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Abstract 

 

Diabetes is an incurable metabolic disease characterized by high blood sugar levels. 

The feet of people with diabetes are at the risk of a variety of pathological consequences 

including peripheral vascular disease, deformity, ulceration, and ultimately amputation. 

The key to managing the diabetic foot is prevention and early detection. Unfortunately, 

current hospital centered reactive diabetes care and the availability of inadequate 

qualitative diagnostic screening procedures causes physicians to miss the diagnosis in 61% 

of the patients. We have developed a computer aided diagnostic system for early detection 

of diabetic foot. The key idea is that diabetic foot exhibits significant neuropathic and 

vascular damages. When a diabetic foot is placed under cold stress, the thermal recovery 
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will be much slower. This thermal recovery speed can be a quantitative measure for the 

diagnosis of diabetic foot condition. In our research, thermal recovery of the feet following 

cold stress is captured using an infrared camera. The captured infrared video is then filtered, 

segmented, and registered. The temperature recovery at each point on the foot is extracted 

and analyzed using a thermal regulation model, and the problematic regions are 

identified. In this thesis, we present our research on the following aspects of the developed 

computer aided diagnostic systems: subject measurement protocols, a trustful numerical 

model of the camera noise and noise parameter estimations, infrared video segmentation, 

new models of thermal regulations, thermal patterns classifications, and our preliminary 

findings based on small scale clinical study of about 40 subjects, which demonstrated the 

potential the new diagnostic system. 
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# Abbreviators  Meaning 

1.  IR Infrared (meaning thermal infrared as default) 

2.  NIR Near infrared 

3.  ROI Region of interest 

4.  [D]PN [Diabetic] peripheral neuropathy 

5.  ODE Ordinary differential equation 

6.  PDE Partially differential equation 

7.  FLIR FLIR model SC 305 infrared camera 

8.  Heimann Heimann 32x31 infrared array module 

9.  CCD Charge-coupled device 

10.  CMOS Complementary metal–oxide–semiconductor 

11.  FOV Field of view 

12.  LED Light emission diode 

13.  PCB Printed circuit board 

14.  BB Black body 

15.  FIR Finite impulse response (filter) 

16.  ACF Autocorrelation function 

17.  CCF Cross-correlation function 

18.  MS Microsoft (company name) 

19.  VBA Visual basic for application (programming language) 

20.  RGB Red-green-blue (color space, visible band) 

21.  2D (3D) Two-dimensional (three-dimensional) 
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22.  GUI Guided user interface 

23.  CAD Computer-aided diagnosis 

24.  LF (HF) Low (high) frequency 

25.  PCA Principal component analysis 

26.  ICA Independent component analysis 

27.  CIVD Cold-induced vasodilation 
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Introduction 

Sing, goddess, the anger of Peleus' son Achilles and its devastation... 

Homer. Iliad. 

The lock has been filled with melted bronze. Who knows what's in there? 

Shi Nai'an, and Luo Guanzhong. Water Margin. 

According to the Center for Disease Control (CDC), diabetes afflicts an estimated 

171 million people worldwide. Diabetes patients are at risk of a wide range of 

complications including heart disease, kidney disease (nephropathy), ocular diseases 

(diabetic retinopathy), and diabetic peripheral neuropathy (hereafter DPN), i.e., nerve 

damage [1][2][3]. Neuropathy most often affects in the lower extremities (i.e., leg and foot) 

and can lead to serious pathological consequences. In this research, we focus on the feet of 

diabetes patients, which are at risk of peripheral neuropathy. It is estimated that 50% of 

diabetes have some degree of neuropathy. Fifteen percent of them will develop a foot ulcer 

during the lifetime [2][4][5][6]. Foot ulcers are the main cause for 85% of lower extremity 

amputation in patients with diabetes [7][8][9][10].   

In the US, diabetes afflicts approximately 25.8 million Americans (8.3% of US 

population) [11]. The cost for managing diabetes was 245 Billion USD in 2012, of which 

one third can be attributed to diabetic foot. The long-term management of diabetes has 

become one of the greatest challenges and burdens of the US Health Care System. The goal 

of this research is to develop a computer aided diagnostic system for the early detection 



2 

 

and prevention of diabetic foot conditions. 

Studies have shown that neuropathy is a cause for the impairment of blood flow in 

the diabetic foot [12][13]. Patients with long-standing neuropathy have poor regulatory 

mechanisms and microcirculatory dysfunction [14][15]. This condition is linked to 

neuropathic complications that alter the regulatory mechanisms controlling blood flow in 

the extremities (e.g., foot), which is confirmed by laser Doppler studies [16][17][18]. 

The key to preventing the advanced stages of DPN is early detection and 

intervention. Traditional techniques for diagnosing peripheral neuropathy are mostly based 

on sensory examination. Examples of these tests include Semmes-Weinstein monofilament 

testing [19], i.e., a monofilament wire is used to exert about 10 gram of force against a 

location on plantar surface of the foot for 1 second, tuning fork [20][21], pinprick sensation 

[22], vibration perception threshold [23][24], just to name a few. Most of these tests are 

simple and noninvasive and aim to determine if a patient has lost sensation in the feet. The 

patients who for example, cannot reliably detect the location of a monofilament are 

considered to have lost sensation and have developed neuropathy. Many of these tests 

unfortunately present significant inter- and intra-observer variability. Studies have revealed 

that physicians may miss the diagnosis of diabetic peripheral neuropathy in as much as 

61% of patients.  A reliable and quantitative means for evaluating capillary function for 

early (possibly pre-clinical) diagnosis of peripheral neuropathy and the risk of foot ulcers 

are still lacking. A repeatable means for accurately measuring pre-clinical signs of 

peripheral neuropathy would reduce significantly the magnitude of morbidity from this 

disease.  
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We have developed a new system for early quantitative detection of diabetic 

neuropathy based on thermal imaging and bioinformatics techniques. The key to our 

system is to use infrared imaging to quantitatively measure the thermal response of the feet 

of diabetic patients following cold stress. The technique is based on the theory that 

neuropathy causes impairment of blood flow in the diabetic foot [13]. Patients with 

neuropathy will have poor thermoregulation [14]. However, unlike the previous attempts, 

which used thermal imaging to image diabetic foot [25][26][27][28][29], and focused on 

discovering skin/tissue temperature differences for individuals and spatial variations, we 

focused on the thermoregulation characteristics with respect to time following cold 

stimulus. The rationale for this, which has been hypothesized by a number of other 

investigators [30][31][32], is that with poor thermoregulation, a diabetic foot after being 

cooled or warmed should recover slower to the core body temperature.  

In our new system, a dynamic technique has been employed to overcome the 

shortcomings of previous static thermal measurements. More specifically, a cold stimulus 

is first applied to the diabetic foot, which will trigger the thermal auto-regulation. The 

recovery of the foot to the core body temperature is then captured with a thermal imaging 

device. The thermal video is then processed and analyzed to produce a quantitative measure 

of the thermoregulation of the foot. The model parameters obtained are finally used to 

classify the two main categories of interests, i.e., diabetic patient with and without risk of 

peripheral neuropathy. It is also worthwhile to note that such studies have only been made 

possible in the recent decade with the availability of high resolution and high sensitivity 

portable thermal imaging devices. Unfortunately, even in present times these devices 

cannot be claimed as low cost ones. Thus, another goal we had during this research is to 
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develop a low cost medical embedded system that provides in-home, quantitative, objective 

and repeatable means for early detection of diabetic foot. 

The research presented in this dissertation is multidisciplinary, and spans statistical 

physics, image processing, physiology and medicine, applied electronics, control theory, 

and of course, computer science as well. The rest of the work is organized as follows. 

Chapter 1 describes our clinical experimental set up, which includes the IRB-approved 

patient study protocol and characteristics of the measuring devices. Chapter 3 describes 

the preprocessing of the captured infrared video, registration of video frames and tracking 

of the feet. Chapter 4 presents our novel bio-heat transfer models based on 

thermoregulation for parameter extraction for the recovery phase. Chapter 5 is about the 

modeling of Heat transfer during the cooling phase extends the thermal model to the 

cooling phase of the experiment. Chapter 6 discusses different approaches of diagnosis and 

presents some classification results. Chapter 7 concludes the thesis and discusses future 

work. 
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Chapter 1 The experiment 

His hand automatically kept on making the dainty motion, practiced a 

thousand times over, of dunking the handkerchief, shaking it out, and 

whisking it rapidly past his face, and with each whisk he automatically 

snapped up a portion of scent-drenched air, only to let it out again with the 

proper exhalations and pauses. Until finally his own nose liberated him from 

the torture, swelling in allergic reaction till it was stopped up as tight as if 

plugged with wax. He could not smell a thing now, could hardly breathe. 

Patrick Süskind, The Perfume. 

1.1 The standard protocol 

The general idea of the experiment is to take a thermal infrared video of the foot 

before and after the cold stress. The following equipment has been used for the experiment, 

see Figure 1.1. : 

 A water basin for 2 gallons of cooled water with a digital thermometer for tracking the 

water temperature, Figure 1.1. .c) 

 A chair  

 A feet support. 

 Infrared cameras (see detail described below). (We used a Panasonic RGB camera 

during the early stage of the experiments. We have later on decided that the RGB video 

is not useful to our purpose.) 
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 The tripod[s] for the cameras. 

 Semmes-Weinstein monofilament, see Figure 1.1. b). 

 128-Hz vibration tuning fork, see Figure 1.1.  b). 

 Computer for camera control and data storage and processing.  

 

a) 

 

b) 

 

c) 

Figure 1.1.  a) the natural experiment setup  

b) the 10 g. Semmes-Weinstein monofilament (above) and the 128-Hz vibration tuning fork (below)  

c) the bagged foot in the water bassin 

The subject study protocol approved by West Cost Institutional Review Board 

(IRB) includes the following steps. 

1. Reviewing of the subject including the existed diagnosis and current medication used.  

2. Visual inspection of the feet and toes; any existence of reddened, pale, blue or shiny 

skin, crooked toes, plantar callus, etc. must be noted.  
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3. 10-gram monofilament test. The goal is to check the sensitivity of the skin to 10 gram 

of force [33][34]. The inability to feel the filament indicates that patient is at risk for 

advanced stages of peripheral neuropathy, i.e. foot ulceration. More specifically, the 

monofilament is applied to the subject with eyes closed for one second (see Figure 1.2. 

to the pre-selected points of the foot Figure 1.2.  The patient should respond “yes” each 

time he/she feels the stimulus.  

4. Vibration tuning fork test [33][35]]. The vibration perception threshold (VPT) test 

assesses nerve fiber function. The tuning fork is stroke and applied to the pre-selected 

points. The patient with eyes closed should respond when the vibration is “on” and 

when “off”, see Figure 1.2.  

5. Clean the patient’s feet with an alcohol tissue.  

6. A 3-minute thermal IR video is then taken of the patient’s foot. This video will be used 

as a baseline control video. 

7. Put the patient’s foot into a thin waterproof plastic bag. Put the foot to the cold bath 

with a temperature ~13C for a ~5 minutes, see Figure 1.1.  Record the room air 

temperature and the water temperature before and after the cold stress. 

8. Take the foot out of the cold water, remove the plastic bag, and place the foot on the 

feet support. Take the thermal IR video for 15 minutes. 

Note that, the cooling water temperature, cooling time, and the how long the recovery 

process will be imaged are all experimental parameter. The numbers shown were from the 

original protocol. We have investigated the impact from varying these parameters. The 

details are presented in the Chapter 4.3. 
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1.2 The standard protocol 

The following three types of subjects are enrolled in our study: 

 Diabetes for 10 years with no peripheral neuropathy 

 Diabetes for 10 years with peripheral neuropathy 

 Normal (control) 

  

a) b) 

 
 

c) d) 

Figure 1.2.  Monofilament test a) and the corresponding application points b) [34];  

vibrating fork test c) and the corresponding application points d) [35].  

The existed diagnosis is assumed as the ground truth for the future classification. 

Visual inspections, monofilament test, and tuning fork test are included to detect the 
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problematic areas of the foot if any. 

The points of interests for the tuning fork test correspond to the bones [2] and 

described in Figure 1.2. . The monofilament test was performed to the highlighted points 

on the foot as it is shown at Figure 1.2. , which also correspond to the bones.  

1.3 Summary. 

Totally the data of 70 experiments with 41 subjects have been collected. 

Particularly: 37 experiments with 11 control subjects (including 23 experiments with the 

subject VQB 04); 14 experiments with 14 subjects with diagnosed DPN for 10 years or 

more; 19 experiments with 16 diabetic subjects without diagnosed DPN. 

 

 



10 

 

Chapter 2 The cameras 

2.1 General Requirement 

The infrared (hereafter IR) camera is the main measuring device in our experiment. 

Thermal (functional) imaging can anatomically show relevant information that is useful in 

the assessment of local and regional function of the microvascular network. Performing 

regional analysis of the effects of cold provocation is equally important in the evaluation 

of people with diabetes. The thermal image videos present information about the blood 

delivery and blood extraction for a particular region as affected by damaged neurons and 

small vessels in that region of the body. For example, an image of the dorsal surface of the 

foot reflects both the systemic microvascular status and the status of the large 

(macrovascular) vessels supplying the leg. A pattern of the toes and plantar regions of the 

foot will reveal the spatial and temporal dynamics of the microvascular network, which 

contains information not currently analyzed for finding the relations of these parameters 

(spatial and temporal) to the risk of the onset or increase in the level of peripheral 

neuropathy. 

The first main requirement to the cameras is the wavelength. We need to acquire a 

thermal radiant emittance within the thermal IR band, i.e., the spectral change of 7-13 m 

region of the infrared spectrum. At these wavelengths, one is measuring the thermal 

emission from the field of view, in our case the plantar region of the subject’s foot. The 

wavelength determines the type of optics (usually germanium vs. traditional silicon) and 

the type of sensors (usually uncooled or even liquid nitrogen cooled bolometers vs. widely 
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used CCD and CMOS ones) which both make the thermal IR cameras more expensive than 

the cameras working in visual or Near IR band. (Note that, the Near IR band, of NIR band 

if the typical spectral range for night vision applications.) 

When choosing an IR camera, the following aspects were considered: (1) accuracy 

and the thermal sensitivity, (2) dynamic range, (3) frame rate, (4) spatial resolution, and 

(5) cost. The camera choice represents a tradeoff between the above parameters. 

2.2 FLIR SC305 

This 320x240 pixel thermal IR camera became our main measurement device. It 

has the frame rate ~8 Hz, 14 bpp (bit per pixel) dynamic range, 0.05C thermal sensitivity 

in 7.5-13 m range [36]. It uses uncooled bolometer with 25 m pixel pitch as the thermal 

IR sensor and costs US$ 12,000 (with the software) at the time of the experiment. It has 

the prime lens with 18 mm focal length and f-number 1.3 which corresponds to 25 18.8 

field of view (hereafter FOV) with the focal plane electronically adjustable from the 

minimum distance 0.250 m to infinity. The depth of field at 0.8 m is ~300 mm which is 

sufficient to keep the whole foot in focus.  

2.3 Heimann array module 

We have also experimented with the Heimann IR camera, which is about 1/6 of the 

cost of the FLIR 305 camera. The Heimann camera has the prime lens with focal distance 

10 mm and f-number 1.0 which corresponds to 38.8 FOV for the 32x31 pixel sensor with 

220 m pixel pitch [37]. The depth of field is 250 mm at 350 mm distance. The Heimann 

camera is also sufficient for the study but is much noisier than the high-end FLIR camera, 

see the Figure 2.1. , Table 2.1. , and Chapter 2.7 for more details. 
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a) b) 

 

 

c) d) 

Figure 2.1.  FLIR SC305 camera a) and the sample thermal IR foot pattern b); 

Heimann 32x31 array module c) and corresponding thermal IR foot pattern d) 

2.4 Low cost IR diagnostic system 

The high cost of the camera means that the screening is too expensive even for 

clinics and can only be carried out in hospitals or diabetes care centers. Early detection and 

prevention of diabetic foot will require routine monitoring of the foot. Thus, the solution 

to the long-term management of diabetic foot must be a home-oriented, patient/person 

centered process. It is highly demanding to develop a system that is low cost for routine in-

home use. Towards that goal, we present a lightweight, foot neuropathy diagnostic system 

using infrared sensors [38]. 

Figure 2.2. shows the schematic overview of our infrared diagnostic system. The 
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system consists of one microcontroller (Microchip® PIC18F4550 processor), four infrared 

sensors (the Melexis® MLX90614-ESF-DCH infrared temperature sensors [39]), one 

serial communication module and a wireless Bluetooth module. Also, an LED display with 

push buttons is included for user control and interface (not shown in Figure 2.2. ). 

Compared to the FLIR Infrared Camera, which is about $12,000, the embedded system 

costs about $300 (including PCB manufacturing cost), but will be significantly cheaper 

when mass-produced. 

 

Figure 2.2.  The design of the low cost IR diagnostic system 

A graphical user interface application on PC is also implemented using Microsoft 

Visual Studio for receiving and processing data from the embedded system. 

The Melexis® MLX90614-ESF-DCH infrared sensor can be used for non-contact 

temperature measurement. It is packaged in a TO-39 can with integrated low noise 

amplifier, 17-bit ADC and DSP unit. The field of view is 10-degree. The sensor supports 

both SMBus and PWM with 10-bit output. The maximum temperature range is -

40C~125C and can reach up to the resolution of 0.02C. In the range of 0C~50C, the 

sensor nominal accuracy is 0.5C. The voltage supply of the sensor is 2.6 ~ 3.6V, and the 

current consumption is about 2mA. When first powered on, the sensor takes 0.65 seconds 

to warm up, and the response time is about 50ms in use. The sensor also supports a sleep 

mode for power saving. Under the sleep mode, the sensor pulls a negligible current of less 
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than 6A, and it will take about 33ms to wake up the sensor. 

 

Figure 2.3.  The low cost IR diagnostic system 

Microchip® PIC18F4550 is a low-power microcontroller and consists of various 

communication and control resources, including Serial-USB adaptor, I2C (i.e., SMBus), 

and PWM. Its operating voltage is 2~5.5V. It has 32KB flash memory, 2KB SRAM, 256B 

EEPROM. It also has a high current for peripherals and can support up to 25mA as sink 

and source. It supports run, idle, and sleep mode. In idle mode, which is most of the time 

we set the controller to, the current is down to 5.8A with all the peripherals on. 

For wireless communication, we select the RN-42 Class 2 Bluetooth Module. It 

supports Baud rate from 1,200 bps up to 921 Kbps, where the non-standard baud rates can 

be programmed. The transmission range is 60 feet (20 meters). Its frequency is 2,402 ~ 

2,480 MHz. It also supports 128-bit encryption and error correction.  Power consumption 

is 26A for sleep mode, 3mA when connected, and 30mA during transmission. However, 

transmission only takes a few microseconds. 
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An LED display is added to facilitate user operations of the device. When turned 

on, the display pulls about 30 ~ 40mA. 

Since the diabetic foot doesn’t affect the foot uniformly, the infrared sensors can 

also be customized to monitor different areas for different patients when prescribed for in-

home monitoring. Our strategy is to use an array of TO-39 sockets, thus allowing the 

sensors to be custom arranged to monitor different regions. 

2.4.1 Power management 

When designing the device, our goal is to run the system on two AA batteries for 

at least a year. Assuming the patient take a measurement once every two days, each 

measurement takes about 15 minutes, and a usual AA battery operates at 1,800 mAh 

(milliampere hour), this means the entire system should be operating at about 40mAh, i.e., 

pulling a current of about 40mA. Our initial measurement indicates that without any power 

management, the total consumption is about 50mA with 4 infrared sensors. Since we are 

measuring patient temperature changes, a sampling rate of 1Hz is sufficient for the 

application. To take advantage of this, we programed the system to put everything to sleep 

whenever possible. This reduces the power consumption to about 3mA on average with the 

LED display turned off.  

It is also worth mentioning that when the system is connected to a computer via 

USB, all power is drawn from the USB connection, and the system is fully turned on. 

2.4.2 Impact of field of view 

Since the device is designed for in-home use, the set up may not always be accurate, 

which means the field of view, i.e., distance from the subject may change. To estimate the 
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impact of field of view, the system was placed at a distance of 2.5 cm, 5 cm, 12.5 cm, and 

25 cm from an object with uniform temperature. For each particular distance, the average 

of 2-minute recording at 1 Hz sampling rate is taken for analyzing the statistical properties 

of the sensor. The results are shown in the table below (recall that our prototype board has 

4 sensors): 

Table 2.1.   

Distance(cm)  

Sensor (C) 
2.5 5 12.5 25 

#1  25.65 25.61 25.61 25.75 

 0.06 0.06 0.05 0.06 

#2  25.81 25.77 25.77 25.89 

 0.06 0.06 0.05 0.06 

#3  25.88 25.80 25.80 25.89 

 0.05 0.06 0.05 0.06 

#4  25.86 25.77 25.78 25.86 

 0.07 0.06 0.06 0.06 

 

As can be seen from the table, the impact of sensor to object distance is almost 

negligible. For a distance of about 25cm, which well beyond the range of our patient 

experiments, the impact of distance is only about 0.15C. 

2.5 Comparison of cameras 

The Table 2.2. collects the main attributes of the specification of the cameras 

described above. 
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Table 2.2.  Specifications of the cameras 

Camera name FLIR SC 305 Heimann 32x31 

array 

Low cost IR 

diagnostic system 

Optical 

Wavelength, m 7.5-13 8-14 5.5-14 

Focal length, mm 18 10 - 

FOV 25x18.8 38.8 10 for each 

sensor 

Minimum focus 

distance, m 

0.25 0.1 0 

F-number 1.3 1.0 - 

Focus Electric (built-in 

motor) 
+ + 

Detector 

Detector type Focal plane array 

(FPA), uncooled 

microbolometer 

Focal plane array 

(FPA), uncooled 

microbolometer 

Single uncooled 

microbolometers 

IR resolution 320×240 32×31 4 single 

Detector pitch, m 25 220 490 (sensor area) 

10000 (distance 

between the 

sensors) 

Data 

Dynamic range, bpp 14 12 10 

Frame rate, Hz 9 20 1 

Measurement 

Thermal sensitivity, 

C 

0.05 0.1 0.02 

Accuracy, C 2 or 2% of 

reading 

3 0.5 (0.1 in 

“medical” range) 

Cost 

Cost, US$ 12.000 2.000 300 (for a single 

test unit) 

Whereas the main differences between the first two cameras are in resolution and 

sensitivity, the low cost diagnostic system represents a completely different approach. The 

closest biological analogies are: the eye of a human (or generally an animal), and the eye 

of an insect; see Figure 2.4. The first one has one main lens, which projects the light (in 

some wavelength range) to the sensor. The parts of the projection corresponding to the 

different pixels (photoreceptors) do not overlap and almost do not have gaps in between 



18 

 

(more precisely, are as dense as the photoreceptors). In the second case each pixel has its 

own lens which are independent, i.e. virtually could be targeted anywhere. There is no focal 

plane for that type of sensors in principle. The “focal plane” could be assumed for the 

planar array of the independent sensors as the plane where the projections of the objects to 

the corresponding sensors are quite dense but do not overlap. 

  

a) b) 

Figure 2.4.  Human eye a) and facet insect eye b) [40] 

Let’s take a look on the synthetic “image” which actually is the superposition of 

the independent signals from the corresponding sensors. For the clearness let’s not literally 

follow the current 4×1 design but generalize the concept as N×M board, which is also 

possible to implement on the element base described above. The minimum diameter of the 

spot which is just 25 mm far from the main “focal plane” for 38.8 FOV is 17.8 mm, i.e. 

the diameter of the spot on the inner arch foot captured by one sensor is that much bigger 

than the diameter of the spot from the ball, see Figure 2.5.  
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a) b) 

Figure 2.5.  Foot shape a) and exaggerated projection of the matrix FOV to the image plane b) 

This feature and corresponding inaccuracy due to 3D feet shape should be taken 

into account, which generally requires of a 3D foot model for the compensation. To avoid 

the overlapping of spots taking into account the non-parallel optical axes we need to bring 

the subject even closer to the “focal plane”. So, we placed the array with the 1 cm distance 

between 10 FOV sensors approximately to 5 cm from the object to get the non-overlapped 

projected spot diameter 8.7 mm, see Figure 2.6.  

  

a) b) 

Figure 2.6.  The experiment setup with the low cost IR diagnostic system a) and the aproximate areas of the 

foot projected to the corresponding sensors (highlighted white circles), b). 
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However, since the embedded system is for in-home use and will be customized for 

tracking particular spot or spots on the foot, it is sufficient for the application.  

2.6 Calibration 

Generally speaking, by calibration, or radiometric calibration we aim to ensure that 

all measurements are accurate and precise. In a nutshell, the calibration will produce a 

function f, such that when applied to the measured value x, T = f (x) is the true temperature 

(within certain pre-specified error criteria). Most cameras require frequent recalibration. 

For example, the FLIR SC 305 camera has to be recalibrated every 6 months as per the 

manufacturer requirements.  

The raw output from IR cameras are 16-bit integers from analog-to-digital converters 

(ADC). There raw output are not temperature readings but the measured radiant emission 

of the objects. From Stefan-Boltzmann Law [41], the energy radiated by a blackbody 

radiator per second per unit area is proportional to the fourth power of the absolute 

temperature and is given by 
𝑃

𝐴
= 휀𝜎𝑇4 , where P is the radiated power, A is the area, 휀 is 

the emissivity (0.98 for human tissue), 𝜎 is the Stefan-Boltzmann constant (5.670310-8 

watts/m2 K4), and the temperature, T, is in degrees Kelvin K. Thus the raw output, i.e., the 

radiant emission is proportional to the fourth power of the absolute temperature T. 

An Omega BB703 black body [42] was used for the calibration of the cameras, see 

Fig. 2.8 a) below, where the black circle is the black body and the digital indicator left 

displays the current temperature value at 0.1C resolution. This black body has a 

temperature range from ambient temperature to 100C with 0.3C stability; see Figure 2.7.  
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a) b) c) 

Figure 2.7.  Omega BB703 black body a) and  

the sample thermal IR patterns during the calibration via FLIR SC305 b) and Heimann 32x31 c) 

Different camera manufacturers use different calibration rules. For FLIR, a 

polynomial degree 4 is suggested for the entire camera, see Figure 2.8.  

For the experimental low cost device, we calibrated each sensor individually; 8 

temperature measurements have been done within the 27 ~ 35 C range. During the 

calibration, each sensor was placed 5 cm away from the black body to ensure that the field 

of view of sensor is completely within the active region of the black body.  

The calibration measurements indicated a linear relationship between the set 

temperature of the black body and the sensor readings with an accuracy of 0.2 ~ 0.4C; see 

Figure 2.8.  For the temperatures below the calibrated range we used corresponding 

extrapolation. These calibrations gave us confidence that the sensors were indeed within 

the specifications from the manufacturer. 

 



22 

 

 

a) 

 

b) 

Figure 2.8.  Sample calibration data. FLIR CS305 a); one sensor of the low cost IR diagnostic system 

2.7 Noise of the experiment 

Accordingly to [36] and [37], the cameras has uncooled microbolometer array 

thermal infrared sensor; the low cost system has independent microbolometers [39]. 
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Following [43], the main sources of the noise in uncooled microbolometers are the 

following: white Johnson noise, white thermal noise, 1 𝑓⁄  flicker noise due to resistance 

fluctuations, and drift noise with approximately 1 𝑓2⁄  spectral density. The influence of 

other sources of noise such as different environmental noise including microphonics 

(vibrations which can produce noise in electric circuits), air currents, light induced noise 

and electromagnetic influence are usually minimized by the manufacturers and can be 

neglected. Thus, the power spectrum of the noise can be written [43] as follows: 

𝑆(𝑓) = 𝑎2 +
𝑏2

𝑓
+
𝑐2

𝑓2
, 

where 𝑎2 , 𝑏2, and 𝑐2 stand for the variances of the white, flicker, and drift noise, 

correspondingly. The drift noise could be almost filtered out with the high-pass filter. 

Almost in the whole bandwidth the 1 𝑓⁄  noise is the most valuable component; only at the 

very high frequencies the spectrum becomes almost invisibly more flat due to Johnson 

noise.  

1 𝑓⁄  noise seems to have equal power at all frequencies. The terms flicker noise, 

1/f noise, and pink noise [44] are synonyms. “Pink” color has been chosen to emphasis that 

this noise it has high intensity on low frequencies and low intensity at high frequencies, 

but fades with frequency increasing not as fast as 1 𝑓2⁄  “red” noise. The term “pink noise” 

is more general and used not only for the canonic 1 𝑓⁄ , but also for the 1 𝑓2−𝛼⁄  noise, 

where 0 < 𝛼 < 2. 
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a) b) 

  

c) d) 

Figure 2.9.  Sample realizations, i.e. zero-mean temperature dependence at one pixel in time denoted as  (left 

column, blue plots) and corresponding loglog power spectra (right column, purple plots) of thermal IR 

signals from FLIR SC305 a) and b), Heimann 32x31 array c) and d), correspondently. 𝑓𝑠 stands for the 

sampling frequencies. 

Generally, pink noise has Tweedie distribution [45], i.e. not necessarily normal. 

The chi-square test of the experimental data refused the normal distribution 0-hypothesis; 

see the plots at Figure 2.10.  Here and below the paragraph is illustrated with the 

experimental data from the FLIR SC305 camera as default (otherwise the different camera 

type is marked). 
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Figure 2.10.  Histograms of zero-mean temperatures at 6 different ROIs with the estimated parameters of the 

corresponding normal random processes and all refused results of chi-square test. 

2.7.1 Separation of the noise 

Let’s first investigate the signal to separate the sources of the noise. Take a brief 

look at Figure 2.9.  a) to see the slow change of the temperature with the period ~4…6 min 

together with the fast changes. Even the most thermostatically stable available source of 

the temperature, which the calibrator is, cannot keep absolutely the same temperature for a 

while. In the environment colder that the required temperature, the calibrator first warms 

up to the little bit higher temperature within the precision. The temperature changes very 

slowly, for a few minutes normally; observe the top-left plot at Figure 2.11. Then it colds 

down until the lower bound, then warms up again, and so on. The change of temperature 

is displayed on the digital indicator of the calibrator (see Figure 2.7.  a). We need to 

determine the frequency cutoff for the actual temperature change to claim the higher 

frequencies as the camera noise. 

Let’s compare the experimental signal Figure 2.9.  with the pure 1 𝑓⁄  spectrum 
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model signal. To obtain such signal one needs just to modulate the power spectrum of the 

white noise and make inverse Fourier transform. Figure 2.11. below shows sample 

experimental and model realizations (top blue plots) and their power spectra with the linear 

interpolation (bottom magenta plots and dash cyan lines, correspondingly). Remind that 

the power spectrum density of the pink noise is 1 𝑓2−𝛼⁄ , and the linear interpolation 

coefficient 𝛼 = 1 corresponds to the “canonic” flicker noise, i.e. to the pure 1 𝑓⁄ . 

 

Figure 2.11.  Zero-mean experimental realization (left top),  

the corresponding numerical model (right top),  

their power spectra with their linear interpolations (botom left and right, correspondently). 

Besides the spectra above look very similar, the processes are quite different. It can 

be detected by comparing their auto- and cross-correlation functions, see Figure 2.12. . 
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Figure 2.12.  Two zero-mean realizations: experimental (left top),  

the corresponding numerical model (right top),  

their auto- and cross-correlation functions (botom left and right, correspondently). 

The cross-correlation function (red solid line bottom left) of the experimental is 

very similar to the low-frequency auto-correlation functions of sample realizations from 

the distant pixels (i.e. with the long Manhattan distance on the sensor plane). It means a 

presence of the low-frequency deterministic component in the experimental signal in 

contrary to the numerical model. It also can be confirmed by the plots Figure 2.13.  below. 

The narrow elliptic distribution of the sample experimental realizations in contrary to the 

near round one for the numerical model means that the experimental random process is 

strongly correlated. 
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a) b) 

Figure 2.13.  Distribution of temperatures for two sample realizations:  

experimntal a) and uncorrelated numerical model b). 

It is not a surprise, as we have noticed above. Let us filter the low frequency 

temperature change of the calibrator’s temperature out. Let us chose the low cut frequency 

of the high pass FIR (finite impulse response) filter with order 777 (i.e. definitely a very 

high order!) as 0.007 of the sampling frequency 𝑓𝑠 (chosen experimentally), see the 

magnitude response at Figure 2.14. . 

One can see that the low pass signals are mutually almost deterministic, especially 

at near pixels, Figure 2.15.  a) with the coordinates at the sensor plane (199, 130) and 

(200,130), i.e. Manhattan distance = 1. The high pass signals are not as correlated as at 

Figure 2.13.  a), but also not as uncorrelated as at Figure 2.13.  b). The experiments have 

shown that one cannot fully avoid the correlation just by increasing the cutoff frequency. 
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a) b) 

Figure 2.14.  Magnitude response of high-pass FIR filter a),  

and the low-pass signals filtered out from the sample realizations b) 

  

a) b) 

  

c) d) 

Figure 2.15.  Distribution of temperatures for two sample realizations:  

low pass filtered near pixels a), low pass filtered distant pixels b),  

high pass filtered near pixels c), high pass filtered distant pixels d). 
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For the illustration, see the correlation functions of the high pass signals in Figure 

2.16.  below. The ACFs of the experimental signals do not look that dramatically different 

to the model as at Figure 2.12.  but look very similar. 

 

Figure 2.16.  Two zero-mean realizations and their high pass filtering:  

experimental (left top), corresponding numerical model (right top),  

and their auto- and cross-correlation functions (botom left and right, correspondently). 

2.7.2 Noise correlation between the pixels of different cameras 

Nevertheless, the CCFs at Figure 2.16. look quite different (compare red solid 

curves at two bottom plots). High peak value ~0.8 of left CCF indicates the presence of the 

correlation between pixels even at high frequencies. Therefore, one cannot claim the 

realizations statistically independent. To make the correspondence between the model and 

the experiment the multivariate Gaussian random number generator is used; then the 

spectrum modulation is applied to the numerical model, as before. The spectra look 
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similarly; the correlation is illustrated at Figure 2.17.  and Figure 2.18. . 

  

a) b) 

  

c) d) 

Figure 2.17.  Normalized correlation coefficients of the highpass experimental a),  

and model b) processes; distribution of high pass realizations: experimental a), and model b). 
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Figure 2.18.  Two zero-mean realizations and their high pass filtering:  

experimental (left top), corresponding numerical model (right top),  

and their auto- and cross-correlation functions (botom left and right, correspondently). 

The really good match between spectral and correlational characteristics of the 

experimental and model processes gives us the promising model. Thus, we can claim the 

noise at FLIR SC305 thermal IR camera as the correlated band-limited pink random 

process. 

Figure 2.17. shows the normalized to one correlation coefficients of the high-pass 

filtered experimental signal a) and of the corresponding numerical model b). Observing the 

correlation coefficients one can see that the correlation between the pixels is stronger for 

the close pixels. It could be explained by the electrical feedback (mostly via induction) 

between the near pixel circuits [46]. The manufacturer company calls this “imperfection in 

detector read-out circuits” and gives a very promising recommendation how to overcome 
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it: “Live with it”. Visually it could look like a column-ordered noise. 

Another possible explanation of the correlation of spatially close pixels is the lens 

blur, i.e. the quality of lens and/or ability of precise focusing are lower than the sensor pitch 

size. In this case the 2D impulse response spot overlaps not just one pixel but also its 

neighbors; therefore, they become correlated. The correlation coefficients of Heimann 

camera indirectly confirm (but not proof) this hypothesis: for the sensor with much bigger 

pitch size (220 m vs. 25 m for FLIR SC305) we don’t see increasing of the correlation 

for the close pixels. Figure 2.19. below illustrates the statistical behavior of the noise of 

the Heimann infrared array. Thus, we can claim the noise at Heimann 32×31 array as the 

uncorrelated band-limited pink random process. 

The sensors of the low cost IR diagnostic system are independent, distant and 

electrically isolated. Nevertheless, they could correlate as well if the distance from the 

device to the object will be big enough to overlap, see Figure 2.5. Unfortunately, the 

geometrical base of this device is greater than the size of the black body’s working surface. 

Thus, the correlation between the sensors of the low cost system cannot be measured 

similarly to the other two cameras. 

We don’t have enough data to differentiate the correlation between pixels due to 

blur and due to electric circuit. Actually, for our research it is sufficient to characterize the 

camera noise, i.e., whether the noise is stationary. 
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a) b) 

  

c) d) 

Figure 2.19.  Heimann array: normalized correlation coefficients of the highpass experimental a),  

and model b) processes; distribution of high pass realizations: experimental a), and model b). 

2.7.3 Investigation of the statistical stationarity of the camera noise 

Flicker noise together with the thermal noise has been predicted by Walter H. 

Schottky in 1918 [47] and first time successfully measured by J.B. Johnson in 1925 [48] 

(and named it as the Schottky effect) and then discovered by Schottky in 1926 [49]. For 

almost a hundred years the number of the publications related to this effect is almost 

constantly growing year by year, see Figure 2.20.  Of course that is because pink noise 

effect exists – I would say – almost everywhere, from the solid state physics and 
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microelectronic devices to astrophysics, from car traffic to macroeconomics, from biology 

to geology, from music to weather behavior… On the other hand, it cannot exist by the 

contradiction to Parseval’s theorem: the spectrum of a random process must be integrable, 

whereas ∫
𝑑𝑓

𝑓

∞

−∞
= +∞, so called cutoff paradox [51].  

 

Figure 2.20.  Growth of the 1/𝑓 noise-related publications [52]. 

The stationarity of the flicker noise also is an interesting question. Many researchers 

from Benoit Mandelbrot [50] and until present times [51] claim that 1/𝑓 noise can be non-

stationary and consequently non-self-averaging observable, non-ergodic. Note that “can be 

non-stationary” does not mean that it necessarily is non-stationary. The assumption of 

stationarity and ergodicity is very important for our measurements. Ergodicity makes 

possible to get the same statistical properties for the different particular pixels and ROIs, 

and thus to investigate them similarly. Moreover, it makes possible to trust to the 

measurements made with the array of bolometers. Stationarity makes possible to trust the 

measurements made in a long time and also to model the noise by corresponding shaping 

of stationary white noise spectrum. Thus, we are doomed to check the stationarity and 
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ergodicity of the experimental noise to go further.  

Let’s check the hypothesis of stationarity and ergodicity with the method described 

in [53]. The non-stationarity means that the short time average of the squared noise seemed 

to exhibit larger statistical fluctuations than had been expected for stationary stochastic 

processes. Thus, the experimental signals representing the tested stochastic process were 

band limited with different ratios of bounding frequencies, squared, and exponentially 

weighted averaged. As the result, we got the variance noise. The properties of this 

stochastic process have been compared to the properties of similarly weighted 1/𝑓 –shaped 

normally distributed stationary and ergodic zero mean stochastic process. In contrary to the 

original investigation [53], we will use the advantages of digital signal processing and 

explicit formulas for the cross-correlation functions. 

Denote a normally distributed stationary and ergodic zero mean stochastic process 

as 𝜉(𝑡). Let 𝜎𝜉
2 stands for the variance of 𝜉 and 𝜓𝜉𝜉(𝜏) = 𝐸[𝜉(𝑡)𝜉(𝑡 + 𝜏)] for its 

autocorrelation function. New random variable 휂1(𝑡) proposed in [53] for exponentially 

weighted average square of 𝜉(𝑡) is 

 

휂1(𝑡) =
1

𝜏
∫ 𝑒−

𝑥
𝑇𝜉2(𝑡 − 𝑥)𝑑𝑥

∞

0

 
  

Physically it corresponds to the integration of the square weighted average square 

with the integrating RC circuit, with the time constant 𝜏 = 𝑅𝐶. We have a possibility to 

integrate the squared 𝜉(𝑡) digitally, so there is no need of the exponent weighting and by 

this we introduce the following stochastic process: 
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휂(𝑡) =
1

𝜏
∫𝜉2(𝑡 − 𝑥)𝑑𝑥

𝜏

0

 
  

Mean of 휂(𝑡) is 𝜎𝜉
2 and the variance is  

 
𝜎휂
2 =

2

𝜏
∫𝜓

𝜉𝜉
2 (𝑥) 𝑑𝑥

𝜏

0

 
  

Physically the random process 휂(𝑡) means the variance noise of 𝜉(𝑡).  

Let the 1/𝑓 noise be band-limited with the frequencies 
𝑓ℎ

𝑓𝑙
> 1; then the power 

spectral density inside the band pass is 𝑆𝜉𝜉(𝑓) =
𝜎𝜉
2

2𝑓ln
𝑓ℎ
𝑓𝑙

. The lower frequency limit cuts of 

the spectrum near 0 and makes the integral ∫
𝑑𝑓

𝑓

∞

−∞
 finite. Physically it means that we are 

investigating the stationarity during the certain time limit. The noise of our cameras is 

naturally band-limited, as it has been shown above, so we are fine with this assumption. 

The normalized autocorrelation function for the band-limited pure 1/𝑓 noise has been 

derived in [54] is 

 
𝜓𝜉𝜉(𝑡)

𝜓𝜉𝜉(0)
=
ln (

𝜏2
𝑡 )

ln (
𝜏2
𝜏1
)
 

  

where 𝜓𝜉𝜉(0) = 𝜎𝜉
2 and 𝜏1,2 =

1
𝑓ℎ,𝑙
⁄ , correspondently and 𝜏1 < 𝑡 < 𝜏2.  

This yields the normalized variance 
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𝜎휂
2

𝜎𝜉
4 =

2

𝜎𝜉
4∫(𝜎𝜉

2
ln (

𝜏2
𝑥
)

ln (
𝜏2
𝜏1
)
)

2

𝑑𝑥 =

𝜏

0

2

τln2
𝑓ℎ
𝑓𝑙

∫ ln2
1

𝑓𝑙𝑥
𝑑𝑥

𝜏

0

 

  

As usually for this kind of noise we are not lucky to get the explicit formula for the 

integral above. 

Let’s now consider not only exact 1/𝑓 noise but also a more general case: the noise 

with the power spectra 𝑓−2+𝛼, where 0 ≤ 𝛼 ≤ 2. The case 𝛼 = 1 corresponds to case we 

have just discussed above. The cases with 1 ≤ 𝛼 ≤ 2 correspond to more wideband noise, 

which should not appear in our experiments. The normalized autocorrelation function for 

the case 0 ≤ 𝛼 < 1 (and all other noted cases as well) has been derived by Watanabe in 

[55]: 

 
𝜓𝜉𝜉(𝑡)

𝜓𝜉𝜉(0)
= {

1 − (
𝑡

𝜏0
)
1−𝛼

, 𝑡 ≤ 𝜏0

0, 𝑡 > 𝜏0 

 
  

where  

 
𝜏0 = {(𝜏2

1−𝛼 − 𝜏1
1−𝛼) Γ(𝛼)⁄ }

1
1−𝛼,   

and 𝛤(. ) is the gamma-function: Γ(𝛼) = ∫ 𝑥𝛼−1𝑒−𝑥𝑑𝑥
∞

0
. 

More precisely, this ACF as well as the ACF of the canonic 1/𝑓 pink noise has 

been computed assuming Lagrangian [54] and multi-Lagrangian [55] noise model. Other 

examples of 1/𝑓 noise such as fractional Gaussian noise [56] [57], fractional Brownian 

motion [58][59][60][61], Cauchy-class process [63], generalized Cauchy process [64], 
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and some other ones are not considered here. It means that their ACFs are not substituted 

to (2.3), mostly because, looking a bit forward, we have been enough satisfied with the 

results with the multi-Lagrangian model; also they don’t have the explicit formulas of 

ACFs for the band-limited process. See the observation [65] for the comparison of the 

above mentioned models. 

Similarly, substituting the correlation function to the expression for the normalized 

variance of 휂(𝑡) (2.3) one get: 

 𝜎휂
2

𝜎𝜉
4 =

2

𝜎𝜉
4∫ (𝜎𝜉

2 (1 − (
𝜏𝑥

𝜏0
)
1−𝛼

))

2

𝑑𝑥

𝜏0

0

. 
  

We need to compare normalized variance of 휂(𝑡) (2.5) or (2.8) depending on the 

noise power 𝛼 with the experimental results in the range of 
𝑓ℎ

𝑓𝑙
. Good correspondence 

between the measured and calculated data should mean that the noise could be assumed as 

the stationary. 

The Omega calibrator has been targeted by the FLIR and Heimann cameras, as it 

shown in Figure 2.21.  The regions of interest are highlighted as white rectangles. The 

sizes of ROIs are 11×11 for FLIR and 5×5 for Heimann. Time series for each pixel 

corresponds to the particular realization of the stochastic processes 𝜉(𝑡), which covers the 

whole ROI. The bandpass FIR filter order 777 has been chosen to cutoff the frequency; 

Figure 2.22. clearly demonstrates the quality of the filtering. 
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a) b) 

Figure 2.21.  Selected ROIs for FLIR SC305 a) and Heimann 32x31 b) 

 

Figure 2.22.  Frequency response of sample bandpass FIR filter order 777 

Figure 2.23. and Figure 2.24. illustrate the results of the investigation of the band-

limited noise of FLIR SC305 camera and Heimann 32x31 array correspondently. The plots 

containing 4 subplots correspond to the different ratio 
𝑓ℎ

𝑓𝑙
=

𝜏2

𝜏1
. The top-left subplot 

represents a sample realization of the zero-mean band-limited stochastic process 𝜉(𝑡), the 

top-right one shows its power spectrum and linear interpolation in the frequency band, 

bottom right one stands for the power spectrum of 휂(𝑡), and the bottom left shows the 

correspondence between the experimental measurements of 
𝜎휂
2

𝜎𝜉
4 (box plots) and the 

corresponding theoretical values (solid blue line). In our investigation we didn’t limit 

ourselves by fixing of the upper cutoff frequency 𝑓ℎ as has been proposed in [53], but did 
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the investigations in the wide range of frequencies. Many similar plots are missed to save 

some space. 

Observing the plots at Figure 2.23.  and Figure 2.24.  we made the following 

conclusions. 

1. The experimental box plots are intersected by the theoretical curves in a wide range of 

frequencies. It means that the process can be assumed as the stationary, which is the 

most important conclusion. 

2. The parameters 𝛼 corresponding to the best fits are generally different for different 

frequency bands. They are within 0 < 𝛼 ≤ 1, so the assumption of the flicker noise is 

correct. 𝛼 is greater for the higher frequencies, so the thermal noise is valuable on low 

frequencies, especially for the FLIR camera. 

3. Unsurprisingly that the linear interpolation of the very noisy spectrum not always give 

a perfect estimation of 𝛼, especially for the less precise Heimann camera with the lower 

sampling frequency. The variance of the estimation is very big, see the header of the 

top right subplots. Instead of this, the power parameter 𝛼 can be robustly estimated as 

the best fit of the theoretical curve and experimental values. 
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a) 
2𝑓𝑙

𝑓𝑠
= 0.02, 

2𝑓ℎ

𝑓𝑠
= 0.2, 

𝑓ℎ

𝑓𝑙
= 10, 𝛼 = 0.3 

 

b) 
2𝑓𝑙

𝑓𝑠
= 0.01, 

2𝑓ℎ

𝑓𝑠
= 0.2, 

𝑓ℎ

𝑓𝑙
= 20, 𝛼 = 0.5 
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c) 
2𝑓𝑙

𝑓𝑠
= 0.005, 

2𝑓ℎ

𝑓𝑠
= 0.5, 

𝑓ℎ

𝑓𝑙
= 100, 𝛼 = 1.0 

 

d) 
2𝑓𝑙

𝑓𝑠
= 0.07, 

2𝑓ℎ

𝑓𝑠
= 0.7, 

𝑓ℎ

𝑓𝑙
= 10, 𝛼 = 1.0 
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e) 
2𝑓𝑙

𝑓𝑠
= 0.007, 

2𝑓ℎ

𝑓𝑠
= 0.7, 

𝑓ℎ

𝑓𝑙
= 100, 𝛼 = 1.0 

 

f) 
2𝑓𝑙

𝑓𝑠
= 0.025, 

2𝑓ℎ

𝑓𝑠
= 0.5, 

𝑓ℎ

𝑓𝑙
= 20, 𝛼 = 0.5 

Figure 2.23.  Invertigation of the stationarity of the FLIR SC305 camera noise. 
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a) 
2𝑓𝑙

𝑓𝑠
= 0.09, 

2𝑓ℎ

𝑓𝑠
= 0.9, 

𝑓ℎ

𝑓𝑙
= 10, 𝛼 = 0.6 

 

b) 
2𝑓𝑙

𝑓𝑠
= 0.009, 

2𝑓ℎ

𝑓𝑠
= 0.9, 

𝑓ℎ

𝑓𝑙
= 100, 𝛼 = 0.9 
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c) 
2𝑓𝑙

𝑓𝑠
= 0.009, 

2𝑓ℎ

𝑓𝑠
= 0.09, 

𝑓ℎ

𝑓𝑙
= 10, 𝛼 = 0.62 

 

d) 
2𝑓𝑙

𝑓𝑠
= 0.005, 

2𝑓ℎ

𝑓𝑠
= 0.5, 

𝑓ℎ

𝑓𝑙
= 100, 𝛼 = 0.83 

Figure 2.24.  Invertigation of the stationarity of the Heimann 32x31 array noise. 
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2.7.4 Ergodicity of the noise 

Proven the stationarity of the noise, we can simply prove the ergodicity in the mean 

just by comparing of means for different realizations. We should not anticipate the noise 

variance to be neither less than the cameras’ accuracy, nor less than the black body’s 

precision. BB is much more precise than the cameras, as it required for the calibration 

device, so we should be within the cameras’ accuracy, and we are for all cameras we use. 

2.7.5 The numerical model 

As it has been noticed above, the 1 𝑓⁄  power spectrum of the numerical model is 

modulated from the power spectrum of Gaussian white noise. We use the multivariate noise 

with the same correlation between the “pixels” of the model as we have for the 

experimental model. It is as stationary as the experimental signal, see for the illustration 

Figure 2.25. , and also naturally ergodic in mean. Thus, we have got numerical model of 

the random process, which has a very good correspondence with the original random 

process specific for each camera in the following terms. 

 spectral density; 

 auto-correlation and cross-correlation between the realizations, i.e. in 

multivariate statistical property; 

 stationarity;  

 ergodicity.  

In other words, we have got the trustful numerical model, which can be used for 

the numerical simulation of the natural experiment. 



48 

 

 

Figure 2.25.  Comparison of the experimental data (left) and the numerical model (righ)  

band-limited random processes: signals (up plots), power spectra (the 2-nd and the 3-rd ones),  

and variance of the 휂(𝑡) (lower ones) for stationarity. 
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Chapter 3 Basic Data Processing 

After choosing the name for his Marionette, Geppetto set seriously to 

work to make the hair, the forehead, the eyes. Fancy his surprise when he 

noticed that these eyes moved and then stared fixedly at him. 

Carlo Collodi. The Adventures of Pinocchio. 

The basic data type is thermal IR video sequence. The nature of the input data 

determines the specifics of the processing. The current flowchart of the data processing is 

shown at Figure 3.1.  The “Capturing” block of the flowchart has been discovered in 

Chapter 2. This chapter describes next 5 blocks, namely “Preprocessing”, 

“Synchronization”, “Intermediate output”, “Registration”, and “Data extraction”. 

 

Figure 3.1.  The flowchart of the data processing 
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3.1 Conversion to common data format 

Some processing steps are not enough interesting to be described into the 

dissertation but necessary so must be at least mentioned. The main processing software 

tool is MatLab™ whereas the data from the cameras come in their original formats: binary 

for FLIR camera and text for other two ones. Thus, the first preprocessing step is 

conversion from these formats to *.mat MatLab™ format. Second, some data comes from 

the Word form. It includes the patient’s diagnosis, age, sex and other survey parameters 

filled up manually. The form also contains the experiment parameters including the air 

temperature, the cold bath temperature, the beginning and end times of the cold stress. All 

this data is exported to the text format with the MS VBA script and later imported to 

MatLab. After all these steps, the MatLab data becomes a relatively complex structure with 

the fields containing contained video header, body, times of each frame, and the general 

parameters of the experiment.  

3.2 Filtering 

3.2.1 Adaptive spatial filtering 

The “hot pixels” effect is known from the very first years of digital imaging [66]. 

The same might happen with the particular microbolometers in the camera sensor array. 

Also it might happen not due to the hardware but because of the reflection. In our case the 

target, i.e. the feet assumed having pretty smooth surface temperature distribution. If one 

single pixel has very different intensity comparing to its neighbors, we assume that it 

should be filtered out. It might happen also on the sharp edge, so this case must be 

considered to prevent not required smoothing of the edge. The adaptive filtering algorithm 
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has been developed. 

The term “adaptive filtering” means that the pixels should be processed quite not 

similarly but depending on their local properties [67][68]. In this case we want to process 

only detected “hot” pixels and leave all other pixels without any change. 

The pseudocode of the algorithm is shown at Figure 3.2.  

For every image frame do 

 Apply 5x5 median filter to the initial frame; 

 Take the difference between the filtered and initial frames; 

 Mark the pixels of the difference frame brighter than the given threshold as “noisy”; 

 If any noisy pixels found  

Apply the Canny edge detector filter to the initial frame; 

Unmark the noisy pixels which belong to the edge; 

 If any noisy pixels exist 

Exchange the values of the noisy pixels on the initial frame to the corresponding 

value of the median filter. 

Figure 3.2.  The algorithm of adaptive filtering  

It must be noticed that the occasion of real hot pixels happen really rarely. See 

Figure 3.3. for illustration. 

3.2.2 ROIs 

The points of the standard monofilament test (see Chapter 1.1) can be pointed 

enough approximately. To reflect this and also to average the noise the temperature is 

averaging in the selected regions of interest (hereafter ROIs). It is possible due to the 

proven stationarity and ergodicity of the camera noise, see Chapter 2.7.  

The chosen ROIs correspond to the one of the schemes of the monofilament test, 

namely the following: 1) big toe, 2) third toe, 3) ball, 4) inside arch, 5) lateral (outside) 

arch, and 6) heel. The ROIs placed above the foil stars used at the early set of experiments, 

see Figure 3.4.  
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Figure 3.3.  Adaptive filtering. Only one potentially noisy pixel  

(marked as red at the lower right plot) has been removed. 

 
 

 

a) b) c) 

Figure 3.4.  ROIs on foot a); feet images in visible band b) and FLIR SC305 screenshot c).  

ROIs marked with the black rectangles on a) and blue ones on c). 

The filtering therefore means the averaging of each frame in ROIs. For the 

averaging, the round shape of ROIs has been chosen with the diameters 9 pixels for the big 

toe, 5 for the third toe and 21 for all other ROIs. Smaller size for the toe ROIs has been 

chosen to fit the toes and not to process the temperature in the space between them. These 
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sizes relate to the FLIR SC305 camera. Much lower resolution of the Heimann camera 

excludes the possibility to process the toes – they cannot be differentiated. Greater diameter 

of the ROI means less sensitivity to the spatial inaccuracy of registration. On the other 

hand, increasing the diameter reduces potential resolution. Thus, there is a technical 

contradiction for the relatively noisy and low resolution Heimann camera. The accuracy of 

registration for our Heimann camera is definitely worse than for FLIR SC305 due to noise 

and resolution; it requires increasing the diameter of ROIs, which contradicts with the 

lower resolution. Therefore, FLIR SC305 camera became the main measurement tool. 

3.3 Temporal registration (synchronization) 

All three cameras, i.e. FLIR, Heimann and low-cost IR screening system send the 

data to the computer, so they have common time scale. Each frame has the time of 

recording in the file headers. The events of beginning and ending of the cold stress 

registered manually by hitting the dedicated button at the MS Word experiment form with 

the VBA script, i.e. with 1 second accuracy. These data is automatically saved to text file 

after the end of the experiment and then imported to the main MatLab program. The 

sequence of the events in time for the setup with both FLIR and Heimann cameras looks 

like it is shown in Figure 3.5. . Zero ordinate values on plots correspond to absence of the 

corresponding event. First 3 minutes are for the control measurement (both cameras are on 

and overlapping in time, the Heimann camera has been switched off some later), 5 minutes 

for the cooling event, and then 15 minutes for the recovery after the cold stress. 
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Figure 3.5.  Sequence of the events during the experiment in time. 

It might also happen that the setup includes the cameras without common time 

scale. For example, one of them could save the video to the internal memory. It is possible 

to synchronize the times on computer and external camera, but usually within 1-second 

accuracy. It could be enough for some applications, but not enough, say, for stereo video. 

For this case the “clapperboard event” should be introduced.  

We used Panasonic RGB camera with internal memory at the early stage of the 

experiments. Thus, the clapperboard event should be easily recognizable and automatically 

detectable with both visual and thermal infrared bands. To satisfy this requirement, we 

either put the cold ruler or the hand with the piece of ice into the field of view trying not to 

shade the target, i.e. the foot. 
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Figure 3.6.  Synchronization of IR (left) and RGB (right) videos.  

Observe a cold piece of ice (dark blue, colder than 5C on the left subplot) in the warm hand. 

The videos can be synchronized automatically by correlating the intensity change 

in IR and RGB. To increase the accuracy and robustness and also to simplify it, the event 

should happen in the certain part of the field of view. In our case we analyze the intensity 

change on the metal ruler at the low part of the frames. It is very contrast in both visible 

and thermal IR bands, see Figure 3.6.  and Figure 3.7. . 

  

a) b) 

Figure 3.7.  Intensity change due to the clapperboard event before a) and after b) the synchronization.  

Red plots are for the thermal IR, blue ones for the visible band. 
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3.4 Spatial registration and tracking 

3.4.1 Problems and requirements 

In the current experiment setup, the patient’s feet are placed on the feet support 

with no location. It is impossible for the subject to keep the feet still for 15 minutes while 

the IR camera is videotaping the recovery. Thus in order to extract the temperature recovery 

for each point on the foot, the IR video needs to segmented and registered to establish the 

correspondence between the same position on different frames. We call this process spatial 

registration and tracking. Precisely, by registration, we need to segment (i.e., delineate) the 

foot on each IR video frame and transform (i.e., translate, rotate, scale, shear, etc.) the 

segmented foot to a common coordinate system [69], so that the same point on the foot can 

be tracked. 

The main requirement to the registration is spatial accuracy. The six ROIs as 

described in the previous chapters can be used to quantify the accuracy of the registration 

process. Ideally, one would like to achieve a one-pixel spatial accuracy.  

Note that one-pixel accuracy means approximately ½ overlap of the true and 

measured ROIs with the diameter 5 pixels for the small toe; ~¼ for the big toe with the 

diameter 9 pixels, and ~1/10 for the rest 4 ROIs with the diameter 21 pixels. That’s why 

the smallest ROIs - the toes - are the most sensitive to the motion, especially if their motion 

is quite independent to the motion of whole foot.  

3.4.2 Affine model of the spatial feet deformation 

The IR image of a subject’s foot is obtained by projecting the foot, a 3D object onto 

the 2D sensor plane of the camera along the optical axis. From our experience, the 
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dominating movement of the foot during the imaging process is clockwise or 

counterclockwise rotation around the heel. Assuming that the optical axis of the camera is 

perpendicular to the foot plantar, the rotation of the foot is best modeled by translation and 

rotation. Another type of motion that also occurs is the inclination of the foot toward and 

aware from the imaging plane along the optical axis due to muscle relaxation. The 

inclination is best modeled to scaling.  

From the above discussion, it is clear that the foot movement should be represented 

using affine transform [70]. Let 𝑓𝑅
1(𝑥, 𝑦) to be the reference image of segmented foot on 

the 1-st video frame, 𝑓𝑖 (𝑥, 𝑦) be the segmented foot on i-th frame, and 𝐴(𝑥, 𝑦|𝒂) =

[
𝑎1 𝑎2 𝑎3
𝑎4 𝑎5 𝑎6
0 0 1

], be the affine transformation from 𝑓𝑅
1(𝑥, 𝑦) from the 1st frame to the i-th 

frame 𝑓𝑖 (𝑥, 𝑦), where 𝒂 is the set of the parameters 𝑎1, 𝑎2, … , 𝑎6. It is clear that the optimal 

affine transformation A should minimize the difference or discrepancy between the 

transformed foot 𝐴 ∘ 𝑓𝑅
1 and the segmented foot 𝑓𝑖 , i.e.,: 

 𝒂 = 𝑎𝑟𝑔𝑚𝑖𝑛 ‖𝑓𝑖 , 𝐴(𝑥, 𝑦|𝒂) ∘ 𝑓𝑅
1‖, (3.1)  

where ‖𝑓𝑖 , 𝐴(𝑥, 𝑦|𝒂𝒊) ∘ 𝑓𝑅
1‖ is the metric for measuring image discrepancy. As a 

concrete example, for the simplest case the affine transformation accounting for only 

translation and rotation is:  

 

𝐴 = [
cos (휃) −sin (휃) 𝑎𝑥
sin (휃) cos (휃) 𝑎𝑦
0 0 1

], 
(3.2)  

and 
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 𝒂 = {𝑎𝑥, 𝑎𝑦, 휃}. (3.3)  

It must be noted that the affine transform approach assumes the foot is a rigid body 

and cannot account for motions such as bending of the foot arch or toe movement. These 

types of motions can only be accounted for using more complex model (like, for example, 

morphing [71]). Fortunately, from our experience, affine models are sufficient for our 

purpose.  

3.4.3 Foot segmentation on the first video frame 

Rough segmentation of the feet requires Canny edge detecting [72], filling the 

contours up, analysis of the size and position of the filled contours. The idea is to minimize 

false positives for the markers at the background analyzing just the segmented areas. 

   

a) b) c) 

Figure 3.8.  Step 1. Segmentation of feet and ruler.  

Initial image a), Canny filtered b), and segmented objects c). 

3.4.4 Registration and tracking via detected markers 

We have experimented with several different techniques of calculating the affine 

transformation matrix. Our first idea is to take advantage of the ROIs, which are marked 

with reflective foils. The main idea to segment these ROIs on each video frames and use 

the locations of the ROIs to calculate the transformation matrix.  



59 

 

 

Figure 3.9.  The flowchart of the data processing.  

Referencing and registration via detected markers highlited at the second row of blocks. 

The main challenge for this method is the segmentation of the reflective foils. Since 

the foot temperature changes throughout the recovery phase, the reflecting marker may be 

different on the next frame because it is reflecting a very different environment. The 

markers are not flat, so additional fragmentation of the markers is possible as well. Markers 

are less contrast on the cooled feet because the feet temperature becomes closer to the 

temperature of environment. 

To segment the markers, we use Canny edge detection and morphological 

processing to obtain closed contours of the reflecting stars. This may produce false 

positives (marked as blue dots at Figure 3.10. ). The temporal information from adjacent 

video slices has been used to filter out the false positives.  

The frames with the number of matched objects less than 3 to be omitted. It could 

happen by obstacles or just by bad reflection of some markers at particular frame. 
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Nevertheless, some frames could be taken into account even with the obstacles. 

So, the next step is matching of the detected markers to the initial set. Assuming 

smooth feet movement, we first find the detected potential markers closest to the given set 

of labeled markers (base points); select by distance. By this we clear away some dots distant 

from the previous set of markers. 

Our final affine transformation is calculated with Procrustes analysis, which 

determines a linear transformation of the points from the initial video frame to best conform 

them to the points in the other frames [73][74]. The goodness-of-fit criterion is the sum of 

squared errors. Note that, we opted not to perform a frame-by-frame transform to avoid the 

cumulative errors.  

   

a) b) c) 

Figure 3.10.  Detected markers a), markers and initial ROIs b), and ROIs at the last frame.  

True markers highlited as white dots, omitted one as blue and non-recognized as black ones.  

ROIs highlighted as blue rectangles. 

3.4.5 The cross-correlation registration and tracking 

The other method for generating the affine matrix that we have tried is the cross-

correlation method [73][74]. In this method, a rectangular reference window is first 

selected on the first frame of the video. The goal of the registration is to identify the 

windows corresponding to this reference window on each subsequent video frames. This 



61 

 

is achieved by “shifting” the reference window around on each remaining frame to 

maximize Person’s correlation coefficient [75], [76]: 

 
𝑅 =

1

𝑛 − 1
∑(

𝑋𝑗 − �̅�

𝑠𝑋
)(
𝑌𝑗 − �̅�

𝑠𝑌
) ,

𝑛

𝑗=1

 
(3.4)  

where X, Y are the two rectangular regions in two different frames, �̅�, �̅� are the means, and 

𝑠𝑋 and 𝑠𝑌 are the standard deviations. The rectangular regions identified on each image 

frame will produce the affine transformation matrix that accounts for translation and rotate 

between successive frames and thus register all the frames. In our research, the reference 

window(s) were the regions of the feet with high contrast such the big toe and the heel.  

3.4.6 Comparison of the methods 

To quantify the accuracy of the two tracking algorithms, we have manually 

segmented the reflecting foils on each video frames, and applied the affine transformation 

matrix calculated by the tracking algorithm. The results are shown in Figure 3.11. As can 

be seen, both tracking algorithms works well and fast and can achieve within 1-2 pixels 

accuracy. It is also worth noting that the correlation based tracking algorithm is much faster 

than the ROI based algorithm. However, the correlation-based algorithm doesn’t take into 

account of scaling and shear.  

Tracking by detection of markers program is less sensitive to the warming because 

the algorithms based onto the contour segmentation are used, but is more sensitive to the 

noise, which affects the shape and contrast of the stars, like the speckle noise. The cross-

correlation registration program is more sensitive to the smooth change of intensity, i.e. 

cooling. To avoid this, the shifted referencing frame number has been introduced, i.e. not 
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necessarily 1-st, default is 1500 (of ~7720 total). The program is also sensitive to the 

changes behind the feet as far it can be within the regions of cross-correlation. 

By manual testing of the cases above (measuring the distance from the center of the 

corresponding star to the position of the label in the selected frames, see Figure 3.11. ) one 

can conclude that in the case of smooth and contrast images, both programs are almost 

equally precise. 

The cross-correlation registration program is more sensitive to the smooth change 

of intensity, i.e. cooling. To avoid this, the shifted referencing frame number has been 

introduced, i.e. not necessarily 1-st, default is 1500 (of ~7720 total). The program is also 

sensitive to the changes behind the feet as far it can be within the regions of cross-

correlation. The geometric accuracy of the segmentation is within 1-2 pixels, which is 

sufficient considering the diameters of the ROIs are around 11-13 pixels. The impact of 

radiometric error due to the geometric inaccuracy is about 0.1 C. 
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a) 

 

b) 

Figure 3.11.  Geometric shifts in horizontal direction for the tracking  

by detection of markers a) and CCF b). Solid lines are the coordinates of the markers  

detected by the programs; dot lines for the actual coordinates measured manually. 
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The cross-correlation registration program runs for less than 13 minutes. Is a clear 

winner – more than 10 times faster even taking into account that other program process 

two files and two feet. For the acceleration the decimation parameter is introduced into the 

tracking by detection of markers program, i.e. it may track not each frame. It works well 

for the smooth movement but not for the sharp ones. The cross-correlation registration code 

is also much simple: just two functions vs. 50. Therefore, the cross-correlation program 

has been chosen as default registration and tracking tool. In the problematic cases the 

detection of markers program should be tried. If it not helps the whole video should not be 

considered.  
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Chapter 4 Heat transfer model 

“Kant’s proof,” objected the educated editor with a thin smile “is also 

unconvincing. And not for nothing did Schiller say that the Kantian arguments on 

the question could satisfy only slaves, while Strauss simply laughed at that proof...” 

“This Kant should be taken and sent to Solovki [the concentration camp] for two or 

three years for such proofs!” Ivan Nikolayevich blurted out quite unexpectedly... 

“Precisely, precisely,” the foreigner shouted, and a twinkle appeared in his green 

left eye, which was turned towards Berlioz, “that’s the very place for him! I said to 

him then over breakfast, you know: ‘As you please, Professor, but you’ve come up 

with something incoherent! It may indeed be clever, but it’s dreadfully 

unintelligible. They’re going to make fun of you.’” 

Berlioz opened his eyes wide. “Over breakfast… to Kant? … What nonsense is this 

he’s talking?” he thought. 

Mikhail Bulgakov, The Master and Margarita. 

4.1 Motivation 

Once the thermal infrared video is processed, the temperature changes of each point 

on the foot is extracted (see Figure 4.1). Time zero on the plot marks the end of the cold 

stress and the beginning of the recovery. In this chapter, we discuss how to extract 

quantitative properties of these curves for differentiating diabetic foot subjects using our 

heat transfer model. 
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Figure 4.1. Sample set of temperature curves extracted for 6 ROIs. 

The temperature data extracted are noisy. In addition to the high frequency 1/𝑓 

camera noise discussed at Chapter 2.4 there is low frequency (LF) noise induced by the 

movement of feet, which is not fully compensated by the tracking. The data must be further 

processed before classification. This is clearly a model-based curve-fitting problem. Our 

first model used is the Newton’s Law of Cooling [105]: 

 𝜕𝑇(𝑡)

𝜕𝑡
= −𝑘(𝑇(𝑡) − 𝑇𝐴) 

(4.1)  

In this ordinary differential equation (ODE), T(t) describes the temperature changes 

over time t, TA is the ambient temperature, i.e., core body temperature, and k is a constant.  

The differential equation (4.1) has a simple analytical solution (4.2), illustrated with 

Figure 4.2: 

 𝑇(𝑡) = 𝑇𝐴 + (𝑇0 − 𝑇𝑎)𝑒
−𝑘𝑡 (4.2)  
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Figure 4.2. Illustration of the Newton’s Law of cooling: the set of plots with different k. 

The curve fitting is modeled using the following least square optimization:  

 
{𝑘,  𝑇0, 𝑇𝐴} =

𝑎𝑟𝑔𝑚𝑖𝑛{‖𝑇(𝑡) − 𝑇𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝑡)‖2
2}

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑙𝑏 ≤ { 𝑘,  𝑇0, 𝑇𝐴} ≤ 𝑢𝑏
 (4.3)  

where 𝑙𝑏 and 𝑢𝑏 are lower and upper bounds for the vector of parameters. 

The curve fitting results using the Newton’s Law of Cooling is shown in Figure 

4.3, where the X-axis is time in minutes and the Y-axis is temperature in C.  The 

experimental data is the zigzagged curve in red and the extrapolation is smooth curve in 

blue. The parameters 𝑇0, 𝑇𝐴, 𝑘 are determined using nonlinear least square (4.3) [78]. To 

verify the quality of the curve fitting, we removed the first 0, 0.5, 1 and 1.5 minutes of 

temperature data and compared the extrapolations with original data. The extrapolation 

error for 𝑇0 at the beginning of recovery is 0.5-1.5 C is much greater than the camera 

accuracy, making the extrapolation result not satisfactory. We believe the reason is that the 

Newton’s Law of Cooling only considers heat transfer between objects of different 

temperature, but doesn’t consider thermal regulation such as increasing or decreasing the 

𝑇0 

  

𝑇𝐴 
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blood flow as in the human body. To overcome this, we decided to use the Pennes’ Bio-

heat Transfer Equation to model the recovery process. 

 

Figure 4.3. Extrapolation of the experimental data with Newton’s Law of Cooling.  

The same experiment, 6 plots for 6 ROIs. 𝑇0-s are the extrapolated temperatures at 𝑡 = 0  

for removed 0, 0.5, 1 and 1.5 min. of the experimental data. 

4.2 The Bio-heat Transfer equation 

The heat transfer between the tissue, blood and environment is commonly described 

by the Pennes’ Bio-heat Transfer Equation [79][80] with the assumption of uniform 

environment and tissue-independent blood temperature. We will modify it to fit the 

conditions of our experiment, and to take the thermoregulation effect into account. 
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{
 
 

 
 𝑉𝜌𝑐

𝜕𝑇

𝜕𝑡
= 𝛻(𝜒𝛻𝑇) + (𝜌𝑐)𝑏𝜔𝑏(𝑇𝑏 − 𝑇) + (𝜌𝑐)𝑒𝜔𝑒(𝑇𝑒 − 𝑇)

+𝑞𝑚 + 𝑞𝑟𝑎𝑑 + 𝑞𝑣𝑎𝑝

𝑉𝑒(𝜌𝑐)𝑒
𝜕𝑇𝑒
𝜕𝑡

= (𝜌𝑐)𝑒𝜔𝑒(𝑇 − 𝑇𝑒) − 𝑞𝑟𝑎𝑑 − 𝑞𝑣𝑎𝑝

 

(4.4)  

In the above equation, 𝑉 [𝑚3] is volume, 𝑇 [°K] is temperature, 𝑐 [𝐽 ∗ kg−1 ∗ °K−1] 

is heat capacity, 𝜌 [𝑘𝑔 ∗ 𝑚−3] is density, and 𝜒 [𝐽 ∗ 𝑚2 ∗ 𝑠𝑒𝑐−1 ∗ °K−1] is surface thermal 

conductivity. The variables without subscript are related to tissue. The subscripts 𝑏 and 𝑒 

stand for blood and environment, correspondently; 𝜔𝑏[𝑚
3 ∗ 𝑠𝑒𝑐−1] represents blood 

perfusion, and 𝜔𝑒[𝑚
3 ∗ 𝑠𝑒𝑐−1] is environment (air) perfusion. 𝑞𝑟𝑎𝑑 [𝐽 ∗ 𝑠𝑒𝑐

−1] is the 

radiant heat, 𝑞𝑚 [𝐽 ∗ 𝑠𝑒𝑐
−1] is metabolic volumetric heat, and 𝑞𝑣𝑎𝑝 [𝐽 ∗ 𝑠𝑒𝑐

−1] (always 

negative) is the evaporative heat.  

The equation (4.4) has too many unknowns and is too complicated to be directly 

useful. Moreover, in our experiments we measure just a few variables, so just we don’t 

have enough data to estimate the parameters in such a multiparametric equation. Our 

approach is to simplify it by emphasizing the main thermoregulation mechanisms.  

The first equation of (4.3) shows the energy transfer in tissue per unit time. The 

radiant term following Stefan-Boltzmann law [81] is: 

 𝑞𝑟𝑎𝑑 = 휀𝜎(𝑇4 − 𝑇𝑒
4)𝐴𝑒 (4.5)  

In our experiments, minimal value for 𝑇 is 13 C; maximum for 𝑇𝑒 is 25C. Assume 

the foot surface area 𝐴𝑒 = 0.03 𝑚2,  휀=1, and a foot mass of 1 kg with its mass-specific 

capacity close to the mass-specific capacity of water 𝑐𝑤 = 4181.3 J/kg/K, 𝜎 is a Stephan-

Boltzmann constant, we can estimate the warming up from the radiant heat to be no more 
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than 0.03 C per minute, which is negligible. 

The evaporation term is: 

 𝑞𝑣𝑎𝑝 =
𝑚𝑤𝑐𝑤

𝑑𝐻⁄  (4.6)  

where 𝑚𝑤  is the mass of evaporated water, and 𝑑𝐻 is the enthalpy of vaporization. 

Thus, assuming 𝑐 ≈ 𝑐𝑤, about 2g of water need to be evaporated to cool down 1 kg foot 

by 1 C, and therefore can also be ignored in the frames of our experiment (for example, 

compare this value with Figure 4.1). 

Further, we also can ignore the metabolic heat term due to the relative short time 

process [82]. 

Since, we are only measuring the surface temperature, 2-dimensional diffusion can 

be used. For the relatively small surface areas like ROIs we can ignore the diffusion term 

𝛻(𝜒𝛻𝑇) assuming locally uniform surface temperature distribution. It means that we 

assuming the influence of near branch or branches of thermally significant blood vessels 

under the skin is much higher than the diffusion between the near pieces of skin surface. 

The second equation of (4.4) shows the energy transfer in the environment per unit 

time. Our environment is the air-conditioned room; the room temperature almost does not 

change during the experiment. Thus let us assume 𝑉𝑒 ≫, i.e. the perfusion of the air 

thermally interacted with the tissue 𝜔𝑒 is relatively slow to change the environment 

temperature in the room. Therefore, the environment temperature becomes constant: 

𝑇𝑒(𝑡) = 𝑇𝑒(0),  
𝜕𝑇𝑒

𝜕𝑡
= 0, and the second equation is neglected, too. 
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To summarize, the main contribution to heat transfer is given by the thermally 

significant blood vessels with diameter 0.08…1 mm [82],[83],[83]. Thus, the boundary-

value problem in 3D space and time for the initial PDEs [85],[86] is reduced to the Cauchy 

problem for the set of ODEs with the given initial conditions: 𝑇(0) = 𝑇0, and 𝑇𝑒(0) = 𝑇𝑒
0. 

Assuming that the regions of interests (ROIs) are mutually independent we obtain the 

number of similar ODEs each describing the particular ROI. The actual dependence 

between them, if any, could be determined later by statistical analysis. 

Finally, the set of equations becomes the following ODE: 

 𝑑𝑇

𝑑𝑡
= −𝑟𝑏(𝑇 − 𝑇𝑏) − 𝑟𝑒(𝑇 − 𝑇𝑒) 

(4.7)  

where 𝑟𝑒 =
(𝜌𝑐)𝑒

𝑉𝜌𝑐
𝜔𝑒 [𝑠𝑒𝑐

−1] is the characteristic of the body (foot) with respect to 

the external media, 𝑟𝑏 =
(𝜌𝑐)𝑏

𝑉𝜌𝑐
𝜔𝑏 [𝑠𝑒𝑐

−1] that accounts for all the biological and thermal 

dynamical parameters responsible for the heat transfer between the blood and body, which 

will be discussed in details in the next section. Note that the equation (4.7) is equivalent to 

(4.1) so far. 

4.3 The model of thermoregulation 

4.3.1 The control theory approach 

As it has been noted above, thermoregulation in humans exists and it is determined 

by microcirculatory function. We will model the thermal regulation in the terms of control 

theory. 

The scheme of thermoregulation is shown in Figure 4.4. a). The foot (as a part of 
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a human body which shares the feedback via the nervous system) is assumed under the 

heat disturbance 𝑇𝑒(𝑡) = 1(𝑡) at the zero time, i.e. at the end of the cold stress, see Figure 

4.4 a) and b). The controlled variable 𝑇(𝑡) is the foot temperature which is registered with 

the thermal IR camera, see Figure 4.4 c). Here 1(𝑡) is the unit step function, or the 

Heaviside function (also denoted sometimes as 𝑢(𝑡)), i.e.  

1(𝑡) = ∫ 𝛿(𝑡)

∞

−∞

𝑑𝑡, 

where 𝛿(𝑡) is the Dirac unit function. 

The transmitting response 𝑊(𝑝) of the scheme Figure 4.4 a) is [87], [88]: 

 
𝑊(𝑝) =

𝑊1(𝑝)

1 −𝑊1(𝑝)𝑊0(𝑝)
 (4.8)  

where 𝑊0(𝑝) is the transmitting response of the feedback elements, 𝑊1(𝑝) is the 

transmitting response of the rest elements, and 𝑝 is the Laplace operator, i.e. 
𝑑

𝑑𝑡
. Thus, one 

needs just to describe the corresponding elements of the controlling system. Since we can’t 

measure the transmitting responses, we cannot measure the contribution of each particular 

controller such as vasomotion, sweating, or heat production separately. We can monitor 

just one controlled variable 𝑇 and one disturbance variable 𝑇𝑒. Thus we must describe the 

thermoregulation system as a black box with the parameters noted above. For the modeling 

we may start from the simplest description of 𝑊(𝑝) as elementary plants. 
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a) 

    

 

   

 

b) c) 

Figure 4.4. The model of human thermal regulation. The scheme a) illustrated with:  

input b) - environment temperature 𝑇𝑒(𝑡) at the end of cold stress as a unit step function, 

and controlled variable c) - measured tissue temperature 𝑇(𝑡). 

The equations (4.1) and (4.7) have the same view of the transmitting response: 

 
𝑊𝑁𝑒𝑤𝑡𝑜𝑛′𝑠 𝐿𝑎𝑤 𝑜𝑓 𝐶𝑜𝑜𝑙𝑖𝑛𝑔 (𝑝) =

𝑏0
𝑎0 + 𝑎1𝑝

, (4.9)  

where 𝑎0, 𝑎1, and 𝑏0 are the coefficients. As far as we have a unit step function as 
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the input, our output is just the step response, which is: 

 
h(𝑡) =

𝑏0
𝑎0
(1(𝑡) − 𝑒−𝑎0𝑡/𝑎1) (4.10)  

Compare (4.2) and (4.10) to see that they are equivalent. 

If the physical meaning of all above is clear, one may not read this paragraph. If 

this looks not very clear in terms of thermodynamics, let me describe the behavior of the 

electrical RC-circuit, Figure 4.5a), which is absolutely equivalent to our system in terms 

of control systems, i.e. it has the same transmitting response (4.8). The only difference is 

that for the electrical circuit the input and output have the physical sense of voltage, not 

temperature. In the terms of control systems this circuit is the system of the 1-st order and 

is the one of base plants, namely the inertial plant.  

  

a) b) 

Figure 4.5. The 1-st order systems or inertial elementary plants:  

simple RC circuit a) and RC circuit with the parametrically changing capacity b). 

The transmitting response of RC circuit is 𝑊𝑅𝐶 (𝑝) =
𝑏0

1+𝑅𝐶𝑝
 and the step response 

is ℎ𝑅𝐶 (𝑡) = 𝑏0(1(𝑡) − 𝑒
−𝑡/RC). Compare these formulae with (4.9), (4.2), and (4.10) to 

see that they are correspondently equivalent. The physical (here electrical) meaning is the 
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following. 𝑅𝐶-circuit is an analogous low-pass filter with the cutoff frequency 
1

𝑅𝐶
. The high 

frequencies near the zero time pass through the capacity; later on, with some inertia, the 

capacity charges up. Or, if the input step is negative, the capacity is discharging through 

the resistivity by exponent with the same time constant factor equal to 𝑅𝐶. 

4.3.2 The control system of the second order 

Let us come back to the experiment. Let us observe Figure 4.3 again. At the 

beginning of recovery, the extrapolated temperature goes above the real one; later on it 

gives a good approximation. It means that the temperature stress turns the additional 

regulation on, and later it comes to naught. There is just one source of heat in (4.1) but two 

ones at (4.7): environment temperature and blood temperature. Thermoregulation means 

that the amount of heat exchange between blood and tissue is changeable, i.e. 𝑟𝑏 =
(𝜌𝑐)𝑏

𝑉𝜌𝑐
𝜔𝑏 

should be the function of time. For the liquid, which the human blood is, the change of 

density and thermal capacity (𝜌𝑐)𝑏 definitely can be neglected for such narrow temperature 

range; thus, we have to consider the change of blood perfusion 𝜔𝑏(𝑡). It makes the equation 

(4.7) parametric (don’t confuse with non-linear!) [86]. Similarly, comparing (4.7) and 

(4.1), we conclude the change of the cooling speed in time. Therefore, we can substitute 

the regulation parameter 𝑟(𝑡) instead of 𝑘 to (4.1). By the way, in terms of electric circuits 

it corresponds to the RC circuit with the nonlinear capacity Figure 4.5b), and the capacity 

is the controlling object of the thermoregulation system. 

Let us be more specific. Initial rapid increasing of the speed of cooling (or warming 

in our case) can be described with the following modification of (4.2) trying to keep it as 

simple as possible: 
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 𝑇(𝑡) = 𝑇𝐴 + (𝑇0−𝑇𝐴)𝑒
−𝑘(1+𝑄𝑒−𝑠𝑡)𝑡. (4.11)  

So, we guessed the possible solution; let’s find the corresponding parametric 

differential equation of the 1-st order. The following equation has (4.11) as the explicit 

solution: 

 𝑑𝑇(𝑡)

𝑑𝑡
= −𝑘 (1 + (𝑄𝑒−𝑠𝑡(1 − 𝑠𝑡))) (𝑇(𝑡) − 𝑇𝐴). 

(4.12)  

Denote the thermal interaction term 𝑟2(𝑡) [𝑠𝑒𝑐
−1], i.e. the thermoregulation 

parameter as 

 𝑟2(𝑡) = 𝑘 (1 + (𝑄𝑒
−𝑠𝑡(1 − 𝑠𝑡))). (4.13)  

The subscript “2” stands for the second order of the control system corresponding 

to this model. Let’s describe the obtained heat transfer model with thermoregulation (4.11-

13). As before, 𝑇0 is the initial temperature, 𝑇𝐴 is ambient temperature, dimensionless 𝑘 is 

the stationary exponent factor, dimensionless 𝑄 is the intensity of regulation, and 𝑠 [𝑠𝑒𝑐−1] 

is the speed of regulation. The thermoregulation parameter has a view shown in Figure 4.6 

b). Greater values of |𝑄| mean bigger thermoregulation whereas the case 𝑄 ≈ 0 should 

indicate absence of the thermoregulation, i.e. it exactly corresponds to the Newton’s Law 

of Cooling (4.1). Also, greater values of 𝑠 mean faster thermoregulation whereas 𝑠 ≈ 0 

corresponds to the absence of regulation, which in our case may indicate peripheral 

neuropathy. It is easier to imagine values of 𝑠−1  in time units. One can observe that 𝑟2(𝑡) 

asymptotically converges to the stationary value equal to 𝑘.  
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a) b) 

Figure 4.6. Sample plots (not related to any experiment) illustrating (4.10) a), and (4.12) b).  

The scheme of the control system describing the thermoregulation exactly 

corresponds to the Figure 4.4 a) except the controlled variable is not 𝑇(𝑡) but 𝑟2(𝑡). One 

more time but in other words: this control system controls thermoregulation, not 

temperature. Also, the transmitting response 𝑊𝑟(𝑝) does not have a view (4.9) as far as 

(4.13) is not equivalent to (4.2). Generally, the intersection of 𝑟2(𝑡) and the asymptotic line 

𝑡 = 𝑘 called overregulation or overshoot [89], [90] indicates that the control system has 

the order greater than 1 [88], [89], [90], [91], i.e. 2 in our simplest case. Thus,  

 
𝑊𝑟2 (𝑝) =

𝑏0 + 𝑏1𝑝

𝑎0 + 𝑎1𝑝 + 𝑎2𝑝2
. (4.14)  

At this point it is a good time to understand the physical meaning of the control 

system parameters. Let us re-parameterize (4.14) to the following view: 

 
𝑊𝑟2 (𝑝) =

𝜔0
𝛽
∗

𝑝 + 𝛽𝜔0

𝑝2 + 2휁𝜔0𝑝 + 𝜔0
2. 

(4.15)  

 Here dimensionless 𝛽−1 is the coefficient of amplification, 𝜔0 = 2𝜋𝑓0 [𝑟𝑎𝑑 ∗

Q 

Q 
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𝑠𝑒𝑐−1]  is the resonant frequency parameter and determines the speed of response of the 

control system. Dimensionless 휁 is the damping ratio (in mechanical terms) or inverse 

quality factor (in electrical circuit terms); it’s very visual physical meaning is the ratio of 

the band pass to the resonant frequency. It determines the shape of response. So, a zero 

damping ratio, i.e. no damping in the systems of the second order correspond to non-

feeding oscillations at the resonant frequency, or, if one wish, an infinite quality factor; 

increasing the damping ratio 0 < 휁 < 1 means faster feeding of the oscillations; the values 

휁 ≥ 1 correspond to non-oscillating systems.  

Recall [88], [91] that formally the step response can be obtained as the inverse 

Laplace transform ℒ−1: 

 
ℎ(𝑡) = ℒ−1[𝑊(𝑝) 𝑝⁄ ] =

1

2𝜋𝑖
∫

𝑊(𝑝)

𝑝
𝑒𝑝𝑡𝑑𝑝 =

𝜌+𝑖∞

𝜌−𝑖∞

=∑Res
𝑊(𝑝)

𝑝
𝑒𝑝𝑡 |

𝑝 = 𝜆𝑗

𝑛

𝑗=1

. 

(4.16)  

Here 𝜆𝑗 is the 𝑗-th pole of the integrand (including of course the repeating ones, if 

any), 𝑛 is the number of the poles, and 

 1 𝑝⁄ = ℒ[1(𝑡)]. (4.17)  

Thus, the step response of 𝑊𝑟2 (𝑝) is: 

 
ℎ𝑟2(𝑡) = ℒ

−1[𝑊𝑟2 (𝑝) 𝑝⁄ ] = ℒ−1 [
𝜔0
𝛽
∗

𝑝 + 𝛽𝜔0

𝑝(𝑝2 + 2휁𝜔0𝑝 + 𝜔0
2)
] = (4.18)  
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ℒ−1 [
𝜔0
2

𝑝(𝑝2 + 2휁𝜔0𝑝 + 𝜔0
2)
] +

1

𝛽𝜔0

𝑑

𝑑𝑡
(ℒ−1 [

𝜔0
2

𝑝(𝑝2 + 2휁𝜔0𝑝 + 𝜔0
2)
]). 

Obviously, the transmitting response of the 2-nd order system has two poles:  

 𝜆1,2 = −휁𝜔0 ± 𝜔0√휁2 − 1. (4.19)  

If 휁 < 1 they are complex conjugate 

 𝜆1,2 = −휁𝜔0 ± 𝑖𝜔0√1 − 휁2, (4.20)  

 and thus the step response is: 

 ℎ𝑟2
𝜁<1(𝑡) = 𝑐11(𝑡)

+ 𝑐2𝑒
−𝜁𝜔0𝑡 (𝑐3sin (√1 − 휁2𝜔0) + cos (√1 − 휁2𝜔0)). 

(4.21)  

Hereafter 𝑐𝑗 are the constants depending on the initial conditions. It is clear that the 

sin(√1 − 휁2𝜔0) and cos(√1 − 휁2𝜔0) functions give the oscillations around the resonant 

frequency fading due to the real exponential term 𝑒−𝜁𝜔0𝑡. 

In the case 휁 > 1 the transmitting response has two different real poles and the 2-

nd order control system can be decomposed to the sequence of two 1-st order plants. The 

step response is: 

 
ℎ𝑟2
𝜁>1(𝑡) = 𝑐41(𝑡) + 𝑐5𝑒

−(𝜁+√𝜁2−1)𝜔0𝑡 + 𝑐6𝑒
−(𝜁−√𝜁2−1)𝜔0𝑡. (4.22)  

The sum of two real exponents does not have oscillations; it is a monotonic function 

for big values of 휁. 
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Finally, 휁 = 1 gives two repeating poles; in this case the step response is the 

following: 

 ℎ𝑟2
𝜁=1(𝑡) = 𝑐71(𝑡) + 𝑐8𝑒

−𝜔0𝑡 + 𝑐9𝜔0𝑡𝑒
−𝜔0𝑡. (4.23)  

Figure 4.8 shows the frequency response functions, the zero-pole maps and the step 

responses for all three cases. The parameters of the corresponding systems following (4.14) 

are shown in Table 4.1. Observing the step responses here and comparing them with Figure 

4.6 b) one can see that 𝑟2(𝑡) has overshooting but not oscillating, unlike the oscillating step 

response for 휁 < 1, also unlike the smooth step response for 휁 > 1, and exactly like the 

step response for 휁 = 1. Thus one can decide the transmitting response (4.15) has two 

repeated poles, and by substituting 휁 = 1 it can be simplified to: 

 
𝑊𝑟2 (𝑝) =

𝜔0
𝛽
∗

𝑝 + 𝛽𝜔0

𝑝2 + 2𝜔0𝑝 + 𝜔0
2 =

𝜔0
𝛽
∗
𝑝 + 𝛽𝜔0
(𝑝 + 𝜔0)2

. (4.24)  

One can create the control system (4.24) by the superposition of two elementary 

plants of the 1-st order; the corresponding scheme is shown at Figure 4.7. The 

correspondence between the feedback coefficients in Figure 4.7 and (4.24) one can get by 

the simple substituting to (4.8): 

 𝑏0 + 𝑏1𝑝

1 + (𝑏0 + 𝑏1𝑝)(𝑎′0 + 𝑎′1𝑝)
=
𝜔0
𝛽
∗

𝑝 + 𝛽𝜔0

𝑝2 + 2𝜔0𝑝 + 𝜔0
2. 

(4.25)  

Therefore 𝑎0 = 1 + 𝑎′0𝑏0, 𝑎2 = 𝑎′1𝑏1, and 2𝑎′1𝑏1(1 + 𝑎′0𝑏0) = 𝑎′0𝑏1 + 𝑎′1𝑏0. 
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# 𝜔0, [𝑟𝑎𝑑
∗ 𝑠𝑒𝑐−1] 

휁, [𝑟𝑎𝑑
∗ 𝑠𝑒𝑐−1]  

𝛽 Poles Zero  ℎ(𝑡) 

1.  0.0191 1 0.25 

 

𝜆1,2 = −0.0095 𝜍 = −0.0048 (4.22) 

2.  1.4 𝜆1 = −0.0227 

𝜆2 = −0.0040 

𝜍 = −0.0048 (4.21) 

3.  0.6 𝜆1,2 = −0.0057

± 0.0076𝑖 
𝜍 = −0.0048 (4.20) 

Table 4.1. The parameters of the systems reflected in Figure 4.7. 

The physical meaning of the parameters became clear by comparing (4.23) and 

(4.13): 𝑠 and 𝑄 in (4.13) are 𝜔0 and 𝛽−1 in (4.23-4.24), correspondently. 

 

Figure 4.7. Scheme of the sample 2-nd order control system (4.13). 
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b) 

 

a) c) 

Figure 4.8. Sample 2-nd order control system (4.14) with different damping factor 휁: frequency responses a), step response b), and pole-zero map c).  

The poles marked with x-crosses; all zeros are the same for all 3 systems marked with the circle.
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In our experiments we don’t measure 𝑟2(𝑡), so we can prove our conclusions only 

indirectly. Let us do the extrapolation of the experimental data but with the new function 

(4.10). Also like the tests as presented in Figure 4.3, we manually remove the first 0, 0.5, 

1 and 1.5 minutes of temperature data and compared the extrapolations obtained our model 

with original experimental data. As it can be seen from Figure 4.9, the extrapolation with 

thermal regulation is much more accurate. The maximum extrapolation error at zero time 

is about 0.1 – 0.2 C with thermoregulation, which is sufficiently accurate for this research. 

A metric that indicates the goodness of fit is the coefficient of determination 𝑅2 [92]. As 

we will see later, 𝑅2 is mostly above 99.9%, i.e. the accuracy is really good at the whole 

range of time of the experiments. 

 

Figure 4.9. Extrapolation of the experimental data with (4.10).  

The same experiment, 6 plots for 6 ROIs. 𝑇0-s are the extrapolated temperatures  

at 𝑡 = 0 for removed 0, 0.5, 1 and 1.5 min. of the experimental data. 
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4.3.3 The control system of the first order 

We like the robust results, and generally could trust the obtained model. To be 

absolutely sure let’s try to simplify it by the Occam’s blade principle: investigate the 1-st 

order model, and compare it with the second one observed above. Assume the equation 

with thermoregulation to be: 

 𝑑𝑇(𝑡)

𝑑𝑡
= −𝑘(1 − 𝑄𝑒−𝑠𝑡)(𝑇(𝑡) − 𝑇𝐴), 

(4.26)  

and thus a new thermoregulation parameter to be: 

 𝑟1(𝑡) = 𝑘(1 − 𝑄𝑒
−𝑠𝑡). (4.27)  

The transmitting response of the control system with the step response (4.27) is the 

same very familiar 1-st order system (4.9) which is simple than the 2-nd order one (4.14). 

The frequency response, the step response, and the pole-zero map of the system 

corresponding to (4.9) are shown at Figure 4.11. The explicit solution of (4.15) is: 

 

𝑇(𝑡) = 𝑇𝐴 + (𝑇0−𝑇𝐴)𝑒
−𝑘(𝑡+

𝑄
𝑠
(𝑒−𝑠𝑡−1))

. 
(4.28)  

The scheme of the corresponding control system is shown at Figure 4.10. The 

sample plots including frequency response, step response, and pole-zero map are in Figure 

4.8; for this example, the coefficients of (4.9) are: 𝑏0 = 1, 𝑎0 = 1, 𝑎1 = 1 [𝑠𝑒𝑐]. 

𝑊1(𝑝) =
𝑠/𝑄
𝑝+ 𝑠
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Figure 4.10. Scheme of the 1-st order control system (4.9).  
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b) 

 

a) c) 

Figure 4.11. A sample 1-st order control system (4.9): frequency response a), step response b), and pole-zero map c). No zeros, one pole at −1 + 𝑖0.
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a) b) 

 

c) 

Figure 4.12. Sample plots (not related to any experiment) illustrating (4.16) a, b), and (4.15) c).  

The physical meaning and the dimensions of the parameters 𝑘, 𝑄, and 𝑠 are the 

same as for the second order model described above. One thing should be noticed, that this 

type of regulation (4.27) is slower than (4.13) given the same values of the model 

parameters; compare the plots Figure 4.6b) and Figure 4.12c). As far as we are finding 

these parameters as the best fit for the same experimental data, one should expect greater 

Q 

Q 
Q 
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value of 𝑠 for the slower first order model. 

4.3.4 Comparison of the obtained models 

Table 4.2 below summarizes the mathematical description of the models also 

compared with the Newton’s law of cooling. 

Let us compare the interpolation quality for the 3 models we have: Newton’s law 

of cooling without any thermoregulation, the thermoregulation system of the 1-st order, 

and the thermoregulation system of the 2-nd order, see Figure 4.13 

  

a) b) 

  

c) d) 

Figure 4.13. Nonlinear fit for 3 models: in the whole time range a) 

for 0…2 min b), 2…5 min c), and 5…15 min d).  
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Both models with thermoregulation demonstrate really good interpolation quality. 

They both growth faster than Newton’s law of cooling, see Figure 4.13 b). At the same 

time they both have the value of 𝑘 some smaller than the correspondent values of Newton’s 

law of cooling. There is no contradiction in it, because they are faster due to the 

thermoregulation. The parameter 𝑠 which is the speed of thermoregulation is always greater 

for the 1-st order system as far as for the same parameters the plots Figure 4.12c) are 

slower than the correspondent plots Figure 4.6b) for the 2-nd order system. See the sample 

values of 𝑘−1 and 𝑠−1 in the legend of the plot. 
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Model of 

thermoregulation 

Newton’s law  

of cooling (0 

order) 

The 1-st order 

thermoregulation system 

The 2-nd order  

thermoregulation system 

Equation 
𝑑𝑇(𝑡)

𝑑𝑡
= 

−𝑘(𝑇(𝑡) − 𝑇𝐴) −𝑘(1 − 𝑄𝑒−𝑠𝑡)(𝑇(𝑡) − 𝑇𝐴) −𝑘 (1 + (𝑄𝑒−𝑠𝑡(1 − 𝑠𝑡))) (𝑇(𝑡) − 𝑇𝐴) 

Solution 

𝑇(𝑡) = 
𝑇𝐴 + (𝑇0−𝑇𝐴)𝑒

−𝑘𝑡 𝑇𝐴 + (𝑇0−𝑇𝐴)𝑒
−𝑘(𝑡+

𝑄

𝑠
𝑒−𝑠𝑡)

  𝑇𝐴 + (𝑇0−𝑇𝐴)𝑒
−𝑘(1+𝑄𝑒−𝑠𝑡)𝑡 

Thermoregulation parameter 

𝑟(𝑡) = 

𝑘 

𝑘(1 − 𝑄𝑒−𝑠𝑡)  𝑘 (1 + (𝑄𝑒−𝑠𝑡(1 − 𝑠𝑡)))  

Transmitting response 

 𝑊(𝑝) = 

𝑏0 𝑏0
𝑎0 + 𝑎1𝑝

 
𝑏0 + 𝑏0𝑝

𝑎0 + 𝑎1𝑝 + 𝑎2𝑝2
 

Control system 

  

 

Table 4.2. The models of thermoregulation. 
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4.3.5 Uniqueness and fullness of the obtained set of the models 

So far we have proposed two thermoregulation models, and found the biological 

explanation for both. Should one try to find more models and explain them then? 

The answer is: fortunately, no, at least if the maximum order of the system will be 

bounded by 2. Look at the logarithmic frequency responses of the systems Figure 4.8 a) 

and Figure 4.11 a). They are low pass, i.e. asymptotically flat at low frequencies and then 

asymptotically fall with the asymptote inclination 6 dB/octave (10 dB/decade) for the 1-st 

order system and 12 dB/octave (20 dB/decade) for the 2-nd order system at high 

frequencies. Also they are stable, i.e. all zeros if any and poles of the transmitting response 

𝑊(𝑝) must have a negative real part. There are no more plants of the 1-st order satisfying 

these requirements [87][88][89][90][91] Figure 4.11 c). In other words, the solution 

corresponding to the system of the 1-st order is unique. 

On the other hand, one can develop different low pass filters of the 2-nd order, but 

our system has the overregulation property, which has to be satisfied. It excludes from the 

consideration the systems with two different negative poles on the real axis as far as they 

will behave similarly to the systems of the first order just some faster. Adding the imaginary 

components to the poles, i.e. 휁 < 1 in (4.14) will affect the oscillations of the step response, 

which has never been observed in our experiments. Thus the plant must have two identical 

negative real poles. If the zero of 𝑊(𝑝) would have the same or greater negative value as 

the poles, the system would behave like the system of the 1-st order. Thus, the only way is 

to have a zero more closely to the origin than the poles are, see Figure 4.8 c) 

Aw we have discussed above, two repeating poles correspond to the dumping 
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parameter 휁 = 1 in (4.14). A very meticulous one could notice that the small changes of 휁 

should not dramatically change the behavior of the system. Indeed, there is the quite narrow 

range of 휁 where the behavior of formally oscillating system (with two complex conjugated 

poles) as well as the system with two different real negative poles would be almost the 

same or at least very similar to the system with two repeating real poles, see Figure 4.14. 

Note that this adds one more parameter to the system, i.e. 휁. It means incrementing the 

degrees of freedom of the optimization problem and by this reducing the robustness and 

general complication. By the way, three different equations must be parameterized and 

tested for the best fit of the experimental curves, namely (4.20), (4.21), and (4.22) which 

exactly corresponds to the (4.12) tested above. It does not look reasonable, especially 

because the systems behave really similarly; the same effect, i.e. greater thermoregulation 

for 휁 < 1 or lower thermoregulation for 휁 > 1 can be achieved using the model with 휁 =

1 varying the parameter 𝑄 in (4.12) or, the same, parameter 𝛽−1 in (4.14). It is reflected on 

the pole-zero map in Figure 4.14 c): while a change of 휁 affects redistribution of poles on 

the map, then a change of 𝛽 moves the zero along the real axis.  

Figure 4.14 illustrates the behavior of the different systems (4.14) in the narrow 

range of 휁 close to 1. The parameters are reflected in the Table 4.3; the systems in the table 

and the colors correspond to the ones reflected in Figure 4.14: 
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# 𝜔0, 
[𝑟𝑎𝑑
∗ 𝑠𝑒𝑐−1] 

휁, 
[𝑟𝑎𝑑
∗ 𝑠𝑒𝑐−1] 

𝛽 Poles Zero  

1.  0.0191 1 0.25 𝜆1,2 = −0.0095 𝜍 = −0.0048 

2.  1.1 0.25 𝜆1 = −0.0149 

𝜆2 = −0.0061 

𝜍 = −0.0048 

3.  0.9 0.25 𝜆1,2 = −0.0086

± 0.0042𝑖 
𝜍 = −0.0048 

4.  1 0.2 𝜆1,2 = −0.0095 𝜍 = −0.0038 

5.  1 0.3 𝜆1,2 = −0.0095 𝜍 = −0.0057 

Table 4.3. The parameters of the systems reflected in Figure 4.14. 

Comparing the step responses of the systems in Figure 4.7 with the first three ones 

in Figure 4.14, one can see that for 휁 ≲ 1 the damping is big enough to completely fade 

the oscillations with two complex conjugate poles in the third system in the table. It means 

that the real exponent in (4.20) fades faster than sin( ) and cos( ). On the other hand, 

휁 ≳ 1 is small enough to still give overshooting for the non-repeating poles (4.21), the 

second system. The tricky thing is that moving the zero farther from the origin but not that 

far as the poles, see the system #5 in the table, one can reduce the overshooting even more 

than for the given system (4.21), and vice versa, the system #4. 

This means that the obtained models with the order of the control system upper 

bounded by 2 are not unique in terms of the best fit, but are the simplest ones. The model 

of the 2-nd order (4.12) with the solution (4.13) is unique if to bound the maximum number 

of the parameters, i.e. fix the dumping factor 휁 = 1. It is natural from both physical and 

biological points of view: two different negative poles correspond to two real exponents 

with similar exponent factors. It requires two different but quite similar physical processes. 



94 

 

On the other hand, the couple of complex conjugant roots mean fading oscillations of 

thermal regulation, which also have not been observed. Moreover, as it is shown right 

below, see the Chapter 4.4, even the simplest system of the second order (4.12 – 4.13) 

appeared unnecessarily complex. 
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b) 

 

a) c) 

Figure 4.14. Sample 2-nd order control systems (4.14) with different damping factor 휁 and amplification 𝛽−1:  

frequency responses a), step response b), and pole-zero map c). The poles marked with x-crosses; the zeros are marked with the circles.
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4.4 The biological sense of the thermoregulation models 

4.4.1 The biological mechanisms of human thermoregulation 

Precisely, by thermoregulation we are referring to the change of particular 

parameters accounted for by 𝑇 depending on the temperature and time. The list of the 

human thermoregulation mechanisms includes the following ones: convection, conduction, 

radiation, goose bumps, and evaporation [93]. Our experiment includes three phases: 

control, cooling and recovery of the peripheral body part. 

Go back to the equation (4.3). The radiation term (4.4) may be ignored in the model 

of a foot recovery in room temperature, as we discussed above in Chapter 4.2. Similarly, 

in the short time cooling phase we may ignore evaporation (4.5). The goose bumps during 

cooling give almost no effect on thermoregulation because of direct contact between the 

human skin and cold pressor (through a thin bag of ice). Fat to energy transform in the 

mitochondria can also be neglected by local and short time cooling and also for adult 

humans [81].  

The convection and conduction are related to the interaction of the tissue with both 

external media and blood. Let us discuss the thermal energy exchange with the 

environment first. The energy exchange for the given skin area by the conduction cannot 

be regulated. The change of the convection intensity in the room by the temperature change 

can also be neglected. Thus, the thermoregulation happens inside the human body, i.e. 

between the tissue and blood. Blood current corresponds to the convection. Naturally 

assuming the constant values for heat capacity and density for both tissue and blood during 

the 15-20 minutes of the experiment, one can claim that the change of blood perfusion 
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𝜔𝑏(𝑡) is the main factor of thermoregulation. 

Mechanically and hydrodynamically the blood current in a human body is 

absolutely analogous to the liquid current in the pumping hose, where the heart works as a 

pump, and the vessels as the hoses. Thus, we could name the heart pulse rate, and pulse 

amplitude as the general parameters related to the “pump” whereas the diameters of vessels 

are the parameters related to the local properties of the “hose”. The blood pressure indicates 

the interaction between the “pump” and the rest liquid distributing system. We will not 

solve the Navier-Stokes equation in 3D for the hydrodynamical (hemodynamical in our 

case) model together with the thermal conductivity equation with the boundary conditions 

determined by the vessels of changing diameters, but use the same principle of control 

theory as above, i.e. assume the whole complex system as a black box and try to get its 

parameters. It must be noted that we cannot differentiate the influence of each factor using 

just the data of the measurements we made. For example, to investigate the dependence 

between the thermoregulation and the pulse amplitude [94] the laser Doppler fluorometer 

has been used to measure the flux of the red cells in the fingers and toes, and the pulse 

amplitude has been measured with the photoelectrical pulse plethysmographs. One of the 

conclusions have been made in [94] is that these general factors do have the influence on 

the thermoregulation state. Particularly it means that the thermoregulation of the same 

subject will be quite different with different pulse amplitude and rate (and also with 

different breathing, and even with mental stress). One may conclude by this that it should 

be taken into account investigating repeatability. Nevertheless, the main goal of this 

research is to diagnose the peripheral neuropathy with the key word “peripheral”. It means 

that beyond of pulse rate, etc. the diameters of the vessels can almost literally be the 



98 

 

bottleneck for the blood current. Therefore, it is the main thermoregulation mechanism 

must be taken into account. Its local nature gives a possibility to differentiate healthy and 

problematic areas on the foot beyond of the body parameters. 

Thus the major factors in thermal regulation are vasoconstriction, i.e. shrinking 

(constricting) of arterioles to reduce heat loss from the blood and vasodilation which is the 

opposite process. In contrast in the recovery stage all the mechanisms above should be 

switched back to the “normal” mode, i.e. vasodilation instead of vasoconstriction. 

4.4.2 The correspondence between the biological mechanisms and the 

analytical models of thermoregulation 

Let us compare two models in terms of the biological thermoregulation 

mechanisms. Observing the obtained model parameters after nonlinear fit in the legends in 

Figure 4.13 one can see that the dimensionless intensity of thermoregulation denoted as 𝑄 

is positive for the 2-nd order model whereas it is negative for the 1-st order model. Indeed, 

comparing the temperature dependences for the models Figure 4.6 a) and Figure 4.12a, b) 

clear that the neither the plots with 𝑄 < 0 for the 1-st order model nor the neither the plots 

with 𝑄 > 0 look similarly to each other and to the interpolated experimental curves. In 

contrary to these illustrations, Figure 4.14 shows only the parameters which have sense, 

i.e. 𝑄 ≥ 0 for the 2-nd order model and 𝑄 ≤ 0 for the other one. They are absolutely equal 

at 𝑄 = 0 which corresponds to the Newton’s law of cooling (4.2). Increasing the 

thermoregulation intensity |𝑄|, the temperature plots go above the asymptotic Newton’s 

plot for the 2-nd order model (4.10) Figure 4.14 a) and below for another one (4.16) Figure 

4.14 b) whereas at the times corresponding to the beginning of recovery both models make 
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the temperature growth faster than the asymptote. There is no contradiction in this as far as 

the 2-nd order model later on slows down after the time 𝑡 = 𝑠−1. The main difference 

between the models is that they describe different biological mechanisms of 

thermoregulation. The 1-st order model Figure 4.14 d) is monotonically increasing, 

therefore it corresponds to vasodilation. It has greatest value of the derivative of (4.15) i.e. 

greatest intensity of thermoregulation at the beginning and that it exponentially goes to 0. 

The 2-nd order model Figure 4.14 c) reflects vasodilation at the beginning until the 

intersection of the thermoregulation curve with the asymptotic line at the time 𝑡 = 2𝑠−1 

and vasoconstriction later on.  

Let us explain the simplest model first. As we have discussed above, the body part 

being cooled down gets less blood to preserve the heat energy of the human body under 

the cold stress [93]. Thus, the cold stress turns the vasoconstriction on. Then, the unit step 

function of heat at the beginning of the recovery process opens the vasodilation phase. This 

explanation is very clear and has neither doubts no contradictions with the known facts for 

the biology of human body. 

In contrary to this simple explanation, the model of the second order describes the 

process of alternating of vasodilation and vasoconstriction, so called so called hunting 

response or Lewis reaction [94][95][96][97][98][98]. We did not measure the change of 

the vessel diameters directly, so we cannot claim the existence of the more complex 

biological process, especially the one has been criticized [100] [101] [102] [103] [104]. 

Moreover, Lewis reaction has been claimed as induced by cold, whereas recovery is the 

opposite process. That’s why the model of the 1-st order has been chosen for further 

investigation. Both models are similarly robust, and give the same inter- and extrapolation 
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quality, but the control system of the first order is simpler, unique, and, more important, 

has a clear biological meaning. 

4.5 Accuracy of the model of thermoregulation 

Similarly to (4.3) for Newton’s law of cooling, we will use the nonlinear least 

square fit to find the parameters of the solution independently for each ROI for each 

experiment: 

 
{𝑘,  𝑠, 𝑄,  𝑇0, 𝑇𝐴} =

𝑎𝑟𝑔𝑚𝑖𝑛{‖𝑇(𝑡) − 𝑇𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝑡)‖2
2}

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑙𝑏 ≤ { 𝑘,  𝑠, 𝑄, 𝑇0, 𝑇𝐴} ≤ 𝑢𝑏
 (4.29)  

where 𝑙𝑏 and 𝑢𝑏 are lower and upper bounds for the vector of parameters. 

 
 

a) b) 

Figure 4.15. Interpolation quality with Newton’s law of cooling a) and the TR-1 model b) 

Let us compare the interpolation quality of the models for the full range of data, i.e. 

where the experimental measurement has been taken as close to the beginning of recovery 

as it is possible.  
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  ROI 5 Lateral Arch 

  T0, C RMSE 103 

   0.5 min  2 min 

No thermoregulation: Newton’s Law of Cooling 

Mean 0.96 40.04 17.58 

STD 0.39 12.73 5.91 

Median 0.86 39.38 17.46 

Min 0.44 17.21 7.66 

Max 1.90 62.82 30.92 

The Model of Thermoregulation of the 1-st Order 

Mean 0.060 4.23 3.45 

STD 0.056 1.78 0.77 

Median 0.048 4.14 3.25 

Min 0.003 1.87 2.27 

Max 0.212 9.02 4.94 
Table 4.2. Comparison of interpolation quality of TR-1 with Newton’s Law of Cooling. 

Also, for the same experiments, assume that the measurements started with the 0.5 

min delay, and 1.5 min. delay. We need to know how sensitive the model is to the loss of 

data like this, which, unfortunately, happened quite often. Unsurprisingly, we see the same 

effect. Moreover, the mean error 0.26-0.60 C for the TR-1 with incomplete data is less 

than the mean error of Newton’s law of cooling with the complete data.  
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  ROI 5 Lateral Arch 

  t0.5 min t1 min t1.5 min 

No thermoregulation: Newton’s Law of Cooling 

Mean 1.26 1.61 1.89 

STD 0.62 0.71 0.75 

Median 0.98 1.44 1.80 

Min 0.48 0.72 0.90 

Max 2.90 3.61 4.00 

The Model of Thermoregulation of the 1-st Order 

Mean 0.27 0.43 0.60 

STD 0.25 0.41 0.56 

Median 0.18 0.31 0.41 

Min 0.00 0.01 0.00 

Max 0.90 1.99 2.48 
Table 4.3. Extrapolation quality of TR-1 and Newton’s Law of Cooling with the loss of data. 

Let us discuss the meaning of the model parameters. Whereas 𝑄 – the amplitude of 

regulation, and 𝑠 – speed of regulation – depends on the properties of vessels, vessel 

muscles and reaction of peripheral nervous system on the stress, i.e. should vary for every 

experiment with different conditions, 𝑘 rather depends on tissue, and should be very similar 

for the same subject. Thus, for the set of 27 experiments with the same volunteering subject 

we substituted 𝑘 = 𝑘𝑚𝑒𝑎𝑛, and let other model parameters vary. It means that the problem 

(4.29) became 
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{𝑠, 𝑄,  𝑇0, 𝑇𝐴} =

𝑎𝑟𝑔𝑚𝑖𝑛{‖𝑇(𝑡) − 𝑇𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝑡)‖2
2}

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑙𝑏 ≤ {  𝑠, 𝑄, 𝑇0, 𝑇𝐴} ≤ 𝑢𝑏, 𝑘 = 𝑘𝑚𝑒𝑎𝑛
 (4.30)  

The interpolation quality did not change a lot; see Table below. 

  ROI 5 Lateral Arch 

  T0, C RMSE 103 

   0.5 min  2 min 

The Model of Thermoregulation of the 1-st Order, k = kmean 

Mean 0.082 4.58 3.66 

STD 0.073 1.96 1.07 

Median 0.064 4.43 3.52 

Min 0.001 1.21 1.87 

Max 0.288 8.51 6.48 

The Model of Thermoregulation of the 1-st Order 

Mean 0.060 4.23 3.45 

STD 0.056 1.78 0.77 

Median 0.048 4.14 3.25 

Min 0.003 1.87 2.27 

Max 0.212 9.02 4.94 
Table 4.3. Interpolation quality of TR-1 with fixed and varying parameter k. 

All this means, first, that the thermoregulation model has in orders of magnitude 

greater accuracy and robustness comparing to the model without the thermoregulation, and 

second, it describes real biological processes, and its parameters can be used for their 

quantification. 
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Chapter 5 Heat transfer during the cooling 

phase 

There did not seem to be so many pools of water under the snow on the left side of 

Henderson Creek, and for half an hour the man saw no signs of any. And then it 

happened. At a place where there were no signs, the man broke through. It was not 

deep. He was wet to the knees before he got out of the water to the firm snow. 

Jack London, To Build a Fire. 

5.1 Motivation 

The standard measurement protocol described in Chapter 2 includes three main 

phases: control, cooling and recovery. The control and recovery phases in the room 

temperature air are quite similar, whereas cooling in the cold water is physically, 

biologically, and (based on many personal impressions of the tested subjects) even 

emotionally very different. In the previous chapter, we have developed thermal regulations 

models and tested the model using the temperature recovery curves. One would expect that 

the same model should also work with the cooling phase. In fact, one would expect 

applying the model to the data points of the cooling phase should improve the overall 

accuracy of the parameters. 
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5.2 The thermoregulation model of the cooling phase. 

5.2.1 General solution. 

The simple model (4.11, 4.25) obtained for the process of a foot recovery in the 

room temperature is based on the several assumptions. Most of them are still applicable to 

the cooling phase in water, but not all of them. The assumptions that need to be modified 

are mostly related to the environment. In the recovery phase, the impact to the surrounding 

air is negligible, while the impact of to the cold water bath is not. Because of these, the 

following two assumptions must be adjusted: 

1. The constant environment temperature has been assumed in the recovery phase. 

It allows us to ignore the second equation from (4.3). While this is a valid 

assumption for room temperature, it is not the case for the cooling phase when 

the subject’s foot is submerged in a 2-gallon bath of cold water. To ensure that 

this assumption is still valid, we will have to keep the water temperature 

constant. This is achieved by adding cold water or ice to keep the water 

temperature constant during the cooling.  

2. The assumption 𝑟𝑏 ≫ 𝑟𝑒 in (4.6) is based on (1) the mass-specific heat capacity 

of air 𝑐𝑎 ≈ 963 J/kg/°K is much less than for the blood which is within the 

range 𝑐𝑏 = 3594…4153 J/kg/°K [77], and (2) the blood is constantly 

circulating, whereas there is no artificial air current in our experiments. In the 

cooling phase, however, the mass-specific heat capacity of water is: 𝑐𝑤 =

4181.3…4186 J/kg/°K. Also, we ask the subjects to move their feet to make 

the cooling more uniform.  
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Recall Equation (4.6) (denoted as Equation (5.1) in this Chapter): 

 𝑑𝑇(𝑡)

𝑑𝑡
= −𝑟1(𝑡)(𝑇(𝑡) − 𝑇𝑏) − 𝑟𝑒(𝑇(𝑡) − 𝑇𝑒) 

(5.1)  

where 𝑟𝑒 =
(𝜌𝑐)𝑒

𝑉𝜌𝑐
𝜔𝑒 [𝑠𝑒𝑐

−1] is the characteristic of the body (foot) with respect to 

the external media (here "𝑒" stands for environment, i.e., water in the cooling phase), and 

𝑟1(𝑡) =
(𝜌𝑐)𝑏

𝑉𝜌𝑐
𝜔𝑏(𝑡) [𝑠𝑒𝑐

−1] accounts for all the biological and thermal dynamical 

parameters responsible for the heat transfer between the blood ("𝑏") and tissue, as before.  

Recall that the original of time 𝑡 is the beginning of the recovery, i.e., the end of 

cooling. To avoid negative times, let 𝑡′ = 𝑡 − 𝑡𝑐𝑜𝑜𝑙𝑖𝑛𝑔, where 𝑡𝑐𝑜𝑜𝑙𝑖𝑛𝑔 is the cooling time. 

After this change of variables, equation (5.1) is still a linear parametric equation with 

respect to t’, and has an explicit solution, which is: 

 
𝑇(𝑡′) = 𝑒−𝑡

′(𝑘+𝑟𝑒)+
𝑄𝑘
𝑠
𝑒−𝑠𝑡

′

(𝐶2

+∫(((1 + 𝑄𝑒−𝑠𝑡
′
)𝑇𝑏𝑘 + 𝑇𝑒𝑟𝑒)𝑒

𝑡′(𝑘+𝑟𝑒)−
𝑄𝑘
𝑠
𝑒−𝑠𝑡

′

) 𝑑𝑡′) 

(5.2)  

Recall, 𝑘 is the speed of cooling due to blood, 𝑄, and 𝑠 are the parameters of the 

thermoregulation, 𝑟𝑒  is the speed of cooling due to the interaction with the environment.  

Observe that substitute 𝑄 = 0 – no thermoregulation. This solution becomes: 

 𝑇𝑁𝑒𝑤𝑡𝑜𝑛′𝑠 𝐿𝑎𝑤 𝑜𝑓 𝐶𝑜𝑜𝑙𝑖𝑛𝑔(𝑡
′) = (𝑇𝑒𝑟𝑒 + 𝑇𝑏𝑘 + 𝐶2𝑒

−𝑡′(𝑘+𝑟𝑒)) (𝑘 + 𝑟𝑒)⁄  (5.3)  

for the initial conditions 
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 𝑇(𝑡′ = 0) = 𝑇𝑟𝑒𝑓, (5.4)  

where the integration constant is 

 𝐶2 = 𝑇𝑟𝑒𝑓(𝑘 + 𝑟𝑒) − 𝑇𝑒𝑟𝑒 − 𝑇𝑏𝑘. (5.5)  

Thus, the new solution is consistent with the Newton’s Law of Cooling.  

Now observe that: 

 
∫(((1 + 𝑄𝑒−𝑠𝑡

′
)𝑇𝑏𝑘 + 𝑇𝑒𝑟𝑒)𝑒

𝑡′(𝑘+𝑟𝑒)−
𝑄𝑘
𝑠
𝑒−𝑠𝑡

′

) 𝑑𝑡′

= (𝑇𝑏𝑘 + 𝑇𝑒𝑟𝑒)∫(𝑒
𝑡′(𝑘+𝑟𝑒)−

𝑄𝑘
𝑠
𝑒−𝑠𝑡

′

) 𝑑𝑡′

+ 𝑄𝑇𝑏𝑘∫(𝑒
𝑡′(𝑘+𝑟𝑒−𝑠)−

𝑄𝑘
𝑠
𝑒−𝑠𝑡

′

) 𝑑𝑡′ 

(5.6)  

Let 

 
𝑏 =

𝑄𝑘

𝑠
 (5.7)  

 𝑎1 = 𝑘 + 𝑟𝑒 (5.8)  

 𝑎2 = −𝑠 + 𝑘 + 𝑟𝑒 (5.9)  

Then 
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∫(𝑒𝑎𝑡
′−𝑏𝑒−𝑠𝑡

′

) 𝑑𝑡′ =
|

|

𝑥 = 𝑒−𝑠𝑡
′

𝑡′ = −
1

𝑠
𝑙𝑛𝑥

𝑑𝑡′ = −
1

𝑠

𝑑𝑥

𝑥

𝑒𝑎𝑡
′
= 𝑥−𝑎 𝑠⁄

|

|
= −

1

𝑠
∫(𝑥−𝑎 𝑠⁄ −1𝑒−𝑏𝑥)𝑑𝑥

= |

𝑏𝑥 = 𝑦

𝑑𝑥 =
𝑑𝑦

𝑏

| = −
𝑏𝑎 𝑠⁄

𝑠
∫(𝑦−𝑎 𝑠⁄ −1𝑒−𝑦)𝑑𝑦 

(5.10)  

Let 

 
𝑡′ = −

1

𝑠
𝑙𝑛
𝑦

𝑏
 (5.11)  

 𝑦 = 𝑏𝑒−𝑠𝑡
′
 (5.12)  

The integral (5.10) is known as lower incomplete gamma function [78]: 

 

∫𝑦−𝑎 𝑠⁄ −1𝑒𝑦𝑑𝑦 = ∫𝑦−𝑎 𝑠⁄ −1𝑒𝑦𝑑𝑦

𝑦

0

+ 𝐶 = γ𝑙(−𝑎 𝑠⁄ , 𝑏𝑒−𝑠𝑡
′
) + 𝐶 

(5.13)  

Recall that the complete gamma function Γ(𝑎) is: 

 

Γ(𝑎) ≡ ∫ 𝑡𝑎−1𝑒−𝑡𝑑𝑡

∞

0

= γ𝑙(𝑎,∞). 
(5.14)  

The complete gamma-function can be split into the sum of a lower and an upper 

incomplete gamma-functions, i.e. ∫ (Γ(𝑎)) 
∞

0
= ∫ (Γ(𝑎)) 

𝑥

0
+ ∫ (Γ(𝑎)) 

∞

𝑥
. The normalized 

lower incomplete gamma function is: 
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P𝑙(𝑎, 𝑥) =

γ𝑙(𝑎, 𝑥)

Γ(𝑎)
=
∫ 𝑡𝑎−1𝑒−𝑡𝑑𝑡
𝑥

0

∫ 𝑡𝑎−1𝑒−𝑡𝑑𝑡
∞

0

 
(5.15)  

Thus, the items of (5.6) can be reduced to the following form: 

 
(𝑇𝑏𝑘 + 𝑇𝑒𝑟𝑒)∫(𝑒

𝑡′(𝑘+𝑟𝑒)−
𝑄𝑘
𝑠
𝑒−𝑠𝑡) 𝑑𝑡′

= −
(𝑇𝑏𝑘 + 𝑇𝑒𝑟𝑒) (

𝑄𝑘
𝑠 )

(𝑘+𝑟𝑒) 𝑠⁄

𝑠
 (γ𝑙 (− (𝑘 + 𝑟𝑒) 𝑠⁄ ,

𝑄𝑘

𝑠
𝑒−𝑠𝑡

′
) + 𝐶4) 

(5.16)  

 
𝑄𝑇𝑏𝑘∫(𝑒

𝑡′(−𝑠+𝑘+𝑟𝑒)−
𝑄𝑘
𝑠
𝑒−𝑠𝑡

′

) 𝑑𝑡

=
−𝑄𝑇𝑏𝑘 (

𝑄𝑘
𝑠 )

(𝑘+𝑟𝑒−𝑠) 𝑠⁄

𝑠
(γ𝑙 (− (𝑘 + 𝑟𝑒 − 𝑠) 𝑠⁄ ,

𝑄𝑘

𝑠
𝑒−𝑠𝑡

′
) + 𝐶5) 

(5.17)  

Substitute the formulae above to the general solution (5.2): 

 

𝑇(𝑡′) = 𝑒−
(𝑘+𝑟𝑒)𝑡

′+
𝑄𝑘
𝑠
𝑒−𝑠𝑡

′

(𝐶1

− (
𝑄𝑘

𝑠
)

(𝑘+𝑟𝑒) 𝑠⁄

(𝑇𝑏 (
𝑘 + 𝑟𝑒
𝑠

γ𝑙 (−
𝑘 + 𝑟𝑒
𝑠

,
𝑄𝑘

𝑠
𝑒−𝑠𝑡

′
)

+ γ𝑙 (1 −
𝑘 + 𝑟𝑒
𝑠

,
𝑄𝑘

𝑠
𝑒−𝑠𝑡

′
))

+ (𝑇𝑒 − 𝑇𝑏)
𝑟𝑒
𝑠
γ𝑙 (−

𝑘 + 𝑟𝑒
𝑠

,
𝑄𝑘

𝑠
𝑒−𝑠𝑡

′
))), 

(5.18)  

where the integration constant 𝐶1 is 
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𝐶1 = 𝑇𝑟𝑒𝑓𝑒

−
𝑄𝑘
𝑠

+ (
𝑄𝑘

𝑠
)

(𝑘+𝑟𝑒) 𝑠⁄

(𝑇𝑏 (
𝑘 + 𝑟𝑒
𝑠

γ𝑙 (−
𝑘 + 𝑟𝑒
𝑠

,
𝑄𝑘

𝑠
)

+ γ𝑙 (1 −
𝑘 + 𝑟𝑒
𝑠

,
𝑄𝑘

𝑠
))

+ (𝑇𝑒 − 𝑇𝑏)
𝑟𝑒
𝑠
γ𝑙 (−

𝑘 + 𝑟𝑒
𝑠

,
𝑄𝑘

𝑠
)) 

(5.19)  

Notice herewith that (5.18-5.19) represent the explicit solution to (5.1). 

Nevertheless, it still does not look obvious and intuitively understandable, especially 

comparing with the solutions obtained in the previous chapter. Let us continue the 

reduction. 

Using the following decomposition of the lower incomplete gamma function [79, 

80]: 

 
γ𝑙(𝑎, 𝑥) = 𝑒−𝑥𝑥𝑎 (

𝑥0

𝑎
+

𝑥1

𝑎(𝑎 + 1)
+

𝑥2

𝑎(𝑎 + 1)(𝑎 + 2)
+ ⋯)

= 𝑎−1𝑒−𝑥𝑥𝑎 (
𝑥0

1
+

𝑥1

(𝑎 + 1)
+

𝑥2

(𝑎 + 1)(𝑎 + 2)
+ ⋯) 

(5.20)  

One can see from (5.20) that  

 𝑎−1𝑒−𝑥𝑥𝑎 + 𝑎−1γ𝑙(1 + 𝑎, 𝑥) = γ𝑙(𝑎, 𝑥) (5.21)  

Substitute (5.21) to (5.18-5.19). The solution will be reduced to the following: 
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 𝑇(𝑡′)

= 𝑇𝑏 + 𝐶1𝑒
−(𝑘+𝑟𝑒)𝑡

′+
𝑄𝑘
𝑠
𝑒−𝑠𝑡

′

− (𝑇𝑏

− 𝑇𝑒)
𝑟𝑒
𝑠
(𝑒−

(𝑘+𝑟𝑒)𝑡
′+
𝑄𝑘
𝑠
𝑒−𝑠𝑡

′

(
𝑄𝑘

𝑠
)

(𝑘+𝑟𝑒) 𝑠⁄

) γ𝑙 (−
𝑘 + 𝑟𝑒
𝑠

,
𝑄𝑘

𝑠
𝑒−𝑠𝑡

′
) 

(5.22)  

where the integration constant 𝐶1 is 

 
𝐶1 = (𝑇𝑟𝑒𝑓 − 𝑇𝑏)𝑒

−
𝑄𝑘
𝑠 + (𝑇𝑏 − 𝑇𝑒)

𝑟𝑒
𝑠
(
𝑄𝑘

𝑠
)

(𝑘+𝑟𝑒) 𝑠⁄

γ𝑙 (−
𝑘 + 𝑟𝑒
𝑠

,
𝑄𝑘

𝑠
) 

(5.23)  

There is one more representation of incomplete gamma function [82]: 

 γ𝑙(𝑎, 𝑥) = 𝑎
−1𝑒−𝑥𝑥𝑎𝑀(1,1 + 𝑎, 𝑥) (5.24)  

Here 𝑀(1,1 + 𝑎, 𝑥) is the confluent hypergeometric function of the first kind [78, 

83]: 

 
𝑀(𝛼, 𝛽, 𝑧) = ∑

(𝛼)𝑛
(𝛽)𝑛𝑛!

𝑧𝑛
∞

𝑛=0

= 1 +
𝛼

𝛽 1!
𝑧1 +

𝛼(𝛼 + 1)

𝛽(𝛽 + 1) 2!
𝑧2 +⋯ 

(5.25)  

where the (𝛼)𝑛 and (𝛽)𝑛 are Pochhammer symbols denoted as: 

 
(𝑥)𝑛 ≡

Γ(𝑥 + 𝑛)

Γ(𝑥)
= 𝑥(𝑥 + 1)(𝑥 + 𝑛 − 1). (5.26)  

Substitute (5.24) to (5.22 – 5.23) we obtain the solution on the following form: 
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𝑇(𝑡′) = 𝑇𝑏 + 𝐶1𝑒

−(𝑘+𝑟𝑒)𝑡
′+
𝑄𝑘
𝑠
𝑒−𝑠𝑡

′

− (𝑇𝑏 − 𝑇𝑒)
𝑟𝑒

𝑘 + 𝑟𝑒
 𝑀 (1,1 −

𝑘 + 𝑟𝑒
𝑠

,
𝑄𝑘

𝑠
𝑒−𝑠𝑡

′
) 

(5.27)  

where the integration constant 𝐶1 is: 

 
𝐶1 = (𝑇𝑟𝑒𝑓 − 𝑇𝑏 + (𝑇𝑏 − 𝑇𝑒)

𝑟𝑒
𝑘 + 𝑟𝑒

 𝑀 (1,1 −
𝑘 + 𝑟𝑒
𝑠

,
𝑄𝑘

𝑠
)) 𝑒−

𝑄𝑘
𝑠  

(5.28)  

Finally, using the decomposition to series we got the following formula: 

 
𝑇(𝑡′) = 𝑇𝑏 + 𝐶1𝑒

−(𝑘+𝑟𝑒)𝑡
′+
𝑄𝑘
𝑠
𝑒−𝑠𝑡

′

− (𝑇𝑏 − 𝑇𝑒)
𝑟𝑒

𝑘 + 𝑟𝑒
 (1 +

(𝑄𝑘)𝑒−𝑠𝑡
′

(𝑠 − 𝑘 − 𝑟𝑒)

+
(𝑄𝑘)2𝑒−2𝑠𝑡

′

(𝑠 − 𝑘 − 𝑟𝑒)(2𝑠 − 𝑘 − 𝑟𝑒)

+
(𝑄𝑘)3𝑒−3𝑠𝑡

′

(𝑠 − 𝑘 − 𝑟𝑒)(2𝑠 − 𝑘 − 𝑟𝑒)(3𝑠 − 𝑘 − 𝑟𝑒)
+ ⋯) 

(5.29)  

where the integration constant 𝐶1 is: 
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𝐶1 = (𝑇𝑟𝑒𝑓 − 𝑇𝑏

+ (𝑇𝑏 − 𝑇𝑒)
𝑟𝑒

𝑘 + 𝑟𝑒
(1 +

(𝑄𝑘)

(𝑠 − 𝑘 − 𝑟𝑒)

+
(𝑄𝑘)2

(𝑠 − 𝑘 − 𝑟𝑒)(2𝑠 − 𝑘 − 𝑟𝑒)

+
(𝑄𝑘)3

(𝑠 − 𝑘 − 𝑟𝑒)(2𝑠 − 𝑘 − 𝑟𝑒)(3𝑠 − 𝑘 − 𝑟𝑒)

+ ⋯))𝑒−
𝑄𝑘
𝑠  

(5.30)  

Observe that the explicit solution in the form (5.29-5.30) is real, whereas the 

solution in the form (5.22 – 5.23) with incomplete gamma function has complex items for 

negative values of 𝑄, which correspond to the cooling phase. The series in the parenthesis 

(5.29-5.30) obviously converges; the computations show that it is enough to compute just 

3 items of series for the accuracy within 10−4. That’s why this form has been chosen for 

the implementation and computation.  

5.2.2 The thermoregulation term. 

As far as we did not introduce any new physical and biological mechanisms, the 

thermoregulation term must be in the general solution above as well. Note that the stronger 

interaction with the environment is still linear; it is the same Newton’s law of cooling, but 

with the different exponent factor. Similarly, the thermoregulation depends on 𝑟𝑒. Denote 

the thermoregulation term of the 1-st order model with the strong interaction with the 

environment similarly to the previous models, i.e. as the exponent factor of (5.27) and 

(5.29): 
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 𝑟1𝑒(𝑡) = (𝑘 + 𝑟𝑒)(1 − 𝑄𝑒
−𝑠𝑡) (5.31)  

Introduce the dimensionless ratio 𝑟𝑒/𝑘; the equation (5.31) can be reduced to 

 𝑟1𝑒(𝑡) = 𝑘(1 + 𝑟𝑒 𝑘⁄ )(1 − 𝑄𝑒−𝑠𝑡) (5.32)  

One can see that the difference between (5.32) and (4.27) is negligible for small 

𝑟𝑒 𝑘⁄ , and vice versa. 

5.2.3 Important special cases. 

To better understand the solutions as developed in this Chapter, we should 

demonstrate how the solution applies to some important special cases. Recall that 𝑘, 𝑟𝑒 , and 

𝑠 are the parameters which have the dimension of frequency; they show how fast the tissue 

temperature changes by such factors as blood, environment, and thermoregulation, 

correspondently. 

5.2.3.1 No thermoregulation (examples: DPN subjects, Newton’s law of cooling): 

𝑸 = 𝟎. 

Substitute 𝑄 = 0 to any form of the general solution. We have: 

 
𝑇𝑁𝑒𝑤𝑡𝑜𝑛(𝑡

′) =
𝑇𝑏𝑘 + 𝑇𝑒𝑟𝑒
𝑘 + 𝑟𝑒

+ 𝐶0𝑒
−(𝑘+𝑟𝑒)𝑡

′
 (5.33)  

where the integration constant 𝐶0 is: 

 
𝐶0 = 𝑇𝑟𝑒𝑓 −

𝑇𝑏𝑘 + 𝑇𝑒𝑟𝑒
𝑘 + 𝑟𝑒

 (5.34)  

Not surprisingly, we arrive at the Newton’s law of cooling, where the weighted 
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coefficient and averaged time constant account for independent interaction with two media, 

i.e., blood and environment. 

5.2.3.2 Thermoregulation in the air: 𝒓𝒆 = 𝒓𝒂𝒊𝒓 ≪ 𝒓𝒆 = 𝒓𝒘[𝒂𝒕𝒆𝒓], 𝒓𝒂𝒊𝒓 ≪  𝒌. 

Substitute back to 𝑡 for time instead of t’, 𝑟𝑎𝑖𝑟 vs. 𝑟𝑤[𝑎𝑡𝑒𝑟] for the temporal constant 

of the external media, 𝑇0 for the initial temperature, and 𝑇𝐴 for the stationary temperature, 

we end up with the same solution as in the previous chapter: 

 
𝑇1(𝑡) = 𝑇𝐴 + 𝐶3𝑒

−𝑘𝑡+
𝑄𝑘
𝑠
𝑒−𝑠𝑡

 (5.35)  

where the integration constant 𝐶3 is: 

 
𝐶3 = (𝑇0 − 𝑇𝐴)𝑒

−
𝑄𝑘
𝑠  (5.36)  

Note that this is due to the fact that incomplete gamma and confluent 

hypergeometric functions do not conflict with the nice and understandable exponents.   

5.2.3.3 Strong thermoregulation (example: normal subjects). 

Recall that for normal subjects with the good thermoregulation, 𝑠 ≫ 𝑘. At the same 

time, we may assume 𝑟𝑤 ≈ 𝑘 because the mass-specific heat capacity of blood and water 

are almost the same. Therefore (𝑠 − 𝑘 − 𝑟𝑤) ≾  𝑠. Thus Equation (5.29-5.30) can be 

approximated as: 

 
𝑇𝑛𝑜𝑟𝑚𝑎𝑙(𝑡

′) ≿ 𝑇𝑏 + 𝐶1
𝑛𝑜𝑟𝑚𝑎𝑙𝑒−

(𝑘+𝑟𝑒)𝑡
′+
𝑄𝑘
𝑠
𝑒−𝑠𝑡

′

−
𝑟𝑒(𝑇𝑏 − 𝑇𝑒)

𝑘 + 𝑟𝑒
𝑒
𝑄𝑘
𝑠
𝑒−𝑠𝑡

′

 (5.37)  

where the integration constant 𝐶1
𝑛𝑜𝑟𝑚𝑎𝑙 is: 
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𝐶1
𝑛𝑜𝑟𝑚𝑎𝑙 = (𝑇𝑟𝑒𝑓 − 𝑇𝑏)𝑒

−
𝑄𝑘
𝑠 +

𝑟𝑒(𝑇𝑏 − 𝑇𝑒)

𝑘 + 𝑟𝑒
 (5.38)  

Note that this is also consistent with the results from Chapter 4. 

5.3 Experimental results 

5.3.1 Model verification for the recovery phase 

As it has been shown above, the model (5.29-5.30) is a generalization of the model 

(4.11, 4.25). As a result, we obtained very similar quality curve fitting results with the data 

from the recovery phase. Figure 5.1 shows the comparison results for the two models. One 

can see that the difference between two interpolating curves is below the measurement 

noise. It means that two models are equally good in describing the recovery of the cooled 

feet to core body temperature.  

Figure 5.2 shows the typical thermoregulation plots computed by these two models. 

Observe that the plots look quite similar, but not exactly. 
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a) b) 

  

c) d) 

Figure 5.1.  Nonlinear fit of the experimental data for TR-1e and TR-1 re<<:  

in the whole time range a) for 0…2 min b), 2…5 min c), and 5…15 min d).  
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Figure 5.2. Sample thermoregulation plots for 4 ROIs computed with two different models; red 

dashed line shows the stationary value for the model (5.29-5.30), solid blue line; observe that is is 

some different for the model (4.11, 4.25), dashed black line.  

5.3.2 Application of the general model to both cooling phase and recovery 

phase 

For ≥15 minutes of measurements in the recovery phase with 8-9 Hz frame ratio 

one has a 7-8 thousands of control points obtained by direct measurements. For the cooling 

phase, we have two points of intersection of the interpolating curves obtained for the 

control and recovery phases, correspondently: 𝑇𝑟𝑒𝑓 at the beginning of cooling and 𝑇0 at 

the end of cooling (i.e., the beginning temperature of the recovery, i.e. 𝑡 = 0). The green 

dash almost horizontal line shows the change of water temperature, i.e. the quality of the 

satisfying the assumption of constant environment temperature. As can be seen, the water 

temperature change is within 1 degree and therefore can be ignored. 
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Figure 5.3. Sample plots illustrating three phases of the experiment.  

When applying the model to the cooling phase, we have assumed that the model 

parameters for the same subject have [relatively] small variation between the cooling and 

the recovery phase. This is a valid assumption and has been experimentally verified; where 

we varied the starting conditions for the same subject and calculated the model parameters 

(see Table 5.1). 

  

𝑇𝑟𝑒𝑓  

𝑇0 

𝑇𝑤𝑎𝑡𝑒𝑟  

−𝑡𝑐𝑜𝑙𝑑  

𝑇𝐴 = 𝑇(∞) 
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Cold stress 

duration, 

min 

Cold stress temperature, C 

5.5 7.0-7.5 9.0-9.5 10.0-10.5 11.0-13.0 15.0 18.0 25.0 

1     7     12     

2           10p 11   

3 27 [19, 20R], 

[23, 24R] 

17p,  

[25, 26R]p 

1 18p  13     

5     16p 2p,8,9p 3p,  

[21, 22R]p 

4,14,15 5p 6p 

Table 5.1. The initial conditions of the experiments with the normal subject VQB 04. Here the main 

index X means the number of the experiment (23 experiments total); two indices in the square parenthesis 

mark two feet placed into the water at the same time (4 such experiments gives 27 experiment indices); XR 

means the right foot, and the indices without the superscript correspond to the left foot. Xp indicate the 

afternoon experiments, and the ones without the subscript done at the morning time. 

With the above assumption, i.e., the same thermoregulation model parameter for 

the cooling phase and the recovery phase, one can find them as solution of the following 

optimization problem: 

 

{𝑄,  𝑠,  𝑘} =
𝑎𝑟𝑔𝑚𝑖𝑛 {∑‖𝑇(𝑗)(𝑡) − 𝑇𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

(𝑗) (𝑡)‖
2

2
𝑁

𝑗=1

}

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑙𝑏 ≤ {𝑄,  𝑠,  𝑘,  𝑇0
(𝑗)
, 𝑇𝐴

(𝑗)
} ≤ 𝑢𝑏

 

(5.39)  

where 𝑇𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
(𝑗)

 are data from the j-th experiment, 𝑇(𝑗) are the correspondent 

model data, and 𝑇0
(𝑗)

 are the initial temperatures interpolated for each experiment 

independently. We use the equation (5.39) to apply for the same thermoregulation model 
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as for the recovery phase in Chapter 4, i.e. the TR-1 assuming weak interaction with the 

environment. For the model Chapter 5.2 accounting the strong interaction with the 

environment one gets a very similar problem formulation: 

 

{𝑄,  𝑠,  𝑘, 𝑟𝑒} =
𝑎𝑟𝑔𝑚𝑖𝑛 {∑‖𝑇(𝑗)(𝑡) − 𝑇𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

(𝑗) (𝑡)‖
2

2
𝑁

𝑗=1

}

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑙𝑏 ≤ {𝑄,  𝑠,  𝑘, 𝑟𝑒 ,  𝑇0
(𝑗)
, 𝑇𝐴

(𝑗)
} ≤ 𝑢𝑏

 

(5.40)  

Intuitively, the goal of this curve fitting is to minimize the difference between the 

interpolated and the actual temperature at the end of the cooling phase. 

 

Figure 5.4. Sample plots illustrating the data and the residuals of the cooling phase.  
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The box plot Figure 5.6 below illustrates the residuals for all 26 experiments of 

Table 5.1. One can see the few outliers where the error is > 4 C or even more.  

Experiment Ball Inner Arch Lateral Arch Heel 

1 -0.33 -1.82 -1.79 -2.14 

2 -3.75 -7.72 -2.03 -4.08 

3 0.63 -0.89 -0.85 -1.27 

4 2.32 1.57 0.78 1.31 

5 1.90 2.30 1.26 2.14 

6 0.61 0.98 0.34 0.33 

7 0.15 -0.13 0.07 0.71 

8 0.53 2.07 1.05 1.38 

9 0.60 2.06 0.91 1.88 

10 2.13 1.06 0.76 0.16 

11 1.05 1.13 0.91 0.80 

12 -0.68 -0.35 -0.31 -1.25 

13 1.39 2.06 1.69 1.94 

14 2.63 2.95 1.52 2.08 

15 1.09 2.47 1.36 1.85 

16 -0.40 -1.29 -0.91 -4.64 

17 0.14 0.53 -0.05 -0.84 

18 -0.72 -1.57 -0.17 -0.82 

19 0.71 0.64 1.41 1.05 

20 -1.02 0.13 -0.10 0.12 

21 -0.51 0.49 0.53 0.83 

22 -1.98 -2.83 -1.52 1.23 

23 -1.44 -0.03 -0.58 -0.16 

24 0.43 0.31 -0.61 0.38 

25 0.31 1.03 0.28 1.37 

26 -1.95 -1.28 -1.39 -0.78 
Table 5.2. The residuals of cooling phase, all 26 similar experiments. 
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Figure 5.5. The residuals of the cooling phase reflected in Table 5.2 above.  

 A further investigation of the experimental data revealed that the most outliers 

correspond to abnormal experimental conditions.  For example, two of such outliers 

correspond to 5-minute cooling into the colder water (9-10 C). Note that normally, cooling 

is performed for 3 minutes and using (10 C) water. Another one of such outliers 

corresponds to cooling with 25 C water. One would assume that these experiments under 

fairly extreme conditions could be very different. Based on our record, we don’t have 

explanation for the 4th outlier. 

Figure 5.7 a) and Table 5.3 a) show the curve fitting results without the 4 outliers. 

For all 4 ROIs the medians are within 0.3 C from 0; the main parts of the distribution 

(25%-75%, marked with the boxes) are within 1 C from the corresponding medians; the 

worse cases are within 2.5 C (marked with whiskers); no outliers found. This showed that 

our generalized model captures the cooling phase. 
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Experiment Ball 
Inner 
Arch 

Lateral 
Arch Heel 

 
Ball 

Inner 
Arch 

Lateral 
Arch Heel 

1 -0.37 -1.97 -1.85 -2.10  -1.22 -2.75 -2.66 -2.97 

3 -0.11 -2.39 -1.33 -2.39  -0.01 -2.28 -1.23 -2.26 

4 1.69 0.31 0.36 0.35  2.07 0.69 0.74 0.77 

5 1.36 1.31 0.94 1.45  1.59 1.52 1.15 1.67 

7 0.44 -0.01 0.48 0.78  1.37 0.78 1.38 1.76 

8 -0.20 0.62 0.53 0.18  0.66 1.47 1.40 1.11 

9 -0.35 0.28 0.26 0.36  0.82 1.41 1.41 1.61 

10 2.24 1.29 0.76 0.28  2.67 1.69 1.19 0.73 

11 1.16 1.34 0.95 0.93  1.35 1.52 1.15 1.14 

12 -0.32 -0.02 0.03 -0.88  -0.57 -0.28 -0.21 -1.13 

13 1.25 1.82 1.54 1.77  1.27 1.86 1.57 1.80 

14 2.06 1.71 1.15 1.25  1.76 1.44 0.86 0.95 

15 0.41 1.15 0.91 0.83  0.81 1.54 1.31 1.27 

17 0.05 0.34 -0.15 -0.90  -0.46 -0.12 -0.63 -1.40 

18 -0.96 -1.88 -0.40 -1.18  -0.07 -1.03 0.48 -0.24 

19 0.68 0.49 1.36 1.12  -0.57 -0.67 0.16 -0.14 

20 -1.04 -0.03 -0.15 0.18  -2.30 -1.19 -1.35 -1.07 

21 -1.05 -0.68 0.22 -0.02  -2.24 -1.82 -0.94 -1.19 

23 -1.53 -0.31 -0.67 -0.18  -2.86 -1.54 -1.95 -1.52 

24 0.33 0.04 -0.70 0.35  -0.99 -1.20 -1.97 -0.99 

25 -0.12 0.51 -0.12 0.67  1.61 2.13 1.57 2.49 

26 -2.39 -1.81 -1.79 -1.47  -0.66 -0.19 -0.09 0.35 

 a)  b) 
Table 5.2. Residuals of the cooling phase, 22 experiments by the model with the strong interaction with the 

environment a), and by the model with the week interaction with the environment b). 
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a) b) 

Figure 5.6. Residuals of the cooling phase, 22 experiments by the model with the strong interaction 

with the environment a), and by the model with the week interaction with the environment b).   

It is also worthwhile to point out that we have applied the model from Chapter 4 to 

the cooling phase as well for comparison with the general model. The fitting results Figure 

5.7 a) and Table 5.3 a) in larger error in the following terms: the medians are farther from 

zero, the main part of distribution is visually wider, and the largest error is greater.  

This is the only way to compare the quality of two models for the case where they 

should be different, i.e. for cooling, and we see that they really are. We can conclude that 

the model taking into account interaction with the environment (here – with water) is more 

accurate. 

Observing the typical cooling curves Figure 5.5 one can visually separate two sub-

phases of cooling. The model shows that being submerged to cold water, the tissue surface 

colds down rapidly (first sub-phase), and then – slowly (second sub-phase). It means that 

the thermoregulation reacts much faster for the negative temperature jump than for the 
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positive one in recovery phase, i.e. the vessels constrict fast; after the end of this sub-phase, 

i.e. after the end of thermoregulation, the tissue slowly colds down by the Newton’s law of 

cooling. See the thermoregulation plots at Figure 5.8 below; compare the speed of 

thermoregulation for the recovery phase, Figure 5.3 – it is ~50 times faster at the beginning 

of cooling.  

 
Figure 5.7. Parameters of thermoregulation and r(t) for the cooling phase, 22 experiments. 
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5.4 Practical recommendations. 

The cooling phase is much more difficult for measurements; also, the optimization 

described above is ill-posed because of the assumptions we made. Despite of this, one can 

get some practical recommendations from the results obtained above.  

First, one can bound the temperature and the duration of required cold stress, which 

is important to save time, and even much more important to make the patients more 

comfortable. 3 minutes in 11-13 C water is much easier for any tested subject that 5 

minutes in 10 C. On the other hand, the stress temperatures 20 C are too high to switch 

the thermoregulation on with confidence. 

Second, if one got the far outlying parameters of thermoregulation modeling for the 

cooling phase, it should indicate that the experiment requires more attention. It does not 

mean that the subject has a DPN, but it could be one of the reasons. Another reason could 

be that something went wrong during the experiment. Thus, if the cooling phase shows the 

far outlying parameters, and much more robust recovery phase shows the slow 

thermoregulation, the subject definitely suspected to be a DPN. If two phases show 

different results, especially if the cooling phase demonstrates far outlying, we could 

recommend repeating the experiment with this subject. 

It must be noticed that the set of the experiments described above has been done 

with one subject. To bound the thermoregulation parameters of cooling phase more 

precisely, which is definitely required for the estimation of outliers, more experiments with 

different subjects are required. 
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5.5 Conclusion 

1. The model of the feet thermoregulation taking into account interaction between the 

tissue and cooling water has been developed. 

2. The model has been verified for the recovery phase, and demonstrated the same 

accuracy and robustness as the simplified model. 

3. The model has been applied for the modeling of cooling phase. It demonstrates better 

accuracy than the model without strong interaction. 

4. The model has been used to bound the cold stress conditions to minimize the 

discomfort of tested subjects, and to estimate variance of the thermoregulation 

parameters.  

5. The additional criterion for the more robust diagnostics of DPN based on the 

estimation of thermoregulation parameters and modeling error in cooling phase is 

proposed. 
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Chapter 6 Classification 

‘Who are YOU?’ said the Caterpillar. 

This was not an encouraging opening for a conversation. Alice replied, rather shyly, 

‘I–I hardly know, sir, just at present– at least I know who I WAS when I got up this 

morning, but I think I must have been changed several times since then.’ 

‘What do you mean by that?’ said the Caterpillar sternly. ‘Explain yourself!’  

‘I can’t explain MYSELF, I’m afraid, sir’ said Alice, ‘because I’m not myself, you 

see.’ 

‘I don’t see,’ said the Caterpillar. 

Lewis Carroll. Alice’s Adventures in Wonderland. 

Carving is easy; you just go down to the skin and stop. 

Michelangelo Buonarotti. 

 

6.1 Motivation 

The ultimate goal of this research is to investigate that if one can differentiate the 

DPN subjects from the non-DPN subjects using the parameters extracted from the thermal 

regulation models. 

Since the beginning of this research, some 40 subjects have been measured using 

the protocol described in Section 2. The subjects are partitioned into different age-race-

gender matched groups with the suggestion from an endocrinologist. The group of the 64-
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72-year old white male subjects is shown here to demonstrate the classification with 

different criteria. The group is picked because it has the largest population so far in our 

current patient database. The group includes four control subjects and four subjects who 

have been diagnosed with diabetic peripheral neuropathy. 

Let us describe herewith the various algorithms proposed for the diagnosing. 

6.2 The first naïve expectation: slower recovery of PN comparing to the 

control group 

Since we are measuring the quality of thermal regulation, an intuitive classifier is 

the speed of recovery. The idea has been proposed in [112] and later discussed in [113] 

[114] [115]. One would expect the foot of healthy subject without peripheral neuropathy 

should recover faster to the core temperature than a subject with peripheral neuropathy 

following cold stimulus, compare the plots at Figure 6.1. 

 

Figure 6.1. Different temperature change over time  

of the neuropathic subject (left), and the normal subject (right).  

Let 𝑇𝑟𝑒𝑓 be the temperature of a particular region of interest (ROI) on a subject’s 

foot before the cooling. Assume the ROI is cooled down to 𝑇0, and let 𝑇(𝑡) be the 

temperature recovery of the ROI over time 𝑡. See Figure 6.2 for illustrations. In the plot, 
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the X-axis is time and Y-axis is temperature. The temperature before t = 0 is the original 

core temperature Tref. Recovery starts at time t = 0. (Note that we are not imaging the 

cooling process.) The cool down temperature T0 is the temperature at t = 0, and the recovery 

temperature T(t) over time is the curve fitting result of temperature change extracted from 

the infrared video. 

 

Figure 6.2.  Illustrating Tref, T0, and T(t) 

Denote the recovery ratio at time t as 

 
𝜖(𝑡) =

𝑇(𝑡) − 𝑇0
𝑇𝑟𝑒𝑓 − 𝑇0

. (6.1) 

As mentioned in Chapter 2, we have 6 regions of interests (ROIs) identified. We 

shall denote the recovery ratio of the six ROIs as 𝜖𝑗(𝑡), where j = 1, 2, 3, 4, 5, 6. Since 

peripheral neuropathy affects the foot non-uniformly, i.e., some ROIs may have a good 

thermal regulation whereas others may not, and a patient is diagnosed with peripheral 

neuropathy if he or she has lost sensation at the any part of the foot, the classifier is chosen 

𝑇𝑟𝑒𝑓 

𝑇(𝑡) 

𝑇0 

𝑡 
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as the minimum recovery ratio amongst all six ROIs, i.e.,  

𝜖𝑚𝑖𝑛(𝑡) = 𝑚𝑖𝑛{𝜖𝑗(𝑡), 𝑗 = 1, 2, 3, 4, 5, 6} 

Figure 6.3 shows the scatter plot of the group of 64-72-year old white male subjects 

for 휀𝑚𝑖𝑛 at time 𝑡 = 3 𝑚𝑖𝑛𝑢𝑡𝑒. The blue diamonds represent the healthy subjects without 

peripheral neuropathy, and the red asterisks represent subjects with diagnosed peripheral 

neuropathy. Figure 6.3 indicates that 휀𝑚𝑖𝑛 can potentially be used as a classifier for 

quantitative identification of peripheral neuropathy.  

 

Figure 6.3. Scatter plot of 𝜺𝒎𝒊𝒏(𝒕) for t = 3 minutes. 

It is also worthwhile to note the following.  

1) There is no particular reason for picking t = 3 minutes. However, clinically it is 

ideal to use a shorter time t since it can help reduce the imaging time and thus 

improve patient throughput.  

2) The recovery speed is determined more with the body parameters, which are 

different for different patients (like heart rate, body temperature, blood 

pressure) and the environment. The influence of the peripheral features in the 
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overall thermal signal is much smaller, almost noise-level; it is impossible to 

differentiate them. Mostly therefore the method is not robust. 

6.3 The parametric classification 

The methods based on the estimated parameters of the thermoregulation model 

discussed in Chapter 4 naturally differentiate the peripheral features of the foot.  

6.3.1 Amplitude of regulation.  

Remind the thermoregulation r(t) which is (4.15) for the model of the first order 

TR-1. Denote the amplitude 𝐴𝑟 of thermal regulation [116] [117] [118] as: 

 𝐴𝑟 = 𝑟(0) − 𝑟(∞) =  𝑘|𝑄|. (6.2) 

See Figure 6.4 for the illustration. Greater value of 𝐴𝑟 means stronger 

thermoregulation. Therefore, for subjects without peripheral neuropathy, we expect 

stronger thermoregulation than for the ones with peripheral neuropathy |𝑄| ≈ 0. 

 

Figure 6.4. Illustration of the parameters of (5.2).  
Here 𝐴𝑟 changes from 0 for |𝑄| = 0 to 3 for |𝑄| = 3 

As mentioned previously, since peripheral neuropathy affects the foot non-

uniformly, the minimum of 𝐴𝑟 for all ROIs is used as a classifier. Figure 6.5 shows the 

scatter plot of the age group 64-72-year old white male for minimum 𝐴𝑟. Like in Figure 
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6.3, the blue diamonds represent healthy subjects without peripheral neuropathy and the 

red asterisks represent subjects with diagnosed peripheral neuropathy. Thus minimum 𝐴𝑟 

can be a good classifier for identifying peripheral neuropathy [117] [118]. 

 

Figure 6.5. Scatter plot of 𝐴𝑟 for the selected group. 

It is also worthwhile to note the following. From Figure 6.5 one can see that for all 

four subjects with diabetic peripheral neuropathy, the minimum of their 𝑨𝒓’s are close to 

0. This implies at least one ROI has extremely small amplitude of thermoregulation. This 

is illustrated in the scatter plot of the 𝑨𝒓’s for individual ROIs in Figure 6.6. As can be 

seen from Figure 6.6, three out of four subjects with peripheral neuropathy has bad thermal 

regulation in their big toe Figure 6.6 a) and two out of the four subjects with peripheral 

neuropathy have bad thermal regulation in their heel Figure 6.6 b). 
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a) b) 

Figure 6.6. Scatter plots of 𝐴𝑟 with different ROIs. 

6.3.2 Inversed speed of regulation 

One of the successful classifiers is the thermal regulation speed t [116]. It is equal 

to  

 ∆𝑡 = 2𝑠−1. (6.3) 

Smaller value of ∆𝑡 means faster time to reach maximum thermal regulation, and 

therefore a stronger thermoregulation.  

Since peripheral neuropathy affects the foot non-uniformly, the maximum of ∆𝑡 for 

four ROIs (excluding toes) is used as a classifier. Figure 6.7 shows the scatter plot for 

maximum t for the same age-race-gender matched small group of 8 subjects (4 normal 

control and 4 with diabetic peripheral neuropathy). As can be seen, the maximum t shows 

promise as a classifier of peripheral neuropathy. 
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Figure 6.7. Scatter plots of 𝑚𝑎𝑥(∆𝑡) for the selected group b). 

6.3.3 Advantages and disadvantages 

The main advantage of the parametric classification is the ability to separate the 

strongest signal component, which corresponds to the non-regulated warming from the 

area-specific regulation. Also they are the only ones usable for the low-cost IR diagnostic 

system described in Chapter 2.4 as far this camera does not produce an image. One can 

visually compare the regulation curves for the tested subjects and certain that the diabetic 

subject has greater value of ∆𝑡. 

The first disadvantage is that the processing with these methods requires some 

manual operation, at least entering the positions of ROIs and the initial referencing for the 

registration. 

The main disadvantage is common for all methods requiring discrete ROIs.  

Selection of ROIs is very approximate, very subjective, and very non-robust geometrically. 

The next day the same operator for the same subject could select some different and may 

be even non-overlapping ROIs inside the foot. 

The problematic areas, which are strongly damaged with diabetes, i.e. the areas of 
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DPN are generally different on the foot for different PN subjects. The ROIs may not 

overlap with the problematic areas. Moreover, for the different patients they may overlap 

with the different problematic areas. 

6.4 The “take attention” supplementary approach. 

For the increasing of overall robustness of classification, it is proposed to complete 

the parametric classification with other methods, which let us filter the wrong experiments 

out, or, if it happens, take additional attention for such experiments and subjects. 

6.4.1 Delay of capturing.  

The TR-1 model gives a robust interpolation even with the absence of the initial 

data, i.e. with the delay of capturing of the recovery phase. Notice that the exponential 

solution of the model equation changes much faster namely at the beginning. It means that 

the investigators not measuring early stage are missing most important part of recovery 

signal. The model keeps robustness up to 1.5 min of delay; if 2 min of data is lost the 

model cannot guarantee neither the good fit, nor correct values of the model parameters. 

Therefore, the most correct approach is a) start capturing in time; b) repeat the 

experiment with the significant loss of data. 

6.4.2 Parameters of the cooling phase.  

As it has been notices at Chapter 5, if one got the far outlying parameters of 

thermoregulation modeling for the cooling phase, it should indicate that the experiment 

requires more attention. One needs to take more experiments with different normal subjects 

to bound so ill-posed cooling model with some confidence; nevertheless, we have enough 

data to bound one subject. 
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6.4.3 Parameters related to bounds.  

The optimization problems (4.3, 4.29, 5.39) are constrained, because they are 

formulated as subject to bounds. It narrows the domain of search, keeps the parameters 

within their physical meaning, and let avoid meaningless local minima. If the optimization 

algorithm hits the bound during the computation, it means that the found parameters may 

be are mathematically optimal, i.e. correspond to a local minimum, but may be not 

physically reasonable. It could indicate either the error of the experiment or potentially 

problematic region.  

The first bound is 𝑚𝑖𝑛(𝑇0 − 𝑇𝑤𝑎𝑡𝑒𝑟) for all ROIs. Obviously, 𝑇𝑤𝑎𝑡𝑒𝑟 is the lower 

bound for the foot temperature: the foot cannot be colder than the water. If the optimization 

finds the solution where 𝑇0 − 𝑇𝑤𝑎𝑡𝑒𝑟 ≅ 0 it indicates a potential error, most often 

correlated either with the delay of capturing, or with the untracked strong foot shake, see 

Figure 6.8 a).  

The second source of potential error is if  𝑄/𝑄𝑏𝑜𝑢𝑛𝑑 ≈ 1, see Figure 6.8 b), which 

could happen by the same reasons.  

  

a) b) 

Figure 6.8. Examples of bounded solutions:  

a) T0-Twater0; subject VQB-022 (diabetic); b) Q/Qbound = 1; subject UNM-03 (normal).  
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6.4.4 Interpolation quality parameters.  

Low interpolation quality means that the model does not fit the experiment well. It 

could happen due to untracked foot shake, or could indicate a potentially problematic 

region, see Figure 6.9. The natural metrics of the goodness of fit are mean error and root 

mean square error. 

  

a) b) 

Figure 6.9. a) Experimental error (strong shaking); subject UNM-019 (diabetic).   

b) Problematic region (heel); subject VQB-03 (diabetic).  

6.5 Results of the parametric classification. 

We have also experimented in setting up a classifier with the entire data set that 

include 17 for the normal control subjects, 20 diabetes subjects with no formal diagnosis 

of DPN, and 14 diabetes subjects with the diagnosed peripheral neuropathy (DPN), see 

Table 6.1. 
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 Control subjects      Diabetic subjects      DPN subjects     

# 

Experiment ID 

Initial 

H2O 

Temp 

End 

H2O 

Temp 

Cold 

pressor 

time, 

min. 

Delay of 

capturing, 

min.  Experiment ID 

Initial 

H2O 

temp. 

End 

H2O 

temp. 

Cold 

pressor 

time, 

min. 

Delay of 

capturing, 

min.  Experiment ID 

Initial 

H2O 

temp. 

End 

H2O 

temp. 

Cold 

pressor 

time, 

min. 

Delay of 

capturing, 

min. 

1 Test feet 001 13.1 13.4 5.05 1.67  Subject UNM 015 13.8 14.2 5.13 2.70  Test feet 016 13 13.5 5.32 1.28 

2 Patient VQ 002 13.1 13.4 5.02 0.24  Subject UNM 016 13.7 13.9 5.00 1.49  Test feet 017 13.8 14.1 5.03 2.22 

3 Subject UNM 01 11.3 12.3 4.82 0.77  Subject UNM 017 13.5 13.8 5.07 1.85  Test feet 018 13.6 14.7 5.05 1.08 

4 Patient UNM-01 13.4 14 5.27 1.05  Subject UNM 019 13.5 13.7 5.07 2.31  Patient UNM-002 13.6 14 5.05 2.75 

5 Patient UNM 03 13.4 13.7 5.15 3.65  Subject UNM 020 13.9 14.1 5.12 4.38  Patient UNM 004 13.4 13.4 5.70 1.70 

6 Test feet 007 13.3 13.9 5.73 2.00  Subject UNM 021 13.7 13.9 5.10 2.66  Subject UNM 005 13 13.2 4.87 1.97 

7 Subject VQB 01 12.2 13.1 5.02 0.25  Subject UNM 022 13.7 14.3 5.15 1.65  Subject UNM 006 13 13.4 5.00 3.09 

8 Test feet pat 001 13.2 13.2 5.02 0.35  Subject UNM 023 13.8 14.2 5.82 2.23  Subject UNM 008 13.8 14.1 5.07 1.28 

9 Test feet pat 005 13.2 14.1 5.17 0.22  Subject UNM 025 13.9 13.9 5.33 1.23  Subject UNM 009 13.5 13.5 5.88 3.42 

10 Test feet pat 006 13.2 14.5 5.10 0.53  Patient VQ 019 11.7 12.8 5.03 0.37  Subject UNM 010 13.5 13.7 5.15 3.04 

11 Test feet pat 007 13 13.4 5.08 0.41  Test feet VQ 03  1 12.9 13.4 5.03 1.62  Subject UNM 012 13.8 13.8 5.35 2.05 

12 Test feet pat 009 13.5 13.5 5.17 0.40  Patient VQ 03 02 13.3 14.2 5.05 0.17  Subject UNM 013 13.5 13.9 5.02 3.14 

13 Test feet pat 010 13 14 5.02 0.83  Patient VQ 03 03 13.2 14.4 5.05 0.10  Subject UNM 014 13.5 13.8 5.03 3.06 

14 Test feet pat 011 13.6 14.3 5.05 2.01  VQB 22 01 13 14 5.02 0.23  Subject UNM 018 13.39 13.78 5.02 1.62 

15 Test feet 001 p 13.4 14.2 5.23 1.90  VQB 22 02 13 14 5.05 0.13       

16 Subject VQB 04 11.2 12.5 5.00 0.22  Test feet pat 008 13.4 14.2 5.10 0.28       

17 p 06 24 11.9 12.1 5.02 0.08  Test feet 012 13.8 14.2 5.03 0.41       

18       Test feet 013 13.1 14.1 5.07 0.84       

19       Test feet 014 13.6 14.7 5.30 0.94       

20       Test feet 015 13.3 14.2 5.10 0.37       

Table 6.1. Data collected by the standard protocol
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Cold stress 

duration, 

min 

Cold stress temperature, C 

5.5 7.0-7.5 9.0-9.5 10.0-10.5 11.0-13.0 15.0 18.0 25.0 

1     7     12     

2           10p 11   

3 27 [19, 20R], 

[23, 24R] 

17p,  

[25, 26R]p 

1 18p  13     

5     16p 2p,8,9p 3p,  

[21, 22R]p 

4,14,15 5p 6p 

Table 6.2. The initial conditions of the experiments with the normal subject VQB 04. Here the main 

index X means the number of the experiment (23 experiments total); two indices in the square parenthesis 

mark two feet placed into the water at the same time (4 such experiments gives 27 experiment indices); XR 

means the right foot, and the indices without the superscript correspond to the left foot. Xp indicate the 

afternoon experiments, and the ones without the subscript done at the morning time. 

6.5.1 Exclusion of the outliers. 

The toe ROIs have been excluded in this study because they can’t be reliably 

segmented and tracked due to motions.  

The interpolation quality parameters for all experiments taken into consideration 

reflected in Figure 6.10 (max(ME) for 5 min) and 6.11 (max(RMSE) for 10 min). It looks 

like the diabetic subject VQB 22 (index 4) and DPN subjects UNM 22 (index 4) requires 

additional attention (which is true for both). 
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Figure 6.10. Interpolation quality parameter max|ME| for 5 min.  

 

Figure 6.11. Interpolation quality parameter max|RMSE| for 10 min.  

Figures 6.12 and 6.13 show the parameters related to bounds: 𝑚𝑖𝑛(𝑇0 − 𝑇𝑤𝑎𝑡𝑒𝑟) 

and 𝑄/𝑄𝑏𝑜𝑢𝑛𝑑, correspondently. The first criterion marked as suspects 4 DPN and 2 

diabetic subjects; the second one pointed to one diabetic subject (index 10) and 3 DPN 

subjects. 
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Figure 6.12. Bounded 𝑚𝑖𝑛(𝑇0 − 𝑇𝑤𝑎𝑡𝑒𝑟) 

 

Figure 6.13. Bounded 𝑚𝑎𝑥(𝑄/𝑄𝑏𝑜𝑢𝑛𝑑) 

6.5.2 Classification by the thermoregulation model parameters.  

The tables and scatter plots on Figures 6.14 and 6.15 demonstrates the classification 

with the parameters discussed above: 𝑚𝑖𝑛(𝑘|Q|) and 𝑚𝑖𝑛(𝑠), correspondingly. The 

horizontal level lines correspond to the optimal values of corresponding parameters. One 
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can use different criteria for thresholding; we used the Bayesian criteria to minimize the 

total probability of false positives (i.e., control subjects recognized as DPNs) and the false 

negatives (i.e., DPN subjects recognized as normal ones). By this, the threshold value for 

𝑚𝑖𝑛(𝑘|Q|) is 0.0031 sec-1, and for 𝑚𝑖𝑛(𝑠) it is equal to 0.0038 sec-1. As far as there is no 

gap between these sets, we are not trying to classify diabetic subjects without DPN; they 

could be relatively “classified” so far as “rather DPN” or “rather not”.  

  

Figure 6.14. 𝑚𝑖𝑛(𝑘|Q|) 
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Figure 6.15. 𝑚𝑖𝑛(𝑠) 

The tables in Figure 6.16-6.17 show the number of misrecognized subjects and the 

probabilities of errors, sensitivity and specificity. The number of classified experiments is 

27 for VQB-04 + 10 for other control subject (37 control experiments total), and 14 DPN 

subjects.  
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Diagnosis VQB 04 Controls DPNs 

No DPN 25 7 1 (8) 

DPN 2 (6, 5) 3 (1, 3, 8) 13 
 

Diagnosis Controls DPNs 

No DPN 0.86 0.07 

DPN 0.14 0.93 
 

a) b) 

Figure 6.16. 𝑚𝑖𝑛(𝑘|Q|). Number of correctly and incorrectly classified subjects, and the indices of 

incorrectly classified ones a); probabilities of errors, sensitivity and specificity. 

Diagnosis VQB 04 Controls DPNs 

No DPN 26 6 1 (1) 

DPN 1 (6) 4 (1, 5, 6, 8) 13 
 

Diagnosis Controls DPNs 

No DPN 0.86 0.07 

DPN 0.14 0.93 
 

a) b) 

Figure 6.17. 𝑚𝑖𝑛(𝑠) Number of correctly and incorrectly classified subjects, and the indices of 

incorrectly classified ones a); probabilities of errors, sensitivity and specificity. 

The receiving operating characteristic (ROC) curves for both parameters are 

presented on Figure 6.18. This curves shows true positive rate vs. false positive rate. The 

areas under the curves are 0.9266 and 0.9208, correspondingly (close to 1, i.e. good 

enough).  
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a) 

 

b) 

Figure 6.18. ROC curves for 𝑚𝑖𝑛(𝑘|Q|) a), and 𝑚𝑖𝑛(𝑠) b). 
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Observe similar scatter plots for both parameters for each of 4 ROIs, see Figures 

6.19-6.26. If one would set the same threshold values as above, the sensitivity and 

specificity values will be predictable worse for each ROI than for minimum values shown 

above. One can see numerous false negatives as the × symbols above the threshold at the 

right columns of all a)-d) subplots, for both chosen criteria. Notice that the indices of the 

misclassified subjects are different for different ROIs, see also Table 6.3-6.4. It happens 

because diabetes could affect different areas for different subjects. Therefore, we strongly 

recommend to use the minimum parameter values for classification to reflect the worse 

cases for each subject. In other words, to avoid the most serious diagnostic error: missing 

of DPN, a subject should be classified as a DPN one if he/she has any problematic area. 

 

Figure 6.19. Classifier by 𝑘|𝑄| for ball. 
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Figure 6.20. Classifier by 𝑘|𝑄| for inside arch. 

 

Figure 6.21. Classifier by 𝑘|𝑄| for lateral arch. 
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Figure 6.22. Classifier by 𝑘|𝑄| for heel. 

 

Figure 6.23. Classifier by 𝑠 for ball. 
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Figure 6.24. Classifier by 𝑠 for inside arch. 

 

Figure 6.25. Classifier by 𝑠 for lateral arch. 
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Figure 6.26. Classifier by 𝑠 for heel. 

 

ROI Diagnosis VQB 04 Controls DPNs 

Ball No DPN 27 8 10 (1, 5, 6, 7, 8, 9, 10, 11, 12, 13) 

DPN 0 2 (1, 8) 4 

 

Inside 

arch 

No DPN 27 9 8 (1, 2, 5, 8, 10, 12, 13, 14) 

DPN 0 1 (8) 6 

 

Lateral 

arch 

No DPN 25 9 5 (1, 3, 8, 13, 14) 

DPN 2 (5, 6) 1 (1) 9 

 

Heel No DPN 26 8 8 (1, 2, 3, 7, 8, 9, 12, 14) 

DPN 1 (6) 2 (1, 3) 6 

 

min(4 

above) 

No DPN 25 7 1 (8) 

DPN 2 (6, 5) 3 (1, 3, 8) 13 
 

Table 6.3. 𝑚𝑖𝑛(𝑘|Q|). ROI-specific number of correctly and incorrectly classified subjects,  

and the indices of incorrectly classified ones. 



153 

 

ROI Diagnosis VQB 04 Controls DPNs 

Ball No DPN 27 6 5 (1, 2, 3, 4, 12) 

DPN 0 4 (1, 5, 6, 8) 9 

 

Inside 

arch 

No DPN 27 6 6 (1, 2, 3, 5, 11, 12) 

DPN 0 2 (1, 5) 8 

 

Lateral 

arch 

No DPN 26 7 7 (1, 3, 4, 7, 9, 11, 14) 

DPN 1 (6) 3 (1, 6, 8) 7 

 

Heel No DPN 26 8 7 (1, 2, 4, 8, 19, 11, 12) 

DPN 1 (6) 2 (1, 5) 7 

 

min(4 

above) 

No DPN 26 6 1 (1) 

DPN 1 (6) 4 (1, 5, 6, 8) 13 
  

 

Table 6.4 𝑚𝑖𝑛(𝑠) ROI-specific number of correctly and incorrectly classified subjects,  

and the indices of incorrectly classified ones. 

Investigating the scatter plots and corresponding tables above including the Table 

6.1, it could be recommended to investigate additionally the subjects VQB_19 and 

VQB_13 (experiment indices 1 and 8 in the recent tables), which has been classified as 

DPNs by both criteria. 

It is naturally to combine both successful criteria. The naïve Bayesian classifier in 

2-D feature space for both 𝑚𝑖𝑛(𝑠) and 𝑚𝑖𝑛(𝑘|𝑄|) is shown at Figure 6.27. The values true 

and false positives and negatives and the misrecognized subjects shown on Figure 6.28. 

Observe increasing of sensitivity for 2-parameter classifier comparing to both 1-paremeter 

ones. The discriminant curve of the classifier is shown as bold dashed line at Figure 6.27 

a). The area under the 2-parametric ROC curve is 0.9517, i.e. some more close to 1.0 than 

the previous ones. 
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a) 

 
b) 

Figure 6.27. Classifier a) and ROC curves b) for 2-parametric classification. 
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Diagnosis VQB 04 Controls DPNs 

No DPN 26 9 1 (1) 

DPN 1 (6) 1 (1, 8) 13 
 

Diagnosis Controls DPNs 

No DPN 0.92 0.07 

DPN 0.08 0.93 
 

a) b) 

Figure 6.28. 2-parametric Bayesian classifier: number of correctly and incorrectly classified subjects, 

and the indices of incorrectly classified ones a); probabilities of errors, sensitivity and specificity 

b). 

 

6.6 The pattern recognition approach 

It has been observed [119] that the healthy subjects and DPN ones usually have 

visually different thermal foot signature. While the hot area of the control subjects is 

kidney-shaped, i.e. hot at the inner arch, and then smoothly and almost uniformly diffuses 

to the rest foot, the PN subjects often have more irregular pattern with visually recognized 

spots, Figure 6.29. The irregular patterns are different for the different subjects.   
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a) b) 

  

c) d) 

Figure 6.29. Sample thermal foot signatures. Control subjects, a), b), and the PN ones c) and d). 

The metrics proposed for the classification of spotty and regular patterns is similar 

to the lossy compression quality. Most of the image compression algorithms use the 

smoothness of the images of natural origin; it is their main and principal difference to the 
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general compression algorithms [120] [121]. The first stage of image compression is some 

transform, i.e. projection from the spatial domain to the domain of the chosen transform. 

The great majority of the image information is concentrated into the few components in 

the new domain, so the lossy compression requires keeping and encoding just that few ones 

and ignoring the other ones. Decompression means inverse transform of the set of saved 

components back to the spatial domain. One can choose the transform between the 

traditionally applicable for image compression, for example principal component analysis 

(PCA), independent component analysis (ICA), Fourier transform, wavelet transform; for 

the last one there is a huge choice of the wavelet type [121]. The simple and natural metrics 

of compression quality is the measure of the nonzero (lossy compression!) difference 

between the initial image and the decompressed one; also there is a choice between 

Euclidian, Manhattan, Minkovsky distances, and other measures like standard deviation of 

the obtained difference, etc. It is not a big deal; all these things are really similar. The 

problem of choosing a right classification threshold requires a statistically significant data 

set. 

Smooth images have better compression quality in all the domains named above. It 

must be noted that the compression quality depends on the edges very much. In our case 

the even the spots are much smoother than the foot edges, i.e. the contrast boundary 

between the foot and the background. Thus, instead of compressing of the whole image or 

the whole foot one have to make a rectangular selection inside of the investigated foot area 

and crop image by the selection.  

For the illustration, see the compression quality for PCA. Initial fragment on the 

foot image has been compressed with the different number of PCA components. See the 
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compression quality and the difference between the initial and decompressed images 

Figure 6.30. Top left subplots are the original images; bottom left is the result of the 

reconstruction by 4 first PCA components; bottom right is the difference between them; 

top right is the reconstruction by 30 first PCA components. 

 
 

a)  b) 

  

c)  d) 

Figure 6.30. Illustration of the image compression quality at 0 a), 1 b), 3 c), and 7 min d).  
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a) b) 

Figure 6.31. Segmented foot with the selection a),  

and the amount of the first 4 PCA components comparing to all others for the different frames b). 

See the change of compression quality with increasing of the time, Figure 6.31. 

Indeed, after the cold stress the thermal patterns of a foot should become smoother in time; 

therefore, for the later frames more information is concentrated in less number of PCA 

components. Let’s be more specific and try the following metrics: compare the amount of 

all PCA components but the first 4 for the frame at 3 min. after beginning of recovery. 3 

minutes has been chosen to try the method even for the subjects with the lost first 2 minutes 

of data; 4 PCA components chosen some intuitively; I don’t claim that it is the best choice. 

This method has been investigated less of all so far, that’s why the robustness has 

been not investigated yet. Four cases at Figure 6.29 reflect that it is less robust than we 

would like it to be: here there are two hits for two diagonal patterns and two classification 

errors of both kinds for the non-diagonal ones. By the way, it reflects what we see: the 

thermal signature of the normal subject Figure 6.29 b) looks less smooth than thermal 

signature of the DPN subject Figure 6.29 c). I don’t claim by this that the method works 

with probability 50%. I made the pessimistic selection of the subjects now not to be 

disappointed later. The method definitely works better, but it is the subject for the further 
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investigation. The main break for this is that it requires a segmentation, registration and 

similar spatial orientation for all comparing frames; so far it is manual. 

The potential advantages of this method are the following. Initial visual recognition 

is quite easy for the diagnostics, even for the observers who are not confident in the subject 

like the patients themselves. It can be easy explained to the doctors and to the patients; 

definitely more easily than the difference between the thermoregulation models of different 

order. The people like simple things! Just one frame required (optimistically) to initially 

estimate the diagnosis. Also, this approach is not sensitive to the missed frames. 

Additionally, it is extremely fast: it takes almost no computational time comparing to the 

initial data processing.  

The disadvantages are the following. First, it’s the overall feature, nothing ROI 

specific, i.e. no detail diagnostics is possible, just the integrated classification. Second, the 

compression quality metrics can be applied just to the inner part of the foot; the boundary 

effect with the foreground, which is generally different for each experiment, gives a huge 

error for any type of compression, even with the toes and the space between them, which 

are recommended to be excluded from the compression quality analysis. Third, the manual 

selecting of the areas inside the foot is very operator-specific. Also, it is natural to compare 

images decomposed to the same amount of PCAs, so the size of the selection in pixels must 

be the same for all comparing selections. Note that generally the feet have size on the IR 

image. 

The classification metrics is not patient – specific; the “healthy – PN” threshold has 

to be chosen by analyzing of the statistically significant number of the experiments which 
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we don’t have yet.  

It looks interesting to make it applicable for the more detail diagnostics with the 

potential geometrical resolution compatible with the spot size. The metrics for description 

of the spots taking into account their geometrical position is required for this. The idea to 

compare this potentially interesting method with the area-specific diagnostics with high 

resolution (see right below) looks attractive, especially if the methods would be mutually 

supplementing. 

6.7 The foot segmentation approach 

6.7.1 Segmentation 

As mentioned previously, peripheral neuropathy does not affect the diabetic foot 

uniformly. So far we limit the scope of the investigation to six regions of interests marked 

manually by reflective stars. In order to demonstrate a truly useful computer aided system 

for detecting peripheral neuropathy, we must be able to analyze the entire foot and identify 

problematic regions. To study the whole foot requires an image-processing algorithm that 

is capable of segmentation and registration of the foot for a given infrared video. Once the 

video frames are registered, the temperature recovery of each point on the feet plantar can 

then be extracted and analyzed using our bio-thermal model. The regions that exhibit 

abnormal ability to recover can then be detected. It means that the overall resolution of the 

system in the domain of the model parameters will be increased explosively: from just 6 

ROIs to the 𝑂(𝑁), where 𝑁 is upper bounded by the number of the pixels on the foot; 

𝑁~2 ∗ 104 for the FLIR SC 305 camera. 

Also by the foot segmentation one can dramatically reduce the registration error. 
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By this, the range of trustful times can be reduced, as well and the robustness of the model 

will be increased. Also the actual resolution in the domain of the model parameters will be 

increased.  

Comparing to the segmentation of a digital video in a visible band, the segmentation 

of IR video of the thermally changing object like the recovering foot is really challenging. 

The main challenges are the following. 

1) As the foot warms up, it creates an ever-changing contrast. More specifically, at 

for the most cases the beginning of the recovery process, the foot is colder than the 

surrounding, Figure 6.32 a). However, as the foot temperature warms up, the contrast 

between the foot and the surrounding decreases to a point where there is almost no contrast 

at all. Beyond this point, the foot becomes warmer than the surrounding. One can observe 

the loss of contrast in 10 minutes at the inner arch area, which usually is the warmest part 

of the foot in Figure 6.32 b). 

2) As the foot warms up, it also warms up the surrounding. Thus, there is no 

thermally stable background. This effect mostly happens due to the thermal interaction 

between the heel and the supporting bench, especially if the subject moves the foot during 

the recovery; see Figure 6.33.  

3) Sometimes the feet and the background are not enough contrast even at the 

beginning; see Figure 6.34. It happened mostly in winter in the relative cold room. 
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a) 

 

b) 

Figure 6.32. Very contrast feet at the beginning a) and the loss of the contrast at the inner arch area b). 

Also observe some shape distortion below the heel area b). 

  



164 

 

 

a) 

 

b) 

Figure 6.33. Illustration of the thermal interaction between the heel and the supporting bench.  
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Figure 6.34. Initially low contrast foot at the very beginning of recovery.  

All of these factors make it difficult to segment all the frames of the non-fixed 

patient’s feet independently, see Figure 6.35. 

 

Figure 6.35. Frame-by-frame segmentation of two feet; z-axes corresponds to time.  

Observe the deformations described above.  
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To overcome these challenges, we have developed the following palliative solution.  

1) Apply the continuous max-flow method [122] to segment the foot at the very 

beginning of the recovery by taking advantage of the high contrast created by the cold foot. 

We have experimented with a number of other segmentation algorithms before decided to 

use max-flow method because the boundary contours are not biased by the choice of 

computational grid. As with most segmentation algorithm, max-flow method also requires 

a temperature threshold. To avoid manual tuning, the temperature of the cold water for 

cooling, the environment temperature and the initial tissue temperature before cooling are 

incorporated to set up the threshold. Also the temperatures are normalized to within the 

given range. 

2) Based on the segmentation of the first frame, we apply shape extraction to create 

the geometric foot model as a smooth simple polygon.  

3) For the successive frames, we use numerical optimization to search for the best 

fit of the foot model similarly to the registration and tracking discussed in Chapter 3.4. 

Let 𝑃0(𝑥, 𝑦) be the foot model obtained from the first frame 𝑓0(𝑥, 𝑦). Let 𝑓(𝑥, 𝑦) 

be the current frame to be segmented. The goal of the optimization is to find a 

transformation 𝐴 when applied to 𝑃0(𝑥, 𝑦) generates the foot polygon 𝑃(𝑥, 𝑦) that best 

“fits” the frame 𝑓. 

After several trials, the affine transformation without scaling and shearing, i.e., 𝐴 =

[
cos (휃) −sin (휃) Δ𝑥
sin (휃) cos (휃) Δ𝑦
0 0 1

] is seems to give very good result and chosen for the optimization. 
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Interested readers may wonder why only rotation and translation is needed. This is because: 

(1) there is no deformation of the foot. (2) The foot doesn’t warm up uniformly. In fact, the 

medial (inner) arch warms up so fast and quickly blend in with the surrounding. More 

advanced transforms 𝐴 will not only increase computation time, but introduces 

unnecessary deformations of the foot model that results in a bad segmentation.  

(3) The patient’s feet may move during the recovery period. The transformation 

matrix automatically accounts this motion. 

6.7.2 Labeling 

Using the segmentation of the feet at each frame, we can do more than just classify 

the subjects. The thermoregulation model can be applied to every point of the observed 

foot surface. By this, one can classify every pixel of the segmented foot. In other words, 

the problem areas of the foot will be visualized for the client. It gives an additional degree 

of freedom for the practical diagnostics comparing to the classification by 3 classes.  

Figure 6.36 illustrates this approach. The pictures on the left are the initial frames 

of the infrared video, while the pictures on the right are the result of the processing which 

includes registration and tracking, segmentation, modeling and the extracting of the 

thermoregulation model parameters at every pixel, and finally mapping of the model 

parameters to the segmented frame. 

The geometric accuracy of the segmentation has been evaluated with manually 

placed star-shaped markers. Even though in our current CAD system, the reflective stars 

are no longer used for diagnostic purpose, but the markers do come handy for evaluating 

the geometric accuracy of the segmentation. The affine transform for each frame has been 
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applied to the initial coordinates of the geometric centers of the markers, which are then 

compared to their actual positions at every frame. The geometric accuracy of the 

segmentation is within 1-2 pixels (less than 1 mm), which is more than sufficient for the 

CAD system. We have also compared the automatic segmentation with manual 

segmentation, which also shows good agreement. 

With the foot segmented and registered, we can extract the temperature change for 

each point on the foot plantar. By analyzing the temperature changes with our 

thermoregulation model as described in Chapter 4, we can obtain the map of 

thermoregulation at each point of the feet, see Figure 6.36 b) and d). The colored areas 

correspond to the healthy foot areas, while the dark blue ones do not show thermoregulation 

(as well as the background), so they have been classified as the problematic areas. 

  

a) b) 
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c) d) 

Figure 6.36. Initial frames a), c) and the mapping of the thermoregulation parameter  

to the whole segmented area b), and d). Here a) and correspondently b)  

belong to the normal subject whereas c) and d) belong to the DPN subject. 

This is the illustration of the main advantage of this method: one obtains not just 

the integrating diagnosis but the quantitative diagnostics virtually for each point of the foot. 

Also the number of manually inputted parameters is reducing a lot: no need for pointing of 

ROIs. If we could obtain the fully automatic segmentation, the manual input can be 

excluded. 

The principal disadvantage is the increasing of the computation times for the 

modeling proportionally to the number of the pixels. The computation time can be reduced 

by the natural parallelism of the processing, i.e. in the frames of our “1D” model every 

pixel is assumed independent. 

The main disadvantage of the palliative approach virtually comparing with the ideal 

segmentation is the geometrical accuracy of the registration. With the accuracy 1 pixel 

we reduce the actual spatial resolution in the model parameters domain 4 times and, 
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correspondently 16 times with the accuracy 2 pixels. Also, the non-rigid foot 

transformations (like tow moves) are not taken into account. 
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Chapter 7 Conclusions and Future Work 

The repose in being still warm.  

The present thinks keep me for  

tomorrow tomorrow tomorrow tomorrow. 

César Vallejo, Trilce. 

Osgood Fielding III: “Well, nobody's perfect”. 

Robert Thoeren, Michael Logan, Some like it hot. 

7.1 Conclusions 

1. The protocol of the experiment has been developed. 

2. The original low cost camera has been designed, calibrated and investigated. 

3. The noise of the cameras has been investigated in detail; particularly the noise 

stationarity has been proven.  

4. The robust estimation of the power 𝛼 of the 1 𝑓2−𝛼⁄  flicker noise has been proposed. 

5. The trustful numerical model of the camera noise has been developed. 

6. The required preprocessing of the thermal IR video has been developed. It includes 

spatial and temporal filtering, synchronization, registration and tracking. 

7. The original problem specific algorithms for adaptive filtering and tracking has been 

developed, implemented and investigated. 

8. The novel model of the human body thermoregulation has been derived from the 

equation of the bio heat transfer. 

9. The applicability of the model to the real vascular processes, i.e. vasodilation 



172 

 

(recovery phase) and vasoconstriction (cooling phase), has been explained from the 

various points of view including the control theory, physiology, and experimental 

data fit. 

10. The robustness of the model has been investigated in detail including the robustness 

of the experimental data fit, and the robustness of the model parameters. 

11. The uniqueness and fullness of the model has been discovered within the assumption 

of the bounded model complexity. 

12. The requirements to the experiment to satisfy the given criteria of accuracy of the 

model parameters estimation has been derived using the analytical methods, 

processing of the data of the natural experiments, and the numerical modeling of the 

experiment. More specifically, they include the requirements to the camera, to the 

geometric accuracy of the video frames tracking, and to the time of capturing. 

13. The type of error of the model parameter estimation due to the reducing of the 

experimental data has been shown.  

14. The model of the feet thermoregulation taking into account strong interaction 

between the tissue and external environment has been developed. 

15. The model has been verified for the recovery phase, and demonstrated the same 

accuracy and robustness as the simplified model. 

16. The model has been applied for the modeling of cooling phase. It demonstrates better 

accuracy than the model without strong interaction. 

17. The model has been used to bound the cold stress conditions to minimize the 

discomfort of tested subjects, and to estimate variance of the thermoregulation 

parameters.  
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18. The additional criterion for the more robust diagnostics of DPN based on the 

estimation of thermoregulation parameters and modeling error in cooling phase is 

proposed. 

19. Different classification algorithms have been proposed and tested, including the 

following: classification by estimation of the thermoregulation model parameters for 

ROIs and for the whole foot; classification by the analysis of the lossy compression 

quality of the thermal signatures. 

7.2 Future work 

For future research, our team will work in the following two areas. First, we need 

to collect more patient data. Our statistical power analysis has indicated that we may need 

hundreds of patients in order to make stronger clinical claims. Secondly, we would like to 

improve the performance and accuracy of our segmentation and tracking system. It would 

also help if we can localize the patient’s feet to reduce the impact of the motions. Thirdly, 

we would like to perform longer-term repeated measurements for diabetes patient. We 

believe thermal regulations, like the blood pressure, needs to be continuously monitored. 

Therefore, as part of the future research, we would like to perform monthly measurements 

of diabetes patients and track the progression of DPN.  

  

  



174 

 

REFERENCES 

[1] Boulton AJM: The diabetic foot: a global view. Diabete Metab Res Rev 16:S2–S5, 

2000  

[2] Palumbo P J, Melton L J. Peripheral vascular disease and diabetes. In: Harris, Hamman, 

editors. Diabetes in America. 1st ed. Washington, D.C.: US Government Printing 

Office; 1985.  

[3] Mancini L, Ruotolo V: The diabetic foot: epidemiology. Rays 22:511–523, 1997. 

[4] Palubo P, Melton L. Peripheral vascular disease and diabetes. In: Hamman R, editor. 

Diabetes in America. Washington, DC: Government Printing Office; 1985. p. 1-21 

[5] Reiber G E, Boyko E J, Smith D C. Lower extremity foot ulcers and amputations in 

diabetes. In: Harris, Cowie, Stern, Boyko E J, Reiber G E, Bennet, editors. Diabetes in 

America. 2nd ed. Washington, D.C.: US Government Printing Office; 1995. p. 402-

428. 

[6] Ramsey S D, Newton K, Blough D, McCulloch D K, Sandhu N, Reiber G E, et al. 

Incidence, outcomes, and cost of foot ulcers in patients with diabetes. Diabetes Care 

1999; 22(3):382-7. 

[7] Reiber G E, Boyko E J, Smith D C. Lower extremity foot ulcers and amputations in 

diabetes. In: Harris, Cowie, Stern, Boyko E J, Reiber G E, Bennet, editors. Diabetes in 

America. 2nd ed. Washington, D.C.: US Government Printing Office; 1995. p. 402-

428. 

[8] Pecoraro R E, Reiber G E, Burgess E M. Pathways to diabetic limb amputation. Basis 

for prevention. Diabetes Care 1990; 13(5):513-21. 



175 

 

[9] Morbach S, Lutale J, Viswanathan V, Mollenberg J, Ochs H, Rajashekar S, et al. 

Regional differences in risk factors and clinical presentation of diabetic foot lesions. 

Diabet Med 2004;21:91-5. 

[10] Viswanathan V, Snehalatha C, Sivagami M, Seena R, Ramachandran A. Association 

of limited joint mobility and high plantar pressure in diabetic foot ulceration in Asian 

Indians. Diabetes Res Clin Pract 2003;60:57-61. 

[11] American Diabetes Association Fast Facts Data and Statistics about Diabetes 2013. 

[12] Flynn M, Edmonds M, Tooke J, Watkins P. Direct measurement of capillary blood 

flow in the diabetic neuropathic foot. Diabetologia 1988; 31:652-6.. 

[13] Rayman G, Williams S, Spencer P, Smaje L, Wise P, Tooke J. Impaired microvascular 

hyperaemic response to minor skin trauma in type 1 diabetes. Br Med J 1986; 

292:1295-8.  

[14] Flynn M, Tooke J. Diabetic neuropathy and the microcirculation. Diabet Med 1995; 

12:298-301. 

[15] Cobb J, Claremont D. Noninvasive measurement techniques for monitoring of 

microvascular function in the diabetic foot. Int J Low Extrem Wounds 2002;1:161-9. 

[16] Cobb JE. An in-shoe laser Doppler sensor for assessing plantar blood flow in the 

diabetic foot [dissertation] in DEC. Bournemouth (UK): Department of Design, 

Engineering, and Computing, Bournemouth University; 2000. 

[17] Belcaro G, Vasdekis S, Rulo A, Nicolaides AN. Evaluation of skin blood flow and 

venoarteriolar response in patients with diabetes and peripheral vascular disease by 

laser Doppler flowmetry. Angiology 1989 ;40:953-957. 



176 

 

[18] Bornmyr S, Svensson H, Lilja B, Sundkvist G. Skin temperature changes and changes 

in skin blood flow monitored with laser Doppler flowmetry and imaging: a 

methodological study in normal humans. Clin Physiol Funct Imaging 1997;17:71-82. 

[19] Miranda-Palma B, Sosenko J, Bowker J, Mizel M, Boulton A. A comparison of the 

monofilament with other testing modalities for foot ulcer susceptibility. Diabetes Res 

Clin Pract 2005;70:8-12. 

[20] Singh N, Armstrong DG, Lipsky BA: Preventing foot ulcers in patients with diabetes. 

JAMA 293:217–228, 2005. 

[21] Abbott CA, Carrington AL, Ashe H, Bath S, Every LC, Griffiths J, Hann AW, Hussain 

A, Jackson N, Johnson KE, Ryder CH, Torkington R, Van Ross ER, Whalley AM, 

Widdows P, Williamson S, Boulton AJ: The North-West Diabetes Foot Care Study: 

incidence of, and risk factors for, new diabetic foot ulceration in a community-based 

patient cohort. Diabet Med 19:377–384, 2002. 

[22] Boulton A.J.M. et al. Comprehensive Foot Examination and Risk Assessment. A report 

of the Task Force of the Foot Care Interest Group of the American Diabetes 

Association, with endorsement by the American Association of Clinical 

Endocrinologists. Diabetes Care, 31(8), 1679-1685, 2008. 

[23] Young MJ, Breddy JL, Veves A, Boulton AJ: The prediction of diabetic neuropathic 

foot ulceration using vibration perception thresholds: a prospective study. Diabetes 

Care 17:557–560, 1994. 

[24] Armstrong DG, Lavery LA, Vela SA, Quebedeaux TL, Fleischli JG: Choosing a 

practical screening instrument to identify patients at risk for diabetic foot ulceration. 

Arch Intern Med 158:289–292, 1998. 



177 

 

[25] Stess RM, Sisney PC, Moss KM, Graf PM, Louie KS, Gooding GA, et al., “Use of 

liquid crystal thermography in the evaluation of the diabetic foot,” Diabetes Care 1986; 

9:267-72. 

[26] Benbow S, Chan A, Bowsher D, Williams G, Macfarlane I. “The prediction of diabetic 

neuropathic plantar foot ulceration by liquid-crystal contact thermography,” Diabetes 

Care 1994; 17:835-9. 

[27] Fisher A, Gilula L, McEnery K. Imaging of the diabetic foot. In: Bowker J, Pfeifer M, 

editors. The diabetic foot. St. Louis (MO): Mosby; 2001. p. 333-54. 

[28] Aspres N, Egerton I, Lim A, Shumack S. Imaging the skin. Aust J Dermatol 2003; 

44:19-27. 

[29] Minamishima C, Kuwaki K, Shirota E, Matsuzaki M, Yamashita K, Kamatani M, et al. 

Thermal imaging properties of toes after walking stress test in diabetic patients. Rinsho 

Byori 2005; 53:118-22. 

[30] Armstrong D, Lavery L, Wunderlich R, Boulton A. Skin temperatures as a one-time 

screening tool do not predict future diabetic foot complications. J Am Podiatr Med 

Assoc 2003;93:443-7. 

[31] Armstrong D, Sangalang M, Jolley D, Maben F, Kimbriel H, Nixon B, et al. Cooling 

the foot to prevent diabetic foot wounds. J Am Podiatr Med Assoc 2005;95:103-7. 

[32] National Institute of Neurological Disorders and Stroke (NINDS). Peripheral 

neuropathy fact sheet. Jan 10, 2008b. Accessed Jan 29, 2008. Available at URL 

address: 

http://www.ninds.nih.gov/disorders/peripheralneuropathy/detail_peripheralneuropath

y.htm. 

http://www.ninds.nih.gov/disorders/peripheralneuropathy/detail_peripheralneuropathy.htm
http://www.ninds.nih.gov/disorders/peripheralneuropathy/detail_peripheralneuropathy.htm


178 

 

[33] Perkins B.A., Olaleye D., Zinman B., et al. Simple screening tests for peripheral 

neuropathy in the diabetes clinic. Diabetes Care 2001; 24:250-6. 

[34] Boulton AJ, Armstrong DG, Albert SF, et al. Comprehensive foot examination and risk 

assessment: a report of the task force of the foot care interest group of the American 

Diabetes Association, with endorsement by the American Association of Clinical 

Endocrinologists. Diabetes Care 2008, vol. 31, no. 8, 1679-1685. 

[35] D. Chirtea, Current concepts in vascular therapies. 2013 Mid-Atlantic Conference, 

April 26 - 27, 2013, Hilton Virginia Beach Oceanfront. 

[36] FLIR A325sc datasheet. (C) FLIR Systems, Inc. 

[37] Specification for Thermopilearrays HTPA8x8, HTPA16x16 and HTPA32x31, rev. 

12. Heimann Sensor GMBH. (c) 2010 

http://www.heimannsensor.com/Heimann_Sensor_complete_Datasheet_HTPA_Rev1

2.pdf  

[38] Greg Iven, Viktor Chekh, Shuang Luan, Abdullah Mueen, Peter Soliz, Wenyao Xu, 

Mark Burge. Non-contact Sensation Screening of Diabetic Foot using Low Cost 

Infrared Sensors, 27th International Symposium on Computer-Based Medical Systems 

(CBMS'14), New York, May 2014. 

[39] Melexis NV. MLX90614 family. Single and Dual Zone. Infrared Thermometer in TO-

39. 2012. www.melexis.com  

[40] http://en.wikipedia.org/wiki/Eye   

[41] http://en.wikipedia.org/wiki/Stefan–Boltzmann_law  

[42] Miniature Blackbody Calibration Source Portable Design and High Temperature 

Range. http://www.omega.com/pptst/BB703.html  

http://www.heimannsensor.com/Heimann_Sensor_complete_Datasheet_HTPA_Rev12.pdf
http://www.heimannsensor.com/Heimann_Sensor_complete_Datasheet_HTPA_Rev12.pdf
http://www.melexis.com/
http://en.wikipedia.org/wiki/Eye
http://en.wikipedia.org/wiki/Stefan–Boltzmann_law
http://www.omega.com/pptst/BB703.html


179 

 

[43] W.A. Lenz. Characterization of Noise in Uncooled IR Bolometer Arrays. MIT, 

Department of Electrical  Engineering and Computer Science, 1998 

[44] Lawrence M. Ward, Priscilla E. Greenwood. The mathematical genesis of the 

phenomenon called “1/f noise”, 6 June 2010-12 June 2010 

[45] Jørgensen, Bent (1997). The theory of dispersion models. Chapman & Hall. ISBN 978-

0412997112.  

[46] FLIR systems. Infrared Imaging. Digital Imaging Systems, lecture 15, January 2009. 

[47] W. Schottky, "Ueber spontane Stromswankungen in vershiedenen Elektrizitatsleitern" 

("On Spontaneous Current Fluctuations in Various Electric Conductors"), Ann. d. 

Phys., v. 57, 1918, p. 541-67 

[48] J.B. Johnson, The Schottky effect in low frequency circuits, Phys. Rev. 26 (1925) 71-

85. 

[49] W. Schottky, Small-Shot Effect and Flicker Effect, Phys. Rev. 28 (1926) 74 

[50] B. Mandelbrot. Some noises with 1/f spectrum, a bridge between direct current and 

white noise. IEEE Trans. Inf. Theory, 13(2):289–298, 1967. 

[51] Markus Niemann, Holger Kantz, and Eli Barkai. Fluctuations of 1/f Noise and the Low-

Frequency Cutoff Paradox. Phys. Rev. Lett. 110, 140603 – Published 2 April 2013 

[52] http://www.nslij-genetics.org/wli/1fnoise/index.html  

[53] M. Stoisiek and D. Wolf. Recent investigations on the stationarity of 1/f noise. J. Appl. 

Phys.47, 362 (1976); doi: 10.1063/1.322327 

[54] F.N. Hooge, P.A. Bobbert. On the correlation function of 1/f noise. Physica B 239 

(1997) pp. 223-230. 

http://www.nslij-genetics.org/wli/1fnoise/index.html


180 

 

[55] S. Watanabe. Multi-Lorentzian model and 1/f noise spectra. Journal of the Korean 

Physical Society, Vol. 46, No. 3, March 2005, pp. 646-650. 

[56] M. Li and S. C. Lim, “A rigorous derivation of power spectrum of fractional Gaussian 

noise,” Fluctuation and Noise Letters, vol. 6, no. 4, pp. C33–C36, 2006. 

[57] B. B. Mandelbrot and J. W. van Ness, “Fractional Brownian motions, fractional noises 

and applications,” SIAM Review, vol. 10, pp. 422–437, 1968. 

[58] P. Flandrin, “On the spectrum of fractional Brownian motions,” IEEE Transactions on 

Information Theory, vol. 35, no. 1, pp. 197–199, 1989. 

[59] M. Li, “Fractal time series—a tutorial review,” Mathematical Problems in Engineering, 

vol. 2010, Article ID 157264, 26 pages, 2010. 

[60] S. V. Muniandy and S. C. Lim, “Modeling of locally self-similar processes using 

multifractional Brownian motion of Riemann-Liouville type,” Physical Review E, vol. 

63, no. 4, Article ID 046104, 7 pages, 2001. 

[61] V. M. Sithi and S. C. Lim, “On the spectra of Riemann-Liouville fractional Brownian 

motion,” Journal of Physics A, vol. 28, no. 11, pp. 2995–3003, 1995. 

[62] S. C. Lim and S. V. Muniandy, “On some possible generalizations of fractional 

Brownian motion,” Physics Letters A, vol. 266, no. 2-3, pp. 140–145, 2000. 

[63] J. P. Chiles and P. Delfiner, Geostatistics, Modeling Spatial Uncertainty, Wiley Series 

in Probability and Statistics: Applied Probability and Statistics, JohnWiley & Sons, 

New York, NY, USA, 1999. 

[64] M. Li, C. Cattani, and S. Y. Chen, “Viewing sea level by a one-dimensional random 

function with long memory,” Mathematical Problems in Engineering, vol. 2011, 

Article ID 654284, 13 pages, 2011. 



181 

 

[65] M. Li and W. Zhao. On 1/f Noise. Review article. Hindawi Publishing Corporation 

Mathematical Problems in Engineering Volume 2012, Article ID 673648, 23 pages 

[66] J. Dudas, M. L. La Haye, J. Leung, G.H. Chapman, “A Fault-Tolerant Active Pixel 

Sensor to Correct In-Field Hot-pixel Defects”, Proc. IEEE Int. Symposium on Defect 

and Fault Tolerance, pp 526-534, Rome, Italy, Oct. 2007. 

[67] Haykin, Simon (2002). Adaptive Filter Theory. Prentice Hall. ISBN 0-13-048434-2. 

[68] Hayes, Monson H., Statistical Digital Signal Processing and Modeling, John Wiley & 

Sons, 1996, 493–552. 

[69] Richard Szeliski, Image Alignment and Stitching: A Tutorial. Foundations and Trends 

in Computer Graphics and Computer Vision, 2:1-104, 2006. 

[70] Croft, H. T.; Falconer, K. J.; and Guy, R. K. Unsolved Problems in Geometry. New 

York: Springer-Verlag, p. 3, 1991. 

[71] Jan Kybic. Elastic Image Registration using Parametric Deformation Models. Thèse 

#2439 (2001) École Polytechnique Fédérale De Lausanne. 

[72] Gonzales, Rafael C. and Richard E. Woods. Digital Image Processing. 2nd ed. 

Englewood Cliffs, NJ: Prentice-Hall, 2002. 

[73] Kendall, David G. "A Survey of the Statistical Theory of Shape." Statistical Science. 

Vol. 4, No. 2, 1989, pp. 87–99. 

[74] L.G. Brown. A Survey of Image Registration Techniques. ACM Computing Surveys, 

Vol. 24, No. 4, December 1992 

[75] Rodgers JL and Nicewander WA. Thirteen ways to look at the correlation coefficient. 

The American Statistician, 42(1):59–66, February 1988. 



182 

 

[76] Brown LG. A survey of image registration techniques. ACM Computing Surveys. 24(4), 

325-376, 1992. 

[77] Louis C. Burmeister, (1993) “Convective Heat Transfer”, 2nd ed. Publisher Wiley-

Interscience, p 107. 

[78] T. Strutz: Data Fitting and Uncertainty (A practical introduction to weighted least 

squares and beyond). Vieweg+Teubner, ISBN 978-3-8348-1022-9. 

[79] Durkee JW Jr et al. Exact solutions to the multiregion time-dependent bioheat equation. 

I: Solution development. 1990 Phys. Med. Biol. 35 847. DOI= 10.1088/0031-

9155/35/7/004 

[80] Frank P. Incropera, David P. DeWitt, Theodore L. Bergman and Adrienne S. 

Lavine. Introduction to Heat Transfer. Willey, 2006, 5th ed. 

[81] Krane, Kenneth (2012). Modern Physics. John Wiley & Sons.  

[82] Guyton, A.C., & Hall, J.E. (2006), Textbook of Medical Physiology (11th ed.), 

Philadelphia: Elsevier Saunders, p. 890 

[83] Chato J.C. Heat transfer to blood vessels. J Biomech Eng. 1980; 102(2):110-8. 

[84] T.L. Bergman, A.S. Lavine, F.P. Incropera, D.P. DeWitt. Fundamentals of Heat and 

Mass Transfer. Wiley, 7th Edition, April 2011. 

[85] Richard H. Pletcher, John C. Tannehill and Dale Anderson. Computational Fluid 

Mechanics and Heat Transfer, Third Edition. September 11, 2012 by Taylor & Francis. 

[86] V.I. Arnold. Ordinary Differential Equations. Springer, 1992 - Mathematics. 

[87] P. J. Antsaklis, A.N. Michel. Linear systems. Birkhauser, 2006. 

[88] Kalmykov G.F. Radioautomatics. Moscow, “Visshaja shkola”, 1990 (in Russian). 



183 

 

[89] K.J. Astrom, Control Systems Design. (c) K.J. Astrom, 2002 

[90] J. Doyle, B. Francis, A. Tannenbaum. Feedback Control Theory. (c) Macmillan 

Publishing Co., 1990. 

[91] J.W. Polderman, J.C. Willems. Introduction to the Mathematical Theory of Systems 

and Control. 

[92] Steel, R. G. D. and Torrie, J. H., Principles and Procedures of Statistics, New York: 

McGraw-Hill. 

[93] A.L. Nilsson. Blood Flow, Temperature, and Heat Loss of Skin Exposed to Local 

Radiative and Convective Cooling. Journal of Investigative Dermatology (1987) 88, 

586–593; doi:10.1111/1523-1747.ep12470202 

[94] J. Oberle, M. Elam, T. Karlsson and B. Gunnar Wallin. Temperature-dependent 

interaction between vasoconstrictor and vasolidator machanisms in human skin. Acta 

Physiol. Scand. 1988, 132, p. 459-469. 

[95] Lewis T (1930) Observations upon the reactions of vessels of the human skin to cold. 

Heart 15: 1031-1034. 

[96] Li X, Tokura H & Midorikawa T (1994) The effects of two different types of clothing 

on seasonal cold acclimation of thermophysiological responses. Int J Biometeorol 38: 

40-43. 

[97] Livingstone SD (1976) Changes in cold-induced vasodilatation during Arctic exercises. 

J Appl Physiol 40(3): 455-457. 



184 

 

[98] Shin-ichi Sawada, Shunichi ARAKI and Kazuhito Yokoyama. Changes in Cold-

induced Vasodilatation, Pain and Cold Sensation in Fingers Caused by Repeated Finger 

Cooling in a Cool Environment. Industrial Health 2000, 38, 79–86 

[99] Catherine O’Brien. Reproducibility of the cold-induced vasodilation response in the 

human finger. J Appl Physiol 98: 1334–1340, 2005. 

[100] Therapeutic Modalities: The Art and Science (Second Edition), by K.L. Knight, 

D.O. Draper. Lippincott Williams & Wilkins, 2008. 

[101] Knight K.L. Bryan K.S, Halvorsen J.M. Circulatory changes in the forearm during 

and after cold pack application and immersion in 1 degree C, 5 degrees C, and 15 

degrees C water. lnt. J. Sports. Med., 1981, 4:1-2. 

[102] Knight K.L., Aquino J., Johannes S.M., Urban C.D. A re-examination of Lewis' 

cold-induced vasodilatation-In the finger and ankle. Athl. Train.·1980;15:248-250. 

[103] Clarke R.S.J., Hellon R.F., Lind A.R.: Vascular reactions of the human forearm to 

cold. Clin. Sci. 17:165-179, 1958. In: Knight K.L., Londeree B.R.: Comparison of 

blood flow in the ankle of uninjured subjects during therapeutic applications of heat, 

cold, and exercise. Med. Sci. Sports. Exer. 12(1):76-80. 1980. 

[104] M.A. Kowal. Review of Physiological Effects of Cryotherapy. The Journal of 

Orthopaedic and Sports Physical Therapy, September/October 1983. p. 66-73. 

[105] Blake A.S., Petley G.W., Deakin C.D. Effects of changes in packed cell volume on 

the specific heat capacity of blood: implications for studies measuring heat exchange 

in extracorporeal circuits. Br J Anaesth. 2000 Jan;84(1):28-32. 



185 

 

[106] Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical 

Tables. Abramowitz M. (Editor), Stegun I. (Editor). Dover Books on Mathematics – 

June 1, 1965. 

[107] U. Blahak. Efficient approximation of the incomplete gamma function for use in 

cloud model applications. Geosci. Model Dev., 3, 329–336, 2010. 

[108] M.T. Boudjelkha and M.A. Chaudhry. On the Approximation of a Generalized 

Incomplete Gamma Function Arising in Heat Conduction Problems. Journal of 

Mathematical Analysis and Applications 248, 509-519, 2000. 

[109] Introduction to MatLab. R.L. Spencer. Department of Physics and Astronomy, 

Brigham Young University, 2000. 

[110] Numerical Recipes in C: The Art of Scientific Computing / Edition 2 by W.H. 

Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling. Cambridge University Press, 

1992. 

[111] Chistova, E.A. (2001), in Hazewinkel, Michiel, Encyclopedia of Mathematics, 

Springer, ISBN 978-1-55608-010-4 

[112] G. Zamora, V. Chekh, M. R. Burge, E. S. Barriga, S. Luan, P. Heintz, A. Edwards, 

E. McGrew, P. Soliz, “Optical Measurements of Microvascular Circulatory Function 

in the Foot for Detection of Peripheral Neuropathy,” Photonics West, BIOS, San 

Francisco, CA, January 2012. 

[113] M. Burge, K. Colleran, S. Barriga, V. Chekh, E. McGrew, A. Edwards, P. Soliz 

"Dynamic infrared imaging to quantitate thermoregulatory function in individuals with 



186 

 

diabetes for preclinical detection of peripheral neuropathy," ADA, 73rd Scientific 

Sessions, June 21-25, 2013, Chicago, IL. 

[114] S. Barriga, V. Chekh, C. Carranza, M. Burge, A. Edwards, E. McGrew, G. Zamorra, 

P. Soliz. "Computational Basis for Risk Stratification of Peripheral Neuropathy from 

Thermal Imaging," 34th Annual IEEE Engineering in Medicine and Biology Society, 

EMBC, San Diego, August 28-September 1, 2012 

[115] P. Soliz, V. Chekh, M. Burge, A. Edwards, E. McGrew, G. Zamora, and S. Barriga 

“Computational Basis for Risk Stratification of Peripheral Neuropathy from Thermal 

Imaging,” The 25th IEEE International Symposium on Computer-Based Medical 

Systems, Rome, Italy, June 2012. 

[116] V. Chekh, P. Soliz, S. Barriga, E. McGrew, M. Burge, S. Luan. Computer Aided 

Diagnosis of Diabetic Peripheral Neuropathy. Accepted to SPIE Medical Images, 15-

20 February 2014, San Diego, CA. 

[117] V. Chekh, P. Soliz, S. Barriga, E. McGrew, N. Kanagy, S. Luan. Novel model of 

thermoregulation based on control theory used to evaluate peripheral microvascular 

function. Experimental Biology 2013 

[118] Chekh V, Luan S, Burge M, Carranza C, Soliz P, McGrew E and Barriga S. 

Quantitative Early Detection of Diabetic Foot. ACM-BCB 2013, Washington DC, 

2013. 

[119] M. Burge, G. Zamora, E. S. Barriga, V. Chekh, S. Luan, P. Heintz, A. Edwards, E. 

McGrew and P. Soliz “Thermal Functional Imaging for Screening of Peripheral 

Neuropathy in the Diabetic Foot,” American Diabetes Association, 72nd Scientific 

Session, Philadelphia, PA, June 8-12, 2012. 



187 

 

[120] M. Rabbani, P. W. Jones. Digital Image Compression Techniques. SPIE Press, Jan 

1, 1991 - Technology & Engineering - 221 pages 

[121] K.K. Shukla, M.V. Prasad. Lossy Image Compression. Domain Decomposition-

Based Algorithms. SpringerBriefs in Computer Science, 2011, ISBN: 978-1-4471-

2217-3. 

[122] Yuan J, Bae E, and Tai XC. A study on continuous max-flow and min-cut 

approaches. In CVPR, USA, San Francisco, 2010. 

[123] V. Chekh, P. Soliz, S. Barriga, E. McGrew, N. Kanagy, S. Luan. Novel model of 

thermoregulation based on control theory used to evaluate peripheral microvascular 

function. Experimental Biology 2013. 


	University of New Mexico
	UNM Digital Repository
	7-1-2016

	COMPUTER-AIDED QUANTITATIVE EARLY DIAGNOSIS OF DIABETIC FOOT
	Viktor Chekh
	Recommended Citation


	tmp.1474476490.pdf.mE_2J

