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Abstract

For embodied agents to interact intelligently with their surroundings, they require percep-

tion systems that construct persistent 3D representations of their environments. These repres-

entations must be rich; capturing 3D geometry, semantics, physical properties, affordances and

much more. Constructing the environment representation from sensory observations is done via

Bayesian probabilistic inference and in practical systems, inference must take place within the

power, compactness and simplicity constraints of real products. Efficient inference within these

constraints however remains computationally challenging and current systems often require heavy

computational resources while delivering a fraction of the desired capabilities.

Decentralised algorithms based on local message passing with in-place processing and stor-

age offer a promising solution to current inference bottlenecks. They are well suited to take ad-

vantage of recent rapid developments in distributed asynchronous processing hardware to achieve

efficient, scalable and low-power performance.

In this thesis, we argue for Gaussian belief propagation (GBP) as a strong algorithmic frame-

work for distributed, generic and incremental probabilistic estimation. GBP operates by passing

messages between the nodes on a factor graph and can converge with arbitrary asynchronous

message schedules. We envisage the factor graph being the fundamental master environment rep-

resentation, and GBP the flexible inference tool to compute local in-place probabilistic estimates.

In large real-time systems, GBP will act as the ‘glue’ between specialised modules, with attention

based processing bringing about local convergence in the graph in a just-in-time manner.

This thesis contains several technical and theoretical contributions in the application of GBP

to practical real-time inference problems in vision and robotics. Additionally, we implement GBP

on novel graph processor hardware and demonstrate breakthrough speeds for bundle adjustment

problems. Lastly, we present a prototype system for incrementally creating hierarchical abstract

scene graphs by combining neural networks and probabilistic inference via GBP.
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CHAPTER 1

Introduction: Gaussian Belief

Propagation for Spatial AI

Contents
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1.3.1 Existing Approaches . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.2 Current bottlenecks . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Decentralised Graph Based Inference . . . . . . . . . . . . . . . . . . . . . 8

1.4.1 Evolution of Computing Hardware . . . . . . . . . . . . . . . . . . 9

1.4.2 Evolution of Scene Representations . . . . . . . . . . . . . . . . . 11

1.5 Gaussian Belief Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6 Related Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.7 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.8 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

In this introduction, we lay out from the top down our argument for Gaussian belief propagation as

a strong algorithm for inference in Spatial AI. We begin by discussing perception in general before

focusing in on the real-time embedded perception capabilities required in Spatial AI. Existing

methods are then discussed before motivating decentralised graph based inference in the context

of evolving hardware and scene representations. Lastly, we introduce Gaussian belief propagation

and place it amongst other related algorithms.
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1. Introduction: Gaussian Belief Propagation for Spatial AI

1.1 Perception

We begin by setting out the ambitious goal of building general embodied artificial intelligence (AI)

systems that can interact usefully with their environments. When building such systems, based on

our understanding of decision making in humans and other animals, we often separate decision

making into the two stages of perception and action. This separation, makes our embodied AI

systems more structured, modular and interpretable by enforcing a two stage approach in which

a perception module first processes observations into an environment representation that is then

passed to an action module to make decisions. The alternative is end-to-end decision making

in which observations are directly regressed to actions, however for tasks that require long term

spatial memory this approach can struggle [Gervet et al., 2022].

In this thesis, we focus on the perception problem, defined as the task of building and maintaining

a representation of the environment based on incoming sensory observations. These observations

could be visual, auditory, tactile or other non-human modalities such as depth scans from a LiDAR

sensor or spectroscopy measurements. One challenge with considering perception in isolation is

that the environment representation should depend on the specific task at hand. For example, a

self-driving car should focus perception on detecting road markings while an indoor robot assistant

may be most concerned with mapping objects within a house.

Despite these variations, we believe that there are a number of core properties that general percep-

tion systems for a broad range of challenging tasks should share. Focusing on building perception

systems with these general capabilities is a worthy and ambitious goal, as it may be the basis for

generally intelligent embodied systems of the future and in the shorter term they can be modified

for specific narrow tasks. We propose that in order to enable general intelligent action, we need

perception systems that produce environment representations with the following properties:

3D geometric understanding. As the world is 3D we of course need our environment repres-

entation to have some understanding of 3D geometry. We are intentionally vague about what we

mean by 3D geometric understanding. The geometry could be represented explicitly (e.g. stored

in a voxel grid, point cloud or mesh) or implicitly (e.g. contained within the weights of a fully

end-to-end system or some black box neural model such as a NeRF [Mildenhall et al., 2020]) or

some combination of both. Clearly an understanding of 3D geometry is fundamental for any task

that involves moving within or interacting with the environment.

Generative. The goal in perception is to infer the internal parameters of the environment repres-

2



1.1. Perception

entation from sensory observations and there are two main paradigms for inference. The first is

inverse or discriminative modelling in which input observations are processed in a feedforward

manner to produce the internal parameters. The second involves a generative model which is run

in the forward direction, generating simulated observations from a particular configuration of the

internal parameters. Inference in the generative paradigm is performed by using the generative

model to guide iterative adjustments to the internal parameters so that the simulated observations

and true observations are similar. These adjustments are usually performed through optimisation

in which we seek the most likely internal parameters given the observations.

The generative modelling paradigm is generally preferred in practical perception systems for a

number of reasons. First, most discriminative models can only process fixed-sized inputs, although

recent approaches using graph neural networks [Bronstein et al., 2017a] can go beyond this re-

quirement. Generative models on the other hand are able to flexibly fuse any type of full or partial

observation by comparing against the relevant part of the simulated observation. Second, gener-

ative modelling is simpler as the world is more ordered in the forward causal direction [Welling,

2020]. As a result, it is easier to embed biases, priors or structure representing known physical

processes in the generative direction, for example embedding volume rendering in image gener-

ation. On the other hand, we can embed some invariances and equivariances in discriminative

models [Cohen and Welling, 2016], but it remains difficult to produce robust discriminative mod-

els.

Generative modelling is also crucial for intelligent decision making in which an agent can run

mental simulations to evaluate the effects of actions. This is the basis of model based reinforce-

ment learning [Sutton and Barto, 2018]. A further advantage of generative modelling is the ability

to hallucinate/infer partially observed properties of the environment and detect when observations

do not match up with expectations. A final difference is that discriminative inference is a one-

shot process, while generative inference is a slow iterative process. There are speculative argu-

ments [Bengio, 2019, Kahneman, 2017] that one-shot discriminative inference may better suited

to simpler intuitive tasks while slow generative inference may be more appropriate for reasoning.

Interpretable. This proposition is somewhat contested, but there is a strong argument for in-

terpretable environment representations. Most practical perception systems today are based on

traditional geometric estimation problems like simultaneous localisation and mapping (SLAM) or

visual inertial odometry (VIO). In these problems, Bayesian probabilistic inference and graphical

models provide the fundamental framework for building interpretable environment representa-

tions and for forward modelling. Given that these core geometric estimation problems will surely

3



1. Introduction: Gaussian Belief Propagation for Spatial AI

remain the foundation of future Spatial AI systems, we argue that we should build additional

perception capabilities on top of this same Bayesian graphical modelling framework.

Deep learning has demonstrated the power of learned hierarchical abstractions for both discrimin-

ative and generative modelling and there are those that argue that end-to-end black box models are

sufficient for representing environments for decision making. However, we believe that for envir-

onment representations to be truly useful, we should embed learned abstractions into our existing

Bayesian graphical model framework. This has the advantage of being a principled Bayesian

framework, allowing us to build on existing robust geometric estimation systems and also main-

taining measures of uncertainty which can be useful for continual learning. A further advantage

is that we can make diverse interpretable queries to our generative model – we simply condition

on variables we know and use inference to determine properties of the desired variables. Neural

models are not interpretable nor flexible enough to handle these diverse queries and can only carry

out predetermined feedfoward computations.

1.2 Spatial AI

Having outlined our goals and the properties of an ideal perception system we now define Spa-

tial AI. Spatial AI is the real-time vision-driven capability that robots and other devices need to

understand and interact intelligently with the spaces around them, while satisfying the constraints

such as power usage, compactness, robustness and simplicity enforced by real products. It is not

a static but an incremental problem, where a persistent scene model with many heterogeneous

elements must be stored and updated continually using data from various sources. Some data will

be a flow of geometric measurements from a metric sensor; other measurements could come from

a neural network; and yet more could be prior information from assumptions made at the start

or communicated later on, such as the calibration parameters of a robot’s drive system. All of

this data must be combined consistently into the chosen environment representation, which could

be complicated and heterogeneous, consisting of multiple geometric and semantic representations

such as meshes, volumes, neural fields, learned shape spaces, CAD models and semantic labels.

1.3 Probabilistic Estimation on Factor Graphs

We now dig deeper and consider in more detail the computation involved in performing Bayesian

probabilistic inference on graphical models represented by Spatial AI problems. Given incre-
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1.3. Probabilistic Estimation on Factor Graphs

mental uncertain measurements coming from priors, cameras, other sensors, the goal is to con-

struct a persistent environment representation in real-time. Specifically, the environment is rep-

resented by a number of unknown/hidden variables (robot locations, map geometry, map labels,

etc.), and our goal is to extract estimates of these quantities.

Bayesian probability theory [Jaynes, 2003] is the fundamental framework for consistent fusion

of many uncertain sources of data and it is at the core of practical systems in machine learning

and robotics [Ghahramani, 2015]. A probabilistic model relates unknown variables of interest

to observable, known or assumed quantities and most generally takes the form of a graph whose

connections encode those relationships. Inference is the process of forming the posterior distribu-

tion to determine properties of the unknown variables, given the observations, such as their most

probable values (MAP inference) or their full marginal distributions (marginal inference).

Factor graphs [Dellaert, 2021] are a powerful and general representation of the probabilistic

structure of inference problems. They are undirected bipartite graphs whose nodes are either

variables or factors. The variables represent unknown numerical parameters of the system whose

values we wish to estimate. The factors which join these variables represent constraints imposed

by measurements from sensors or other information about the system (such as priors) which we

are directly able to access. Each factor connects to the subset of variables it depends on, and

specifies a probabilistic dependence between this subset given any observations that the factor

may depend on. Strictly observations can be treated as observed variables in the graph, but it is

often simpler to treat them as part of the probabilistic factor function.

A variable is denoted xi, and a factor is denoted fs. The subset of variables which is connected to

a particular factor fs is denoted xs. The interpretation is that fs(xs) = p(zs|xs) is the probability

of the numerical measurement zs captured at factor node fs given the variables xs. The topology

of a factor graph defines the factorisation structure of the whole probabilistic model, in that all

factors fs are independent of each other. The vector of all variables is x = [x1, x2, . . .]
⊤, and

therefore the total joint probability distribution over all variables is the product of all factors:

p(x) =
∏
s

fs(xs) . (1.1)

Interesting estimation problems in computer vision and robotics can invariably be analysed to de-

termine their factor graph structure. Dellaert and colleagues in particular [Dellaert, 2021, Dellaert

and Kaess, 2017] have played an important role in increasing understanding of the power of the

factor graph formulation in our field.
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1. Introduction: Gaussian Belief Propagation for Spatial AI

Since each factor is a function of some subset of the variables, the joint distribution is some tangled

function of all of the variables involved in the graph. Our goal in inference is to determine the

marginal probability distributions of the variables of interest – this gives an individual probab-

ilistic estimate which takes all of the measurement information in the factors into account. The

tangled form of the product which is the full joint distribution means that inference is usually a

computationally challenging problem.

1.3.1 Existing Approaches

Almost all serious, scalable probabilistic estimation is based on the core assumption of Gaussianity

in ‘most’ measurement distributions and ‘most’ posterior variable distributions, ‘most’ of the time.

We say this with full knowledge that many other representations of distributions have been used,

from sampling to other explicit functional parameterisations. But again and again, we come back

to Gaussians due to their fundamental properties of fitting real-world statistical processes and the

efficient representation of high-dimensional distributions they allow as the ‘central’ distribution

of probability theory [Jaynes, 2003].

The most important techniques in current Spatial AI estimation are all Gaussian-based techniques

such as Extended Kalman Filtering and non-linear least squares estimation. Gaussian-based meth-

ods have very close links to linear algebra, because optimising Gaussian likelihoods is equivalent

to least-squares minimisation which involves the solution of linear systems of equations. When

we write down the joint probability distribution (Equation 1.1) represented by a Gaussian factor

graph, the result is a product of Gaussians. Finding the most probable variable values is equi-

valent to minimising the negative log of this probability distribution, which is a sum of terms

which are quadratic functions of the variables. To find the minimum of this sum, we form the

full information matrix for the problem and then solve the resulting linear system involving this

information matrix. If the Gaussian measurement functions are non-linear in the variables this is

done iteratively, forming a new linear system at each step.

For iterative non-linear least squares solvers the core computational cost is solving the linear sys-

tem at each step. The key to efficiency is to exploit sparsity structure in the information matrix

which is inverted to solve the linear system. The information matrix is formed using the Jacobians

J of the measurement functions and the precision matrices Λ as: J⊤ΛJ. Many decades of work

have been devoted to studying the structure of this matrix and efficient algorithms for inverting

it. Many classical inversion methods take advantage of sparsity patterns or some degree of par-
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1.3. Probabilistic Estimation on Factor Graphs

allelisation, such as Cholesky decomposition, Conjugate gradients, Jacobi method, Gauss-Seidel

method, Red-Black ordering, Multigrid, etc. There are also numerous highly efficient non-linear

least squares solvers such as Ceres [Agarwal and Mierle, 2012], g20 [Kummerle et al., 2011]

and GTSAM [Dellaert, 2012] that are widely used in Spatial AI problems. Good recent discus-

sion of different optimisation methods in the context of robot vision was given by PhD theses by

Zienkiewicz [Zienkiewicz, 2017], Engel [Engel, 2017] or Newcombe [Newcombe, 2012] or in

the Ceres Manual [Agarwal and Mierle, 2012]. We also provide a more detailed description of

inference methods related to Gaussian belief propagation in Section 1.6.

Particular sub-problems in Spatial AI have well-known information matrix structure and con-

sequently certain solvers are well-suited to their specific sparsity structure. For instance, bundle

adjustment is the problem of jointly refining a relatively small number of cameras poses and a

large number of 3D points that are observed by these cameras. On a CPU bundle adjustment is

well tackled using Cholesky decomposition [Triggs et al., 1999] or on a GPU by the conjugate

gradient method [Wu et al., 2011]. Surface reconstruction on a regular grid, where measure-

ments from a sensor are combined with smoothness priors, can be parallelised with methods like

the Primal Dual algorithm [Chambolle and Pock, 2011]. Pure visual-inertial odometry can be

tackled well with sliding window filtering or non-linear optimisation [Mourikis and Roumeliotis,

2007, Leutenegger et al., 2014].

In Spatial AI, extra difficulty arises due to the fact that the estimation problem is incremental; es-

timates are needed in real-time and measurements are continually arriving. There has been much

analysis of the trade-offs between filtering approaches which marginalise out old variables such as

historic robot pose estimates and others which repeatedly solve a whole estimation problem from

scratch [Strasdat et al., 2010]. Approaches such as iSAM2 [Kaess et al., 2012] stand out as pro-

gress on taking a flexible approach to scalable incremental estimation. iSAM2 is a CPU algorithm

that uses a dynamic data structure called the Bayes Tree to represent a good approximation to the

full factor graph of SLAM problems. It does so in such as way that most updates can be carried

out with local computation, with more substantial global operations needed only in response to

rarer events such as loop closure.

1.3.2 Current bottlenecks

Davison [Davison, 2018], set out the case that there are still orders of magnitude of improve-

ment needed in efficient inference performance to deliver the capabilities needed for breakthrough
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products such as lightweight home robots or AR glasses. Efficient inference on Spatial AI graphs

remains extremely computationally challenging and is currently a limiting factor in many embed-

ded systems. The computational challenges arise not only due to the high computational complex-

ity of calculations but also due to the complexity of system design.

Current prototype Spatial AI systems attempting to process this heterogeneous flow of data into

complicated persistent representations often have severe limitations. Prototype systems such as

iMAP [Sucar et al., 2021] and iLabel [Zhi et al., 2021] require heavy computing resources with

large data flows in and out of CPU and GPU RAM while delivering a fraction of the capability

needed. Other systems make strong approximations of probabilistic structure for efficient real-

time performance [Rosinol et al., 2020]. For example, SemanticFusion [McCormac et al., 2017]

(based on ElasticFusion [Whelan et al., 2015]) runs by decoupling camera tracking and map up-

dates into independent, alternating estimation processes. Further, the semantic labelling does not

feedback in to improve the geometric estimation (for example smoothing regions confidently la-

belled as floor or walls). These systems are representative examples of current prototype systems,

that on the whole either require heavy compute resources and/or strong approximations to achieve

real-time performance, while only delivering a small fraction of the capabilities needed.

In industry there is much ongoing effort to optimise and engineer Spatial AI systems for embedded

implementation. However, there are many fundamental changes needed still across algorithms,

processors and sensors to cross the performance gap required for real products.

1.4 Decentralised Graph Based Inference

Given the current bottlenecks in inference algorithms for Spatial AI, and current trends in compute

hardware and scene representation, we make the following proposition.

Proposition 1. General, efficient and scalable inference in Spatial AI requires decentralised graph

based algorithms that operate via local message passing on the factor graph with in-place local

processing and data storage.

We are proposing inference algorithms which implement Spatial AI inference in a decentralised

manner on a distributed computational resource, by storing the factor graph as the master repres-

entation and operating on it in-place using local computation and message passing to implement

full global inference. We imagine messages continually bubbling around a large factor graph,

which is changing continually with the addition of new measurement factors and variable nodes,
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and perhaps never reaching full convergence, but always being close in a way which can be con-

trolled. It may be that estimation processes will proceed in an attention-driven way, using a lot of

computation to bring accurate estimates to important local areas, which then are allowed to fade to

a less up-to-date state once attention moves on, in a ‘just-in-time’ style [Weerasekera et al., 2018].

This proposition means we must get away from the idea that a ‘god’s eye view’ of the global

structure of the graph will ever be available. We want methods where each node can operate

with minimum knowledge of the whole graph structure, for example storing only local inform-

ation about itself and its near neighbours. It is important here to clarify the difference between

distributed systems, in which computation is spread between nodes, and decentralised systems,

which are a specific type of distributed system in which decisions are made locally in the graph

rather than at a central node. Distributed algorithms with a master node can require a significant

amount of data transfer to and from the master node. As a result, we propose fully decentralised

algorithms where computation and decision making is done in-place in the graph.

We now justify our proposition by considering developments in computing hardware and scene

representation.

1.4.1 Evolution of Computing Hardware

We believe that computing hardware is at the beginning of a new era. We are moving away from

a reliance on processors and memory systems designed either for completely general purpose

use (CPUs) or computer graphics (GPUs) and towards an era where AI, and perhaps Spatial AI

in particular, are significant enough applications to drive the development of custom computing

hardware. GPUs are currently the main workhorses of AI computation and are certainly very

good for many tasks in computer vision, but we believe that the future of Spatial AI compute will

require the development of much more flexible storage and computation [Davison, 2018]. (We

highly recommend the recent PhD thesis of Julien Martel for ambitious thinking about this whole

area [Martel, 2019]).

In Sutter’s article [Sutter, 2011], he anticipates a long-term trend towards a ‘hardware jungle’ of

parallel, heterogeneous, distributed and asynchronous computing systems which communicate in

a peer-to-peer manner. This will be at several levels: across networks of multiple smart devices

operating in the same environment; across the many sensors, actuators and processors within in-

dividual embodied devices; and even within single processor chips themselves. Evidence of this

in Spatial AI is the emergence of many specialised chips and architectures to accelerate import-
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ant computer vision algorithms such as feature detection, tracking, the whole visual odometry

pipeline, and convolutional neural networks (CNNs) for object detection or segmentation.

For single processor chips, a trend towards multicore designs with distributed on-core memory and

ad-hoc communication is rapidly emerging [Lacey, 2019, Gui et al., 2019]. An example of this

is graph processors such as Graphcore’s IPU [Graphcore, 2022] which have taken quite general

design choices towards enabling a different type of processing. The IPU is a massively parallel

chip, where each processing core has a large amount of high performance on-chip memory and

the cores are arranged in an all-to-all graph structure with rapid inter-core communication. In the

IPU, computation works best when the data can be distributed around the chip close to the cores

where it is operated on and there is no need to communicate with external off-chip memory. For

these novel distributed processors, our measure of what is an efficient algorithm needs to change

from the CPU standard of total computation time to multi-dimensional metrics also accounting

for storage and data transmission.

Given this trend in computing hardware towards a ‘hardware jungle’ of parallel, heterogeneous,

distributed and asynchronous computing systems, decentralised inference algorithms will be the

key to implementing efficient, scalable and low power inference.

Efficiency clearly entails massive parallelism and algorithms which are distributable are the most

trivial to parallelise. Algorithms that operate with purely local computation and message passing

at the level of individual nodes in the graph represent the extreme of distributable algorithms and

can be implemented in a node-wise parallel fashion.

Decentralisation is key to the scalability of inference algorithms, as methods which are decent-

ralised can scale arbitrarily and leverage all available asynchronous and heterogeneous compute

within the ‘hardware jungle’. Sutton’s ‘Bitter Lesson’ of machine learning (ML) research [Sutton,

2019] states that: ‘general methods that leverage computation are ultimately the most effective,

and by a large margin’. A reminder of this is the success of CNN-driven deep learning, which is

well suited to GPUs, the most powerful widely-available processors in recent years. This lesson

suggests that decentralised inference algorithms will be the most effective at large-scale inference

given the availability of large decentralised asynchronous compute resources.

Key to low power performance is intermingling data storage and computation to reduce the ‘bits

× millimetres’ through which data is moved [Sze et al., 2017]. This is particularly true due to

the closed-loop, incremental nature of Spatial AI, where new data must be continually compared

to and combined with stored models. Decentralised local message passing algorithms reduce this
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data movement by storing data close to where it is computed on and limiting data movement to

informative messages. In the best case, message passing communication is only needed between

conditionally dependent nodes in the graph when there is new information to communicate.

In contrast to decentralised inference, let us consider the opposite proposition of a global central-

ised inference method via a monolithic cloud-based processor. This centralised approach would

not be able to leverage all heterogeneous and asynchronous compute resources and even if feasible

would not be desirable, for communication bandwidth and privacy reasons.

1.4.2 Evolution of Scene Representations

Current systems both in academia and industry fall vastly short of the target of 3D generative

graph-based scene representations outlined in Section 1.1. Consequently, in parallel with devel-

opments in fitting inference algorithms to hardware, innovation in expressive and compact scene

representations is crucial. These representations need to be efficient to build and maintain as well

as usable in conditional generative queries for decision making.

Two examples of promising novel scene representations of late are compressed coded representa-

tions learned via probabilistic auto-encoding and neural fields. CodeSLAM [Bloesch et al., 2018]

and follow ups [Zhi et al., 2019, Sucar et al., 2020] use variational auto-encoders to find coded,

compressed representations of geometry, semantic labels, and objects which can then be optimised

based on multi-view data. Neural fields represent an environment in the weights of a coordinate

based multi-layer perceptron (MLP) that can be optimised to fit to a specific scene [Park et al.,

2019, Mescheder et al., 2019, Mildenhall et al., 2020]. Recent prototype systems have shown that

neural fields can be an efficient and expressive representation for real-time incremental perception

systems [Sucar et al., 2021, Zhu et al., 2022, Ortiz et al., 2022a].

In this thesis, we do not focus on the development of novel scene representations, but we note that

increasingly scene representations are becoming more large, dynamic, heterogeneous and highly

interconnected [Bengio, 2017, Davison and Ortiz, 2019]. These changes mean that decentralised

inference algorithms will be well suited to the next generation of scene representations, all well as

being very efficient on novel hardware.

Large. As we become more interested in building large city-scale reconstructions, the required

storage and computation will become infeasible on a single centralised processor and must be

distributed amongst many compute nodes.
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Dynamic. Spatial AI is an incremental problem in which the factor graph is continually chan-

ging with new asynchronous measurements and abstractions. Current centralised approaches rely

on fixed sparsity structure and are therefore not well suited to the dynamically changing Spatial

AI graphs. Decentralised methods involve only local operations that are agnostic to the overall

graph structure meaning that if parallelised, the time per iteration is largely independent of the

graph structure. This makes decentralised methods well suited to inference on dynamic Spatial AI

graphs.

Heterogeneous and interconnected. Lastly, scene representations are becoming increasingly

heterogeneous. We have mentioned several innovations in scene representations for Spatial AI,

but we envisage that the Spatial AI graph will be a highly heterogeneous hierarchical graph of ab-

stractions, much like a scene graph [Armeni et al., 2019, Rosinol et al., 2020, Wald et al., 2020, Wu

et al., 2021, Ortiz et al., 2022b] or the Live Maps vision from Meta Reality Labs [Meta, 2019].

The graph will contain many different entities: for example low level 3D geometry in the form

or volumes, points, or implicit fields; large 3D structures like planes, floors and room layouts;

semantic 3D objects in the form of coded shapes, CAD models or implicit fields; and other an-

notations such as object affordances or physics properties of surfaces such as friction coefficients.

The key point is that all of these abstractions must be inferred jointly – for example geometry is

useful to inferring semantics and semantics is useful for inferring geometry. The resulting factor

graph will be highly heterogeneous due to all the different entities and highly interconnected due

to the joint inference over all interdependent hierarchies. Heterogeneity and high interconnection

erodes sparsity structure in the graph, meaning that current inference methods will be highly in-

efficient on Spatial AI graphs. We instead need decentralised algorithms where the cost of each

local iteration does not depend on the graph structure meaning fast inference is maintained for

dense heterogenous graphs.

1.5 Gaussian Belief Propagation

Having motivated the need for decentralised graph based inference that operates with local stor-

age and computation, we now propose belief propagation (BP) and specifically Gaussian belief

propagation (GBP) as a strong candidate algorithm. BP is able to perform in-place inference on

a factor graph with entirely local storage and processing at each node in the graph and message

passing communication. Each variable and factor node processes messages with no knowledge

about the rest of the graph other than its direct neighbours, and BP can converge with arbitrary,
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asynchronous message passing schedules which need no global coordination. In a certain sense,

an algorithm which works like this represents ‘assuming the worst’ – that no knowledge of the

structure of an estimation problem is available to enable intelligent design of processing.

This is the reason both that BP is well worth studying as an end point in a continuum of possible

methods, but also that it is unlikely to form the whole solution to practical estimation. What

we foresee is that BP could form a general estimation ‘glue’ between specifically engineered

hardware/software modules for particular tasks; or be particularly valuable in highly dynamic,

rapidly reconfiguring estimation problems where management of computation can carry on in a

decentralised way.

Belief propagation has an extensive literature and is a well-known inference algorithm for calcu-

lating per-node marginals from a joint distribution. BP was originally developed in the 1980s by

Pearl [Pearl, 1988] as an exact inference algorithm on tree-structured graphs. In tree graphs, BP

guarantees exact marginal computation with one sweep of messages down from an arbitrary root

node to the leaf nodes and then back up [Bishop, 2006]. ‘Loopy’ belief propagation applies the

same message passing rules to loopy graphs with cycles and empirically often accurately com-

putes the true marginals for these graphs [Pearl, 1988, Kschischang et al., 2001, Murphy et al.,

1999]. Gaussian belief propagation is a special case of loopy BP applied to Gaussian graphical

models in which we also infer Gaussian-distributed marginals. GBP has both more extensive

mathematical guarantees of correctness [Weiss and Freeman, 2000] and stronger empirical per-

formance [Bickson, 2008] than general loopy BP. Unlike graph neural networks (GNNs) [Scarselli

et al., 2008, Bronstein et al., 2017a, Battaglia et al., 2018] which learn edge and node updates

that are applied over a fixed number of message passing steps, BP applies probabilistic message

passing updates with iterative convergent behaviour.

We are not the first to consider applying GBP to Spatial AI problems, although we believe that

it has received much less interest than it deserves in this context. BP has been shown to work

well for image processing tasks on regular image grids [Felzenszwalb and Huttenlocher, 2006]. In

3D computer vision, BP with discrete variables has been used to provide initialisations for non-

linear least squares bundle adjustment [Crandall et al., 2011]. Paskin et al. [Paskin, 2003] built a

junction tree of a filtered SLAM graph which was kept sparse by removing edges and used GBP

for inference. Most relevant to us, Ranganathan et al. in ‘Loopy SAM’ [Ranganathan et al., 2007]

used GBP for a robot mapping application, and their experiments have many similarities with the

demonstrations we will give later in this thesis. Outside of Spatial AI, loopy BP is perhaps best

known for its successful application to error-correcting codes [McEliece et al., 1998].
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Despite these applications, GBP has not yet been applied broadly to machine learning or Spatial

AI problems. One issue that has precluded the use of general Loopy BP is that it lacks convergence

guarantees. However, a second and perhaps more relevant issue given modern hardware trends, is

that its computational properties have not fitted the dominant processing paradigms of recent dec-

ades, CPUs and GPUs. Consequently, other factor graph inference algorithms have been preferred

which take advantage of global problem structure to operate much more rapidly and robustly than

belief propagation on a CPU.

As we have outlined, we believe that recent advances in computing hardware and scene represent-

ation make this the right time to re-evaluate decentralised inference algorithms and in particular

GBP as a candidate inference algorithm for Spatial AI. Indeed there has been a recent resurgence

in interest in the algorithm [George et al., 2017, Lázaro-Gredilla et al., 2021, Satorras and Welling,

2021, Kuck et al., 2020, Ortiz et al., 2020, Opipari et al., 2021]. Much of this work has investig-

ated combining deep learning with GBP [Satorras and Welling, 2021, Kuck et al., 2020, Opipari

et al., 2021] or using GBP for inference in structured probabilistic generative models [George

et al., 2017, Lázaro-Gredilla et al., 2021].

In Box 1.1, we summarise the key properties of GBP that make it a strong algorithmic framework

for probabilistic estimation in Spatial AI.
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Box 1.1: Key Properties of Belief Propagation

1. Decentralised - can do inference in-place on the factor graph with local distributed

processing, storage and message passing.

• Distributability enables GBP to leverage any extra available compute whether

on a single chip or in networks of processors.

• Can achieve low power implementation due to minimal data transfer only

between conditionally dependent nodes.

• Can operate via ‘just in time’ convergence focusing compute on task-relevant

regions - this is also attractive from an energy consumption perspective.

2. Probabilistic - estimates uncertainties by doing marginal inference as opposed to

MAP inference.

3. Iterative and convergent - is not run over a fixed number of steps.

• GBP can be run continually in the background and as new data arrives, the

problem can be arbitrarily edited without interrupting inference.

4. Asynchronous - convergence can be reached via asynchronous updates.

• This is important in decentralised systems without a global clock or where

communication delays are non-negligible such as in edge computing.

Another great strength of GBP is the straightforward and fully local nature of implementation.

Unlike most previous estimation methods that are instantiated in large and highly optimised solver

libraries for a CPU, the details of GBP can be easily and efficiently implemented on any particular

distributed platform. We hope that a set of standard formats for how these platforms should pass

messages between each other will emerge and enable our vision of GBP as the glue between

various specialised estimation methods. We take steps towards designing this standard message

passing format for localisation in our Robot Web paper [Murai et al., 2022] (described in Section

3.5). This vision is closely related to the idea of clustered belief propagation in which subsets

of nodes form clusters that are stored on the same device and use a centralised method for local

inference within the cluster and GBP for global inference taking into account constraints from

other clusters.

In the limit of a purely distributed implementation, each node (either variable or factor) can be
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Figure 1.1: Non-exhaustive table of algorithms for solving MAP and marginal inference in Gaus-
sian models. (See Halsted et al.’s [Halsted et al., 2021] survey paper for a good review of distrib-
uted methods for pose graph optimisation.)

hosted on separate processor, or tile of a graph processor. The most intensive computation a

node needs to carry out is the matrix inversion needed for marginalisation at a factor node and

the dimension of this matrix is usually small. In the common case of graphs with only unary

or binary factors (which connect to one or two variable nodes), the maximum dimension is the

maximum individual variable node dimension. In addition to computationally cheap operations,

communication is also efficient as all messages between nodes take the form of usually low-

dimensional Gaussians, which can be represented by small vectors and matrices.

1.6 Related Algorithms

In this section, we discuss algorithms related to GBP for MAP and marginal inference. Inference

in Gaussian models is equivalent to solving the linear system Λµ = η; solving for µ in MAP infer-

ence, and for µ and the diagonal elements of Λ−1 in marginal inference. When the measurement

functions have a non-linear dependence on the variables, inference is performed by iteratively

solving linearised Gaussian versions of the true non-linear problem. MAP inference in Gaussian

models is equivalent to minimising a non-linear least squares objective.

Figure 1.1 presents a non-exhaustive overview of related algorithms and we will discuss some of

the approaches in more detail in the remainder of this section.

There are many efficient libraries for inference of non-linear problems such as Ceres [Agarwal
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and Mierle, 2012], g20 [Kummerle et al., 2011], GTSAM [Dellaert, 2012], Theseus [Pineda

et al., 2022] and SymForce [Martiros et al., 2022]. These libraries generally implement MAP

inference and use either trust region methods or line search to guide the repeated linear steps.

Trust region methods approximate the objective using a model within a trust region; for example,

Gauss-Newton uses a quadratic model meaning the factors are approximated as Gaussians as in

GBP. Line search methods choose a descent direction and then step size at each iteration. These

libraries usually employ direct linear solvers based on matrix decomposition which compute the

exact solution to the linear system in a fixed number of steps. Decomposition methods factorise

the matrix Λ into a product of matrices that are easier to invert and often exploit sparsity in the lin-

ear system. In contrast to direct methods, iterative methods converge to the solution of the linear

system over many iterations. Conjugate gradient is a common iterative method that these libraries

often employ for solving large sparse linear systems.

These libraries focus on efficient centralised inference generally on a CPU with some providing

GPU support. We now turn to discuss distributed inference algorithms and relate them to GBP.

Distributed Gradient Descent (DGD). Gradient descent can be implemented as a decentralised

message passing algorithm on a factor graph where factor to variable messages are local gradients

and variable nodes average local incoming gradients to update their state. Being a first order

method, the convergence of distributed gradient descent is slow and most research focuses on

finding accelerated DGD methods [Olson et al., 2006, Grisetti et al., 2009, Cristofalo et al., 2020].

Block coordinate descent successively minimises along blocks of coordinate directions and has

been used for distributed pose graph optimisation (PGO) [Tian et al., 2019] as well as SLAM [Tian

et al., 2021]. Majorisation minimisation methods successively minimise an upper bound on the

objective and have been used for distributed PGO [Fan and Murphey, 2020]. Like GBP, a positive

property of DGD is that it can be implemented in a stochastic asynchronous manner [Tian et al.,

2020], however DGD tends to converge a lot slower than GBP. The reason for this is that GBP

messages are full Gaussian distributions consisting of a mean and a covariance describing the

uncertainty. These messages are therefore far more informative than the local direction of steepest

descent in DGD.

Stationary iterative methods. Stationary iterative methods solve MAP inference by updating

an estimate using a residual based on the original linear system. Common algorithms are the

Gauss-Seidel method, Jacobi method, successive over-relaxation and symmetric successive over-

relaxation. These methods generally update the variables one at a time and can be implemented as

decentralised message passing with a fixed schedule [Barooah and Hespanha, 2005, Aragues et al.,
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2011]. In Spatial AI, stationary iterative methods have been employed for mapping [Duckett et al.,

2000, Choudhary et al., 2017] and refining sensor networks [Delouille et al., 2004]. Recently dis-

tributed Gauss-Seidel has been used as a back-end optimisation module in DOOR-SLAM [Lajoie

et al., 2020] and Cieslewski et al. [Cieslewski et al., 2018]. Ranganathan et al. [Ranganathan et al.,

2007] showed that computing the MAP solution using GBP is equivalent to a modified form of

Gauss-Seidel relaxation. As GBP does full marginal inference, maintaining uncertainties over the

beliefs, it tends to converge faster than stationary iterative methods while also providing marginal

covariance estimates.

Alternating Direction Method of Multipliers (ADMM). A popular family of methods for dis-

tributed MAP inference are based on the consensus alternating direction method of multipliers

(ADMM) [Rockafellar, 1976]. ADMM minimises an augmented Lagrangian with an additional

penalty term on feasible solutions (as in the method of multipliers). As in dual decomposition, it

updates the primal variables in a distributed manner and then gathers the residual updates to up-

date the dual variables. Although most implementations update the dual variables at a centralised

master node, the dual update can also be distributed making ADMM a fully decentralised message

passing algorithm. ADMM can be viewed as doing sequential/alternating Gauss-Seidel updates

on the primal and dual variables. ADMM methods have several drawback; they have redundant

dual variables and computation for achieving consensus, they require careful tuning of the penalty

parameter, they can be slow to converge, and lastly most implementations use a master node.

ADMM has been used in various distributed bundle adjustment applications [Eriksson et al., 2016,

Ramamurthy et al., 2020, Mayer, 2019, Zhu et al., 2017, Zhang et al., 2017a, Zhou et al., 2020b,

Demmel et al., 2020]. Eriksson et al. [Eriksson et al., 2016] use point consensus between sub-

problems with Douglas-Rachford proximal splitting of the cameras. To reduce the overhead of

point consensus, camera consensus and splitting points can be more efficient [Zhang et al., 2017a].

Demmel et al. [Demmel et al., 2020] use a consensus method similar to parallel block coordinate

descent for photometric bundle adjustment problems.

Expectation Propagation (EP). EP [Minka, 2013] is a variational inference method that can be

implemented as decentralised message passing on the factor graph. EP approximates the true

posterior p with a factorised variational distribution of exponential factors: q(θ) =
∏

i f̃i(θ). It

operates by iterating through the factors and minimising the forward KL divergence for a single

factor by matching sufficient statistics (moment matching). Note that EP is not minimising the

forward KL between the approximate and true posteriors, but rather locally at the factors. Similar

to GBP, EP has no convergence guarantees but if it does converge the stationary point is a fixed
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point of the objective. If the factorisation of q is chosen such that it is fully factorised and all

factors are unary, then the EP updates are equivalent to local belief propagation message passing.

EP has been successfully applied to skill ranking in Microsoft’s TrueSkill [Minka et al., 2018]

however, despite its potential utility, to the best of our knowledge it has not been applied to Spatial

AI problems.

Barfoot’s method. Barfoot [Barfoot, 2020] proposed a decentralised message passing algorithm

for marginal inference based on results from Takahashi et al. [Takahashi, 1973]. The algorithm

has similarities to GBP but is guaranteed to converge in both the mean and covariance to the

true marginal quantities. These guarantees come at the cost of additional communication edges

and memory compared to GBP. These additional edges mean that is not fully local like GBP as

communication is required between conditionally independent nodes. This method has not yet

been applied to real practical non-linear problems in Spatial AI and we look forward to future

developments and applications.

Other methods. There exist many approaches that do not fall cleanly into any of the described

method classes. Leung et al. show that decentralised consensus-based message passing can

achieve exact centralised solutions for distributed PGO [Leung et al., 2010] and SLAM [Leung

et al., 2012]. Decentralised data fusion smoothing and mapping (DDF-SAM) [Cunningham et al.,

2010] uses single robot smoothing and mapping with Gaussian elimination and a local neighbour-

hood graph optimiser for distributed SLAM.

We have outlined a whole range of different distributed inference methods, however we have

only come across two algorithms that perform marginal inference via fully decentralised message

passing with local storage and processing. Gaussian belief propagation and Barfoot’s method

both possess these properties and we identify them both as strong candidate inference algorithms

for Spatial AI. We have not included EP here, which also has these properties, due to the fact

that it does not perform well for multi-modal distributions which are ubiquitous in Spatial AI.

Although Barfoot’s method can provide some theoretical guarantees unlike GBP, it has yet to be

demonstrated for real Spatial AI problems and involves extra computation and communication

compared to GBP. There are clearly strong connections between GBP and Barfoot’s method and

we hope that ideas can be transferred to bring convergence guarantees to GBP.

Our key argument in this introduction has been that we want a marginal inference method that

is decentralised, probabilistic and can converge asynchronously and GBP stands as the strongest

candidate algorithm. It represents the extreme case that maximises parallelism and minimises

communication – two principles that are at the core of scalable and low-power computation and
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are key to the vision of GBP as the ‘glue’ between many decentralised specialised modules.

We now detail the contributions carried out in this thesis before laying out the structure of the

remainder of the thesis.

1.7 Contributions

The work in this thesis is based on the following publications:

• Andrew J. Davison, Joseph Ortiz. FutureMapping 2: Gaussian Belief Propagation for

Spatial AI. arXiv preprint arXiv:1910.14139, 2019. [Davison and Ortiz, 2019]

• Joseph Ortiz, Talfan Evans, Andrew J. Davison. A Visual Introduction to Gaussian Be-

lief Propagation. Self-published at https://gaussianbp.github.io/. [Ortiz et al.,

2021]

• Joseph Ortiz, Mark Pupilli, Stefan Leutenegger, Andrew J. Davison. Bundle Adjustment

on a Graph Processor. Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2020. [Ortiz et al., 2020]

• Joseph Ortiz, Talfan Evans, Edgar Sucar, Andrew J. Davison. Incremental Abstraction in

Distributed Probabilistic SLAM Graphs. Proceedings of the IEEE International Confer-

ence on Robotics and Automation (ICRA), 2022. [Ortiz et al., 2022b]

• Riku Murai, Joseph Ortiz, Sajad Saeedi, Paul Kelly, Andrew J. Davison. A Robot Web for

Distributed Many-Device Localisation. arXiv preprint arXiv:2202.03314, 2022. [Murai

et al., 2022]

While not described directly, the following publications were done in conjunction with this thesis:

• Edgar Sucar, Shikun Liu, Joseph Ortiz, Andrew J. Davison. iMAP: Implicit Mapping

and Positioning in Real-Time. Proceedings of the International Conference on Computer

Vision (ICCV), 2021. [Sucar et al., 2021]

• Joseph Ortiz, Alexander Clegg, Jing Dong, Edgar Sucar, David Novotny, Michael Zollhoe-

fer, Mustafa Mukadam. iSDF: Real-Time Neural Signed Distance Fields for Robot Per-

ception. Proceedings of Robotics: Science and Systems (RSS), 2022. [Ortiz et al., 2022a]
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• Luis Pineda, Taosha Fan, Maurizio Monge, Shobha Venkataraman, Paloma Sodhi, Ricky

Chen, Joseph Ortiz, Daniel DeTone, Austin Wang, Stuart Anderson, Jing Dong, Brandon

Amos, Mustafa Mukadam. Theseus: A Library for Differentiable Nonlinear Optimiza-

tion. Neural Information Processing Systems (NeurIPS), 2022. [Pineda et al., 2022]

Along with this thesis, we provide several open source code repositories for GBP:

• For our project Bundle Adjustment on a Graph Processor [Ortiz et al., 2020], we provide

code for both our Python and Poplar implementations at: https://github.com/joeaortiz/

gbp and https://github.com/joeaortiz/gbp-poplar.

• As part of our article A Visual Introduction to Gaussian Belief Propagation [Ortiz et al.,

2021], we provide a GBP Library Colab Notebook as a simple starting point the interested

reader at: https://colab.research.google.com/drive/1-nrE95X4UC9FBLR0-

cTnsIP XhA PZKW?usp.

1.8 Thesis Structure

The remainder of the thesis is structured as follows:

Chapter 2 – Technical Introduction to Gaussian Belief Propagation. We formally introduce

probabilistic inference and factor graphs before deriving belief propagation for tree graphs. Gaus-

sian belief propagation for Gaussian models is then presented before discussing how GBP can be

extended to handle non-Euclidean variables with Lie Group theory. This section contains standard

derivations apart from the extension to non-Euclidean variables which describes original contri-

butions from the Robot Web paper [Murai et al., 2022].

Chapter 3 – Beyond the Standard Algorithm. This chapter presents details and tricks for mak-

ing GBP work well on real practical Spatial AI problems. We use a variety of 1D and 2D SLAM-

like problems to illustrate the utility of message schedules, robust factors and other details such as

damping. Notably, we show that GBP can converge well with arbitrary random message schedules

and that local robust factors can effectively identify outlying measurements. These findings are

novel contributions from our two position/tutorial papers: FutureMapping2 [Davison and Ortiz,

2019] and the online visual introduction to GBP [Ortiz et al., 2021]. In the final part of this

chapter, we briefly detail our novel Robot Web communication protocol for distributed private

GBP message passing between networks of devices [Murai et al., 2022].
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1. Introduction: Gaussian Belief Propagation for Spatial AI

Chapter 4 – Bundle Adjustment on a Graph Processor. This chapter presents the work from

our paper [Ortiz et al., 2020] which applies GBP, implemented on a graph processor, to bundle

adjustment. We demonstrate rapid breakthrough inference speeds, 24x faster than the Ceres solver

on a CPU.

Chapter 5 – Incremental Abstraction in Distributed Probabilistic SLAM Graphs. This

chapter presents work from our paper [Ortiz et al., 2022b] which proposes an incremental ab-

straction framework for SLAM as well as a routing method for implementing GBP on fixed com-

munication graphs. We demonstrate the planar abstraction of real scenes producing more dense,

semantic and compact scene graphs.

Chapter 6 – Conclusions. Here we conclude the thesis with a discussion of the research presented

and suggestions for future work.
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2.6.6 Belief Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.1 Probabilistic Inference

Probabilistic inference is the problem of estimating statistical properties of unknown variables x

from known or observed quantities d (the data). For example, one might be interested in inferring

tomorrow’s weather (x) from historic data (d), or the 3D structure of an environment (x) from a

video sequence (d).

Bayesian inference proceeds by first defining a probabilistic model that describes the relationships

between data and variables: p(x,d). The sum and product rules of probability are then used to

form the probability of the unknown variables given the data, which is known as the posterior

distribution:

p(x|d) = p(x,d)

p(d)
. (2.1)

The sum rule is p(x) =
∑

y p(x,y) and the product rule is p(x,y) = p(y|x)p(x). The pos-

terior summarises our belief about x after seeing d and can be used for decision making or other

downstream tasks.

Given the posterior, we can compute various properties of x, for example:

1. The most likely configuration of the variables xMAP = arg maxxp(x|d).

2. The marginal posteriors p(xi|d) =
∑

x\xi
p(x|d), which summarise our belief about each

individual variable xi given d. Note that x \ xi denotes all elements of x except xi; we will

equivalently later use the shorthand x−i.

These two calculations are known as 1) maximum a posteriori (MAP) inference and 2) mar-

ginal inference respectively. An important difference is that MAP inference produces a point

estimate while marginal inference retains information about uncertainty.

2.2 Factor Graphs

The Hammersley-Clifford theorem tells us that any positive joint distribution p(x) can be repres-

ented as a product of factors fi, one per clique, where a clique is a subset of variables Xi in which

each variable is connected to all others:
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Figure 2.1: Simple factor graph representing the joint distribution over 3 variables. The joint dis-
tribution can be factorised into 4 terms, each represented in the diagram by a factor. The factor
f3(x1, x2) is highlighted in blue in the both the diagram and the equation to show the correspond-
ence. See the full interactive version of this figure at: https://gaussianbp.github.io/
#factor graph

p(x) =
∏
i

fi(Xi) (2.2)

Factorised representations can be very convenient as they expose structure in a model. Factor

graphs are a natural representation of this factorisation and provide a way of visualising con-

ditional independence structure and an interpretation of some calculations as operations on the

graph [Dellaert and Kaess, 2017].

In the factor graphs in this thesis, circles and squares represent variable and factor nodes respect-

ively, with edges connecting each factor to the variables it depends on. An example of a simple

factor graph is shown in Figure 2.1. By explicitly representing the factors as nodes in the graph,

factor graphs clearly emphasise the conditional independence structure of the problem - the lack

of a factor directly connecting two variables means they are conditionally independent given all

other variables.

Mathematically, two variables xi and xj are conditionally independent given all other variables

x−ij if:

p(xi, xj |x−ij) = p(xi|x−ij)p(xj |x−ij) . (2.3)

An equivalent condition is:

p(xi|xj ,x−ij) = p(xi|x−ij) . (2.4)
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Intuitively, if x−ij causes both xi and xj , then if we know x−ij we don’t need to know about xi

to predict xj or about xj to predict xi. Conditional independence is often written in shorthand as:

xi⊥xj |x−ij .

2.2.1 Energy based models interpretation

Factor graphs can also be presented as energy based models [LeCun et al., 2006] where each factor

fi defines an energy Ei ≥ 0 associated with a subset of the variables Xi:

fi(Xi) ∝ e−Ei(Xi) . (2.5)

This formalism is closely related to the Boltzmann distribution in statistical physics which gives

the probability of a state i as a function of the energy of the state and the temperature of the system:

pi =
e−Ei/kT∑
j e

−Ej/kT
, (2.6)

where k is the Boltzmann constant, T is the temperature of the system and j sums over all available

states.

In energy based models, finding the most likely variable configuration is equivalent to minimising

the negative log probability or the sum of factor energies:

xMAP = arg minx − log p(x) = arg minx
∑
i

Ei(Xi) . (2.7)

2.3 The Belief Propagation Algorithm

In this section we present a derivation of the Belief Propagation algorithm for tree graphs before

discussing loopy Belief Propagation on graphs with loops.

2.3.1 Derivation for Tree Graphs

We first introduce the general theory of Belief Propagation, focusing on the Sum-Product Al-

gorithm due to Pearl [Pearl, 1982], and following the notation and derivation given in Bishop’s

book ‘Pattern Recognition and Machine Learning’ [Bishop, 2006]. Here the representation of

probability distributions is not specified, and could be probability tables for discrete variables or

an arbitrary probability distribution function for continuous variables. We will go on to derive the
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2.3. The Belief Propagation Algorithm

Figure 2.2: A variable node x connects to factor nodes including fs, from which it receives
message µfs→x(x).

specific Gaussian case in Section 2.5. We give a lot of detail on the mathematical derivations in

this section, with the aim of producing a fully understandable and complete tutorial.

We start from Equation 2.2 which defines the probability distribution over all variables in a factor

graph as a product of all factors. We are interested in marginal inference, in which we aim to

determine the marginal distribution over variables of interest. Choosing to start with one partic-

ular variable x, the sum rule tells us that its marginal distribution is found by taking the joint

distribution, and summing over all of the other variables:

p(x) =
∑
x\x

p(x) . (2.8)

For the moment, we assume that our factor graph has a tree structure, which means that it has no

loops, and that there is precisely one route through the graph between any two nodes.

Consider Figure 2.2 which focuses on an arbitrary variable x within a tree factor graph. Variable

x is directly connected to a number of factors fs. Every other factor in the graph is connected to x

indirectly via exactly one of these factors, so we can divide the whole graph into the same number

of subsets as the factors fs, and write the whole joint probability distribution as a product of these

subsets:

p(x) =
∏

s∈n(x)

Fs(x,Xs) . (2.9)

Here n(x) is the set of factor nodes that are neighbours of x; Fs is the product of all factors in

the group associated with fs; and Xs is the vector of all variables in the subtree connected to x

via fs. Note that previously we had defined the subset of variables connected to factor fs as Xs;
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however for this derivation, we redefine the set Xs to exclude x and include all variables in the

subtree connected to x via fs. Now, combining Equations 2.8 and 2.9:

p(x) =
∑
x\x

 ∏
s∈n(x)

Fs(x,Xs)

 . (2.10)

We can reorder the sum and product to obtain:

p(x) =
∏

s∈n(x)

[∑
Xs

Fs(x,Xs)

]
. (2.11)

It is important to have a good intuition for what has happened with this switch. Each term

Fs(x,Xs) is the product of many factors; so it is a multivariate function of x and all of the other

variables in that branch of the tree. In Equation 2.10, we first multiply all of the Fs terms together,

to get a single joint function of all variables in the whole tree. In the sum, we then marginalise out

over all other variables to be left with a marginal function only over our variable of interest x.

In Equation 2.11, on the other hand, we perform marginalisation first, taking each product of

factors in a branch Fs(x,Xs) and summing over all other variables to obtain a function only of x

in the square bracket for each branch. We then just calculate the product of these branch functions

of x to obtain the final marginal distribution over x.

We can start to see now the idea of using message passing terminology to describe this process.

Continuing to use Bishop’s notation, we define:

µfs→x(x) =
∑
Xs

Fs(x,Xs) . (2.12)

This term µfs→x(x) can be considered as a message from factor fs to variable x. The message has

the form of a probability distribution over variable x only, and is the marginalised probability over

x as the result of considering all factors in one branch of the tree: in other words, it is what that

branch of the tree says about the marginal probability distribution of x. If variable x receives such

a message from all of the branches it is connected to, it can pool this information, and calculate

its final marginal distribution by simply multiplying these messages together:

p(x) =
∏

s∈n(x)

µfs→x(x) . (2.13)

Next, we go further into one of the branches of the tree, and break down the products of factors

Fs(x,Xs) as follows:

Fs(x,Xs) = fs(x, x1, . . . , xM )×G1(x1,XS1) . . . GM (xM ,XSM
)

= fs(x, x1, . . . , xM )
∏

m∈n(fs)

Gm(xm,XSm)

(2.14)
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Figure 2.3: Factor fs connects variable x to M other neighbouring variables xm ∈ {x1 . . . xM},
each of which is the root of a sub-branch containing a product of factors Gm.

Here, referring to Figure 2.3, fs, the factor which connects x to this branch, is a function of x

as well as M other neighbouring variables xm ∈ x1 . . . xM . Each of these variables connects to

a sub-branch containing a product of factors Gm which is a function of variable xm and other

variables XSm . Substituting into Equation 2.12:

µfs→x(x) =
∑
Xs

fs(x, x1, . . . , xM )
∏

m∈n(fs)

Gm(xm,XSm)



=
∑

x1,...,xM

∑
XS1

,...,XSM

fs(x, x1, . . . , xM )
∏

m∈n(fs)

Gm(xm,XSm)


=

∑
x1,...,xM

fs(x, x1, . . . , xM )
∏

m∈n(fs)

∑
XS1

,...,XSM

Gm(xm,XSm) . (2.15)

Note we have made use of the fact that Xs = (x1, . . . , xM ,XS1 , . . . ,XSM
) to separate out the

sum.

We can now define the second type of message, this time from variable to factor:

µxm→fs(xm) =
∑
Xsm

Gm(xm,XSm) , (2.16)
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Figure 2.4: xm, one of the variable neighbours of fs, connects fs to the product of factors
Gm(xm,XSm) which we break down as

∏
l∈n(xm)\fs Fl(xm,Xml

).

and substitute into Equation 2.15 to get:

µfs→x(x) =
∑

x1,...,xM

fs(x, x1, . . . , xM )
∏

m∈n(fs)

µxm→fs(xm) . (2.17)

We see here one half of the full recursive solution we are looking for: an expression for messages

from factors to variables in terms of the messages those factors have received from other variables.

We need just a few more steps to find ther other half of this. We need to take one more step deeper

into the tree. Consider Figure 2.4, which now centres on xm, one of the variable neighbours of

fs, which connects fs to the product of factors Gm(xm,XSm). We break down this product as

follows:

Gm(xm,XSm) =
∏

l∈n(xm)\fs

Fl(xm,Xml
) . (2.18)

We see that the total product factorises into terms Fl(xm,Xml
), each of which is the product of

the set of factors from the whole graph which connects to xm via factor fl. (We have broken down

XSm , the set of all variables connected to fs via xm, into subsets Xml
which connect to xm via

factor fl.)
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We substitute this factorisation into Equation 2.16:

µxm→fs(xm) =
∑
Xsm

∏
l∈n(xm)\fs

Fl(xm,Xml
) , (2.19)

and as we have seen before swap the order of the sum and product to obtain:

µxm→fs(xm) =
∏

l∈n(xm)\fs

∑
Xml

Fl(xm,Xml
) . (2.20)

Here we recognise the form of a message from factor to variable as defined in Equation 2.12, and

substitute to obtain:

µxm→fs(xm) =
∏

l∈n(xm)\fs

µfl→xm(xm) . (2.21)

We now have all we need for the full sum-product algorithm, and can focus on Equations 2.13,

2.17 and 2.21. Equation 2.13 says that in order to calculate the marginal distribution for x, we

should multiply together all of messages received from each of its neighbouring factor nodes.

Each of those messages has the form of a probability distribution over x only.

Stepping out to any one of the neighbouring factor nodes, we see the work that needs to be done

at a factor node in Equation 2.17. A factor node receives messages from a number of variables,

and must calculate a new message to send out. The messages that factor has received from other

variables, each of which is a function of that one other variable, are all multiplied. We then mul-

tiply this product by the probability distribution representing the factor itself. We then marginalise

out all variables other than the one to which the message will be sent, to leave a function of that

variable only and that is the message that is sent.

One more step out, Equation 2.21 shows what happens at a variable node. It receives messages

from a number of factors, all of which are functions of the variable, and multiplies these together

to generate the message it sends on to the next factor.

It should now be clear that these two steps are simply repeated recursively through the whole tree.

In order to find the marginal distribution for x, we start from all of the leaf nodes of the factor

graph relative to x, which can be either variables or nodes, and pass messages inwards towards

x. When each node has received messages from all outer nodes, it can perform its calculation to

generate the correct message to pass inwards. This continues recursively all the way to x at the

root of the tree.

One remaining detail is how to initialise the leaf nodes, and this is simply dealt with. A variable

leaf node sends a message µx→f (x) = 1 to its only connected factor, and a factor leaf node sends
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µf→x(x) = f(x). These are seen to be correct from looking at Equations 2.17 and 2.21 if we

imagine a set of null factors with flat probability distributions surrounding the main tree.

So we know how to find the marginal distribution at a chosen node x within a tree by defining

that node as the root and passing messages recursively in towards it from all of the leaf nodes.

If we required marginal distributions for all variable nodes in the tree, clearly we could simply

repeat this procedure for each one. However, this would require a huge amount of wasted work.

Imagine two variable nodes which are close together in a large tree. Defining either as the root

node would lead to large equal branch and leaf structures in distant parts of the tree, and exactly

the same computation in these regions would be repeated.

In fact, it is quite easy to see that we can find the marginal distribution for every variable node

using only double the amount of work required to find the marginal for one variable. During the

leaves-to-root message passing procedure to find the marginal for x, every variable and factor node

along the way will have received incoming messages from all of its neighbours apart from the one

to which it must transmit an outgoing message in the direction towards x. Once the messages

get all the way the x, the root is then ‘fully informed’ and has a final marginal distribution which

takes into account all of the information in the graph. Therefore, if we now send a second series of

messages outwards from the root back to the leaves, we will fill in the missing incoming message

for every variable node and can therefore calculate a fully informed marginal for each node.

In this way belief propagation is able to efficiently determine marginal distributions for every

variable in a tree graph with a one time forward / backward sweep of message passing through the

graph.

2.3.2 Belief Propagation on Loopy Graphs

As outlined in the derivation, BP was originally developed for graphs that are trees, in which

any two nodes are connected by exactly one path. Most factor graphs for practical estimation

problems are not trees however, but contain loops. This leads to two possibilities for the use of

BP methods. One is to convert a general graph into a tree by combining nodes via graph cliques.

These will be perfect trees, but with large compound nodes, and leads to the junction tree family

of methods. The other is to retain the full loopy graph, but apply BP methods as if the graph was

a tree, and keep iterating until convergence is reached. In this case, rather than exactly computing

the marginal distributions after one sweep up and down through the graph using Equation 2.13:

p(x) =
∏

s∈n(x) µfs→x(x), we maintain a belief estimate b(x) =
∏

s∈n(x) µfs→x(x) which is
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updated and converges on the true marginal distribution after many iterations:

b(x) → p(x) . (2.22)

This approach is called loopy Belief Propagation, and has been shown to converge to useful solu-

tions in many problems.

The simplest variant of loopy BP sends messages from all nodes at every iteration in a synchronous

fashion (we discuss message schedules in detail in Section 3.2). Figure 2.5 illustrates how BP is

applied to trees and graphs with loops respectively.

As BP was originally developed for trees, its application to loopy graphs was at first empirical

[Murphy et al., 1999]. Theoretical grounds for applying the same update rules to loopy graphs

were later developed [Yedidia et al., 2000, Weiss and Freeman, 2000, Wainwright and Jordan,

2008] that explain loopy BP as an approximate variational inference method in which inference

is cast as an optimisation problem. Instead of directly minimising the factor energies (as is done

in MAP inference), loopy BP minimises the KL divergence between the true posterior and a

variational distribution (the beliefs) which we use as a proxy for the marginals after optimisation.

Loopy BP can be derived via constrained minimisation of an approximation of the KL divergence

known as the Bethe free energy [Yedidia et al., 2000]. We provide this variational derivation of

belief propagation in Appendix 7.1.

As the Bethe free energy is non-convex, loopy BP is not guaranteed to converge and even when it

does it may converge on the wrong marginals. An exception to this is Gaussian models for which,

on convergence, the estimated marginal means are guaranteed to be exact. Empirically, however

BP generally converges to the true marginals although for very loopy graphs it can fail [Murphy

et al., 1999, Wainwright and Jordan, 2008].

Most interesting problems have loopy structures and so for the remainder of this thesis we will use

BP to refer to loopy BP. So far, we have outlined the BP equations, without specifying the form

of the factor, message or belief distributions. After summarising the key properties of BP, we turn

to Gaussian belief propagation which is a special form of continuous BP for Gaussian models in

which all probability distributions are Gaussian.

2.3.3 Algorithm Summary and Intuitions

Here we summarise the core properties and equations of Belief Propagation. Belief propagation is

an algorithm for marginal inference, i.e. it computes the marginal posterior distribution for each
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Initial prior beliefs
Iteration 0

Variable-to-factor MP
Iteration 0

Factor-to-variable MP

Iteration 0
Belief Update

Iteration 1
Factor-to-variable MP

Iteration 1
Belief Update

Iteration 1
Variable-to-factor MP

Belief Propagation on Tree Graphs

(a) Belief propagation on tree graphs. The belief distributions are displayed with blue curves, which
become green curves when the beliefs are equal to the true marginal distributions. The true marginals are
computed after one full sweep from the root node (arbitrarily chosen at the top) down to the leaf nodes and
back up. This takes 2 iterations of BP. We could equally have chosen the root node as the left node and
sweep messages left to right and then back right to left.

Initial prior beliefs
Iteration i

Variable-to-factor MP
Iteration i

Factor-to-variable MP

Iteration i
Belief Update

Belief Propagation on Loopy Graphs

Iteration N

x N

(b) Belief propagation on loopy graphs. The belief distributions are displayed with blue curves, which be-
come green curves when the beliefs are equal to the true marginal means. Here we show belief propagation
on a loopy graph using a synchronous message passing schedule in which all variables and all factors send
messages to all adjacent nodes on every iteration. After running N iterations of synchronous loopy BP, the
beliefs converge on the true marginal distribution. The number of iterations (N) required for convergence
depends on many properties including the graph topology, the factors and initialisation.

Figure 2.5: Belief Propagation on Trees and Loopy Graphs. See the full video version of this
figure at: https://gaussianbp.github.io/#mp videos
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2.3. The Belief Propagation Algorithm

Figure 2.6: The 3 phases of Belief Propagation with their graphical interpretation.

variable from the set of factors that make up the joint posterior. BP is intimately linked to factor

graphs by the following property: belief propagation can be implemented as iterative message

passing on the posterior factor graph.

The algorithm operates by iteratively updating a node’s locally stored belief by sending and re-

ceiving messages from neighbouring nodes in the factor graph. As illustrated in Figure 2.6, each

iteration of BP consists of 3 phases: variable-to-factor message passing, factor-to-variable mes-

sage passing, and belief update. In Box 2.1, we summarise the BP equations for reference and

provide intuition for each phase of BP.

Key to understanding why belief propagation is efficient is considering the least efficient way to

compute the marginal distribution for a variable. The naive way would be to take a product of

all of the factors to give the joint distribution and then marginalise over all other variables. This

simultaneous marginalisation over all other variables is expensive. For example, in the discrete

case, if each variable takes k discrete values then marginalising over all but one variable requires

summing kN−1 terms, where N is the number of variables. Belief propagation instead marginal-

ises over minimal independent subsets of variables using the conditional dependency information

which is encoded in the graph topology. If we consider the variable in question as the root node

then BP is efficient as it moves the marginalisation down the graph towards the leaf nodes by

marginalising over minimal subsets of conditionally dependent variables. To compute the mar-

ginal distributions for a tree graph with discrete variables containing only pairwise factors, belief

propagation requires summing only 2Nfk
2 terms, where Nf is the number of factors.

For a further intuitive exploration of BP that relates the equations to message passing on the factor

graph, see our interactive diagram at https://gaussianbp.github.io/#bp equations.

A screenshot of this interactive diagram is shown in Figure 2.7.

35

https://gaussianbp.github.io/#bp_equations


2. Technical Introduction to Gaussian Belief Propagation

Box 2.1: Belief Propagation Equations and Intuition

Belief Update

The variable node beliefs are computed by taking a product of the incoming messages

from all adjacent factors, each of which represents that factor’s belief on the receiving

node’s variables.

Equation 2.13

p(x) =
∏

s∈n(x)

µfs→x(x)

Factor-to-variable Message Passing

To send a message to an adjacent variable node, a factor aggregates messages from all other

adjacent variable nodes and marginalizes over all the other nodes’ variables to produce a

message that expresses the factor’s belief over the receiving node’s variables.

Equation 2.17

µfs→x(x) =
∑

x1,...,xM

fs(x, x1, . . . , xM )
∏

m∈n(fs)

µxm→fs(xm)

Variable-to-Factor Message Passing

A variable-to-factor message tells the factor what the belief of the variable would be if the

receiving factor node did not exist. This is computed by taking the product of the messages

the variable node has received from all other adjacent factor nodes.

Equation 2.21

µxm→fs(xm) =
∏

l∈n(xm)\fs

µfl→xm(xm)

2.4 Gaussian Models

We now focus on Gaussian models in which all factors and therefore the joint posterior are uni-

variate / multivariate Gaussian distributions. Gaussians are a convenient choice for a number of

reasons:

1. They accurately represent the distribution for many real world events [Jaynes, 2003].

2. They have a simple analytic form.

3. Complex operations can be expressed with simple formulae.
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2.4. Gaussian Models

Figure 2.7: Annotated Belief Propagation equations and a visual exploration of the relation to
message passing on the factor graph. Note in this screenshot messages are denoted with the
character m rather than µ and the belief is denoted as b. See the full interactive version of this
figure at: https://gaussianbp.github.io/#bp equations.

4. They are closed under marginalisation, conditioning and taking products (up to normalisa-

tion).

A Gaussian factor or in general any multivariate Gaussian distribution can be written in the expo-

nential form p(x) ∝ e−E(x) with a quadratic energy function. There are two ways to write the

quadratic energy which correspond to the two common parameterisations of multivariate Gaus-

sian distributions: the moments form 1 and the canonical / information form. A multivariate

Gaussian distribution over a vector variable x is expressed in the moments form as:

p(x) = N (x; µ,Σ) = K1e
− 1

2
(x−µ)⊤Σ−1(x−µ) , (2.23)

where µm is the mean of the distribution and Σ is its covariance. The equivalent canonical or

information form is:

p(x) = N−1(x; η, Λ) = K2e
− 1

2
x⊤Λx+η⊤x , (2.24)

The information vector η is related to the mean vector µ by the relation:

η = Λµ , (2.25)

and the precision matrix is the inverse of the covariance matrix:

Λ = Σ−1 . (2.26)
1It’s called the moments form as it is parameterised by the first moment and the second central moment of the

distribution.
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2. Technical Introduction to Gaussian Belief Propagation

Figure 2.8: Comparison between the two parameterisations of the Gaussian Distribution: the
moments form and the canonical / information form.

The two forms have different normalising constants K1 ̸= K2, although we will not need to

calculate the value of either in GBP. For an extended exploration of the information form for

SLAM readers see Eustice et al. [Eustice et al., 2005].

The key properties of each of these parameterisations are summarised in Figure 2.8. The canonical

/ information form is often preferred when performing inference, for two main reasons. Firstly,

taking a product is simple in the canonical form, so it is easy to form the joint posterior from the

factors. Secondly, the precision matrix is sparse and relates closely to the structure of the factor

graph.

The precision matrix describes direct associations or conditional dependence between variables.

If entry (i, j) of the precision matrix is zero then equivalently, there is no factor that directly

connects xi and xj in the graph. This can be seen in Figure 2.9a where Λ13 = Λ31 = 0 because x1

and x3 have no factor directly connecting them.

On the other hand, the covariance matrix describes induced correlations between variables and is

dense as long as the graph is one single connected component. Unlike the canonical form, the

moments form is unable to represent unconstrained distributions, as can be seen in Figure 2.9b.

The unanchored graph contains only relative positional information which can be represented with

zero information in the canonical form but corresponds to an infinite covariance in the covariance

form along dimensions which are fully unconstrained. We encourage the reader to explore the full

interactive diagram of Figure 2.9 at https://gaussianbp.github.io/#gaussian gm

and edit the graph to build intuition for Gaussian models and the relationship with the canonical

form.
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(a) Default

(b) Unanchored

(c) Anchored by x1

Figure 2.9: Comparison between the parameters of the Canonical and Moments form of the Gaus-
sian Distribution for 3 different graph topologies. We strongly encourage the reader to view the full
interactive version of this figure at: https://gaussianbp.github.io/#gaussian gm.
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2. Technical Introduction to Gaussian Belief Propagation

2.4.1 From Gaussian Inference to Linear Algebra

The joint distribution corresponding to a factor graph in which all factors are Gaussian can be

represented as a single multivariate Gaussian distribution (since the energy terms are additive) in

the canonical form:

P (x) ∝ e−
1
2
x⊤Λx+η⊤x . (2.27)

MAP inference corresponds to computing the parameters xMAP that maximise the above joint

distribution. We can compute the gradient of the log-probability (the total energy):

∇xE = ∇x logP (x) = −Λx+ η , (2.28)

and solve for ∇xE = 0. From here, we see that MAP inference in a Gaussian system reduces

simply to solving:

xMAP = Λ−1η = µ , (2.29)

which as expected is equal to the mean.

Marginal inference computes the per-variable marginal posterior distributions. In the moments

form, the marginal distribution of xi is:

p(xi) =

∫
p(x)dx−i ∝ e−

1
2
(xi−µi)

⊤Σ−1
ii (xi−µi) , (2.30)

where the mean parameter µi is the ith element of the joint mean vector and the covariance Σii

is entry (i, i) of the joint covariance matrix. The vector of marginal means for all variables is

therefore the joint mean vector µ = Λ−1η = xMAP and the marginal variances are the diagonal

entries of the joint covariance matrix Σ = Λ−1.

We can therefore summarise inference in Gaussian models as solving the linear system of equa-

tions:

Ax = b ⇔ Λµ = η . (2.31)

MAP inference solves for µ while marginal inference solves for both µ and the block diagonal

elements of Λ−1.

2.5 Gaussian Belief Propagation

Having introduced Gaussian models as models in which all factors and therefore the joint distribu-

tion are Gaussian distributions, we now discuss Gaussian belief propagation a form of continuous
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2.5. Gaussian Belief Propagation

BP applied to Gaussian models. Due to the closure properties of Gaussians, the beliefs and mes-

sages are also Gaussians and GBP operates by storing and passing around information vectors and

precision matrices. The GBP equations are a specific case of the BP equations presented earlier.

Unlike general loopy BP, GBP is guaranteed to compute the exact marginal means on conver-

gence, although the same is unfortunately not true for the variances which often converge to the

true marginal variances, but are sometimes overconfident for loopy graphs [Weiss and Freeman,

2000]. We provide a proof of the exactness of the marginal means of GBP on convergence in

Appendix 7.2. Although GBP does not in general have convergence guarantees, there some con-

vergence conditions [Bickson, 2008, Du et al., 2018, Su and Wu, 2015] as well as methods to

improve chances of convergence. We discuss improving convergence of GBP in more detail in

Section 3.4.

In the case where the relationship between factors and variables is linear, and all factors have

a Gaussian probability distribution, it is well understood that inference leads to a multivariate

Gaussian distribution over the variables. It is also well established that factor graphs which have

factors with non-linear dependence on the variables can be solved using efficient second order

iterative optimisation (this is the class of non-linear least squares methods).

Here we will show how belief propagation is implemented in the Gaussian case which is the norm

in robotics and computer vision.

2.5.1 Factor Definition

We will start with a general specification of a factor which will be familiar to anyone used to

probabilistic estimation in computer vision and robotics. Suppose that a robot has a sensor which

is configured to observe a quantity which is a function of the state variables of the robot. Note that

we now switch from scalars to vectors here for the variable state space. The observed measurement

or data z is generally modelled as z ∼ h(x)+ϵ, where h(x) simulates the data generation process

from the state variables and ϵ ∼ N (0,Σn) is centred Gaussian noise. Rearranging, we see that

the residual vector is Gaussian distributed:

r = z− h(x) ∼ N (0,Σn) , (2.32)
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allowing us to form the factor:

f(x; z) = Ke−
1
2
r⊤Σ−1

n r (2.33)

= Ke−
1
2
(z−h(x))⊤Σ−1

n (z−h(x)) (2.34)

= Ke−E(x;z) , (2.35)

where we have defined the general factor energy:

E(x; z) =
1

2
(z− h(x))⊤Σ−1

n (z− h(x)) . (2.36)

This expression represents the probability of obtaining vector measurement z from the sensor as a

function of the set of involved variables x. The form of the function is a squared exponential with

a scaling factor K for normalisation whose value we will not need to calculate. Within the expo-

nential, we see an inner product. This involves h, the function which describes the dependence of

the measurement on the variables, and z, the value actually measured. Matrix Σn is the covariance

or inverse precision of the measurement. Note that we can also use factors of this form for priors

which are not sensor measurements but assumptions or external knowledge, such as smoothness

priors.

In summary, to specify a Gaussian factor, we need:

• h(x), the functional form of the dependence of the measurement on the local state variables.

• z, the actual observed value of the measurement.

• Σn, the symmetric covariance matrix that defines the noise model of the measurement.

2.5.2 Linearising Factors

In this section we discuss how to compute the Gaussian information form parameters for linear and

non-linear factors. This process of forming the precision matrix and information vector is com-

monly used throughout the non-linear least squares literature [Dennis Jr, 1977, Lourakis, 2010].

For example, this linearisation procedure is done jointly over all factors in each step of the Gauss-

Newton algorithm. The presentation in this section is therefore standard in the nonlinear least

squares literature but to the best of our knowledge it is the first application of these linearisation

tools to handle non-linear factors with GBP.

The general formula in Equation 2.34 for a factor represents a Gaussian distribution over the

observed measurement z. For linear measurement functions h(x), the resulting linear factor is
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2.5. Gaussian Belief Propagation

also a Gaussian distribution in the variables x. To derive the Gaussian factor over x, we begin

with our general factor energy (Equation 2.36):

E(x; z) =
1

2
(z− h(x))⊤Σ−1

n (z− h(x)) ,

and our goal is to manipulate the energy into the form of a Gaussian distribution over x in the

information form:

E(x; z) =
1

2
x⊤Λx− η⊤x . (2.37)

After transforming the energy into this form, we can identify the parameters η and Λ of the factor

distribution.

To begin with, any linear measurement function can be generally written as:

h(x) = Ax+ b , (2.38)

where b ∈ Rm is a constant vector and A ∈ Rm×n is a constant matrix for z ∈ Rm and x ∈ Rn.

Substituting Equation 2.38 into the general factor energy (Equation 2.36) and rearranging:

E(x; z) =
1

2
[z− Ax− b]⊤Σ−1

n [z− Ax− b]

=
1

2
[(z− b)− Ax]⊤Σ−1

n [(z− b)− Ax]

=
1

2

[
(z− b)⊤Σ−1

n (z− b) + (Ax)⊤Σ−1
n Ax

−(z− b)⊤Σ−1
n Ax− (Ax)⊤Σ−1

n (z− b)

]
. (2.39)

The first of the four terms here is a constant which doesn’t depend on x and so we can drop it into

the normalising constant. The third and fourth are equal (one is the transpose of the other, and

both are scalars), so we can simplify to:

E(x; z) =
1

2
(Ax)⊤Σ−1

n Ax− (z− b)⊤Σ−1
n Ax

=
1

2
x⊤(A⊤Σ−1

n A)x− (z− b)⊤Σ−1
n Ax

=
1

2
x⊤(A⊤Σ−1

n A)x−
(
A⊤Σ−1

n (z− b)
)⊤

x . (2.40)

Matching this with the energy of the Gaussian information form (Equation 2.37): E(x; z) =

1
2x

⊤Λx− η⊤x, we can identify the Gaussian information form parameters of the linear factor as:

η = A⊤Σ−1
n (z− b) (2.41)

Λ = A⊤Σ−1
n A . (2.42)
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As in all types of scalable Gaussian-based estimation, we need to be able to also handle non-

linear measurement functions. Non-linear measurement functions result in non-Gaussian factor

distributions over the variables x and so it is standard practise to use local linear versions of non-

linear measurement functions. This is done via a first order Taylor expansion which approximates

the function value at state x close to x0 as:

h(x) ≈ h(x0) + J(x0)(x− x0) , (2.43)

where J(x0) ∈ Rm×n is the Jacobian matrix evaluated at x0:

J(x0) =
∂h

∂x

∣∣∣∣
x=x0

. (2.44)

Writing the Taylor expansion as:

h(x) ≈ J(x0)x+ (h(x0)− J(x0)x0) , (2.45)

we can identify A = J(x0) and b = h(x0) − J(x0)x0 from the linear measurement function in

Equation 2.38. Substituting our expressions for A and b into Equations 2.41 and 2.42 yields the

information form parameters for a linearised general non-linear factor. Note that function h could

be any non-linear function, for example a trained neural network [Czarnowski et al., 2020] or a

Gaussian process [Mukadam et al., 2018]. It is worth noting that the factor linearisation procedure

is similar to the moment matching procedure in EP when the variational factor distributions are

modelled as Gaussians. We summarise the equations for factor linearisation in Box 2.2.

Box 2.2: Factor Linearisation
In summary, a non-linear factor f with measurement function h(x), measurement z and

measurement covariance Σn can be linearised about x0 to produce a Gaussian factor

f(x; z,x0) = N−1(x;η, Λ) with information form parameters:

η = J(x0)
⊤Σ−1

n

[
z− h(x0) + J(x0)x0

]
(2.46)

Λ = J(x0)
⊤Σ−1

n J(x0) , (2.47)

where J(x0) is the Jacobian matrix evaluated at the linearisation point.

To visualise how factor linearisation works, consider a robot moving in a plane that measures the

2D distance and angle to a landmark also in the plane. The current estimates for the position of

the robot and landmark are r0 and l0 respectively, and the observed measurement z = h(r0, l0).

In Figure 2.10, we show both the true non-linear factor and the Gaussian approximated factor

conditioned on r = r0, so that the distribution is only over the landmark position.
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(a)

(b)

Figure 2.10: Linearisation of a range and bearing measurement factor. The top and bottom parts of
this figure show the same factor with different covariance matrices Σn describing the noise associ-
ated with the measurement. In both cases, the linearised Gaussian factor is a good approximation
of the true factor close to the linearisation point. In (a), the approximation degrades significantly
further away from the linearisation point as the underlying factor cannot be well approximated
everywhere by a Gaussian. See the full interactive version of this figure in this section of the in-
teractive article: https://gaussianbp.github.io/#non-linear-relationships
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The accuracy of the approximate Gaussian factor depends on the linearity of the measurement

function h at the linearisation point. In this case, as the measurement function is reasonably is

smooth, the linear approximation is good close to the linearisation point l0, while further away,

the approximation can degrade depending on the measurement covariance values. In practice,

during optimisation we can avoid this region of poor approximation by relinearising frequently.

As GBP is local, a just-in-time approach to linearisation [Ranganathan et al., 2007] can be used

in which factors are relinearised individually when the current estimate of the adjacent variables

strays significantly from the linearisation point.

2.5.3 Message Passing at a Variable Node

Let us now consider the computation which happens at nodes to implement message passing.

Remember that in belief propagation, messages always have the form of a probability distribution

in the state space of the variable node either sending or receiving the message. In GBP, each

message will therefore take the form of an information vector and precision matrix in that state

space.

Referring back to Box 2.1, we first consider the processing that happens at a variable node xm

during message passing. A variable node is connected to a number of factors, and during a typical

message passing step it receives incoming messages from all of these except one, and must gen-

erate an outgoing message to send to the remaining factor. All of the messages involved are in the

state space of node xm. Restating Equation 2.21 with xm now a vector variable, we simply need

to multiply together all of the incoming messages to generate the outgoing message:

µxm→fs(xm) =
∏

l∈n(xm)\fs

µfl→xm(xm) . (2.48)

Each incoming message is represented by an information vector and a precision matrix:

µfl→xm(xm) = N−1(xm;ηfl→xm
, Λfl→xm) . (2.49)

We obtain the information vector and precision matrix of the outgoing message µxm→fs(xm) =

N−1(xm;ηxm→fs , Λxm→fs) by simply adding the incoming information form parameters:

ηxm→fs =
∑

l∈n(xm)\fs

ηfl→xm
(2.50)

Λxm→fs =
∑

l∈n(xm)\fs

Λfl→xm . (2.51)

This is because when we multiply several Gaussian expressions, we simply add the exponents.
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2.5.4 Message Passing at a Factor Node

A factor node receives incoming messages from a number of variable nodes, and must process

these to produce an outgoing message to the target variable node. Looking back at Equation 2.17,

factor to variable messages are computed as:

µfs→xm(xm) =
∑

Xs\xm

fs(Xs)
∏

i∈n(fs)

µxi→fs(xi) . (2.52)

First, the incoming messages are multiplied together, and this product is also multiplied by the

factor distribution itself. Each of the incoming messages is a function of the state space of the

variable node it comes from, while the factor potential is a function of all of the variables con-

nected to the factor, including the output variable. The full product is therefore also a function of

all variables. Finally, all variables other than the output variable are marginalised out from this

joint distribution, and the result is a function only in the output variable’s state space — this is the

outgoing message.

In Section 2.5.2, we described how to compute the information form parameters for Gaussian

factors with both linear and non-linear measurement functions. We begin our factor-to-variable

message computation with the factor information form parameters ηs, Λs, which parameterise the

factor as: fs(Xs) = N−1(Xs;ηs, Λs)

Starting with this information vector and precision matrix for the factor, we add the incoming

messages from input variables. This vector and matrix addition is done ‘in place’. In the vector

of variables Xs associated with the factor, there should be a partitioning into contiguous sets

which come from each connected variable node. E.g. let us consider a factor with three connected

variable nodes, where x3 is the output node in this case. The set of set of variables connecting to

the factor can be partitioned as:

Xs =


x1

x2

x3

 , (2.53)

and the information vector and precision matrix are partitioned in the same way:

ηs =


ηs1

ηs2

ηs3

 (2.54)

Λs =


Λs11 Λs12 Λs13

Λs21 Λs22 Λs23

Λs31 Λs32 Λs33

 . (2.55)
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Taking the product with the messages coming from input nodes x1 and x2 we get:

ηCs =


ηs1 + ηx1→fs

ηs2 + ηx2→fs

ηs3

 (2.56)

ΛCs =


Λs11 + Λx1→fs Λs12 Λs13

Λs21 Λs22 + Λx2→fs Λs23

Λs31 Λs32 Λs33

 . (2.57)

To complete message passing, from this joint distribution we must marginalise out all variables

apart from those of the output node, in this case x3. Eustice et al. [Eustice et al., 2005] give the

formula for marginalising a general partitioned Gaussian state in the information form. If the joint

distribution is:

η =

 ηα

ηβ

 (2.58)

Λ =

 Λαα Λαβ

Λβα Λββ

 , (2.59)

then the marginal distribution over the variables α, achieved by integrating over the variables β,

is:

ηMα = ηα − ΛαβΛ
−1
ββηβ (2.60)

ΛMα = Λαα − ΛαβΛ
−1
ββΛβα . (2.61)

To apply these formulae to the partitioned state of Equations 2.56 and 2.57, we first reorder the

vector and matrix to bring the output variable to the top. For our example where x3 is the output

variable, we reorder the conditioned information vector and precision matrix to:

ηCRs =


ηs3

ηs1 + ηx1→fs

ηs2 + ηx2→fs

 (2.62)

ΛCRs =


Λs33 Λs31 Λs32

Λs13 Λs11 + Λx1→fs Λs12

Λs23 Λs21 Λs22 + Λx2→fs

 . (2.63)

We then identify sub-blocks α = x3 and β = x1x2 between Equations 2.58, 2.59 and Equa-

tions 2.62, 2.63, and apply Equations 2.60 and 2.61 to obtain the marginal distribution over x3.
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The marginalised information vector and precision matrix forms the outgoing message to variable

node x3:

µfs→x3 = N−1(x3;ηMx3
, ΛMx3) . (2.64)

2.5.5 Belief Update

To compute the belief at a variable node, we take the product of incoming messages from all

adjacent factors (Equation 2.13):

bm(xm) =
∏

s∈n(xm)

µfs→xm . (2.65)

These messages are Gaussian distributions over xm and the product of these messages is evaluated

by summing the information vectors and precision matrices. The belief parameters ηm and Λm

are therefore:

ηm =
∑

s∈n(xm)

ηfs→xm
(2.66)

Λm =
∑

s∈n(xm)

Λfs→xm . (2.67)

2.6 GBP with Lie Groups

So far we have assumed that all state space variables can be represented by vectors that are part

of a Euclidean vector space. In most realistic robotics applications however, this is not the case.

Robot pose for example is represented by a rotation and translation, where careful thought about

parameterisation is needed. Here we detail how Gaussian belief propagation can be extended to

handle state space variables that belong to Lie Groups.

This section contains original contributions that are adapted from our Robot Web paper [Murai

et al., 2022]. Although the machinery for handling inference on manifolds is well studied [Bou-

mal, 2023, Absil et al., 2009, Mattamala, 2021], the application of these tools to GBP here is

novel. We do not provide results of the application of GBP with Lie Groups to decentralised robot

localisation in this thesis, and refer the interested reader to the Robot Web paper for experimental

results.
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2.6.1 Manifolds

Although this section discusses how to perform GBP with Lie Groups, we begin by discussing

manifolds and introducing concepts that will be useful later, as Lie Groups are both differentiable

manifolds and groups. We do not describe how to perform inference on manifolds in general in

this thesis and refer the reader to textbooks by Boumal [Boumal, 2023] or Absil [Absil et al.,

2009] on the topic.

Euclidean vectors, which we have assumed to be the objects of interest up to now, are manifolds as

well as more complex objects such as rigid body transformations and rotation matrices. Differenti-

able manifolds may have a non-Euclidean structure globally, but locally they can be approximated

as Euclidean spaces using local tangent spaces that have the same dimension as the number of

degrees of freedom of the manifold. To work with manifolds, two operations are required:

• retract. This maps a vector τ in the tangent space at x0 back to the manifold: x =

retractx0(τ ).

• local. This is the inverse operation that maps an element x into the tangent space at another

element x0: τ = localx0(x).

The retract operation can be used to define uncertainty and in particular Gaussian distributions on

manifolds. This is done by defining distributions in the tangent space and then mapping them back

to the manifold using the retract operation. A Gaussian distribution around a point x is represented

in the tangent space at that point as follows:

N (x, Λ−1) = retractx(ξ) , (2.68)

where:

ξ ∼ N (0, Λ−1) . (2.69)

2.6.2 Lie Groups

We now discuss Lie groups which are both manifolds and groups. We refer the reader to Solà

et al.’s ‘A micro Lie theory for state estimation in robotics’ [Solà et al., 2018] for an excellent and

detailed tutorial on Lie Groups in robotics, and we broadly follow their notation here. A group

contains elements X that satisfy the 4 group axioms with respect to the group composition oper-
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ation ◦. These axioms are closure under composition, existence of an identity element, existence

of an inverse element and associativity.

As Lie Groups are manifolds, they have the retract and local operations defined. These oper-

ations are defined at the identity element I using the Exponential and Log map respectively:

retractI(τ ) = Exp(τ ) and localI(X ) = Log(X ).

Remembering how Gaussian distributions are defined on manifolds, we can define a Gaussian dis-

tribution over, for example, 3D rotations which are the SO(3) Lie Group. A Gaussian distribution

over a rotation is represented by the parameters (X̄ , Λ), where Λ is a precision matrix in the tangent

space at the mean of the Gaussian distribution X̄ .

With this at hand, we can now represent beliefs and factor distributions as Gaussians over Lie

groups, by defining the precision in the tangent space at the mean. One important choice is how to

represent messages. Messages can either be represented in the full Gaussian form above or as per-

turbations around some stored element. We believe it is important to use the above full Gaussian

form for messages and consequently we make the choice that: All messages to or from Lie Group

variables take the form of a point estimate, represented by the full over-parameterised Group

element, together with a precision matrix defined in the tangent space around that element. We

prefer this approach because it gives maximum flexibility and minimises the need for independent

devices to have knowledge or memory of each other.

For example, in multi-device localisation which is the application in our Robot Web paper [Murai

et al., 2022], one robot may make a range measurement of another robot it observes. A factor is

then added to the graph for this measurement and the details of the factor are stored at the robot

that made the observation. Choosing the messages to be sent as a mean point estimate and a

precision matrix in the tangent plane at the mean, means that the receiving robot doesn’t need to

know anything about the factor or which tangent plane the message it receives belongs to. For this

reason, this particular choice of message representation makes distributed message passing both

simple and flexible. The Robot Web protocol for distributed message passing is related to this

choice and is discussed further in Section 3.5.

Before proceeding with the derivation of GBP with Lie Groups, we define a shorthand for two

frequently used operations. The circled-plus and circled-minus operators relate group elements X

and vectors in its tangent space τ . Circled-plus is defined as:

X ⊕ τ = X ◦ Exp(τ ) . (2.70)
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Circled-minus is defined as:

Y ⊖ X = Log(X−1 ◦ Y) ∈ TXM , (2.71)

and produces an element in the tangent space at X , denoted TXM.

2.6.3 Linearising Factors

Reproducing Equation 2.34, the general definition of a Gaussian factor is:

f(x; z) = Ke−
1
2 [(z−h(x))⊤Λ(z−h(x))] ,

where we define the factor energy (Equation 2.36):

f(x; z) = Ke−E(x;z) with E(x; z) =
1

2
(z− h(x))⊤Σ−1

n (z− h(x)) .

The factor represents the probability of obtaining a vector measurement z from a sensor as a

function of the state variables x. To send messages from a factor node, f(x; z) must be a Gaussian

distribution over the state variables x. If h is nonlinear and the variables belong to a Euclidean

state space like R2 or R3, then we can use Equations 2.46 and 2.47 to linearise the factor to form

a Gaussian in x.

Here we consider the case where the variable belongs to a Lie Group. We now denote the state

variable X to highlight it is a member of a Lie Group. As the variable is a Lie Group element,

Gaussian messages to and from this variable take the form of a group element describing the mean,

and a precision matrix in the tangent space at the mean. To perform message passing at a factor,

we must first express the factor as a Gaussian in a chosen tangent space and then transform all

messages into this same tangent space to carry out the calculation. We make the standard choice

of using the tangent plane at the most recent estimate of the state, which we denote X0.

The first task is to compute the Gaussian factor in this tangent space at X0. When computing

Gaussian factors for Euclidean variables (in Section 2.5.2), our goal was to find the Gaussian

parameters η and Λ such that the energy can be expressed as:

E(x; z) =
1

2
x⊤Λx− η⊤x . (2.72)

For Lie group variables, we instead want to find the parameters η and Λ of a Gaussian in the

tangent plane such that the energy can be expressed as:

E(X ; z) =
1

2
τ⊤Λτ − η⊤τ , (2.73)
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where τ = X ⊖ X0. This same calculation applies for factors with both linear and non-linear

measurement functions h.

As before, we make use of the first-order Taylor expansion to linearise the measurement function

around X0, however now using the ⊖ operator:

h(X ) ≈ h(X0) + J(X ⊖ X0) (2.74)

= h(X0) + Jτ . (2.75)

Here J is the Jacobian of the measurement function with respect to the tangent space element:

J =
∂h

∂τ

∣∣∣∣
X=X0

. (2.76)

Remembering back to Section 2.5.2, we showed that substituting h(x) = Ax+ b into the general

equation for a factor yields a Gaussian over x in the information form with parameters (Equations

2.41 and 2.42):

η = A⊤Σ−1
n (z− b)

Λ = A⊤Σ−1
n A .

Instead, here we are substituting in the Taylor expansion h(X ) = Jτ + h(X0) (Equation 2.75).

Identifying A = J and b = h(X0), this substitution will yield a Gaussian f(X ; z,X0) = N−1(τ ;η, Λ)

in the chosen tangent space with energy E(X ; z,X0) =
1
2τ

⊤Λτ − η⊤τ , where:

η = J⊤Σ−1
n (z− h(X0)) (2.77)

Λ = J⊤Σ−1
n J . (2.78)

Note that the same calculations above could be applied to factors in which the state space is a

composition of Euclidean and Lie Group variables. For example, for a factor connected to one R2

and two SE(2) variables:

X =


X1

X2

X3

 ∈ ⟨R2,SE(2),SE(2)⟩ , (2.79)

the Gaussian factor would be formed in the compound tangent space:

τ =


τ 1

τ 2

τ 3

 ∈ ⟨R2, TX2,0M, TX3,0M⟩ . (2.80)

Here the tangent spaces are chosen around the group elements X2,0 and X3,0.

53



2. Technical Introduction to Gaussian Belief Propagation

2.6.4 Message Passing at a Variable Node

Consider a Lie Group variable Xm connected to N ≥ 1 factor nodes l = 1 . . . N . In a message

passing step it must output a message to one of these factors l = s. Each of the N − 1 incoming

messages is represented by a group element and a precision matrix in its tangent space:

µfl→Xm = N (X̄fl→Xm , Λ
−1
fl→Xm

) . (2.81)

To combine these messages, we must first transform all of the messages to Gaussians in our chosen

tangent space at the previous estimate, which we denote Xm,0. This is a sensible choice of tangent

space because it requires minimal transformation of messages which introduce approximation

errors. To transform the mean of an incoming message into this tangent space we perform:

τ l = X̄fl→Xm ⊖Xm,0 . (2.82)

The precision matrix is approximately transformed as:

Λl = J⊤r (τ l)Λfl→XmJr(τ l) , (2.83)

where Jr(τ ) is the right Jacobian of X = Exp(τ ):

Jr(τ ) = lim
ϵ→0

Exp(τ + ϵ)⊖ Exp(τ )
ϵ

. (2.84)

Now that all τ l and Λl are defined in the tangent space at Xm,0, we can add all precision matrices

to determine the total precision:

Λa =

N∑
l ̸=s

Λl . (2.85)

Next we take the product of the messages to obtain the tangent vector of the outgoing message:

τ a = Λ−1
a

N∑
l∈n(Xm)\s

Λlτ l . (2.86)

Finally we retract this tangent vector on Xm,0 to obtain the group element which is the mean of

the outgoing message:

X̄Xm→fs = Xm,0 ⊕ τ a , (2.87)

and transform the total precision to the tangent space of the outgoing message mean X̄Xm→fs :

ΛXm→fs = J−⊤
r (τ a)ΛaJ

−1
r (τ a) . (2.88)

The outgoing message to factor s is then:

µXm→fs = N (X̄Xm→fs , Λ
−1
Xm→fs

) . (2.89)
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Note that the message sent is the mean element and the precision matrix, rather than the inverse

precision matrix. We use the inverse precision in Equation 2.89 only for the purpose of writing

the message in the covariance form — this applies to all messages.

2.6.5 Message Passing at a Factor Node

Having discussed how to linearise a factor to produce a Gaussian in the tangent space at the

linearisation point, we now describe how to perform the message computation in this tangent

space. Consider our example factor, connected to one R2 and two SE(2) variables:

Xs =


X1

X2

X3

 ∈ ⟨R2,SE(2),SE(2)⟩ . (2.90)

The factor fs(Xs) = N−1(τ s;ηs, Λs) can be evaluated in the tangent space at Xs,0, where:

τ s =


X1 −X1,0

X2 ⊖X2,0

X3 ⊖X3,0

 ∈ ⟨R2, TX2,0M, TX3,0M⟩ . (2.91)

As before, we can partition the information vector and precision matrix as:

ηs =


ηs1

ηs2

ηs3

 (2.92)

Λs =


Λs11 Λs12 Λs13

Λs21 Λs22 Λs23

Λs31 Λs32 Λs33

 . (2.93)

We choose the third variable as the output variable and so take the product of the factor and

incoming messages from variables X1 and X2. This conditioning on the states of variables X1 and

X2 is achieved by adding the information parameters:

ηCs =


η1 + ηX1→fs

η2 + ηX2→fs

η3

 (2.94)

Λ′Cs =


Λ11 + Λ′X1→fs

Λ12 Λ13

Λ21 Λ22 + Λ′X2→fs
Λ23

Λ31 Λ32 Λ33

 . (2.95)

55



2. Technical Introduction to Gaussian Belief Propagation

The parameters (ηXi→fs , Λ′Xi→fs
) describe the incoming message µXi→fs = N (X̄Xi→fs , Λ

−1
Xi→fs

)

from variable Xi transformed into the tangent space at Xi,0:

τ i = X̄Xi→fs ⊖Xi,0 (2.96)

Λ′Xi→fs = J⊤r (τ i)ΛXi→fsJr(τ i) (2.97)

ηXi→fs = Λ′Xi→fsτ i . (2.98)

To complete message passing, from this joint distribution parameterised by (ηCs, ΛCs), we mar-

ginalise out variables X1 and X2 to obtain a Gaussian distribution over the output variable X3. For

this we follow Equations 2.60 and 2.61 to obtain the outgoing message in the chosen tangent space

at the outgoing variable TX3,0M. We denote the parameters of this message in the tangent space:

N−1(τ 3;ηM3, ΛM3). Lastly, we transform this message to a Lie Group element with precision

matrix in its own tangent space:

τM3 = Λ−1
M3ηM3 (2.99)

X̄fs→X3 = X3,0 ⊕ τM3 (2.100)

Λfs→X3 = J−⊤
r (τM3)ΛM3J

−1
r (τM3) . (2.101)

The outgoing message is then:

µfs→X3 = N (X̄fs→X3 , Λ
−1
fs→X3

) . (2.102)

2.6.6 Belief Update

At any stage, we can calculate a new marginal distribution at a variable node Xm by taking the

product of all the latest incoming messages from neighbouring factors. For non-Euclidean mani-

fold variables, we need to do this calculation in a chosen tangent space. We use the tangent space

at the previously calculated belief mean of the variable (or some simple initialisation if this is the

first time we are doing a belief update at this node) which we call X̄m,0. All incoming messages

from adjacent factors fs:

µfs→Xm = N (X̄fs→Xm , Λ
−1
fs→Xm

) , (2.103)

can be transformed into this tangent space TX̄m,0
M using Equations (2.82) and (2.83) to yield

Gaussians with parameters ηs and Λs for each factor.

Next we sum all precision matrices to determine the total precision:

Λa =
∑

s∈N(m)

Λs , (2.104)
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and combine the messages to obtain the total tangent vector:

τ a = Λ−1
a

∑
s∈N(m)

Λsτ s . (2.105)

Finally we retract this tangent vector on X̄m,0 to obtain the group element which is the mean of

the new belief of the variable:

X̄m = X̄0,m ⊕ τ a . (2.106)

The belief precision is lastly obtained by transforming the total precision into the tangent space

TX̄m
M:

Λm = J−⊤
r (τ a)ΛaJ

−1
r (τ a) . (2.107)
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3. Beyond the Standard Algorithm

We have introduced Gaussian belief propagation in its basic form as a probabilistic inference

algorithm for Gaussian estimation problems. However, to solve real practical problems with GBP,

we often need a number of extra details and tricks which we discuss in this chapter. Later chapters

focus on large scale applications of GBP to practical problems.

3.1 Example Applications

Before discussing how GBP can be extended to handle general and practical problems in Spatial

AI, we first introduce a number of simple example problems. All examples are linear problems so

that we can simply compute and compare against the true marginals. These will be referred back

to throughout this chapter to illustrate various characteristics of GBP.

3.1.1 1D Surface Estimation

In our first example, the goal is to reconstruct a height map surface from a set of point measure-

ments. Each measurement has a perfectly known horizontal position, and Gaussian uncertainty in

the vertical direction. We also have a Gaussian smoothness assumption over the surface.

We consider a one-dimensional height map here. We wish to estimate the surface heights at a

quantised set of horizontal positions, and we define a variable node for the height at each of these

positions. There are an arbitrary number of measurements, each of which results in a factor node

in the graph. The smoothness model is a Gaussian constraint on the relative height of every pair of

consecutive variables. This results in another set of factor nodes in the graph joining neighbouring

nodes. The factor graph of this problem is shown in Figure 3.1. This simple example is used in

Kevin Murphy’s recent textbook [Murphy, 2023] to present belief propagation and Figure 9.5 in

his textbook is generated with our Python code (gauss-bp-1d-line.ipynb).

State representation. The problem is concerned with estimating the one-dimensional height yi

of a number variables. Each variable node is located at an x coordinate xi that is treated as a fixed

/ observed variable in the graph.

Measurement factors. We have a number of measurements zm which describe the height of

the surface at a perfectly known location xm. All height measurements have an associated fixed

measurement covariance Σm.
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Measurement 
factor

Smoothness
factor

Combined  
factor

Figure 3.1: Factor graph for 1D surface reconstruction. Blue variable nodes are evenly spaced
along the surface. Every consecutive pair is linked by a smoothness factor (green). There are also
measurement factors (orange) between some variables nodes where measurements are recorded.
Since all factors have linear measurement functions, we combine all factors between each pair of
variables into a single compound linear factor. This results in a factor graph with a chain structure,
shown at the bottom.

A measurement at horizontal location xm is assumed to have a linearly interpolated dependence

on the state variables having x coordinates x1 and x2 which lie either side of it. We define the

weighting:

λm =
xm − x1
x2 − x1

, (3.1)

as the horizontal displacement between the measurement position and the position of the first

variable node, as a proportion of the horizontal displacement between the two variable nodes. The

measurement function is a linear combination of the height values of the variables on either side

of the measurement:

hm(y1, y2;λm) = (1− λm)y1 + λmy2 . (3.2)

The Jacobian of this linear measurement function is:

Jm =
[
1− λm λm

]
∈ R1×2 , (3.3)

where:

hm(y1, y2;λm) = Jm

y1
y2

 . (3.4)

Smoothness factors. A simple smoothness factor is defined between every pair of consecutive

variable nodes. All smoothness factors have an associated fixed covariance Σs. The measurement
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function is:

hs(y1, y2) = y2 − y1 . (3.5)

The scalar ‘measurement’, zs = 0, is set to zero to encourage consecutive variable nodes to take

the same value. The Jacobian is:

Js =
[
−1 1

]
∈ R1×2 . (3.6)

Combining factors. Any factors can be arbitrarily combined into a single compound factor by

taking the product of the factors, for example:

f12(x1, x2)f23(x2, x3) = fcompound(x1, x2, x3) . (3.7)

Combining factors so that the resulting graph is a tree structure is the basis of the junction tree

class of algorithms. If the combined factors are linear then the resulting compound factor is also

linear. Here we combine all smoothness and measurement factors that connect to the same pair

of variables. This leads to chain graph with no loops as shown in Figure 3.1. GBP is known to

converge perfectly with one pass in each direction for tree graphs such as a chain.

General implementation details

We have two implementations of this 1D surface estimation example: one Python implementation

and one JavaScript implementation as part of an interactive diagram. As outlined in Chapter 1,

GBP is well-suited for efficient, highly parallel, distributed implementations due to its local mes-

sage passing character. Our simple example implementations are centralised prototypes for fu-

ture distributed implementations, and use classes to simulate the decentralisation of data and pro-

cessing.

In both implementations, we create VariableNode or FactorNode classes that are instanti-

ated for each node in the factor graph. These classes contain the general code for message passing

from variable and factor nodes respectively. Child classes of these parent classes implement the

particular state space or factor function models for the problem in question.

The two implementations differ on where the messages are stored. In the Python implementation,

an Edge object is instantiated for every connection between a variable and a factor, and stores

the latest messages in both directions along this edge. So when a variable or factor node needs to

carry out a message passing step, it reads the appropriate incoming messages from all edges it is

connected to apart from one, performs the calculation, and then writes the message to the outgoing

edge.
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In the JavaScript implementation, the factor-to-variable messages are stored at the factor node

that is sending the message and variable-to-factor messages are ephemeral. The variable-to-factor

messages are not computed at the variable nodes but instead the variable node sends its current

belief to adjacent factor nodes. The incoming variable-to-factor message is recovered by dividing

the variable belief by the previous factor-to-variable message. In this way, variable and factor

nodes communicate directly with each other without intermediate edges.

To form a best up-to-date estimate at a variable node at any point in time, we can read and add

factor-to-variable message parameters from all connected edges or factor nodes. Similarly, if a

factor node reads and adds all incoming variable-to-factor messages to its factor potential at any

moment, we get the current estimate of its energy based on all information available. This can be

used for instance to relinearise it (or as we will see later, to apply a robust weighting).

Initialisation is also usually not problematic because our parameterisation of Gaussian distribu-

tions in the information form means that we can safely represent the uncertainty over variables

even if the factors connecting to them do not fully constrain their degrees of freedom (i.e. the

precision matrices are singular) and covariances would not be defined. However, if we do wish to

visualise uncertainties from a covariance we can add weak stabilising unary factors.

Python implementation. The Python CPU simulation, with a measurement dataset read in from a

text file and interactive graphics, is available at http://www.doc.ic.ac.uk/˜ajd/bp1d.py.

The code requires a straightforward Python3 installation with NumPy for numerics and PyGame

for interactive visualisation.

JavaScript implementation. The JavaScript implementation is part of the online visual intro-

duction to GBP [Ortiz et al., 2021]. Screenshots of the interactive figure for 1D surface es-

timation are shown in Figure 3.5 and the full interactive version can be found at https://

gaussianbp.github.io/#gbp1d. Our interactive diagram makes use of Node.js to handle

data and dynamic content and Svelte to automatically write code during compilation that updates

the DOM reactively based on changes in the app. The code for all interactive figures is available

here: https://github.com/gaussianBP/gaussianBP.github.io.

3.1.2 Image denoising

The problem of image denoising is a 2D generalisation of our 1D surface estimation example. The

goal is to estimate the denoised intensities at each pixel given a noisy image by using smoothness
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Figure 3.2: Section of the factor graph for image denoising.

constraints to remove the noise. The factor graph remains linear, however unlike in the 1D case,

the graph is loopy meaning iterative message passing will be needed to converge on a global

solution.

State representation. We are estimating the one-dimensional greyscale pixel intensities yij at a

discrete pixel location (i, j).

Measurement / data factors. Different to 1D surface estimation where measurement factors were

at any location, they are now at the same discrete pixel locations as the variable nodes with one per

node. As a result the data factors only connect to a single variable node, now acting like a prior

on that variable’s value. The data factors have an identity measurement function: hm(y) = y,

covariance Σm and measurement zm which is the intensity value in the noisy image at that pixel.

Smoothness factors. Smoothness factors connect each variable node to the 4 nodes at adjacent

pixels. All smoothness factors have an associated covariance Σs. As before, the measurement

function is:

hs(y1, y2) = y2 − y1 . (3.8)

The factor graph for the image denoising problem is shown in Figure 3.2.

Implementation details. This example is implemented in the interactive figure at https://

gaussianbp.github.io/#attentiongl. This implementation is based on the JavaScript

GBP library described for the 1D surface estimation however in this case, the implementation is

parallelised on GPU hardware. We use WebGL to parallelise GBP which can be implemented

using a similar computational structure as applying a 3x3 filter to the image. GPUs operate in

a SIMD (same instruction multiple data) paradigm which enables them to be very efficient at
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applying the same operation in parallel across a grid structure. In this problem, the factor graph

is a grid and all factors are the same, so image processing with GBP is well-suited for GPU

acceleration. With a NVIDIA GeForce RTX 2080 Ti GPU, our implementation can perform 10000

iterations of synchronous GBP per second on a 600x600 pixel image.

3.1.3 2D Pose Graph

Our next example is a linear 2D pose graph problem. This is a simple version of the pose graph

optimisation problem in mobile robotics where many robots or a single exploring robot must

estimate their global locations from a network of purely relative measurements. This application

of GBP still only involves linear factors, but again the graph is loopy.

State representation. We would like to estimate the 2D position / pose of each variable node in a

plane:

xi =

xi
yi

 ∈ R2 . (3.9)

Relative position factors. Each factor encodes a 2D Euclidean relative pose measurement z ∈ R2

between two nodes. The measurement function is:

h(xi,xj) = xj − xi , (3.10)

and the factor has fixed diagonal measurement covariance:

Σn =

 σ2n 0

0 σ2n

 . (3.11)

The measurement function is linear and can be expressed as:

h(xi,xj) = J
[
xi yi xj yj

]⊤
, (3.12)

with Jacobian:

J =

 −1 0 1 0

0 −1 0 1

 . (3.13)

Unary / prior factors. We also include a unary factor connected to each node which sets a prior

on each pose. The unary factor connected to variable node x0 anchors this node to the origin

with a very small covariance. All other unary factors have high covariance, which encourage the

poses to lie within the bounds of the plane. The prior factors are implemented with measurement

function: h(x) = x. The measurement z sets the prior mean and the prior covariance is Σp.
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Figure 3.3: Factor graph for a 2D pose graph problem. Variable nodes (blue) scattered around the
2D plane are linked by randomly generated measurement factors (orange) between nearby nodes.
Note that in our implementation we also use some unary factors on the variables (one strong, to
anchor one variable, the others very weak), which are not displayed here.

The factor graph for this 2D pose graph problem is shown in Figure 3.3.

Implementation details. We again have two implementations of this example. The Python sim-

ulation available at http://www.doc.ic.ac.uk/˜ajd/bpmap.py. Two interactive figures

produced with JavaScript implement this 2D pose graph example and available at https://

gaussianbp.github.io/#gbp intuition and https://gaussianbp.github.io/

#playground. The first allows the user to pass message through 3 increasingly loopy graphs —

a chain, a loop and a grid. In the second the user can construct their own pose graph of arbitrary

topology, set the initialisation and then choose how messages are passed through the graph.

3.1.4 Incremental SLAM

The final example is a 2D incremental SLAM problem in which a robot is moving in a 2D envir-

onment, but is simplified by using only linear factors. We simulate a 2D cartesian SLAM problem,

where as a ‘robot’ translates it leaves a history of pose variable nodes, with each consecutive pair
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joined by a factor on their relative locations representing an odometry measurement. Scattered

throughout the simulated 2D environment are landmarks that the robot can observe. From each

new robot pose, factors are added to the graph to represent measurements of the landmarks within

a bounded distance. All measurements in the simulation have randomly sampled Gaussian noise,

using different but constant covariances for the odometry factors and measurement factors. There

is no rotation in the simulation, and all measurements are in Cartesian space, so this is again a

formulation where the dependence of measurements on variables is purely linear. The mathem-

atical details of variable and factor message passing are the same as in the 2D constraint graphs

of Section 3.1.3 with the main differences being that we are estimating both robot and landmark

positions and that the problem is incremental. We have a strong pose factor attached to the first

robot variable node, anchoring this node and effectively defining the coordinate frame for SLAM.

See the factor graph for our simulated 2D SLAM problem in Figure 3.4.

State representation. We are concerned with estimating the historic poses of the moving robot:

xt = [xt, yt]
⊤ ∈ R2 as well as the landmark positions: li = [xi, yi]

⊤ ∈ R2.

Odometry factors. The odometry factors constrain the relative pose of successive robot positions

xt and xt+1. They take the same form as the relative position factors in the previous 2D pose graph

example. The measurement function is: h(xt,xt+1) = xt+1 − xt, measurement covariance: Σo

and measured odometry zo ∈ R2.

Measurement factors. Measurement factors constraint the relative position between a robot pose

and a landmark that it has observed. They again have the mathematical form as the 2D relative

position factors. The measurement function is: h(xt, li) = li − xt, measurement covariance: Σm

and landmark position measured by the robot: zm ∈ R2.

Prior factors. As in the 2D pose graph problem, we include a strong prior on the robot pose x0

and a weak prior on all other robot poses and landmarks constraining them to lie in the plane.

Implementation details. We again have two interactive implementations of this incremental ex-

ample. The Python simulation is available at http://www.doc.ic.ac.uk/˜ajd/bpslam.py.

The interactive online figure, produced in JavaScript, is available at https://gaussianbp.github.io/

#playground. In both examples, the robot can be controlled using the WASD keys.
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Figure 3.4: Factor graph for a 2D SLAM problem. Blue nodes are variable nodes describing the
robot position while red nodes are landmark variable nodes. The orange squares are measurment
factors representing relative 2D constraints.

3.2 Message Schedules

Having introduced various example problems, in this section we begin our discussion of making

GBP work in practice by examining various serial and parallel message schedules. We begin with

serial schedules on tree graphs that guarantee exact marginal computation before moving on to

serial and parallel schedules for loopy graphs. Through examples, we aim to build an intuitive

understanding of GBP message passing and demonstrate that GBP can converge with an arbitrary

message schedule.

3.2.1 Serial Schedules for Tree Graphs

Serial message passing schedules are defined as schedules in which only one message is sent

through the graph at each time step. Here we discuss two types of serial schedules, the sweep

schedule and the random schedule, which represent the two extremes of efficiency for serial pro-

cessing on tree graphs.

For tree graphs, GBP computes the exact marginals for a given node once that node has received
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(a) Iteration 0. Before any message passing, the
belief distributions (blue) are displayed at the bot-
tom of the screen.

(b) Iteration 9. After a left-to-right sweep of mes-
sages, the rightmost node has received messages
from all other nodes and its belief exactly computes
the true marginal. All other nodes have not yet re-
ceived messages from nodes to their right and so
their beliefs are not yet the true marginals.

(c) Iteration 18. After a sweep back and forth
through the chain, all nodes have received all mes-
sages from all other nodes. All beliefs now exactly
compute the true marginal distributions.

Figure 3.5: Message passing with a sweep schedule exactly computes all of the marginal posterior
distributions for this 1D surface estimation problem, represented by a chain graph. The y values
being estimated are the vertical positions of the nodes and the horizontal x positions are fixed.
The red squares display the locations of the surface measurements however pairwise smoothing
factors between adjacent nodes are not displayed. The belief distributions are shown in blue, with
the mean at the centre of the circle, and the line representing ±1 standard deviation of uncertainty.
The true marginal posterior distributions are shown in green. See the full interactive version of
this figure at: https://gaussianbp.github.io/#gbp1d.

message from all other nodes. As previously discussed, the most efficient way (using a minimal

number of messages) for all nodes to receive messages from all other nodes in trees is a sweep

schedule (also known as floodfill). A sweep schedule involves sending messages out from an

arbitrarily chosen root node down to the leaves and then back up to the root node, after which all

nodes have received messages from all other nodes. In this case, the number of messages required

for exact inference is twice the number of edges in the graph.

We visualise a sweep schedule for a 1D surface estimation problem in Figure 3.5 using our JavaS-

cript simulation. In this example, the root node is chosen to be the leftmost node and the graph

is a chain. After a sweep of messages from left-to-right in Figure 3.5b, the rightmost node has

exactly computed its marginal as it has received messages from all other nodes. The second right-
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most node has not yet received a message from the rightmost node, however it appears to have

converged on the true marginal because the message it will receive from the rightmost node will

have the same mean as its current belief estimate. After the right-to-left sweep of messages back

through the graph, Figure 3.5c shows that all nodes have now received messages from all other

nodes and the beliefs exactly compute the true marginals.

At the other end of the efficiency spectrum is the random schedule in which one message is sent

along a random edge at each time step. For tree graphs in particular, a random schedule is a very

inefficient way of communicating messages from all nodes to all other nodes, as is required for

inference. In Figure 3.6 using our Python simulation, we compare a sweep and random schedule

for a larger 1D surface estimation problem. In the top row, we again see the sweep schedule with

the leftmost node chosen as the root. With one full traversal in both directions, all variables are

fully ‘informed’ from all parts of the graph, and we achieve the globally optimal solution. In the

bottom row, we see the progress of a fully random message passing schedule, where many steps

will incur wasted work if the variable or factor sending the message has not itself updated since its

last message. However, the most interesting thing to observe here is that full convergence to the

global optimum is still reliably reached after some thousand iterations, with purely random and

distributable processing. This is of course to be expected, as for tree graphs we know exactly how

many messages need to be sent for exact inference and in what order. For example, for variable 3

to receive a message from variable 1, variable 1 needs to first send a message to variable 2 which

then later sends a message to variable 3. A random schedule will eventually achieve this sequence

of messages for all source and target variables given a large enough number of random messages.

3.2.2 Schedules for Loopy Graphs

Unlike tree graphs which have a fixed sequence of messages required to compute the exact mar-

ginals, loopy graphs have no such guarantee and instead we must choose a message schedule that

we hope will lead to convergence over many iterations. There are many possible message passing

schedules for loopy graphs which vary empirically in both the rate of convergence and ability to

converge. We begin by discussing serial schedules for loopy graphs before moving on to consider

parallel schedules that can take advantage of parallel processing.
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80 130 160
(a) Sweep schedule. Messages are passed first from left-to-right and then back from right-to-left. After
80 steps / messages, information has propagated all the way from left-to-right. Messages return back from
right-to-left and by 160 messages we have reached an exact solution. Note that variables further from
measurements have larger marginal variances.

243 670 5919
(b) Random serial schedule. At each step we randomly choose one of the 80 edges which connects a
variable to a factor, and also randomly choose to pass a message either from factor to variable or from
variable to factor. Clearly this is a very inefficient strategy, especially for a serial processor, and many
messages must be passed. Eventually after several thousand random messages, all nodes have received
messages from all other nodes, and we reach the same globally exact solution.

Figure 3.6: Sweep and random schedule for a larger 1D surface estimation problem. Measure-
ments are shown with ±1 standard deviation of uncertainty in red, and 41 evenly spaced variable
state estimates are shown in white. Each measurement defines a factor involving the two horizont-
ally closest variables, and a smoothness factor also joins every pair of adjacent variables. Variables
which have not yet received an informative message are initialised to a default zero value (at the
bottom of the screen) with large variance. The numbers count the total number of messages sent
or equivalently the iteration/time step in this serial processing paradigm.

Serial Schedules

The choice of serial schedule can affect the rate of convergence for loopy graphs (see Koller

and Friedman [Koller and Friedman, 2009], pages 407-409). The random serial schedule, from

the previous section, empirically is remarkably reliable for loopy graphs however convergence is

very slow due to the large proportion of redundant messages. A fixed ‘round-robin’ schedule in

which nodes send messages in a fixed order is also effective and tends to converge faster than a

random serial schedule. Better yet, it’s possible to prioritise sending messages that we think will

contribute most to the overall convergence of the system (there is evidence that the brain may

apply a similar economical principle [Evans and Burgess, 2019]). This is the idea behind residual
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belief propagation (RBP) [Elidan et al., 2006] and similar variants [Sutton and McCallum, 2007,

Ranganathan et al., 2007] which form a message queue according to the norm of the difference

from the previous message. The downside of these approaches is that it can be computationally

expensive to build the message queue.

Other serial schedules for loopy graphs take inspiration from the sweep schedule that performs

exact marginal computation on tree graphs. Using the fact that we can always divide a loopy graph

into a number of overlapping sub-trees, the tree reparameterisation (TRP) schedule iteratively

sends sweeps up and down each of these sub-trees. Each sub-tree is therefore recursively locally

converged and then moved away from convergence when an overlapping sub-tree is converged. If

the problem structure can be cleanly separated into a number of minimally overlapping sub-trees,

then the TRP schedule can be a good choice.

Parallel Synchronous Schedule

As discussed, it is trivial to distribute GBP as messages are computed locally at variable and factor

nodes and then passed locally through the graph. Parallel processing is therefore easily applied by

having many nodes compute and send messages in parallel at each step. The parallel schedule in

which all variable nodes send messages to all their adjacent variable nodes (via factor nodes) at

each step is the synchronous schedule.

Synchronous scheduling was briefly mentioned when discussing BP on loopy graphs in Sec-

tion 2.3.2. We outlined that a synchronous update consists of 3 phases: variable-to-factor message

passing, factor-to-variable message passing and belief updates. In the first phase, all variable

nodes compute and send messages to all adjacent factor nodes based on their latest belief. In the

second phase, all factor nodes compute and send messages to all adjacent variable nodes based on

their incoming messages. In the final phase, all variable nodes update their local belief estimate

based on their incoming messages.

In a distributed GBP implementation, when the number of available parallel processes is larger

than the maximum number of nodes in the graph, the computational cost of a synchronous update

is approximately constant with respect to the size of graph. This is because as the graph grows,

a synchronous update simply uses more of the parallel processes without any additional serial

processing. In our example Python CPU implementation, we do not have this availability of a

large number of parallel processes and so simulate this parallelism by looping through all variable-

to-factor messages, then factor-to-variable messages and lastly belief updates.
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0 steps 6 step

171 steps Measurement Precision Increased

Figure 3.7: Synchronous GBP for linear 2D pose graph optimisation. The problem has 20
variable nodes and 50 relative measurements. The ground truth poses are shown in white and grey
lines are drawn between two variables connected by a measurement factor. The belief estimates
are displayed in blue (mean point locations and one standard deviation as a circle) and the true
marginal distributions in green. The variable at the bottom centre of the scene has a strong prior
factor anchoring the problem. We see that only a few steps of synchronous message passing are
needed for the graph to reach good relative estimates. After 171 steps, information has fully
propagated from the anchored node and the mean estimates from GBP are indistinguishable from
the true marginal solution, though the covariances are in many cases overconfident. In the final
panel, we show that after convergence (or at any other time) we can make dynamic and local
changes to the factors, the effects of which are transmitted to the whole graph with no changes to
the GBP algorithm. Here we increase the precision of all measurement factors which changes the
mean estimates because the weak pose factors are trusted less. (Note that we did not account for
this in the green batch solution shown, which does not change.)
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We visualise the progress of a simulated synchronous message passing schedule for the 2D pose

graph example in Figure 3.7, and discuss its progress in the caption, including a comparison with

the true marginal distributions. The true marginals for this linear problem are computed by adding

all factors into a single large information matrix, and inverting this matrix to find the marginal

mean and covariance for all variables. First and most importantly, we see that synchronous mes-

sage passing results in beliefs that are consistent with the true marginals. In particular, as dictated

by the theory [Weiss and Freeman, 2000], on convergence the belief means exactly compute the

true marginal means while the covariances are often over-confident, particularly in the loopier

parts of the graph.

Although in this small example it takes a large number of iterations for the means to converge on

the true marginals, we notice that accurate relative estimates are obtained after fairly few steps.

This highlights a second important property of GBP — it can achieve approximate local conver-

gence without full global convergence. Due to the factorised structure of GBP [Diehl et al., 2018],

global inference is achieved by jointly solving many interdependent local sub-problems. Local

message passing can yield accurate relative local solutions which estimate the marginals up to

global corrections that come from more distant parts of the graph. This can be clearly seen in

Figure 3.7, in which after 6 synchronous iterations local parts of the graph have accurate relative

poses which differ from the true marginals by similar global offsets. At this stage the estimates in

the graph are most likely highly useful for any application where relative information is important,

such as robot navigation. The difference between 6 steps and 171 steps is that the rooted node with

a strong pose factor is able to propagate absolute information around the whole graph.

In the final panel of Figure 3.7, we give an example of the extreme flexibility of GBP estimation,

and the ability of decentralised estimation methods to work in an editable, reversible way. After

convergence, we change the precision of all of the factor nodes to a stronger value, and the result

of this quickly propagates through the graph, with no global coordination needed. Any number

of dynamic changes like this can easily be dealt with, which we think will be important in the

future of Spatial AI, where for instance some human input or machine learning process produces

an updated value of a prior assumption (e.g. surface smoothness) which with most estimation

methods would have become ‘baked into’ the representation.

We also explore GBP with a synchronous schedule for the incremental SLAM example in Fig-

ure 3.8. In this simulation, as the robot moves the factor graph is generated automatically. Syn-

chronous parallel message passing is constantly ongoing in the background optimising the full

current graph. We observe that, due to its local nature, it takes many iterations for GBP to make
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large global corrections induced by global events like loop closure. This will motivate multigrid

and abstraction approaches to speed up the convergence of GBP in Section 3.4.3.

In Figure 3.9, we compare a random serial schedule with synchronous GBP for a 2D pose graph

problem representing a grid. We again remarkably find that GBP can converge reliably to the

true marginals with arbitrary random serial schedules. It takes 200 random messages in our ex-

ample to converge on the true marginals while synchronous updates can converge in 8 steps. We

strongly encourage the reader to explore the full interactive version of Figure 3.9 at https:

//gaussianbp.github.io/#gbp intuition. This example aims to build intuition for

GBP by exploring the effect of individual messages. The reader can click on a variable node

to send messages to its adjacent variables and observe how neighbouring beliefs are updated.

Through playing with this example, the reader should become confident that GBP can converge

well with arbitrary message schedule.

Partially Synchronous / Attention based Schedules

There are many partially synchronous schedules in the middle ground between a fully synchronous

parallel schedule and serial schedules. For example, when the number of parallel processes is

fewer than the number of nodes in the graph or there is a fixed compute budget at each step,

a fully synchronous schedule may not be desirable. Partially synchronous schedules choose a

subset of the nodes to send messages at each step. This subset can be deterministic based on a user

specification or random as in message dropout in which there is a fixed a probability of sending

a message along a particular edge at each step. Partially synchronous schedules can also be more

robustly convergent than synchronous schedules, as the fact that all nodes send messages based

on their previous beliefs in fully synchronous updates can increase the chances of oscillations and

non-convergence.

Deterministic partially synchronous schedules can be used when we are interested in approximate

local solutions 1. In these cases, GBP can operate in a just-in-time or attention-driven fashion,

focusing synchronous processing on parts of the graph to solve local sub-problems as the task

demands. This attention-driven scheduling can be very economical with compute and energy,

only sending the most task-critical messages.

1One simple example is mapping two connected rooms. An accurate local map of one room can be constructed by
focusing processing on the part of the factor graph in that room. For some applications this may be sufficient while for
others it may be important to build a map with an accurate absolute position which may require longer range message
passing between the parts of the graph corresponding to each separate room.
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Early exploration Just before loop closure

Just after loop closure Steady state convergence

Figure 3.8: Synchronous schedule applied to the 2D incremental SLAM example. The code
is available at: http://www.doc.ic.ac.uk/˜ajd/bpslam.py and the robot is moved with
the WASD keys. A moving ‘robot’, with history of ground truth poses shown as yellow dots,
explores a scene containing landmarks (ground truth positions are white dots), and from each
pose makes observations of nearby landmarks to incrementally build the factor graph shown in
grey. Red and blue dots show the robot and landmark mean estimates obtained from GBP, which
runs continually on the growing factor graph. We also superimpose the true marginal distributions
in green for comparison. We see close agreement between the GBP and the true marginals until
loop closure occurs, where the large correction needed takes a large number of GBP iterations
to propagate fully around the graph. However, even very soon after loop closure we see that the
relative information in the GBP estimate is good, with nearby nodes having estimates differing
from the batch solution by similar amounts.
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(a) Initialisation.

1 3 8
(b) Synchronous message passing.

15 50 200
(c) Random serial message passing.

Figure 3.9: Synchronous and serial random message passing on a grid graph pose optimisa-
tion problem. The numbers indicate how many steps of message passing have taken place.
For the random serial message passing this is equal to the total number of messages sent. We
strongly encourage the reader to view the full interactive version of this figure at: https:
//gaussianbp.github.io/#gbp intuition.
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Figure 3.10: Attention based synchronous message passing in the red circle around the mouse for
image denoising. The image has been corrupted by adding salt and pepper noise. See the full
interactive version of this figure at: https://gaussianbp.github.io/#attentiongl.

An example of attention-driven message passing for image denoising is shown in Figure 3.10,

which captures a screenshot from our interactive diagram at https://gaussianbp.github.io/

#attentiongl. Note that there are no long-range connections in the image denoising graph,

so local message passing can produce the true local marginals as the effect of more distant parts

of the graph is negligible. In the interactive figure, the user can move their mouse to control the

region of synchronous message passing and achieve local convergence in the graph.

For incremental problems, when some parallelism is available, a sensible approach similar to

residual BP would be to send the most informative k messages at each step. Similar to this,

individual nodes could decide only to come alive and pass messages when their incoming mes-

sages have changed by a significant enough amount, perhaps judged using information theoretic

measures [Davison, 2005]. This is the idea behind the ‘Wildfire’ algorithm in Loopy SAM [Ran-

ganathan et al., 2007]. Information theoretic measures will also be crucial in the longer term in

deciding on the number of bits needs to specify the quantities used in message passing.

More speculatively, we envisage that attention based processing will be important in large real-

time systems. Most obviously, at the current location where a robot is making sensor measure-
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ments and must decide on action, ‘attention’ could actively be focused with a high rate of message

passing, while other parts of the graph are partially or completely neglected, to be picked up and

updated later on as needed ‘just in time’. We imagine an attention spotlight which moves around

the graph, bringing it to life. Depending on memory constraints, graph regions out of the current

attention spotlight might even be much abstracted and simplified to low resolution approximated

forms, maintaining only the main shape and connectivity, perhaps in an analogue of the way that

a human brain remembers distant places. When a moving device revisits these places, they can

easily feed on incoming data to be brought back to the high resolution needed for local action.

From a computational perspective, there may need to be a particular region of the processor held

aside as the current active workspace, where enough precompiled space is retained such that the

live part of the graph can be copied, unpacked and subject to full rate processing (the Real-Time

Loop part of the ‘Spatial AI Brain’ shown in Figure 4 of [Davison, 2018]). Between the active

workspace and the rest of the graph there will need to be some special graph infrastructure such

as routing nodes to interface between live workspace and long-term graph memory.

3.2.3 Asynchronous Schedules

So far, we have assumed that all parallel schedules operate in a synchronous fashion, where all

nodes compute and broadcast messages simultaneously in a given step. In fact, this is far from

a requirement and GBP can operate with arbitrary and asynchronous message passing. As a

consequence, GBP can readily be used in systems with no global clock and varying local compute

budgets such as on neuromorphic hardware or between a group of distributed devices [Micusik

and Evangelidis, 2020].

3.3 Robust Factors using M-Estimators

Although requiring all factors to be Gaussian is a convenient assumption, most interesting prob-

lems involve non-Gaussian factors. We already discussed in Section 2.5.2 how non-linear meas-

urement functions yield non-Gaussian factors that can be iteratively restored to the Gaussian form

via linearisation. In this section, we discuss a second cause of non-Gaussian factors: non-Gaussian

data distributions.

Most practical estimation methods in computer vision and robotics take account of the fact that

sensors, especially outward-facing ones like cameras, have a measurement probability distribution
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which is not truly Gaussian. The classic behaviour is that the distribution is closely Gaussian when

the sensor is essentially ‘working’, and reporting measurements that are close to ground truth apart

from small variations due to quantisation and similar, but then some percentage of the time the

sensor will report wildly incorrect ‘garbage’ measurements. For instance, if a camera is reporting

the image location of matched image features, false correspondences happen sometimes and give

measurements arbitrarily far away from ground truth. If we plot the measurement distribution

of such a sensor we see a distribution which looks like a Gaussian centrally but is more ‘heavy-

tailed’. In optimisation and estimation, such behaviour is modelled using a family of ‘robust’

functions called M-Estimators.

One approach for incorporating these robust costs is to treat them as part of the non-linear measure-

ment function and use the factor linearisation procedure in Section 2.5.2 to re-weight the cost. This

approach is commonly used in nonlinear least squares optimisation for example in Ceres [Agarwal

and Mierle, 2012]. Inspired by Agarwal et al. [Agarwal et al., 2012], we take a different approach

based on scaling the covariance of the factor. Although both approaches are valid and we would

expect to behave similarly, one key difference is that in regions where the gradient of the robust

cost is zero, the outgoing messages from the robust factor has zero information when linearisation

is used, while scaling the covariance never yields zero messages.

To the best of our knowledge, this is the first use of robust factors in GBP and the application of

the covariance scaling theory to GBP is novel. We now detail the covariance scaling method for

handling robust functions in GBP with completely local processing and then provide examples of

its practical utility, demonstrating for the first time global outlier rejection using purely local GBP

processing.

3.3.1 Implementation via Covariance Scaling

Consider the general factor definition:

f(x; z) = Ke−
1
2
E(x;z) , (3.14)

where E is the factor’s ‘least squares’ energy:

E(x; z) = (z− h(x))⊤Σ−1
n (z− h(x)) . (3.15)

The term:

M =

√
(z− h(x))⊤Σ−1

n (z− h(x)) , (3.16)
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is the unitless Mahalanobis distance, representing the number of standard deviations that the meas-

urement is away from the mean of the distribution. So for a standard Gaussian constraint, the

energy is simply the square of the Mahalanobis distance: E = M2. In robust estimation, we

modify the factor energy by setting a threshold level on M beyond which we change the energy

to a function which rises less steeply than the standard quadratic form.

Let us first consider the commonly used Huber function [Huber, 1964, Huber, 1981] which trans-

itions from quadratic to linear beyond a threshold M ≥ Nσ. A factor with Huber loss has the

following energy:

E(x; z) =


M2 Ms ≤ Nσ

2NσMs −N2
σ Ms ≥ Nσ

, (3.17)

such that the two parts of the function match up in terms of both value and gradient at the discon-

tinuity M = Nσ. The distribution induced by the Huber energy is a Gaussian distribution close to

the mean and a Laplace distribution in the tails. The probability density function for the Laplace

distribution is:

p(x;µ, β) =
1

2b
exp

(−|x− µ|
b

)
. (3.18)

Now, in GBP, every message takes the form of an information vector and precision matrix rep-

resenting a Gaussian distribution. So what we do to represent the effect of the non-Gaussian part

of a robust factor is to find the Gaussian distribution which has the same value energy, and pass

a message with that precision instead. This is similar to the Dynamic Covariance Scaling method

in [Agarwal et al., 2012]. We ask what Mahalanobis distance we must be from the mean in a

standard quadratic energy to be equivalent to the Huber energy in the linear region. Specifically,

we need to find MR such that:

M2
R = 2NσM −N2

σ . (3.19)

Therefore, we can calculate the factor by which the energy of the constraint should be reduced:

kR =
M2

R

M2
=

2Nσ

M
− N2

σ

M2
. (3.20)

Remembering the information form of Equation 2.24, we see that this is achieved by multiplying

both the precision matrix and information vector by this factor. This process of scaling a Gaussian

to approximate the Huber loss is shown in Figure 3.11.

To summarise, to use a Huber loss on a factor, every time that factor is to pass a message we

first use all the latest incoming messages from variables in order to form its state vector x. Then

we evaluate the current Mahalanobis distance M using Equation 3.16. We test this against the
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(a) When the residual is within the inlier region,
the Gaussian parameters are scaled by a factor of
1 as the Huber loss is simply the original Gaussian
within this operating region.

(b) When the residual is in the linear region, the
Gaussian information parameters are scaled by a
factor < 1, such that the Gaussian covariance in-
creases to match the energy at this point.

Figure 3.11: The Huber loss function is shown with a blue line as a function of the residual and
labelled the true data distribution. The threshold at which the Huber loss transitions is indicated
with the blue dots on the curve. As the x axis is the residual rather than the Mahalanobis distance
M , this transition happens at r = ±NσΣn where the residual is a scalar. The green dot shows
the recorded value of the residual r = z − h(x) (note that the measurement is denoted with d
rather than z in the figure). The green curve shows the scaled quadratic energy or scaled Gaussian
used to approximate the Huber loss at this pont. See the full interactive version of this figure at:
https://gaussianbp.github.io/#scaling

Nσ cutoff we have set for this factor (which might be 4.0 or something similar), representing the

number of standard deviations from the mean for which we expect Gaussian behaviour. If M ≤

Nσ we are in the Gaussian zone and use the standard linearised precision matrix and information

vector for the message calculation. If M ≥ Nσ, we temporarily scale the linearised precision

matrix and information vector by a factor kR as calculated in Equation 3.20 for the purposes of

this message pass only.

We can use the same method to handle other robust losses. For instance, the Tukey loss function

which is Gaussian up to M ≤ Nσ and then constant beyond is implemented with a factor kR =

N2
σ

M2 .

We now explore further the role of robust factors in 3 of our examples: 1D surface estimation,

image denoising and incremental SLAM.

3.3.2 1D surface estimation with Robust Factors

The 1D surface estimation example (Section 3.1.1) is a simple domain in which the effect of the

Huber loss function can be clearly observed. We first consider the problem of estimating the 1D

surface given a set of measurements on a flat line plus 2 outlying measurements, as shown in Fig-
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(a) Squared loss function. (b) Huber loss function.

Figure 3.12: 1D surface estimation with 2 outlying measurements. The goal is to estimate the
height (y value) at 10 discrete x values given 12 surface measurements (red squares). There are
10 in-lying measurements on a line and 2 outlying measurements. The beliefs after convergence
of GBP are shown in blue; the means are at the centre of the circles and the lines display ±1
standard deviation of uncertainty in the belief. See the full interactive version of this figure at:
https://gaussianbp.github.io/#gbp1d robust in which the user can click to place
their own measurement factors in the plane, run synchronous GBP and toggle the Huber loss on
and off.

(a) Squared loss function. (b) Huber loss function.

Figure 3.13: 1D surface estimation of surface with a discrete step. The surface measurements
are shown with red squares and the belief means and standard deviations after GBP convergence
are shown with blue circles and lines. See the full interactive version of this figure at: https:
//gaussianbp.github.io/#gbp1d robust

ure 3.12. When assuming a Gaussian data distribution in Figure 3.12a, the reconstructed points are

strongly drawn towards the outlying measurements, as not fitting the line to these outlying points

incurs a large energy cost. With the Huber loss in Figure 3.12b, GBP is able to reconstruct the

line more accurately by reducing the error associated with the outlying measurements by moving

them into the robust linear regime. The reason for this behaviour is that the Huber distribution fits

the data distribution better, assuming that the measurements away from the line are outliers.

The second 1D surface estimation example has 8 measurements arranged in a step function, as

shown in Figure 3.13. With a squared loss function / Gaussian data distribution in Figure 3.13a,

the reconstructed points are smoothed out across this step discontinuity. In contrast, with a Huber

loss in Figure 3.13b the discontinuity is somewhat preserved. With the Huber loss, the smoothness

factor at the discontinuity is given a linear cost in the outlier regime, allowing the reconstruction
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to better fit the discontinuity.

These two 1D examples illustrate that a Huber loss on the measurement factors and smoothness

factors is crucial for effective outlier rejection and retaining discontinuities in the data. Of course,

one should not conclude that it is generally better to use a Huber loss. However many estimation

problems contain outlying measurements or make smoothness assumptions that broadly hold but

are sometimes broken meaning that the Huber loss fits the true measurement distribution better

than a Gaussian with exponentially small tails.

3.3.3 Image denoising with Robust Factors

We explained in Section 3.1.2 that image denoising can be thought of as the 2D generalisation of

1D surface estimation. Here we show that, like in the 1D case, a Huber loss function is crucial

for practically useful image denoising that can filter out noise without over-smoothing the detail

in the image. In Figure 3.14, we show the results of denoising an image corrupted with salt and

pepper noise using GBP with and without the Huber loss function. With squared loss functions,

we are unable to remove the salt and pepper noise from the image even with strong smoothness

factors. In contrast, with the Huber loss we are able to remove the noise while retaining the image

detail as shown in the case with weaker smoothness factors.

3.3.4 Incremental SLAM with Robust Factors

In Figure 3.15 we show the performance of GBP for incremental SLAM when a random 1
50 of

all measurements have a large error added, and all factors use a robust Huber kernel. This can be

tried out as part of our Python simulation http://www.doc.ic.ac.uk/˜ajd/bpslam.py,

pressing ‘r’ to enter robust mode. GBP with robust factors has the impressive capability to detect

outlier measurements in a local and lazy manner, with erroneous measurements which were not

immediately apparent often determined much later when enough support builds up for a better

hypothesis. Playing with the simulation is the best way to get a good feel for this.

The example in Figure 3.15 demonstrates that robust factors allow lazy data association during

GBP (reminiscent of [Olson and Agarwal, 2013]), where the robust status of factors can change

dynamically during ongoing graph optimisation. This gives the ability to reject poor measure-

ments immediately or after enough contradictory alternative data has been received. As we shall

see in Chapter 5, this enables the incremental abstraction of point cloud data into planes via GBP,
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3.3. Robust Factors using M-Estimators

(a) Original noisy image.

(b) Denoised with squared loss. Left stronger smoothness factors, right weaker smoothness factors.

(c) Denoised with Huber loss. Left stronger smoothness factors, right weaker smoothness factors.

Figure 3.14: Image denoising with and without Huber loss function. The original image is cor-
rupted with salt and pepper noise. The results show the denoised image after GBP has con-
verged. See the full interactive version of this figure at: https://gaussianbp.github.io/
#attentiongl.
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New erroneous measurement Second measurement of Further good measurements;
(red) landmark. White and yellow error rejected. Erroneous factor

factors balance error is white; others grey

Loop closure Comparison with non-robust After more measurements,
batch solution (green) 4 outliers confidently identified

Figure 3.15: 2D SLAM simulation with random erroneous measurements and robust factors.
Every time a factor passes a message, it re-evaluates its Mahalonobis distance. In this simulation,
we use a Huber loss with Mahalonobis distance threshold of 4.0 to transition from quadratic to
linear cost. One in 50 ground truth measurements in the simulation has a large error added. In
the visualisation, factors are colour-coded: grey if the Mahalonobis distances of both the ground
truth measurement and the current factor estimate are both below 4.0 (normal case); white if both
distances are above 4.0 (an erroneous measurement that BP has recognised as such and is treating
with the linear part of the Huber function; red for a factor with high ground truth distance but
low in the factor: this is an erroneous measure not yet recognised; and yellow for a factor with
high factor distance but low ground truth distance; this is a good measurement being ‘unfairly’
treated as an outlier. All non-grey factors display their estimated and true Mahalonobis distances
numerically. When a first erroneous measurement is made to initialise a new landmark, there
are no contradictory good measurements to oppose it. In the second and third panels, additional
measurements of the landmark support each other and push the erroneous measurement far into the
linear Huber region. Good estimates are seen throughout the graph after loop closure, and a much
better result than the green batch solution which does not take account of outliers (of course, we
could have used robust methods there as well). More exploration and further loop closure happens
by the last panel, and four erroneous measurements are now very confidently identified.
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where the robust status of the proposed planar abstractions is determined on the fly [Ortiz et al.,

2022b].

This example in Figure 3.15 shows how errors that slip through the front-end measurement part

of a SLAM system (such as visual feature matching) could be cleaned up by back-end estimation.

However, in the longer term, we are interested in how GBP and graph-based estimation could be

used for the whole of a Spatial AI system, including front-end data association like the matching in

a sparse or dense SLAM system, avoiding the need for ad-hoc algorithms such as RANSAC. For

instance, in dense SLAM (such as the ICP tracking in KinectFusion [Newcombe et al., 2011]),

each pixel measurement from a depth camera is associated with several possible locations in a

dense model, and this association is refined iteratively through ICP. We could replace this pro-

cess with GBP, where the measurement might be connected by several factors to different scene

points, with mutually exclusive robust factors who would fight it out via GBP, in collaboration

with other factors, until the most probable associations are reached. This multi-modal approach

achieves a discrete model-selection capability and potentially could be efficiently implemented on

a distributed close-to-sensor processor.

In practice, robust factors are employed for all real estimation problems using GBP to handle

the presence of outlying measurements in real data. For example, they were crucial for solving

bundle adjustment [Ortiz et al., 2020], multi-device co-localisation [Murai et al., 2022] and scene

flow [Scona et al., 2022].

Another possible application of robust factors is towards the goal of learning abstractions in large

structured generative models trained with GBP. Our interpretation is that here robust factors can

play a similar role to non-linearities in neural networks, activating or deactivating constraints in

the graph.

3.4 Improving Convergence

Although GBP empirically works well on loopy graphs, it is well known that loopy GBP does not

always converge. Here we discuss strategies for improving the chances and speed of convergence

for loopy graphs. This section contains many useful tricks for practitioners of GBP that were ob-

tained qualitatively through many experiments on a variety of problems in vision and robotics. It is

important to note that GBP is not reliant on any of the suggestions in this section for convergence,

sensible application of these suggestions can however help accelerate convergence although the
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success can be problem dependent. See chapter 22 in Murphy’s textbook [Murphy, 2012] for a

complementary discussion of methods to improving convergence.

Before discussing suggestions for improving convergence, we briefly highlight some key results

in the limited literature around convergence guarantees in GBP. Note that these convergence guar-

antees are not original work from this thesis.

3.4.1 Convergence Guarantees

We discussed in the reproduced proof (in the appendix, Section 7.2) that on convergence, the

belief means exactly compute the true marginal means for linear problems. Of course, this guar-

antee does not hold for general non-linear problems in which the true marginal distributions are

not Gaussians. For non-linear problems, we know that the converged belief means are the true

marginal means for the final linearised problem, but it is not guaranteed that this final linearisation

will be at the true MAP solution.

Even for linear problems, although we have a guarantee for the correctness of the belief means

on convergence, there is no guarantee that GBP will converge in general and in some extreme

cases, GBP can exhibit oscillatory or divergent behaviour. There are however some specific cases

in which loopy GBP is guaranteed to converge. We begin by noting that when marginalising

a Gaussian distribution in the information form, the marginal variance does not depend on the

information vector of the initial distribution while the marginal mean does depend on the inform-

ation matrix of the initial distribution. Therefore, in GBP the variances are updated independently

to the means, while the means are updated using the variances. This leads to distinct convergence

properties for the belief means and belief covariances. In general, when the variables at each node

are vector-valued, Du et al. [Du et al., 2017] showed that if we stack all information paramet-

ers of the initial factor-to-variable messages into a large matrix, then when this matrix is positive

semi-definite the belief covariances always converge on the same values.

Once the variances have converged, Du et al. [Du et al., 2017] showed that we can form a linear

system for the belief mean vectors:

Bt+1 = Q Bt , (3.21)

where B is a concatenation of the belief mean at all variable nodes and Q is a square matrix

composed of row blocks. Each row block in Q corresponds to an edge in the graph connecting a

variable node to a factor node. Q depends on the converged values of the marginal variances and

so cannot be pre-computed in advance to determine the value of its spectral radius. This linear
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system for B is convergent when the largest absolute value of the eigenvalues of Q (also known

as the spectral radius) is less than 1: ρ(Q) < 1.

3.4.2 Message Schedules

As discussed in Section 3.2 there are various serial and synchronous message schedules for GBP.

Although message schedules can affect convergence properties, we found little difference when

applying more complex schedules such a residual BP [Elidan et al., 2006] in vision problems. As

a result, we found a simple synchronous schedule to perform broadly well across all tasks and

would recommend this schedule as a starting point to practitioners.

3.4.3 Multiscale Learning

Propagating information from one node to another with GBP takes the same number of iterations

as the number of hops between the nodes. For nearby nodes in a local region, information can be

communicated in a small number of iterations and consensus can be reached quickly, while for

distant nodes, a global consensus can take many more iterations to be established. We observed

this in Figure 3.8 of the previous section in which a loop closure correction took many iterations

to be propagated through the graph. This is an inherent property of local algorithms and can be

summarised as: low frequency errors decay more slowly than the high frequency errors.

Regular grid structured graphs appear a lot in computer vision (e.g. image processing) and in

discretised boundary value problems (e.g. solving for the temperature profile along a rod). Ac-

celerating convergence in such grid graphs has been well-studied in the field of Multigrid meth-

ods [Briggs et al., 2000]. The idea is to coarsen the grid which transforms low frequency errors

into higher frequency errors that decay faster. After convergence in the coarsened grid, the solu-

tion is used to initialise inference in the original grid which now has smaller low frequency errors.

This is the idea behind coarse-to-fine optimisation which is used in many grid-based problems

where it is simple to build a coarser graph. In one notable work [Felzenszwalb and Huttenlocher,

2006], the authors demonstrate much faster inference for stereo, optical flow and image restoration

with multiscale BP.

Mulitgrid methods can only be applied to graphs with a grid-like structure where it is possible to

build equivalent coarsened representations. In general, most problems are more unstructured and

it is not clear how to build a coarsened or abstracted representation of the original problem. In
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the general case, we see two possible ways to build hierarchy into a model. A network could be

trained to directly predict specific abstractions that form long range connections when included in

the graph [Ortiz et al., 2022b]. Second, the graph could contain additional constraints that define

a generic hierarchical structure (much like a neural network) and then the abstractions themselves

are also inferred [George et al., 2017].

3.4.4 Relinearisation Schedules

Although all examples we have discussed in this chapter are linear, GBP is applied in exactly the

same way for non-linear problems with the additional iterative relinearisation of the factors about

the most recent belief means. For non-linear problems, the speed of convergence and ability to

convergence can depend on the relinearisation strategy. One possible strategy is to delay relinear-

isation such that we iterate message passing until convergence, and then only after convergence

relinearise all factors and repeat. This is broadly the approach of the Gauss-Newton method which

solves the successive linear problems with direct factorisation based solvers. With this linearisa-

tion schedule it would therefore be possible to construct a Gauss-Newton solver using GBP as the

linear solver.

Delayed relinearisation in GBP can converge very slowly as we must run GBP to convergence

many times to solve a single non-linear problems. As a result, a more aggressive local relinearisa-

tion strategy is attractive because each factor is always using its current estimates to linearise. The

most aggressive relinearisation strategy is to relinearise every factor on every step. When close

to a the non-linear solution, this aggressive relinearisation strategy can accelerate convergence

towards the solution, however when far from a solution in a highly non-linear landscape, it can

lead to oscillations. Consequently, we find a good middle ground stratgey is to set a threshold

on the difference between the current belief mean and the linearisation point, and then relineraise

factors individually whenever this threshold is exceeded. This provides a good trade off between

maintaining a good linear approximation, not wasting computation by relinearising excessively

and preventing oscillations due to excessive relinearisation.

Dynamically changing the factors as we do with robust kernels does not seem to cause any in-

stability in optimisation.
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3.4.5 Linear System Damping

Inspired by Levenberg-Marquardt (LM) optimisation, which is a modification of Gauss-Newton

that damps the linear system with an adaptable parameter λ, we have found empirically that ap-

plying a similar damping in GBP improves convergence. This linear system damping in GBP is

novel and although we have not performed a thorough analysis, we found that it consistently im-

proves convergence across a variety of vision problems. We first briefly review Newton’s method,

Gauss-Newton and Levenberg-Marquardt, before transferring the ideas to GBP.

Newton’s method is an algorithm for finding minimum of a general objective:

x∗ = arg min
x

S(x) . (3.22)

The algorithm iteratively takes steps using first and second order gradients to minimise the object-

ive. Let the current estimate be x0, the second order Taylor expansion at a nearby point x about

x0 is:

S(x) ≈ S(x0) +
∂S(x)

∂x

∣∣∣∣
x=x0

(x− x0) +
1

2
(x− x0)

⊤∂
2S(x)

∂x2

∣∣∣∣
x=x0

(x− x0) . (3.23)

We want to find a point x which is a critical point of the objective where:

∂S(x)

∂x
≈ ∂S(x)

∂x

∣∣∣∣
x=x0

+
∂2S(x)

∂x2

∣∣∣∣
x=x0

(x− x0) = 0 . (3.24)

This is known as the normal equation.

Solving for x, we see that the we should choose the next value as:

x = x0 −
(
∂2S(x)

∂x2

∣∣∣∣
x=x0

)−1∂S(x)

∂x

∣∣∣∣
x=x0

. (3.25)

This is the familiar Newton’s method which uses first and second order derivatives of the objective

to update the current estimate x0 to an improved estimate x. Intuitively, Newton’s method forms

local quadratic approximations of the objective and moves directly to the minimum of the quad-

ratic function. As a consequence, Newton’s method jumps directly to the minimum in one step

for quadratic objectives.

While Newton’s method makes no assumptions about the form of the object, Gauss-Newton and

Levenberg-Marquardt build on Newton’s method for non-linear least squares objectives of the

form:

S(x) = r(x)⊤Λr(x) , (3.26)

where r(x) is a non-linear function. Note that minimising a non-linear least squares objective is

equivalent to doing MAP inference in a non-linear Gaussian graphical model.
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For least squares objectives, we can derive the derivatives required for a Newton update step:

∂S(x)

∂x
= Jr(x)

⊤Λr(x) (3.27)

∂2S(x)

∂x2
= Jr(x)

⊤ΛJr(x) + Hr(x)Λr(x) , (3.28)

where Jr =
∂r(x)
∂x and Hr =

∂2r(x)
∂x2 are the Jacobian and Hessian of r(x).

Gauss-Newton makes the assumption that the Hessian of the objective function can be approxim-

ated using only the first term in Equation 3.28 as r is small:

∂2S(x)

∂x2
≈ Jr(x)

⊤ΛJr(x) . (3.29)

Under this assumption the updated Gauss-Newton update step can be written as:

x = x0 −
(
Jr(x0)

⊤ΛJr(x0)

)−1

Jr(x0)
⊤Λr(x0) . (3.30)

Gauss-Newton has the same interpretation as Newton’s method of forming a quadratic or Gaus-

sian approximation of the problem and then moving to the minimum of the resulting problem by

solving the normal equation (Equation 3.30) for the update: x− x0.

Levenberg-Marquardt modifies the Gauss-Newton update by adding a damping factor to the ap-

proximate Hessian of the objective:

x = x0 −
(
Jr(x0)

⊤ΛJr(x0) + λI

)−1

Jr(x0)
⊤Λr(x0) . (3.31)

For very small λ, the LM update approaches the Gauss-Newton update while for very large λ the

update approaches gradient descent with learning rate λ−1:

x− x0 ≈ −λ−1 Jr(x0)
⊤Λr(x0) = −λ−1 ∂S(x)

∂x

∣∣∣∣
x=x0

. (3.32)

To control convergent behaviour, the value of λ is typically modified following a simple schedule

with two parameters 0 < a < b. Typical values are a = 2 and b = 10. If after computing

the new value x, the value of the residual has decreased i.e. S(x) < S(x0), then the update is

accepted and λ is decreased by a factor 1
a . If the residual increases, then we do not accept the

update and instead increase λ by a factor b and compute a new update. LM therefore interpolates

between a Gauss-Newton update and gradient descent step based on changes in the residual in

previous steps. The motivation is that gradient descent can avoid Gauss-Newton getting stuck in

local minima and then as we approach the minimum, λ→ 0 and the updates tend towards Gauss-

Newton steps. This procedure makes sense because convergence close to a minima is faster with

Gauss-Newton as any function is approximately quadratic about its minimum.
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The damping is applied to the approximated Hessian of the objective which is also the information

matrix of the system. Linking this to Gaussian factor graphs, LM is damping the precision matrix

of the joint distribution representing the whole problem. This is equivalent to adding an extra

factor that places a prior around the current estimate with covariance 1
λ .

We can now apply these same ideas locally to Gaussian belief propagation. Instead of damping the

linear system globally, we can apply this same damping to each individual factor. This damping

is applied whenever the factor is relinearised and each factor maintains its own λ parameter that

is updated based on changes in the local energy rather than the global energy. This simple modi-

fication leads to increase stability and improved convergence for large scale bundle adjustment

problems.

3.4.6 Message Damping

Message damping is a technique commonly used to speed up and improve chances of convergence

in very loopy graphs. The idea behind message damping is to use momentum to reduce chances of

oscillation and accelerate progress towards a minimum in ravine like energy landscapes. Message

damping has been shown to both empirically [Murphy et al., 1999] and theoretically [Malioutov

et al., 2006, Su and Wu, 2015] improves convergence without affecting the fixed points of GBP.

Although there are several variations of message damping that have been proposed in the literature

[Murphy et al., 1999, Malioutov et al., 2006, Su and Wu, 2015], here we discuss log space message

damping which we found worked best for our problems [Ortiz et al., 2020].

Damping operates by replacing the message at time t with a combination of the message at time t

and time t− 1:

µ̃t = µβt µ̃
(1−β)
t−1 , (3.33)

which is a weighted sum in log-space:

log µ̃t = β logµt + (1− β) log µ̃t−1 . (3.34)

For GBP, message damping in log-space corresponds to damping the information vector and pre-

cision matrix as a weighted sum:

η̃t = β ηt + (1− β) η̃t−1 (3.35)

Λ̃t = β Λt + (1− β) Λ̃t−1 . (3.36)
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Standard BP is recovered when the damping parameter: β = 1. β = 0 corresponds to not

updating the messages and sending the message from the previous iteration which leaves the graph

unchanged. Message damping can be applied to both the variable-to-factor messages and factor-

to-variable messages, however we find that only applying it to factor-to-variable messages is more

effective. Message dropout can be thought of as a form of message damping where β = 1 for

nodes that are sending messages and β = 0 for other nodes. Lastly, message damping has proven

crucial in the successful application of GBP to medium/large scale bundle adjustment [Ortiz et al.,

2020] and SLAM problems [Ortiz et al., 2022b].

3.5 Robot Web Protocol

Here we briefly detail the Robot Web communication protocol, proposed in our paper [Murai

et al., 2022] for many-device localisation. By proposing and demonstrating GBP as a strong

framework for decentralised inference [Ortiz et al., 2020, Davison and Ortiz, 2019, Ortiz et al.,

2022b], my work laid the foundation for using GBP for many device localisation which was lead

by the first author Riku Murai. Throughout this project, I assisted with both implementation and

the development of the Robot Wel Protocol for distributing the factor graph amongst the devices.

As discussed in the introduction, an important systems focus will be the definition of interfaces

which allow multiple devices/robots to pass messages between each other. Individual devices will

have their own individual estimation algorithms, sensors and hardware, but could use GBP as

the general ‘glue language’ to share probabilistic information and come to agreement over global

estimation matters. For example, a swarm of robotic devices could organise themselves into a

regular grid via only local computation and communication.

What will be important to achieve such capabilities will be standards for inter-operation and mes-

sages which can be deployed for communication. Inspired by the creation of the World Wide

Web [Berners-Lee, 1999], we propose the Robot Web communication protocol for GBP which is

specifically focused on many-device localisation. In our solution, each robot stores and maintains

its own part of the full factor graph and updates and publishes a Robot Web Page of outgoing

message for other robots to download and read when possible. Robots communicate via ad-hoc

asynchronous messages and robots can join or leave the web at any time. The Robot Web is de-

signed simply for scalability; all communication is via a simple interface and without the need for

any privileged information about other robots or even how many are involved.
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Robot 2

Robot 1

Robot 3

Pose Variable
Inter-robot

Measurement

Odometry Factor

Figure 3.16: In the Robot Web, we assume that a set of robots move through a space while
using their sensors to observe each other. The circles represent the variables, and the squares are
the factors. Responsibility for storing and updating the full factor graph is divided up between
the multiple robots participating, as shown by the coloured regions separated by dotted lines.
Each robot maintains its own pose variable nodes, odometry factors, and factors for the inter-
robot measurements made by its sensors, and carries out continuous GBP on this graph fragment.
Message passing across dotted line boundaries is via Robot Web Pages published and updated by
each robot, and happens on an asynchronous and ad-hoc basis.

The key challenge is to distribute responsibility for the full factor graph by dividing it up amongst

the robots taking part. An important design choice is that factors representing inter-robot meas-

urements are stored on the robot making the measurement. This is sensible because the details of

the measurement factors depend on the type and calibration of the sensor involved and in this way

those details only need to be known by the robot carrying the sensor. We also assume for now that

all robots have globally synchronised clocks for timestamping measurements.

In the Robot Web paper [Murai et al., 2022], we experiment with the Robot Web protocol and

GBP with non-Euclidean variables (presented in Section 2.6) for the problem of distributed multi-

device localisation. Figure 3.16 shows a factor graph for distributed multi-device localisation in

which the graph is divided between the distributed robots. We refer the interested reader to the

full paper for further details which are beyond the scope of this thesis.

95



3. Beyond the Standard Algorithm

96



CHAPTER 4

Bundle Adjustment on a Graph

Processor

Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.3 The Bundle Adjustment Factor Graph . . . . . . . . . . . . . . . . . . . . . 101

4.4 Gaussian Belief Propagation for Bundle Adjustment . . . . . . . . . . . . . 104

4.5 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.5.1 IPU Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.5.2 GBP Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.6 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.6.1 Bundle Adjustment Speed Evaluation . . . . . . . . . . . . . . . . 107

4.6.2 SLAM Speed Evaluation . . . . . . . . . . . . . . . . . . . . . . . 108

4.6.3 Global vs Local Convergence Evaluation . . . . . . . . . . . . . . 109

4.6.4 Robustness Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 109

4.6.5 Huber Loss Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 111

4.7 Discussion / Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

In this chapter, we describe work from our paper Bundle Adjustment on a Graph Processor [Ortiz

et al., 2020] that was presented at the Conference on Computer Vision and Pattern Recognition

(CVPR) in 2020.

Graph processors such as Graphcore’s Intelligence Processing Unit (IPU) are part of the major

new wave of novel computer architecture for AI, and have a general design with massively paral-
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lel computation, distributed on-chip memory and very high inter-core communication bandwidth

which allows breakthrough performance for message passing algorithms on arbitrary graphs.

We show for the first time that the classical computer vision problem of bundle adjustment (BA)

can be solved extremely fast on a graph processor using Gaussian belief propagation. Our simple

but fully parallel implementation uses the 1216 cores on a single IPU chip to, for instance, solve

a real BA problem with 125 keyframes and 1919 points in under 40ms, compared to 1450ms for

the Ceres CPU library. Further code optimisation will surely increase this difference on static

problems, but we argue that the real promise of graph processing is for flexible in-place optimisa-

tion of general, dynamically changing factor graphs representing Spatial AI problems. We give

indications of this with experiments showing the ability of GBP to efficiently solve incremental

SLAM problems, and deal with robust cost functions and different types of factors.

A video presentation of the method and results are available at: https://www.youtube.com/

watch?v=TqeN8aQNgd0. We also provide code for our Python implementation at: https:

//github.com/joeaortiz/gbp and our Poplar implementation at: https://github.com/

joeaortiz/gbp-poplar.

4.1 Introduction

Real-world applications which require a general real-time Spatial AI capability from computer

vision are becoming more prevalent in areas such as robotics, UAVs and AR headsets, but it is

clear that a large gap still exists between the ideal performance required and what can be delivered

within the constraints of real embodied products, such as low power usage. An increasingly

important direction is the design of processor and sensor hardware specifically for vision and AI

workloads to replace the general purpose CPUs, GPUs and frame-based video cameras which

are currently prevalent [Davison, 2018, Nardi et al., 2015]. The space of AI and vision algorithm

design continues to change rapidly and we believe that it is not the right time to make very specific

decisions such as ‘baking in’ a particular SLAM algorithm to processor hardware, except perhaps

for very specific use cases.

However, new architectures are emerging which have made quite general design choices about

processing for AI workloads. Efficient and low power computation must be massively parallel

and minimise data transfer. To this end, storage and processing should be distributed, and as much

computation as possible should happen ‘in place’. A key example is Graphcore’s Intelligence
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4.1. Introduction

Figure 4.1: We map a bundle adjustment factor graph onto the tiles (cores) of Graphcore’s IPU
and show that Gaussian belief propagation can be used for rapid, distributed, in-place inference
for large problems. Here we display the most simple mapping in which each node in the factor
graph is mapped onto a single arbitrary tile. Keyframe nodes are blue, landmark nodes are green
and measurement factor nodes are orange.

Processing Unit (IPU) [Graphcore, 2022], which implements this concept within a single large

chip which is composed of 1216 cores called tiles, each with local memory arranged in a fully

connected graph structure. It is massively parallel like a GPU, but its tiles have a completely

different interconnect structure. The IPU has breakthrough performance for algorithms which

have a sparse graph message passing character. The key early commercial use case for the IPU is

as a flexible deep learning accelerator [Lacey, 2019], primarily in the cloud, but we believe that it

has much more general potential for Spatial AI computation.

In this work we consider bundle adjustment (BA), a central element of 3D visual processing which

is representative of many geometric estimation problems, and show that Gaussian belief propaga-

tion can perform rapid optimisation of BA problems on a single IPU chip.

GBP is a special case of general loopy belief propagation, a well known technique in probabil-

istic estimation, but it has previously only been minimally used in geometric vision and robotics

problems [Davison and Ortiz, 2019]. It is an algorithm which can be run on a CPU, but is not

necessarily competitive there compared to alternative optimisation techniques which take global

account of the structure of a problem. However, GBP can be mapped to a graph processor due to

its fully distributed nature to take full advantage of the massively parallel capability of an IPU.

We present the first implementation of BA on a graph processor, with breakthrough optimisation

speed for a variety of diverse sequences in which we record an average speed advantage 24x over
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the Ceres library on a CPU. Our implementation is simple and preliminary, implemented with

only 1000 lines of Poplar™C++ code, and there is surely much room for future performance

optimisation.

Positive characteristics of our GBP approach include: extremely fast local convergence, the ability

to use robust cost functions to reject outlying measurements, and the ability to easily deal with

dynamic addition of variables and data and rapidly re-optimise solutions. We highlight these

aspects in our results, and argue as in [Davison and Ortiz, 2019] for the huge potential for graph

processing and GBP in general incremental factor graph optimisation for Spatial AI. It would be

straightforward and efficient to incorporate factors from additional priors and sensors into this

framework, such as smoothness of scene regions due to recognition, and continue to optimise for

global estimates with all computation and storage done in-place on a graph processor.

4.2 Related Work

Factor graphs are commonly used in geometric vision to represent the structure of constraints

in estimation problems [Bloesch et al., 2018, Engel et al., 2017, Folkesson and Christensen,

2004, Kaess et al., 2008, Lu and Milios, 1997, Mur-Artal et al., 2015]. In particular, for bundle

adjustment [Triggs et al., 1999] researchers have leveraged the global structure of these constraints

to design efficient inference algorithms [Agarwal et al., 2009, Jeong et al., 2010].

Several works have taken the approach of converting the loopy factor graph into a tree [Kaess

et al., 2012, Paskin, 2003]. iSAM2 [Kaess et al., 2012] uses variable elimination to convert the

loopy factor graph to a Bayes tree while [Paskin, 2003] uses a junction tree-like method which

employs maximum likelihood projections to remove edges. This category of methods differs from

our approach in that it requires periodic centralised computation to convert the loopy constraint

graph into a tree.

More closely related to our work, [Crandall et al., 2011] and [Ranganathan et al., 2007] use Loopy

Belief Propagation for geometric estimation problems, though with CPU implementation. [Cran-

dall et al., 2011] uses discrete BP to provide an initialisation for Levenberg-Marquardt refinement

in BA, and Loopy SAM [Ranganathan et al., 2007] uses GBP to solve a SLAM-like problem for

a relatively small 2D scene.

In the domain of computer architecture, there has been substantial recent effort to design specific

hardware for vision algorithms [Saeedi et al., 2018, Zhang et al., 2017b]. This is particularly
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Figure 4.2: Bundle adjustment factor graph. Measurement factors connect keyframes and the
landmarks they observe. Keyframes and landmarks are instantiated with an automatically gen-
erated weak prior factor. Messages are sent from all factors to adjacent keyframe and landmark
nodes and from keyframe and landmark nodes to adjacent measurement factor nodes.

evident in industry, where we have seen development of chips such as the HoloLens’ HPU and

the Movidius VPU series, though the main accelerations achieved to date have been in vision

front-ends such as feature matching.

Other related research has made use of parallelism on existing hardware to accelerate BA. Mul-

ticore BA [Wu et al., 2011] proposed an inexact but parallelisable implementation for CPUs or

GPUs, while [Gupta et al., 2010] advocated a hybrid GPU and CPU implementation. More gen-

erally, [DeVito et al., 2017] accelerated non-linear least squares problems in graphics by automat-

ically generating GPU solvers.

4.3 The Bundle Adjustment Factor Graph

Bundle adjustment is the problem of jointly refining the set of variables V = X ∪ L, where

X = {xi}i=1:Nk
is the set of keyframe poses and L = {lj}j=1:Nl

is the set of landmark locations,

subject to a set of constraints which define the error we want to minimise. Specifically, we include
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two types of error terms: reprojection errors and prior errors. The reprojection error penalises

the distances between the projections of landmarks into the image plane of the keyframes that

observe them and the set of measurements corresponding to these observations Z = {zkm}. The

prior error terms try to maximise the probability that the current variable values were drawn from

the corresponding prior distribution {N (xi;xpi , Σp,xi), N (lj ; lpj , Σp,lj)}i=1:Nk,j=1:Nl
. The prior

terms are required to set the overall scale for monocular problems and to condition the messages

from the measurement factors which would otherwise only constrain 2 degrees of freedom. Given

an initialisation point, the priors are automatically generated such that they are a factor of 100

weaker than the reprojection error terms in the objective. We formulate this using the Jacobians

and the measurement model which define the strength of measurement constraints. An example

factor graph for a small BA problem is shown in Figure 4.2.

In bundle adjustment we want to perform maximum a posteriori (MAP) inference which computes

the configuration of variables {X,L} that maximises the joint probability p(X,L|Z):

{X∗, L∗} = arg max
{X,L}

p(X,L|Z) (4.1)

= arg max
{X,L}

p(Z|X,L)p(X,L) . (4.2)

In the second line we have used Bayes theorem and dropped the denominator p(Z) as measure-

ments are given quantities and do not affect the MAP solution. This leads to the factorisation

of the probability distribution that we want to maximise (which we will call pobj(X,L)) into the

product of the likelihood of the measurements given the variables p(Z|X,L) and priors on the

variables p(X,L). As xi and xj are independent in our formulation, li and lj are independent and

xi and lj are only conditionally dependent given a measurement zij , these terms can be further

factorised:

pobj(X,L) =

Nk∏
i=1

ϕi(xi)

Nl∏
j=1

θj(lj)

Nk∏
k=1

∏
m,lm∈Lk

ψkm(xk, lm) , (4.3)

where Lk is the set of landmarks observed by keyframe xk.

The set of factors {ϕi, θj , ψkm}i=1:Nk,j=1:Nl,km∈O can be interpreted as prior constraints on

the keyframe poses, prior constraints on the landmark positions and measurement reprojection

constraints respectively. The prior constraints have the form of Gaussians over the variables

{xi}i=1:Nk
and {lj}j=1:Nl

:

ϕi(xi) = p(xi|xpi , Σp,xi) (4.4)

∝ exp (−1

2
∥ xi − xp,i ∥2Σp,xi) , (4.5)
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θj(lj) = p(lj |lpj , Σp,lj) (4.6)

∝ exp (−1

2
∥ lj − lp,j ∥2Σp,lj ) . (4.7)

Assuming a Gaussian measurement model, zkm = h(xk, lm) + η, with η ∼ N (0, ΣM ) we can

write out the form of the measurement factors:

ψkm(xk, lm) = p(xk, lm|zkm) ∝ p(zkm|xk, lm) (4.8)

∝ exp (−1

2
∥ zkm − h(xk, lm) ∥2ΣM ) . (4.9)

The measurement factor ψkm is Gaussian in zkm but is Gaussian in the variables xk and lm only

if the measurement function h(xk, lm) is linear. In our case, we have a nonlinear measurement

function, h(xk, lm) = π (Rk lm + tk), where π is the projection operator and Rk and tk are the

rotations and translations derived from xk . As a result, we must update the measurement factors

by relinearising during optimisation.

After linearising about some fixed point (xk,0, lm,0), the measurement factors can be expressed

as a Gaussian distribution using the information form which is parametrised by an information

vector η and information matrix Λ:

N−1(x;η, Λ) ∝ exp (−1

2
x⊤Λx+ η⊤x) . (4.10)

The information form is used as it can represent distributions with rank deficient covariances in

which a variable is not constrained at all along a particular direction. With this at hand and after a

small amount of work, we find that linearised measurement factors take the following form:

ψkm(xk, lm) = N−1

(xk

lm

 ;ηkm, Λkm

)
, (4.11)

with information form parameters:

ηkm = J⊤Σ−1
M

(
J

xk,0

lm,0

+ zkm − h(xk,0, lm,0)

)
, (4.12)

Λkm = J⊤Σ−1
M J , (4.13)

where J =
[

∂h
∂xk

, ∂h
∂lm

] ∣∣
xk=xk,0,lm=lm,0

is the 2× 9 Jacobian matrix.
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Now that all of our constraints are in the Gaussian form, finding the MAP solution is equivalent

to minimising the negative log likelihood which is a sum of squared residuals:

{X∗, L∗} = arg min
{X,L}

[ Nk∑
i=1

∥ xi − xp,i ∥2Σp,xi +
Nl∑
j=1

∥ lj − lp,j ∥2Σp,lj +

Nk∑
k=1

∑
m,lm∈Lk

∥ zkm − h(xk, lm) ∥2ΣM

]
.

(4.14)

4.4 Gaussian Belief Propagation for Bundle Adjustment

GBP can be used to solve bundle adjustment problems by computing the marginal distribution,

with mean equal to the MAP solution, for all variables. In contrast, classical bundle adjustment

methods compute a point estimate of the MAP solution using the Levenberg-Marquardt algorithm.

As the bundle adjustment factor graph is loopy, GBP stores a belief distribution at each variable

node which converges to the marginal distribution after sufficient iterations of message passing.

Prior factors send the same message to the variable node they connect to at all iterations. The

beliefs are sent as messages from the variable nodes to the factor nodes as the true message can

be recovered at the factor node using the previous factor to variable message.

We use a synchronous scheduling (see Section 3.2.2) in which, at each iteration, all factor nodes

relinearise and send messages to adjacent variable nodes before all variable nodes update their

belief and send back messages to adjacent factor nodes. Relinearisation is done in an entirely

local manner and a measurement factor is relinearised when the distance between the current belief

estimate and the linearisation point of the variables the factor connects to is greater than a threshold

β. We use message damping (described in Section 3.4.6) which is commonly used to stabilise the

convergence of Loopy GBP [Malioutov et al., 2006]. Lastly, we employ robust factors (described

in Section 3.3) which are crucial in bundle adjustment to handle outlying measurements.

4.5 Implementation Details

4.5.1 IPU Implementation

An IPU chip is massively parallel and is composed of 1216 independent compute cores called

tiles. Each tile has 256KB local memory and 6 hardware threads that can all execute independ-
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Relinearisation
<latexit sha1_base64="qsn2N3oQ9Y0BA6YtPP77ZzYgsic=">AAAB+HicbVC7TsMwFL3hWcqjBUYWiwqJqUrKAGMFC2NB9CG1UeW4N61Vx4lsB6lU/RIWBhBi5VPY+BvcNAO0HMnS0Tn36F6fIBFcG9f9dtbWNza3tgs7xd29/YNS+fCopeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPxzdxvP6LSPJYPZpKgH9Gh5CFn1FipXy7dZ1GquM6Vilt1M5BV4uWkAjka/fJXbxCzNEJpmKBadz03Mf6UKsOZwFmxl2pMKBvTIXYtlTRC7U+zw2fkzCoDEsbKPmlIpv5OTGmk9SQK7GREzUgve3PxP6+bmvDKn3KZpAYlWywKU0FMTOYtkAFXyIyYWEKZ4vZWwkZUUWZsV0Vbgrf85VXSqlW9i2rtrlapX+d1FOAETuEcPLiEOtxCA5rAIIVneIU358l5cd6dj8XompNnjuEPnM8fLseTbA==</latexit>

Message Compute
<latexit sha1_base64="utyWx0QpVWD6fU5eqe1CbU5VZvM=">AAAB+HicbVA9SwNBEN2LXzF+5NTSZjEIVuEuFloG09gIEcwHJEfY20ySJbt7x+6eEI/8EhsLRWz9KXb+G/eSKzTxwcDjvRlm5oUxZ9p43rdT2Njc2t4p7pb29g8Oy+7RcVtHiaLQohGPVDckGjiT0DLMcOjGCogIOXTCaSPzO4+gNIvkg5nFEAgylmzEKDFWGrjlO9CajAE3IhEnBgZuxat6C+B14uekgnI0B+5XfxjRRIA0lBOte74XmyAlyjDKYV7qJxpiQqd2R89SSQToIF0cPsfnVhniUaRsSYMX6u+JlAitZyK0nYKYiV71MvE/r5eY0XWQMpm9JOly0Sjh2EQ4SwEPmQJq+MwSQhWzt2I6IYpQY7Mq2RD81ZfXSbtW9S+rtftapX6Tx1FEp+gMXSAfXaE6ukVN1EIUJegZvaI358l5cd6dj2VrwclnTtAfOJ8/j9OTBQ==</latexit>

Belief Update
<latexit sha1_base64="iJgUlHY27YbCVGP7K9oRBDwRL0Q=">AAAB9HicbVC7TgJBFJ31ifhCLW0mEhMrsouFlgQbS0xcIIENmZ29CxNmH87cJSEbvsPGQmNs/Rg7/8YBtlDwJJOcnHNP7p3jp1JotO1va2Nza3tnt7RX3j84PDqunJy2dZIpDi5PZKK6PtMgRQwuCpTQTRWwyJfQ8cd3c78zAaVFEj/iNAUvYsNYhIIzNJLXNEEIqZsGDGFQqdo1ewG6TpyCVEmB1qDy1Q8SnkUQI5dM655jp+jlTKHgEmblfqYhZXzMhtAzNGYRaC9fHD2jl0YJaJgo82KkC/V3ImeR1tPIN5MRw5Fe9ebif14vw/DWy0WcZggxXy4KM0kxofMGaCAUcJRTQxhXwtxK+YgpxtH0VDYlOKtfXiftes25rtUf6tVGs6ijRM7JBbkiDrkhDXJPWsQlnDyRZ/JK3qyJ9WK9Wx/L0Q2ryJyRP7A+fwBKv5HI</latexit>

Exchange 1
<latexit sha1_base64="BL/Y3QapcZDh7+OKCXgQIFAvpmg=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJ4Kkk96LEogscK9gPbUDbbSbt0swm7G7GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSATXxnW/nZXVtfWNzcJWcXtnd2+/dHDY1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hoeuq3HlFpHst7M07Qj+hA8pAzaqz0cPPEhlQOkHi9UtmtuDOQZeLlpAw56r3SV7cfszRCaZigWnc8NzF+RpXhTOCk2E01JpSN6AA7lkoaofaz2cUTcmqVPgljZUsaMlN/T2Q00nocBbYzomaoF72p+J/XSU146WdcJqlByeaLwlQQE5Pp+6TPFTIjxpZQpri9ldgEFGXGhlS0IXiLLy+TZrXinVeqd9Vy7SqPowDHcAJn4MEF1OAW6tAABhKe4RXeHO28OO/Ox7x1xclnjuAPnM8fyouQVA==</latexit>

Exchange 2
<latexit sha1_base64="pH0rtN3+eIfs6eLzxLE7HOY3ROE=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJ4Kkk96LEogscK9gPbUDbbSbt0swm7G7GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSATXxnW/nZXVtfWNzcJWcXtnd2+/dHDY1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hoeuq3HlFpHst7M07Qj+hA8pAzaqz0cPPEhlQOkFR7pbJbcWcgy8TLSRly1Hulr24/ZmmE0jBBte54bmL8jCrDmcBJsZtqTCgb0QF2LJU0Qu1ns4sn5NQqfRLGypY0ZKb+nshopPU4CmxnRM1QL3pT8T+vk5rw0s+4TFKDks0XhakgJibT90mfK2RGjC2hTHF7K7EJKMqMDaloQ/AWX14mzWrFO69U76rl2lUeRwGO4QTOwIMLqMEt1KEBDCQ8wyu8Odp5cd6dj3nripPPHMEfOJ8/zA+QVQ==</latexit>

(a) A schematic showing the compute on 16 tiles in a single iteration of GBP. Tiles are coloured when they
are in a compute phase. In Exchange 1, factor nodes send messages to variable nodes and in Exchange 2
variable nodes send messages to factor nodes. Keyframe and landmark variable nodes are blue and green
respectively and factor nodes are orange.
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(b) Plot shows the activity of each tile during a single iteration of GBP for a factor graph with 1216 nodes
mapped 1-to-1 onto the tiles. In the Relinearisation phase, all 929 factors compute the distance of the adja-
cent beliefs from their linearisation point and a subset of these factors subsequently relinearise. The Belief
Update is implemented with Graphcore’s Poplibs™library and so is significantly faster and is indicative of
the speed-ups possible with a more specific implementation using an optimised linear algebra library.

Figure 4.3: IPU Phases.

ent programs. In contrast, a GPU has very limited cache on chip, all data must be fetched from

off chip DRAM, and there is less flexibility for executing different programs on each thread.

The IPU’s distributed on-chip SRAM means that memory accesses consume approximately 1pJ

per byte whereas external DRAM accesses on a GPU/CPU consume hundreds of pJ per byte.

Embedded variants of the IPU will therefore have significant power advantages over existing pro-

cessors [Graphcore, 2022].

To implement GBP on the IPU we must map each node in the factor graph onto a tile on the IPU.

The tiles are connected all-to-all with similar latency between all pairs of tiles on a chip [Jia et al.,

2019], meaning that nodes can be mapped to arbitrary tiles. The most simple mapping places

exactly one factor or variable node per tile, as in Figure 4.1, but limits the size of the factor graph

to 1216 nodes. Noting that variable and factor nodes alternate in compute and that there are 6

threads per tile, in all experiments we are able to map much larger graphs to a single chip by

placing multiple nodes per tile without affecting speed.

In order to exploit this parallelism the IPU employs a bulk synchronous parallel execution model.

In this model all tiles compute in parallel using their local memories. When each tile has finished
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4. Bundle Adjustment on a Graph Processor

computing it enters a waiting phase (idle). When all tiles are finished, there is a short synchronisa-

tion phase (sync) across all tiles before data is copied between tiles with extremely high bandwidth

in a predetermined schedule (exchange). This process then repeats as all tiles re-enter the compute

phase. The period between syncs is not fixed but determined by the time taken for the computation.

GBP has three compute phases and two exchange phases in a single iteration. As shown in Figure

4.3a, factor nodes first relinearise and then compute their messages which are sent to adjacent

variable nodes before the variable nodes update their beliefs which are sent back to adjacent factor

nodes. Figure 4.3b shows that the total time for a single iteration of GBP is less than 125µs while

factor relinearisation and message compute makes up the bulk of the total compute time.

4.5.2 GBP Implementation

In experiments, we set the relinearisation threshold β = 0.01 and allow a factor to relinearise at

most every 10 iterations. The damping is set to d = 0.4 and messages from factors are undamped

for 8 iterations after relinearisation. This damping schedule allows newly relinearised messages to

propagate through the graph while also stabilising later iterations. As the IPU handles halves and

floats but not doubles, we found that it was necessary for numerical stability to use the Jacobians to

automatically set prior constraints to initially have the same scale as the measurement constraints.

These priors are then weakened to a hundredth of the strength gradually over 10 iterations. GBP

is not sensitive to the mean of the prior and displays the same behaviour on convergence as when

implemented on a CPU with doubles when the stronger priors are not required.

4.6 Experimental Evaluation

For evaluation we use sections of sequences from the TUM [Sturm et al., 2012] and KITTI [Gei-

ger et al., 2012] datasets. We use ORBSLAM [Mur-Artal et al., 2015] as the front-end to select

keyframes, generate ORB features [Rublee et al., 2011] and handle correspondence. In all TUM

experiments, landmarks are initialised at a depth of 1m from the keyframe which first observes

them, while in KITTI experiments we initialise landmarks with Gaussian noise of standard devi-

ation 0.5m.

We compare our implementation of GBP to Ceres [Agarwal and Mierle, 2012], a non-linear least

squares optimisation library often used for bundle adjustment. In all comparisons Ceres is run on a

6 core i7-8700K CPU with 18 threads (which we found experimentally to maximise performance)
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4.6. Experimental Evaluation

Table 4.1: The final two columns give the time in milliseconds to converge to ARE < 1.5 pixels
for 10 sequences from the TUM data set (two testing sequences, 4 handheld camera sequences, 2
robot mounted sequences, 2 object reconstruction sequences) and 2 from the KITTI data set. k is
the number of keyframes, p landmarks, m measurements.

Sequence k p m GBP Ceres
fr1xyz 42 2194 12908 37.2 1180
fr1rpy 34 1999 8920 130.3 1030

fr1desk 63 2913 13514 77.3 2850
fr1room 20 1467 5388 31.7 779
fr2desk 40 892 3995 20.8 425
fr3loh 36 1140 5065 44.6 470

fr2robot360 40 333 1745 51.5 212
fr2robot2 20 567 4036 8.6 345
fr1plant 40 1824 6818 31.8 1450
fr3teddy 125 1919 9032 40.0 1450
KITTI00 30 2745 16304 14.2 342
KITTI08 30 3053 10480 14.8 394

and uses Levenberg-Marquardt with Dense Schur and dense Cholesky on the reduced system, a

Huber kernel and analytic derivatives.

Qualitative video results that show the refinement of points and cameras during bundle adjustment

are available at: https://www.youtube.com/watch?v=TqeN8aQNgd0. We observe the

typical property of local inference methods that local high frequency errors decay rapidly while it

takes a large number of iterations for global low frequency errors to decay and produce a globally

aligned reconstruction.

4.6.1 Bundle Adjustment Speed Evaluation

First we present results to show that our implementation of GBP can rapidly solve large bundle

adjustment problems.

We evaluate the optimisation speed by tracking the average reprojection error (ARE) over all

measurements in the graph. Table 4.1 shows the time to converge to ARE < 1.5 pixels for 10

sequences with diverse camera motion and co-observation of landmarks in which keyframe po-

sitions are initialised with Gaussian noise of standard deviation 7cm. The corresponding ARE

curves for 3 of the sequences are plotted in Figure 4.4a. GBP reaches convergence an average of

24x faster than Ceres over the 10 sequences. Typically GBP takes between 50-300 iterations to

converge and Ceres takes between 10-40 steps, however, due to the rapid in-place computation on

the IPU, which operates at 120W, GBP is significantly faster.
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4. Bundle Adjustment on a Graph Processor

(a) Bundle adjustment. ARE for 3 sequences fr1desk, fr2desk, fr3teddy. fr1desk is more difficult as it has
the most measurements and the camera moves a large distance. fr3teddy has 125 keyframes but is easier to
solve as fewer landmarks are densely observed in object reconstruction. Similar results were observed for
the other TUM sequences whose convergence times are described in Table 4.1.

(b) SLAM. Time to converge to ARE < 1.5 pixels after a new keyframe is added and initialised with the
pose of the most recent keyframe. Results are for the first 30 keyframes of the sequences fr1desk, fr2desk,
fr3teddy.

Figure 4.4: Speed comparison between GBP and Ceres. Note the logarithmic scale on the y axes.

4.6.2 SLAM Speed Evaluation

In GBP, the confidence in the belief estimations grows over iterations as the beliefs tend towards

the marginal distributions. This Bayesian property is an inherent advantage over batch methods

that make point estimates in the SLAM setting. For GBP, new variables are quickly snapped

into a state that is consistent with the current estimates given the new constraints, while for batch

methods, the full solution must be recomputed to refine just a few variables.

We go towards validating this advantage in incremental SLAM by comparing the time taken to

converge to ARE < 1.5 pixels after each new keyframe is added for 3 TUM sequences with 30

keyframes. New keyframes are initialised at the location of the most recent keyframe and new
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4.6. Experimental Evaluation

landmarks at a depth of 1m. To aid Ceres and mimic the Bayesian approach, we fix the landmarks

for the first 3 steps of Levenberg-Marquardt optimisation. Results are shown in Figure 4.4b for

which on average, over the 90 keyframes added, GBP converges 36x faster than Ceres, often in

fewer than 10 iterations.

4.6.3 Global vs Local Convergence Evaluation

As a local algorithm GBP exhibits fast local convergence followed by slower global conver-

gence. This is because if two nodes are separated by k edges in the graph, it takes k iterations

of GBP message passing for information to propagate between these two nodes. This behaviour is

best observed in the video results accompanying this paper at https://www.youtube.com/

watch?v=TqeN8aQNgd0, where the point cloud reconstruction rapidly becomes locally con-

sistent while global structure is adjusted slowly over many iterations.

We quantitatively evaluate the difference between the local and global convergence speeds in

Figure 4.5 by plotting both the average reprojection error (a local metric) and the camera loss

(a global metric) for 3 synthetic medium sized bundle adjustment problems. The problems are

generated with different random seeds and all have 40 cameras and 1000 points, making them of a

similar size to the real sequences used in other evaluations. We observe that Levenberg-Marquardt,

the global optimisation algorithm used by Ceres, is able to converge to a low reprojection error

and camera loss in 10s of iterations. On the other hand, being a local algorithm, GBP can quickly

converge to a low ARE, however it can take over 1000 iterations to convergence on accurate

global camera estimates. This is because it can take hundreds of iterations for information to

propagate from one side of the graph to another. This analysis suggests that if we want accurate

global solutions rapidly with GBP, graph abstraction to produce more small world graphs will be

important.

4.6.4 Robustness Evaluation

We compare the robustness of GBP and Ceres in solving BA problems by varying the noise added

to the keyframe initialisation and counting the proportion of successful convergences over 100

trials at each noise level. Figure 4.6 shows that GBP has a comparable convergence radius to

Ceres for these two TUM sequences.
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4. Bundle Adjustment on a Graph Processor

Figure 4.5: Local and global loss metrics comparing convergence of GBP (a local algorithm)
and Levenberg-Marquardt (a global algorithm). The local metric is the average reprojection error
(ARE), while the global metric is the camera loss between the estimated and ground truth camera
poses. The 3 synthetic bundle adjustment problems have 40 cameras and 1000 points and are
simulated with realistic noisy observations, initialisations and point track lengths. Note the log
scale on both axes, and the x axis here is iterations rather than time.
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Figure 4.6: Convergence basin comparison. Proportion of successful convergences over 100
trials for different noise levels with the fr1desk and fr3teddy TUM 30-keyframe sequences. A
successful convergence constitutes reaching ARE < 1.5 pixels.
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Iteration 1 Iteration 20

Iteration 50 Iteration 200

Figure 4.7: GBP with Huber loss. Landmark projections (blue points) and measurements
(circles) are connected by lines. The lines and circles are red when the reprojection error ex-
ceeds the Huber threshold and the down-weighting of the message is proportional to the length of
the red line.

4.6.5 Huber Loss Evaluation

The Huber loss function has the effect of down-weighting messages from factors that may con-

tain outlying measurements. We demonstrate this effect in Figure 4.7 in which we visualise the

reprojection errors at iterations 1, 20, 50 and 200 of GBP in a chosen keyframe for which 10%

of measurements are artificially added outliers. All measurements begin in the outlier regime and

after 20 iterations a large proportion of the measurements remain in this regime as GBP has not yet

worked out which measurements are inliers. By iteration 200, only the erroneous measurements

are in the outlier regime as GBP has determined that these measurements are least consistent with

other constraints in the graph. This behaviour of gradually removing false positive outlier clas-

sifications can be observed in Figure 4.8a, for a sequence in which 3% of data associations are

incorrect.

To validate quantitatively the benefits of the Huber loss with both GBP and Ceres, we conduct an

ablation study on a sequence with incorrect data associations and measure the converged reprojec-

tion error. Figure 4.8b shows that for GBP, the Huber loss is necessary and effective in handling

incorrect data associations. For Ceres however, the same Huber loss is unable to identify the out-

liers and Ceres cannot arrive at a low ARE solution. This indicates that GBP’s local consideration

of outliers may be more effective than the global consideration in LM.
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(a) Measurements are classified as outliers if they
are in the linear loss regime. The recall is 1 over all
iterations. ARE converges to < 1.5 pixels after 268
iterations while the precision is still increasing.
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(b) h indicates Huber loss is used. For GBP, conver-
gence is not reached without a Huber loss for more
than 3% bad associations, while with a Huber loss
GBP can down-weight the outliers and solve the
bundle adjustment problem. For Ceres, the Huber
loss improves the final ARE however it still cannot
converge the solution.

Figure 4.8: Results for a 20 keyframe sequence from fr1desk in which bad data associations are
artificially added.

4.7 Discussion / Conclusion

We have shown that with the emergence of new flexible computer architecture for AI, specifically

Graph Processors like Graphcore’s IPU, Gaussian belief propagation can be a flexible and efficient

framework for inference in Spatial AI problems. By mapping the bundle adjustment factor graph

onto the tiles of a single IPU, we demonstrated that GBP can rapidly solve a variety of bundle

adjustment problems with a 24x speed advantage over Ceres. Additionally, we gave an indication

of the framework’s capacity to efficiently solve incremental SLAM problems and be robust to

outlying measurements.

In the near term, we would like to apply GBP to very large bundle adjustment problems. Our

framework scales arbitrarily to multiple chips, and Graphcore provide a custom interconnect for

highly efficient inter-IPU message passing. An even more interesting direction which looks to-

wards low power embedded Spatial AI would investigate how to fit large problems on a single

chip by merging or replacing factors using a combination of network priors and marginalisation.

We hope that our framework of flexible, in-place optimisation on a dynamically changing factor

graph will be applied to a broad spectrum of AI tasks incorporating heterogeneous factors.
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In this chapter, we describe work from our paper Incremental Abstraction in Distributed Probab-

ilistic SLAM Graphs [Ortiz et al., 2022b] that was presented at the International Conference on

Robotics and Automation (ICRA) in 2022.
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Scene graphs represent the key components of a scene in a compact and semantically rich way,

but are difficult to build during incremental SLAM operation because of the challenges of ro-

bustly identifying abstract scene elements and optimising continually changing, complex graphs.

We present a distributed, graph-based SLAM framework for incrementally building scene graphs

based on two novel components.

First, we propose an incremental abstraction framework in which a neural network proposes ab-

stract scene elements that are incorporated into the factor graph of a feature-based monocular

SLAM system. Scene elements are confirmed or rejected through optimisation and incrementally

replace the points yielding a more dense, semantic and compact representation. Second, enabled

by our novel routing procedure, we use Gaussian belief propagation for distributed inference on a

graph processor. The time per iteration of GBP is structure-agnostic and we demonstrate the speed

advantages over direct methods for inference of heterogeneous factor graphs. We run our system

on real indoor datasets using planar abstractions and recover the major planes with significant

compression.

A video presentation of our method and some qualitative results are available at: https://

www.youtube.com/watch?v=ZoJ9ylb4Ss8.

5.1 Introduction

Abstract scene graphs of environments represent the key structures, objects and interactions in

a semantically rich and compact way. Ideally, an intelligent embodied device should build a

scene graph rapidly and on-the-fly in a new environment using on-board sensing and processing

to enable immediate intelligent action. Identifying high-level abstractions is challenging and can

require an expensive search-and-test over both the type of abstraction and the subset of elements

to which it applies. Pre-trained neural networks can amortise this cost by directly proposing

candidate abstractions and most algorithms for scene graph construction operate by either post-

processing a low-level representation (e.g. semantic labelling of an occupancy volume [McCor-

mac et al., 2017]) or by committing to abstractions of the low-level data at measurement time (e.g.

detecting object instances [Salas-Moreno et al., 2013, Sucar et al., 2020]).

A more ambitious target is general incremental abstraction. Where abstract scene elements can

be identified from single observations, they should be immediately added to a scene represent-

ation. More commonly, several observations may be needed to identify abstractions with high
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• Planes replace raw points.
• Yields dense semantic map 

and compact factor graph.

• Graph contains raw points and 
abstract elements (planes).
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Figure 5.1: Method Overview. The time per iteration of Gaussian belief propagation is structure-
agnostic so it can rapidly optimise factor graphs with little sparsity structure that appear in incre-
mental scene abstraction. In the graph, green nodes are points and red nodes are planes. See the
key in Figure 5.2 for the remaining nodes.

confidence, requiring the system to temporarily store low-level information (e.g. raw geometry as

point clouds). As exploration continues, abstraction should operate continually and hierarchically

on both stored and incoming observations, gradually replacing the raw elements in the map. A

scene graph should therefore at any point in time be a hybrid mix of raw and abstract elements,

potentially of many kinds.

The correct way to accumulate many different measurements and priors into coherent estimates

is via probabilistic inference, and a factor graph represents the probabilistic structure of inference

problems in SLAM [Dellaert and Kaess, 2017]. Abstract scene elements can be combined into this

estimation framework and probabilistic inference can refine and confirm or reject the abstractions.

A hybrid, incrementally abstracting map is therefore represented by a complicated, heterogen-

eous and dynamically changing factor graph, where new raw structure is continually added while

abstractions are tested, and replace raw structure if those tests are passed.

There have been few attempts to solve the true, complex inference problems these factor graphs

represent in real-time systems. Most SLAM systems that go beyond sparse point cloud processing

make severe approximations to the true inference problem by artificially layering estimation [Mc-

Cormac et al., 2017], baking in specific variable orderings [Zhou et al., 2020a], or by using altern-

ation to avoid joint estimation [Newcombe et al., 2011]. We believe that these choices are often
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related to the rigidity of existing optimisation algorithms that need to exploit the fixed structure of

an optimisation problem to achieve efficient performance on standard processing hardware.

Gaussian belief propagation has recently been proposed as a strong candidate algorithm for real-

time inference of arbitrary and dynamically changing factor graphs [Davison and Ortiz, 2019,

Ortiz et al., 2021]. Its computational structure is node-wise parallel and it operates by local mes-

sage passing on a factor graph. GBP trades the optimality of global updates for more flexible

distribution of compute and memory, meaning it can better exploit parallel hardware and operate

without assumptions about the global structure of an estimation problem. When implemented on

a graph processor [Graphcore, 2022], GBP has already been shown to have speed advantages over

global methods for inference on static bundle adjustment graphs [Ortiz et al., 2020].

In this work, we present a general method for incrementally constructing scene graphs in real-time

based on two novel components:

1. An incremental abstraction framework that robustly identifies abstract scene elements and

compresses the factor graph.

2. Distributed optimisation of dynamic heterogeneous graphs via GBP with dynamic routing.

First, our incremental abstraction framework combines amortised inference from an off-the-shelf

network with probabilistic inference to robustly identify abstract scene elements. Additionally,

upon accepting a scene element we linearise and join factors connecting common nodes to yield a

more semantic, dense and compressed representation.

Second, enabled by our novel routing procedure, we are the first to use GBP on a graph processor

for inference of dynamic heterogeneous factor graphs. The time per iteration of GBP is independ-

ent of the graph structure and we demonstrate the resulting advantages over direct methods.

While our framework is general and can be used with any abstract feature detector, we experiment

with planar abstractions, which provide a compact way to densely represent geometry in many

human-made environments. In evaluations, our framework reconstructs accurate planar scene

graphs of real indoor environments at different levels of granularity, demonstrates significant graph

compression and improves tracking compared to ablated baselines.
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5.2 Related work

For long-term SLAM operation it is vital to manage computational cost by limiting factor graph

growth to match the spatial extent of the map. Towards this goal, [Johannsson et al., 2013] re-

uses existing keyframes for new measurements and [Ila et al., 2009] uses filtering to add only

non-redundant nodes and edges. Alternatively, compression by node removal [Carlevaris-Bianco

et al., 2014, Mazuran et al., 2016], attempts to recover the best non-linear and sparse factor graph

that approximates the marginalised distribution. These methods target compression with minimal

information loss, while we focus on semantic-guided compression.

Recent SLAM research has investigated incremental scene reconstruction with semantic elements

included in the factor graph. Object-centric SLAM methods use object recognition and corres-

pondence in the front-end to build scene graphs of objects [Salas-Moreno et al., 2013, Sucar

et al., 2020]. Planar SLAM methods operate similarly, either detecting planes from an RGB-D

input [Salas-Moreno et al., 2014, Kaess, 2015, Hsiao et al., 2018, Hosseinzadeh et al., 2018, Zhou

et al., 2020a], or in the monocular case from CNN predictions [Yang et al., 2016, Yang and

Scherer, 2019, Hosseinzadeh et al., 2019] or from the reconstructed points [Arndt et al., 2020].

All previous methods rely on accurate initial plane predictions and, unlike our method, cannot

confirm or reject planes within the inference process, nor compress the factor graph. Additionally,

for real-time operation, these methods often layer optimisation [Yang et al., 2016] or construct

reduced systems to leverage specific problem structure [Zhou et al., 2020a].

Recent methods have built hierarchical 3D scene graphs containing layers of objects, rooms and

buildings in which edges describe non-probabilistic relations [Armeni et al., 2019, Rosinol et al.,

2020, Wald et al., 2020, Wu et al., 2021]. Armeni et al. [Armeni et al., 2019] constructs the graph

from an annotated mesh model while Rosinol et al. [Rosinol et al., 2020] build an incremental

system that also tracks human meshes and has shown impressive results on simulated datasets.

5.3 Incremental Planar Abstraction Framework

We combine amortised inference via a neural network with distributed probabilistic inference

via GBP to incrementally abstract factor graphs in SLAM. We emphasise that the master repres-

entation of the scene is always the factor graph and during online operation GBP is continually

performing inference on this graph.
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Algorithm 1 System Overview.
1: Initialise factor graph with first keyframe.
2: n iterations = 0
3: while in operation do
4: Run iteration of GBP
5: n iterations += 1
6: if new keyframe then
7: Feature matching (Section 5.3.1, Figure 5.2 left)
8: Add NN plane hypotheses (Section 5.3.2, Figure 5.2 middle)
9: if n iterations % N == 0 then

10: for each plane hypothesis do
11: if confirm criteria satisfied (Equation 5.5) then
12: Create rigid body plane (Figure 5.2 right)
13: else if reject criteria satisfied (Equation 5.4) then
14: Remove plane hypothesis (Figure 5.2 left)
15: if n iterations % M == 0 then
16: for each pair of planes do
17: if merge criteria satisfied then
18: Merge planes (Section 5.3.4)

GBP is interrupted to perform editing of the factor graph, which occurs when: i) adding a new

keyframe (Sections 5.3.1 and 5.3.2) ii) testing plane hypotheses (Section 5.3.3) or iii) merging

planes (Section 5.3.4). These components are detailed in the following sections, and a high-level

overview of the system-level operation is described in Algorithm 1.

5.3.1 Feature Extraction from Keyframes

We construct the abstract scene graph on top of a feature-based monocular SLAM system. We

choose a sparse front-end for experimental purposes while we concentrate on the graphical back-

end in this work.

Given a stream of live images, we use the ORB-SLAM2 [Mur-Artal and Tardós, 2017] front-end to

build the raw factor graph composed of keyframes, points and reprojection factors (Figure 5.2 left).

Reprojection factors penalise the L2 distance between a matched feature at image coordinates z

in keyframe c and the projection of the corresponding point p in the image plane. Reprojection

factors have the form:

lr(c,p ; z) ∝ exp
(
− 1

2
∥ z− proj (Rc p+ tc) ∥2Σr

)
, (5.1)

where proj is the projection operator and Rc and tc are the rotations and translations derived from

keyframe pose c.
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Figure 5.2: Factor Graph. Left: Raw factor graph with only keyframes and points. Middle: The
network predicts plane π1 in keyframe 3 and points p2 and p3 lie inside the predicted segment-
ation mask. The plane hypothesis variable node is added to the graph along with 2 plane-point
distance factors and a plane prediction factor. Right: The plane hypothesis is confirmed and the
plane hypothesis and points are replaced by a rigid body plane node r1. The factors with a dashed
border are factors that connect to a rigid body node and have a different functional form (Eq. 5.7
and 5.8). Linearised reprojection factors that connect to the same rigid body node are combined
into a single factor which is represented by overlaying 3 reprojection factors. If the plane hypo-
thesis is rejected the factor graph returns to the form on the left.

5.3.2 Integrating Plane Predictions

We denote the homogeneous plane vector π = (π1, π2, π3, π4)
⊤ ∈ P3 [Hartley and Zisserman,

2004]. Points p ∈ R3 lying in a plane satisfy n̂⊤p = d, where n̂ = (π1,π2,π3)⊤√
π2
1+π2

2+π2
3

is the nor-

mal vector and d = −π4√
π2
1+π2

2+π2
3

is the distance from the origin. The homogeneous plane vector

is transformed between coordinate frames using the inverse transpose of the homogeneous point

transform: π′ = T−⊤π. For optimisation, we represent planes using the minimal parameterisa-

tion n̂ · d and denote the ⊟ operator to subtract the plane parameters in our chosen minimal form:

πa ⊟ πb := n̂a · da − n̂b · db.

For each keyframe, we run a forward pass of the PlaneRCNN model [Liu et al., 2019] to predict

a set of plane parameters and corresponding segmentation masks. The model is based on Mask

RCNN [He et al., 2017] with an additional head added to regress the plane normal. The predictions

are filtered by removing planes with especially small or disconnected segmentation masks. The

resulting plane hypotheses are then integrated into the existing factor graph as plane hypothesis

nodes (Figure 5.2 middle).

Using the segmentation mask for each plane, we determine the map points that are predicted to

lie in the plane and introduce plane-point distance factors, connecting the hypothesised plane π

to each of these points p. Plane-point distance factors penalise the perpendicular distance from a
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point to a plane and have the form:

lpp(p,π) ∝ exp
(
− 1

2
∥ n̂ · p− d ∥2Σpp

)
. (5.2)

Each plane hypothesis π is also connected to the keyframe c in which it was predicted via a plane

prediction factor. Plane prediction factors treat the network prediction of the plane parameters πz

as a measurement and take the form:

lπp(π, c ;πz) ∝ exp
(
− 1

2
∥ πz ⊟ T−⊤

cw π ∥2Σπp

)
, (5.3)

where Tcw ∈ SE(3) is the transformation from the global coordinate frame to the coordinate

frame of the camera c. In experiments we set Σπp to be very large as the network plane parameter

prediction can be unreliable.

We emphasise that our framework is not specific to planes. Any abstract scene element with an

appropriate compatibility factor and inference model to generate hypotheses could be used.

5.3.3 Plane hypothesis confirmation and rejection

Having added the plane hypotheses to the raw factor graph, GBP carries out inference on the

hybrid graph (Figure 5.2 middle) and converges to the configuration that minimises the energy of

the constraints in the graph. To allow bad plane hypotheses to be treated as outlying measurements

and have only a small contribution to the graph energy, we employ the robust Tukey loss function

for all factors using covariance scaling as described in Section 3.3.

After convergence, for each plane hypothesis, we go through all connected points and read off

from the factor graph the likelihood that the point lies in the plane. The likelihood is the plane-

point distance factor density lpp(pconv,πconv) evaluated at the converged belief means: pconv and

πconv. To determine whether to confirm or reject each plane hypothesis, we use the proportion of

points y with likelihood lpp(pconv,πconv) > lthresh and the number of iterations the hypothesis

has been in the graph t.

Reject criteria : y < yreject OR t > tmax (5.4)

Confirm criteria : y > yconf AND t > tmin (5.5)

These criteria are based on the likelihoods, however a more rigorous approach would be to com-

pare the marginal likelihood of the data with and without the plane as in Bayesian model se-

lection [Mackay, 2003]. It remains an open question how to efficiently evaluate the marginal
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likelihood in factor graphs and whether local approximations of the marginal likelihood could be

used instead.

If rejected, the plane hypothesis node and all adjacent factors are removed from the graph, as in

Figure 5.2. If confirmed, the plane hypothesis node and points with lpp(pconv,πconv) > lthresh

are replaced by a single rigid body variable node with just 6 degrees of freedom, as in Figure 5.2

right. We use a rigid body to represent the plane as we assume that the relative configuration of

the planar points has now been determined and that they can be optimised as a single rigid planar

body — this compression could also be used for small rigid objects.

The reprojection factors connected to the planar points, and the plane prediction factors connected

to the plane hypothesis node are transferred to the new rigid body variable node. For these factors,

the rigid body transformation r becomes an argument of the measurement function while πconv

and pconv are parameters as we replace:

π → T−⊤
r πconv and p → Rrpconv + tr , (5.6)

where Tr, Rr and tr are the transformation matrix, rotation matrix and translation derived from

the minimal SE(3) vector r. Plane prediction and reprojection factors become:

lπp(r, c;πz,πconv) ∝ exp
(
− 1

2
∥ πz ⊟ T−⊤

cw T−⊤
r πconv ∥2Σπp

)
, (5.7)

lr(c, r; z,pconv) ∝ exp
(
− 1/2 ∥ z− proj(Rc(Rrp+ tr) + tc) ∥2Σr

)
(5.8)

As all transferred reprojection factors connect to the same pair of nodes, they can be linearised

and combined into a single factor by taking the product of the factors. This further compresses the

graph and reduces the computation at each iteration of GBP. Note that relinearising this combined

factor requires linearising the contributions from all of the original reprojection factors, however

this only occurs on a small proportion of GBP iterations.

5.3.4 Merging Planes

As there may be multiple plane hypotheses for the same geometric plane, we merge confirmed

planes that have: i) aligned normal vectors, ii) small perpendicular separation, and iii) large over-

lap. The latter two criteria are estimated by sampling points in the plane. Once two planes are

chosen to be merged, we replace the two rigid body planes with a single rigid body plane. The

new plane normal is the average of the merged normals and the factors connecting to the merged

planes are transferred to the new plane.
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Figure 5.3: Routing procedure. The yellow and blue nodes are different node types. Purple lines
represent edges in the factor graph and the blue lines represent communication edges between
hardware cores. In this illustration, each node in the factor graph lives on a different hardware
core.

5.4 Dynamic Routing on the IPU

We implement our incremental abstraction method on a single Graphcore MK1 IPU chip [Graph-

core, 2022]. The IPU is a large chip composed of 1216 independent cores arranged in a fully

connected graph structure. Like a GPU it is highly parallel, but due to its interconnect structure

and the local memory on each core, it has breakthrough performance for algorithms with a sparse

message passing character [Lacey, 2019].

We have already described in Section 4.5.1 how inference on static factor graphs is achieved by

mapping the factor graph onto the IPU cores with the communication pattern matching the topo-

logy of the graph. This approach however cannot be applied to dynamic graphs, as the communic-

ation pattern must be precompiled and recompilation is expensive. To enable parallel inference of

dynamic factor graphs, we develop a routing procedure that can manage arbitrary graph topologies

while operating on a fixed precompiled communication pattern.

Our routing solution introduces densely connected routing nodes to mediate the transfer of mes-

sages through the factor graph. Routing nodes have knowledge about the structure of a part of

the factor graph, stored in a routing matrix. As illustrated in Figure 5.3, when the factor graph

is edited, the routing matrix can be updated to enable inference on the new factor graph without

changing the compiled communication pattern.

To distribute the routing, we create a routing node for each factor type in the graph. One additional

requirement is that we specify the maximum number of nodes of each type in the graph and the

maximum number of edges each type of node can have — these are weak requirements and the

limits can be set generously. For very large graphs we can simply create multiple routing nodes

for each factor type to avoid routing becoming a bottleneck.
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5.5. Implementation Settings

The routing procedure enables optimisation of arbitrary graph topologies at minimal time cost;

only increasing the time per iteration from 200µs to 400µs. As GBP typically converges in less

than 100 iterations [Ortiz et al., 2020], inference remains comfortably within real-time constraints.

5.5 Implementation Settings

For all experiments, we use the following default parameters: Σr = σ2rI2, σr = 2 pixels, Σπp =

σ2πpI3, σπp = 20m, Σpp = σ2pp, σpp = 5cm, yreject = 0.5, yconf = 0.8, lthresh = 0.8, tmax =

6000 iterations, tmin = 4000 iterations, N = M = 1000 iterations and β = 1e − 4. We use

message dropout of 0.7 and message damping of 0.4 (see Section 3.4.6) to stabilise GBP [Bickson,

2008]. New keyframes are initialised with a constant velocity motion model and new points are

initialised at an average depth from the camera.

5.6 Experimental Evaluation

For evaluation we use real-world sequences captured with the Kinect camera in varied indoor

environments and sequences from the TUM dataset [Sturm et al., 2012]. In compression and

tracking evaluations, we use Ortiz et al. [Ortiz et al., 2020] as a baseline and call the method

GBP-BL. Similar to our system GBP-BL uses GBP for inference in SLAM but without planar

abstractions, meaning that comparisons serve as ablations of our planar abstraction framework.

We first present convergence time evaluations and qualitative reconstructions before evaluating

compression and tracking accuracy in ablation experiments.

5.6.1 Convergence Time Evaluation

We evaluate the convergence time for bundle adjustment problems based on the sitting room se-

quence for factor graphs with an increasing number of different factor types. We begin with a

factor graph containing 35 keyframes, 3108 points and 10000 reprojection factors and measure

the convergence time from noisy initialisations. We then add 200 additional factors of a new type

to the graph along with any new variables nodes (for example we add plane hypotheses variable

nodes when adding plane hypothesis prediction factors) and repeat the experiment. We conduct

experiments adding 4 additional types of factors, meaning in the final experiment there are 10800

factors in the graph.
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Figure 5.4: Convergence time. Mean and standard deviation error over 10 runs are plotted. We
define convergence as reaching 1.5 pixels average reprojection error as in [Ortiz et al., 2020]. With
the additional 800 factors, convergence time for Ceres with Dense Schur increases by roughly 5x
from 20.1ms to 111.6ms, while GBP increases from 15.6ms to 22.0ms.

Following Ortiz et al. [Ortiz et al., 2020], we compare GBP implemented on a single IPU chip

[Graphcore, 2022] with Ceres [Agarwal and Mierle, 2012], a non-linear least squares optimisation

library, run on a 6 core i7-8700K CPU with 18 threads. Ceres uses Levenberg-Marquardt (LM), a

Tukey kernel and analytic derivatives (which we found maximise performance). In Figure 5.4 we

compare the convergence time of GBP with the 3 fastest Ceres linear solvers.

As different types of factors are added to the graph, convergence time for Ceres increases greatly

while for GBP there is only a slight increase. To understand these curves, it is instructive to break

down convergence time as the product of the time per iteration and the number of iterations to

converge. Ceres makes optimal global updates through LM and, across all experiments, converges

in 5-10 iterations while GBP requires 20-25 iterations. The time per iteration however is the more

significant factor and where the two methods differ greatly in performance.

The local distributed nature of GBP makes its time per iteration structure-agnostic; in other words,

the compute per iteration depends only on the number of factors and not their structure. Con-

sequently, the time per iteration for GBP is approximately constant for all experiments and the

convergence time only increases slightly, due to extra factors and more iterations required to con-

verge.

In contrast, as different types of factors are added to the graph, solving the linear system or normal

equations for the Ceres LM update becomes considerably more expensive, increasing the time per
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a) Sitting room b) Bedroom c) Laboratory d) TUM str_tex_far

Figure 5.5: Qualitative reconstructions. Top: Planar reconstructions recovered by our system.
Planes that are almost perpendicular or parallel to the largest planes in the reconstruction are
displayed as rectangles, while the extent of other planes is the convex hull of the planar points. We
do not include raw points that have not been abstracted in this visualisation. Bottom: Visualisation
of the scene obtained using depth, shown for reference rather than comparison. Reconstructions
a), b) and c) are from sequences captured with the Kinect camera and d) is from the TUM sequence
structure texture far. Perpendicular planes in d) are joined at their intersection for a watertight
reconstruction. Note in sequence c), the near side of the room is not abstracted into a plane as
there is a cluttered bookshelf.

iteration. Ceres linear solvers compute the update by exploiting sparsity structure in the Fisher

information matrix which depends on both the number of non-zero entries or equivalently factors

in the graph and the variable ordering. In the base case, the Dense Schur solver is designed to

leverage the large zero blocks in the information matrix to efficiently solve the normal equations

without inverting the full information matrix. As different types of factors are added, even in very

small numbers, these zero blocks are eroded and the time per iteration for Ceres increases by over

5x with only an additional 8% of factors.

These experiments expose the reliance of direct solvers on fixed sparsity structure and suggest that

GBP is more efficient for optimising heterogeneous scene graphs without strong structure. Lastly,

not only does GBP have the right computational properties, but it is also doing additional work by

computing both the MAP and the marginal covariances while LM only computes the MAP with

significant extra computation required to get the covariances.
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5.6.2 Qualitative Reconstructions

We present planar reconstructions of 4 real-world sequences by our system in Figure 5.5. Our

system captures the prominent planes in real scenes such as walls, beds (b), desks (b, c) and

cupboards (a). In Figure 5.5 d) we verify that for a simple entirely planar scene, our system

can achieve a complete reconstruction. Figure 5.1 shows an intermediate reconstruction of the

same sequence with points. Qualitative video results that show the real-time reconstruction of

the points and planar abstractions are available at: https://www.youtube.com/watch?v=

ZoJ9ylb4Ss8.

The granularity of abstractions in our system is controlled by two interpretable parameters, which

can be set according to the specific requirements of downstream processes which operate on the

resulting reconstruction. For example, dense fine-grained geometry might be required for object

manipulation, whereas coarse grained representations would be more efficient for path planning.

The value of σpp balances the contributions of the plane-point factors and the reprojection factors.

As shown in Figure 5.6, weak plane-point factors (large σpp) prioritise minimising reprojection

errors and consequently only very planar regions are abstracted. On the other hand, strong plane-

point factors (small σpp) encourage points in hypothesised planes to be co-planar and can lead to

the abstraction of regions that are approximately planar, such as the top of the shampoo bottle in

the bottom right panel of Figure 5.6. Additionally, the merging criteria can be varied to determine

the level of granularity. In Figure 5.6, coarse merging thresholds join the posters into a single

wall plane and merge the planar objects into the table plane while finer thresholds leave these

reconstructed planes separate.

5.6.3 Compression Evaluation

Graph compression yields a more dense, semantic and parameter-efficient representation and re-

duces the amount of computation per iteration of GBP. The computation is proportional to the

number of edges or equivalently the number of factors when all factors are pairwise. To quantify

the compression capabilities of our system, in Figure 5.7 we plot the number of factor nodes in

the graph as a function of keyframes added and compare with GBP-BL [Ortiz et al., 2020].

For our planar system, there are initially more factors as many plane hypotheses are added, how-

ever the graph is quickly compressed as planes are confirmed. The compression is most significant

in the Laboratory and TUM str tex far sequences in which there are large textured walls, while
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5.6. Experimental Evaluation

Figure 5.6: Reconstruction granularity. Left: Planar reconstruction for different parameter con-
figurations. Right: RGB image and planar segmentation for the first keyframe.
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Figure 5.7: Factor graph size. Number of factor nodes in the graph as keyframes are added. Solid
lines are our system, dashed lines are GBP-BL [Ortiz et al., 2020].

there is less compression in the sitting room sequence due to large curved objects such as the sofa.
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Table 5.1: Average absolute trajectory error (ATE) across 16 runs for sections of TUM sequences
[Sturm et al., 2012]. Ours-C is ours without compression.

ATE (cm) Ours Ours-C GBP-BL ORB-SLAM2
str tex far 1.204 1.186 1.384 0.924

cabinet 0.723 0.659 1.048 0.601
long office 0.658 0.648 0.891 0.670

5.6.4 Tracking Evaluation

We evaluate the absolute trajectory error (ATE) of our method on 3 TUM sequences (chosen

for their prominent planar regions) in Table 5.1. We compare our full method with two ablated

systems: our planar method without compression (Ours-C) and GBP-BL which is a GBP based

method for robust bundle adjustment with similar performance to Ceres.

Ours-C has lower ATE than GBP-BL demonstrating that additional planar constraints help track-

ing. As expected, our full method performs slightly worse than Ours-C because compression is

lossy and bakes in errors. The fact that compression only comes with a small price in accuracy is

further evidence that we are finding correct abstractions.

We also demonstrate comparable trajectory error to ORB-SLAM2 [Mur-Artal and Tardós, 2017],

even achieving lower ATE for the long office sequence in which there are many planar points on

desks and monitors and slower camera motion. Both our method and GBP-BL lack a tracking

system so begin from a more difficult initialisation than ORB-SLAM2 when a new keyframe

is added, likely explaining the performance difference on the first two sequences. Designing

a distributed tracking system that would fit in with the GBP framework remains an important

research direction.

5.7 Conclusions

We have proposed a method for efficient incremental construction of probabilistic scene graphs

from monocular input by introducing two novel components. First, our incremental scene ab-

straction framework combines amortised inference via an off-the-shelf network with probabilistic

inference to identify abstract scene elements and build a more semantic, dense and compact repres-

entation. Second, our routing procedure enables the first application of GBP on a graph processor

to inference of dynamic heterogeneous factor graphs. We demonstrate the advantage of GBP

over direct methods for optimising complex factor graphs due to the structure-agnostic time per
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iteration. We implement our system with planar abstractions and show accurate reconstructions,

significant compression and improved tracking over ablated systems.

In the near term, we would like to explore using our framework in a more practical SLAM system

with an RGB-D input in which dense raw geometry is abstracted into a hierarchical factor graph

including objects, planes and rooms. More generally, we hope that the SLAM community will

begin to adopt more flexible and distributed inference frameworks, such as the system we present

here. Such frameworks are vital to leverage novel parallel hardware and tackle the computational

challenges brought about by slowing advancements in CPUs and GPUs and the move towards

dynamic heterogeneous scene graphs for representing environments.
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CHAPTER 6

Conclusions and Future Work

In this thesis, we have proposed, introduced and demonstrated Gaussian belief propagation as

a strong and effective algorithm for real-time decentralised inference in Spatial AI. In Chapter

1, we argued that general, efficient and scalable inference in Spatial AI requires decentralised

graph based algorithms that operate via local message passing on the factor graph with in-place

local processing and data storage. This was inspired chiefly by current rapid developments in

computing hardware and a move towards dynamic and heterogeneous scene representations that

will require flexible and scalable inference algorithms. This line of reasoning led us to propose

GBP as a strong candidate inference algorithm due to its unique properties of being: decentralised,

probabilistic, iterative and convergent, and asynchronous.

Our broader vision of the role of distributed inference via GBP in Spatial AI systems is based on

the non-linear factor graph being the master representation of all probabilistic constraints from

multiple information sources. The factor graph can be efficiently stored and dynamically edited

given incremental measurements and abstractions. Gaussian belief propagation is the simple but

highly flexible inference tool which can compute the set of marginal probabilistic estimates with

distributed processing and storage on the factor graph, suitable for graph processor chips or any

distributed compute resource. Large real-time systems will operate with continual or attention-

focused processing on their dynamic factor graphs, perhaps never reaching full convergence but

with estimates always good enough to be useful, either locally or globally, or calculated on de-

mand in a just-in-time manner. More specifically designed algorithms and specialised computing

hardware will exist for focused uses, but GBP can serve as a general ‘glue’ which holds all of

these together in a rigorous probabilistic framework.

Having presented this vision, in Chapter 2, we introduced the GBP algorithm, providing a deriv-

ation from first principles both for tree graphs and for loopy graphs from a variational inference
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perspective. We also proposed a novel variant of the GBP algorithm for handling non-Euclidean

variables using Lie Group theory. The key insight in this contribution is that all messages should

take the form of a Lie Group point estimate and a precision matrix defined in the tangent space

at this estimate. Although not presented in this thesis, GBP with Lie Groups was successfully

applied to distributed multi-robot localisation and was shown to be tolerant to a high percentage

of dropped messages [Murai et al., 2022].

In Chapter 3, we discussed a number of extra details and tricks that are required for solving

real practical problems with GBP. With the help of examples, we demonstrated that GBP can

converge with arbitrary asynchronous message schedules and that local robust factors can be used

for effective outlier detection. Additionally, we discussed relinearisation and damping strategies

that can improve both the chances and speed of convergence.

One key finding in this chapter was that accurate local convergence can be rapidly obtained long

before full global convergence, particularly in SLAM-like problems with mainly relative meas-

urements. In many applications, it is only the local relative information which is important (for

instance a robot which needs to plan its next actions to avoid obstacles), and this raises the ques-

tion of whether a different relative parameterisation could be more suitable. For example, Sibley

et al. [Sibley et al., 2009] represent scene points relative to a camera pose and loop closure is a

simple connection operation with the option for global adjustment only if needed.

In this final part of Chapter 3, we briefly presented the Robot Web protocol for ad-hoc peer-to-

peer GBP communication. This develops our vision of GBP as the probabilistic inference glue

between specialised inference modules for the problem of many-device localisation. Robot Web

can be implemented by publishing and reading web pages or other asynchronous communication

technologies without sharing any privileged local information, inspired by the original World Wide

Web design. The protocol is closely related to ongoing work in clustered GBP, in which sub-

problems are clustered into large nodes and message passing at the clusters is carried out with

specialised centralised computation. In the longer term, we hope that developments in the Robot

Web protocol may lead to GBP becoming a standard distributed estimation tool, rather than being

instantiated in monolithic libraries like other estimation methods.

Chapter 4 presented the first application of GBP to bundle adjustment, implemented on graph

processor hardware. Specifically, we leveraged Graphcore’s IPU processor, an example of a novel

flexible computer architecture for AI. By mapping the bundle adjustment factor graph onto the

cores of the processor, GBP was able to rapidly solve a variety of challenging medium-sized

bundle adjustment problems. In comparisons with the Ceres Solver on a CPU, we demonstrated
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a 24x speed advantage and were able to solve most problems in under 50ms. We additionally

presented some initial results for incremental SLAM problems and showed that GBP can be robust

to outlying measurements.

One key limitation of this work is that for incremental problems, as exploration continues, the

graph grows in an unbounded manner. As GBP operates via distributable message passing on

the factor graph, when the size of the graph exceeds the number of available parallel threads,

the implementation must involve some sequential computation therefore slowing down inference.

The graph processor has several tens of thousands of parallel threads and this limit is reached for

moderately large bundle adjustment problems. Although we could trivially scale to multiple chips,

this would be infeasible for low-power embedded applications.

To retain the factor graph as our master representation and store and update it in real-time on

an embedded processor, repeated simplification and abstraction is therefore essential to bound

the size of a graph. We believe that the route towards simplification is continual detection and

introspection, both in the front end and within the graph, to discover regions and structures which

can be simplified by deleting, merging or compressing nodes. As outlined in the introduction, we

hope the resulting hierarchical abstract scene graphs will represent the key structures, objects and

interactions in a semantically rich and compact way, providing far more utility for downstream

decision making than redundant low-level representations such as point clouds.

Graph simplification is challenging as robustly instantiating abstract scene elements can require an

expensive search-and-test over both the abstraction and the subset of nodes to which is applies. In

Chapter 5 we present a prototype system tackling this incremental abstraction problem in probab-

ilistic SLAM graphs. Our system is based on an incremental abstraction framework that combines

amortised inference via an off-the-shelf network with probabilistic inference to identify abstract

scene elements and yield a more semantic, compact and dense representation. Our framework is

designed to be general to arbitrary scene abstractions and we experiment with planar abstractions

that are common in man-made environments. In experiments on real sequences, we demonstrate

accurate planar reconstructions along with significant compression of the factor graph and im-

proved camera tracking.

A second contribution in our incremental abstraction system is a routing procedure to enable GBP

message passing on dynamic factor graphs given a fixed precompiled communication pattern on

the IPU. Previous work in Chapter 4 assumed a static graph for bundle adjustment and routing

provides a simple solution for dynamic graphs with limited additional overhead. In order to spe-

cify the precompiled graph, we analysed the typical graphs in an off-line experiment and used
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the number of nodes and topology to create a large generic hierarchical structure that is filled

dynamically at run-time.

With the ability to perform GBP on dynamic graphs on the IPU, we demonstrated the advant-

age of GBP over direct methods for inference on complex heterogeneous factor graphs due to

the structure-agnostic time per iteration of GBP. We hope that as dynamic heterogeneous graphs

become more common for representing environments, the community will begin to adopt more

flexible distributed inference frameworks like GBP.

Our system is an early prototype for incremental reconstruction of hierarchical scene graphs and

there remains a lot of work to be done to represent a richer set of scene elements such as objects

and rooms. While we took the approach of directly predicting abstractions in the front-end via

amortised inference, there are promising complementary directions. Recognition in the graph

using Geometric Deep Learning [Bronstein et al., 2017b], which like GBP operates with in-place

message passing, could enable fully graph-based semantic SLAM systems. A further promising

alternative is to instantiate generic hierarchical structure and then learn the hierarchical features

from data either in advance or at deployment time [George et al., 2017].

More generally, abstraction will play an important in maintaining ‘small world’ properties in the

Spatial AI graph, such that a short path exists between any two nodes and therefore information

flow and optimisation can always happen efficiently. Abstraction will also be crucial for attention

based message passing in large graphs in which attention is actively focused around a region of

interest for current decision making. Due to memory constraints for large graphs, as interest moves

away from a region it may need to be abstracted into a low resolution approximate representation

that can be brought back to high resolution with new incoming data and processing when revisited.

One important consideration is that it is difficult or impossible to reverse abstractions, unlike most

other processing in GBP. We observed this in our experiments in Chapter 5 in which drift was

baked into planar abstractions and could not be corrected in light of new measurements. Despite

this, we maintain that making greedy assumptions and simplifying representations must ultimately

be an essential part of efficient intelligence, and something that biological brains do as proven by

optical illusions.

Looking forward, we see many exciting directions for future research around GBP for Spatial AI.

Some directions we are most excited about are: improving theoretical guarantees, using learned

factors [Czarnowski et al., 2020, Mukadam et al., 2018, Opipari et al., 2021], introducing discrete

variables, combining GBP with GNNs [Satorras and Welling, 2021, Kuck et al., 2020], incre-
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mentally abstracting factor graphs, investigating numerical precision for messages, using GBP for

distributed learning in overparameterised networks and lastly unifying inference with test-time

self-supervised learning.
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CHAPTER 7

Appendix

7.1 Derivation of Belief Propagation as Variational Inference

In this section, we provide a derivation of Belief Propagation from the perspective of variational

inference, following Yedida et al. [Yedidia et al., 2000]. This derivation shows that the BP equa-

tions follow from constrained minimisation of an approximate free energy known as the Bethe

free energy.

We begin by writing the posterior as a product of the factors:

p(x) =
1

Z

∏
a

fa(Xa) =
1

Z

∏
a

e−E(Xa) , (7.1)

where Z =
∫
x

∏
a fa(Xa) is the partition function which we previously assumed to be 1.

The goal of variational inference is to find a variational distribution q(x) that approximates the

posterior well by minimising the Kullback-Leibler divergence between the variational distribution

and the posterior. The KL divergence is a non-negative asymmetric similarity metric that has a

minimum of 0 when p = q.

KL(q||p) =
∑
x

q(x) log
q(x)

p(x)

=
∑
x

q(x) log q(x)−
∑
x

q(x) log p(x)

= −Hq(x)− Eq[log p(x)]

= −Hq(x)−
∑
a

Eq[log fa(Xa)] + log(Z)

= F (p, q) + log(Z)

(7.2)
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Above, we defined the free energy:

F (p, q) = −Hq(x)−
∑
a

Eq[log fa(Xa)] , (7.3)

where the first term is the negative of the entropy and the second term is known as the average

energy because − log fa(Xa) = E(Xa). The free energy has a minimum value of − log(Z) when

p = q and by minimising this free energy we are also minimising the KL divergence.

We first consider the form of the free energy for a tree. For tree graphs, the distribution q(X) can

be written in the form:

q(x) =
∏
i

bi(xi)
1−di

∏
a

ba(Xa) , (7.4)

where the first product is over variables and the second is over the factors. bi(xi) is the marginal

belief distribution over variable xi, ba(Xa) is the joint marginal distribution over variables Xa that

connect to factor fa, and di is the degree of variable node i (the number of nodes neighbouring

node i). Plugging this into the expression for the entropy, we get:

Htree(x) = −
∑
i

(1− di)
∑
xi

bi(xi) log bi(xi)−
∑
a

∑
Xa

ba(Xa) log ba(Xa) . (7.5)

Similarly, the average energy can be written as:

−
∑
a

Eq[log fa(Xa)] = −
∑
a

ba(Xa) log fa(Xa) (7.6)

Putting this together gives the free energy for tree graphs:

Ftree(x) = −
∑
i

(di − 1)
∑
xi

bi(xi) log bi(xi) +
∑
a

∑
Xa

ba(Xa) log
ba(Xa)

fa(Xa)
. (7.7)

For general factor graphs with loops, the free energy F ̸= Ftree. The Bethe approximation is the

choice to use the free energy for a tree to approximate the free energy for arbitrary loopy graphs.

The resulting approximate free energy is known as the Bethe free energy.

Belief propagation can be derived via minimisation of the Bethe free energy subject to two con-

straints. The first is a marginalisation constraint: bi(xi) =
∑

Xa\xi
ba(Xa), and the second is a

normalisation constraint:
∑

i bi(xi) = 1. With these constraints, we can form the Lagrangian and

then set the derivatives with respect to the parameters to zero:

L = FBethe +
∑
i

γi

{
1−

∑
xi

bi(xi)

}
+
∑
a

∑
i∈n(fa)

∑
xi

αai(xi)

{
bi(xi)−

∑
Xa\i

ba(Xa)

}
(7.8)
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∂L

∂bi(xi)
= 0 ⇒ bi(xi) ∝

∏
a∈n(xi)

exp
(
αai(xi)

)
(7.9)

∂L

∂ba(Xa)
= 0 ⇒ ba(Xa) ∝ fa(Xa)

∏
i∈n(fa)

exp
(
αai(xi)

)
(7.10)

We now choose the Lagrange multiplier to be:

exp(αai(xi)) = µxi→fa(xi) =
∏

c∈n(xi)\a

µfc→xi
(xi) . (7.11)

This is the familiar variable-to-factor message equation (Equation 2.21). Substituting this into the

Equations 7.9 and 7.10 yields the belief propagation fixed point equations (the first of we recognise

as the belief update rule from Equation 2.13).

bi(xi) ∝
∏

a∈n(xi)

µxi→fa(xi) ∝
∏

a∈n(xi)

µfa→xi
(xi) (7.12)

ba(Xa) ∝ fa(Xa)
∏

i∈n(fa)

µxi→fa(xi) = fa(Xa)
∏

i∈n(fa)

∏
c∈n(xi)\a

µfc→xi
(xi) (7.13)

Using the marginalisation condition, we can derive an equation for the messages in terms of other

messages and produce the factor-to-variable message equation (as derived for trees in Equation

2.17):

µfa→xi
(xi) =

∑
Xa\xi

fa(Xa)
∏

j∈n(fa)\i

∏
b∈n(xj)\a

µfb→xj
(xj)

=
∑

Xa\xi

fa(Xa)
∏

j∈n(fa)\i

µxj→fa(xj)

(7.14)

This result tells us that the fixed-points of loopy belief propagation are local stationary points of

the Bethe free energy and because the Bethe energy is bounded from below, BP always has a fixed

point.

BP variants have been developed using more accurate or convex approximations of the free energy

[Yedidia et al., 2000], however a detailed discussion of the theory behind BP is beyond the scope

of this article and we refer the reader to [Wainwright and Jordan, 2008] for a in depth review.
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7.2 Proof of Exactness of Gaussian Belief Propagation

Here we prove that when Gaussian belief propagation converges, it gives correct posterior means

for all graph topologies while the posterior covariances are in general inexact by a quantifiable

offset. This proof is an adaptation of the proof in Weiss & Freeman [Weiss and Freeman, 2000]

using notation and definitions consistent with the rest of this thesis.

7.2.1 Unwrapped Computation Tree

We begin by introducing the concept of an unwrapped computation tree for a loopy graph. The

unwrapped tree is the tree graph that loopy GBP is solving exactly when applied to a given loopy

graph. This tree has number of levels equal to the number of iterations of loopy GBP performed

on the loopy graph.

The unwrapped tree is formed by first choosing an arbitrary root node. To form each level of the

tree, corresponding to a time step t of message passing in the loopy graph we do the following:

• Find all leaves of the tree. At t = 0 start with the root node.

• For each leaf, find the k nodes in the loopy graph that are adjacent to the corresponding

node in the loopy graph.

• Add k − 1 nodes as children to each leaf, corresponding to all neighbours apart from the

parent. This is because to send a message to the parent, the node collects messages from all

other neighbouring nodes.

An example of a loopy graph and its corresponding unwrapped computation tree for 4 steps of

message passing with x1 chosen as the root node is shown in Figure 7.1. Using a breadth first

ordering starting from node x1 in the loopy graph and x̃1 in the unwrapped tree, we can define the

stacked vectors corresponding to all of the variables in the loopy graph:

x = [x1, x2, x3, x4, x5]
⊤ ∈ RNl , (7.15)

and in the first 3 levels of the unwrapped tree:

x̃ = [x̃1, x̃2, x̃3, x̃4, x̃5, x̃
′
5, x̃

′′
5, x̃

′
3, x̃

′
4, x̃

′
2, x̃

′′
4, x̃

′′
2, x̃

′′
3, . . .]

⊤ ∈ RNu . (7.16)

Nu and Nl are the number of nodes in the unwrapped and loopy graphs respectively.
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(a) Loopy graph (b) Unwrapped tree

Figure 7.1: The loopy graph and the corresponding unwrapped computation tree for 4 steps of
message passing. All nodes and factors in the unwrapped tree are copies of the nodes and factors
in the loopy graph. All unary and binary factors are drawn for clarity. This figure is adapted from
Weiss & Freeman [Weiss and Freeman, 2000].

We now introduce a matrix O ∈ RNu×Nl which relates nodes in the loopy graph to nodes in the

unwrapped graph. In our example, filling in only the non-zero elements, the matrix O is:

O =



1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
...



. (7.17)
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7.2.2 Loopy and Unwrapped information parameters

We begin by defining the Gaussian information form parameters for the joint posterior in the loopy

graph. In general, this Gaussian posterior can be expressed as:

p(x) = N−1(x;η, Λ) , (7.18)

where η ∈ RNl and Λ ∈ RNl×Nl . In our example, the information vector and precision matrix can

be divided up as:

η = [η1, η2, η3, η4, η5]
⊤ (7.19)

Λ =



Λ11 Λ12 Λ13 Λ14 0

Λ21 Λ22 0 0 Λ25

Λ31 0 Λ33 0 Λ35

Λ41 0 0 Λ44 Λ45

0 Λ52 Λ53 Λ54 Λ55


. (7.20)

Note that the precision matrix reflects the conditional independence structure of the loopy graph.

We can also define the covariance form parameters of the loopy graph, which for now we define

by the relation to the information form:

µ = Λ−1η (7.21)

Σ = Λ−1 (7.22)

Let us now define the joint Gaussian distribution over all variables in the unwrapped tree:

p(x̃) = N−1(x̃; η̃, Λ̃) , (7.23)

where η̃ ∈ RNu and Λ̃ ∈ RNu×Nu .

All nodes in the unwrapped tree apart from the leaf nodes have the same neighbours as their copied

node in the loopy graph. As a result, elements in η̃ corresponding to non-leaf nodes take the same

value as the element in η of the loopy graph corresponding to the copied node. We can therefore

relate η̃ and η as:

η̃ + e = Oη . (7.24)

Here the vector e describes the error between η̃ and η and is non-zero apart from the final L

elements, where L is the number of leaf nodes in the unwrapped tree. In our example, the first two

160



7.2. Proof of Exactness of Gaussian Belief Propagation

non-zero elements of this error vector are:

e(Nu − L+ 1) = −η12(1)− η13(1) (7.25)

e(Nu − L+ 2) = −η12(1)− η14(1) , (7.26)

where we are indexing from 1 so η12(1) is the first element of the precision matrix of the Gaussian

factor connecting x1 and x2.

Next, we would like to produce a similar relationship between the precision matrices in the loopy

and unwrapped graphs, Λ and Λ̃. As before, all nodes in the unwrapped tree apart from the leaf

nodes have the same non-zero elements in their corresponding row of the precision matrix Λ̃.

These non-zero elements are equal to the corresponding values in Λ. The leaf nodes are missing

some neighbours compared to the corresponding node in the loopy graph and so their row in Λ̃ has

only 2 non-zero entries for the dependence of the variable on itself and its parent. We can relate Λ

and Λ̃ as:

Λ̃O+ E = OΛ . (7.27)

The matrix E ∈ RNu×Nl is non-zero only in the final L rows. In our example the first two non-zero

rows or this matrix are:

E(Nu − L+ 1) =
[
0 −Λ12 0 −Λ14 0

]
(7.28)

E(Nu − L+ 2) =
[
0 −Λ12 −Λ13 0 0

]
. (7.29)

Summarising, we have the following relationships between the information parameters of the

loopy and unwrapped graphs:

η̃ + e = Oη (7.30)

Λ̃O+ E = OΛ (7.31)

7.2.3 Loopy and Unwrapped marginal covariance parameters

Having derived the relationship between loopy and unwrapped information parameters in Equa-

tions 7.30 and 7.31, we now want to find a relationship between the marginal mean and covariance

of node x1 in the loopy graph and the root node x̃1 in the unwrapped tree. Following Weiss &

Freeman [Weiss and Freeman, 2000], we derive these relationships below.
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Mean parameters

We would like to relate the marginal mean µ(1) of node x1 in loopy graph, to the marginal mean

µ̃(1) of node x̃1 in the unwrapped tree. We begin with the relationship for the loopy graph:

η = Λµ . (7.32)

We then left multiply by O:

Oη = OΛµ (7.33)

and then substitute in unwrapped quantities using Equations 7.30 and 7.31:

η̃ + e = (Λ̃O+ E)µ . (7.34)

Lastly substituting in η̃ = Λ̃µ̃ and rearranging yields:

Λ̃µ̃+ e = (Λ̃O+ E)µ (7.35)

Λ̃µ̃ = Λ̃Oµ+ Eµ− e (7.36)

µ̃ = Oµ+ Λ̃−1(Eµ− e) . (7.37)

Taking the first row, and substituting Σ̃ = Λ̃−1 gives an equation relating the mean of x̃1 to the

mean of x1:

µ̃(1) = µ(1) + Σ̃(1)(Eµ− e) , (7.38)

where Σ̃(1) is the first row of Σ̃.

Looking at this relation, we see that the difference between the mean of x̃1 in the unwrapped tree

and the mean of x1 in the loopy graph is the dot product of the first row in the covariance matrix

and an error vector. As the E and e are non-zero only in the last L rows, we can express this

difference as:

δµ = Σ̃(1) (Eµ− e) (7.39)

=
∑

j>Nu−L

Σ̃1j (E(j)µ− ej) . (7.40)

The difference therefore depends only on the covariances between the root node and the leaf nodes

in the unwrapped tree. If these covariances tend to zero, then the mean of x̃1 tends towards the

mean of x1 in the loopy graph. In other words, if the covariances between the root node and leaf

nodes decrease rapidly to zero, then the belief propagation means converge and the means are

exact. Intuitively, these covariances tend to zero when there are strong unary constraints in the

graph that reduce the correlation between distant nodes in the graph.
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Covariance parameters

Moving on to the covariance parameters, we would like to relate the marginal covariance Σ11 of

node x1 in loopy graph, to the marginal mean Σ̃11 of node x̃1 in the unwrapped tree. Starting with

the identity for the loopy graph:

ΛΣ = I , (7.41)

and again left multiplying by O and then substituting in Equation 7.31:

OΛΣ = O (7.42)

(Λ̃O+ E)Σ = O . (7.43)

Expanding the bracket, left multiplying by Σ̃ and then rearranging gives:

Σ̃−1 OΣ+ EΣ = O (7.44)

OΣ+ Σ̃ EΣ = Σ̃ O . (7.45)

Taking the first row and column entry in the above equation yields:

Σ11 +
∑
j

Σ̃1j (EΣ)j1 =
∑
k

Σ̃1k Ok1 . (7.46)

We can split the term on the right hand side as:∑
k

Σ̃1k Ok1 = Σ̃11 +
∑
k∈C1

Σ̃1k , (7.47)

where C1 are the copies of node x1 in the unwrapped tree apart from x̃1. Rearranging we then

find:

Σ̃11 = Σ11 +
∑
j

Σ̃1j (EΣ)j1 −
∑
k∈C1

Σ̃1k . (7.48)

Now we see that the difference between the marginal covariance of x1 in the loopy graph and x̃1

in the unwrapped tree depends on two terms. The second term on the right hand side features the

matrix E and so is non-zero only for the last L elements corresponding to the leaf nodes. Like

the offset for the marginal means, this second term depends on the covariances between the root

node and the leaf nodes. The third term on the right hand side is a sum of the covariances between

the root node in the unwrapped tree x̃1 and all other copies of x1 in the unwrapped tree such as

x̃′1, x̃′′1 etc. We can therefore say that is the covariances between the root node and the leaf node

decrease rapidly to zero, then the belief propagation covariances converge and are equal to the

correct variances minus the summed covariances between x̃1 and all other copies of x1 in the

unwrapped tree.
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At this point, it is useful to consider exactly what we have shown. We have shown that if the

covariances between the root node and the leaf nodes of the unwrapped true decrease rapidly to

zero then GBP converges, the means are exact, and the variances are equal to the correct variances

minus the summed covariances between x̃1 and all other copies of x1 in the unwrapped tree. Note

that we have not described the conditions under which the covariances between the root node and

the leaf nodes of the unwrapped true decrease rapidly to zero nor have we made any statements

about the means and variances of GBP in general when it converges.

7.2.4 Fixed Points of Loopy Belief Propagation

We now aim to evaluate the properties of fixed points of GBP. We can view GBP as an operator F

that transforms a list of all the messages and transforms it to another list of messages:

m(t+1) = Fm(t) , (7.49)

where m the list of all factor-to-variable messages µfs→xj
. In this light, GBP can be thought of

as a way of finding a solution m∗ to the fixed point equation:

m∗ = Fm∗ . (7.50)

Here, we ask the question, if we find a fixed point of GBP with messages m∗, then how do the

beliefs relate to the correct beliefs?

We begin with the claim: If m∗ is a fixed point of GBP message passing then the means based on

that fixed point are exact.

To prove this claim we first introduce the modified unwrapped tree for a given loopy graph and

fixed point messages m∗. The modified unwrapped tree is constructed as the same way as pre-

viously such that all non-leaf nodes have the same statistical relationships with their neighbours

as the corresponding nodes in the original graph. The difference is all nodes in the modified un-

wrapped tree have the same beliefs as the beliefs in the loopy graph derived from the fixed point

m∗. This can be achieved with a simple modification to all the unary factors on the leaf nodes

in the unwrapped tree. These unary factors are modified such that the message they send to the

leaf node is equal to the product of the original message from the unary factor and all fixed point

messages from its neighbours apart from its parent node. This process of modifying the unary

factors for all leaf nodes is shown in Figure 7.2.

With this modification, all leaf nodes now send their parents a message from m∗. Since all non-

leaf nodes have the same statistical relationship to their neighbours as the corresponding nodes in
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Figure 7.2: To produce the modified unwrapped computation tree the unary factor for each leaf
node (highlighted in yellow) is modified. Each unary factor is modified such that the modified
message it sends f∗l is the product of the original message fl and the fixed point messages µ∗f→xl

from all neighbouring nodes apart from its parent node. The dashed parts of the graph represent
the messages that are represented in the modified yellow unary factor.

the loopy graph, all messages in this modified unwrapped tree are therefore identical to the fixed

point messages m∗.

Having constructed this modified unwrapped tree in which all messages are the fixed point mes-

sages m∗, we now want to determine what the marginal means are in this tree. We begin by

relating the means in the modified unwrapped tree to the marginal means in the loopy tree with

fixed point messages:

µ̃ = Oµ0 , (7.51)

where µ0(i) is the posterior mean at node i under messages m∗. This equality holds because

all nodes in the modified unwrapped tree have identical incoming messages to the corresponding

node in the loopy graph under m∗, meaning that the beliefs are equal.

We also know that µ̃ satisfies:

Λ̃ µ̃ = η̃ , (7.52)

for the modified unwrapped tree. Substituting in Equation 7.51:

Λ̃ Oµ0 = η̃ . (7.53)
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We now use notation [A]m to denote taking the first m rows of a matrix A, and use the identity

[AB]m = [A]mB. Taking the first m rows of Equation 7.53:

[Λ̃ O]mµ0 = [η̃]m . (7.54)

Since all non-leaf nodes in the modified unwrapped graph have the same relationships with neigh-

bouring nodes as the corresponding nodes in the loopy graph, we can write the following equations

for all m < Nu − L:

[η̃]m = [Oη]m (7.55)

[Λ̃O]m = [OΛ]m . (7.56)

Note that these are the same as Equations 7.30 and 7.31, but only for the non-leaf nodes in the

unwrapped tree. Substituting into Equation 7.54 and using our identity for the first m rows:

[OΛ]mµ0 = [Oη]m (7.57)

[O]m Λµ0 = [O]mη . (7.58)

This equality in Equation 7.58 holds for any m < Nu − L, but we can unwrap the tree to an

arbitrarily large size such that [O]m has Nl independent rows. In other words, we unwrap the tree

until all all nodes in the loopy graph appear at least once in the non-leaf nodes of the modified

unwrapped tree. At this point, Equation 7.58 is an equation with m separate equalities for all m

non-leaf nodes in the unwrapped tree. If we ignore the repeated rows of [O]m, and choose only the

rows such that we replace [O]m with I ∈ RNl×Nl , then we see that the following must hold:

Λµ0 = η . (7.59)

This tells us that these means µ0 derived from the fixed point messages are exact.

7.2.5 Summary of findings

To summarise our findings in this section:

• If the covariances between the root node and the leaf nodes in the unwrapped tree decrease

to zero rapidly enough, then GBP converges, the belief means are exact and the belief

variances are equal to the exact variances minus the summed covariances between the root

node and copies of that same node in the unwrapped tree.

• If GBP converges, then the belief means are guaranteed to be exact.
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• We have not shown that GBP always converges. We have not shown under what conditions

the covariances in the unwrapped tree decrease rapidly to zero. We have not shown what

the belief variance compute when GBP converges.

We refer the reader to Weiss & Freeman [Weiss and Freeman, 2000] for proof that these findings

hold for vector valued nodes.
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