Volume xx (200y), Number z, pp. 1-19

A Survey of Real-Time Crowd Rendering

A. Beacco'?, N. Pelechano' and C. Andl’ljar1
!Universitat Politecnica de Catalunya
2EventLab, Universitat de Barcelona

Abstract

In this survey we review, classify and compare existing approaches for real-time crowd rendering. We first overview
character animation techniques, as they are highly tied to crowd rendering performance, and then we analyze the
state of the art in crowd rendering. We discuss different representations for level-of-detail (LoD) rendering of
animated characters, including polygon-based, point-based, and image-based techniques, and review different
criteria for runtime LoD selection. Besides LoD approaches, we review classic acceleration schemes, such as
Sfrustum culling and occlusion culling, and describe how they can be adapted to handle crowds of animated char-
acters. We also discuss specific acceleration techniques for crowd rendering, such as primitive pseudo-instancing,
palette skinning, and dynamic key-pose caching, which benefit from current graphics hardware. We also address
other factors affecting performance and realism of crowds such as lighting, shadowing, clothing and variability.

Finally we provide an exhaustive comparison of the most relevant approaches in the field.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

1. Introduction

Crowd simulations [PABO8, TM13] are becoming increas-
ingly important in many computer graphics applications.
Although the most prominent use of crowd simulations is
found in video games (particularly in the sandbox genre,
but also in sport and strategy games), crowd rendering is
also crucial in a variety of applications including evacuation
planning (like Thunderhead’s Pathfinder software), crowd
management training, phobia treatments, and psychological
studies. These applications often need to render in real-time
hundreds or thousands of moving agents with a certain level
of visual quality and plausibility.

A close look at the video game industry reveals that each
new console generation gives rise to a new predominant
genre that fully exploits the hardware improvements. While
in the past generation (PS3, Xbox 360) first person shoot-
ers were predominant, the current console generation (PS4,
Xbox one) has lead to a substantial increase of game titles
in the sandbox genre. One example is the LEGO’s Trav-
eler’s Tales series, which has evolved from simple action-
platformed games, to evolving sandbox environments e.g.
in LEGO Batman 2 DC Super Heroes and LEGO Marvel
Super Heroes. This is due to the trend of providing play-

submitted to COMPUTER GRAPHICS Forum (9/2015).

ers with more alive and interactive environments with each
new game. In order to allow the player to feel immersed in-
side game environments such as virtual stadiums, villages
and cities, the scenes need to be populated with crowds of
people that make the environment both alive and believable.
In sandbox games this is almost a requirement, and recent
games from bestselling series such as Ubisoft’s Assassin’s
Creed or RockStar’s Grand Theft Auto have pushed the lim-
its on the amount of agents shown on screen in real-time. The
recent Assassin’s Creed Unity (Figure 1-a) claims to show up
to 12,000 agents in real-time, although just 120 of them are
rendered using high resolution models.

Moving to strategy games, we can find massive armies of
up to 100,000 soldiers animated in real-time, as in Creative
Assembly’s Total War: Rome 2 . Distant soldiers are not re-
quired to have individual appearance, animation and behav-
ior, which makes it easier to reach such a high performance.
In sport games such as Electronic Arts” FIFA 15 (Figure 1-
b), stadiums can also be filled with up to 120,000 animated
virtual spectators, although they remain seated in the same
place with no navigation or collision avoidance.

Real-time realistic crowds have thus a massive impact in
the current game industry. Despite the substantial advances

This is the peer reviewed version of the following article: Beacco, A., Pelechano, N., Andujar, C. A survey of real-time crowd rendering. "Computer
graphics forum", Desembre 2016, vol. 35, num. 8, p. 32-50, which has been published in final form at DOI: 10.1111/cgf.12774. This article may be
used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina
This is the peer reviewed version of the following article: Beacco, A., Pelechano, N., Andújar, C. A survey of real-time crowd rendering. "Computer graphics forum", Desembre 2016, vol. 35, núm. 8, p. 32-50, which has been published in final form at DOI: 10.1111/cgf.12774. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

2 A. Beacco, N. Pelechano & C. Andiijar / A Survey of Real-Time Crowd Rendering

(2)

(b)

Figure 1: Crowds are an important element in videogames of different genres. (a) Assassin’s Creed Unity. (©2014 Ubisoft
Entertaintment. All Rights Reserved. Assassin’s Creed, Ubisoft and the Ubisoft loco are trademarks of Ubisoft Entertainment
in the U.S. and/or other countries. All other rights are reserved by Ubisoft Entertainment. (b) FIFA 15. (©2014 Electronic Arts.

in the field, virtual crowds still suffer from a number of easy-
to-spot artifacts, including popping effects when switch-
ing between level-of-detail (LoD) representations, limb self-
intersections, prominent clones (sharing visual appearance
and/or animation), and poorly simulated behaviors. It is
therefore necessary to devise new techniques to simulate, an-
imate and render large numbers of autonomous agents in real
time, minimizing visual artifacts and optimizing the use of
CPU, GPU and bandwidth resources, which have an obvious
impact in performance, energy consumption and, in mobile
devices, battery life.

Regarding crowd rendering, there has been a large amount
of work in this field since the last survey [RDOS]. There
are also other surveys and books covering partly this topic
[ASDBOS, PABOS, TM13]. Efficient rendering of crowds is
an area with a significant amount of techniques introduced
in the last years, and continues to be in need of further in-
novation as the complexity of virtual environments increases
along with the capabilities of the hardware. This survey aims
at providing a complete, up-to-date overview of the state of
the art in crowd rendering, with an in-depth comparison of
techniques in terms of quality, resources and performance.

For a given graphics hardware, there is an obvious trade-
off between the number of animated characters that can
be simulated in real-time, and the different factors affect-
ing their visual quality, including geometric detail, materi-
als, motion (path within the scenario) and animation (e.g.
walking or running cycles). Achieving high-quality real-
time crowd rendering is therefore a major challenge, but it
is important to note that the rendering process is strongly
tied to the simulation process and also to animation compu-
tations. Although each of these fields deserves its own sur-
vey, we will provide a short overview of character animation
techniques (Section 2), keeping the focus on crowd render-

ing.

Although there is a large variety of crowd rendering accel-
eration techniques, LoD rendering is the most effective and
frequently-used approach. LoD rendering refers to the possi-
bility of drawing objects using different representations with
varying complexity and accuracy [Cla76, LWC*02]. In the
context of character animation, each character type can be
represented with different LoDs; at runtime, the most suit-
able representation for each character instance is chosen ac-
cording to an estimation of its contribution to the image,
which depends, among other factors, on the distance to the
camera.

Current LoD representations for characters can be roughly
classified into polygon-based techniques, point-based tech-
niques, and image-based techniques. Polygon-based tech-
niques provide various LoD representations of the character
geometry in the form of a polygonal mesh (faces are often
limited to triangles and quads). These techniques are the de-
facto standard in character rendering, despite the difficulties
in generating high-quality simplified meshes for animated
characters automatically.

Point-based techniques represent characters through point
clouds with no explicit connectivity [LW85, B&r05] which
can be rendered using a surface splat primitive [ZPvBGO1].
Image-based techniques replace 3D characters by sim-
ple textured-mapped primitives called impostors [ABT9S,
TC00, DHOO05, KDC*08, BAPS12]. LoD techniques are
generally lossy and thus the primary goal is to maximize per-
formance while minimizing visible artifacts.

Besides LoD techniques, a variety of (mostly) lossless
techniques can be applied to accelerate crowd rendering
with no impact on image quality. Culling techniques aim to
avoid processing invisible geometry [COCSDO3], either be-
cause it falls outside the viewing frustum (frustum culling
[Cla76, BEW*98, AMO0O]) or because it is hidden by occlud-
ing geometry (occlusion or visibility culling [KS01,WBO0S5]).

submitted to COMPUTER GRAPHICS Forum (9/2015).

A. Beacco, N. Pelechano & C. Andiijar / A Survey of Real-Time Crowd Rendering 3

Although individual characters have little chances to occlude
relevant geometry, the aggregation of many characters, as
well as the environment they inhabit, offer great opportu-
nities to optimize rendering performance in a conservative
way. Current hardware features offer new possibilities for
optimizing the rendering of large crowds. These techniques
include primitive instancing, palette skinning, and key-pose
caching [MR0O6b, Dud07b, LLD10].

The remainder of this survey is organized as follows. Sec-
tion 2 provides an overview of character animation, cov-
ering both skeletal and non-skeletal (cages, blend shapes)
techniques. Section 3 discusses LoD representations for ani-
mated characters, including polygon-based, point-based and
image-based techniques. Lossless acceleration techniques,
including culling and instancing are described in Section 4.
Section 5 reviews lighting characters [JVES*12] and casting
shadows onto the agents [TLCO02] and Section 6 discusses
cloth simulation [MDCOO06] and variation of the avatars’
appearance [MYT(9]. Section 7 provides a comprehensive
comparison of all major approaches. Conclusions and a dis-
cussion of open problems are provided in Section 8.

2. Character Animation

In this section we give an overview of general aspects of
character animation that influence rendering performance.
These aspects range from how the character is represented
to how this representation is modified to handle animations.

Some character animation methods focus on achieving
highly-realistic, physically-accurate mesh deformations for
applications without real time requirements. Physically-
based methods simulate the internal structures of the body
(bones, tendons, muscles and fat tissues [JEOG11, SKP08,
MCC11, AT00]), achieve a high level of realism, and might
even support dynamic effects such as muscle bulges, but
at a high computational cost. Despite the high visual qual-
ity achieved by these methods, they are too expensive for
rendering a large number of characters under real-time con-
straints. Since we focus on crowd rendering, we will limit
our review of character animation methods to those that can
be applied in real time to large groups of people.

2.1. Skeletal animation

The most extended approach for animating 3D characters is
skeletal animation [MTLT8S]. In this technique, the char-
acter is represented by a mesh or ’skin’, and an underlying
skeleton. The skin is an arbitrary polygonal mesh and the
skeleton is a hierarchy of bones carefully placed so that they
fit inside the skin. Initially both of them are designed in a
reference pose, and during run time the mesh representing
the skin will be deformed following the bones’ movement
(see Figure 2).

To determine how the vertices of the mesh will be de-
formed, each bone is associated with a portion of the mesh.

submitted to COMPUTER GRAPHICS Forum (9/2015).

Figure 2: Skeletal Animation: a character is composed by a
3D mesh representing the skin (left) and a skeleton (right).
The skinning process assigns each vertex of the mesh to one
or more bones of the skeleton with a weight (center). Ver-
tices influenced exclusively by one bone are represented in
red, and other colors indicate vertices that are influenced by
several bones.

For example, all the vertices forming the left hand will be
linked to the left hand bone. In some places, a portion of
the mesh is associated to more than one bone, by defin-
ing a weight (influence) associated to each one. These ver-
tices will then be deformed based on the weights of all
its linked bones that are being moved. Therefore, an ani-
mation can be defined by the movement of the bones, and
the associated vertices will move along with the skeleton.
The process of defining these weights, as well as the skele-
ton fitting, is called rigging and it is typically done manu-
ally, although some recent procedures [BP07, RLS08,PS12]
simplify the rigging process considerably. Recently devel-
oped online tools allow users to rig any biped character
within minutes [Mix14]. There is also recent work to trans-
fer animations between characters with different skeletons
[BTST12], a process known as retargeting.

An animation can be defined by a series of keyframes,
each one defining a different pose for an instant of time ¢.
Poses consist of a geometric transformation for each bone
of the skeleton. These geometric transformations are usually
rotations encoded as matrices, resulting in one matrix per
bone and per keyframe. During the animation, new poses can
be computed at arbitrary times by spherically interpolating
the rotations of the bones between the two closest keyframes.

The actual deformation of the skin geometry for a given
skeleton pose is known as geometric skinning, or GPU skin-
ning when its computation is performed in the GPU. Linear
blend skinning is the de-facto standard for low-cost skin-
ning. Transformations are represented by the skeleton matri-
ces, which are blended linearly according to the applied rig-
ging. Besides skin deformations, linear blend skinning can
be used to animate other deformable elements such as cloth,
since it is typically faster than physically based cloth simu-
lation [CMTO5].

The direct linear combination of matrices is known to suf-
fer from blending artifacts in the deformed skin. A typical

4 A. Beacco, N. Pelechano & C. Andiijar / A Survey of Real-Time Crowd Rendering

Figure 3: Linear blend skinning (left) produces several ar-
tifacts such as the "candy-wrapper" effect, because the re-
sulting matrix no longer represents a rigid transformation.
Dual quaternions methods (right) can reduce these artifacts
[KS12] (image courtesy of Ladislav Kavan).

artifact is the “candy wrapper” effect, where the skin col-
lapses into itself (see left part of Figure 3). This occurs be-
cause the weighted sum of matrices representing rigid trans-
formations (with neither scale nor shear) is not necessarily
another rigid transformation, but a general affine transfor-
mation. Rigid transformation matrices can be decomposed
into quaternion plus translation pairs, which can be inde-
pendently blended linearly to always get rigid transforma-
tions [HejO4, KvO5]. The problem of doing it separately is
that transformations become dependent with the body-space
coordinate system, meaning that vertices are going to ro-
tate around the origin of the body-space instead of the ac-
tual pivot point of the closer joint. Dual quaternions ap-
proaches [McC90, KCvO07,KCvOO08] reduce these artifacts
in an elegant way, by blending quaternions whose elements
are dual numbers (see right part of Figure 3). Another advan-
tage of quaternions is that they have a more compact repre-
sentation compared to matrices, thus saving bandwidth for
GPU skinning.

Implicit skinning [VBG*13] is a post process applied
over a geometric skinning (such as linear blending or dual-
quaternions) to handle skin contact effects and muscular
bulges in real-time. The typical artifacts of geometric skin-
ning techniques are avoided through an implicit surface rep-
resentation. Every frame they approximate the mesh by a set
of implicit surfaces, which are combined in real-time and
used to adjust the position of mesh vertices starting from
their smooth skinning position. This process is performed
without any loss of detail and can seamlessly handle contacts
between skin parts. Since it is a post-process, the method can
be added to any standard animation pipeline. The method re-
quires no intensive computation step such as collision detec-
tion and can achieve real-time performance for simple ani-
mations, although it is not fast enough for crowd rendering.

2.2. Cage-based animation

In recent years cage-based deformations have been applied
to character animation. The main advantages of cage-based
deformation techniques are their simplicity, relative flexibil-

ity and speed. The idea is to use one or more cages enclos-
ing the model to facilitate the animation while preserving the
smoothness of the deformed meshes. Chen et al. [CLTL11]
presented an efficient approach that can generate both low
and high-frequency surface motions such as muscle defor-
mation and vibrations with little user intervention. Given
a surface mesh, they construct a lattice of cubic cells em-
bracing the mesh and apply lattice-based smooth skinning to
drive the surface primary deformation with volume preser-
vation. Secondary deformations are handled through lattice
shape matching with dynamic particles. Gonzalez et al. [GG-
PCP13] recently proposed a versatile deformation scheme,
allowing the usage of heterogeneous sets of coordinates and
different levels of deformation, ranging from a whole-model
deformation to a very localized one. This locality allows for
faster evaluation and a reduced memory footprint, and thus
outperforms single-cage approaches in flexibility, speed, and
memory requirements for complex editing operations.

2.3. Per-vertex animation

An alternative approach is per-vertex animation, also re-
ferred to as shape interpolation, blend shapes or morph tar-
gets, where vertex positions are stored not only for the ref-
erence pose, but also for each animation keyframe [Lor(07,
WDAHI10]. Vertex positions are then interpolated within
keyframes to obtain new frame deformations. An advan-
tage of morph target animation over skeletal animation is
that it provides artists with more control over the move-
ment because they can define arbitrarily the individual po-
sitions of the vertices within a keyframe, without being con-
strained by skeleton joints. This can be useful for animating
cloth, skin, and facial expressions because it can be difficult
to conform those shapes to the bones that are required for
skeletal animation. In the field of crowd rendering, Ulicny et
al. [UCTO04] avoid computing the deformation of a charac-
ter mesh by storing pre-computed deformed meshes for each
keyframe of the animation, and then carefully sorting these
static meshes to take cache coherency into account. Switch-
ing consecutive meshes creates the illusion of an animation.
Unfortunately, these techniques require a large amount of
memory to store the animations and they are seldom used
for crowd rendering.

2.4. Animation Individuality

Individuality in crowd animation refers to the possibility of
having as many different animations as possible so that in-
dividuals within the crowd can be animated with multiple
speeds, styles and gaits. In many situations crowds are just
animated with a handful of animation clips that are run with
a certain time offset to avoid synchronized animations. Al-
though animations have a small memory footprint, the com-
putation of all the blended poses can become a major perfor-
mance bottleneck. Moreover, the final pose is represented by
a set of matrices that must be used to transform all the avatar

submitted to COMPUTER GRAPHICS Forum (9/2015).

A. Beacco, N. Pelechano & C. Andiijar / A Survey of Real-Time Crowd Rendering 5

vertices. This transformation is usually performed in the ver-
tex shader. Matrices can be computed in the CPU and then
sent to the GPU, but this approach consumes a significant
amount of CPU-GPU bandwidth. Alternatively, keyframe
matrices can be preloaded onto the GPU, at the expense of
GPU memory space [SBOTO08]. Both approaches thus bene-
fit from matrix compression techniques. It is also possible to
reduce the frequency at which animations are updated with
no visible artifacts [PO11, MNOO7].

3. Level-of-detail representations for characters

A well-known crowd acceleration technique is level-of-
detail (LoD) rendering [Cla76, LWC*02], where the appro-
priate representation of each character is chosen according to
its image contribution [PPB*97, HMDOOS5]. The basic idea
is that, as characters are placed farther away from the cam-
era, less details can be perceived on their screen projection
and thus simpler, cheaper representations can be used (see
Figure 4). Ulicny et al. [UCTO04] replaced full geometrical
models with lower resolution ones, and were able to cre-
ate complex scenes with thousands of characters. Pettre et
al. [PDHCM*06] significantly improved performance by us-
ing four discrete LoD meshes for the humans in their crowd.

Figure 4: Five models of the same avatar with decreasing
number of polygons as they are placed further away.

3.1. Polygon-based techniques

The automatic generation of simplified models is a long-
standing problem, and many algorithms have been proposed
in the literature for the general case of static meshes. Ver-
tex clustering methods [RB93] group vertices of the input
mesh according to a surrounding grid, and then discard the
resulting degenerate triangles. Progressive meshes [Hop96]
use edge collapse operations to dynamically and progres-
sively reduce the geometric complexity of the mesh. The
method stores a sequence of the edge collapses (indeed,
their inverses, i.e., pair contractions) and allows a smooth
choice of the desired LoD. Unfortunately, conventional mesh
simplification techniques typically perform poorly on ani-
mated meshes, which require careful preservation of per-
vertex attributes such as texture coordinates (specially when
these refer to a texture atlas) and, most importantly, blend-
ing weights. Failing to preserve vertices around joints leads

submitted to COMPUTER GRAPHICS Forum (9/2015).

to severe animation artifacts as even sophisticated skinning
techniques produce inconsistent deformations. Larkin et al.
[LO11] explored the perception of texture, silhouette and
lighting artifacts of different character LoDs. Mesh simplifi-
cation can be performed in the GPU [DT07] which allow for
real time simplification of the geometry. Even recent pro-
gressive encoding schemes [LJBA13] are not suitable for
mesh animations.

Only a few works address the problem of simplifying an-
imated characters. Schmalstieg and Furhmann [SF99] break
the mesh surface into single bone regions (for vertices asso-
ciated only to one bone) and additional regions for multiple-
weighted bones. These surfaces were simplified separately
and then stitched together. Some methods try to minimize
simplification errors from not just the resting pose, but a set
of example poses [MGO03, DR0O5]. Other approaches work
with a model and a set of frames with the deformed ver-
tex positions, to build a multiresolution hierarchy, letting
the surface change topology for each frame, and therefore
showing a simplified surface for each frame [KG05,HCCO06,
PHBO07,ZW07]. The main problem of all these methods is
that they are limited to a predefined animation set. Landre-
neau and Schaefer [LS09] proposed an edge collapse method
guided by an error metric that measures deviation from the
original deformed shape considering positions and weights.
They produce not only new vertices, but also skin weights,
and therefore can create keyframes for new animations with
new poses from the original ones. Willmott [Will1] extends
classic vertex clustering to handle attribute discontinuities
and preserve animation features.

Applications using LoD techniques also need to decide
the number of representations to encode (continuous LoD
approaches such as progressive meshes are a notable excep-
tion), with clear implications in both memory footprint and
potential popping artifacts when switching representations.
The encoding of the different LoDs of an avatar is also criti-
cal to minimize the number of state changes. For example, if
the different LoD levels are just reduced versions of the same
geometry, and share attribute names, shaders and textures, it
makes sense to store the different meshes in the same data
structure or to have access to all of them from the same class
instance in order to just change the draw call and share the
same state.

Tessellation shaders, available in consumer graphics cards
since 2011, are able to subdivide faces and thus add de-
tail to existing models without increasing the memory foot-
print or requiring additional bandwidth. Tessellation shaders
can be applied to crowd rendering to generate high-quality
representations on-the-fly from a coarse mesh, in a view-
dependent manner. Multiple dynamic levels of detail are
possible by adjusting the tessellation levels used by the tes-
sellation primitive generator. An interesting fact about tes-
sellation is that when animating a tessellated character, only
the base original vertices are transformed, so the new ones

6 A. Beacco, N. Pelechano & C. Andiijar / A Survey of Real-Time Crowd Rendering

are generated inside the transformed ones. This provides
higher resolution for animated models with the same ver-
tex shader performance. Tatarchuk et al. [TBPOS] applied
these concepts to obtain highly detailed characters for close-
up views (see Figure 5). Tessellation can be used in combi-
nation with displacement maps to add geometry detail rather
than to smooth surfaces. In this case, texture seams can lead
to noticeable artifacts unless conveniently handled [TBPO8].

3.2. Point-based Techniques

Levoy and Witted’s report [LW85] early suggested the use
of points as a new primitive to render geometry. The idea is
to render a surface using a vast amount of points. A Gaus-
sian filter or surface splatting [ZPvBGO01] can be performed
to fill in the possible gaps. Kobelt and Botsch presented a
survey on point-based techniques [KB04]. But it was Be-
rentzen [Bar05] who proposed to use point-based models
to replace objects that are far away from the camera. Point-
based rendering is more useful and faster when the triangles
of a model cover a pixel or less (as there is neither triangle
setup nor interpolation).

Point-sampled objects do not need to store and maintain
globally-consistent topological information. Therefore they
are more flexible when compared to triangle meshes. Never-
theless this technique has some limitations. For instance, if
the point samples are the result of decimating the mesh for
LoD, they become independent from the original mesh and
loading animations becomes difficult.

An alternative multi-resolution representation for ani-
mated geometry is proposed by Wand and Strasser [WS02]
who combine pre-filtered point samples and triangles ar-
ranged into an octree. Their randomized sampling scheme
guarantees that sample points are distributed sufficiently uni-
formly on the animated geometry at any time during the an-
imation (see Figure 6), at the expense of requiring a sep-
arate multi-resolution hierarchy for each pair of consecu-
tive keyframes. Larkin et al. designed a time-critical system
where point samples are distributed for every agent depend-
ing on its selected LoD [LO11].

Toledo et al. presented a system where an additional

Figure 5: Tessellation allows rendering large crowds of char-
acters with extreme details in close-up (left). The same char-
acter without using tessellation looks significantly less de-
tailed (right) [TBPO8] (images courtesy of AMD, Budiri-
janto Purnomo and Natalya Tatarchuk).

Figure 6: While close-up characters use triangle meshes,
background characters can be rendered with point splats
[WS02] (image courtesy of Michael Wand).

skeleton contains an octree per limb [TDGR14]. Each level
of the octree represents a different LoD, and animations can
be automatically transferred to each node, thus reducing the
memory consumption (see Figure 7).

Figure 7: Some approaches allow animations to be ap-
plied to both point-based and polygon-based representa-
tions [TDGR14] (images courtesy of Leonel Toledo).

3.3. Image-based Techniques

An impostor is in essence a simple primitive that has the
capacity to fool the viewer. As opposed to polygon-based
representations, impostors are not just a simplified version
of the original geometry, but a different primitive conceived
to replace it under appropriate viewing conditions. Impos-
tor representations range from simple billboards (3D sprites)
textured with an image of the rendered object, to a small set

submitted to COMPUTER GRAPHICS Forum (9/2015).

A. Beacco, N. Pelechano & C. Andiijar / A Survey of Real-Time Crowd Rendering 7

of textured polygons allowing the recovery of surface de-
tails and parallax effects. Although early impostors were de-
signed for static objects, they can be also used to render ani-
mated objects and crowds of agents.

Millan and Rudomin performed a strict comparison be-
tween point-based techniques and image-based techniques
[MRO6a]. Their point-based characters required a variable
number of points between 3 and 280, thus resulting in a more
inefficient render than an impostor image-based approach
using only a quad or two triangles per agent.

Since impostors are essentially images, there are two main
approaches: to generate dynamically these images at run-
time, or to pre-compute and store them into a texture atlas
and access them when necessary.

3.3.1. Dynamic Impostors

The virtual human impostor used by Aubel et al [ABT98]
is a simple textured quad which rotates to continuously face
the viewer. A snapshot of the virtual human is mapped onto
it and re-used over several frames (see figure 8).

.,

Figure 8: A football player and its (somewhat oversized) im-
postor [ABT98] (image courtesy of Daniel Thalmann).

As the humanoid moves or the camera moves, the mapped
texture might need to be refreshed. To take updated snap-
shots an off-screen buffer is set up and a multiresolution vir-
tual human is placed in front of the camera in the right pose.
The virtual human is then rendered and copied into texture
memory and so ready to be mapped onto the billboard.

To decide whether or not to refresh the texture they pro-
posed two fast algorithms. The first one tests distance vari-
ations between some pre-selected points in the skeleton, so
they can decide if the pose has changed significantly. This
obviously sub-samples the animation.

The second algorithm does not test independently the
camera motion and the character’s orientation because it is
not important to know what factor caused the visual varia-
tion. Instead, they test the variations of the modelview matrix
corresponding to the transformation under which the viewer
sees the virtual human. These impostors are dynamic in the
sense that they are not pre-computed, but they change dy-
namically depending on the results of the two algorithms
above at every frame.

submitted to COMPUTER GRAPHICS Forum (9/2015).

(@ (b)

Figure 9: Discretising the view direction between the object
and the viewpoint (a) allows to generate a texture with all the
captured directions for one frame of one animation (b). The
process must be repeated for every animation frame [TCO0]
(images courtesy of Franco Tecchia).

The off-screen buffer can be set up in a pre-process, ad-
justing the frustum to the character. The stored impostor can
also be re-used for other human meshes, and since posing up
the character would have been done with the whole geome-
try, the approach is not slower than rendering the 3D geom-
etry. But even if the impostor is re-used, after a few frames
it will finally be discarded.

The main limitation of these kind of approaches is that
replacing the whole geometry by a textured plane might in-
troduce occlusion problems. For example, imagine a charac-
ter sitting on a chair as two independent meshes. If one, or
both are replaced by a textured quad, it is not clear how they
can be arranged spatially to avoid visibility problems. This
is due to the depth values of the impostor fragments which
are unlikely to be the same as those of the actual geometry.

3.3.2. Pre-generated impostors

Pre-generated impostors were first used by Tecchia et al.
[TCO0] by rendering each character from several viewpoints
and for every animation frame of a simple animation cycle
(see Figure 9). The images were stored in a single texture at-
las, and each crowd agent was rendered as a single polygon
with suitable texture coordinates according to the view angle
and frame.

Pre-generated impostors with improved shading have also
been used by Tecchia et al. in [TLCO02] by adding shadows
to each agent. Since the shadow is just the projection onto
the ground of the character’s silhouette, they can project the
polygon of the impostor onto the ground, using the shadow
coverage to darken the ground (see Figure 10). This fake
shadow is valid only on planar geometry with a parallel light
source, but gives plausible results with small overhead.

Pre-generated impostors can achieve rendering of crowds
consisting of tens of thousands of agents. Unfortunately, al-
though image and texture compression techniques can be ap-
plied to the resulting texture atlases, they still require large

8 A. Beacco, N. Pelechano & C. Andiijar / A Survey of Real-Time Crowd Rendering

Figure 10: A scene with shadowing pre-generated impostors
[TLCO2] (image courtesy of Yiorgos Chrysanthou).

amounts of memory due to the per-view, per-frame replica-
tion. Some memory savings can be achieved by removing
intermediate frame textures, and generating them online us-
ing morphing techniques [YYBE13]. An additional limita-
tion of pre-generated impostors is that, depending on the tex-
ture resolution, close-up characters appear clearly pixelated.
These impostors do not allow interpolation or blending be-
tween two or more different animations (e.g. combining a
walk clip with a hand waving clip).

3.4. Hybrid techniques
3.4.1. Geopostors

Dobbyn et al. [DHOOOS] introduced the Geopostors, a
hybrid system combining pre-generated impostors with a
polygon-based representation. Figure 11 shows how impos-
tors are used for far agents while the ones close to the camera
are rendered with full geometry.

Figure 11: Geopostors. Far agents are rendered with im-
postors while closer ones are rendered with geometry
[DHOOOS] (image courtesy of Carol O’Sullivan).

The switching between the mesh and the impostor is
based on the impostor image pixel size to impostor texel size
ratio. Ideally this ratio should be 1:1, because aliasing starts
when a texel is bigger than a pixel.

An extension of this approach was made by Pettre et
al. [PDHCM*06], combining the animation quality of dy-
namic meshes with impostors and adding a third LoD using
the high performance offered by static meshes, i.e. meshes
where animated poses were already computed.

3.4.2. Layered impostors

In geopostors, the visual gap between flat impostor and ge-
ometry might, for some view directions, be too large to com-
pletely avoid popping artifacts. Coic et al., [CLMO07] de-
scribed a similar hybrid system but with three LoDs, adding
an intermediate layered impostors LoD between flat impos-
tor and geometry to help achieving continuity during transi-
tions. Instead of a single textured polygon, an adaptive num-
ber of layers of the color texture are drawn, depending on
the texel’s depth (see Figure 12). These layers fill a volume
in the 3D scene and can be shaded dynamically using color
textures enriched with depth and normal channels.

Complexity
in number of
polygons 1o

simplification
¢ \

~32 4 Adaptive number
of layers
1 Mip-Mapping
Layered One-Polygon
CERIeL} S Impostor Impostor

Figure 12: Volumetric layered based impostors rendering
scheme: between geometry and the one-polygon impostor,
an adaptive number of layers is used for a layered impos-
tor [CLMO7] (image courtesy of Celine Loscos).

Layered impostors are rendered in layers parallel to the
image plane. For each of these layers, the pixels that cor-
respond to a certain depth are selected. After selecting the
required number of layers, they divide the volume captured
during preprocessing into as many intervals as the number
of layers, defining the intervals of depth for selecting pixels
in the color texture. The selection of the right pixels for each
depth interval is done in a fragment shader, where lighting is
also computed.

To extend the validity of the layered impostors, over-
lapping depth intervals can be used. Without overlapping,
cracks appear on the layered impostor as soon as the view-
point slightly differs from the pre-computed one. By draw-
ing a small part of the previous and next layers, these gaps
are avoided, extending the lifetime of the layered impostor
and decreasing the density of precomputed views (see Figure
13).

submitted to COMPUTER GRAPHICS Forum (9/2015).

A. Beacco, N. Pelechano & C. Andiijar / A Survey of Real-Time Crowd Rendering 9

Figure 13: A cow rendered with 5 layers and dynamic light-
ing, without (left) and with overlapping (right) [CLMO07]
(image courtesy of Celine Loscos).

Although this approach improves visual quality and fills
the gap between the polygonal representation and the flat im-
postors, it adds additional channels (normal, depth and sev-
eral layers), which worsens the memory problem. Layered
impostors are slower to render than one-polygon impostors.

3.4.3. Polypostors

Polypostors were introduced by Kavan et al. [KDC*08] to
reduce the memory requirements of pre-generated impostors
whilst mantaining rendering performance. Each polypostor
consists of a collection of 2D (planar) primitives, each one
representing an individual body part for a given view direc-
tion (thus avoiding a per-frame memory consumption).

The original 3D character is cut into several body parts in
order to minimize occlusion issues. The original skeletal ani-
mation is applied to the body parts. The composition of these
body parts gives the same animation as the one provided
originally. For the first frame of the animation, each body
part is rendered and enclosed within textured 2D polygons,
using a standard contour tracing algorithm. For all subse-
quent frames, an algorithm based on dynamic programming
shifts the vertices of the 2D polygons so that they approx-
imate the actual rendered image as closely as possible (see
Figure 14). This algorithm matches two textured polygons
in an optimal way with respect to a chosen error metric.

At run-time, the deformed polygons are composited in
depth order, creating the illusion of an animated 3D char-
acter. Since polypostors approximate the animation by de-
forming their texture, they are not as accurate as other im-
postors. They can be applied only to animations that can be
described as deformations of the initial key-frame. They can
produce artifacts with views where there is a lack of texture
information in the first key-frame, due e.g. to disocclusion
effects.

3.4.4. Per-joint impostors

Two recent approaches by Beacco et al. adopt the polypos-
tor idea of having impostors per body parts instead of per-
character. They maximize performance by using a collection
of pre-computed impostors sampled from a discrete set of
view directions. The first method is based on relief impostors
[BSAP11] and the second one on flat impostors [BAPS12].

submitted to COMPUTER GRAPHICS Forum (9/2015).

Characters are animated by applying the joint rotations di-
rectly to the impostors, instead of choosing a single impos-
tor for the whole character from a set of predefined poses.
This representation supports any arbitrary pose and thus the
agent behavior is not constrained to a small collection of pre-
defined clips.

In [BSAPI11] each character is encoded through a small
collection of textured boxes storing color and depth values
(Figure 15). At runtime, each box is animated according to
the rigid transformation of its associated bone and a frag-
ment shader is used to recover the original geometry us-
ing a dual-depth version of relief mapping [OBMO00], re-
covering surface details and reproducing view-motion par-
allax effectively, at the expense of some per-fragment over-
head. Beyond a certain distance threshold, this compact rep-
resentation is much faster to render than traditional level-of-
detail triangle meshes. Their user study demonstrated that
replacing polygonal geometry by per-joint relief impostors
produces negligible visual artifacts [BSAP11]. Although
this method provides a high-quality representation for dis-
tant meshes, its applicability is limited to relatively far-
away characters due to the per-fragment cost of the fragment
shader. So for close-up agents it is usually faster to render
fully animated 3D skinned characters.

A more efficient approach is presented in [BAPS12]. In-
stead of using six orthogonal relief maps for each joint,
which requires multiple dependent texture accesses per frag-
ment, they use flat impostors created by sampling each joint
from multiple view directions. These view directions corre-
spond to the faces of a subdivided icosahedron. A spherical
Voronoi map is computed from it, and a cube map is built
by projecting the Voronoi cells onto the cube faces, thus en-
coding for each texel the ID of its nearest discrete sample.
At runtime, for each fragment, a single cube map texture
lookup is enough to retrieve this sample ID, and another one
to retrieve the color of the fragment from that sample. Since
per-joint impostors are intended to be valid for any pose, a
key issue is to properly define which part of the geometry
influenced by each joint must be represented as opaque pix-
els in the corresponding impostor. These parts are encoded

Figure 14: An example of a polypostor animation, overlaid
with wireframe. Note that the character animation is cre-
ated simply by displacing polygon vertices (stretching the
texture accordingly) [KDC*08] (image courtesy of Ladislav
Kavan).

10 A. Beacco, N. Pelechano & C. Andiijar / A Survey of Real-Time Crowd Rendering

Figure 15: Relief impostors: During pre-process, color, nor-
mal and depth information are projected onto the 6 box
faces. During real-time, each character is rendered through
relief mapping [BSAP11].

through opacity masks (see Figure 16), which are computed
by considering how the geometry of each bone is affected by
the transformation of neighboring joints.

Figure 16: On the left, pre-process to obtain each per-joint
and per-view impostor for the head of the character after ap-
plying the corresponding mask. On the right, real time ren-
dering compositing the per-joint textures for a given view
point [BAPS12].

Previously, in the same spirit, Aubel et al. [ABTO00] di-
vided each character into coherent parts by using the natu-
ral segmentation of joints. However, their subdivision was
used exclusively for handling visibility issues rather than
for animating each part separately as in [BAPS12]. Maim et
al. [MYTO09] sampled individual parts from multiple view di-
rections too, but their animation-independent impostors are
limited to rigid accessories such as hats, wigs or backpacks.

3.5. LoD selection

Assuming multiple LoDs are available, the application has to
decide the most suitable LoD for each agent, when to switch
from one LoD to another, and how to do this switch as seam-
lessly as possible to avoid popping artifacts. Early LoD se-
lection techniques relied on object-space distance thresholds

defining ranges for each LoD. A better approach is to select
the LoD according to (a conservative estimation of) the area
of the screen projection of the character. Hardware occlu-
sion queries report pixel counts and thus can be used also to
select a proper LoD considering not only screen-projected
area, but also partial visibility (if an object is hardly visi-
ble, a lower resolution model can be used). However, naive
occlusion queries often have a detrimental effect on perfor-
mance unless more sophisticated techniques exploiting tem-
poral and spatial coherence of visibility are used [MBWO8].

Zach and Karner presented an automatic and dynamic se-
lection of LoD by computing an estimation of the render-
ing cost and the perceptual benefits [ZMKO02]. Hernandez
et al. implemented a dynamic LoD selection and view frus-
tum culling on the GPU, by using the new transform feed-
back mechanism [HR11]. More recently Toledo et. al. im-
plemented a tiling of the environment, tagging each agent
with the code of the tile they are occupying, and making
it easy and fast to dynamically update it [TDGR14]. The
tagged code allows for a fast distance computation to the
camera and LoD selection.

A related problem is how to switch from one LoD to
another, as this has a significant impact on visual quality
[SGO3]. If LoDs are selected based on a range of distances,
all agents crossing the boundary immediately suffer a LoD
switch and thus pop-up effects will become more localized
and noticeable. On the other hand, an agent walking over
such boundary lines will be constantly switching between
two LoDs and might easily catch the eye. A solution is to
add a minimum validation time, biased with a random off-
set, that the agent needs to be in the new zone before further
switches are allowed. The random offset allows more unpre-
dictable and asynchronous changes of LoDs. Another possi-
bility to reduce pop-up artifacts is to alpha-blend the renders
of two LoDs in the vicinity of switch threshold values. This
approach has the potential to mitigate popping artifacts, at
the expense of rendering two representations instead of one
(at least for a subset of the characters), and thus reducing
performance.

4. Lossless acceleration techniques

In contrast to the LoD techniques reviewed above, the ac-
celeration techniques described in this section introduce no
further visual artifacts.

4.1. Culling Techniques

Culling techniques aim at discarding objects or parts of ob-
jects which are not visible [COCSDO03]. In this section we
show how these algorithms can be applied to crowd render-
ing and the problems that can be encountered.

Frustum culling is a very common technique for discard-
ing all of the objects that are not inside the camera frustum,

submitted to COMPUTER GRAPHICS Forum (9/2015).

A. Beacco, N. Pelechano & C. Andiijar / A Survey of Real-Time Crowd Rendering 11

thus avoiding sending them to the graphics card and speed-
ing up the rendering [Cla76, BEW*98, AMO00]. The test to
determine if a point or a bounding volume (box, spheres and
cylinders are typical shapes) is partially or totally inside the
frustum can be performed before the render instruction. In
the case of crowd rendering we can simply use the bounding
sphere of the agents to approximate their shape. Although
this test is very fast, it has to be performed for every agent
in the crowd, which can be very large (tens or hundreds of
thousands). In the case of having most of the agents within
the frustum, then this test will consume a large amount of
processing time that could have been used to render more
agents.

With the goal of applying frustum culling to crowd ren-
dering there are some strategies that can be applied. If the
simulation and the rendering run in parallel, the frustum test
can be performed in the simulation thread which sets a visi-
bility flag. Another possibility consists of keeping some data
structure that can speed up the process of determining which
agents need to be rendered, such as spatial hashing [Rey06]
or hierarchical representations [TDGR14].

Visibility or occlusion culling algorithms determine if an
object is occluded by some other geometry (mainly static
geometry) before rendering it [KSO1]. The visibility test can
be performed using preprocessed data (requiring an organi-
zation of the whole geometry), using structures such as kd-
trees that encapsulate all the scene visibility information. In
the case of crowds, since agents are moving around a vir-
tual environment, the visibility test needs to be performed
against the static geometry of the scene. However, due to the
dynamic nature of the agents, it is not enough to use specific
methods that often apply exclusively to static geometry. One
efficient way to perform occlusion culling is to first render
the scene and then render the agents discarding the occluded
fragments with a simple depth test. Notice that this still re-
quires sending them to the graphics card to be rendered since
culling is performed in the GPU.

Another possibility to significantly increase performance
is to use hardware-based occlusion queries [WBO0S5] by send-
ing simpler geometry to the GPU such as bounding volumes.
This allows for conservative culling, since discarding objects
whose bounding volume is completely occluded is safe, but
we might fail to discard some invisible agents.

When having a very large crowd, and depending on the
kind of camera motion we have (for example a first person
camera), it is very common to have agents occluding other
agents. The early z-culling [MS04] feature, implemented in
most of the recent GPUs, allows for a fragment to be dis-
carded before it is processed by the fragment shader (al-
though some practices, like modifying the fragment’s depth
programmatically, disable this feature). One could think that
depth test and early z-culling should be enough to handle
these situations and avoid rendering thousands of agents,
but depth algorithms depend highly on the order in which

submitted to COMPUTER GRAPHICS Forum (9/2015).

primitives are rendered. Clustering techniques or spatial data
structures allowing an efficient front-to-back traversal of the
crowd agents, such as KD-trees or BSP-trees, can benefit
from early z-culling. We must remember though, that crowd
agents will be moving around the environment, and therefore
these structures should be dynamically updated every frame
according to the new positions of the agents. Herndndez et
al. use the new transform feedback mechanism of modern
GPUs to perform view frustum culling efficiently [HR11].

4.2. Instancing and pseudo instancing

Primitive instancing [Car05] optimizes rendering by draw-
ing multiple copies of an object using a single call. Through
instancing, the graphics processor deals with per-instance
geometry transformations and appearance modifications, re-
leasing the main processor from this task. A GPU acceler-
ation crowd rendering is presented by Millan and Rudomin
in [MRO6b], alternating the use of impostors with polygonal
meshes drawn through pseudo-instancing (see Figure 17).

Figure 17: One million characters rendered with pseudo-
instancing [MRO6b] (image courtesy of Isaac Rudomin).

Even when instancing is originally designed for static ob-
jects, a similar technique may be used to render large crowds
of animated characters. To achieve this goal, a pseudo-
instancing technique is used, where geometry is updated
on every animation frame and sent to the graphics mem-
ory to be used later for rendering nearby characters. Pseudo-
instancing takes advantage of the efficiency of using persis-
tent vertex attributes, such as color or transformations, to
provide information for an entire instance.

However, this model update implies copying information
into graphics memory. Therefore, to maximize the outcome
of this technique, several copies of the same object must be
rendered in every frame. This is a problem when using an-
imated models, since every different animation pose needs
to be sent to the graphics memory. As a workaround, a few
poses can be selected, and nearby characters are rendered
using the closest pose to the ones selected.

12 A. Beacco, N. Pelechano & C. Andiijar / A Survey of Real-Time Crowd Rendering

The main difference is that, in instancing, only one call
is used to render all primitives, while pseudo-instancing re-
quires one call to a display list to render each instance. How-
ever, these calls are very efficient in OpenGL, so similar per-
formance levels are achieved by both techniques. When hav-
ing crowds with hundreds or thousands of agents, it is often
desired to have each agent to play different animations with
different poses. Although animations have a small memory
footprint, the computation of all the blending poses can be-
come a major bottleneck and ruin performance. With the in-
troduction of programmable pipelines, a number of costly
CPU computations were moved to the GPUs. Beeson and
Bjorke highly accelerated the skinning process by comput-
ing it directly in the GPU [BB04]. Skinning in the GPU re-
quires transfer of both the original vertices of the avatar and
the set of matrices of each animation frame. The final pose
is a set of matrices that must be used to transform all the
avatar vertices in the vertex shader, so the GPU bandwidth is
critical.

Matrix palette skinning, introduced by Dudash [Dud07b],
avoids sending to the GPU the transformation matrices for
each bone and character instance. In matrix palette skinning,
bone matrices for each frame and for each animation are
stored in graphics memory. This allows each agent to have
its own distinct pose and animation [Dud(07a]. Note how-
ever that palette skinning only saves memory bandwidth; it
does not affect the number of matrix operations in the vertex
shader.

4.3. Dynamic caching

Recently, Lister et al. [LLD10] improved the efficiency of
linear-blend skinning by using the temporal and intra-crowd
coherencies that are inherent within populated scenes. They
achieved it through the allocation of a small geometry cache
within which transformed key-poses can be stored. These
key-poses are then re-used by multi-pass rendering, between
multiple agents and across multiple frames.

The cache of skinned key-poses is a maintained fixed-
sized cache, from which crowd members can be recon-
structed by interpolation. Generic poses may be shared
amongst crowd members to significantly reduce the number
that must be stored.

This cache size becomes also a trade off between the ren-
dering performance and the memory usage, because it is the
number of characters that have the key-poses stored in the
cache that will have the greatest effect on the rendering per-
formance. Clearly, the choice of which key-poses to store
is critical to maximize the potential of the approach. Since
this is a NP-hard problem, they present a greedy algorithm
suitable for real-time applications.

5. Lighting, shading and shadowing

Lighting and shading improve the way we perceive the char-
acters. Jarabo et al. recently made a perception study on
how important lighting is for the overall perceived realism of
dynamic scenes [JVES*12]. Self-shadowing and self-inter-
reflection can help the human eye to interpret the animation
and expression of the avatars. Two main techniques are well-
known for casting shadows: shadow maps and shadow vol-
umes. Williams introduced shadow maps [Wil78], using a
depth map build from each light source to determine whether
a fragment is illuminated or not. Two main problems arise
from this. First, since textures are used, aliasing problems
appear. Second, an additional render of the scene is required
for each light source, since animated characters invalidate
precomputed shadow maps. Shadow volumes, introduced by
Crow [Cro77], are more expensive to calculate, but resolve
the aliasing problems by using a semi-infinite frustum. This
frustum is extended back from the silhouette of the object
away from the light. As mentioned in 3.3.2, shadows for an-
imated crowds can be rendered using impostors [TLC02] ,
but this technique does not support characters casting shad-
ows onto each other. Self-shadowing for texture-based im-
postors can be computed using parallax occlusion mapping
and its self-shadowing contribution [Tat06]. For more infor-
mation about real-time shadow techniques see [EAS™13].

6. Clothing and Crowd Variability

Traditionally 3D characters are modeled clothed, with their
clothes being part of the human mesh since having them
modeled as separate elements and adding clothing simu-
lation is very expensive. Detecting collisions with the hu-
man body [CFW13] is prohibitively expensive for real-time
crowds. McDonnell et al. [IMDCOO06] perceptually evaluated
different LoD representations of humans wearing physically
simulated clothing. They show that impostors can depict the
deformation properties of clothing. Some recent games in-

Figure 18: Dynamic caching accelerates the rendering of an
animated crowd [LLD10] (image courtesy of Andy Day).

submitted to COMPUTER GRAPHICS Forum (9/2015).

A. Beacco, N. Pelechano & C. Andiijar / A Survey of Real-Time Crowd Rendering 13

Figure 19: Crowd using two template models with color vari-
ation.

clude cloth simulation for the main character or a small
amount of them, but real-time cloth simulation for crowds
is beyond the state-of-the-art.

A related problem is to give each agent of the crowd an in-
dividual aspect. McDonnell et al. [MLD™08] performed per-
ceptual studies to determine which aspects are more critical
to identify clones. The ideal would be to have unique in-
stances of each avatar, but due to obvious memory and mod-
elling budgets, repetitions are inevitable. Some approaches
attempt to add variability and create new differentiated in-
stances of the same base character. Maim et al. [MYTO09]
proposed a method for attaching accessories to individual
agents, and a generic technique for adding detailed color va-
riety and patterns, by using segmentation maps over the hu-
man and accessory meshes. Their approach is scalable for all
LoDs, including impostors. McDonnell et al. [MLH*09] use
selective color variation to generate the illusion of variety as
full color variation (see Figure 19). Lister et al. also [LLD10]
add geometric diversity using tangent space morph targets.

Another important aspect to consider when increasing in-
dividualism, is the relevance of motion variety. In [PO11]
perception studies were carried out to determine how people
detect motion clones.

7. Comparison of crowd rendering techniques
7.1. General Comparison

Table 1 summarizes the crowd rendering approaches dis-
cussed in previous sections, considering the underlying rep-
resentation and animation technique. We have also summa-
rized the limitations of each approach, highlighting the pa-
rameter or element that contributes most to the performance-
quality trade-off. In the latter columns we evaluate (as high,
medium or low) the limitations of each method in terms of
memory space, visual artifacts and time efficiency.

The explanation of each column follows:
e Type: Polygon-based, Point-based, Image-based or Hy-
brid.

submitted to COMPUTER GRAPHICS Forum (9/2015).

e Representation: The geometric representation(s) used to
render each agent.

e Animation: The animation technique used to animate
each agent.

e Tradeoff: The main parameter of the approach that im-
plies a tradeoff between visual quality and performance.

e Limitations: The main limitations of the approach in
terms of memory, visual quality and time efficiencty, and
other aspects with a high impact on the final results or the
implementation.

— Memory: We give the required memory space of each
approach by pointing which parameters it depends
upon:

Number of agent types (A)

Geometric complexity (G)

Number of frames (F')

Number of views, if it has a discrete number of
views, like planar impostors (V)

Number of joints (J)

Texture resolution (R)

O O O O

o O

— Artifacts: We classify visual and animation artifacts
in three categories:

o Image Quality: blocky aspect (BI), pixelization
(Pix), cracks or gaps (Crk), and animation artifacts
due to inconsistent geometry deformation (Animp).

o Temporal Discontinuity: popping when changing
of LoD (Popr), when changing the view point
(Popy), when changing the frame (Popr).

o Spacial Consistency: visibility or occlusion prob-
lems with the scene (Occlg), and with the agent it-
self (Occly).

— Cost: The time efficiency is affected by some of the
following elements:

o Number of agent types (A)
o Total number of vertex operations (Vx)
o Total number of fragments (Frag)

7.2. Performance Comparison

We measured the performance of the most representative
LoD techniques for crowd rendering in different scenarios.
We used two test views, an aerial view with little overdraw
and a street view with a significant amount of overdraw (Fig-
ure 20). In both views the crowd was placed at a fixed dis-
tance range from the 60-degree camera, with close-up char-
acters at approximately 10 meters and the farthest ones at
100 meters. When testing different crowd sizes, we kept the
area covered by the characters fixed, and only increased the
density. The test hardware was a desktop PC equipped with
an Intel Core 17-2600K @3.40GHz with 16 GB of RAM and
one NVidia GeForce GTX 560 Ti. All renders were per-
formed at a rather high-quality profile: 1920x 1080 resolu-
tion, with a single static light casting soft shadows on the

A. Beacco, N. Pelechano & C. Andiijar / A Survey of Real-Time Crowd Rendering

14

3o

A

A

A

150D

3D

Adog “1dog

Tdod 1D

ddog “1dog

V1200 ‘Adog ‘y1D

§1200 ‘ddoq ‘Adog

ddog ‘Adog x1d

51220
‘ddog ‘Adog ‘1dog

ddog

Tdog “x1d ‘19
51220
‘ddog ‘Adog ‘xi1g

ddog
‘Adog “Spo0 “xid

Tdog “Quuuy ‘1q

spEnIy
suopeywI

AX[XAXY

AX[XY

O Xy

AXAXAXY

AXAXAXY

AXAXAXY

AXAXAXY

A XD XY

O Xy

AXAXAXY

O XV

AIOWIA

[oAQ]
Ayorerary
pue
doue)sIq

so[Sue ma1a
Jo # pue

doue)sIq

syuowiSey
Jo Jequnu
10 0UBISI(]

9Z1S 9UYIBD

az1s foxid
IO QOUBISI(T

az1s 1oxid
10 QOUBISI(]

Nndo oy
ur SOUSIN#

azrs Joxid
1o ddueIsIq

azrs [oxid
10 ouRISIg

az1s [oxid
10 ouBISIq

SMATA JO #

WNLIILID
ysanjoy
azis [oxid
10 0uRISIJ

Jjospeay

[B19[YS

[BI9[XS

[B19[YS

(e10193s)
asod 159501

[e19]Ys pue
UOT)EULIOJOP
Aamxa,

[e1o[oys

pue [ed1[0A0
amxay,

[BIR[XS
[eIo[s

pue [e21[9Kd
amxay,

Teo1o4ko
UsSIN

[eo11940
USON

[eo1194o
aImyxay,

[BI9[XS

[eRIeNS

uonewIuy

ysouwr pue
‘quury Jod 9am00

ysowr
pue ‘9red Apoq
Iad preoqqriq
pajuaLIo duQ
ysour pue
9red Apoq 1od
s1oysoduir jorpar 9
UsSN
ysow
pue 9red Apoq
Iod preoqqriq
PAUSLIQ [
USSN

pue spreoqiiq
paroke] pajualI)

SO

ysour

pue pIeoqq[iq
pajusLI

ysow

pue preoq[iq
pajuaLIO

LES) ALK

pue 9[Suen],

pieoq[iiq
pajuaLIQ

pieoq[Iiq
pajusLI

LES)

uoneyudIsdIday

PUqAH

puqAH

PUqAH

uo3A[od

PUqAH

PUAAH

uo3A[od

ACINC

uo3A[od

urod

oFewy

afewy

uo3A[od

adAy,

[yraoadl

[z1Sdvd]

[11dvsdl

loraTtl

[80.0a1]

[LOWTOI

[9909IN]

[soooHdl

[voronl

[zosml

(0021l

[86LaV]

[L6,9dd]

DUIYNY

¥10C

cloc

110c

010C

800¢C

L00T

900C

§00¢

00T

200¢

000C

8661

L661

Je3x

paseq
-jurod

[EIYOIeITH

s10jsodury
juiof-Jg
el

sa0ysodury
Jurof-13J
PIPA
Sunype)
dreufq

sx0)sodAjog

s10jsodury
paxdfe]
JLIJOUWN[OA

Surue)suy
-opnasq

s10)s0doax)

A1)9W095)
mels

sx0jsodury
paseq
-jutod
s10jsodury
pajerduasd
-1d
s10jsodury
Jrueulq

aox

yoeoaddy

submitted to COMPUTER GRAPHICS Forum (9/2015).

Table 1: Comparison of the limitations of the main approaches on crowd rendering in the literature. Quick reference: MEMORY:
A: agent type; G: geometry complexity; F: number of frames; V: number of views; J: number of joints; R: texture resolution.
of LoD; Popy: popping changing of view; Popy: popping changing of frame; Occlg: occlusion problems with the scene; Occly :

IMAGE QUALITY: BI: blocky aspect; Pix: pixelization; Crk: cracks; Animp: animation deformation; Popy,: popping changing
occlusion problems with the agent itself. COST: A: agent type; Vx: vertex operations; Frag: number of fragments

A. Beacco, N. Pelechano & C. Andiijar / A Survey of Real-Time Crowd Rendering 15

Figure 20: Aerial (a) and street (b) view used in our performance tests. Further characters are at 100 meters from the camera.

Number of Agents 2500 5000 10000
View Aerial Street Aerial Street Aerial Street
Original mesh (25 K triangles) 1.4 1.4 0.7 0.7 0.3 0.3
Simplified mesh (5 K triangles) 2.9 2.9 1.5 1.5 0.8 0.7
Approach Simplified mesh (2.5 K triangles) 6.0 6.0 3.1 3.1 1.6 1.6
Relief Per-Joint Impostors [BSAP11] 20 17 11 9 5 4
Polypostors [KDC*08] 43 38 25 21 13 11
Flat Per-Joint Impostors [BAPS12] 45 41 26 22 15 12
Pre-generated Impostors [TCO00] 90 81 51 48 26 25

Table 2: Performance comparison of different crowd rendering techniques in frames per second (fps).

ground, and each character being animated by blending two
different animation clips. The pose of each character was up-
dated at every application frame. Agents were animated in
place to evaluate exclusively rendering and animation per-
formance, without considering collision detection and simu-
lation, which would affect all techniques. Several hardware
optimizations were implemented for all techniques, includ-
ing deferred rendering (soft shadows), instancing and palette
skinning. Occlusion and frustum culling though were dis-
abled since for the two test views they offered no perfor-
mance gain.

For the sake of fairness, we used identical or similar pa-
rameters whenever possible across impostor representations.
The original mesh had 25K polygons, 2048 x 2048 tex-
tures, and a 67-bone skeleton. All impostor textures were
128 x 128 texels. Polypostors, Relief and Flat Per-Joint Im-
postors used a 21-bone skeleton. For view-dependent impos-
tors 72 view directions were used for sampling. Relief map-
ping was configured to execute up to 8 linear search steps,
and up to 2 bilinear search steps. Animation clips of pre-
generated Impostors [TCO0] were sampled at 30 fps.

Table 2 reports the results of our benchmark with different
crowd sizes. As expected, image-based techniques clearly
outperformed mesh-based approaches, even after significant
simplification of the mesh. Pre-generated Impostors offered

submitted to COMPUTER GRAPHICS Forum (9/2015).

the highest performance in our setup, but due to their visual-
quality and animation limitations, this representation should
be reserved to very distant characters. From the point of view
of performance, both Polypostors and Flat Per-Joint Impos-
tors are good for not-so-distant characters.Relief per-joint
impostors provided the highest-quality among image-based
representations, but their output-sensitive nature and their
high per-fragment cost makes them suitable for characters
with small to medium-size screen projection.

8. Conclusions

We have reviewed and compared a large number of
crowd rendering approaches. Overall, each technique
falls somewhere within the triangle representing the
quality/memory/performance trade-offs.Polygon-based ap-
proaches offer the best visual quality, but their performance
depends strongly on the number of polygons per agent. Cur-
rent GPU techniques such as instancing, palette skinning and
dynamic caching can help to speed up the rendering, but as
the size of the crowd increases, performance will be severely
affected.

There is currently no standard solution for representing far
away characters, though most crowd rendering systems use
at least a different representation for these. LoD techniques
are commonplace to improve performance as the number of

16 A. Beacco, N. Pelechano & C. Andiijar / A Survey of Real-Time Crowd Rendering

agents increases. Some issues specific to character rendering
are how to generate simplified models of avatars that need
to be deformed by animations, and how to switch between
LoDs without popping artifacts.

Using only points as primitives reduces the rendering cost,
but the animation can suffer from visual artifacts when dras-
tically reducing the number of primitives. This problem can
be alleviated by proper point sampling, at the expense of
having a different sampling for each keyframe.

Image-based representations offer the highest perfor-
mance. We can trade off memory for quality to provide a
better sampling of view directions and animation frames to
minimize popping artifacts, but in practice image-based rep-
resentations are suitable only for distant characters.

Hybrid approaches combine mesh-based and image-based
or point-based representations to display characters at differ-
ent viewing distances. Special care must be taken to prevent
visual artifacts when switching from one representation to
another. Hybrid approaches have now reached a finer granu-
larity, from using a single texture for the whole character, to
using per-joint impostors at different skeleton levels, but it is
unclear how much further these techniques can go in adding
details while still being more efficient than the original ge-
ometry.

From an implementation point of view, all the new hard-
ware improvements such as instancing need to take impor-
tant considerations into account. Appropriate grouping data
structures for avatars, textures and animations, and minimiz-
ing 3D API state changes are critical to get all the benefits of
these improvements. The general trend is to move as many
computations as possible to the GPU, achieving higher par-
allelization of per-agent computations and releasing the CPU
for other tasks. Skinning and animation blending can be per-
formed efficiently in the GPU. As we free the CPU from
rendering and animation tasks, the CPU can spend more re-
sources to the crowd simulation, although lately there has
been a tendency towards moving also some simulation tasks
to the GPU. We will probably reach a point where all crowd
simulation, animation and rendering will be performed in the
GPU at different shader stages. In this scenario, GPU mem-
ory and CPU-GPU bandwidth could become major limiting
factors.

Adding shadows to the crowd scene increases realism, but
at the high cost of having to render the scene for each light.
Impostors can be used to do so and have approximate shad-
ows, although they do not support self shadows. Clothing
the characters also adds realism but there is still no physi-
cal clothing simulation fast enough for crowd rendering. Re-
peating instances of the same avatars is inevitable, specially
to benefit from instancing and similar techniques, but some
variety can be added to the crowd by attaching different ac-
cessories or by adding color variety and editable patterns to
some base meshes.

There are still many open problems in this field, such
as having individuality at all levels (appearance, animation
and even behavior). For the individuality problem, tessella-
tion shaders could become a powerful tool in order to add
geometric variation to close-up characters, using stochastic
techniques. Hardware tessellation might also accelerate the
skinning process by rigging and animating a mid-resolution
mesh that can be refined dynamically into a high-resolution
mesh.

Despite hardware improvements, we believe that opti-
mized crowd rendering would continue to be a challenging
problem in the years to come. Even with hardware able to
handle large groups of agents in real-time, optimized prim-
itives will free CPU and GPU, leaving more resources for
other tasks, minimizing energy consumption and increasing
battery life.

Beyond some maximum viewing distance, a 3D charac-
ter projects into a few pixels. At such distances, we may not
be visualizing microscopic simulations anymore, but crowds
may be moving at a macroscopic level. In such a case, crowd
rendering should be approached in a completely different
way, representing massive groups of people flowing, and not
individual agents anymore. There are other questions about
what humans are able to perceive within their field of view,
such as what is the real maximum amount of agents that can
be perceived simultaneously by a single viewer, what is the
minimum visual quality they need to have, or what are the
visual queues users are able to distinguish. As we have seen,
some perceptual studies already attack the perception prob-
lem but focusing on agent variability. Additional percep-
tion studies and psychophysical experiments are definitely
required to answer the questions above and to discover the
boundaries of perception in the context of real-time crowd
rendering.

Acknowledgements

This work has been partially funded by the Spanish Ministry
of Economy and Competitiveness and FEDER under grant
TIN2014-52211-C2-1-R. A. Beacco was also supported by
the grant FPU AP2009-2195 (Spanish Ministry of Educa-
tion).

References

[ABT98] AUBEL A., BOULIC R., THALMANN D.: Animated
impostors for real-time display of numerous virtual humans. In
VW °98: Proc. of the First International Conference on Virtual
Worlds (London, UK, 1998), Springer-Verlag, pp. 14-28. 2, 7,
14

[ABT00] AUBEL A., BoULIC R., THALMANN D.: Real-time
display of virtual humans: Levels of details and impostors. IEEE
Transactions on Circuits and Systems for Video Technology 10
(2000), 207-217. 10

[AMOO] ASSARSSON U., MOLLER T.: Optimized view frustum
culling algorithms for bounding boxes. J. Graph. Tools 5, 1 (Jan.
2000), 9-22. 2, 11

submitted to COMPUTER GRAPHICS Forum (9/2015).

A. Beacco, N. Pelechano & C. Andiijar / A Survey of Real-Time Crowd Rendering 17

[ASDB08] AZAHAR M., SUNAR M., DAMAN D., BADE A.:
Survey on real-time crowds simulation. In Technologies for E-
Learning and Digital Entertainment, Pan Z., Zhang X., E1 Rhal-
ibi A., Woo W., Li Y., (Eds.), vol. 5093 of Lecture Notes in Com-
puter Science. Springer Berlin Heidelberg, 2008, pp. 573-580.
2

[AT00] AUBEL A., THALMANN D.: Realistic deformation of hu-
man body shapes. In Proc. Computer Animation and Simulation
2000 (2000), pp. 125-135. 3

[Ber0S] BARENTZEN J.: Hardware-accelerated point generation
and rendering of point-based impostors. J. Graphics Tools 10, 2
(2005), 1-12. 2, 6

[BAPS12] BEACCO A., ANDUJAR C., PELECHANO N., SPAN-
LANG B.: Efficient rendering of animated characters through
optimized per-joint impostors. Journal of Computer Animation
and Virtual Worlds 23,2 (2012), 33-47. 2,9, 10, 14, 15

[BBO4] BEESON C., BJORKE K.: Skin in the "dawn" demo. In
GPU Gems: Programming Techniques, Tips and Tricks for Real-
Time Graphics (2004), Pearson Higher Education, pp. 45-62. 12

[BEW*98] BisHOP L., EBERLY D., WHITTED T., FINCH M.,
SHANTZ M.: Designing a pc game engine. [EEE Comput.
Graph. Appl. 18, 1 (Jan. 1998), 46-53. 2, 11

[BP07] BARANI., POPOVIC J.: Automatic rigging and animation
of 3d characters. ACM Trans. Graph. 26, 3 (2007), 72. 3

[BSAP11] BEAcCcO A., SPANLANG B., ANDUJAR C.,
PELECHANO N.: A flexible approach for output-sensitive
rendering of animated characters. Computer Graphics Forum 30
(2011). 9, 10, 14, 15

[BTST12] BHARAJ G., THORMAHLEN T., SEIDEL H.-P.,
THEOBALT C.: Automatically rigging multi-component char-
acters. Computer Graphics Forum 31, 2pt4 (2012), 755-764. 3

[Car05] CARuccl F.: Inside geometry instancing. In GPU Gems
2 (2005), Pharr M., (Ed.), Addison-Wesley, pp. 47-67. 11

[CFW13] CHEN Z., FENG R., WANG H.: Modeling friction and
air effects between cloth and deformable bodies. ACM Trans.
Graph. 32,4 (July 2013), 88:1-88:8. 12

[Cla76] CLARK J. H.: Hierarchical geometric models for visible
surface algorithms. Commun. ACM 19, 10 (Oct. 1976), 547-554.
2,5, 11

[CLMO07] Coic J., Loscos C., MEYER A.: Three LOD for
the Realistic and Real-Time Rendering of Crowds with Dynamic
Lighting. Research Report RN/06/20, Université Claude Bernard,
LIRIS, France, April 2007. 8, 9, 14

[CLTL11] CHENC.,LIN 1., TSAI M., LU P.: Lattice-based skin-
ning and deformation for real-time skeleton-driven animation. In
Proc. of the 2011 12th International Conference on Computer-
Aided Design and Computer Graphics (Washington, DC, USA,
2011), CADGRAPHICS ’11, IEEE Computer Society, pp. 306—
312. 4

[CMTO05] CORDIER F., MAGNENAT-THALMANN N.: A data-
driven approach for real-time clothes simulation. ~Computer
Graphics Forum 24 (2005), 173-183. 3

[COCSD03] COHEN-OR D., CHRYSANTHOU Y. L., SiLvA
C. T., DURAND F.: A survey of visibility for walkthrough ap-
plications. IEEE Transactions on Visualization and Computer
Graphics 9,3 (July 2003), 412-431. 2, 10

[Cro77] CRrow F.: Shadow algorithms for computer graphics.
SIGGRAPH Comput. Graph. 11,2 (July 1977), 242-248. 12

[DHOOO5] DoBBYN S., HaAMILL J., O’CoNOR K.,
O’SULLIVAN C.: Geopostors: a real-time geometry / im-
postor crowd rendering system. In 13D ’05: Proc. of the 2005

submitted to COMPUTER GRAPHICS Forum (9/2015).

symposium on Interactive 3D graphics and games (New York,
NY, USA, 2005), ACM, pp. 95-102. 2, 8, 14

[DR0O5] DECORO C., RUSINKIEWICZ S.: Pose-independent sim-
plification of articulated meshes. In Proc. of the 2005 Symposium
on Interactive 3D Graphics and Games (New York, NY, USA,
2005), I3D ’05, ACM, pp. 17-24. 5

[DT07] DECORO C., TATARCHUK N.: Real-time mesh simpli-
fication using the gpu. In Proceedings of the 2007 Symposium
on Interactive 3D Graphics and Games (New York, NY, USA,
2007), I3D 07, ACM, pp. 161-166. 5

[Dud07a] DUDASH B.: Animated crowd rendering. In GPU
Gems 3 (2007), pp. 39-52. 12

[Dud07b] DUDASH B.: Skinned instancing. In NVIDIA SDK 10
(2007). 3, 12

[EAS*13] EISEMANN E., ASSARSSON U., SCHWARZ M., VA-
LIENT M., WIMMER M.: Efficient real-time shadows. In ACM
SIGGRAPH 2013 Courses (New York, NY, USA, 2013), SIG-
GRAPH ’13, ACM, pp. 18:1-18:54. 12

[GGPCP13] GONZALEZ GARCIA F., PARADINAS T., COLL N.,
PATOW G.: *cages:: A multilevel, multi-cage-based system for
mesh deformation. ACM Trans. Graph. 32, 3 (July 2013), 24:1—
24:13. 4

[HCCO06] HUANG F.-C., CHEN B.-Y., CHUANG Y.-Y.: Progres-
sive deforming meshes based on deformation oriented decima-
tion and dynamic connectivity updating. In Proc. of the 2006
ACM SIGGRAPH/Eurographics Symposium on Computer Ani-
mation (Aire-la-Ville, Switzerland, Switzerland, 2006), SCA *06,
pp. 53-62. 5

[Hejo4] HEIL J.: Hardware skinning with quaternions. In Game
Programming Gems 4, Kirmse A., (Ed.). Charles River Media,
2004, pp. 487-495. 4

[HMDOO05] HAMILL J., MCDONNELL R., DOBBYN S.,
O’SULLIVAN C.: Perceptual evaluation of impostor represen-
tations for virtual humans and buildings. Computer Graphics
Forum 24, 3 (2005), 623-633. 5

[Hop96] HOPPE H.: Progressive meshes. In Proc. of the 23rd
Annual Conference on Computer Graphics and Interactive Tech-
niques (New York, NY, USA, 1996), SIGGRAPH 96, ACM,
pp. 99-108. 5

[HR11] HERNANDEZ B., RUDOMIN I.: A rendering pipeline for
real-time crowds. In GPU Pro 2, Engel W., (Ed.). A K Peters,
2011, pp. 369-383. 10, 11

[JEOG11] JIMENEZ J., ECHEVARRIA J. 1., OAT C., GUTIERREZ
D.: GPU Pro 2. AK Peters Ltd., 2011, ch. Practical and Realistic
Facial Wrinkles Animation, pp. 15-27. 3

[JVES*12] JARABO A., VAN EYCK T., SUNDSTEDT V., BALA
K., GUTIERREZ D., O’SULLIVAN C.: Crowd light: Evaluating
the perceived fidelity of illuminated dynamic scenes. Computer
Graphics Forum (Proc. EUROGRAPHICS 2012) 31,2 (2012). 3,
12

[KB0O4] KOBBELT L., BOTSCH M.: A survey of point-based tech-
niques in computer graphics. Comput. Graph. 28, 6 (Dec. 2004),
801-814. 6

[KCvO07] KAVAN L., COLLINS S., ZARA J., O’SULLIVAN C.:
Skinning with dual quaternions. In Proc. of the 2007 Symposium
on Interactive 3D Graphics and Games (New York, NY, USA,
2007), I3D *07, ACM, pp. 39-46. 4

[KCvO08] KAVAN L., COLLINS S., ZARA J., O’SULLIVAN C.:
Geometric skinning with approximate dual quaternion blending.
ACM Trans. Graph. 27,4 (Nov. 2008), 105:1-105:23. 4

18 A. Beacco, N. Pelechano & C. Andiijar / A Survey of Real-Time Crowd Rendering

[KDC*08] KAVAN L., DOBBYN S., COLLINS S., ZARA J.,
O’SULLIVAN C.: Polypostors: 2d polygonal impostors for 3d
crowds. In I3D ’08: Proc. of the 2008 symposium on Interac-
tive 3D graphics and games (New York, NY, USA, 2008), ACM,
pp. 149-155. 2,9, 14, 15

[KGO5] KIRCHER S., GARLAND M.: Progressive multiresolu-
tion meshes for deforming surfaces. In Proc. of the 2005 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation
(New York, NY, USA, 2005), SCA ’05, ACM, pp. 191-200. 5

[KSO1] KrosowskI J., SiLvAa C.: Efficient conservative visi-
bility culling using the prioritized-layered projection algorithm.
IEEE Trans. Vis. Comput. Graph. 7, 4 (2001), 365-379. 2, 11

[KS12] KAVAN L., SORKINE O.: Elasticity-inspired deformers
for character articulation. ACM Transactions on Graphics (pro-
ceedings of ACM SIGGRAPH ASIA) 31, 6 (2012), 196:1-196:8.
4

[Kv05] KAVAN L., ZARA J.: Spherical blend skinning: A real-
time deformation of articulated models. In Proc. of the 2005
Symposium on Interactive 3D Graphics and Games (New York,
NY, USA, 2005), I3D *05, ACM, pp. 9-16. 4

[LIBA13] LIMPER M., JUNG Y., BEHR J., ALEXA M.: The pop
buffer: Rapid progressive clustering by geometry quantization.
Comput. Graph. Forum 32,7 (2013), 197-206. 5

[LLD10] LISTER W., LAYCcocK R., DAY A.: A key-pose
caching system for rendering an animated crowd in real-time.
Computer Graphics Forum 29, 8 (2010), 2304-2312. 3, 12, 13,
14

[LO11] LARKIN M., O’SULLIVAN C.: Perception of simplifi-
cation artifacts for animated characters. In Proc. of the ACM
SIGGRAPH Symposium on Applied Perception in Graphics and
Visualization (New York, NY, USA, 2011), APGV ’11, ACM,
pp. 93-100. 5, 6

[Lor07] LORACH T.: Gpu blend shapes. NVidia Whitepaper
(2007). 4

[LS09] LANDRENEAU E., SCHAEFER S.: Simplification of ar-
ticulated meshes. Computer Graphics Forum 28, 2 (2009), 347—
353.5

[LW85] LEvoY M., WHITTED T.: The Use of Points as a Dis-
play Primitive. UNC report. University of North Carolina, De-
partment of Computer Science, 1985. 2, 6

[LWC*02] LUEBKE D., WATSON B., COHEN J., REDDY M.,
VARSHNEY A.: Level of Detail for 3D Graphics. Elsevier Sci-
ence Inc., New York, NY, USA, 2002. 2,5

[MBWO08] MATTAUSCH O., BITTNER J., WIMMER M.: Chc++:
Coherent hierarchical culling revisited. Comput. Graph. Forum
27,2 (2008), 221-230. 10

[McC90] MCCARTHY J. M.: Introduction to Theoretical Kine-
matics. MIT Press, Cambridge, MA, USA, 1990. 4

[MCC11] MCLAUGHLIN T., CUTLER L., COLEMAN D.: Char-
acter rigging, deformations, and simulations in film and game
production. In ACM SIGGRAPH 2011 Courses (New York, NY,
USA, 2011), SIGGRAPH ’11, ACM, pp. 5:1-5:18. 3

[MDCO06] McDONNELL R., DOBBYN S., COLLINS S.,
O’SULLIVAN C.: Perceptual evaluation of lod cloth-
ing for virtual humans. In Proc. of the 2006 ACM
SIGGRAPH/Eurographics symposium on Computer animation
(Aire-la-Ville, Switzerland, Switzerland, 2006), SCA *06, Euro-
graphics Association, pp. 117-126. 3, 12

[MGO3] MOHR A., GLEICHER M.: Deformation Sensitive Dec-
imation. Tech. rep., University of Wisconsin Graphics Group,
2003. 5

[Mix14] MIXAMO: Mixamo auto-rigger.
https://www.mixamo.com/auto-rigger, 2014. 3

[MLD*08] MCDONNELL R., LARKIN M., DOBBYN S.,
COLLINS S., O’SULLIVAN C.: Clone attack! perception of
crowd variety. ACM Trans. Graph. 27, 3 (2008), 1-8. 13

[MLH*09] MCDONNELL R., LARKIN M., HERNANDEZ B.,
RUDOMIN I., O’SULLIVAN C.: Eye-catching crowds: saliency
based selective variation. ACM Trans. Graph. 28, 3 (July 2009),
55:1-55:10. 13

[MNOO7] McDONNELL R., NEWELL F. N., O’SULLIVAN C.:
Smooth movers: perceptually guided human motion simulation.
In Symposium on Computer Animation (2007), Gleicher M.,
Thalmann D., (Eds.), Eurographics Association, pp. 259-269. 5

[MRO6a] MILLAN E., RUDOMIN I.: A comparison between im-
postors and point-based models for interactive rendering of ani-
mated models. In Proc. of the International Conference on Com-
puter Animation and Social Agents (CASA) (2006), University
Press. 7

[MRO6b] MILLAN E., RUDOMIN I.: Impostors and pseudo-
instancing for gpu crowd rendering. In GRAPHITE ’06: Proc.
of the 4th international conference on Computer graphics and
interactive techniques in Australasia and Southeast Asia (New
York, NY, USA, 2006), ACM, pp. 49-55. 3, 11, 14

[MS04] MITCHELL J., SANDER P.: Siggraph 2004 - real-time
shading course applications of explicit early-z culling, 2004. 11

[MTLT88] MAGNENAT-THALMANN N., LAPERRIRE R., THAL-
MANN D.: Joint-dependent local deformations for hand anima-
tion and object grasping. In In Proc. on Graphics interface’88
(1988), pp. 26-33. 3

[MYTO09] MAIM J., YERSIN B., THALMANN D.: Unique char-
acter instances for crowds. Computer Graphics and Applications,
IEEE 29, 6 (nov.-dec. 2009), 82 —-90. 3, 10, 13

[OBMOO] OLIVEIRA M., BISHOP G., MCALLISTER D.: Relief
texture mapping. In SIGGRAPH ’00: Proc. of the 27th annual
conference on Computer graphics and interactive techniques
(New York, NY, USA, 2000), ACM Press/Addison-Wesley Pub-
lishing Co., pp. 359-368. 9

[PABO8] PELECHANO N., ALLBECK J., BADLER N.: Virtual
Crowds: Methods, Simulation, and Control. Morgan & Claypool,
2008. 1,2

[PDHCM*06] PETTRE J., DE HERAS CIECHOMSKI P., MAIM
J., YERSIN B., LAUMOND J., THALMANN D.: Real-time navi-
gating crowds: scalable simulation and rendering: Research arti-
cles. Comput. Animat. Virtual Worlds 17, 3-4 (2006), 445-455.
58

[PHB07] PAYAN F., HAHMANN S., BONNEAU G.-P.: Deform-
ing surface simplification based on dynamic geometry sampling.
In Shape Modeling and Applications, 2007. SMI ’07. IEEE Inter-
national Conference on (June 2007), pp. 71-80. 5

[PO11] PRAZAK M., O’SULLIVAN C.: Perceiving human mo-
tion variety. In Proceedings of the ACM SIGGRAPH Symposium
on Applied Perception in Graphics and Visualization (New York,
NY, USA, 2011), APGV 11, ACM, pp. 87-92. 5, 13

[PPB*97] PRATT D., PRATT S., BARHAM P., BARKER R.,
WALDROP M., EHLERT J., CHRISLIP C.: Humans in large-
scale, networked virtual environments. Presence 6, 5 (1997),
547-564. 5, 14

[PS12] PANTUWONG N., SUGIMOTO M.: A novel template-
based automatic rigging algorithm for articulated-character an-
imation. Computer Animation and Virtual Worlds 23, 2 (2012),
125-141. 3

submitted to COMPUTER GRAPHICS Forum (9/2015).

A. Beacco, N. Pelechano & C. Andiijar / A Survey of Real-Time Crowd Rendering 19

[RB93] ROSSIGNAC J., BORREL P.: Multi-resolution 3d approx-
imations for rendering complex scenes. In Modeling in Computer
Graphics (1993), Falcidieno B., Kunii T. L., (Eds.), IFIP Series
on Computer Graphics, Springer, pp. 455-465. 5

[RDO5] RYDER G., DAY A. M.: Survey of real-time rendering
techniques for crowds. Computer Graphics Forum 24, 2 (2005),
203-215. 2

[Rey06] REYNOLDS C.: Big fast crowds on ps3. In Proc. of the
2006 ACM SIGGRAPH Symposium on Videogames (New York,
NY, USA, 2006), Sandbox *06, ACM, pp. 113-121. 11

[RLS08] RAMIREZ J., LLIGADAS X., SUSIN A.: Automatic ad-
justment of rigs to extracted skeletons. In Articulated Motion and
Deformable Objects, Perales F., Fisher R., (Eds.), vol. 5098 of
Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2008, pp. 409-418. 3

[SBOT08] SHOPF J., BARCZAK J., OAT C., TATARCHUK N.:
March of the froblins: Simulation and rendering massive crowds
of intelligent and detailed creatures on gpu. In ACM SIGGRAPH
2008 Games (New York, NY, USA, 2008), SIGGRAPH °08,
ACM, pp. 52-101. 5

[SF99] SCHMALSTIEG D., FUHRMANN A.: Coarse View-
Dependent Levels of Detail for Hierarchical and Deformable
Models. Tech. rep., Vienna University of Technology, 1999. 5

[SGO3] SOUTHERN R., GAIN J.: Creation and control of real-
time continuous level of detail on programmable graphics hard-
ware. Computer Graphics Forum 22 (2003), 35-48. 10

[SKPO8] SUEDA S., KAUFMAN A., PA1 D. K.: Musculotendon
simulation for hand animation. ACM Trans. Graph. (Proc. SIG-
GRAPH) 27, 3 (2008). 3

[Tat06] TATARCHUK N.: Dynamic parallax occlusion mapping
with approximate soft shadows. In 13D ’06: Proc. of the 2006
symposium on Interactive 3D graphics and games (New York,
NY, USA, 2006), ACM, pp. 63-69. 12

[TBPO8] TATARCHUK N., BARCZAK J., PURNOMO B.: Gpu tes-
sellation for detailed, animated crowds. SIGGRAPH Asia 2008
Sketch. 6

[TCOO] TECCHIA F., CHRYSANTHOU Y.: Real-time rendering
of densely populated urban environments. In Proc. of the Euro-
graphics Workshop on Rendering Techniques 2000 (London, UK,
2000), Springer-Verlag, pp. 83-88. 2,7, 14, 15

[TDGR14] ToLEDO L., DE GYVES O., RUDOMIN I.: Hierarchi-
cal level of detail for varied animated crowds. The Visual Com-
puter 30, 6-8 (2014), 949-961. 6, 10, 11, 14

[TLCO02] TEccHIA F., Loscos C., CHRYSANTHOU Y.: Image-
based crowd rendering. IEEE Comput. Graph. Appl. 22,2 (2002),
36-43.3,7,8,12

[TM13] THALMANN D., MUSSE S.: Crowd Simulation, Second
Edition. Springer, 2013. 1,2

[UCTO04] ULICNY B., CIECHOMSKI P. D. H., THALMANN D.:
Crowdbrush: interactive authoring of real-time crowd scenes. In
Proc. of the 2004 ACM SIGGRAPH/Eurographics symposium
on Computer animation (Aire-la-Ville, Switzerland, Switzerland,
2004), SCA 04, Eurographics Association, pp. 243-252. 4,5, 14

[VBG*13] VAILLANT R., BARTHE L., GUENNEBAUD G., CANI
M., ROHMER D., WYVILL B., GOURMEL O., PAULIN M.: Im-
plicit skinning: real-time skin deformation with contact model-
ing. ACM Trans. Graph. 32, 4 (July 2013), 125:1-125:12. 4

[WB05] WIMMER M., BITTNER J.: Hardware occlusion queries
made useful. In GPU Gems 2: Programming Techniques for
High-Performance Graphics and General-Purpose Computation,
Pharr M., Fernando R., (Eds.). Addison-Wesley, Mar. 2005. 2, 11

submitted to COMPUTER GRAPHICS Forum (9/2015).

[WDAH10] WINKLER T., DRIESEBERG J., ALEXA M., HOR-
MANN K.: Multi-scale geometry interpolation. Computer Graph-
ics Forum 29, 2 (May 2010), 309-318. Proc. of Eurographics. 4

[Wil78] WILLIAMS L.: Casting curved shadows on curved sur-
faces. SSIGGRAPH Comput. Graph. 12, 3 (Aug. 1978), 270-274.
12

[Willl] WILLMOTT A.: Rapid simplification of multi-attribute
meshes. In Proc. of the ACM SIGGRAPH Symposium on High
Performance Graphics (New York, NY, USA, 2011), HPG °11,
ACM, pp. 151-158. 5

[WS02] WAND M., STRASSER W.: Multi-resolution rendering
of complex animated scenes. Computer Graphics Forum 21, 3
(2002), 483-491. 6, 14

[YYBE13] YUKSEL K., YUCEBILGIN A., BALCISOY S., ER-
CIL A.: Real-time feature-based image morphing for memory-
efficient impostor rendering and animation on gpu. The Visual
Computer 29,2 (2013), 131-140. 8

[ZMKO02] ZAcH C., MANTLER S., KARNER K.: Time-critical
rendering of discrete and continuous levels of detail. In The ACM
symposium on Virtual reality software and technology (VRST)
(2002), Shi J., Hodges L. F,, Sun H., Peng Q., (Eds.), ACM,
pp. 1-8. 10

[ZPvBGO1] ZWICKER M., PFISTER H., VAN BAAR J., GROSS
M.: Surface splatting. In Proc. of the 28th annual conference on
Computer graphics and interactive techniques (New York, NY,
USA, 2001), SIGGRAPH ’01, ACM, pp. 371-378. 2,6

[ZW07] ZHANG S., WU E.: Deforming surface simplification
based on feature preservation. In Entertainment Computing -
ICEC 2007, Ma L., Rauterberg M., Nakatsu R., (Eds.), vol. 4740
of Lecture Notes in Computer Science. Springer Berlin Heidel-
berg, 2007, pp. 139-149. 5

