11,178 research outputs found

    Mapping the Physical Properties of Cosmic Hot Gas with Hyper-spectral Imaging

    Full text link
    A novel inversion technique is proposed to compute parametric maps showing the temperature, density and chemical composition of cosmic hot gas from X-ray hyper-spectral images. The parameters are recovered by constructing a unique non-linear mapping derived by combining a physics-based modelling of the X-ray spectrum with the selection of optimal bandpass filters. Preliminary results and analysis are presented.Comment: 6 pages, 5 figures; accepted by the 5th IEEE Workshop on Application of Computer Vision (WACV/MOTION 2005), Breckenridge, CO, USA, 2005; uses ieee.cls (included). For a pdf version with full-resolution figures, try http://www.cs.bham.ac.uk/~exc/Research/Papers/ieee_astro_05.pd

    Photonics simulation and modelling of skin for design of spectrocutometer

    Get PDF
    fi=vertaisarvioitu|en=peerReviewed

    COMPUTER-AIDED QUANTITATIVE EARLY DIAGNOSIS OF DIABETIC FOOT

    Get PDF
    Diabetes is an incurable metabolic disease characterized by high blood sugar levels. The feet of people with diabetes are at the risk of a variety of pathological consequences including peripheral vascular disease, deformity, ulceration, and ultimately amputation. The key to managing the diabetic foot is prevention and early detection. Unfortunately, current hospital centered reactive diabetes care and the availability of inadequate qualitative diagnostic screening procedures causes physicians to miss the diagnosis in 61% of the patients. We have developed a computer aided diagnostic system for early detection of diabetic foot. The key idea is that diabetic foot exhibits significant neuropathic and vascular damages. When a diabetic foot is placed under cold stress, the thermal recovery will be much slower. This thermal recovery speed can be a quantitative measure for the diagnosis of diabetic foot condition. In our research, thermal recovery of the feet following cold stress is captured using an infrared camera. The captured infrared video is then filtered, segmented, and registered. The temperature recovery at each point on the foot is extracted and analyzed using a thermal regulation model, and the problematic regions are identified. In this thesis, we present our research on the following aspects of the developed computer aided diagnostic systems: subject measurement protocols, a trustful numerical model of the camera noise and noise parameter estimations, infrared video segmentation, new models of thermal regulations, thermal patterns classifications, and our preliminary findings based on small scale clinical study of about 40 subjects, which demonstrated the potential the new diagnostic system

    Practical Measurement and Reconstruction of Spectral Skin Reflectance

    Get PDF
    We present two practical methods for measurement of spectral skin reflectance suited for live subjects, and drive a spectral BSSRDF model with appropriate complexity to match skin appearance in photographs, including human faces. Our primary measurement method employs illuminating a subject with two complementary uniform spectral illumination conditions using a multispectral LED sphere to estimate spatially varying parameters of chromophore concentrations including melanin and hemoglobin concentration, melanin blend-type fraction, and epidermal hemoglobin fraction. We demonstrate that our proposed complementary measurements enable higher-quality estimate of chromophores than those obtained using standard broadband illumination, while being suitable for integration with multiview facial capture using regular color cameras. Besides novel optimal measurements under controlled illumination, we also demonstrate how to adapt practical skin patch measurements using a hand-held dermatological skin measurement device, a Miravex Antera 3D camera, for skin appearance reconstruction and rendering. Furthermore, we introduce a novel approach for parameter estimation given the measurements using neural networks which is significantly faster than a lookup table search and avoids parameter quantization. We demonstrate high quality matches of skin appearance with photographs for a variety of skin types with our proposed practical measurement procedures, including photorealistic spectral reproduction and renderings of facial appearance

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    Automated design of robust discriminant analysis classifier for foot pressure lesions using kinematic data

    Get PDF
    In the recent years, the use of motion tracking systems for acquisition of functional biomechanical gait data, has received increasing interest due to the richness and accuracy of the measured kinematic information. However, costs frequently restrict the number of subjects employed, and this makes the dimensionality of the collected data far higher than the available samples. This paper applies discriminant analysis algorithms to the classification of patients with different types of foot lesions, in order to establish an association between foot motion and lesion formation. With primary attention to small sample size situations, we compare different types of Bayesian classifiers and evaluate their performance with various dimensionality reduction techniques for feature extraction, as well as search methods for selection of raw kinematic variables. Finally, we propose a novel integrated method which fine-tunes the classifier parameters and selects the most relevant kinematic variables simultaneously. Performance comparisons are using robust resampling techniques such as Bootstrap632+632+and k-fold cross-validation. Results from experimentations with lesion subjects suffering from pathological plantar hyperkeratosis, show that the proposed method can lead tosim96sim 96%correct classification rates with less than 10% of the original features
    corecore