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Abstract: In the digital era, human-robot interaction is rapidly expanding, emphasizing the need for
social robots to fluently understand and communicate in multiple languages. It is not merely about
decoding words but about establishing connections and building trust. However, many current social
robots are limited to popular languages, serving in fields like language teaching, healthcare and com-
panionship. This review examines the AI-driven language abilities in social robots, providing a detailed
overview of their applications and the challenges faced, from nuanced linguistic understanding to data
quality and cultural adaptability. Last, we discuss the future of integrating advanced language models
in robots to move beyond basic interactions and towards deeper emotional connections. Through this
endeavor, we hope to provide a beacon for researchers, steering them towards a path where linguistic
adeptness in robots is seamlessly melded with their capacity for genuine emotional engagement.
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1. Introduction

Social robots, known for their human-friendly interactions, are becoming common in a myriad of
domains, from healthcare and education to the comfort of our homes [1–4]. These robots are often
designed with the dual purpose of executing functional tasks while also establishing a dynamic rapport
through communication and interaction. At the heart of social robotics lies the principle of human-
robot interaction (HRI), which has advanced significantly over the years, adapting to the complexities
of human communication and behavior [5]. However, a critical component of this progress is the devel-
opment and integration of language translation and understanding capabilities, which is foundational
to a truly versatile and effective social robot [6, 7]. This advancement not only enables these robots to
cross the barrier of language, facilitating interaction with humans in a more context-specific and nu-
anced manner, but also resonates with the multicultural and multilingual reality of our global society.

http://http://www.aimspress.com/journal/era
http://dx.doi.org/10.3934/era.2023334


6601

The need for effective and inclusive communication with robots, irrespective of language barriers, has
never been more relevant [8].

However, as we strive to advance the frontier of social robot interaction, we are met with signif-
icant challenges. Primary among these is the inherent limitation of monolingual interaction. Many
current social robots can only communicate in a single language, often English, which restricts their
functionality and universal appeal. Expanding their linguistic repertoire is therefore a critical step to-
wards ensuring more inclusive and effective interactions. While efforts have been made to incorporate
multilingual capabilities into social robots, these attempts have been plagued with issues of translation
inaccuracies [9]. Understanding the subtleties and nuances inherent in human language, such as id-
ioms, metaphors or cultural references, can pose significant difficulties for AI systems and thus hamper
effective HRI. Moreover, another hurdle in this journey is the difficulty of understanding context and
human intent. Human communication is rarely devoid of context; the same set of words can convey
drastically different meanings depending on the surrounding conversation and nonverbal cues. While
humans are naturally adept at grasping such subtleties, replicating this skill in social robots proves
challenging [10]. Additionally, understanding human intent extends beyond the spoken words. It re-
quires the ability to decipher indirect communication, sarcasm and cultural nuances, areas that are yet
to be fully explored in social robotics.

With these challenges in mind, the urgency and significance of further exploration into AI-based
language translation and understanding of social robot interaction come into clear focus. In the face
of our multicultural, multilingual world, the ability of robots to understand and interact in multiple
languages can break down barriers and foster a more universal adoption of social robots across diverse
cultural contexts [11]. For instance, consider the case of healthcare robots deployed in eldercare fa-
cilities where residents may come from diverse linguistic backgrounds. These robots could provide
comfort, monitor health and even assist in therapeutic activities [12]. However, the effectiveness of
such robots would be drastically limited if they could not understand or respond accurately to the mul-
tilingual needs of the residents. Moreover, in an educational setting, a social robot that understands
the language and culture of the learners can offer personalized assistance, helping to bridge the edu-
cational gap in linguistically diverse classrooms. Our study, through this comprehensive review, seeks
to address these challenges by systematically examining the existing literature in the field, identifying
gaps in current knowledge and presenting opportunities for further research. This work is driven by the
belief that advancements in AI-based language translation and understanding can fundamentally trans-
form the interaction between humans and robots, paving the way for a future where social robots are
not merely tools but companions capable of understanding and communicating with us in the language
we speak, the way we speak it.

The remainder of this paper is structured as follows. Section 2 explores language translation and un-
derstanding methods. Section 3 provides an overview of social robot interaction, covering text-based
and language translation-based human-robot interaction. Section 4 showcases cutting-edge applica-
tions of language translation and understanding in various domains, such as domestic assistance, edu-
cation, customer service and cross-cultural collaboration. Then, Section 5 discusses current challenges
and future directions in the field. Finally, in Section 6, we summarize our key findings, emphasize
the impact of AI in machine translation and human-robot interaction and highlight opportunities for
future research.
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2. Language translation and understanding methods

2.1. Related natural language processing techniques

Figure 1 illustrates the process of speech interaction, encompassing speech input processing, lan-
guage processing, dialogue management, and speech output processing. It begins with speech recog-
nition (ASR) to convert speech into text, followed by machine translation (MT) and natural language
understanding (NLU) for language processing. Dialogue management involves user intent recognition,
contextual understanding, and response generation, enabling a deeper understanding of the user’s in-
put. Finally, text-to-speech synthesis (TTS) converts the response text into synthesized speech output,
allowing the robot to effectively communicate its response to the user. Then, this section will pro-
vide detailed explanations of the following four parts: speech recognition, machine translation (MT),
sentiment analysis, and natural language understanding and generation (NLU/NLG).

Figure 1. Natural language processing workflow.

2.1.1. Speech recognition

Speech recognition serves as a cornerstone for communication between humans and social robots.
This technology’s origin can be traced back to the 1960s, with IBM’s Shoebox being one of the earliest
systems capable of recognizing spoken digits and a limited set of words [13]. Over the decades, speech
recognition technology has evolved significantly, with advancements fueled by machine learning and
deep learning techniques. Microsoft’s work in this arena, especially with products like Azure Speech
Services, has contributed immensely to enhancing the accuracy and versatility of speech recognition
systems across different applications, augmenting the linguistic capacities of social robots. In the
context of social robot interaction, speech recognition forms the first line of processing in language
translation and understanding [14]. It converts spoken language into written text, facilitating the robot’s
comprehension and subsequent response generation. This process encompasses challenges such as the
diversity of human languages, accents and the presence of ambient noise, to name a few [15–17].

Advanced speech recognition algorithms, powered by deep learning methodologies, have shown
remarkable capabilities in handling these challenges. For instance, Google’s speech recognition sys-
tem has been instrumental in providing accurate transcription services, even in noisy environments,
paving the way for more efficient HRI. Similarly, Apple’s Siri has been valuing robust speech recog-
nition technology, enabling the assistant to understand and execute a wide range of user commands.
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Furthermore, Microsoft’s work in this arena, especially with products like Azure Speech Services, has
contributed immensely to enhancing the accuracy and versatility of speech recognition systems across
different applications, augmenting the linguistic capacities of social robots.

2.1.2. Machine translation

Machine translation (MT) has been a pivotal component in the evolution of HRI, enabling robots
to understand and generate language beyond their programmed instructions [18]. Since its inception
in the 1950s, machine translation has passed through several stages of development, from rule-based
systems to statistical and, more recently, to neural network approaches [19–21]. Statistical machine
translation (SMT) is a prominent example of the early stage of MT. Introduced in the late 1980s, SMT
models rely on the analysis of bilingual text corpora to predict translations [22]. The introduction of
neural machine translation (NMT) marked a significant leap forward. With its deep learning archi-
tecture, NMT provides end-to-end learning and can generate more natural and accurate translations.
NMT models are capable of capturing the context and semantics of sentences, contributing to a more
nuanced and effective translation [23]. In the context of social robot interaction, machine translation
plays a crucial role in bridging the gap between different languages. Once the speech is recognized
and converted into text, MT steps in to convert the text into a language that the robot understands.
Subsequently, the robot’s responses are translated back into the human user’s language. The seam-
less integration of speech recognition and machine translation technologies enables social robots to
communicate effectively and naturally with users of different languages [24].

2.1.3. Sentiment analysis

Sentiment analysis, also known as opinion mining, is a subfield of natural language processing
(NLP) that identifies and extracts subjective information from source materials [25–27]. It is primar-
ily used to determine the attitude of a speaker or a writer with respect to some topic or the overall
contextual polarity of a document. The technology has been broadly applied in text analysis, business
analytics and social media monitoring. For social robots, sentiment analysis plays a crucial role in
understanding human emotions, which is essential for effective HRI. By analyzing the sentiment of the
user’s input, social robots can adjust their responses accordingly, leading to more engaging and per-
sonalized interactions. For instance, if a user’s input is detected as negative, the robot might respond
in a way that shows empathy or attempts to uplift the user’s mood [28].

2.1.4. Natural Language Understanding and Generation

Natural language understanding (NLU) and generation (NLG) are two critical aspects of NLP that
deal with machine reading comprehension and the production of human-like text, respectively. NLU
is the process of understanding and interpreting human language in a valuable way, which enables the
social robot to understand and interpret the user’s commands, questions and statements [29]. On the
other hand, NLG is the task of converting information from computer databases or semantic intents
into readable human language, which allows it to generate responses that are coherent, relevant and
human-like [30, 31]. Together, NLU and NLG form the backbone of the conversational capabilities of
social robots, enabling them to carry out meaningful and natural interactions with users.
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2.2. Case studies of AI-based translation and understanding

The evolution of AI-based translation and understanding can be traced through several key appli-
cations that have significantly influenced the field. One of the earliest and most well-known is Google
Translate. Launched in 2006, Google Translate initially used statistical machine translation, which
translates text based on the analysis of bilingual text corpora. However, in 2016, Google introduced
a neural machine translation system, which translates entire sentences at a time rather than piece by
piece, providing more fluent and natural sounding translations [32]. Following Google Translate, iFly-
tek Translator made its debut. Developed by iFlytek, a Chinese information technology company, it
is renowned for its high accuracy in speech recognition and translation, especially between English
and Mandarin. The device uses deep learning technologies and can support translation between 50
languages [33].

In the realm of personal assistants, Apple’s Siri is a notable example. Introduced in 2011, Siri uses
natural language processing to interpret voice commands, answer questions, make recommendations
and perform actions by delegating requests to a set of Internet services [34]. After that, Apple’s Siri has
been valuing robust language translation and understanding technology, enabling the assistant to un-
derstand and execute a wide range of user commands. Currently, Siri supports a multitude of languages
and dialects, and can adapt to users’ individual language usage and search preferences over time. Most
recently, OpenAI’s ChatGPT has emerged as a state-of-the-art language model. Trained on a diverse
range of internet text, ChatGPT generates human-like text based on the input provided. It can translate
languages, answer questions, write essays and even generate creative content like poetry [35, 36].

3. Overview of social robot interaction

3.1. Text-based social robot interaction

In the early days of computing, the primary mode of social robot interaction was through textual
commands and responses. This form of interaction, although seemingly primitive by today’s standards,
laid the foundation for more complex forms of HRI that we see today [37–39]. One of the earliest
examples of text-based social robot interaction is the ELIZA program developed by Weizenbaum at
MIT in the 1960s [40]. ELIZA was a computer program that emulated a psychotherapist by using
pattern matching and substitution methodology to simulate conversation. Despite its simplicity, ELIZA
was able to demonstrate the illusion of understanding, which marked a significant milestone in the field
of artificial intelligence and social robot interaction. However, text-based interaction lacks the richness
of non-verbal cues, such as facial expressions and body language, which play a crucial role in human
communication [41].

3.2. Social robot interaction based on English speech

The evolution of social robot interaction took a significant leap with the introduction of speech-
based interaction. This development was largely facilitated by advancements in speech recognition
technology, which allowed robots to understand and respond to spoken language. Compared to text-
based social robot interaction, the interaction based on speech can provide a more natural and conve-
nient interactive experience for users.

Among a variety of languages, English is the most often used language for social robot interac-
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tion. Replika is a chatbot application designed to provide users with conversation and emotional sup-
port [42]. The initial version of it only supported English communication. In addition, many chatbots
are used to enhance students’ English language learning. In [43], Kanda et al. examined the poten-
tial for robots to form relationships with children and facilitate learning. A field trial at a Japanese
elementary school involving English-speaking Robovie robots showed that initial interactions were
frequent but declined over time. However, continued interaction during the second week predicted
improvements in English skills, especially for children with prior proficiency or interest in English.
Zakos [44] invented CLIVE, an artificially intelligent chatbot designed to facilitate English language
learning through engaging and natural conversations. Unlike other tutoring systems, CLIVE offered
an open and diverse range of topics, providing users with a lifelike and immersive language learning
experience. In [45], Mini, a social robot, was designed to assist and accompany the elderly in various
aspects of their daily lives. The robot offered services in personal assistance, entertainment, safety and
stimulation, supporting cognitive and mental tasks.

However, while the use of English as the primary language for speech-based interaction has its
advantages, such as a large user base and extensive research and resources, and also presents significant
limitations. The primary limitation is the exclusion of non-English speakers, which constitutes a large
portion of the global population [46]. This has led to a growing recognition of the need for multilingual
capabilities in social robot interaction. Moreover, even within English speech-based interaction, there
are challenges related to understanding accents, dialects and cultural nuances. This highlights the need
for more advanced language understanding capabilities that can cater to the diversity of users.

3.3. Social robot interaction based on multiple languages

The development of language translation and understanding technologies has significantly broad-
ened the scope of social robot interaction [47]. Unlike single-language-based virtual chatbots, most
physical social robots are designed for multilingual interaction to cater to diverse user populations,
thereby enhancing the user’s understanding and engagement. This multilingual capability is particu-
larly beneficial in multicultural and multilingual settings, where users may speak different languages.

One notable example of a social robot that leverages language translation and understanding is
SoftBank’s NAO robot, which has been used to teach English to native speakers of Dutch, German
and Turkish as well as Dutch or German to Turkish-speaking children living in the Netherlands or
Germany [48]. The NAO robot, through its ability to produce speech in various languages, provides
a personalized, one-on-one tutoring experience that is both engaging and effective. Pepper, another
social robot developed by SoftBank, utilizes natural language processing and speech recognition tech-
nologies, enabling it to recognize and understand text and speech inputs in multiple languages [49].
It supports various commonly used languages, including English, French, German, Italian, Spanish,
Japanese and more. Therefore, users can communicate with Pepper in their familiar language of choice.
In linguistically diverse L2 classrooms, social robots, which have been programmed to communicate
in multiple languages, were used to assist L2 vocabulary learning [50]. Surprisingly, providing L1
translations through the robot did not demonstrate a facilitating effect on bilingual children’s L2 word
learning, contrary to initial predictions.

In recent years, the field of social robotics has witnessed significant advancements with the intro-
duction of AI models like ChatGPT by OpenAI. ChatGPT, a large-scale language model, has been
instrumental in enhancing the language translation and understanding capabilities of social robots. In
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the military settings, ChatGPT is expected to play a role in various applications, including military
robotics, battle space autonomy, automated target recognition and language translation [51]. Specif-
ically, ChatGPT could be utilized for translating messages between several languages to improve un-
derstanding and communication between various military units or between the local communities and
military in operational regions. In the industrial area, Ye et al. [52] investigated the impact of incorpo-
rating ChatGPT in a human-robot assembly task, where a robot arm controlled by RoboGPT assisted
human operators. The study demonstrated that integrating ChatGPT significantly enhanced trust, at-
tributed to improved communication and the robot’s ability to understand and respond appropriately
to human language. However, it is important to note that while ChatGPT represents a significant step
forward, there are still challenges to overcome, such as ensuring the accuracy and appropriateness of
its responses, and improving its ability to understand and respond to nonverbal cues.

In order to achieve natural and effective HRIs, social robots also need to possess the ability to
perceive and identify complex emotional body language as well as display their own behaviors using
similar communication modes [53, 54]. In [55], McColl and Nejat focused on the design of emotional
body language for Brian 2.0, i.e., a human-like social robot, by incorporating various body postures
and movements found in human emotion research. In a more recent study, Hong et al. [56] presented
a novel multimodal emotional HRI architecture that combined body language and vocal intonation to
detect user affect. Not only can the social robot interact with a human user in English but it can also
determine its own emotional behavior based on user affect. For deaf and hard-of-hearing children, sign
language plays a more critical role in their life rather than other oral languages. In [57], Meghdari et al.
presented RASA (Robot Assistant for Social Aims), an educational social robot specifically designed
for teaching Persian Sign Language (PSL) to children with hearing disabilities. RASA is characterized
by its interactive social functionality, the ability to perform PSL with a dexterous upper-body and its
cost-effectiveness. These examples demonstrate the fact that the integration of language translation
and understanding technologies in social robots holds great promise for the future of HRI.

4. Cutting-edge applications of language translation and understanding in social robot
interaction

In this section, we explore the forefront applications of AI-driven language translation and under-
standing in social robot interactions, spanning family assistance, educational support, service provi-
sion, travel guidance and cross-cultural collaboration. The documents referenced in this section have
been meticulously chosen based on specific criteria. The majority of these were sourced from Google
Scholar, while a minor fraction was curated from the broader internet, particularly from dedicated
robot websites featuring news reports. It is imperative to highlight that the articles searched in Google
Scholar underwent peer-review processes, ensuring their credibility and relevance. The content of
these papers predominantly pertains to applications of robots equipped with multilingual comprehen-
sion and translation capabilities in HRIs, encompassing family, education, service, travel guide and
cross-cultural collaboration domains. In terms of temporal relevance, the literature incorporated herein
has been predominantly published within the last decade, with a significant emphasis on studies and
advancements from the past five years. Figure 2 presents the various applications of social robot inter-
action based on language translation and understanding.
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Figure 2. Various applications of social robot interaction based on language translation and
understanding.

4.1. Assistive robots in family

In order to enhance overall family well-being and convenience, there is an emerging demand for
intelligent family robots. These assistive robots, with outstanding language abilities and cute appear-
ances, can assist with various aspects of family life, including companionship, communication, home
automation and care support.

Assistive robots in the family are represented by companion chatbots. By extracting a formal mean-
ing representation from natural language utterances, Atzeni and Atzori [58] proposed a language-
independent approach for creating smart personal assistants and chatbots dubbed AskCo, which sup-
ported multiple languages. The system enables easy extensibility through Java source code and elim-
inates the need for training on large datasets, making it a flexible and efficient solution. Jelly, an AI-
based chatbot developed using Facebook’s Blenderbot, overcame language barriers by conversing with
users in their native language, Nepali. It aimed to provide a comfortable and engaging conversation ex-
perience for those who struggle with English bots. The use of powerful text generation models enabled
Jelly to understand romanized Nepali with English alphabets [59]. Regarding the Buddy robot [60],
as shown in Figure 3, it is designed as an affordable family companion aimed at facilitating communi-
cation, ensuring home security, providing educational entertainment and even assisting with eldercare.
Buddy is capable of autonomous movement and interacts with the environment through its integrated
sensors, enabling object and facial recognition as well as language understanding and generation. It
comes with pre-set languages of French and English and supports additional language downloads such
as Japanese, Mandarin, Korean, etc.
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Figure 3. Appearance design of Buddy [60].

With the increasing development of the Internet of Things (IoT) and home automation systems,
there is a growing need for multilingual support to overcome language barriers, particularly for non-
English speakers. In 2017, Eric et al. [61] explored the integration of voice control into a smart home
automation system by leveraging voice recognition tools. Then the authors discussed different archi-
tectures for voice-enabled systems and evaluated available speech-to-text and text-to-speech engines,
with a focus on the Google Cloud Speech API, which supported multi-language. Two years later, the
smartphone is usually used to manage multiple remote controllers. Bajpai and Radha [62] proposed
a solution using a smartphone and Arduino microcontroller to create a universal remote controller
for cost-effective and convenient home automation. The study focused on developing a voice recog-
nition system to control electronic appliances in a signal-based smart home network, enhancing the
ease of use and accessibility for users. In 2021, Ta Multilanguage IoT Home Automation System
was developed, specifically targeting elderly individuals in Malaysia, enabling them to control their
home appliances using voice commands in their preferred language [63]. This research contributed to
enhancing accessibility and usability for individuals with physical disabilities and older adults, who
may face language challenges in utilizing smart home technologies. More recently, Soni et al. [64]
introduced a novel approach to remotely control home appliances using smartphones, leveraging IoT
technology. The system allows users to control appliances through voice commands in multiple lan-
guages, addressing the language barrier and enhancing system robustness and user convenience. The
experimental results demonstrate a high level of performance, with an average success rate of 95.4%.

Smart and multipurpose voice recognition guiding robots have been developed to assist disabled
people. For visually impaired individuals, Kalpana et al. [65] proposed an RTOS-enabled smart and
multipurpose voice recognition guiding robot, which supported multiple regional languages. The robot,
designed in the form of a dog, utilized Google Voice Recognition API to recognize user commands
and employed light detection signals and a corner crossing algorithm for obstacle avoidance. Besides,
It included a watchdog mode for abnormal movement detection and a self-charging feature using pho-
tovoltaic cells. A project aimed to develop a multi-language reading device to aid visually impaired
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individuals in accessing information from regular books. The device utilized conversational AI technol-
ogy, including image-to-text, translation and text-to-speech modules from Google Cloud. It supported
multiple languages and could be used in public areas [66].

4.2. Assistive robots in education

Education applications are the primary source of the birth of multilingual social robots. Students
from diverse linguistic backgrounds have different needs for language learning and educational ex-
periences. The developed tutoring robots, especially NAO, can be applied in various educational as-
pects, including language tutoring, STEM training, metacognition tutoring, geometrical thinking train-
ing, oral proficiency development and facilitating communication and engagement in hybrid language
classrooms. Therefore, developing various multilingual tutoring robots has become a trend. Table 1
illustrates the comparison of multilingual assistive robots in education applications.

Various studies have explored the effectiveness of social robots and mobile robots in language tu-
toring and STEM training. For example, Vogt et al. [67] implemented a large-scale experiment using
a social robot to tutor young children in English vocabulary. Figure 4 illustrates the conic gestures the
tutoring robot used. The robot, capable of translating between English and Dutch, was compared to
a tablet application in terms of teaching new words. The results indicated that children were equally
able to acquire and retain vocabulary from both the robot and the tablet. In another study, Leyzberg
et al. [68] investigated the effectiveness of a personalization system for social robot tutors in a five-
session English language learning task with native Spanish-speaking first-graders. The system, based
on an adaptive Hidden Markov Model, ordered the curriculum to target individual skill proficiencies
(Figure 5). The results demonstrated that participants who received personalized lessons from the
robot tutor outperformed those who received non-personalized lessons. More recently, [69] explored
the application of mobile robots in STEM training and proposed models that combined a mobile robot
with an Android OS tablet for user interaction and voice control. They conducted experiments using
an AI Processor to control the robot through voice commands in three languages (Korean, Vietnamese
and English). The results showed high average confidence levels, providing a foundation for develop-
ing systems that support student learning through voice interaction with multi-language mobile robots.
Furthermore, Schlippe et al. [70] developed a multilingual interactive conversational AI tutoring sys-
tem for exam preparation. The system utilized a multilingual bidirectional encoder representations
from transformers (M-BERT) model to automatically score free-text answers in 26 languages. It lever-
aged learning analytics, crowdsourcing and gamification to enhance the learning experience and adapt
the system.
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Table 1. Comparison of multilingual assistive robots in education applications. (processed
by authors)

Ref. Robots Languages Subjects Applications

[67] NAO robot English, Dutch 194 children Tutoring children En-
glish vocabulary

[68] Keepon
robot

English, Spanish First-graders Personalized robot tu-
toring

[69] Mobile
robot

Korean, Vietnamese,
English

N/A STEM training; user in-
teraction

[70] Chatbot 26 languages 51 people Exam preparation

[71] NAO robot English, German 40 participants Tutoring foreign lan-
guage words

[72] NAO robot Chinese, English Preschoolers Teaching preschoolers
read and spell

[73] NAO robot English, Chinese,
Japanese and Korean

19 college students Individual tutoring and
interactive learning ex-
periences for students

[74] NAO robot Norwegian, English 20 children Children’s language
learning progress in
Norwegian day-care
centers

[75] NAO robot Chinese, English 24 primary school stu-
dents

English teaching

[76] Telepresence
robot

Finnish, German,
Swedish and English

10–20 students Classroom interaction;
supporting the remote
students

[77] Telepresence
robot

Japanese, English more than 50 children International communi-
cation between distant
classrooms

[78] EngSISLA English, Hindi, Punjabi different age group
speakers

Translating the speech
to Indian Sign Lan-
guage
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Figure 4. Examples of iconic gestures used in this study, photographed from the learner’s
perspective [67].

Figure 5. (a) A first-grade student interacts with the robot tutor. The caption here is an
English translation of what the robot is saying in Spanish. (b) A Keepon robot [68].
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Several studies have explored the use of NAO robots in language tutoring and educational settings,
showcasing their potential to personalize tutoring, engage learners, enhance language proficiency and
address educational challenges such as teacher shortages. In their novel approach, Schodde et al. [71]
utilized a Bayesian knowledge tracing model combined with tutoring actions to personalize language
tutoring in HRI, using word pairs in the artificial language Vimmi to prevent associations with known
words or languages. Evaluation results demonstrated the superior effectiveness of the adaptive model
in facilitating successful L2 word learning compared to randomized training. Another study by He et
al. [72] focused on educational purposes and introduced a multi-language robot system that employed
voice interaction and automatic questioning to engage learners in metacognition tutoring and geometri-
cal thinking training. In the context of enhancing oral English proficiency, Lin et al. [73] developed the
English oral training robot tutor system (EOTRTS), utilizing NAO, a social robot, to provide individual
tutoring and interactive learning experiences for students in Taiwan. This system also had the potential
to facilitate the learning of other foreign languages such as Japanese and Korean. Furthermore, a study
in 2021 transformed the language shower program into a digital solution using a smartphone/tablet
app and an NAO robot, demonstrating its positive impact on children’s language learning progress in
Norwegian day-care centers [74]. This highlights the potential of social robots in enhancing language
learning. Addressing the shortage of English teachers in Taiwan, the modular English teaching multi-
robot system (METMRS) employed NAO as the main teacher and Zenbo Junior robots as assistants,
offering an innovative solution for English education [75].

Telepresence robots have emerged as valuable tools in educational settings, facilitating communi-
cation and engagement across language barriers and enhancing the learning experience for remote stu-
dents. Jakonen and Jauni [76] explored the use of telepresence robots in hybrid language classrooms,
where remote students participate through videoconferencing technology. Their findings highlight how
telepresence robots enhance remote students’ engagement and contribute to the multimodal meaning-
making in hybrid language teaching. Similarly, Tanaka et al. [77] discussed the outcomes of a JST
PRESTO project that utilized child-operated telepresence robots to facilitate international communica-
tion between classrooms, demonstrating the effectiveness of the system in enabling young children to
communicate across language barriers.

Emerging technologies in education and communication, such as multilingual tutoring and speech-
to-sign language translation systems, are transforming learning experiences and facilitating effective
communication across language barriers. For example, Roybi, one of the most popular multilingual
tutoring robots on the market, offers children an individualized educational experience through the
use of AI. This interactive robot introduces children to technology, mathematics and science while
engaging with them in various languages, including Spanish, French, English and Mandarin. In a
similar field, a system called SISLA was proposed in [78], which utilizes a 3D avatar to translate speech
into Indian Sign Language. With impressive accuracy rates of 91% for English and 89% for Punjabi
and Hindi, usability testing confirms its effectiveness for educational and communication purposes,
particularly for the hearing impaired.

4.3. Assistive robots in service

Driven by the need to improve customer experiences, various assistive robots in service have been
developed. For instance, interactive information support systems and banking robots, have been de-
signed to enhance concierge service. Additionally, assistive robots in healthcare, rehabilitation and
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mental health have emerged as innovative solutions, providing support in hospitals, monitoring emo-
tional well-being and improving accessibility for individuals with disabilities or elderly individuals.
These cutting-edge applications demonstrate the transformative impact of language translation and
understanding in social robot interaction across various domains.

To upgrade concierge services in hotels, Yamamoto et al. [79] proposed an interactive information
support system utilizing smart devices and robot partners. The system comprises robot partners for
communication and interaction with users and informationally structured space servers for data pro-
cessing and personalized recommendations. It should be noted that the cute robots can select their
communication language based on voice recognition through greeting. Its basic conversation flow is
shown in Figure 6.

Figure 6. Scene transition [79].

Advancements in automatic speech recognition (ASR) and humanoid robot technologies are trans-
forming the banking industry, enhancing customer experiences and overcoming language barriers. In
a study conducted in Greece [80], researchers developed innovative methodologies for voice activity
detection and noise elimination in budget robots, enabling effective ASR in challenging acoustically
quasi-stationary environments. Furthermore, showcasing the potential of AI-driven robots in the bank-
ing sector, Pepper, a multi-linguistic humanoid robot, has made a positive impact at BBBank [81].
With its friendly and helpful demeanor, Pepper has assisted customers in various tasks, such as block-
ing stolen credit cards and providing relevant information. This successful integration of Pepper high-
lights its ability to enhance customer experience and illustrates the growing significance of robots in
the banking industry.

Leveraging recent advancements in mobile speech translation and cognitive architectures, multilin-
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gual promotional robots have emerged with great potential. In the pursuit of user-friendly and adaptable
speech-to-speech translation systems for mobile devices, Yun et al. [82] developed a robust system by
leveraging a large language and speech database. This research showcased the successful creation
of a mobile-based, multi-language translation system capable of operating in real-world environments.
Building upon this, Romero et al. [83] introduced the CORTEX cognitive architecture for social robots.
By integrating different levels of abstraction into a unified deep space representation (DSR), this ar-
chitecture facilitated agent interaction and behavior execution. The utilization of Microsoft’s Kinect
program in a separate embedded computer further enhanced the system’s multi-language and multi-OS
capabilities, exemplifying the potential of such technology in robotics.

In recent years, multilingual service robots have gained popularity, empowering diverse user groups
with multimodal capabilities and extensive language support. Therefore, many innovative solutions
are proposed. The PaeLife project, conducted in 2015, aimed to develop AALFred, a multimodal
and multilingual virtual personal life assistant for senior citizens [84]. The project focused on various
aspects, including collecting elderly speech corpora, optimizing speech recognition for elderly speak-
ers, designing a reusable speech modality component and enabling automatic grammar translation to
support multiple languages. After a few years, a software robot named Xiaoming was introduced.
Xiaoming possessed multilingual and multimodal capabilities, allowing it to generate news, perform
translation, read and animate avatars [85]. Voice cloning technology was utilized to synthesize speech
in multiple languages, and Xiaomingbot achieved significant popularity on social media platforms by
writing a substantial number of articles. Another notable research effort by Doumbouya et al. [86]
addressed the challenge of providing speech recognition technology to illiterate populations. They
explored unsupervised speech representation learning using noisy radio broadcasting archives and re-
leased datasets such as the West African Radio Corpus and West African Virtual Assistant Speech
Recognition Corpus. Their work introduced the West African wav2vec speech encoder, which showed
promising performance in multilingual speech recognition and language identification tasks.

In addition, according to [87], dependency on internet connectivity and language constraints hinder
the effectiveness of smart assistants, such as Google Assistant, Siri and Alexa. To address these issues,
a multilingual voice assistant system was developed using Raspberry Pi, enabling offline access to vari-
ous languages and it allowed users to access information and perform tasks in their preferred language.

As the aging population grows and caregiver resources become limited, the demand for innova-
tive technologies to assist and care for the elderly is on the rise. Socially assistive robots emerge as
promising solutions for long-term elderly care. In 2016, Nuovo et al. [88] conducted an evaluation and
development of a multi-modal user interface (MMUI) to enhance the usability and acceptance of assis-
tive robot systems among elderly users. The experimental results demonstrated the effectiveness of the
MMUI in improving flexibility and naturalness in interactions with the elderly. They also implemented
multi-language speech recognition and text-to-speech (TTS) modules to facilitate communication us-
ing Nuance- and Acapela-VAAS respectively. Later, in 2018, a group of researchers further discussed
the implementation of a user-friendly and acceptable service robotic system for the elderly, focusing on
a web-based multi-modal user interface. Notably, it supported multi-language such as English, Italian
and Swedish so as to enhance flexibility, naturalness, and acceptability of elderly-robot interaction [89].
In order to assist elderly individuals in adhering to their medication regimen, a novel robotic system
was designed and evaluated using the NAO robot, which supported multi-language capabilities [90]
(in Figure 7). This system utilized computer vision and a database to identify medication packaging,
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detect the intended recipient, and ensure timely administration. Additionally, Giorgi et al. [91] en-
hanced HRI by developing human-like verbal and nonverbal behaviors in an NAO robot companion.
It is worth noting that the robot served as a communicator in community activities with the elderly,
offering multi-language translation capabilities through Cloud Services.

Figure 7. Robotic system overview (by: crisostomo) [90].

Advancements in voice-controlled robots and robust voice control systems have revolutionized the
healthcare and rehabilitation sectors, providing potential support to hospitals and rehabilitation centers.
In [92], Pramanik and his colleagues introduced a fully voice-controlled robot designed for hospitals,
addressing staff overload and worker shortage situations. The robot’s flexibility in movement, user-
friendly characteristics and ability to accommodate diverse voices and languages make it suitable for
satisfying the needs of both hospitals and patients. To meet the needs of patients with amputation,
paralysis, and quadriplegia, a robust voice control system for rehabilitation robots was developed [93].
The system utilized advanced voice-recognition algorithms, such as hidden Markov model and dy-
namic time warping, to enhance accuracy and reduce errors (Figure 8). Its effectiveness in diverse noise
environments and with multiple languages was demonstrated through validation experiments. In [94],
the development of CLARA, a socially assistive robot (SAR), was discussed. Its appearance is pre-
sented in Figure 9. CLARA offers potential support for caregivers through its proactive, autonomous
and adaptable nature. The integration of a multi-language interface using the Microsoft SDK enhances
CLARA’s perceptive and reactive capabilities, making it effective in various healthcare settings.
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Figure 8. Voice-recognition modules implemented (by:Ruzaij) [93].

Figure 9. (a) One of the CLARA robots with the two RFID antennas. (b) External aspect
of CLARA after adding (left) a first version and (right) the second version of the external
housing [94].

Assistive technologies for individuals with physical disabilities, such as multi-input control systems
and bilingual social networking service robots, improve accessibility and communication. These inno-
vations empower users, enhancing their mobility and facilitating connections with peers and medical
professionals. For instance, Ruzaij et al. [95] introduced a novel multi-input control system for reha-
bilitation applications, specifically designed for individuals with limited arm mobility. By integrating a
voice controller unit and a head orientation control unit, the system employed various voice recognition
algorithms and MEMS sensors to facilitate wheelchair control through user commands and head move-
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ments. This hybrid voice controller not only enhanced voice recognition accuracy but also provided
language flexibility, offering a promising solution for individuals with diverse needs. In a related con-
text, Kobayashi et al. [96] proposed a bilingual social networking service (SNS) agency robot aimed
at assisting individuals with physical disabilities in using tablets or smartphones for communication.
Notably, this robot incorporated a voice user interface, enabling users to interact with others who share
similar conditions or communicate with medical specialists in their native languages.

Recent advancements in healthcare robotics have introduced innovative solutions for evaluating
mental health and monitoring emotional well-being in elderly individuals. In 2020, a multi-language
robot interface that helped evaluate the mental health of elderly people through problem interaction
was introduced by Yvanoff-Frenchin et al. [97], which was implemented on an embedded device for
edge computing. The robot could interact with the user through appropriate language and it could
process the answers and then, with the guidance of an expert, direct the questions and answers in the
desired direction of treatment. At the same time, the device could filter out environmental noise and is
suitable for placement anywhere in the home. In the same year, a robotic interface with multi-language
capability was proposed [98] for monitoring and assessing the emotional health of elderly individuals
through extended conversations. The system utilized voice interface and expert supervision to engage
in automated conversations with clients, and the proposed method demonstrated compatibility with
embedded platforms. One year later, Jibo, the social robot developed by NTT Disruption, has found
application in the medical field as an empathetic healthcare companion [99] (Figure 10). Leverag-
ing Microsoft Azure Cognitive Services, Jibo utilized AI capabilities to recognize people, understand
moods and provide information and support for treatments. Notably, Jibo’s multilingual communi-
cation abilities enable it to engage with patients in their preferred language, offering companionship,
proactive assistance, video calling capabilities and reminders for treatment plans and exercises. Dur-
ing the COVID-19, Pepper has been deployed at Hořovice Hospital in the Czech Republic to assist
in the fight against the pandemic [100]. With its ability to work tirelessly and be easily disinfected,
Pepper helped enforce social distancing measures by detecting patients’ temperatures and encouraging
hand sanitization. The robot has been well-received by both staff and patients, improving the hospital
experience and easing the burden on medical personnel.

Figure 10. Jibo robot for empathetic healthcare companion [99].
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4.4. Assistive robots in travel guide

Nowadays, travel more and more takes the fancy of domestic and abroad tourists. Taking multiple
factors into consideration, bright prospects lie in this field concerning assistive robots in travel guides.

In [101], a multi-lingual service system utilizing the iBeacon network for service robots was de-
veloped. By leveraging users’ personal information stored in a dedicated app and the iBeacon region,
the system enabled robots to understand users’ language and provide personalized services. The col-
laborative nature of the system allowed for efficient resource utilization and had the potential to be
applied in various domains, such as Olympic Game guidance. Additionally, Sun et al. [102] presented
the “Concierge robot”, a sightseeing support robot partner designed to recommend shops, restaurants
and sightseeing spots to hotel visitors. The robot incorporated intelligent devices, a body and a four-
wheel robot base, providing guide services through interactive multi-language utterances and a touch
interface. Besides, Jeanpierre et al. [103] developed a robust system of autonomous robots that op-
erated independently in complex public spaces, interacted with humans and assisted them in various
environments. Equipped with a speech server with Microsoft Speech Recognition, the system demon-
strates impressive effectiveness in interacting with visitors naturally. In 2019, Yoshiuchi et al. [104]
explored the use of data analysis technology in service robot systems to improve business operations.
By modifying service scenarios and analyzing collected data, the study demonstrated an 8.1% potential
increase in business improvement, particularly in areas such as communication, image processing and
multi-language processing.

Later, a voice-based attender robot with line-following capabilities and speech recognition was de-
signed for university settings to assist with tasks such as passing circulars, interacting with parents
and providing navigation assistance [105]. It can connect with humans through spoken natural lan-
guage, specifically English and Kannada. The results verified the robot’s effectiveness in facilitating
communication with users, making it applicable not only to universities but also to other environments
like railway stations, bus stations and factories. Recently, Zhang et al. [106] presented a voice control
system for the LoCoBot WX250 robot, utilizing machine learning models and the BERT model for im-
proved intent classification and keyword recognition. The system enhanced the interaction experience
between humans and the robot, enabling it to act as a tour guide in museums. It could communi-
cate with visitors via speaker and microphone, respond to instructions and even switch languages to
accommodate foreign tourists. Pepper, another pioneering AI robot, revolutionized the tourism indus-
try by breaking down language barriers and offering multi-linguistic communication and knowledge
sharing [107] (Figure 11). With its touch of emotion and surprise, Pepper enhanced the museum ex-
perience, shared anecdotes and engaged visitors on a deeper level. Its interactive and proactive nature
made it an invaluable tool for attracting and guiding visitors, creating a truly immersive and memorable
cultural experience.
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Figure 11. A guiding robot in library [107].

4.5. Assistive robots in cross-cultural collaboration

The development of assistive robots capable of speaking multiple languages in cross-cultural col-
laboration is essential for fostering effective communication and collaboration among individuals from
diverse cultural backgrounds. These robots enable seamless interaction, understanding and cooperation
between people who speak different languages, facilitating cross-cultural collaboration in various do-
mains.

The integration of advanced technologies in robotics and AI is transforming industries, with ap-
plications ranging from industrial automation to agriculture. These innovations enhance productivity
and efficiency, revolutionizing processes and addressing industry-specific challenges. Lin et al. [108]
invented an automatic sorting system for industrial robots that integrates 3D visual perception, natural
language interaction and automatic programming. Notably, the robot utilizes the open-source speech
synthesis system (Ekho) for generating speech, supporting multiple languages and different platforms.
In the same vein, Birch et al. [109] evaluated the effectiveness of a novel human-robot-interface for
machine hole drilling, considering environmental factors on speech recognition accuracy. The devel-
oped speech recognition method, displayed in Figure 12, enabled HRI through a unique integration
approach, employing DTW and distance comparison for word identification and language translation.
Likewise, in [110], a mobile application that utilized AI and voice bot technology was developed to
assist farmers in the agriculture sector. It featured a multi-linguistic voice bot for querying agricultural
information and a suggestion bot for providing versatile suggestions related to weather, crops, fertiliz-
ers and soil. This AI-based system enhanced farming practices, increased agricultural production and
addressed unknown issues faced by farmers.
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Figure 12. Algorithm flow chart (from: Birch) [109].

In a different context, Hong et al. [111] focused on implementing natural language-based commu-
nication between humans and fire fighting robots using ontological semantic technology (OST), which
enabled a comprehensible understanding of meanings across multiple languages. The study expanded
the application of OST to the domain of fire fighting, specifically addressing communication between
robots and humans in Korean and English. To improve the office environment, a dialog agent that could
understand natural language instructions from naive users was presented by Thomason et al. [112]. The
agent incorporates a learning mechanism that induces training data from user paraphrases, enabling it
to adapt to language variation without requiring large annotated corpora. Experimental results from
web interfaces and a mobile robot deployed in an office environment demonstrated improved user
satisfaction through learning from conversations. On top of that, Contreras et al. [113] explored the
use of domain-based speech recognition to control drones in a more natural and human-like manner.
By implementing an algorithm for command interpretation in both Spanish and English, the study
demonstrated the effectiveness of voice instructions for drone control in a simulated domestic envi-
ronment. The results showed improved accuracy in speech-to-action recognition, particularly with the
phoneme matching approach, achieving high accuracy for both languages. In [114], a remote center
of motion (RCM) based nasal robot was designed to assist in nasal surgery (Figure 13). Accordingly,
a voice-based control method was proposed where surgeons provided direction instructions through
the analysis of endoscopic images and a commercial speech recognition interface was used for offline
grammar control, as shown in Figure 14. Additionally, a speech recognition interface was employed to
create an offline grammar control word library that is compatible with both English and Chinese.
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Figure 13. The overall structure of the nasal endoscopic surgical robot [114].

Figure 14. Offline speech recognition process of robot motion instructions [114].

5. Recent challenges and future directions

5.1. Recent challenges

Although social robots are applied in many fields and have made technological breakthroughs in
recent years, it still faces some challenges in language translation and understanding, as shown in the
Figure 15.
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Figure 15. The challenges in language translation and understanding.

(1) Interlingual semantic understanding
Interlingual semantic understanding constitutes a critical aspect of AI-based language translation

and understanding in social robot interaction. As robots are designed to communicate seamlessly with
humans, their ability to understand semantics, not just literal translations, across multiple languages
is crucial.

Interlingual semantic understanding typically involves techniques such as neural machine transla-
tion (NMT), where the system learns to translate by being trained on large amounts of text in both the
source and target language. Moreover, models like BERT and GPT have enhanced semantic under-
standing by emphasizing the context of words. These models leverage deep learning and large-scale
language representation to understand the semantics in one language and then generate the appropriate
semantics in the target language.

There are two difficulties associated with interlingual semantic understanding. One major challenge
is the issue of word sense disambiguation, differentiating the meaning of a word based on context. This
becomes particularly challenging when a word or phrase in one language has multiple meanings in
another. Additionally, understanding and correctly translating idioms, metaphors or cultural references
is a formidable task for AI systems. These linguistic features often do not have direct equivalents
across languages and require a deep understanding of both languages’ cultures.

(2) Data scarcity and quality
Given that machine learning models are heavily reliant on large, high-quality datasets for training,

the scarcity and inferior quality of data can pose substantial impediments to their performance.
Specific challenges can be concluded as follows. Current status reveals an uneven distribution of

data across different languages. While extensive, high-quality datasets exist for popular languages like
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English, many minority languages suffer from severe data scarcity. The consequence is an inherent
bias in AI systems towards languages for which abundant data is available, resulting in less accurate
translation and understanding capabilities for underrepresented languages. Furthermore, when ample
data is available, its quality, including accuracy, consistency and relevance, might be compromised. For
instance, training data may contain errors, be inconsistently annotated or simply not be representative
of the diversity and complexity of real-world language use.

Furthermore, developing techniques to improve AI performance even with scarce or lower-quality
data is a promising research direction. This includes methods such as transfer learning, where a pre-
trained model on a large dataset can be fine-tuned on a smaller, specific dataset and data augmentation
techniques to synthetically expand existing datasets.

Therefore, subsequent research is expected to develop techniques that can improve AI performance
even with scarce or lower-quality data. This includes methods such as transfer learning, where a pre-
trained model on a large dataset can be fine-tuned on a smaller, specific dataset and data augmentation
techniques to synthetically expand existing datasets.

(3) Cultural adaptability and diversity
As social robots are envisioned to operate in multicultural societies and interact with people from

different cultural backgrounds, their ability to adapt to various cultural norms and understand cultural
diversity is essential.

The challenges associated with cultural adaptability and diversity are multifaceted. Language is
deeply rooted in culture, carrying idiomatic expressions and metaphors that might be culturally exclu-
sive. Another challenge is cultural bias. Training data used for AI systems often reflects the cultural
characteristics of the regions where the data is sourced, which can inadvertently lead to cultural biases
in AI models. Such biases could manifest as AI systems performing better for certain cultures while
struggling with others. Furthermore, social etiquette, norms and expectations vary widely across dif-
ferent cultures. Designing social robots that can adapt to such a wide range of cultural expectations is
an intricate challenge. Hence, addressing these challenges necessitates an interdisciplinary approach,
combining insights from linguistics, anthropology, sociology and AI.

5.2. Future directions

5.2.1. Integration of language models

The GPT language model, particularly its latest iterations such as GPT-3 and GPT-4, has greatly
impacted the field of language translation and understanding. Hence, the positive impact of GPT in the
realm of social human interaction is evident. By providing social robots with the ability to understand
and generate human-like responses, GPT has facilitated more nuanced and meaningful interactions.
For instance, Nishihara et al. [115] developed an online algorithm for robots to acquire knowledge
of natural language and object concepts by connecting recognized words to concepts. The model
took into account the interdependence of words and concepts, enabling the robot to develop a more
accurate language model and object concepts through unsupervised word segmentation and multimodal
information. He and Mary [116], by reviewing the principles of ChatGPT, analyzed various aspects
of robot perception and intelligence, excluding intrapersonal intelligence and proposed a multimodal
approach using GPT-3 to implement seven types of robot intelligence. The proposed framework, called
RobotGPT, paving the way for smarter robotic systems.
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5.2.2. Overcoming the language barrier: multilingual and dialect understanding

Currently, many social robots are still largely restricted to English interaction. Those that do support
multilingual interactions are often confined to specific domains such as language teaching, healthcare
or social companionship, leaving broader applications, particularly work-related collaborations, un-
derexplored. Looking ahead, a future where social robots shatter this language barrier, mastering not
only multiple languages but also understanding dialects, is an exhilarating prospect. In [117], it sug-
gests that a robot communicating in regional dialects or using a relaxed conversation style might be
more warmly received. Andrist et al. [118] explored the impact of language and cultural context on
the credibility of robot speech. Comparing Arabic-speaking robots in Lebanon and English-speaking
robots in the USA, it revealed cultural differences in the importance of rhetorical cues and practical
knowledge. These findings informed the design of culturally sensitive HRIs, particularly in relation to
dialect usage.

5.2.3. From AI assistants to empathetic companions

Presently, interactions with social robots are primarily command-based, with the robots responding
to explicit instructions from users. In the future, we envision social robots evolving from mere AI as-
sistants to empathetic companions that truly understand human emotions, needs and desires, creating
meaningful and enriching interactions. Imagine a scenario where you return home from a stressful day
at work. Instead of merely offering to perform its usual tasks, it suggests relaxing activities like play-
ing soothing music or initiating a calming meditation session. In a different scenario, let us imagine
a tutoring robot assisting in a classroom. Beyond just answering questions or teaching language, the
robot could gauge the understanding level of students by their facial expressions, confusion in their
voice, or hesitation in their answers. It could then adjust the teaching speed or method to better ac-
commodate the students’ learning pace. In summary, the future of social robots lies in moving beyond
command-based interaction to truly understanding and empathizing with human users.

6. Conclusions

In this literature review, we have explored the progression and current state of language translation
and understanding in social robots, focusing particularly on the areas of multilingual capabilities and
application in diverse domains. Our primary finding is that while social robots have shown promise
in their ability to interact in one or two languages, there are still significant deficiencies, especially
when it comes to broad multilingual interactions. Additionally, the application of multilingual social
robots is mainly limited to areas like language teaching, healthcare and social companionship, with
less prevalent use in sectors such as smart manufacturing or robot-assisted surgery.

This review provides a comprehensive look at the advancements made in the past decade from the
perspective of social robot applications. We have detailed the current challenges faced in this domain,
including interlingual semantic understanding, data scarcity and quality and cultural adaptability and
diversity. By outlining these challenges, we hope to contribute to the research field by identifying the
areas in need of focus and further development.

In conclusion, this literature review captures the evolution of language translation and understanding
in social robots, summarizing the major challenges faced and outlining a roadmap for future research
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directions. As we continue to advance in AI and robotics, we expect that this review will serve as a
reference point for subsequent research aimed at enhancing the multilingual capabilities and empathetic
interactions of social robots.
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