356 research outputs found

    Exploring multimedia and interactive technologies

    Get PDF
    The goal of multimedia design strategies and innovation is to produce meaningful learning environments that relate to and build upon what the learner already knows and what the learner seeks. The multimedia tools used to achieve knowledge transfer should activate recall or prior knowledge and help the learner alter and encode new structures. Traditionally, multimedia has been localized to specific delivery systems and demographics based on the government, industry, or academic concentration. The presenter will explore the introduction of immersive telecommunications technologies, constructivist learning methodologies, and adult learning models to standardize networking and multimedia-based services and products capable of adapting to wired and wireless environments, different devices and conditions on a global scale

    Revisión tecnológica del aprendizaje de idiomas asistido por ordenador: una perspectiva cronológica

    Get PDF
    El presente artículo aborda la evolución y el avance de las tecnologías del aprendizaje de lenguas asistido por ordenador (CALL por sus siglas en inglés, que corresponden a Computer- Assisted Language Learning) desde una perspectiva histórica. Esta revisión de la literatura sobre tecnologías del aprendizaje de lenguas asistido por ordenador comienza con la definición del concepto de CALL y otros términos relacionados, entre los que podemos destacar CAI, CAL, CALI, CALICO, CALT, CAT, CBT, CMC o CMI, para posteriormente analizar las primeras iniciativas de implementación del aprendizaje de lenguas asistido por ordenador en las décadas de 1950 y 1960, avanzando posteriormente a las décadas de las computadoras centrales y las microcomputadoras. En última instancia, se revisan las tecnologías emergentes en el siglo XXI, especialmente tras la irrupción de Internet, donde se presentan el impacto del e-learning, b-learning, las tecnologías de la Web 2.0, las redes sociales e incluso el aprendizaje de lenguas asistido por robots.The main focus of this paper is on the advancement of technologies in Computer-Assisted Language Learning (CALL) from a historical perspective. The review starts by defining CALL and its related terminology, highlighting the first CALL attempts in 1950s and 1960s, and then moving to other decades of mainframes and microcomputers. At the final step, emerging technologies in 21st century will be reviewed

    Interactive technologies for preschool game-based instruction: Experiences and future challenges

    Full text link
    This is the author’s version of a work that was accepted for publication in Entertainment Computing. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Entertainment Computing, vol. 17 (2016). DOI 10.1016/j.entcom.2016.07.001.[EN] According to current kindergarten curricula, game play is an important basis for children development and it is the main driving force when designing educational activities during early childhood. This paper presents a review of the current state of the art of game technologies that support pre-kindergarten and kindergarten children development. Moreover, the most emergent technologies for developing educational games for preschool children are identified and a set of future challenges are discussed. The main goal of this work is to review the state of the art in interactive technologies which will help educators, game designers and Human-Computer Interaction (HCI) experts in the area of game-based kindergarten instruction. 2016 Elsevier B.V. All rights reserved.This work received financial support from Spanish Ministry of Economy and Competitiveness and funded by the European Development Regional Fund (EDRF-FEDER) with the project TIN2014-60077-R (SUPEREMOS). This work is also supported by a predoctoral fellowship within the FPU program from the Spanish Ministry of Education, Culture and Sports to V. Nacher (FPU14/00136) and from GVA (ACIF/2014/214) to F. Garcia-Sanjuan.Nácher-Soler, VE.; García Sanjuan, F.; Jaén Martínez, FJ. (2016). Interactive technologies for preschool game-based instruction: Experiences and future challenges. Entertainment Computing. 17:19-29. https://doi.org/10.1016/j.entcom.2016.07.001S19291

    Children s Acceptance of a Collaborative Problem Solving Game Based on Physical Versus Digital Learning Spaces

    Full text link
    [EN] Collaborative problem solving (CPS) is an essential soft skill that should be fostered from a young age. Research shows that a good way of teaching such skills is through video games; however, the success and viability of this method may be affected by the technological platform used. In this work we propose a gameful approach to train CPS skills in the form of the CPSbot framework and describe a study involving 80 primary school children on user experience and acceptance of a game, Quizbot, using three different technological platforms: two purely digital (tabletop and handheld tablets) and another based on tangible interfaces and physical spaces. The results show that physical spaces proved to be more effective than the screen-based platforms in several ways, as well as being considered more fun and easier to use by the children. Finally, we propose a set of design considerations for future gameful CPS systems based on the observations made during this study.Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund (project TIN2014-60077-R); Spanish Ministry of Education, Culture and Sport (with fellowship FPU14/00136) and Conselleria d'Educacio, Cultura i Esport (Generalitat Valenciana, Spain) (grant ACIF/2014/214).Jurdi, S.; García Sanjuan, F.; Nácher-Soler, VE.; Jaén Martínez, FJ. (2018). Children s Acceptance of a Collaborative Problem Solving Game Based on Physical Versus Digital Learning Spaces. Interacting with Computers. 30(3):187-206. https://doi.org/10.1093/iwc/iwy006S18720630

    The Use of Socially Assistive Robots with Autistic Children

    Get PDF
    The use of socially assistive robots (SARs) appears to facilitate learning, social and communication, and collaborative play in autistic children, though rigorous research to drive translation into everyday practice is limited. This thesis, comprised of four studies, was aimed at providing a comprehesive overview of how SARs have been used with young autistic people, to identify the factors that might encourage their future use, and to consider the scope of SAR benefit for autistic youth via secondary data analysis from a specific SAR support programme. The first chapters provide an overview of autism, theories, and models, and the available psychosocial support for autistic children and their families as per current practice. Within this, the different SARs types used in autism research are described followed by an outiline of the rationale for each study design methodology to address the aims of this thesis. Chapter 4 presents an up-to-date evidence summary of the nature of SARs research in autism reporting that robot-mediated support has predominantly been administered in autism clinics/centers with benefits in the social and communication skills of autistic children. Chapter 5 explores parents’/carers’ knowledge and preferences about the use of smartphones, iPods, tablets, virtual reality, robots or other technologies to support the specific needs/interests of autistic children offering guidance on how to extend the benefits of the systematic review findings. The online survey reported that 59% of parents/carers mostly preferred a tablet, followed by virtual reality and then robots that were the least preferred technologies due to being immersive, unrealistic or an unknown technology. To delve deeper into parent views about SARs, chapter 6 provides data from 12 individual interviews and one focus group with parents of autistic children. Parents were receptive to the use of a robot-mediated support acknowledging that the predictability, consistency and scaffolding of robots might facilitate learning in autism. Independent living skills and social and communication skills were the two domains of focus in future robot-mediated support with autistic children. Such a finding indicates that there may be scope to extent robots in the autism community. The final data analysed in chapter 7 draws on ten video recordings of autistic children exploring the effect of triadic robot-mediated support with a human therapist alongside a humanoid robot, called Kaspar, compared to a dyadic interaction with a human therapist alone on the development of children’s joint attention skills. Retrospective data analysis here showed no statistically significant difference in the joint attention skills of autistic children in the human therapist compared to the robot-mediated group nor in their skills from the first to the last session in either group. A statistically significant difference was observed on the requests for social games which improved from the first to the last session in the human therapist group. This study highlights the challenges SARs research facing to evidence demonstrable impact on everyday life skills as a driver of parent and child buy-in to this type of support. Taken together, the studies in this thesis suggest that SARs have a role in autism support, mainly in social and communication domains. Parents/carers have valid reasons for preferring other types of technology support though when asked to think about SARs, they do acknowledge ways in which robots may be advantegous. Existing data and secondary analysis reported that rigour in reporting the way that SARs may benefit skills development is needed and that life skills impact may be difficult to assess over a short-term period. To take SARs research forward, it is imperative to deepen partenships with autism stakeholders to ensure fit for purpose skills selection, measurement of impact, and take up of support to expand benefit

    Advancements in AI-driven multilingual comprehension for social robot interactions: An extensive review

    Get PDF
    In the digital era, human-robot interaction is rapidly expanding, emphasizing the need for social robots to fluently understand and communicate in multiple languages. It is not merely about decoding words but about establishing connections and building trust. However, many current social robots are limited to popular languages, serving in fields like language teaching, healthcare and companionship. This review examines the AI-driven language abilities in social robots, providing a detailed overview of their applications and the challenges faced, from nuanced linguistic understanding to data quality and cultural adaptability. Last, we discuss the future of integrating advanced language models in robots to move beyond basic interactions and towards deeper emotional connections. Through this endeavor, we hope to provide a beacon for researchers, steering them towards a path where linguistic adeptness in robots is seamlessly melded with their capacity for genuine emotional engagement
    corecore