
Technical Report TR-NCCA-2008-01

EMBEDDED IMPLICIT STAND-INS FOR ANIMATED
MESHES: A CASE OF HYBRID MODELLING

Denis Kravtsov, Oleg Fryazinov, Valery Adzhiev, Alexander Pasko, Peter Comninos

The National Centre for Computer Animation
Bournemouth Media School

Bournemouth University
Talbot Campus,

 Poole, Dorset BH12 5BB
United Kingdom

2008

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Bournemouth University Research Online

https://core.ac.uk/display/76035?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Technical Report TR-NCCA-2008-01

ISBN: 1-85899-123-4
Title: Embedded Implicit Stand-ins for Animated Meshes: a Case of Hybrid Modelling
Authors: Denis Kravtsov, Oleg Fryazinov, Valery Adzhiev, Alexander Pasko, Peter Comninos
Key words and Phrases: Convolution surfaces, blending, implicit surfaces, fluid, character animation, hybrid modelling
Abstract:
In this paper we address shape modelling problems, encountered in computer animation and computer games
development that are difficult to solve just using polygonal meshes. Our approach is based on a hybrid modelling
concept that combines polygonal meshes with implicit surfaces. A hybrid model consists of an animated polygonal mesh
and an approximation of this mesh by a convolution surface stand-in that is embedded within it or is attached to it. The
motions of both objects are synchronised using a rigging skeleton. This approach is used to model the interaction
between an animated mesh object and a viscoelastic substance, normally modelled in implicit form. The adhesive
behaviour of the viscous object is modelled using geometric blending operations on the corresponding implicit surfaces.
Another application of this approach is the creation of metamorphosing implicit surface parts that are attached to an
animated mesh. A prototype implementation of the proposed approach and several examples of modelling and animation
with near real-time preview times are presented.
Report date: 14 August, 2008

Web site to download from: URL: http://ncca.bournemouth.ac.uk/index.html

The authors’ e-mail addresses: dkravtsov@bournemouth.ac.uk, ofryazinov@bournemouth.ac.uk, pasko@acm.org,
vadzhiev@bournemouth.ac.uk, pcomninos@bournemouth.ac.uk

Supplementary Notes:

The National Centre for Computer Animation
Bournemouth Media School

Bournemouth University
Talbot Campus,

 Poole, Dorset BH12 5BB
United Kingdom

1 Introduction

In modern computer graphics and animation systems polygonal and
NURBS meshes are predominantly used for modelling. On the
other hand, implicit surfaces (defined by continuous scalar fields
and discrete level sets) have been shown to have a great potential
in various related application areas, in particular in the modelling
of human and animal figures [Shen and Thalmann 1995], in the
simulation of natural phenomena [Wei et al. 2003], in simulation
of object cracking and explosions [Barbier et al. 2005], and in geo-
metric operations (such as blending and metamorphosis [Galin et al.
2000]).

Hybrid models combining different geometric representations, for
example polygonal meshes and implicit surfaces [Allègre et al.
2006], are emerging in geometric modelling as a potentially
promising area of investigation. It is anticipated that computer an-
imation and computer games in particular would benefit greatly
from the closer integration of mesh and implicit surface models.
One of the many aspects of hybrid modelling concerns the gen-
eration of a continuous scalar field around an animated polygonal
mesh. Another aspect concerns the combination of meshes and im-
plicit surface components into a single hybrid model. Such hybrid
models can then be used to create animation effects which are very
hard or impossible to achieve using pure mesh models.

Animated meshes and certain types of implicit surfaces (such as
soft objects, distance-based objects and convolution surfaces) share
a common characteristic - a rigging skeleton. So, we consider a
skeleton as a proper base for their integration. Previously published
work has concentrated on the generation of animated scalar fields
using point skeletons [Wyvill et al. 1986] or discretized fields [Os-
her and Fedkiw 2002]. However, point skeleton-based implicit sur-
faces have quite limited expressive power. Discrete scalar fields are
better suited for physical simulations, but are hard to animate using
skeletons. Distance based skeleton implicits [Cani-Gascuel 1998]
extend the geometric domain of modelled and animated shapes, but
still generate models with a ”blobby” appearance to them. Convolu-
tion surfaces with skeletons of various types (line segments, arcs or
triangle meshes) allow for modelling of a much wider class of ob-
jects than point-based implicits, have naturally smoothly blended
surfaces and are easily animated using skeletons.

The main contributions of this paper are the following: a hybrid
model combining skeleton driven animated meshes with skeleton-
based implicit surfaces; a procedure for fitting a convolution sur-
face to an animated mesh; applications of such hybrid models for
the simulation of viscous object behaviour, which requires blending
between mesh models animated using conventional skeleton tech-
niques, and for the creation of easily metamorphosed parts for ani-
mated char acter s.

We propose embedding convolution implicit surfaces inside ani-
mated meshes and coupling them to each other such that the mo-
tions of both types of objects are synchronised. Thus, skeletons
serve for motion synchronisation. The objects can either share a
common skeleton or have individual synchronously moving skele-
tons.

An embedded convolution surface has to closely approximate the
embedding mesh such that its motion requires no changes or min-
imal changes of the convolution surface parameters. This may re-
quire a procedure for fitting a convolution surface to an initial mesh
taking into account its specified motion. Interaction of a viscous ob-
ject with an animated object is modelled using geometric blending
operations on the corresponding implicit surfaces, which achieves
near real-time rendering speeds. Note that the initial animated mesh
is rendered in the final animation together with the blending sur-

face, which creates the visual effect of the blending of the mesh
itself. Thus the embedded convolution surface serves as an implicit
stand-in for the animated mesh. In practical terms, we aim to de-
velop a simple technique allowing the user of conventional anima-
tion tools to model specific types of object interaction with having
a non-time-consuming pre-processing step.

2 Related works

2.1 Implicit and hybrid models in animation

Many authors have used implicit surfaces for character animation.
Elliptical blobs for skeletal animation were used in [Blinn 1982],
where the transformation of the blob is inherited from the trans-
formation of the joints of the skeleton. In [Opalach and Maddock
1995], blobby objects were used, which are quite easy to define.
However, with this method it is difficult to control the resulting
”blobby” mesh and to model a proper mesh one needs a large num-
ber of primitives.

One of the earliest attempts of using hybrid modelling involved
embedding mesh objects into implicit surface primitives [Singh
and Parent 1995] to implement polyhedral object deformations of
articulated deformable bodies. Skeleton-based implicits for non-
polygonal animated objects were examined, for instance, in [Cani-
Gascuel 1998], where geometric primitives producing distance
fields were used for character animation - although this technique
may lead to C1 discontinuities in the resulting surfaces. The coat-
ing of arbitrary animated models by implicit surfaces, employed
in this technique, is not always acceptable to animators. We con-
sider our approach complementary to the coating technique. Polyg-
onal meshes and implicit primitives are combined together in a Hy-
bridTree [Allègre et al. 2006] using blending, Boolean and other
operations supported by the conversion procedures between two
different models. Embedding, attachments and skeleton-based mo-
tion synchronisation of meshes and implicits were not directly ad-
dressed.

Implicit surfaces were also used for the approximation of polygonal
meshes using different approaches, such as Radial Basis Functions
(RBFs) [Turk and O’Brien 1999] and Multi-level Partition of Unity
implicits (MPUs) [Ohtake et al. 2003]. These methods generally
work well with static meshes, but are less suitable for animation
because dynamic models require per-frame re-fitting and can not
be easily edited by the user due to the complexity of the implicit
surface.

One of the interesting alternatives among implicit surfaces is that of
convolution surfaces [Bloomenthal and Shoemake 1991]. Convolu-
tion surfaces proved to be useful for the modelling of organic shapes
and objects with a complex topology [McCormack and Sherstyuk
1998]. Convolution surfaces can be smoothly blended with each
other and provide a good approximation for polygonal meshes typ-
ical of animated characters. The authors of [Angelidis and Cani
2002] proposed using convolution surfaces with adaptive skeletal
curves and surfaces for character modelling. As the issues of the
animation of the newly generated skeleton were not discussed in
their paper, it is hard to evaluate the applicability of this technique
to the problems related to animated meshes. In this paper we utilise
convolution surfaces with line segment skeletons for hybrid mod-
elling applications concerned with both the creation of scalar fields
around animated meshes and for the modelling of implicit surface
parts attached to and synchronised with mesh-based characters.

(a) (b) (c)

Figure 1: Animated mesh information: (a) Polygonal mesh, (b)
Skeleton, (c) Skinning information. Model courtesy of John Dou-
blestein.

2.2 Interaction of viscous objects with polygonal

meshes

The main technique for modelling viscous objects is fluid simula-
tion. Thus, in [Foster and Fedkiw 2001] the use of a combination
of level-set implicit surfaces and inertia-free particles was proposed
for modelling the interaction of fluids with polygonal meshes. Also,
[Thürey et al. 2006] describe the generation of control particles with
respect to the underlying mesh model. Despite the good control of
the shape of the viscous object that these methods exhibit, they are
computationally expensive. The approach described in [Clavet et al.
2005] uses smoothed particle hydrodynamics and additional phys-
ical simulation to model viscoelastic objects and their interaction
with rigid bodies. In [Jin et al. 2005] blobby objects are used to
approximate a static mesh. These blobby objects are then used in
an interpolation process to achieve morphing liquid effects.

The authors of [Shi and Yu 2005] used the signed distance to a
skeleton to control the animation of fluids. This approach pro-
vides the animator with more control over the resulting animation
sequence, but the computation times involved are still relatively
high. The combination of different techniques appears to be com-
mon practice in animation production involving viscous materials.
In our work we simulate viscous objects using geometric blend-
ing between the implicit objects generated from given polygonal
meshes.

3 Problem statement and approach outline

We address problems that appear in computer animation practice
and are difficult or impossible to solve using polygonal meshes ex-
clusively. Our approach relies upon hybrid modelling combining
polygonal meshes with implicit surfaces. From a general point of
view, there are three main ways of achieving this: (a) by coating
of meshes with implicit surfaces, (b) by attaching implicit surfaces
to mesh surfaces, and (c) by embedding implicit surfaces into mesh
objects. Coating was discussed in [Cani-Gascuel 1998] (see the pre-
vious section). In this paper, embedding is considered as a general
approach and attaching as its special case. An important constraint
that applies to our approach is the near real-time rendering of all
hybrid models.

Let an animated object be defined by a polygonal mesh shown in
(Fig. 1a), with a rigging skeleton shown in (Fig. 1b), skinning
information shown in (Fig. 1c), and a set of animation transfor-
mations for the skeleton nodes. A rigging skeleton is a set of hier-
archically connected joints used to specify the mesh motion in the
animation sequence. If there is no skeleton provided, it can still be
extracted from the polygonal mesh using one of the published tech-
niques [Katz and Tal 2003] [Tierny et al. 2006] [Liu et al. 2003].

An important application area for embedded implicit surfaces is the
modelling of viscoelastic object adhesive behaviour in its interac-
tion with an animated mesh object. To obtain visually plausible
results with near real-time preview, we propose to apply geometric
blending between the implicit surfaces representing both interact-
ing objects.

A viscoelastic object can be represented by either an implicit sur-
face or by another polygonal mesh. We will mainly concentrate on
the former case to simulate such viscous liquids as jam, honey or
tar, and to show how such liquids interact with an animated object.
Thus we will deal with the adhesion of the liquid to the surface, its
stretching following the object’s motion and other related topics.

Natural controllable blending is one of the best-known useful prop-
erties of implicit surfaces. We can use this property for modelling
adhesive behaviour. This, in general, assumes the conversion of the
animated mesh into an implicit surface. However, an exact conver-
sion is a complex task. We propose to use a hybrid model which
includes a polygonal mesh and an approximation of this mesh by
some implicit surface embedded within it using a fitting procedure.
It is impractical to perform this fitting to the mesh for each frame of
animation. Thus, it is preferable that an implicit surface is made to
follow the motion of the animated mesh. A convolution surface sat-
isfies this requirement when its skeleton is built using the rigging
skeleton of the animated mesh and the motions of both skeletons
are synchronised. This derived convolution surface can be blended
with the implicit surface, representing the viscous liquid, to mimic
their adhesive interaction. The resulting surface can be polygonized
to obtain a near real-time preview or can be ray-traced to produce
the final animation sequence.

An alternative application is that of the attachment of implicit sur-
faces to meshes for the creation of such parts of animated characters
that are difficult or impossible to model with meshes. An attach-
ment can be considered a special case of embedding, when a rig-
ging skeleton is still used for motion synchronisation, but surfaces
are fitted only at the area of their contact and the implicit surface
does not necessarily penetrate the mesh.

4 Background

In this section we describe the necessary basics of convolution sur-
faces and the operation of blending union both of which are used in
our approach.

4.1 Convolution surfaces

Convolution surfaces were first introduced in [Bloomenthal and
Shoemake 1991]. Given a scalar field function f , such as:
f(p) =

∫

S

g(r)h(p − r)dp;p, r ∈ R3

where S is a skeleton specifying the resulting surface, r ∈ R3 is
a set of points that belong to the skeleton S, g(r) defines the ge-
ometry of primitives (skeleton function), h(p) is a kernel function.
Thus, the convolution surface on the primitive is a point set satisfy-
ing the equality:
f(p) − T = 0 where T is a threshold scalar value for the convo-
lution function.

In our method we use convolution surfaces based on line segments
and a Cauchy kernel [McCormack and Sherstyuk 1998]. Thus,
h(d) = 1

(1+s2d2)2
; d > 0

where d denotes the Euclidean distance to a point of interest and s
is a scalar value controlling the radius of the convolution surface’s
cross-section.
Given a line segment

r(t) = b + ta; 0 ≤ t ≤ l
where b is the segment base (vector), a is the segment axis
(vector) and l is the segment length, for an arbitrary point p ∈ R3

the squared distance between r(t) and p would be:
d2(t) = |q|2 + t2 − 2tq � a
where q = p − b.
A field function for an arbitrary point p would be:

f(p) =
l
∫

0

dt

(1+s2r2(t))2
= x

2m2(m2+s2x2)
+ l−x

2m2n2 +

1
2sm3

(

arctan
[

sx
m

]

+ arctan
[

s(l−x)
m

])

where: x is the coordinate on the segment’s axis,
x = (p − b) � a, m2 = 1 + s2(q2 − x2), and
n2 = 1 + s2(q2 + l2 − 2lx).

The main advantage of a convolution surface is the smooth transi-
tion between its parts that are defined by different skeletal elements
as illustrated in (Fig. 2b). When moving skeletal elements, the con-
volution surface follows the motion quite naturally, which is useful
in animation.

4.2 The blending union of implicit surfaces

Given two implicit surfaces, f1(x, y, z) = 0 and f2(x, y, z) = 0,
the blending operation between these surfaces is defined as:
blend(f1, f2) = union(f1, f2) + disp(f1, f2),
where union is the set-theoretic union function and disp is a
displacement function, that is defined as:
disp(f1, f2) = a0

1+
(

f1

a1

)

2

+
(

f2

a2

)

2

where a0, a1 and a2 are blending parameters. a0 controls the
overall resulting shape, a1 and a2 specify the contributions to the
blending of the shapes defined by functions f1 and f2.

Using R-functions (see [Pasko et al. 2005]) the formula for the
blending operation can be obtained:

blend(f1, f2) = f1 + f2 +
√

f2
1 + f2

2 + a0

1+
(

f1

a1

)

2

+
(

f2

a2

)

2

R-function based blending is more suitable for user interaction
when compared with the direct algebraic summation of the defin-
ing functions, because several parameters are provided to control
the overall shape of the blend and its symmetry. If it is preferable
that blending takes place inside a particular volumetric shape, we
can use the bounded blending operation [Pasko et al. 2005].

5 The proposed approach

In this section we systematically describe our approach for the con-
struction of hybrid models combining animated meshes with em-
bedded or attached convolution surfaces. The proposed solution
outlined in Section 3 can be subdivided into the following steps:

1. The creation of the initial approximation of the given mesh
with bounding volumes using the skeleton information.

2. The tuning of the initial approximation.

3. The creation of an embedded convolution surface for the ini-
tial polygonal mesh.

4. The application steps: (1) the definition of the blending be-
tween the convolution surface and the viscous object for the
modelling of the adhesive behaviour of a viscoelastic object
and its interaction with an animated object; (2) the creation of
metamorphosing implicit parts for an animated mesh.

Each step requires the rendering of the current convolution surface
and either the blending surface or the attached convolution surface.
Note that both application steps can be performed together, when
an animated mesh with attached implicit parts is interacting with a
viscous material.

5.1 The initial mesh approximation with bounding vol-

umes

To start with, we create an approximation of the given polygonal
mesh using the embedded convolution surface. A similar problem
in 2D space was addressed in [Tai et al. 2004] using a silhouette
curve sketched on a plane as the desired shape of a convolution
surface. We extend this problem formulation to the 3D case of the
convolution surface embedding into the polygonal mesh. In our for-
mulation
V = {v1, .., vn} are mesh vertices;
C = {c1, .., cm} are the centroids of mesh triangles;
P = V ∪ C = {p1, .., pm+n} = {v1, .., vn, c1, .., cm} are esti-
mation points (mesh vertices and centroids);
L = {l1, .., ln} are convolution line segments;

Fi = [F (p1, Li), .., F (pm+n, Li)]
> is a transposed vector of field

values produced by the i-th convolution line segment at the estima-
tion points;
F = [F1, ..,FN] are field values produced by all line segments at
all estimation points;
T = [T, .., T]> is a transposed vector of threshold values for the
convolution surface. We need to solve the constrained least-squares
problem:

min
Λ≥0
Dk−T >0

(FΛ − T)>(FΛ − T)

for the unknown weights of field contribution from each line seg-
ment Λ = [λ1, .., λN]>. The constraint λ ≥ 0 is given for the
topological correctness of the resulting convolution surface. The
constraint Dk − T > 0, where D = FΛ and k = 1...(m + n)
is intended to ensure that the convolution surface is completely em-
bedded into the mesh (at least at the estimation points). We need to
apply a numerical search in the N-dimensional space of the param-
eters Λ to minimise the above least squares criterion with the given
constraints. The paper [Tai et al. 2004] mentions a method suitable
for this sort of problems: the Hildreth-d‘Esopo method, which is
time consuming and provides good quality of the approximation.
Another well-known method, the Levenberg-Marquart method, is
less time consuming, but provides a poor quality approximation.
Since the initial approximation is performed only once and does
not influence the speed of further interactions, the former method is
preferable.

At the moment we approximate the mesh using a convolution with
a constant radius along a line segment. In the case of large varia-
tions of the distance between the mesh and its medial axis, a better
approximation could be achieved by using weighted convolution
surfaces [Jin et al. 2001]. In this case, there is a need to solve a con-
strained truncated cones fitting problem. When the radii for both
endpoints of the convolution segment are found, they can be used
for the computation of the weighted convolution surface. Such ap-
proximation would decrease the median distance between the con-
volution surface and the polygonal mesh. It is worth observing that,
if we wish to apply the blending union operation described in the
following sections, the quality of the initial approximation does not
play a significant part in this process.

As the first step of the global minimisation procedure, we can esti-
mate the parameters of the convolution surface using the available
information. For the initial approximation we use the rigging skele-
ton. Given the set of bones of the rigging skeleton, where each bone

(a) (b)

Figure 2: Initial approximation: (a) Initial placement of bounding
volumes inside the mesh, (b) Produced convolution surface

is a line segment in 3D space, we use the set of these segments as
the basis for an initial convolution skeleton. We denote the start ver-
tex and the end vertex for each such skeleton segment as markers.
To calculate the radius of the convolution surface for each segment,
we calculate the minimal distance between each line segment spec-
ified by the markers and the polygonal mesh. At this stage we can
build bounding volumes around each line segment for the real-time
preview of the convolution surface. The bounding volume for each
segment is a cylinder. For the set of rigging skeleton bones si ∈ S
(where S is a set of skeleton bones) the radius of the i-th cylinder
associated with the i-th bone is:
ri = min

si∈S,pj∈P

(dist(si, pj)), where pj is the j-th face of the

polygonal mesh (P - connected set of faces) and dist(si, pj) is
a distance between the bone si and the face pj . Thus, each bound-
ing volume is fitted inside the mesh in its initial position. Rendered
bounding volumes help the user to better understand how the result-
ing approximating convolution surface is embedded into the mesh
(Fig. 2).

The problem of unwanted blending between different parts of the
convolution surface can be partially solved using the union opera-
tion based on R-functions. Separate lists of line segments are cre-
ated for branching skeleton structures. The field contributions from
primitives within the same list are summed up, thus defining a con-

volution surface branch: Gj(p) =
Nj
∑

i

Fi(p) is the field contribu-

tion from the list j, where Nj is the number of line segments in
the j-th list. The final implicit surface is a union of branches with
the field computed as a union R-function of the field contributions
from every list: Hj = union(Gj(p), Hj−1), where j = 1,...,N. If
there is still unwanted blending between the non-branching parts of
the skeleton (e.g., lower and upper arm), a user specified blending
graph can be used.

5.2 Tuning of the initial approximation

After the initial approximation is generated, the user has the option
to change it to achieve the desired result. This is needed sometimes
because the rigging skeleton used for the mesh animation can be
placed at arbitrary locations inside the mesh, making it more suit-
able for animation (Figs. 3a, 3b). As the field produced by the
line segments is symmetrical, a better approximation of the mesh
is achieved if the segments are placed closer to the medial axis of
the particular mesh clusters. In this case, the segments of the con-
volution surface skeleton have to be moved away from the original
bones positions of the rigging skeleton as shown in Figs. 3c, 3d.
More specifically, the convolution line segments migrate from the
rigging skeleton to the medial axis. The distance-based field pro-

(a) (b) (c) (d)

Figure 3: Tuning of the initial approximation: (a) Original mesh
with the rigging skeleton bones, (b) Initial placement of bounding
volumes, (c) Migration of the convolution skeleton, (d) Bounding
volumes around the produced convolution surfaces

Figure 4: Behaviour of convolution surfaces during animation

duced by the extracted medial axis is used to determine the direction
of migration for each vertex of the convolution line segments. The
elements of the convolution surface skeleton are still defined rela-
tive to the joints of the rigging skeleton and follow them during the
motion.

The fitting step has to be repeated after the skeleton migration. In
case the user is not interested in the approximation of particular
clusters of the mesh, some of the generated markers can be dis-
carded.

5.3 The creation of a convolution surface for the initial

polygonal mesh

The embedded convolution surface is created by using the segments
of the skeleton produced in the above two steps. For rendering pur-
poses we use a polygonization, which provides an approximation
of the implicit surface as a polygonal mesh. For relatively simple
skeletons the polygonization of the convolution surface can be ob-
tained in near real-time. As the segments of the convolution skele-
ton are transformed relative to the transformation of the rigging
skeleton, the motion of the convolution surface is synchronised with
the motion of the animated mesh (Fig. 4).

We automatically perform the approximate convolution surface fit-
ting only for the bind pose at the first frame of the animation. Thus,
during the animation the bounding volumes and the convolution
surface itself may not fit inside the mesh. This can happen because
the distances between the mesh vertices and the bones change no-
ticeably for those vertices that are influenced significantly by more
than one joint. Such vertices are usually positioned near the skele-
ton joints. Performing fitting of the convolution parameters for
each key-frame of the animation can be a lengthy process. This
also means that each time the user adds a key-frame to the anima-
tion sequence the fitting procedure has to be repeated for these new
frames. Thus, we let the user choose the key-frames for which refit-
ting needs to be done - for instance, when the distance between the
convolution surface and the bone exceeds the distance between the

(a) (b)

(c)

Figure 5: Cases of object interaction without (left) and with (right)
blending: (a) Two implicit surfaces and a single shape during
blending, (b) Boundary case before two shapes disconnect, (c) Two
separate shapes with some deformation showing objects’ reciprocal
attraction

(a) (b) (c)

Figure 6: Viscosity: (a) low, (b) medium, (c) high

bone and the mesh. The re-estimated parameters are updated at the
key-frames for the convolution primitives and then are interpolated
during the animation sequence. This allows the user to concentrate
on the process of mesh animation by decreasing the delays caused
by the implicit surface re-fitting. Also, there is an opportunity for
the user to assign custom values to the parameters of the implicit
surface over time - for instance, to change the parameter control-
ling the overall surface radius. This can be used to achieve a desired
artistic effect for a particular animation sequence.

5.4 The blending between the convolution surface and

the viscous object

As the first application of our technique, we simulate the interac-
tion of the viscous object with the animated object using the blend-
ing union of two implicit surfaces. As we mentioned above, the
implicit surface corresponding to the initial mesh is an embedded
convolution surface. The second implicit surface representing the
viscous object can be modelled using a set of implicit primitives.
The shape and the defining functions of both implicit surfaces are
used to model the interaction between the two objects. If both
defining functions have distance properties, the shape of the sur-
face resulting from the blending operation depends on the distance
between the original implicit surfaces. The further the objects are
from each other the less they are deformed. There exist three main
cases of object interaction: the ”continuous interaction” when the
two implicit surfaces form a single blend shape (see Fig. 5a), the
separation of two objects (see Fig. 5b) and the objects’ reciprocal
attraction resulting in the directional deformation which decreases
proportionately to the distance between the two objects (see Fig.
5c).

A blending union can dramatically change the resulting surface and
its topology. As the result of the mutual deformation, a part of
the convolution surface embedded within the mesh becomes visible
contributing to the material interacting with the mesh. Thus, the
quality of the initial approximation of the mesh by the convolution
surface does not play a significant part in this application. It is more
important just to fully embed the convolution surface into the mesh
when no deformation is applied.

Modification of the blending parameters produces an effect visu-
ally mimicking the viscous object’s physical parameter adjustment
(Fig. 6). Thus, providing the user with the ability to emulate a spe-
cific phenomenon by modifying its set of parameters (for instance,
by varying the liquid viscosity or gravitation instead of the three
parameters of blending), as well as supplying predefined templates
for different materials (such as tar, honey, oil, etc.) can help achieve
an even more intuitive control over the interaction process.

5.5 Implicit parts for animated meshes

The proposed hybrid modelling technique involving animated
meshes combined with implicit surfaces can be used not only to
simulate viscoelastic objects but also to generate character models
and other elements of the scene. In this case, the user creates and
animates a usual skeleton made of line segments. One group of
joints is used to deform the mesh and another directly specifies the
form of resulting convolution surfaces. Convolution surfaces spec-
ified in this way are also driven by the skeleton animation. There is
only a need to fit the implicit surface at the boundary attachment to
the polygonal mesh, because in this case the surface is not hidden
under the mesh. This approach might be suitable for effects that
are very hard to achieve with conventional polygonal techniques
(e.g., for modelling unusual characters made of liquids which can
change the form of their limbs over time). In this case, no additional
blending is required as these convolution surfaces are automatically
blended with each other.

6 Implementation and results

In this section we describe the implementation of the proposed ap-
proach, present some experimental results and discuss areas of ap-
plication.

6.1 The Maya plug-in

We have implemented the proposed approach as a plug-in for the
Alias Maya 7.0 animation system. We have chosen Maya as it
is a popular tool for modelling and animation used by a lot of
professional artists. Our plug-in requires the user to specify both
the skeletons and polygonal meshes, which are used to calculate
the initial parameters of all the convolution surface skeletal primi-
tives. Given these initial parameters, we can show the approximate
bounding volumes for the convolution surface. This is done to pro-
vide the user with a finer control over the individual skeletal ele-
ments of the resulting convolution surface. Intermediate results of
the implicit surface polygonization can be seen in the editor win-
dow (Fig. 7) in near real-time (the actual times for a number of
experiments are shown in Table 1). The polygonization domain
and the grid resolution for this operation can be modified by the
user to control the quality of the resulting implicit surface and the
time needed for its calculation. There is also an option to choose
between different types of blending. In the case of bounded blend-
ing, the user can choose a shape specifying the region where the
blending operation should be performed. Each parameter can be
animated over time thus providing the user with more flexibility to
produce various effects.

We have also used the NVIDIA CUDA SDK thus performing the
computations on the GPU (Table 2). There are a number of im-
provements that could be made to enhance the performance of our
basic GPU implementation. From our preliminary results, however,
it is already apparent that this sort of task is ideally suitable for a
parallel real-time implementation.

The integration of such functionality into an existing animation

Figure 7: A screenshot of the working environment

package decreases the learning curve for the user. The user is free
to produce an animation in the customary way within the familiar
animation environment having the opportunity to see the expected
results in near real-time. Thus, the incorporation of the plug-in in a
general-purpose animation software package allows the user to eas-
ily integrate the produced animation into complex scenes developed
using this package.

6.2 The interaction of an animated object with viscous

liquid

The result of the interaction between an animated object and a vis-
cous liquid is represented as an implicit surface. The user can pre-
view intermediate results as a low- or medium-resolution polygo-
nization of the implicit surface in near real-time (see the grey sur-
face in Fig. 8a). A high-resolution polygonization grid can then be
used for the final offline rendering with the additional application of
complex material and shading properties (Fig. 8b). The following
algorithm is used to generate an animation sequence:

• Calculate the positions of the convolution skeletal primitives
based on the joint transformation matrix and the field param-
eters.

• Calculate the field function produced by the blending between
the set of convolution surfaces and the implicit viscous object.

• Polygonize the resulting implicit surface.

• Render the initial deformed mesh and the polygonized im-
plicit surface.

6.3 Bounded blending applied to two animated

meshes

A viscous object can also be defined by an animated mesh. In this
case, it can be approximated by a convolution surface. The inter-
action between two animated meshes with embedded implicit sur-
faces is shown in Fig. 9. Here, the operation of bounded blending
[Pasko et al. 2005] is applied to localise the blending surface inside
the specified region.

6.4 ”Supra-natural” liquid behaviour

Another possible application of this technique is the modelling of
a special ”live” liquid covering the animated meshes (Fig. 10).
In such animations the convolution radius is increased over time,
which creates the effect of the liquid flowing up the mesh and com-
pletely engulfing it. It is possible to automatically generate this sort

Grid Resolution Cactus Andy Hybrid Andy

for polygonization (11 segments) (45 segments) (10 segments)

20x20x20 25 ms 80 ms 30 ms

30x30x30 80 ms 220 ms 60 ms

50x50x50 310 ms 930 ms 260 ms

70x70x70 810 ms 2580 ms 670 ms

Table 1: Average time for mesh generation (milliseconds/frame)
on PC with Dual Core Intel Xeon (2.66 GHz), 2 GB of RAM; Andy
is a mesh model with an embedded convolution surface (Fig. 8a),
Hybrid Andy is a mesh with an attached implicit surface limb (Fig.
11)

Grid Resolution Cactus Andy Hybrid Andy

for polygonization (11 segments) (45 segments) (10 segments)

32x32x32 10 ms 15 ms 10 ms

64x64x64 30 ms 75 ms 30 ms

Table 2: Average time for mesh generation (milliseconds/frame) on
an NVIDIA GeForce 8800 Ultra, 768 MB of RAM

of animation. The user just needs to specify the first and last joint of
the skeletal chain as well as the final thickness of the liquid flowing
over the mesh.

6.5 Animated mesh character with an implicit limb

Here we illustrate how the proposed technique can be used for the
creation of easily metamorphosing parts for animated characters.
The example shown in Fig. 11 deals with a mesh animated with a
rigging skeleton. One of the character’s limbs that is represented
by convolution surfaces is also animated by a part of the skeleton.
Thus, it is possible to dramatically vary the shape of this limb. At
first, the limb is just a blob, subsequently a hand grows out of it,
then it metamorphoses into a sabre and finally transforms into a
hammer. The whole animation can be generated in real-time.

6.6 Discussion

There are several issues that require additional consideration and
can be addressed in future work. The first is concerned with the
fact that the applied blending operation is based on the distance
properties of the functions defining its arguments. The scalar fields
produced by known convolution surface kernels significantly de-
crease with the growth of the distance from the line segment. At a
particular distance from the line segment the values of such a field
are almost equal to zero and no blend shape is generated at these
distances by the blending operation. Thus, it is hard to model the
interaction of the mesh and the viscous object at large distances. In
such cases, an ellipsoidal approximation of the mesh could provide
better results. Another limitation related to the blending surface is
that of texturing, as texture matching for dynamic implicit surfaces
is still an open research question.

As the distance between the two blended objects increases, the de-
formation of convolution surfaces decreases until these surfaces are
again embedded into the polygonal mesh and are no longer visible.
The proposed method does not allow us to easily model the sepa-
ration of droplets of the viscous liquid from the mesh. If this effect
is desired, some additional particles modelling this effect could be
attached to the mesh. It is also possible to add particles to the vis-
cous object. These can improve the visual quality and dynamism of
the resulting image. Simplified particle based physical models can
be applied to the implicit model to improve the default behaviour
of the viscous object. A metaball representation of the particles is

(a) Preview of intermediate results as seen in the tool window

(b) Offline rendering with complex materials

Figure 8: The interaction of an animated object with viscous liquid

Figure 9: Bounded blending of animated meshes

Figure 10: Liquid covering animated mesh

Figure 11: Hybrid model with a polygonal body and an attached ”metamorphosing” implicit limb

frequently used to integrate these particles into the implicit model
[Clavet et al. 2005].

If the size of the generated convolution surface is not significantly
smaller than the size of the object modelling the viscous material,
volume preservation techniques may have to be used [Cani-Gascuel
and Desbrun 1997]. We can estimate the amount of intersection be-
tween the bounding volumes of the skeletal primitives and the vis-
cous object. This estimation can then be used to adjust the blending
union parameters. These parameters influence the strength of the
deformation which leads to changes in the resulting surface vol-
ume.

In the research presented in this paper we were mainly concerned
with embedding an implicit surface inside a mesh that defines the
moving object, but in fact other criteria of fitting could be used. The
criteria could be chosen depending on the specific animation effect
desired and the particular requirements of the user. For instance,
there might be a need for the implicit surface to completely cover
the mesh or only certain parts of the mesh.

For particular asymmetrical parts of the model (e.g., the hips or feet
of human characters) a better approximation could be achieved by
using line segments producing anisotropic fields [Tai et al. 2004].
This would significantly increase the time needed both to perform
the fitting operation and to calculate the final field produced by a
set of line segments. In any case, the ability to perform this type
of fitting could be useful for the production of specific animation
effects. Another useful option is to let the user draw an outline
curve for the blend shape between the implicit surfaces and then to
estimate the parameters of the blending fitting this curve.

7 Conclusions

In this paper we have proposed a method for hybrid modelling in-
volving animated meshes combined with implicit surfaces. An im-
plicit convolution surface is built around the rigging skeleton of
the animated mesh and is then embedded inside or attached to this
mesh. This method allows for a high level of control over the ani-
mation of both the mesh and the implicit surface components of the
model.

We have applied this approach to model the adhesive behaviour of
viscoelastic objects in their interaction with moving surfaces. The
physical effect of adhesive coating of moving surfaces by liquids is
modelled using geometric blending between the approximations of
the animated surface meshes by implicit surfaces. Another appli-
cation is concerned with the augmentation of animated meshes by
attaching implicit surface parts to them.

The proposed method is based on purely geometric properties and
operations on the interacting objects. In contrast to known fluid
dynamics techniques which are based on physical simulation, our
technique is not computationally expensive and allows for near
real-time preview using a polygonization of the resulting isosur-
face. This technique can be employed in a conventional anima-
tion pipeline with near real-time preview. It might even be suitable
for real-time applications such as computer games where visual re-
sults and low computation times are more important than physical
correctness. Our prototype implementation provides the user of a
commercial animation system with a number of parameters to spec-
ify the desired behaviour of the animated hybrid model. Our work
shows that not only simple implicits, such as blobs/metaballs, but
more complex implicit surfaces are useful in computer animation
and games. In particular, we have shown that hybrid models in-
cluding convolution surfaces show great promise for modelling dy-
namic effects.

References

ALLÈGRE, R., GALIN, E., CHAINE, R., AND AKKOUCHE, S.
2006. The hybridtree: mixing skeletal implicit surfaces, triangle
meshes, and point sets in a free-form modeling system. Graph.
Models 68, 1, 42–64.

ANGELIDIS, A., AND CANI, M.-P. 2002. Adaptive implicit mod-
eling using subdivision curves and surfaces as skeletons. In SMA
’02: Proceedings of the seventh ACM symposium on Solid mod-
eling and applications, ACM, 45–52.

BARAN, I., AND POPOVIĆ, J. 2007. Automatic rigging and ani-
mation of 3d characters. ACM Trans. Graph. 26, 3, 72.

BARBIER, A., GALIN, E., AND AKKOUCHE, S. 2005. A frame-
work for modeling, animating, and morphing textured implicit
models. Graph. Models 67, 3, 166–188.

BLINN, J. F. 1982. A generalization of algebraic surface drawing.
ACM Trans. Graph. 1, 3, 235–256.

BLOOMENTHAL, J., AND SHOEMAKE, K. 1991. Convolution
surfaces. SIGGRAPH Comput. Graph. 25, 4, 251–256.

CANI-GASCUEL, M.-P., AND DESBRUN, M. 1997. Animation of
deformable models using implicit surfaces. IEEE Transactions
on Visualization and Computer Graphics 3, 1, 39–50.

CANI-GASCUEL, M.-P. 1998. Layered deformable models with
implicit surfaces. In Graphics Interface, 201–208.

CLAVET, S., BEAUDOIN, P., AND POULIN, P. 2005. Particle-
based viscoelastic fluid simulation. In SCA ’05: Proceedings of
the 2005 ACM SIGGRAPH/Eurographics symposium on Com-
puter animation, ACM, 219–228.

FOSTER, N., AND FEDKIW, R. 2001. Practical animation of liq-
uids. In SIGGRAPH ’01: Proceedings of the 28th annual con-
ference on Computer graphics and interactive techniques, ACM,
23–30.

GALIN, E., LECLERCQ, A., AND AKKOUCHE, S. 2000. Morphing
the BlobTree. Comput. Graph. Forum 19, 4, 257–270.

JIN, X., TAI, C.-L., FENG, J., AND PENG, Q. 2001. Convolution
surfaces for line skeletons with polynomial weight distributions.
J. Graph. Tools 6, 3, 17–28.

JIN, X., LIU, S., WANG, C. C. L., FENG, J., AND SUN, H. 2005.
Blob-based liquid morphing: Natural phenomena and special ef-
fects. Comput. Animat. Virtual Worlds 16, 3-4, 391–403.

KATZ, S., AND TAL, A. 2003. Hierarchical mesh decomposition
using fuzzy clustering and cuts. In ACM Transactions on Graph-
ics (Proc. SIGGRAPH’03), ACM, 954–961.

LIU, P.-C., WU, F.-C., MA, W.-C., LIANG, R.-H., AND OUHY-
OUNG, M. 2003. Automatic animation skeleton construction us-
ing repulsive force field. In PG ’03: Proceedings of the 11th Pa-
cific Conference on Computer Graphics and Applications, IEEE
Computer Society, 409–413.

MCCORMACK, J., AND SHERSTYUK, A. 1998. Creating and
rendering convolution surfaces. Comput. Graph. Forum 17, 2,
113–120.

OHTAKE, Y., BELYAEV, A., ALEXA, M., TURK, G., AND SEI-
DEL, H.-P. 2003. Multi-level partition of unity implicits. ACM
Transactions on Graphics (Proc. SIGGRAPH’03) 22, 3, 463–
470.

OPALACH, A., AND MADDOCK, S. C. 1995. High level control
of implicit surfaces for character animation. In Proc. 1st Inter-
national Eurographics Workshop on Implicit Surfaces, 223–232.

OSHER, S., AND FEDKIW, R. 2002. Level Set Methods and Dy-
namic Implicit Surfaces. Springer.

PASKO, G., PASKO, A., AND KUNII, T. 2005. Bounded blend-
ing for function-based shape modeling. Computer Graphics and
Applications, IEEE 25, 2, 36–45.

SHEN, J., AND THALMANN, D. 1995. Interactive shape design
using metaballs and splines. In Implicit Surfaces’95, 187–196.

SHI, L., AND YU, Y. 2005. Taming liquids for rapidly chang-
ing targets. In SCA ’05: Proceedings of the 2005 ACM
SIGGRAPH/Eurographics symposium on Computer animation,
ACM, 229–236.

SINGH, K., AND PARENT, R. 1995. Implicit function based defor-
mations of polyhedral objects. In Proc. 1st International Euro-
graphics Workshop on Implicit Surfaces, 113–128.

TAI, C.-L., ZHANG, H., AND FONG, J. C.-K. 2004. Prototype
modeling from sketched silhouettes based on convolution sur-
faces. Comput. Graph. Forum 23, 1, 71–84.

THÜREY, N., KEISER, R., PAULY, M., AND RÜDE, U. 2006.
Detail-preserving fluid control. In SCA ’06: Proceedings of the
2006 ACM SIGGRAPH/Eurographics symposium on Computer
animation, Eurographics Association, 7–12.

TIERNY, J., VANDEBORRE, J.-P., AND DAOUDI, M. 2006. 3d
Mesh Skeleton Extraction Using Topological and Geometrical
Analyses. In 14th Pacific Conference on Computer Graphics
and Applications, 85–94.

TURK, G., AND O’BRIEN, J. F. 1999. Shape transformation using
variational implicit functions. In SIGGRAPH ’99: Proceedings
of the 26th annual conference on Computer graphics and inter-
active techniques, 335–342.

WEI, X., LI, W., AND KAUFMAN, A. 2003. Melting and flowing
of viscous volumes. In CASA ’03: Proceedings of the 16th Inter-
national Conference on Computer Animation and Social Agents
(CASA 2003), IEEE Computer Society, 54–59.

WYVILL, B., MCPHEETERS, C., AND WYVILL, G. 1986. Ani-
mating Soft objects. The Visual Computer 2, 4, 235–242.

