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Abstract

The evolution of smartphones allows the continuous
exploitation of computing resources. This increasingly
applies also to distributed environments as exemplified
through utilization of network router loads in edge
computing and fog computing. Combining cloud
computing and mobile smart devices in dew computing
contexts enables new techniques for resource utilization,
data collection and data processing. However, new
challenges regarding job scheduling arise. Smartphones
may be used in ad-hoc networks in this context, but their
heterogeneity and energy usage must be considered. We
propose novel heuristics for performance measuring of
distributed computing systems integrated with mobile
devices and compare them with previous heuristics in
a simulation environment. Our results show an overall
improvement in job completion and load balancing
metrics compared to previous approaches. They
highlight the usefulness of pursuing this research stream
for aiming at industrial implementation and evaluation.

Keywords: Dew Computing, Edge Computing,
Mobile Devices, Job Scheduling, Scheduling Heuristics

1. Introduction

Smartphones have increasing capabilities
of processing information, which typically are
underutilized [1]. Cities (and citizens) could benefit
from such ubiquity of underutilized resources if these
were properly orchestrated. Any person carrying a
smartphone could contribute with valuable resources
to help cities grow in a more sustainable way, and to
manage them sustainably. For instance, anyone may
help improving urban road maintenance by collecting
pavement data [2]. Participatory platforms have been
proposed to enable people to voluntarily contribute data
sensed with their personal mobile devices [3, 4].

With IoT sensors and surveillance cameras installed,
cities generate vast amounts of data for different smart
city applications [5, 6]. Processing locally-sensed data
can be done in different but not necessarily mutually
exclusive ways. For instance, using distant cloud
resources, offloaded to proximate fog servers or with
the help of devices with computing capabilities within
data collection context, e.g., with smartphones. This
latter architectural option has also been referred to as
an attractive self-supported sensing and computing
scheme [7]. Hybrid and volunteer-supported processing
architectures were also proposed as a way to avoid
overloading resource-constrained devices [8]. Being the
adopted approach hybrid or self-supported, managing
smartphones’ limited energy and heterogeneous
computing capabilities requires more research [9].

In this work, we shed light on how to perform such
resource management for a variant of self-supported
sensing and computing scheme where data collected in
a local context is processed by a group of smartphones
within the same context. We call that a ”dew context” to
continue with the cloud / fog metaphor used to describe
a layered computing infrastructure. Our contributions
to the state of the art are: 1) we propose novel and
practical load balancing heuristics that improve on the
performance of previously proposed solutions [10, 11],
2) we illustrate our proposal and conduct its evaluation
with a concrete dew context scenario, and 3) we
compare the performance of the newly and previously
proposed heuristics based on a set of metrics that have
not yet been combined in related work.

This paper is organized as follows. Section 2
discusses related work and Section 3 gives a motivating
example. After that, Section 4 presents our novel
scheduling heuristics. Section 5 describes the evaluation
methodology and experimental design, while Section 6
discusses the results. Lessons learned and limitations
are stated in Section 7. Section 8 gives our conclusions.
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2. Related Work

The exploitation of computing resources provided
by smart devices in dew computing contexts — i.e.,
where both data collection and processing happen at
the edge of the network — introduces new challenges
in terms of job scheduling algorithms [9]. Since smart
devices rely on batteries as their main power source, one
of these challenges is to manage the remaining energy
of resource provider nodes in the network. Basically,
proposals must consider the impact of a given schedule
on a device’s future battery level. Including this aspect
involves targeting the maximization of completed jobs
without exceeding the node’s energy availability.

There are at least two approaches for pursuing this
objective. One models job scheduling as an optimization
problem. Several authors [12, 13, 14] suggested to
include a device’s remaining energy as a constraint in
the problem formulation. Such works explore feasible
solutions where energy employed in executing jobs must
not exceed the available energy on the devices’ batteries.
To tailor input variables of algorithms following this
approach, it is necessary to have accurate job energy
consumption data, which is impractical. To obtain such
data in the general case, resource demand quantification
details are needed, which, in turn, vary according to
device characteristics. Given the wide variability of
device models in the market (cf., e.g., [15]), it is
unrealistic to assume homogeneous device clusters. If
not pre-computed, scheduling input should be obtained
while converting a data stream into jobs to be processed.

The other approach does not require energy-related
job details. It performs load balancing based solely on
node characteristics. Hirsch et al. [16] combined the last
reported battery level with a function including different
performance scores that rates the capability of a device
to successfully complete the last arrived job. Jobs are
scheduled by following an online approach, i.e., upon
each job arrival, the scheduling logic creates a ranking
by evaluating the function for all candidates devices; the
job is assigned to the best ranked one.

Resource heterogeneity imposes other challenges
that scheduling algorithms in dew computing contexts
must deal with. The co-existence of smart devices
that belong to the same or different generation,
equipped with hardware able to render dissimilar
computing and data transfer throughput, should
not be ignored when including them as first-class
resource providers. In [17], resource heterogeneity
awareness is incorporated through information on the
number of cores, speed and CPU workload that is
evaluated by the proposed heuristics when allocating
computing-intensive tasks to mobile devices. In [16],

heterogeneity is considered by differentiating the nodes’
computing capabilities via their MFLOPS indicator,
which is a common metric in Scientific Computing
to rate processor speed when executing floating-point
operations. All in all, the heuristics in [17, 16] recognize
resource heterogeneity related to computing capability
only. For stream processing applications, where data
transfer under varying delay and energy consumption
of wireless communication is present, new practical
online heuristics are necessary to deal with both node
computing and communication heterogeneity.

3. Motivating Example

Smart Cities integrate multiple sources of
information and process massive volumes of data
to achieve efficient solutions and monitor the state of a
wide range of common issues, including maintenance
of public spaces and infrastructure or the security of
citizens, just to mention two of them. Ultimately,
they contribute to societal security [18]. Participatory
sensing platforms encourage citizens to contribute
incidents data, such as geolocalized photos, videos
and descriptions that have to be analyzed, filtered and
prioritized in a way for proper treatment. This requires
a data processing infrastructure and depends on the
citizens’ willingness to manually enter or record data.

A proactive way to gather relevant data could
be installing a dedicated sensor and processing
infrastructure. However, to reduce fixed costs and
to avoid the congestion of communication networks
with a high volume of raw data captured [19], a
hybrid approach that exploits near-the-field, ubiquitous
computing power of smart mobile devices is feasible.
By analyzing a city’s dynamics, it is not hard to identify
places where citizens are regularly connected to the
same local area network with their smartphones, e.g.,
small parks or public transport. Suppose that citizens
in such a context agree to contribute processing power
while they may not like to provide data sensed with
their devices. However, these may be used to filter and
identify relevant information from data streams captured
by sensors cleverly positioned within the context, and
connected to the same network as nearby mobile users.

Consider, for instance, passengers riding a bus,
where smartphones receive data via its WiFi. These
may be samples of environmental sounds or images
captured with devices that have been specifically
installed in the bus for, e.g., real-time sensing of noise
pollution, detecting pavement potholes, counting trees,
or whatever information may be useful for a smart
city to forecast events, schedule repairs or public space
maintenance duties. The smartphones could be used, on
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Figure 1. The dew context

a voluntary basis, for pre-processing such data before
it is transferred to the distant Cloud in a curated form.
How to efficiently and fairly balance data processing
among available smartphones is a challenge, though.

4. Load Balancing Heuristics

Figure 1 depicts an overview of a dew context,
a distributed computing mobile cluster (in this case
operating inside a bus) for processing jobs locally
generated. When close to the dew context local area
network, mobile devices are enlisted to contribute with
computing resources by registering themselves with
the proxy [11]. In the example, the proxy is an
on-chip-pc integrated circuit. The proxy balances jobs
processing load with a heuristic that sorts devices’
appropriateness using some criterion. The best ranked
node is assigned with the incoming job and the ranking
is re-built upon each job arrival. We propose and
evaluate practical heuristics (criteria) to sort devices,
which combine easy-to-obtain device and system
performance information. One of these is AhESEAS,
an improvement to the ESEAS (Enhanced Simple
Energy-Aware Scheduler) [11]. Another criterion is
ComTECAC, which was inspired by criteria targeting
nodes’ fair energy spending [20]. We now provide
details of the formula components that these novel
criteria combine to rank resource provider devices.

AhESEAS: the Ahead Enhanced Simple Energy
Aware Scheduler is a criterion that combines a device’s
MFLOPS, its last reported battery level (SOC) and
a counter of assigned jobs, in the same way as the
ESEAS [11] formula, with the exception of a change
in the semantics of the last mentioned counter. While
in ESEAS the counter of assigned jobs is updated after
the job input has been completely received by the node,
in AhESEAS such an update occurs before, i.e., just
after a node is selected for executing a job. By issuing
an immediate counter update, i.e., without waiting
for job input transferring time, gives AhESEAS rapid

reaction to fast and continuous job generation typical
for stream processing applications. To differentiate the
semantic change and to avoid confusion with the ESEAS
formula, we have renamed assignedJobs of ESEAS by
queuedJobs in the AhESEAS formula (and adding 1 to
avoid that the denominator may become 0):

AhESEAS =
MFlops ∗ SOC

queuedJobs+ 1

ComTECAC: the Computation-Communication
Throughput & Energy Contribution Aware Criterion
utilizes indicators of a node’s computing and
communication capabilities, as well as its energy
spent for executing dew jobs, which is implemented
with battery level updates reported by nodes. Ranking
heuristics using ComTECAC determines the best
ranked node not only using a queued jobs component,
but also with an energy contribution component. Thus,
the load is evenly distributed among nodes, avoiding
that strong nodes drain their batteries too much and
earlier than weak nodes. The criterion’s formula is:

ComTECAC =

MFlops ∗ netPerf

queuedJobs+ 1
∗ (SOC − eContrib)

where:

• MFlops and queuedJobs have the same
semantics as in AhESEAS.

• netPerf is calculated as 1
linkEfficiency , where

linkEfficiency relates node RSSI (received
signal strength indicator) with Joules spent per
KB of data transferred. linkEfficiency is
pre-computed and retrieved from a look-up table
for a given RSSI value (see Table 2).

• SOC is a (0, 1] normalized value of the last
reported battery level.
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• eContrib is a [0, 1] normalized value that
accounts for the energy contributed by a device
since it joined the mobile cluster. This value
is updated upon each battery level drop reported
by a node. The sub-formula to calculate it is
joinBattLevel − SOC, where joinBattLevel
is the node battery level when it joined the cluster.

5. Evaluation: Methodology and
Experiment Design

These new load balancing heuristics have been
evaluated using DewSim [21], a simulation toolkit for
studying scheduling algorithms’ performance in clusters
of mobile devices. Real data of mobile devices are
exploited by DewSim via a trace-based approach that
represents performance- and energy-related properties
of mobile device clusters. This approach makes
DewSim the best simulation tool so far to realistically
simulate mobile device battery depletion, since existing
alternatives use more simplistic approaches where
battery depletion is modeled via linear functions.
Moreover, the toolkit allows researchers to configure
and compare scheduling performance under complex
scenarios driven by nodes heterogeneity. In such
a distributed computing system, cluster performance
emerges, on one side, from nodes’ aggregation operating
as resource providers. On the other side, performance
depends on how job scheduling logic manages such
resources. A node’s individual performance responds
to node-level features including computing capability,
battery capacity and throughput of the wireless link
established with a centralized job handler (proxy).
Table 1 and Table 2 outline node-level features
considered in the experimental scenarios.

The computing-related node-level features presented
in Table 1 refer to the performance parameters of
real devices, whose brand/model is indicated in the
first column. Such performance parameters include
MFLOPS score that is used by the simulator to represent
the speed at which jobs assigned by the scheduler are
finalized. The MFLOPS of a device are calculated
from averaging 20 runs of the multi-thread benchmark
of the Linpack for Android app. The multi-thread
version of the test causes a full occupation of all mobile
device processor cores. The columns Node-type and
OS version are informative, as these features are not
directly configured in simulation scenarios but indirectly
considered in the device profiling procedure. This
procedure produces battery traces as a result, used to
represent different devices’ energy depletion curves.

Communication-related node-level features, i.e.,
time and energy consumed in data transferring events,

Device
brand /
model

Node-
type

OS
version

Mega Batt. max.
capacity
(joules)

FLOPS

LG /
Optimus L9

smart-
phone

Android
4.0

56 29 520

Samsung /
Galaxy S3

smart-
phone

Android
4.3

179 28 728

Acer /
Iconia A100

tablet Android
4.1.1

61 40 680

Phillips /
TLE732

tablet Android
7.1

104 33 300

Table 1. Computing-related node-level features

WiFi
RSSI

dBm
send/receive

up to 10KB data more than 10KB data

Through
-put
(KB/ms)

Energy
(Joules
/ KB)

Through
-put
(KB/ms)

Energy
(Joules
/ KB)

Excell. -50 0.09 0.0099 0.4 0.00186

Good -80 0.08 0.0106 0.25 0.00226

Mean -85 0.04 0.0133 0.16 0.00333

Poor -90 0.01 0.0346 0.025 0.01265

Table 2. Communication-related node-level
features

such as job data input/output transferring and nodes
status updates are shown in Table 2. Reference
values correspond to a third-party study [22], which
performed detailed measurements to characterize data
transfer through WiFi interfaces, particularly the impact
of received signal strength (RSSI) and data chunks size
on time and energy consumption.

Nodes ready to participate in a local, clustered
computation form a mobile cluster at the edge whose
computing capabilities derive from the number of
aggregated nodes and their features. Cluster-level
features considered in experimental scenarios are
described in Tables 3 and 4. Specifically, Table 3 shows
criteria to derive different types of heterogeneity levels
w.r.t where the instantaneous computing throughput
comes from. In short, targeting a defined QoS by relying
on few nodes with high throughput differs in terms
of potential points of failures and energy efficiency
w.r.t to achieving this with many nodes having lower
throughput each. Table 4 outlines criteria to describe
communication-related properties of clusters where, for
instance, an overall good communication quality –
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Hetero-
geneity

Rules

HtL0 100% of instantaneous computing capability
provided by nodes of the same model

HtL1 74-76% of instantaneous computing capability
provided by strong node models (relative to
intracluster nodes)

HtL2 74-76% of instantaneous computing capability
provided by weak node models (relative to
intracluster nodes)

Table 3. Computing-related cluster-level
features

GoodComm – means that a cluster has at least 80% of
resource provider nodes with good or excellent RSSI1.
In contrast, mean communication quality – MeanComm
– suggests that a cluster has at least 60% of resource
provider nodes with RSSI of -85 dBm. Finally, Table 5
shows the criteria used to conform cluster instances by
combining the computation- and communication-related
properties mentioned above. For instance, clusters of
type Good2High are instances where nodes providing
the fastest instantaneous computing capability relative
to nodes in the cluster also have the best performance
in terms of communication throughput. In contrast, the
Good2Low category describes cluster instances where
the best communication performance is associated
with nodes able to provide the slowest instantaneous
computing capability. Finally, the Balanced cluster
category means that best communication performance
is equally associated with nodes with the fastest and the
slowest instantaneous computing capabilities.

Job sets were created using the siminput package
utility of the DewSim toolkit [21]. We defined
job bursts that arrive at varying intervals during a
thirty minutes time window. Such a window represents
a time extension where a vehicle can travel and scan
a considerable part of its trajectory. Moreover, in this
window the mobile devices of a group of passengers
in a transport vehicle (e.g., a bus) can reasonably stay
connected to the same shared access point. Intervals
represent video or audio recording, i.e., in-bus data
capturing periods. It is assumed that the recording
system has a limited buffer, which is emptied at a point
in time defined by a normal distribution with mean
of 12 s and deviation of 500 ms. With every buffer
emptying action, a new jobs burst is created and all
captured data, which serves as input for a CPU-intensive
program, is transferred to mobile devices that participate
in the distributed processing of such data. Jobs are

1good prop + mean prop + poor prop = 100% of nodes

Communnication
Performance

Rules

Good
Comm

good prop: above 80% of nodes with
Excellent/Good RSSI
mean prop: between 0% and (100% -
good prop) of nodes with Mean RSSI
poor prop: between 0% and 100% -
(good prop + mean prop) of nodes with
Poor RSSI

Mean
Comm

good prop: between 0% and 20% of
nodes with Excellent/Good RSSI
mean prop: 100% - (good prop +
bad prop) of nodes with Mean RSSI
poor prop: between 0% and 20% of
nodes with Poor RSSI

Table 4. Communication cluster-level feature

@ Cluster
type

Communication/computation nodes
assignment criteria

@ Good2High Good RSSI values are assigned firstly, among
strong nodes. Remaining RSSI values among
remaining nodes

@ Good2Low Good RSSI values are assigned firstly, among
weak nodes. Remaining RSSI values among
remaining nodes

@ Balanced 25% of Mean RSSI values assigned to strong
nodes, 25% of Mean RSSI values assigned to
weak nodes and remaining RSSI values -good,
mean, poor- are randomly assigned among
remaining nodes

Table 5. Mapping of communication and
computation cluster-level features

of a fixed input size. We created job sets where each
job input has 1 MB and 500 KB, while output size
varies between [1 − 100] KB. Each job takes [0.45 −
0.58] and [1.43 − 1.85] s of computing time in the
considered device model with the highest (Samsung
Galaxy SIII) and lowest (LG L9) MFLOPS respectively.
For defining time ranges, a pavement crack and pothole
detection application implemented for devices with
similar performance to those in the experiments of [2]
was the reference. Bursts are composed of varying
numbers of jobs, depending on the intervals extension.

Figure 2 shows plots of volumes of data transferred,
job counts, and MFLOPS required for processing such
data and arrival time of each jobs burst for a period of
30 minutes. For example, jobs whose input data was set
to 1 MB, represent a total of 52.78 GB of data requiring
approximately 4 775 GFLOPS to be executed.
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Figure 2. Job set characteristics

6. Metrics and Results

The scheduling heuristics’ performance is measured
in terms of completed jobs, makespan and fairness,
which are metrics reported in similar distributed
computing systems studies [17, 23, 16, 24].

Completed jobs: Providing that mobile device
clusters rely on the energy stored in the mobile devices’
batteries to execute jobs, scheduling technique A is
considered to be more energy efficient than scheduling
technique B, if the former completes more jobs than
the latter with the same amount of energy. The jobs
completion count finishes when all nodes leave the
cluster, in this case, due to running out of energy.

Makespan: Measures the time the distributed
system needs to complete the execution of a job set.
We normalized these times duration into a [0− 1] scale,
where the value 1 refers to the heuristic that requires
the longest makespan. To calculate the makespan, we
compute the difference between the time when the first
job arrives and the time when the last job is completed.
To calculate the latter when all compared heuristics
achieved different numbers of completed jobs, we first
compute the maximum amount of jobs that all heuristics
completed, and use this value as a pivot to obtain the
time when the last job is completed.

Fairness: The difference in energy contributed by
provider nodes from the time each one joins the cluster
to the time each one completes its last assigned job,
is quantified via the Jain’s Fairness index [25]. This
index has been originally used to measure the bandwidth
received by clients of a networking provider but, in our
case, much as in [13, 24], it is used to measure disparity
of energy pulled by the system from provider nodes. The
metric complements the performance information given
by completed jobs and makespan metrics.

HtL0 HtL1 HtL2

Good2High

Good2Low

Balanced

1
0
 N

o
d
e
s

2
0
 N

o
d
e
s

3
0
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o
d
e
s

4
0
 N

o
d
e
s

Random initial

Battery level 

500 KB

Jobs 

Input

1 MB

Jobs 

Input

Figure 3. Simulated scenarios: Heatmap pixels

We tested all heuristics on 1 152 scenarios with
varying nodes, cluster and jobs characteristics. Figure 3
depicts the position that each group of scenarios
occupies in the heatmap representation used to display
the performance values obtained for each heuristic.

Figure 4 shows the results of each heuristic’s
completed jobs for all scenarios described above. The
darker the pixel intensity, the better is the performance
achieved. Several effects of simulated variables on
completed jobs are observed. First, by comparing
Figure 4b and Figure 4a, which show the numbers of
completed jobs for AhESEAS and ESEAS, respectively,
we see the magnitude of improvement introduced by
the AhESEAS denominator component update policy
(see Section 4). In the presence of job input above
500 KB and approximately 360 jobs generated every 12
seconds, which is the injected load in the scenarios, load
balancing is better managed by the denominator update
policy of the AhESEAS formula than the one of ESEAS.
AhESEAS exceeds the numbers of completed jobs of
ESEAS in all scenarios. On average, AhESEAS was
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(a) ESEAS (b) AhESEAS

(c) RTC (d) ComTECAC

Figure 4. Completed Jobs (dark is better)

better by 58.6% with a standard deviation of 18.5%.
Due to the poor performance of ESEAS, we focus

below on presenting results of AhESEAS, RTC and
ComTECAC. Orthogonal to all heuristics, we see how
completed jobs decreases as job input size increases.
This is more noticeable in load balancing performed
with AhESEAS than with RTC and ComTECAC. When
comparing the scenarios in Figure 4b with job inputs of
1 Mb (bottom half) and job inputs of 500 Kb (top half),
we see that the scenarios in the first group are lighter
than in the second, and this can be attributed to the fact
that the RTC and ComTECAC ranking formulas include
communication-related parameters. RTC uses job data
input/output size and nodes RSSI, while ComTECAC
utilizes a function of nodes RSSI that relates this
parameter with network efficiency. Please refer to [10]
for more details of the RTC ranking formula.

Other variables with orthogonal effect in the
amount of completed jobs are cluster size and cluster
heterogeneity. The cluster size effect is notorious in
Figures 4b, 4c and 4d, where 10 nodes cluster size
scenarios completed fewer jobs than scenarios with 20,
30 and 40 nodes. Moreover, cluster heterogeneity
degrades the performance of AhESEAS and RTC more
than the one of the ComTECAC heuristic. In other
words, AhESEAS and RTC do not manage as well as
ComTECAC, the presence of weak nodes contributing
with most of the instantaneous cluster computing
capability. Finally, by taking completed jobs as an
indicator of energy-harvesting capability, it can be seen
that ComTECAC is the most energy-efficient scheduling
heuristic on average. It completes more jobs than all the

(a) ESEAS (b) AhESEAS

(c) RTC (d) ComTECAC

Figure 5. Queued Jobs at proxy-side
(light is better)

other heuristics, given the same amount of energy.
As jobs are being generated, the scheduling logic

assigns them to nodes to be executed. Under this
scheme, a job passes through at least three phases until
it is completed. We model an input transfer phase when
job input data is transferred from the proxy to the device
in charge of its execution, an executing phase when
the code associated with the job is executed, and an
output transfer phase when device transfers the result of
a job to the proxy node. This helped us to uncover the
cause that leads jobs to be non-completed. As Figure 5
shows, irrespective of the heuristic, there is a strong
correlation between the non-completed jobs state and
the input transfer phase, which, in turn, is associated
with job input size. The bigger the job input, the higher
is the number of non-completed jobs.

Figure 6 depicts AhESEAS, RTC and ComTECAC
performance measured in terms of makespan for all
scenarios. In this case, pixels color intensity inversely
relates to high performance, i.e., the lighter the pixel
the better the performance. As explained above, where
the metrics are presented, to report a comparable
measurement between all heuristics, and only for
scenarios where all heuristics differ in the amount of
completed jobs, we computed makespan, considering
a subset of completed jobs, instead of all jobs, in the
following manner. For each scenario, we figured out
the maximum of completed jobs for all heuristics and
used this value as a reference to compute the makespan
value of each heuristic. ESEAS was left aside from the
analysis due to its overall poor performance in terms
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(a) RTC (b) AhESEAS (c) ComTECAC

Figure 6. Makespan (light is better)

of completed jobs. Then, makespan values reported in
Figure 6 were calculated using completed jobs of the
RTC, AhESEAS and ComTECAC heuristics. The dark
blue pixels predominance in Figure 6a indicates that
RTC was the heuristic with the overall longest makespan
on average, compared to that obtained by the AhESEAS
and ComTECAC heuristics. Effects of job input size,
cluster size and cluster heterogeneity described for the
completed jobs metric still apply. Again, the advantage
of ComTECAC over the other heuristics in the majority
of scenarios is remarkable.

Finally, we report the performance of the heuristics
using the fairness metric. Provided that the heuristics
targeted different numbers of completed jobs for the
same scenario, to calculate fairness, we followed similar
initial steps as with makespan. For each scenario, we
first determined the maximum number of completed
jobs by all heuristics (except ESEAS), and used it as
reference value to compute the fairness score. Once
obtained, for each heuristic, we searched for the
associated time stamp when this number of completed
jobs has been reached. The time stamp is another
reference, in this case, to get the last battery level
reported by each participating node. Then, with such
data, and the initial battery level reported by each node,
we computed an energy delta, i.e., the node energy
contribution, which is interpreted as a sample in the
fairness score calculation formula.

According to Figure 7, RTC achieves, on average,
less fairness than AhESEAS and ComTECAC.
However, we are not able to affirm the same when
comparing AhESEAS and ComTECAC with each
other. Hence, we formulated the null hypothesis H0 that
the fairness achieved by the last two heuristics is the
same. We tested H0 with the Wilcoxon test, pairing the
fairness values of AhESEAS and ComTECAC for each
scenario. This resulted in p = 3.93 ∗ 10−9, which lead
us to reject H0. To conclude this analysis and figure out
which of the last two heuristics performed better, we
re-computed the fairness metric, this time considering
completed jobs only by the AhESEAS and ComTECAC
heuristics. The results are shown in Figure 8a and

Figure 8b, where ComTECAC achieves an apparently
better performance than AhESEAS. We confirm that
by complementing recomputed fairness heat maps with
a cumulative scenarios density function of Figure 8c.
Notice that the ComTECAC CDF increase is more
pronounced than that of AhESEAS as the fairness
score increases, i.e., for a good proportion of scenarios
ComTECAC achieves higher fairness than AhESEAS.

7. Discussion

7.1. Lessons Learned

From the extensive experiments performed, and
particularly by comparing the ESEAS and AhESEAS
results, we can conclude that the change in the
denominator update policy of AhESEAS, which updates
the queued jobs component as soon as a node is selected
for executing the next job, improves completed jobs
for all simulated scenarios. This holds when job input
size is at least 500 KB w.r.t. updating the denominator
component when the node completed receives some job
input. The improvement is 58.6%, on average.

Moreover, completed jobs of AhESEAS, which
ranks nodes according to their computing capability,
were on average 8.2% and 4.3% higher than for the
RTC heuristic for 500 KB and 1 MB data input
scenarios, respectively. RTC ranks nodes based on their
transferring capability and queued data. For this reason,
RTC performance seems to be less affected by jobs data
transfer requirements and nodes transfer capabilities
than AhESEAS and ComTECAC. For ranking nodes,
the latter combines communication and computing
capabilities, as well as energy contribution parameters.
The combination of all these allows this heuristic to
be better than all evaluated competitors in all metrics.
It completes, on average, around 3% more jobs than
the second best heuristic (AhESEAS) and achieves a
speedup of 1.69 w.r.t. the second fastest heuristic
(AhESEAS). ComTECAC is also the fairest heuristic
for load balancing. For the first 50% (median), 80% and
90% distribution samples, the fairness value is 0.88, 0.92
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Figure 7. Fairness (dark is better)
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Figure 8. Recomputed fairness considering AhESEAS and ComTECAC heuristics only (dark is better)

and 0.94, respectively, while the second fairest heuristic
(AhESEAS) for these cutting points results in fairness
values 0.84, 0.86 and 0.87, respectively.

7.2. Limitations

Our collaborative computing scheme lacks
mechanisms for promoting citizens’ participation,
accounting for computing contribution and preventing
fraud in reporting results. Incentive mechanisms
proposed for collaborative sensing are not applicable
for resource-intensive tasks. Some of the questions
that remain unanswered in this context are: Is the job
completion event a good checkpoint for giving credits to
resource provider nodes? What are the consequences of
giving a fixed amount of credits upon a job completion
irrespective of the time and energy employed by a
device? How many results of the same job would
be necessary to collect in order to prevent fraud in
reporting job results?

Another limitation we are working on is a
middleware prototype for validating our findings. We
already integrated libraries that use traditional machine
vision and deep learning object recognition and tracking
algorithms into our device profiling platform, which is a
satellite project of the DewSim toolkit. This is necessary
to validate our load balancing heuristics with real object
recognition algorithms, which in turn complements our

battery-trace capturing method that currently exercises
CPU floating-point capabilities through a generic yet
synthetic algorithm. This integration also allows for
deriving new heuristics to refine the exploitation of
mobile devices by profiling specialized accelerator
hardware such as GPUs and NPUs, which are suited for
running complex AI models [26].

8. Conclusion

In this paper, we present a performance evaluation
of novel practical job scheduling heuristics for stream
processing in dew computing contexts. ESEAS
and RTC are heuristics from previous work, while
AhESEAS and ComTECAC are new. We measured the
performance using the completed jobs metric, which
quantifies how efficiently the available energy in the
system is utilized; the makespan metric, which indicates
how fast the system completes job arrivals; and the
fairness metric, which measures the energy contribution
differences among participating devices. The new
heuristics had superior performance. These results
present a step towards materializing the concept of dew
computing using mobile devices from regular users. It
will be applied to real-world situations where online
data gathering and processing at the edge are important.

Despite our focus on heuristics to orchestrate a
self-supported distributed computing architecture that
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leverages idle resources from clusters of battery-driven
nodes, to extend the architecture’ applicability, new
efforts will follow. We will study complementing
battery-driven resource provider nodes with non-battery
driven fog nodes, e.g., single-board computers, in a
similar way to other works studying the synergy among
different distributed computing layers, e.g., fog nodes
and cloud providers [27].
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