
Electronic Appendix to:
Engineering Resilient Collective Adaptive Systems by
Self-Stabilisation

MIRKO VIROLI, Università di Bologna, Italy
GIORGIO AUDRITO, Università di Torino, Italy
JACOB BEAL, Raytheon BBN Technologies, USA

FERRUCCIO DAMIANI, Università di Torino, Italy
DANILO PIANINI, Università di Bologna, Italy

A TYPES FOR BUILT-IN FUNCTIONS USED IN THE EXAMPLES
Figure 1 presents the collection of built-in functions and operators used in this paper (a small subset

of possible built-in functions covered by this calculus). A few notes regarding these functions:

• Recall that each built-in function with local arguments is overloaded to work on fields on a

pointwise basis.

• The multiplex operator mux selects between its second and third arguments based on the

value of the first one. This is similar to the if keyword but not equivalent: mux evaluates

both of these arguments everywhere, whereas if only evaluates each on the subspace with

the matching Boolean value.

• A special role is played by the second-order operator foldHood and its specialisations for

different aggregation functions (minHood, maxHood and so on) that collapse a field value into a
local value (reminiscent of “reduce” functions common in parallel programming frameworks

like MPI). The versions of these operators ending in + also aggregate the value corresponding
to the current device (which is otherwise ignored), while the versions ending in Loc also

aggregate a given local value in place of the value corresponding to the current device.

B A MINIMAL CONVENIENT EXTENSION: FUNCTIONAL PARAMETRISATION
As pointed out in Section 3.1 (just before Example 3.1), the pragmatic convenience of the calculus

defined so far can be improved to express general-purpose building blocks, which are parametric

algorithms designed to be applied to a broad class of problems, and necessarily make use of

functional parameters to tune their behaviour.

To this end, we extend the syntax of user-defined functions to admit functional parameters,
ranged over by z. Such extended functions can be defined as def d(x) (z){e} and called by d(e) (f)

Authors’ addresses: MIRKO VIROLI, Università di Bologna, Cesena, Italy, mirko.viroli@unibo.it; GIORGIO AUDRITO,

Università di Torino, Torino, Italy, giorgio.audrito@di.unito.it; JACOB BEAL, Raytheon BBN Technologies, Cambridge

(MA), USA, jakebeal@ieee.org; FERRUCCIO DAMIANI, Università di Torino, Torino, Italy, ferruccio.damiani@di.unito.it;

DANILO PIANINI, Università di Bologna, Cesena, Italy, danilo.pianini@unibo.it.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

XXXX-XXXX/2018/1-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: January 2018.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

:2 M. Viroli et al.

Built-in Function Type Signature Meaning

uid() () → num device identifier

+,-,*,/ (num,num) → num arithmetical operators

<,<=,=,>=,> (num,num) → bool comparison operators

&&,|| (bool,bool) → bool boolean operators

mux(b, ℓ,ℓ) ∀t .(bool,t ,t) → t multiplex selection

pair(ℓ,ℓ) ∀t1t2.(t1,t2) → tuple(t1,t2) pair construction[
ℓ
]

∀t .(t) → tuple(t) tuple construction

1st(ℓ),2nd(ℓ),3rd(ℓ) ∀t .(tuple(t)) → ti (i = 1,2,3) tuple element access

pickHood(ϕ) ∀t .(field(t)) → t value in current device

foldHood(ϕ, ℓ) (f) ∀t . (field(t),t , (t ,t) → t) → t general neighbour aggregation

meanHood(ϕ) ∀t .(field(t)) → t average of neighbour values

maxHood(ϕ),maxHood+(ϕ) ∀t .(field(t)) → t maximum of neighbour values

minHood(ϕ),minHood+(ϕ) ∀t .(field(t)) → t minimum of neighbour values

minHoodLoc(ϕ, ℓ) ∀t .(field(t),t) → t minimum of neighbor & local values

nbrRange(),nbrLag() () → field(num) space-time distance from neighbours

snsNum() () → num generic numeric sensor

sns_interval() () → num interval with previous round

Fig. 1. Built-in functions used throughout this paper, with types and meaning.

where the arguments f can be either names of plain (i.e., non-extended) functions or functional

parameters—names of extended functions are not allowed to be passed as arguments. By convention,

we omit the second parentheses whenever no functional parameters are present; so that functions

without functional parameters can be defined and called as usual. We also allow the presence of

built-in functions admitting functional parameters (e.g., the field aggregator foldhood(x,y) (z)
which combines values in a field x through an initial value y and a binary function z given as

functional parameter).

We remark that a functional parameter z (like any other function name) is not an expression by

itself, and it only constitutes one when provided with appropriate arguments or passed as argument

to a function. This implies for instance that (if(e){z1}{z2}) (e) is not a valid expression.

A program in the extended syntax can be converted to a program in plain first-order syntax

by systematically substituting each call d(e) (f) to an extended function def d(x) (z){e} (where

the arguments f do not contain functional parameters) by a call df (e) to a plain function df
defined as def df (x){e[z := f]}—thus interpreting functional parameters as macro parameters.

1

For example, the following program (comparing minimum temperature and maximum threshold

across a network):

1
This rewriting process always terminates. Consider F as the set of distinct plain function names that are passed as

parameters to extended functions in any point of the program. Then an extended function with k functional parameters can

be instantiated at most once for each combination of functions in F , that is, at most nk times where n is the cardinality of F .

, Vol. 1, No. 1, Article . Publication date: January 2018.

Engineering Resilient Collective Adaptive Systems by Self-Stabilisation :3

def foldwithlocal(field, local, initial)(aggregate) {
aggregate(foldHood(field, initial)(aggregate), local)

}

def gossip(null)(aggregate, sensor) {
rep (initial) { (x) => foldwithlocal(nbr{x}, sensor(), initial)(aggregate) }

}

gossip(infinity)(min, sns_temp) < gossip(-infinity)(max, sns_threshold)

can be rewritten eliminating functional parameters in the following way:

def foldwithlocal_min(field, local, initial) {
min(foldHood_min(field, initial), local)

}

def gossip_min_temp(initial) {
rep (initial) { (x) => foldwithlocal_min(nbr{x}, sns_temp(), initial) }

}

def foldwithlocal_max(field, local, initial) {
max(foldHood_max(field, initial), local)

}

def gossip_max_threshold(initial) {
rep (initial) { (x) => foldwithlocal_max(nbr{x}, sns_threshold(),initial) }

}

gossip_min_temp(infinity) < gossip_max_threshold(-infinity)

where foldHood_min and foldHood_max can then be substituted with their equivalent versions

minHood, maxHood.

C OPERATIONAL SEMANTICS
We here present a formal semantics that can serve both as a specification for implementation

of programming languages based on the field calculus and for reasoning about its properties.

Differently from models like BSP [1] that can enact system-wide synchronous rounds in which

each device computes exactly once, in our model individual devices undergo computation in (local)

rounds, which are sequential for each device, and interleaved among different devices. In each

round, a device sleeps for some time, wakes up, gathers information about messages received from

neighbours while sleeping, performs an evaluation of the program, and finally emits a message to

all neighbours with information about the outcome of computation before going back to sleep. The

scheduling of such rounds across the network is fair and asynchronous—the considered notion

of fairness is explained in Section 4.1, and basically amounts to the eventual existence of another

round for each device and for each moment of time. To simplify the notation, we shall assume

a fixed program P. We say that “device δ fires”, to mean that the main expression emain of P is

evaluated on δ at a particular round.

Network evolution is modelled (in Section C.2) by a small-step semantics, given as a transition

system

act
−−→ on network configurations N , where actions can either be firings of a device or network

configuration changes. The semantics of a firing action is defined in terms of the computation that

takes place on an individual device, which is modelled (in Section C.1) by a big-step semantics.

Note that we use small-step semantics in network transitions to capture the step-by-step evolution

of a network, while the more abstract big-step semantics is used in individual devices since in that

case only the final result of round computation matters—and is in fact unique.

, Vol. 1, No. 1, Article . Publication date: January 2018.

:4 M. Viroli et al.

C.1 Device Semantics
The computation that takes place on a single device is formalised by a big-step semantics, expressed

by the judgement δ ;Θ ⊢ emain ⇓ θ , to be read “expression emain evaluates to θ on device δ with

respect to environment Θ”. The result of evaluation is a value-tree θ , which is an ordered tree of

values that tracks the results of all evaluated subexpressions of emain. Such a result is made available

to δ ’s neighbours for their subsequent firing (including δ itself, so as to support a form of state

across computation rounds). The recently-received value-trees of neighbours are then collected into

a value-tree environment Θ, implemented as a map from device identifiers to value-trees (written

δ 7→ θ as short for δ1 7→ θ1, . . . ,δn 7→ θn). Intuitively, the outcome of the evaluation will depend

on those value-trees. Figure 2 (top) defines value-trees and value-tree environments—the syntax of

values v is given in Figure 1 in the main paper.

Example C.1. The graphical representation of the value trees 5⟨2⟨⟩,3⟨⟩⟩ and 5⟨2⟨⟩,3⟨7⟨⟩,1⟨⟩,4⟨⟩⟩⟩
is as follows:

5 5
/ \ / \

2 3 2 3
/|\

7 1 4

In the following, for sake of readability, we sometimes write the value v as short for the value-tree
v⟨⟩. Following this convention, the value-tree 5⟨2⟨⟩,3⟨⟩⟩ is shortened to 5⟨2,3⟩, and the value-tree

5⟨2⟨⟩,3⟨7⟨⟩,4⟨⟩,4⟨⟩⟩⟩ is shortened to 5⟨2,3⟨7,1,4⟩⟩.
Figure 2 (bottom) defines the judgement δ ;Θ ⊢ e ⇓ θ , where: (i) δ is the identifier of the current

device; (ii) Θ is the neighbouring field of the value-trees produced by the most recent evaluation of

(an expression corresponding to) e on δ ’s neighbours; (iii) e is a closed run-time expression (i.e.,

a closed expression that may contain neighbouring field values); (iv) the value-tree θ represents

the values computed for all the expressions encountered during the evaluation of e—in particular

the root of the value tree θ , denoted by ρ (θ), is the value computed for expression e. The auxiliary
function ρ is defined in Figure 2 (second frame).

The operational semantics rules are based on rather standard rules for functional languages,

extended so as to be able to evaluate a subexpression e′ of e with respect to the value-tree en-

vironment Θ′ obtained from Θ by extracting the corresponding subtree (when present) in the

value-trees in the range of Θ. This process, called alignment, is modelled by the auxiliary function

π defined in Figure 2 (second frame). This function has two different behaviours (specified by its

subscript or superscript): πi (θ) extracts the i-th subtree of θ ; while π ℓ (θ) extracts the last subtree
of θ , if the root of the first subtree of θ is equal to the local (boolean) value ℓ (thus implementing a

filter specifically designed for the if construct). Auxiliary functions ρ and π apply pointwise on

value-tree environments, as defined in Figure 2 (second frame).

Rules [E-LOC] and [E-FLD] model the evaluation of expressions that are either a local value or a

neighbouring field value, respectively: note that in [E-FLD] we take care of restructing the domain of

a neighbouring field value to the only set of neighbour devices as reported in Θ.
Rule [E-LET] is fairly standard: it first evaluates e1 and then evaluates the expression obtained

from e2 by replacing all the occurrences of the variable x with the value of e1.
Rule [E-B-APP] models the application of built-in functions. It is used to evaluate expressions

of the form b(e1 · · · en), where n ≥ 0. It produces the value-tree v⟨θ1, . . . ,θn⟩, where θ1, . . . ,θn
are the value-trees produced by the evaluation of the actual parameters e1, . . . ,en and v is the

value returned by the function. The rule exploits the special auxiliary function LbMΘδ , whose actual

, Vol. 1, No. 1, Article . Publication date: January 2018.

Engineering Resilient Collective Adaptive Systems by Self-Stabilisation :5

Value-trees and value-tree environments:
θ ::= v⟨θ⟩ value-tree

Θ ::= δ 7→ θ value-tree environment

Auxiliary functions:
ρ (v⟨θ⟩) = v
πi (v⟨θ1, . . . ,θn⟩) = θi if 1 ≤ i ≤ n π ℓ (v⟨θ1,θ2⟩) = θ2 if ρ (θ1) = ℓ
πi (θ) = • otherwise π ℓ (θ) = • otherwise

For aux ∈ ρ,πi ,π ℓ
:

aux(δ 7→ θ) = δ 7→ aux(θ) if aux(θ) , •
aux(δ 7→ θ) = • if aux(θ) = •
aux(Θ,Θ′) = aux(Θ),aux(Θ′)

args(d) = x if def d(x) {e} body(d) = e if def d(x) {e}

Syntactic shorthands:
δ ;π (Θ) ⊢ e ⇓ θ where |e| = n for δ ;π1 (Θ) ⊢ e1 ⇓ θ1 · · · δ ;πn (Θ) ⊢ en ⇓ θn
ρ (θ) where |θ | = n for ρ (θ1), . . . ,ρ (θn)

x := ρ (θ) where |x| = n for x1 := ρ (θ1) . . . xn := ρ (θn)

Rules for expression evaluation: δ ;Θ ⊢ e ⇓ θ

[E-LOC]

δ ;Θ ⊢ ℓ ⇓ ℓ⟨⟩

[E-FLD] ϕ ′ = ϕ |dom(Θ)∪{δ }

δ ;Θ ⊢ ϕ ⇓ ϕ ′⟨⟩

[E-LET] δ ;π1 (Θ) ⊢ e1 ⇓ θ1 δ ;π2 (Θ) ⊢ e2[x := ρ (θ1)] ⇓ θ2

δ ;Θ ⊢ let x = e1 in e2 ⇓ ρ (θ2)⟨θ1,θ2⟩

[E-B-APP] δ ;π (Θ) ⊢ e ⇓ θ v = LbMΘδ (ρ (θ))
δ ;Θ ⊢ b(e) ⇓ v⟨θ⟩

[E-D-APP] δ ;π (Θ) ⊢ e ⇓ θ δ ;Θ ⊢ body(d)[args(d) := ρ (θ)] ⇓ θ ′

δ ;Θ ⊢ d(e) ⇓ ρ (θ ′)⟨θ ,θ ′⟩

[E-NBR] δ ;π1 (Θ) ⊢ e ⇓ θ ϕ = ρ (π1 (Θ))[δ 7→ ρ (θ)]

δ ;Θ ⊢ nbr{e} ⇓ ϕ⟨θ⟩

[E-REP]

δ ;π1 (Θ) ⊢ e1 ⇓ θ1
δ ;π2 (Θ) ⊢ e2[x := ℓ0] ⇓ θ2

ℓ0=

{
ρ (π2 (Θ)) (δ) if δ ∈ dom(Θ)
ρ (θ1) otherwise

δ ;Θ ⊢ rep(e1){(x) => e2} ⇓ ρ (θ2)⟨θ1,θ2⟩

[E-IF] δ ;π1 (Θ) ⊢ e ⇓ θ1 ρ (θ1) ∈ {True,False} δ ;π ρ (θ1) (Θ) ⊢ eρ (θ1) ⇓ θ

δ ;Θ ⊢ if(e){eTrue}{eFalse} ⇓ ρ (θ)⟨θ1,θ⟩

Fig. 2. Big-step operational semantics for expression evaluation.

definition is abstracted away. This is such that LbMΘδ (v) computes the result of applying built-in

function b to values v in the current environment of the device δ . In particular: the built-in 0-ary

function uid gets evaluated to the current device identifier (i.e., LuidMΘδ () = δ), and mathematical

operators have their standard meaning, which is independent from δ and Θ (e.g., L+MΘδ (2,3) = 5).

, Vol. 1, No. 1, Article . Publication date: January 2018.

:6 M. Viroli et al.

Example C.2. Evaluating the expression +(2,3) produces the value-tree 5⟨2,3⟩. The value of the
whole expression, 5, has been computed by using rule [E-B-APP] to evaluate the application of the

sum operator + to the values 2 (the root of the first subtree of the value-tree) and 3 (the root of the

second subtree of the value-tree).

The LbMΘδ function also encapsulates measurement variables such as nbrRange and interactions

with the external world via sensors and actuators.

Rule [E-D-APP] models the application of a user-defined function. It is used to evaluate expressions

of the form d(e1 . . . en), where n ≥ 0. It resembles rule [E-B-APP] while producing a value-tree with

one more subtree θ ′, which is produced by evaluating the body of the function d (denoted by

body(d)) substituting the formal parameters of the function (denoted by args(d)) with the values

obtained evaluating e1, . . . en .
Rule [E-REP] implements internal state evolution through computational rounds: rep(e1){(x)=>e2}

evaluates to e2[x := v] where v is obtained from e1 on the first firing of a device, from the previous

value of the whole rep-expression otherwise.

Example C.3. To illustrate rule [E-REP], as well as computational rounds, we consider program

rep(0){(x) => +(x, 1)}. The first firing of a device δ is performed against the empty tree

environment. Therefore, according to rule [E-REP], to evaluate rep(0){(x) => +(x, 1)} means to

evaluate the subexpression +(0, 1), obtained from +(x, 1) by replacing x with 0. This produces
the value-tree θ = 1⟨0,1⟨0,1⟩⟩, where root 1 is the overall result as usual, while its sub-trees are the
result of evaluating the first and second argument respectively. Any subsequent firing of the device

δ is performed with respect to a tree environment Θ that associates to δ the outcome θ of the most

recent firing of δ . Therefore, evaluating rep(0){(x) => +(x, 1)} at the second firing means to

evaluate the subexpression +(1, 1), obtained from +(x, 1) by replacing x with 1, which is the

root of θ . Hence the results of computation are 1, 2, 3, and so on.

Rule [E-NBR] models device interaction. It first collects neighbour’s values for expressions e as

ϕ = ρ (π1 (Θ)), then evaluates e in δ and updates the corresponding entry in ϕ.

Example C.4. To illustrate rule [E-NBR], consider the program e′ = minHood(nbr{snsNum()}),
where the 1-ary built-in function minHood returns the lower limit of values in the range of its

neighbouring field argument, and the 0-ary built-in function snsNum returns the numeric value

measured by a sensor. Suppose that the program runs on a network of three devices δA, δB , and δC
where:

• δB and δA are mutually connected, δB and δC are mutualy connected, while δA and δC are

not connected;

• snsNum returns 1 on δA, 2 on δB , and 3 on δC ; and

• all devices have an initial empty tree-environment ∅.

Suppose that device δA is the first device that fires: the evaluation of snsNum() on δA yields 1 (by

rules [E-LOC] and [E-B-APP], since LsnsNumM∅δA () = 1); the evaluation of nbr{snsNum()} on δA yields

(δA 7→ 1)⟨2⟩ (by rule [E-NBR]); and the evaluation of e′ on δA yields

θA = 1⟨(δA 7→ 1)⟨1⟩⟩

(by rule [E-B-APP], since LminHoodM∅δA (δA 7→ 1) = 1). Therefore, at its first fire, device δA produces

the value-tree θA. Similarly, if device δC is the second device that fires, it produces the value-tree

θC = 3⟨(δC 7→ 3)⟨3⟩⟩

, Vol. 1, No. 1, Article . Publication date: January 2018.

Engineering Resilient Collective Adaptive Systems by Self-Stabilisation :7

Suppose that device δB is the third device that fires. Then the evaluation of e′ on δB is performed

with respect to the value tree environment ΘB = (δA 7→ θA, δC 7→ θC) and the evaluation of its

subexpressions nbr{snsNum()} and snsNum() is performed, respectively, with respect to the follow-

ing value-tree environments obtained from ΘB by alignment:

Θ′B = π1 (ΘB) = (δA 7→ (δA 7→ 1)⟨1⟩, δC 7→ (δC 7→ 3)⟨3⟩)
Θ′′B = π1 (Θ

′
B) = (δA 7→ 1, δC 7→ 3)

We thus have that LsnsNumMΘ
′′
B

δB
() = 2; the evaluation of nbr{snsNum()} on δB with respect to Θ′B

produces the value-tree ϕ⟨2⟩ where ϕ = (δA 7→ 1,δB 7→ 2,δC 7→ 3); and LminHoodMΘB
δB

(ϕ) = 1.

Therefore the evaluation of e′ on δB produces the value-tree θB = 1⟨ϕ⟨2⟩⟩. Note that, if the network
topology and the values of the sensors will not change, then: any subsequent fire of device δB
will yield a value-tree with root 1 (which is the minimum of snsNum across δA, δB and δC); any
subsequent fire of device δA will yield a value-tree with root 1 (which is the minimum of snsNum
across δA and δB); and any subsequent fire of device δC will yield a value-tree with root 2 (which is

the minimum of snsNum across δB and δC).

Rule [E-IF] is almost standard, except that it performs domain restriction π True (Θ) (resp. π False (Θ))
in order to guarantee that subexpression eTrue is not matched against value-trees obtained from

eFalse (and vice-versa).

C.2 Network Semantics
The overall network evolution is formalised by the small-step operational semantics given in

Figure 3 as a transition system on network configurations N . Figure 3 (top) defines key syntactic

elements to this end. Ψ models the overall status of the devices in the network at a given time, as

a map from device identifiers to value-tree environments. From it, we can define the state of the

field at that time by summarising the current values held by devices. τ models network topology,
namely, a directed neighbouring graph, as a map from device identifiers to set of identifiers (denoted

as I). Σ models sensor (distributed) state, as a map from device identifiers to (local) sensors (i.e.,

sensor name/value maps denoted as σ). Then, Env (a couple of topology and sensor state) models

the system’s environment. So, a whole network configuration N is a couple of a status field and

environment.

We use the following notation for status fields. Let δ 7→ Θ denote a map from device identifiers δ
to the same value-tree environment Θ. Let Θ0[Θ1] denote the value-tree environment with domain

dom(Θ0) ∪ dom(Θ1) coinciding with Θ1 in the domain of Θ1 and with Θ0 otherwise. Let Ψ0[Ψ1]

denote the status field with the same domain as Ψ0 made of δ 7→ Ψ0 (δ)[Ψ1 (δ)] for all δ in the

domain of Ψ1, δ 7→ Ψ0 (δ) otherwise.

We consider transitions N
act
−−→ N ′ of two kinds: firings, where act is the corresponding device

identifier, and environment changes, where act is the special label env. This is formalised in Figure

3 (bottom). Rule [N-FIR] models a computation round (firing) at device δ : it takes the local value-tree
environment filtered out of old values F (Ψ) (δ);2 then by the single device semantics it obtains the

device’s value-tree θ ,3 which is used to update the system configuration of δ and of δ ’s neighbours.

2
Function F (Ψ) in rule [N-FIR]models a filtering operation that clears out old stored values from the value-tree environments

in Ψ, implicitly based on space/time tags.

3
We shall assume that any device firing is guaranteed to terminate in any environmental condition. Termination of a device

firing is clearly not decidable, but we shall assume—without loss of generality for the results of this paper—that a decidable

subset of the termination fragment can be identified (e.g., by ruling out recursive user-defined functions or by applying

standard static analysis techniques for termination).

, Vol. 1, No. 1, Article . Publication date: January 2018.

:8 M. Viroli et al.

System configurations and action labels:
Ψ ::= δ 7→ Θ status field

τ ::= δ 7→ I topology

Σ ::= δ 7→ σ sensors-map

Env ::= τ ,Σ environment

N ::= ⟨Env;Ψ⟩ network configuration

act ::= δ ��� env action label

Environment well-formedness:
WFE(τ ,Σ) holds if τ ,Σ have same domain, and τ ’s values do not escape it.

Transition rules for network evolution: N
act
−−→ N

[N-FIR] Env = τ ,Σ τ (δ) = δ δ ; F (Ψ) (δ) ⊢ emain ⇓ θ (w.r.t. Σ(δ)) Ψ1 = δδ 7→ {δ 7→ θ }

⟨Env;Ψ⟩
δ
−→ ⟨Env; F (Ψ)[Ψ1]⟩

[N-ENV] WFE(Env′) Env′ = τ ,δ 7→ σ Ψ0 = δ 7→ ∅

⟨Env;Ψ⟩
env
−−→ ⟨Env′;Ψ0[Ψ]⟩

Fig. 3. Small-step operational semantics for network evolution.

Rule [N-ENV] takes into account the change of the environment to a new well-formed environment

Env′—environment well-formedness is specified by the predicateWFE(Env) in Figure 3 (middle).

Let δ be the domain of Env′. We first construct a status field Ψ0 associating to all the devices of Env′

the empty context ∅. Then, we adapt the existing status field Ψ to the new set of devices: Ψ0[Ψ]
automatically handles removal of devices, map of new devices to the empty context, and retention

of existing contexts in the other devices.

Example C.5. Consider a network of devices with the program e′ = minHood(nbr{snsNum()})
introduced in Example C.4. The network configuration illustrated at the beginning of Example C.4

can be generated by applying rule [N-ENV] to the empty network configuration. I.e., we have

⟨∅,∅; ∅⟩
env
−−→ ⟨Env0;Ψ0⟩

where

• Env0 = τ0,Σ0,

• τ0 = (δA 7→ {δB },δB 7→ {δA,δC },δC 7→ {δB }),

• Σ0 = (δA 7→ (snsNum 7→ 1),δB 7→ (snsNum 7→ 2),δC 7→ (snsNum 7→ 3)), and

• Ψ0 = (δA 7→ ∅,δB 7→ ∅,δC 7→ ∅).

Then, the tree fires of devices δA, δC and δB illustrated in Example C.4 correspond to the following

transitions, respectively.

(1) ⟨Env0;Ψ0⟩
δA
−−→ ⟨Env0;Ψ′⟩, where

• Ψ′ = (δA 7→ (δA 7→ θA), δB 7→ (δA 7→ θA), δC 7→ ∅), and

• θA = 1⟨(δA 7→ 1)⟨1⟩⟩;

, Vol. 1, No. 1, Article . Publication date: January 2018.

Engineering Resilient Collective Adaptive Systems by Self-Stabilisation :9

(2) ⟨Env0;Ψ′⟩
δC
−−→ ⟨Env0;Ψ′′⟩, where

• Ψ′′ = (δA 7→ (δA 7→ θA), δB 7→ (δA 7→ θA,δC 7→ θC), δC 7→ (δC 7→ θC)), and

• θC = 1⟨(δC 7→ 3)⟨3⟩⟩;

(3) ⟨Env0;Ψ′′⟩
δB
−−→ ⟨Env0;Ψ′′′⟩, where

• Ψ′′′ = (δA 7→ (δA 7→ θA,δB 7→ θB),
δB 7→ (δA 7→ θA,δB 7→ θB ,δC 7→ θC),
δC 7→ (δB 7→ θB ,δC 7→ θC)),

• θB = 1⟨ϕ⟨2⟩⟩, and

• ϕ = (δA 7→ 1,δB 7→ 2,δC 7→ 3).

D PROOF OF EVENTUAL BEHAVIOUR PRESERVING EQUIVALENCES
Restatement of Proposition 1 (Eventual behaviour preserving eqivalences).

(1) Let e1, e2 be self-stabilising expressions with the same eventual behaviour. Then given a

self-stabilising expression e, swapping e1 for e2 in e does not change the eventual outcome

of its computation.

(2) Let f1, f2 be self-stabilising functions with the same eventual behaviour. Then given a self-

stabilising expression e, swapping f1 for f2 in e does not change the eventual outcome of its

computation.

(3) Let e be a self-stabilising expression calling a user-defined self-stabilising function d such
that in body(f) no x ∈ args(f) occurs in the branch of an if. Let e′ be the expression obtained

from e by substituting each function application of the kind f(e) with body(f) [args(f) := e].
Then e′ is self-stabilising and has the same eventual behaviour as e (i.e. JeK = Je′K).

Proof. (1) By straightforward induction on the structure of an expression. The base case is

given by expressions without occurrences of e1 and e2, and by expressions ei for i = 1,2.
The inductive step follows by compositionality of the operational semantics.

(2) For the same reasoning as in point (1), where the base case is given by expressions without

occurrences of f1 and f2 and by expressions fi (e) for i = 1,2.

(3) Recall that no expressions with side effects are contemplated in the present calculus. Since

no argument of f occurs in the branch of an if, each of those arguments is evaluated in

the same environment as the whole function application f(e). It follows that e1 = f(e) and
e2 = body(f) [args(f) := e] have the same behaviour (hence the same eventual behaviour).

The thesis follows then by applying point (1) to expressions e1 and e2. □

E PROOF OF SELF-STABILISATION FOR THE FRAGMENT
We report complete proofs for the statements given in Section 5.3. We first prove self-stabilisation

for the minimising rep pattern (Lemma 1), since it is technically more involved than the proof

of self-stabilisation for the remainder of the fragment. We then prove self-stabilisation through a

variation of the goal results (Lemma 2) more suited for inductive reasoning. Theorems 1 and 2 will

then follow by inspecting the proof of those lemmas.

Let smin = rep(e){(x)=>fR (minHoodLoc(fMP (nbr{x},s),s),x,e)} be a minimising rep expres-

sion such that JsK = Φ, JsK = Φ. Let P = δ be a path in the network (a sequence of pairwise connected
devices), and define its weight in smin as the result of picking the eventual value ℓ1 = Φ(δ1) of

, Vol. 1, No. 1, Article . Publication date: January 2018.

:10 M. Viroli et al.

s in the first device δ1, and repeatedly passing it to subsequent devices through the monotonic

progressive function, so that ℓi+1 = fMP (ℓi ,v) where v is the result of projecting fields in Φ(δi+1) to
their δi component (leaving local values untouched). Notice that the weight is well-defined since

function fMP
is required to be stateless.

Lemma 1. Let s be a minimising rep expression. Then s self-stabilises in each device δ to the
minimal weight in s for a path P ending in δ .

Proof. Let ℓδ be the minimal weight for a path P ending in δ , and let δ 0,δ 1, . . . be the list of all
devices δ ordered by increasing ℓδ . Notice that the path P of minimal weight ℓδ i for device i can
only pass through nodes such that ℓδ j ≤ ℓδ i (thus s.t. j < i). In fact, whenever a path P contains

a node j the weight of its prefix until j is at least ℓδ j ; thus any longer prefix has weight strictly

greater than ℓδ j since f
MP

is progressive.

Let N0

δ0
−−→ N1

δ1
−−→ . . . be a fair evolution4 and assume w.l.o.g. that all subexpressions of s not

involving x have already self-stabilised to computational fields Φ, Φ (as in the definition of weight)

in the initial state N0. We now prove by complete induction on i that device δ i stabilises to ℓδ i after
a certain step ti .
Assume that devices δ j with j < i are all self-stabilised (from a certain step ti−1), and consider

the evaluation of expression s in a device δk with k ≥ i . Since the local argument ℓ of minHoodLoc
is also the weight of the single-node path P = δk , it has to be at least ℓ ≥ ℓδ k ≥ ℓδ i . Similarly,

the restriction ϕ ′ of the field argument ϕ of minHoodLoc to devices δ j with j < i has to be at least

ϕ ′ ≥ ℓδ k ≥ ℓδ i since it corresponds to weights of (not necessarily minimal) paths P ending in δk

(obtained by extending a minimal path for a device δ j with j < i with the additional node δk).
Finally, the complementary restriction ϕ ′′ of ϕ to devices δ j with j ≥ i is strictly greater than the

minimum value for x among those devices, since fMP
is progressive.

It follows that as long as the minimum value for x among non-stable devices is lower than ℓδ i ,
the result of the minHoodLoc subexpression is strictly greater than this minimum value. Since the

overall value of s is obtained by combining the output of minHoodLoc with the previous value for

x through the rising function fR (and a rising function does not drop below the minimum of its

arguments), the minimum value for x among non-stable devices cannot decrease as long as it is

lower than ℓδ i , and it cannot drop below ℓδ i if it is already greater than that.

Furthermore, the minimum has to eventually increase until it reaches at least ℓδ i . Recall that
a rising function selects its first argument infinitely often (since the order ◁ is noetherian). Thus

each device realising a minimum for x among non-stable devices has to eventually evaluate s to
the output of the minHoodLoc subexpression, which is strictly higher than the previous minimum,

and it will not be able to reach the previous minimum afterwards.

Let t ′ ≥ ti−1 be the first step in which the minimum for x among non-stable devices is at least

ℓδ i , and consider device δ i . Let P be a path of minimum weight for δ i , then either:

• P = δ i , so that ℓδ i is exactly the local argument of the minHoodLoc operator, hence also the

output of it (since the field argument is greater than ℓδ i).

• P = Q ,δ i where Q ends in δ j with j < i . Since fMP
is monotonic non-decreasing, the weight

ofQ ′,δ i (whereQ ′ is minimal for δ j) is not greater than that of P ; in other words, P ′ = Q ′,δ i

is also a path of minimum weight. It follows that ϕ (δ j) (where ϕ is the field argument of the

minHoodLoc operator) is exactly ℓδ i .

4
Notice that δ0 is the first device firing while δ 0

is the device with minimal weight.

, Vol. 1, No. 1, Article . Publication date: January 2018.

Engineering Resilient Collective Adaptive Systems by Self-Stabilisation :11

In both cases, the output of minHoodLoc in δ i stabilises to ℓδ i from t ′ on. Let ti be the first step
after t ′ in which the rising function fR selects its first argument ℓδ i . Then expression s in device δ i

is self-stabilised to ℓδ i from ti on, concluding the inductive step and the proof. □

Let Φ be a computational field as defined in Section 4.2. We write s[x := Φ] to indicate an

aggregate process in which each device is computing a possibly different substitution s[x := Φ(δ)]
of the same expression.

Lemma 2. Assume that every built-in operator is self-stabilising. Let s be an expression with free
variables x in the self-stabilising fragment, and Φ be a sequence of computational fields of the same
length. Then s[x := Φ] is self-stabilising.

Proof. The proof proceeds by induction on the syntax of expressions and programs. Let s be an

expression in the fragment, then it can be:

• A variable xi , so that s[x := Φ] = Φi is already self-stabilised.

• A value v, so that s[x := Φ] = v is already self-stabilised.

• A let-expression let x = s1 in s2. Fix an environment Env, in which expression s1 self-
stabilises to Φ after fire t . After t , let x = s1 in s2 evaluates to the same value of the

expression s2[x := Φ] which is self-stabilising by inductive hypothesis.

• A functional application f(s). Fix an environment Env, in which all expressions s self-

stabilise to Φ after fire t . After t , if f is a built-in function then f(s) is already self-stabilised.

Otherwise, if f is a user-defined function then f(s) evaluates to the same value of the

expression body(f)[args(f) := Φ] which is self-stabilising by inductive hypothesis.

• A conditional s = if(s1){s2}{s3}. Fix an environment Env, in which expression s1 self-

stabilises to Φguard. Let EnvTrue be the sub-environment consisting of devices δ such that

Φguard (δ) = True, and analogously EnvFalse. Assume that s2 self-stabilises to ΦTrue in EnvTrue
and s3 to ΦFalse in EnvFalse. Since a conditional is computed in isolation in the above defined

sub-environments, s self-stabilises to Φ = ΦTrue ∪ ΦFalse.

• A neighbourhood field construction nbr{s}. Fix an environment Env, in which expression s
self-stabilises to Φ after fire t . Then nbr{s} self-stabilises to the corresponding Φ′ after one
more firing of each device, where Φ′(δ) is Φ restricted to τ (δ).

• A converging rep: s = rep(e){(x)=>fC (nbr{x},nbr{s},e)}. Fix an environment Env and a

fair evolution of the network N0

δ0
−−→ N1

δ1
−−→ . . ., and let t be such that all subexpressions of s

not containing x have self-stabilised after t . Assume that s self-stabilises to Φ; we prove that
s stabilises as well to the same Φ.
Given any index i ≥ t , let di be the maximum distance x − Φ(δ i) of x from s realised by a

device δ i in the network. Let t0 = t and ti+1 be the first firing of device δ ti after ti . Since δ
ti

realises the maximum distance in the whole network Nti , no device firing between ti and ti+1
can assume a value more distant than dti without violating the converging property. Thus di ,
δ i remains the same in the whole interval from ti to ti+1 (excluded).
Finally, in fire ti+1 device δ

ti
recomputes its value, necessarily obtaining a closer value to

Φ(δ ti) (by the converging property) thus forcing the overall maximal distance in the network

to reduce: dti+1 < dti . Since the set of possible values is finite, so are the possible distances
and eventually the maximal distance di will reach 0.

, Vol. 1, No. 1, Article . Publication date: January 2018.

:12 M. Viroli et al.

• An acyclic rep: s = rep(e){(x)=>f(mux(nbrlt(sp),nbr{x},s),s)}. Fix an environment Env

and a fair evolution of the network N0

δ0
−−→ N1

δ1
−−→ . . ., and let t be such that all subexpressions

of s not containing x have self-stabilised after t .
Let t0 ≥ t be any fire of the device δ 0 of minimal potential sp in the network after t . Since
δ 0 is minimal, mux(nbrlt(sp),nbr{x},s) reduces to s and the whole s to f(s,s), which is

self-stabilising (after some t ′
0
≥ t0) for inductive hypothesis.

Let t1 ≥ t ′
0
be any fire of the device δ 1 of second minimal potential after t ′

0
. Then the value of

mux(nbrlt(sp),nbr{x},s) in δ
1
only (possibly) depends on the value of the device of minimal

potential, which is already self-stabilised. Thus by inductive hypothesis s self-stabilises also

in δ 1 after some index t ′
1
≥ t1. By repeating the same reasoning on all devices in order of

increasing potential, we obtain a final t ′n after which all devices have self-stabilised.

• Aminimising rep: this case is proved for closed expressions in Lemma 1, and its generalisation

to open expressions is straightforward. □

Restatement of Theorem 1 (Fragment Stabilisation). Let s be a closed expression in the

self-stabilising fragment, and assume that every built-in operator is self-stabilising. Then s is

self-stabilising.

Proof. Follows directly from Lemma 2 when s has no free variables. □

Restatement of Theorem 2 (Substitutability). The following three equivalences hold: (i)
each rep in a self-stabilising fragment self-stabilises to the same value under arbitrary substitution

of the initial condition; (ii) the converging rep pattern self-stabilises to the same value as the single

expression s occurring in it; (iii) the minimising rep pattern self-stabilises to the same value as the

analogous pattern where fR is the identity on its first argument.

Proof. Follows from inspecting the proof of Lemmas 1 and 2. □

REFERENCES
[1] Leslie G Valiant. 1990. A bridging model for parallel computation. Commun. ACM 33, 8 (1990), 103–111.

, Vol. 1, No. 1, Article . Publication date: January 2018.

	A Types for Built-in Functions Used in the Examples
	B A Minimal Convenient Extension: Functional Parametrisation
	C Operational Semantics
	C.1 Device Semantics
	C.2 Network Semantics

	D Proof of Eventual Behaviour Preserving Equivalences
	E Proof of Self-stabilisation for the Fragment
	References

