akaiz/mist-image-processor:latest      /bin/sh -c 'exec doc   2 weeks ago        Up 12 minutes         

0.0.0.0:5000->5001/tcp   docker-registry 

Figure 15: Docker Containers 
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Figure 16: Docker Effect SBC. 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: Virtualization Overhead Comparison Adopted from [Ffrr15]. 

Since Docker images share the same kernel with the host machine, they do add a negli-

gible effect towards the memory and CPU usage (see Figure 16). Usage of Docker added an 

overhead 2% effect on performance as compared to KVM which gave a high overhead of 

40% (see in Figure 17).  

 

 



32 

 

 

 

4.2 Execution Manager Implementation 

    Spring boot16 application was chosen to be the system execution manager because of its 

dependency management and auto-configuration ability that simplifies the application de-

velopment process.  

Figure 18: Spring Boot. 

Tiny spring boot applications could be run as micro services which would communicate 

with each other to form complex business applications [Spg]. These are accessible by end 

points that could be accessed locally and publically by other SBCs within the collaboration.  

For example, end-point “[SBC-IP-ADDRESS]/deploy/final” does receive a war (de-

ployable workflow), mist (contains execution pre-defined commands), payload and other 

parameters. This end-point will be called by any SBC that wishes to make collaboration 

with this device (see in Figure. 18 line 375).  

                                                

 

 
16  https://spring.io/guides/gs/spring-boot/ 
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4.3 Workflow	Manager	Implementation	 	 	 	

We choose to use BPMN because it supports orchestration as well as choreography and 

it because it has a larger set of workflow patterns and events [Dtbeg15]. 

 Camunda17 (Figure 20) an open source platform workflow and business process man-

agement system which runs on top of Tomcat18 (Figure 19) was chosen to be the Workflow 

Manager. Therefore, it will manage the deployed business processes each identified by a 

unique business process id, this will enable simultaneous workflow execution. 

 

Figure 19: Tomcat.  

                                                

 

 
17 https://camunda.org 
18 http://tomcat.apache.org 
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Figure 20: Camunda Cockpit. 

                                                 Figure 21: BPMN Full. 

Figure 22: BPMN Partial.  
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The table below describes some of the components of our BPMN illustrated in Table 1: 

Id Element  Use 

1 Message start event  The Execution server starts the workflow by making a 
request to Camunda with the identifier of this message 
event. 

3 XOR Split This element holds the logical condition that checks if the 
image payload was not being sent and if it is true it directs 
the flow to image fetch component. 

5 OR Join This element directs the workflow to the Docker Image 
Process Task regardless of what was the previous deci-
sion at element. 

4 Image Fetch Service Task  This component fetches the image from a given URL in 
cases were the image payload is not being sent. 

6 Docker Image Process Task This component does image processing but this imple-
mentation is being done by a Docker container 

7 Call Back Service Task This component sends back response to the respective 
sender SBC once the processing has been done. 

8 End event This is the ends of the workflow process. 

 

 

Figure 23: Camunda Service Task. 

 

Table 1: BPMN Elements. 
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Camunda adds more functionality to the regular BPMN as it adds the use of custom 

extensions properties to service tasks. These extensions are used to pass input parameters to 

the service tasks. 

In our case, we passed the desired Docker image name and defined what commands 

needed to be executed (figure 23). This is what makes our workflow light weight and free 

heterogonous issues as Docker images can be run across all platforms. 

This also makes modelling more flexible as business process modellers, would careless 

of how to do the implementation. In figure 23, they could just add the service Task they 

need for example image-processing by just adding “akaiz/mist-image-processing” and the 

command they want in this case it was finding dominant color. These values would be 

picked by the respective custom Docker service task (figure 24 line no 24 and 25).  

Once this Docker image is started it would launch a light spring boot service with all the 

required dependencies, that could carry out this computation (figure 25) to find out the de-

sired command onto the image. 

 

Figure 24: Java Delegate. 
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Figure 25: Most Common Colour. 
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4.3.1.1 REST API 

Representational State Transfer (REST) services help in machines can communicate with 

each other. In our implementation who choose to use JavaScript Object Notation (JSON)19 

requests for all internal and external communication requests of SBCs. 

Figure 26 depicts contents of the mist file JSON data that is sent to the Workflow Man-

ager.  

 
Figure 26: Mist File. 

 

 

 

 

 

 

 

 

 

 

 

                                                

 

 
19 http://www.json.org/ 
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4.4 Aim of Testing  

Our major aim is to confirm whether the use of MRF which uses Mist computing had a 

positive impact on execution time and system resources such as CPU usage, memory usage 

of the edge SBCs compared to use of Sole computing or Cloud computing.  

Sole computing involves executing everything locally on the SBC device. Cloud computing 

involves offloading parts of the process to the cloud. Mist computing will offload sub pro-

cesses to other SBC devices within the edge network. 

 

  

 

 

 

Figure 27: Computing Methods. 
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4.5 Test Experiments 

Two tests experiments for each of the computing methods in section 4.4 (see in Table 2). 

 

Table 2: Method and Devices. 

During each of the test experiments in Table 2, the following tasks were being executed 

and the results that were being collected: 

• File Deploy 

This part of the system involves: 

1. Transferring of the listed files to the respective tomcat servlet running with Ca-

munda. 

2. Unwrapping of the deployed files. 

3. Deployment and auto starting of the Camunda application at the tomcat servlet. 

Table 3 describes the description of files being sent 

• Docker Image Processing  

It’s through this part of the system where image processing computation of finding out 

the most common colour patterns in an image. 

• Call Back  

When cloud or mist nodes complete execution of the deployed workflow they do send 

back their response call back that contained processed result to the endpoint provided in the 

Mist File. 

One important hint to be noted is that for tests that used Mist computing, since these 

tasks were being run parallel at the same time at different participant devices. The 

mean of values attained from the devices was taken.  

Devices/methods Seeker SBC Node 2 Remote SBC 
Nodes 

Cloud 

Sole computing ü û û 

Mist computing ü ü û 

Cloud computing ü û ü 
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File Name Meta Data 

Mist text  1. Description: This file contains all the execution commands. 

2. Format: Json. 

3. Size: 500b (apx). 

 

Mist war  1. Description: This file contains all the execution workflow en-

gine. 

2. Format: war. 

3. Size: 3.7mb (apx). 

Image Payload  4. Description: This is the image that is being sent in tests that de-

ploy with payload. 

5. Format: jpeg. 

6. Size: 15mb (to each of the two mist nodes) or 30mb (sole and 

cloud tests) 

 

          Table 3: Files Description. 

4.6 Devices	and	their	specifications	

Our tests were being carried onto three SBCs and one cloud device. Below are the spec-

ifications of all the devices used. 

Table 4: Devices Specifications. 

Device Specification 

SBC CPU:  A 1.2GHz 64-bit quad-core ARMv8 CP 
RAM:1GB  
Bluetooth: Bluetooth 4.1 Classic, Bluetooth 
Operating system: Raspbian Jessie 
Storage: 8 GB 
 

Cloud Provider: Digital Ocean 
CPU:  1.7GHz, 1 core processor 
Droplet: Ubuntu 16.10 x64 
Memory: 1 GB 
Hard disk: 30GB 
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4.7 Test	Analysis		

In this section, we will explain with help graphical representation generated from test 

experiments data collected while running the test cases discussed in Section 4.4. 

The following observation was made on the data collected when three computing meth-

ods namely Sole, Mist and Cloud computing were being used by the sender node device. 

The first stage was for the sender node to deploy these three files mist.war, mist.txt and 

image-payload which are described in Table 3. This deployment was made to the respective 

receiver node that could dynamically unwrap out the intended execution instructions from 

the mist.txt and it could immediately deploy the mist.war which did contain the BPMN 

workflow it to its Camunda engine running on top of tomcat.  

As Mist computing, could require the division of the workflow into parts that could be 

parallel executed at receiver nodes. In our case, the BPMN workflow in figure 22 which 

was a half of the complete workflow in figure 21 was being executed at each of the Mist 

receiver nodes.  

However, for Sole and Cloud computing since they didn’t require parallelism the com-

plete workflow was being used. 

BPMN workflow contained the intended logic of execution to be carried out by the re-

ceiver and as it was a requirement for us to keep our system light weight and free from 

heterogeneity. Our workflow did use custom service tasks that used Docker.  

Therefore, when these service tasks could be run they would dynamically run the Docker 

image required, provided from the service task properties. For proof of concept, akaiz/mist-

image-processor Docker image was node being executed at the Docker Image processing 

task which extracted different most common colours from the payload image. 

Once the executions were being finished the results were being returned to the respective 

nodes.    

The following sub sections of this thesis contains an overview and interpretation of the 

data collected while using the three computing methods. 
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4.7.1 Overall	Time	comparison		

 

                  

 

 

 

 

 

 

 

 

 

 

   Figure 28: Time Comparison. 

Cloud computing had the highest File Deployment time of 20.62 seconds when compare 

it to Mist and Sole computing which had low values of 9.9 seconds and 6.68 seconds re-

spectively.  

This was anticipated as the sender node had to send this heavy payload of 30MB to a 

remote cloud node in one post request. Faster file deploy to the cloud, would require the 

node to have good system specifications and high internet bandwidth. In our case, the sender 

node had limited specifications and with a 3G internet connection, these contributed to the 

high time taken. 

    In Mist computing as the workflow and payload were partially redistributed distributed 

to two Mist nodes with in proximity. Because in this case instead of transmitting the 30MB 

payload at once the payload and the workflow were broken into two parts. These were de-

ployed parallel to the respective receiver nodes. From our experiments, the average time of 

9.9 seconds was recorded.  

Image processing was our intended task and once the Camunda workflow was being pro-

cessed we could see that the high specification of the Cloud enabled it to have less time of 

56 seconds compared to Mist nodes which had 84.4 seconds. As Sole computing does all 

the execution at the sender node it had the highest value of 114.6 seconds. 
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 Comparing the total time taken while using the three computing options. Time of 128 se-

conds, 104 seconds, 82 seconds for Sole, Mist and Cloud computing. This shows that choos-

ing either Cloud or Mist the IoT edge node device would reduce the total execution time. 

4.7.2 Overall	CPU	usage	comparison.	

 

 

 

 

 

 

 

 

 

 

 

Figure 29: Cpu usage comparison. 

 

The file deployment of a 30MB payload to the cloud receiver, executed with the early 

20 seconds, did consume up to 9% of Cpu usage. This is value could rise further as more 

the value of payload size is increased.  

     However, the usage of parallel distribution of the workflow and payload, mentioned in 

section 4.7.1 by Mist computing added less Cpu usage was around 2% during the file de-

ployment stage. 

 When using Mist or Cloud after the deployment of the workflow to the respective receiver 

node, the sender node does attain very low Cpu usage values as the entire process would be 

executed remotely as compared to Sole.  

Therefore, among the available options, the usage of Mist computing enables the edge node 

device to have the lowest usage of Cpu hence this can increase the overall performance of 

the devices. 
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4.7.3 Overall	RAM	usage	comparison		

 

                                             Figure 30: Memory usage comparison. 

In figure 30 we can see that Mist and Cloud are far much better than Sole computing when 

we consider the memory usage of the sender edge node device. 

 When using Sole computing the node is active carrying complex computation throughout 

the entire time therefore this resulted to high memory usage increase. It’s values sometimes 

went above 200000KB but for Mist and Cloud computing, there is a negligible memory 

usage increase once the executions were deployed to their respective receiver nodes.  

Using Mist computing at the stage of file deployment gave better results as it used a range 

of 0 to 500KB memory compared to Cloud which used 0 to 4000KB.   

 

4.8 Discussion 

Considering the comparison of the different computing methods in section 4.4, Mist and 

Cloud computing are good options for edge SBC devices compared to Sole as they do have 

better total time, memory and CPU usage results. 

  Total time comparison see section 4.7.1 does favors Cloud computing as it does have 

less time spent compared to Mist computing this is because two minimal SBC devices were 

being used as the Mist receivers compared to a high powerful Cloud machine instance (see 

Table 4).  
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However, if the number of Mist receivers would be increased the total time for different 

parts of the execution would reduce thus this will make Mist to have less total time than 

Cloud. 

Therefore, basing on our analysis based on time, Cpu, and Memory usage comparison 

in section 4.7. IoT edge node devices would highly benefit from using MRF as it not only 

enables them to quickly carry out executions faster but it also enables them to have low 

system overhead in terms of memory, Cpu usage. 

MRF could also benefit to already existing IoT environments that use Cloud as it would 

reduce on the payload of data being sent to the Cloud see figure 31. Therefore, when the 

Cloud data centres do receive this preprocessed data, this will reduce them from being over 

processing. As it assumed that each Cloud instances at a given point of time may be carrying 

out multiple executions from IoT edge nodes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31: Payload Sent to Cloud. 
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5 Conclusions 

This thesis targeted minimizing interaction and transmission of data between SBC and 

Cloud data centres, the author approaches this requirement by suggesting that collaborative 

distribution of workflow processes to nearby edge devices would be a better option because 

this brings computation to devices that are few hops counts away.  

Smooth execution of one workflow process across all devices in the Edge network cur-

rently has been greatly hindered by heterogeneity as these devices differ from each other in 

terms of hardware and software. 

The usage virtual containerization technologies (Docker) and business process manage-

ment technologies (Camunda). Enabled us to have a frictionless collaboration of execution 

of workflows across edge devices as these deployed light weight workflows would dynam-

ically fetch containers that could carry out a specified implementation need at runtime.  

Our containers contained implementation and required dependencies thus this made 

them to a ready to be executed at any Mist node receiver device thus the heterogeneity factor 

was being solved as our deployed workflows that use containers could be executed at any 

device that supports Docker, irrespective of its system architecture and operating system. 

  From our test experiments, the usage MRF distribution would reduce latency levels and 

bandwidth usage of the IoT edge devices as most of the heavier tasks would be preprocessed 

at the proximal Mist nodes. Thus, using this option would even free them from over usage 

of system resources. 

 Lastly, this adoption of MRF in IoT networks will enable IoT edge devices to send 

preprocessed data to Cloud data centres. This will reduce the number continuous heavy sys-

tem resource consuming executions currently carried out at Cloud data centres on raw data. 
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5.1 Future	Works	
1. Mist Enterprise Service Bus 

We aim to extend the implementation of Enterprise service bus of the Mist nodes 

which would be a central control unit of the Mist nodes. 

2. Mist Computing Peer to Peer Service Discovery and Communications 

We aim to fully implement total service WSAN discovery technologies such as 

use of WIFI Direct and Bluetooth Low energy. 
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Appendix 

Test Results 

 

Test Case ID: 1 

Test Case Name: Sole payload available 

Description: We are to collect values of CPU, total time taken and 

memory at one SBC locally 

Preconditions: Payload already available  

Environment  Raspberry pi 3 

Status Success 

 

 

Test Case ID: 2 

Test Case Name: Cloud payload sent 

Description: We are to collect values of CPU, total time taken and 

memory when it offloads the workflow to Cloud 

Preconditions: Payload sent with the Workflow process 

Environment  Raspberry pi 3 + Digital ocean droplet (Ubuntu) 

Status Success 

 

Test Case ID: 3 

Test Case Name: Mist payload sent 

Description: We are to collect values of CPU, total time taken and 

memory when it offloads the workflow to SBC nodes when 

payload was sent 

Preconditions: Payload sent with the Workflow process 

Environment  Edge network (3 Raspberry pi 3) 

Status Success 
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I. Search Structure 

Source: Search parameter Link 

Google Scholar Internet of Things Scholar.google.com 

Google Scholar Containerization Scholar.google.com 

Google Scholar IoT Computing Scholar.google.com 

Google Scholar IoT Business Process Systems  Scholar.google.com 

Springer Link  IoT communication link.springer.com 

ACM Digital Business Process Management dl.acm.org 
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