20,182 research outputs found

    Good survival outcome of metastatic SDH-deficient gastrointestinal stromal tumors harboring SDHA mutations

    Get PDF
    Purpose:A subset of patients with KIT/PDGFRA wild-type gastrointestinal stromal tumors show loss of function of succinate dehydrogenase, mostly due to germ-line mutations of succinate dehydrogenase subunits, with a predominance of succinate dehydrogenase subunit A. The clinical outcome of these patients seems favorable, as reported in small series in which patients were individually described. This work evaluates a retrospective survival analysis of a series of patients with metastatic KIT/PDGFRA wild-type succinate dehydrogenase-deficient gastrointestinal stromal tumors.Methods:Sixty-nine patients with metastatic gastrointestinal stromal tumors were included in the study (11 KIT/PDGFRA wild-type, of whom 6 were succinate dehydrogenase deficient, 5 were non-succinate dehydrogenase deficient, and 58 were KIT/PDGFRA mutant). All six succinate dehydrogenase-deficient patients harbored SDHA mutations. Kaplan-Meier curves and log-rank tests were used to compare the survival of patients with succinate dehydrogenase subunit A-mutant gastrointestinal stromal tumors with that of KIT/PDGFRA wild-type patients without succinate dehydrogenase deficiency and patients with KIT/PDGFRA-mutant gastrointestinal stromal tumors.Results:Follow-up ranged from 8.5 to 200.7 months. The difference between succinate dehydrogenase subunit A-mutant gastrointestinal stromal tumors and KIT/PDGFRA-mutant or KIT/PDGFRA wild-type non-succinate dehydrogenase deficient gastrointestinal stromal tumors was significant considering different analyses (P = 0.007 and P = 0.033, respectively, from diagnosis of gastrointestinal stromal tumor for the whole study population; P = 0.005 and P = 0.018, respectively, from diagnosis of metastatic disease for the whole study population; P = 0.007 for only patients who were metastatic at diagnosis).Conclusion:Patients with metastatic KIT/PDGFRA wild-type succinate dehydrogenase-deficient gastrointestinal stromal tumors harboring succinate dehydrogenase subunit A mutations present an impressively long survival. These patients should be identified in clinical practice to better tailor treatments and follow-up over time A subset of patients with KIT/PDGFRA wild-type gastrointestinal stromal tumors show loss of function of succinate dehydrogenase, mostly due to germ-line mutations of succinate dehydrogenase subunits, with a predominance of succinate dehydrogenase subunit A. The clinical outcome of these patients seems favorable, as reported in small series in which patients were individually described. This work evaluates a retrospective survival analysis of a series of patients with metastatic KIT/PDGFRA wild-type succinate dehydrogenase-deficient gastrointestinal stromal tumors.Methods:Sixty-nine patients with metastatic gastrointestinal stromal tumors were included in the study (11 KIT/PDGFRA wild-type, of whom 6 were succinate dehydrogenase deficient, 5 were non-succinate dehydrogenase deficient, and 58 were KIT/PDGFRA mutant). All six succinate dehydrogenase-deficient patients harbored SDHA mutations. Kaplan-Meier curves and log-rank tests were used to compare the survival of patients with succinate dehydrogenase subunit A-mutant gastrointestinal stromal tumors with that of KIT/PDGFRA wild-type patients without succinate dehydrogenase deficiency and patients with KIT/PDGFRA-mutant gastrointestinal stromal tumors.Results:Follow-up ranged from 8.5 to 200.7 months. The difference between succinate dehydrogenase subunit A-mutant gastrointestinal stromal tumors and KIT/PDGFRA-mutant or KIT/PDGFRA wild-type non-succinate dehydrogenase deficient gastrointestinal stromal tumors was significant considering different analyses (P = 0.007 and P = 0.033, respectively, from diagnosis of gastrointestinal stromal tumor for the whole study population; P = 0.005 and P = 0.018, respectively, from diagnosis of metastatic disease for the whole study population; P = 0.007 for only patients who were metastatic at diagnosis).Conclusion:Patients with metastatic KIT/PDGFRA wild-type succinate dehydrogenase-deficient gastrointestinal stromal tumors harboring succinate dehydrogenase subunit A mutations present an impressively long survival. These patients should be identified in clinical practice to better tailor treatments and follow-up over time

    Treatment responses to antiangiogenetic therapy and chemotherapy in nonsecreting paraganglioma (PGL4) of urinary bladder with SDHB mutation: a case report

    Get PDF
    Paraganglioma (PGL) is a rare neuroendocrine tumor. Currently, the malignancy is defined as the presence of metastatic spread at presentation or during follow-up. Several gene mutations are listed in the pathogenesis of PGL, among which succinate dehydrogenase (SDHX), particularly the SDHB isoform, is the main gene involved in malignancy. A 55-year-old male without evidence of catecholamine secretion had surgery for PGL of the urinary bladder. After 1 year, he showed a relapse of disease and demonstrated malignant PGL without evidence of catecholamine secretion with a germline heterozygous mutation of succinate dehydrogenase B (SDHB). After failure of a second surgery for relapse, he started medical treatment with sunitinib daily but discontinued due to serious side effects. Cyclophosphamide, vincristine, and dacarbazine (CVD) chemotherapeutic regimen stopped the disease progression for 7 months. Conclusion: Malignant PGL is a very rare tumor, and SDHB mutations must be always considered in molecular diagnosis because they represent a critical event in the progression of the oncological disease. Currently, there are few therapeutic protocols, and it is often difficult, as this case demonstrates, to decide on a treatment option according to a reasoned set of choices. Abbreviations: CVD = cyclophosphamide, vincristine and dacarbazine, HIF-1a = hypoxia inducible factor 1 alpha, PGL = paraganglioma, SDH = succinate dehydrogenase, VEGF = vasoendothelial growth factor

    Neck paraganglioma and follicular lymphoma: A case report

    Get PDF
    Background: Paragangliomas and pheochromocytomas are sympathetic or parasympathetic tumors derived from the paraganglia and the adrenal medulla, respectively. Paragangliomas and pheochromocytomas can be sporadic or familial, the latter frequently being multifocal and possibly due to succinate dehydrogenase complex genes mutations. In addition, 12% of sporadic paragangliomas are related to covered succinate dehydrogenase complex mutations. The importance of identifying succinate dehydrogenase complex mutations is related to the risk for these patients of developing multiple tumors, including non-endocrine ones, showing an aggressive clinical presentation. Case presentation: We report the case of a 45-year-old Caucasian man with an indolent mass in his neck. Ultrasound of his neck, magnetic resonance imaging, and 1,4,7,10-tetraazacyclododecane-N(I),N(II),N(III),N(IIII)-tetraacetic acid(D)-Phe(1)-thy(3)-octreotide (68Ga-DOTATOC) positron emission tomography-computed tomography and endocrine work-up were consistent with a carotid body paraganglioma with concomitant nodal enlargement in several body regions, which turned out to be a follicular lymphoma at histology. He was found to carry a germline Succinate dehydrogenase subunit B gene (SDHB) mutation. Conclusion: It is crucial to look for a second malignancy in the case of a paraganglioma demonstrating succinate dehydrogenase complex germline mutations

    Over-representation of the G12S polymorphism of the SDHD gene in patients with MEN2A syndrome

    Get PDF
    OBJECTIVE: To evaluate whether germline variants of the succinate dehydrogenase genes might be phenotypic modifiers in patients with multiple endocrine neoplasia type 2. Mutations of genes encoding subunits of the succinate dehydrogenase are associated with hereditary paraganglioma/pheochromocytoma syndrome. Pheochromocytoma is one of the main manifestations of multiple endocrine neoplasia type 2 caused by germline mutation of the rearranged during transfection proto-oncogene. METHODS: Polymorphisms of the succinate dehydrogenase genes were analyzed in 77 rearranged during transfection mutation carriers, 47 patients with sporadic medullary thyroid cancer, 48 patients with sporadic Pheo, and 100 healthy individuals. Exons 10-16 of the rearranged during transfection proto-oncogene were analyzed by direct DNA sequencing, and all exons of the von Hippel-Lindau, succinate dehydrogenase B, and succinate dehydrogenase subunit D genes were tested by direct DNA sequencing and multiple ligation probe analysis. The G12S polymorphism of the succinate dehydrogenase subunit D gene was determined by restriction fragment length polymorphism. RESULTS: Of the 77 rearranged during transfection mutation carriers, 55 from 16 families had multiple endocrine neoplasia type 2A, three from three families had multiple endocrine neoplasia type 2B, and 19 from two families had familial medullary thyroid carcinoma. Eight of 55 (14.5%) patients with multiple endocrine neoplasia type 2A had this variant whereas it was absent in multiple endocrine neoplasia type 2B, familial medullary thyroid carcinoma, sporadic medullary thyroid carcinoma, and sporadic pheochromocytoma groups, and its prevalence in controls was 1% (p<0.002 multiple endocrine neoplasia type 2A versus controls). No associations between G12S and age of manifestation, incidence of pheochromocytoma or hyperparathyroidism, or level of serum calcitonin were observed. CONCLUSION: The high prevalence of the G12S variant in patients with multiple endocrine neoplasia type 2A raises questions about its role as a genetic modifier, but this proposal remains to be established

    O-GlcNAcylation and Activity of Succinate Dehydrogenase

    Get PDF
    Undergraduate Basi

    Trypanocidal action of bisphosphonium salts through a mitochondrial target in bloodstream form Trypanosoma brucei

    Get PDF
    Lipophilic bisphosphonium salts are among the most promising antiprotozoal leads currently under investigation. As part of their preclinical evaluation we here report on their mode of action against African trypanosomes, the etiological agents of sleeping sickness. The bisphosphonium compounds CD38 and AHI-9 exhibited rapid inhibition of T. brucei growth, apparently the result of cell cycle arrest that blocked the replication of mitochondrial DNA, contained in the kinetoplast, thereby preventing the initiation of S-phase. Incubation with either compound led to a rapid reduction in mitochondrial membrane potential, and ATP levels decreased by approximately 50% within 1 h. Between 4 and 8 h, cellular calcium levels increased, consistent with release from the depolarized mitochondria. Within the mitochondria, the Succinate Dehydrogenase complex (SDH) was investigated as a target for bisphosphonium salts, but while its subunit 1 (SDH1) was present at low levels in the bloodstream form trypanosomes, the assembled complex was hardly detectable. RNAi knockdown of the SDH1 subunit produced no growth phenotype, either in bloodstream or in the procyclic (insect) forms and we conclude that in trypanosomes SDH is not the target for bisphosphonium salts. Instead, the compounds inhibited ATP production in intact mitochondria, as well as the purified F1 ATPase, to a level that was similar to 1 mM azide. Co-incubation with azide and bisphosphonium compounds did not inhibit ATPase activity more than either product alone. The results show that, in Trypanosoma brucei, bisphosphonium compounds do not principally act on succinate dehydrogenase but on the mitochondrial FoF1 ATPase

    Inhibition of mouse liver respiration by Chelidonium majus isoquinoline alkaloids

    Get PDF
    Copyright © 2003 Elsevier Ireland Ltd. All rights reserved.The alkaloids from Chelidonium majus L. which had a significant inhibitory effect in mitochondrial respiration were those which contain a positive charge due to a quaternary nitrogen atom, i.e., chelerythrine, sanguinarine, berberine and coptisine, both with malate+glutamate or with succinate as substrates. When malate+glutamate was used as substrate, chelerythrine and berberine, which contain methoxy groups, were particularly more active, since they had a strong effect even at low concentrations. In submitochondrial particles, berberine and coptisine had a marked inhibitory effect on NADH dehydrogenase activity but practically no effect on succinate dehydrogenase activity, whereas chelerythrine and sanguinarine inhibited more strongly succinate dehydrogenase than NADH dehydrogenase, which is in agreement with the results found for mitochondrial respiration. Protopine and allocryptopine, which did not inhibit mitochondrial respiration, strongly inhibited NADH dehydrogenase in submitochondrial particles, but had no effect on succinate dehydrogenase activity

    Mitogenome and Nuclear-encoded Fungicide-target Genes of Thecaphora frezii - Causal Agent of Peanut Smut

    Get PDF
    Background: Thecaphora frezii Carranza and Lindquist causes smut disease in peanut (Arachis hypogaea L.) resulting in up to 35% yield losses. Fungicides have shown ineffective in controlling the disease; whereas research on the molecular basis of that fungicide resistance has been hindered because of the lack of genetic information about T. frezii. The goal of this work was to provide molecular information about fungicide-target loci in T. frezii, including its mitochondrial genome (mitogenome) and critical nuclear-encoded genes. Results: Here we report the complete annotated mitogenome of T. frezii, a 123,773 bp molecule containing the standard 14 genes that form part of mitochondrial complexes I, III, IV and V, 22 transfer RNAs, small and large subunits of ribosomal RNA, DNA polymerase, ribonuclease P, GII-reverse transcriptase/maturase, nine hypothetical open-reading frames and homing endonucleases (LAGLIDADG, GIY-YIG, HEG). In addition, we report the full-length cDNA sequence of T. frezii cytochrome b (cob) and cytochrome oxidase 1 (cox1) genes; as well as partial sequences of T. frezii succinate dehydrogenase (sdhb), ergosterol biosynthesis (Erg4), cytochrome P450 (cyp51), and beta tubulin (β-tubulin) genes, which are respective targets of strobilurins, quinone oxidation inhibitors, triazoles and beta-tubulin inhibitor fungicides commonly used in the peanut crop. Translation of cob and sdhb genes in this particular T. frezii isolate suggests potential resistance to strobilurin and carboxamide fungicides. Conclusion: The mitogenome and nuclear-encoded gene sequences presented here provide the molecular tools to research T. frezii fungicide-target loci

    Natural History and Management of Familial Paraganglioma Syndrome Type 1: Long-Term Data from a Large Family

    Get PDF
    Head and neck paragangliomas are the most common clinical features of familial paraganglioma syndrome type 1 caused by succinate dehydrogenase complex subunit D (SDHD) mutation. The clinical management of this syndrome is still unclear. In this study we propose a diagnostic algorithm for SDHD mutation carriers based on our family case series and literature review. After genetic diagnosis, first evaluation should include biochemical examination and whole-body imaging. In case of lesion detection, nuclear medicine examination is required for staging and tumor characterization. The study summarizes the diagnostic accuracy of different functional imaging techniques in SDHD mutation carriers. 18F-3,4-dihydroxyphenylalanine (18F-DOPA) positron emission tomography (PET)-computed tomography (CT) is considered the gold standard. If it is not available, 123I-Metaiodobenzylguanidine (MIBG) could be used also for predicting response to radiometabolic therapy. 18F-fluoro-2-deoxy-D-glucose (18F-FDG) PET-CT has a prognostic role since high uptake identifies more aggressive cases. Finally, 68Ga-peptides PET-CT is a promising diagnostic technique, demonstrating the best diagnostic accuracy in our and in other published case series, even if this finding still needs to be confirmed in larger studies. Periodic follow-up should consist of annual biochemical and ultrasonographic screening and biannual magnetic resonance examination to identify biochemical silent tumors early

    Succinate dehydrogenase (SDH)-deficient renal carcinoma:a morphologically distinct entity: a clinicopathologic series of 36 tumors from 27 patients

    Get PDF
    Succinate dehydrogenase (SDH)-deficient renal carcinoma has been accepted as a provisional entity in the 2013 International Society of Urological Pathology Vancouver Classification. To further define its morphologic and clinical features, we studied a multi-institutional cohort of 36 SDH-deficient renal carcinomas from 27 patients, including 21 previously unreported cases. We estimate that 0.05% to 0.2% of all renal carcinomas are SDH deficient. Mean patient age at presentation was 37 years (range, 14 to 76 y), with a slight male predominance (M:F=1.7:1). Bilateral tumors were observed in 26% of patients. Thirty-four (94%) tumors demonstrated the previously reported morphology at least focally, which included: solid or focally cystic growth, uniform cytology with eosinophilic flocculent cytoplasm, intracytoplasmic vacuolations and inclusions, and round to oval low-grade nuclei. All 17 patients who underwent genetic testing for mutation in the SDH subunits demonstrated germline mutations (16 in SDHB and 1 in SDHC). Nine of 27 (33%) patients developed metastatic disease, 2 of them after prolonged follow-up (5.5 and 30 y). Seven of 10 patients (70%) with high-grade nuclei metastasized as did all 4 patients with coagulative necrosis. Two of 17 (12%) patients with low-grade nuclei metastasized, and both had unbiopsied contralateral tumors, which may have been the origin of the metastatic disease. In conclusion, SDH-deficient renal carcinoma is a rare and unique type of renal carcinoma, exhibiting stereotypical morphologic features in the great majority of cases and showing a strong relationship with SDH germline mutation. Although this tumor may undergo dedifferentiation and metastasize, sometimes after a prolonged delay, metastatic disease is rare in the absence of high-grade nuclear atypia or coagulative necrosis
    • …
    corecore