156 research outputs found

    Head Up Games : on the design, creation and evaluation of interactive outdoor games for children

    Get PDF
    This thesis proposes a new genre of outdoor games for children, namely Head Up Games. The concept was inspired by the observation that existing pervasive outdoor games for children were mostly played head down, as the predominantly screen-based interaction of existing games required constant attention of the children. First, the vision of Head Up Games is described and illustrated with several design cases (Chapter 2). In contrast to the head down games, Head Up Games aim to encourage and support rich social interaction and physical activity, play behaviors that are similar to play behaviors seen in traditional outdoor games (such as tag and hide-and-seek). The design process of Head Up Games poses several challenges. In User Centered Design it is commonly accepted to start the development of a new product using low-fi mock-ups, e.g., paper prototypes, and evaluate these with end-users. In the case of Head Up Games this proved to be difficult, as the emerging game experience is significantly altered when using paper prototypes. Therefore, a study was carried out that used high-fi prototypes, i.e. working, interactive, prototypes, from a very early stage in the design process (Chapter 3). This way, the effect of interactions on the game experience can be addressed earlier and better in the design process. Furthemore, having access to technology early in the design process, allows designers to better explore the design space. However, designers often do not possess adequate skills to quickly prototype interactive products, particularly products that need to be evaluated in an outdoor context. Such a development is often costly and time-consuming. Therefore, the RaPIDO platform was developed (Chapter 4). The platform not only includes the appropriate hardware for creating outdoor games, but is also bundled with software libraries, to allow designers not specifically trained in software engineering to adopt the platform easily. RaPIDO was evaluated using a case study methodology with two Industrial Design master students. The evaluation not only focused on the usability of the platform, but, more importantly, how the use of the platform affected the design process. The main conclusion of the study was that the designers indeed were able to rapidly create mobile games, and that the hardware offered was suitable for creating outdoor games. Furthermore, issues were identified with regard to writing the game software, e.g., managing the complexity of the software. Finally, for evaluating Head Up Games with children two methods were applied: the Outdoor Play Observation Scheme (OPOS) was used to quantify the intended play behavior. Furthermore, GroupSorter was developed to provide a framework to interview a group of children simultaneously, resulting in qualitative comments. Both OPOS and GroupSorter were applied for evaluating three Head Up Games, which are described in Chapter 5

    Genetic programming

    Get PDF

    A catalog of stream processing optimizations

    Get PDF
    Cataloged from PDF version of article.Various research communities have independently arrived at stream processing as a programming model for efficient and parallel computing. These communities include digital signal processing, databases, operating systems, and complex event processing. Since each community faces applications with challenging performance requirements, each of them has developed some of the same optimizations, but often with conflicting terminology and unstated assumptions. This article presents a survey of optimizations for stream processing. It is aimed both at users who need to understand and guide the system's optimizer and at implementers who need to make engineering tradeoffs. To consolidate terminology, this article is organized as a catalog, in a style similar to catalogs of design patterns or refactorings. To make assumptions explicit and help understand tradeoffs, each optimization is presented with its safety constraints (when does it preserve correctness?) and a profitability experiment (when does it improve performance?). We hope that this survey will help future streaming system builders to stand on the shoulders of giants from not just their own community. © 2014 ACM

    Vitamin K-dependent carboxylase : growth to maturity

    Get PDF
    corecore