1,866 research outputs found

    Embodied Evolution in Collective Robotics: A Review

    Get PDF
    This paper provides an overview of evolutionary robotics techniques applied to on-line distributed evolution for robot collectives -- namely, embodied evolution. It provides a definition of embodied evolution as well as a thorough description of the underlying concepts and mechanisms. The paper also presents a comprehensive summary of research published in the field since its inception (1999-2017), providing various perspectives to identify the major trends. In particular, we identify a shift from considering embodied evolution as a parallel search method within small robot collectives (fewer than 10 robots) to embodied evolution as an on-line distributed learning method for designing collective behaviours in swarm-like collectives. The paper concludes with a discussion of applications and open questions, providing a milestone for past and an inspiration for future research.Comment: 23 pages, 1 figure, 1 tabl

    Gaussian belief propagation for real-time decentralised inference

    Get PDF
    For embodied agents to interact intelligently with their surroundings, they require perception systems that construct persistent 3D representations of their environments. These representations must be rich; capturing 3D geometry, semantics, physical properties, affordances and much more. Constructing the environment representation from sensory observations is done via Bayesian probabilistic inference and in practical systems, inference must take place within the power, compactness and simplicity constraints of real products. Efficient inference within these constraints however remains computationally challenging and current systems often require heavy computational resources while delivering a fraction of the desired capabilities. Decentralised algorithms based on local message passing with in-place processing and storage offer a promising solution to current inference bottlenecks. They are well suited to take advantage of recent rapid developments in distributed asynchronous processing hardware to achieve efficient, scalable and low-power performance. In this thesis, we argue for Gaussian belief propagation (GBP) as a strong algorithmic framework for distributed, generic and incremental probabilistic estimation. GBP operates by passing messages between the nodes on a factor graph and can converge with arbitrary asynchronous message schedules. We envisage the factor graph being the fundamental master environment representation, and GBP the flexible inference tool to compute local in-place probabilistic estimates. In large real-time systems, GBP will act as the `glue' between specialised modules, with attention based processing bringing about local convergence in the graph in a just-in-time manner. This thesis contains several technical and theoretical contributions in the application of GBP to practical real-time inference problems in vision and robotics. Additionally, we implement GBP on novel graph processor hardware and demonstrate breakthrough speeds for bundle adjustment problems. Lastly, we present a prototype system for incrementally creating hierarchical abstract scene graphs by combining neural networks and probabilistic inference via GBP.Open Acces

    Digital Ecosystems: Ecosystem-Oriented Architectures

    Full text link
    We view Digital Ecosystems to be the digital counterparts of biological ecosystems. Here, we are concerned with the creation of these Digital Ecosystems, exploiting the self-organising properties of biological ecosystems to evolve high-level software applications. Therefore, we created the Digital Ecosystem, a novel optimisation technique inspired by biological ecosystems, where the optimisation works at two levels: a first optimisation, migration of agents which are distributed in a decentralised peer-to-peer network, operating continuously in time; this process feeds a second optimisation based on evolutionary computing that operates locally on single peers and is aimed at finding solutions to satisfy locally relevant constraints. The Digital Ecosystem was then measured experimentally through simulations, with measures originating from theoretical ecology, evaluating its likeness to biological ecosystems. This included its responsiveness to requests for applications from the user base, as a measure of the ecological succession (ecosystem maturity). Overall, we have advanced the understanding of Digital Ecosystems, creating Ecosystem-Oriented Architectures where the word ecosystem is more than just a metaphor.Comment: 39 pages, 26 figures, journa

    A tutorial on optimization for multi-agent systems

    Get PDF
    Research on optimization in multi-agent systems (MASs) has contributed with a wealth of techniques to solve many of the challenges arising in a wide range of multi-agent application domains. Multi-agent optimization focuses on casting MAS problems into optimization problems. The solving of those problems could possibly involve the active participation of the agents in a MAS. Research on multi-agent optimization has rapidly become a very technical, specialized field. Moreover, the contributions to the field in the literature are largely scattered. These two factors dramatically hinder access to a basic, general view of the foundations of the field. This tutorial is intended to ease such access by providing a gentle introduction to fundamental concepts and techniques on multi-agent optimization. © 2013 The Author.Peer Reviewe

    A feedback-based decentralised coordination model for distributed open real-time systems

    Get PDF
    Moving towards autonomous operation and management of increasingly complex open distributed real-time systems poses very significant challenges. This is particularly true when reaction to events must be done in a timely and predictable manner while guaranteeing Quality of Service (QoS) constraints imposed by users, the environment, or applications. In these scenarios, the system should be able to maintain a global feasible QoS level while allowing individual nodes to autonomously adapt under different constraints of resource availability and input quality. This paper shows how decentralised coordination of a group of autonomous interdependent nodes can emerge with little communication, based on the robust self-organising principles of feedback. Positive feedback is used to reinforce the selection of the new desired global service solution, while negative feedback discourages nodes to act in a greedy fashion as this adversely impacts on the provided service levels at neighbouring nodes. The proposed protocol is general enough to be used in a wide range of scenarios characterised by a high degree of openness and dynamism where coordination tasks need to be time dependent. As the reported results demonstrate, it requires less messages to be exchanged and it is faster to achieve a globally acceptable near-optimal solution than other available approaches

    Engineering Resilient Collective Adaptive Systems by Self-Stabilisation

    Get PDF
    Collective adaptive systems are an emerging class of networked computational systems, particularly suited in application domains such as smart cities, complex sensor networks, and the Internet of Things. These systems tend to feature large scale, heterogeneity of communication model (including opportunistic peer-to-peer wireless interaction), and require inherent self-adaptiveness properties to address unforeseen changes in operating conditions. In this context, it is extremely difficult (if not seemingly intractable) to engineer reusable pieces of distributed behaviour so as to make them provably correct and smoothly composable. Building on the field calculus, a computational model (and associated toolchain) capturing the notion of aggregate network-level computation, we address this problem with an engineering methodology coupling formal theory and computer simulation. On the one hand, functional properties are addressed by identifying the largest-to-date field calculus fragment generating self-stabilising behaviour, guaranteed to eventually attain a correct and stable final state despite any transient perturbation in state or topology, and including highly reusable building blocks for information spreading, aggregation, and time evolution. On the other hand, dynamical properties are addressed by simulation, empirically evaluating the different performances that can be obtained by switching between implementations of building blocks with provably equivalent functional properties. Overall, our methodology sheds light on how to identify core building blocks of collective behaviour, and how to select implementations that improve system performance while leaving overall system function and resiliency properties unchanged.Comment: To appear on ACM Transactions on Modeling and Computer Simulatio
    • 

    corecore