5,660 research outputs found

    Creating gameplay mechanics with deformable characters

    Get PDF
    This paper presents how soft body simulation can create deformable characters and physics-based game mechanics that result in a more varied gameplay experience. A framework was implemented that allows the creation of a fully deformable soft body character within a games application where the simulation model properties could be altered at runtime to create gameplay mechanics based on varying the deformation of the character. The simulation model was augmented to allow appropriate methods of player control that complemented the character design and its ability to deform. It was found that while the implementation of deformation-based mechanics created a more varied gameplay experience, the underlying simulation model allowed for a limited amount of deformation before becoming unstable. The ffectiveness of the framework is demonstrated by the resulting mechanics that are not possible through the use of previous methods

    A survey of real-time crowd rendering

    Get PDF
    In this survey we review, classify and compare existing approaches for real-time crowd rendering. We first overview character animation techniques, as they are highly tied to crowd rendering performance, and then we analyze the state of the art in crowd rendering. We discuss different representations for level-of-detail (LoD) rendering of animated characters, including polygon-based, point-based, and image-based techniques, and review different criteria for runtime LoD selection. Besides LoD approaches, we review classic acceleration schemes, such as frustum culling and occlusion culling, and describe how they can be adapted to handle crowds of animated characters. We also discuss specific acceleration techniques for crowd rendering, such as primitive pseudo-instancing, palette skinning, and dynamic key-pose caching, which benefit from current graphics hardware. We also address other factors affecting performance and realism of crowds such as lighting, shadowing, clothing and variability. Finally we provide an exhaustive comparison of the most relevant approaches in the field.Peer ReviewedPostprint (author's final draft

    Shape Animation with Combined Captured and Simulated Dynamics

    Get PDF
    We present a novel volumetric animation generation framework to create new types of animations from raw 3D surface or point cloud sequence of captured real performances. The framework considers as input time incoherent 3D observations of a moving shape, and is thus particularly suitable for the output of performance capture platforms. In our system, a suitable virtual representation of the actor is built from real captures that allows seamless combination and simulation with virtual external forces and objects, in which the original captured actor can be reshaped, disassembled or reassembled from user-specified virtual physics. Instead of using the dominant surface-based geometric representation of the capture, which is less suitable for volumetric effects, our pipeline exploits Centroidal Voronoi tessellation decompositions as unified volumetric representation of the real captured actor, which we show can be used seamlessly as a building block for all processing stages, from capture and tracking to virtual physic simulation. The representation makes no human specific assumption and can be used to capture and re-simulate the actor with props or other moving scenery elements. We demonstrate the potential of this pipeline for virtual reanimation of a real captured event with various unprecedented volumetric visual effects, such as volumetric distortion, erosion, morphing, gravity pull, or collisions

    Computational design of skinned Quad-Robots

    Get PDF
    We present a computational design system that assists users to model, optimize, and fabricate quad-robots with soft skins. Our system addresses the challenging task of predicting their physical behavior by fully integrating the multibody dynamics of the mechanical skeleton and the elastic behavior of the soft skin. The developed motion control strategy uses an alternating optimization scheme to avoid expensive full space time-optimization, interleaving space-time optimization for the skeleton, and frame-by-frame optimization for the full dynamics. The output are motor torques to drive the robot to achieve a user prescribed motion trajectory. We also provide a collection of convenient engineering tools and empirical manufacturing guidance to support the fabrication of the designed quad-robot. We validate the feasibility of designs generated with our system through physics simulations and with a physically-fabricated prototype

    Real Time Animation of Virtual Humans: A Trade-off Between Naturalness and Control

    Get PDF
    Virtual humans are employed in many interactive applications using 3D virtual environments, including (serious) games. The motion of such virtual humans should look realistic (or ‘natural’) and allow interaction with the surroundings and other (virtual) humans. Current animation techniques differ in the trade-off they offer between motion naturalness and the control that can be exerted over the motion. We show mechanisms to parametrize, combine (on different body parts) and concatenate motions generated by different animation techniques. We discuss several aspects of motion naturalness and show how it can be evaluated. We conclude by showing the promise of combinations of different animation paradigms to enhance both naturalness and control

    Embedded Implicit Stand-ins for Animated Meshes: a Case of Hybrid Modelling

    Get PDF
    In this paper we address shape modelling problems, encountered in computer animation and computer games development that are difficult to solve just using polygonal meshes. Our approach is based on a hybrid modelling concept that combines polygonal meshes with implicit surfaces. A hybrid model consists of an animated polygonal mesh and an approximation of this mesh by a convolution surface stand-in that is embedded within it or is attached to it. The motions of both objects are synchronised using a rigging skeleton. This approach is used to model the interaction between an animated mesh object and a viscoelastic substance, normally modelled in implicit form. The adhesive behaviour of the viscous object is modelled using geometric blending operations on the corresponding implicit surfaces. Another application of this approach is the creation of metamorphosing implicit surface parts that are attached to an animated mesh. A prototype implementation of the proposed approach and several examples of modelling and animation with near real-time preview times are presented
    corecore