2,424 research outputs found

    Ecosystems with mutually exclusive interactions self-organize to a state of high diversity

    Full text link
    Ecological systems comprise an astonishing diversity of species that cooperate or compete with each other forming complex mutual dependencies. The minimum requirements to maintain a large species diversity on long time scales are in general unknown. Using lichen communities as an example, we propose a model for the evolution of mutually excluding organisms that compete for space. We suggest that chain-like or cyclic invasions involving three or more species open for creation of spatially separated sub-populations that subsequently can lead to increased diversity. In contrast to its non-spatial counterpart, our model predicts robust co-existence of a large number of species, in accordance with observations on lichen growth. It is demonstrated that large species diversity can be obtained on evolutionary timescales, provided that interactions between species have spatial constraints. In particular, a phase transition to a sustainable state of high diversity is identified.Comment: 4 pages, 4 figure

    Restoration of endangered epiphytic lichens in fragmented forest landscapes

    Get PDF
    In a situation with increasingly rapid changes in landscape mosaics, driven by large-scale forestry and future climate change, a number of epiphytic lichens are now becoming threatened. Many of these species are limited either by dispersal or the subsequent processes of immobilisation on the substrate and germination. Overcoming the bottleneck of dispersal and/or reproduction may therefore constitute a key factor in species conservation. The main aim of this thesis is to evaluate different strategies to optimise efficiency in restoration of populations of endangered epiphytic lichens in fragmented forest landscapes, with a special emphasis on the importance of habitat quality and transplantation techniques. The thesis includes the development of a modeling tool for habitat evaluation in relation to photosynthetic performance of individual species (III); exploration of underlying causes for habitat restrictions in hydrophilic lichens (IV); and identification of habitat and substrate characteristics that 1) are associated with high vitality in natural populations of hydrophilic lichens (II), 2) are beneficial for establishment during active transplantation of thallus fragments (I) or isidia (V), and 3) are beneficial for photosynthetic activity in adult thalli (III, IV). The occurrence of pronounced photosynthetic activation time lags among hydrophilic species, with full activity for some species being reached first 24 h after hydration, is reported for the first time in the present study and may be one of the physiological causes explaining habitat restrictions in rare hydrophilic lichens (IV). Using a dynamic water and activity model, we assessed the capacities of four hydrophilic (Bryoria bicolor, Lobaria amplissima, Platismatia norvegica and Usnea longissima) and a generalist species (Platismatia glauca) to rehydrate and activate photosynthesis by liquid water and humid air available in natural habitats (III). Simulations show that for three of the four studied hydrophilic species, species-specific PSII activation time lags can, in combination with microclimatic differences, control photosynthetic performance in a most dramatic manner (III, IV). The distribution patterns of hydrophilic lichens coincide very well with habitat features that generate high realised activity among the slowly activated species studied here (II, III, IV). Both close proximity to streams and the presence of turbulent water had a consistent strong positive impact on realised activity among the studied species (IV). The occurrence of activation time lags may explain both the higher abundances in oceanic core habitats, and the affinity for stream habitats and turbulent water displayed by marginal populations of suboceanic lichens such as P. norvegica (II). Further, we have shown that transplantations of fragments (using Evernia divaricata and Ramalina dilacerata) or isidia (using P. norvegica) can constitute a valuable tool for restoration of endangered lichen populations, and that both habitat characteristics (I) and the mode of transplantation (I, V) is of vital importance to fragment vitality. In Paper V, where isidia of P. norvegica were transplanted into six sites in the regions of Jämtland and Trøndelag in Central Scandinavia, we have shown that preparation of transplant surfaces with an adhesive Ac-Di-Sol® solution may constitute a highly efficient tool for enhancing the outcome of restorative transplantations targeting epiphytic lichens (V). However, in order to enhance the possibilities for long-term viability and persistence of the population, it is essential that restoration efforts are concentrated to habitats and substrates that can be viewed as optimal for the species in question (I-V). The model developed in Paper III and used in Paper IV may provide a tool for identifying such suitable habitats. Further, this thesis highlights the importance of fringe populations for conservation of endangered suboceanic lichens in Scandinavia (II), and also underscores the importance of separating the processes of dispersal, immobilisation and establishment, when studying lichen distributional patterns (I, II, V)

    Issues Related to Incorporating Northern Peatlands into Global Climate Models

    Get PDF
    Northern peatlands cover ~3–4 million km2 (~10% of the land north of 45°N) and contain ~200–400 Pg carbon (~10–20% of total global soil carbon), almost entirely as peat (organic soil). Recent developments in global climate models have included incorporation of the terrestrial carbon cycle and representation of several terrestrial ecosystem types and processes in their land surface modules. Peatlands share many general properties with upland, mineral-soil ecosystems, and general ecosystem carbon, water, and energy cycle functions (productivity, decomposition, water infiltration, evapotranspiration, runoff, latent, sensible, and ground heat fluxes). However, northern peatlands also have several unique characteristics that will require some rethinking or revising of land surface algorithms in global climate models. Here we review some of these characteristics, deep organic soils, a significant fraction of bryophyte vegetation, shallow water tables, spatial heterogeneity, anaerobic biogeochemistry, and disturbance regimes, in the context of incorporating them into global climate models. With the incorporation of peatlands, global climate models will be able to simulate the fate of northern peatland carbon under climate change, and estimate the magnitude and strength of any climate system feedbacks associated with the dynamics of this large carbon pool

    Simulation of 3D Model, Shape, and Appearance Aging by Physical, Chemical, Biological, Environmental, and Weathering Effects

    Get PDF
    Physical, chemical, biological, environmental, and weathering effects produce a range of 3D model, shape, and appearance changes. Time introduces an assortment of aging, weathering, and decay processes such as dust, mold, patina, and fractures. These time-varying imperfections provide the viewer with important visual cues for realism and age. Existing approaches that create realistic aging effects still require an excessive amount of time and effort by extremely skilled artists to tediously hand fashion blemishes or simulate simple procedural rules. Most techniques do not scale well to large virtual environments. These limitations have prevented widespread utilization of many aging and weathering algorithms. We introduce a novel method for geometrically and visually simulating these processes in order to create visually realistic scenes. This work proposes the ``mu-ton system, a framework for scattering numerous mu-ton particles throughout an environment to mutate and age the world. We take a point based representation to discretize both the decay effects and the underlying geometry. The mu-ton particles simulate interactions between multiple phenomena. This mutation process changes both the physical properties of the external surface layer and the internal volume substrate. The mutation may add or subtract imperfections into the environment as objects age. First we review related work in aging and weathering, and illustrate the limitations of the current data-driven and physically based approaches. We provide a taxonomy of aging processes. We then describe the structure for our ``mu-ton framework, and we provide the user a short tutorial how to setup different effects. The first application of the ``mu-ton system focuses on inorganic aging and decay. We demonstrate changing material properties on a variety of objects, and simulate their transformation. We show the application of our system aging a simple city alley on different materials. The second application of the ``mu-ton system focuses organic aging. We provide details on simulating a variety of growth processes. We then evaluate and analyze the ``mu-ton framework and compare our results with ``gamma-ton tracing. Finally, we outline the contributions this thesis provides to computer-based aging and weathering simulation

    High potential for weathering and climate effects of non-vascular vegetation in the Late Ordovician

    Get PDF
    It has been hypothesized that predecessors of today’s bryophytes significantly increased global chemical weathering in the Late Ordovician, thus reducing atmospheric CO2 concentration and contributing to climate cooling and an interval of glaciations. Studies that try to quantify the enhancement of weathering by non-vascular vegetation, however, are usually limited to small areas and low numbers of species, which hampers extrapolating to the global scale and to past climatic conditions. Here we present a spatially explicit modelling approach to simulate global weathering by non-vascular vegetation in the Late Ordovician. We estimate a potential global weathering flux of 2.8 (km3 rock) yr−1, defined here as volume of primary minerals affected by chemical transformation. This is around three times larger than today’s global chemical weathering flux. Moreover, we find that simulated weathering is highly sensitive to atmospheric CO2 concentration. This implies a strong negative feedback between weathering by non-vascular vegetation and Ordovician climate

    Modeling dendritic shapes - using path planning

    Get PDF
    Dendritic shapes are commonplace in the natural world such as trees, lichens, coral and lightning. Models of dendritic shapes are widely needed in many areas. Because of their branching fractal and erratic structures modeling dendritic shapes is a tricky task. Existing methods for modeling dendritic shapes are slow and complicated.In this thesis we present a procedural algorithm of using path planning to model dendritic shapes. We generate a dendrite by finding the least-cost paths from multiple endpoints to a common generator and use the dendrite to build the geometric model. With the control handles of endpoint placement, fractal shape, edge weights distribution and path width, we create different shapes of dendrites that simulate different kinds of dendritic shapes very well. Compared with some existing methods, our algorithm is fast and simple

    Merging Cellular Automata for Simulating Surface Effects

    Get PDF
    International audienceThis paper describes a model of three-dimensional cellular automata allowing to simulate different phenomena in the fields of com- puter graphics and image processing, and to combine them together in order to produce complex effects such as automatic multitexturing, sur- face imperfections, or biological retina multi-layer cellular behaviours. Our cellular automaton model is defined as a network of connected cells arranged in a natural and dynamic way, which affords multi-behavior ca- pabilities. Based on cheap and widespread computing systems, real-time performance can be reached for simulations involving up to a hundred thousand cells. Our approach efficiency is illustrated through a set of CA related to computer graphics –e.g. erosion, sedimentation, or vegetal growing processes– and image analysis –e.g. pipeline retina simulation

    ICP Vegetation : 25th Task Force Meeting & one-day ozone workshop, 31 January - 2 February 2012, Brescia, Italy : programme & abstracts

    Get PDF

    Global assessment of nitrogen deposition effects on terrestrial plant diversity : a synthesis

    Get PDF
    Atmospheric nitrogen (N) deposition is it recognized threat to plant diversity ill temperate and northern parts of Europe and North America. This paper assesses evidence from field experiments for N deposition effects and thresholds for terrestrial plant diversity protection across a latitudinal range of main categories of ecosystems. from arctic and boreal systems to tropical forests. Current thinking on the mechanisms of N deposition effects on plant diversity, the global distribution of G200 ecoregions, and current and future (2030) estimates of atmospheric N-deposition rates are then used to identify the risks to plant diversity in all major ecosystem types now and in the future. This synthesis paper clearly shows that N accumulation is the main driver of changes to species composition across the whole range of different ecosystem types by driving the competitive interactions that lead to composition change and/or making conditions unfavorable for some species. Other effects such its direct toxicity of nitrogen gases and aerosols long-term negative effects of increased ammonium and ammonia availability, soil-mediated effects of acidification, and secondary stress and disturbance are more ecosystem, and site-specific and often play a supporting role. N deposition effects in mediterranean ecosystems have now been identified, leading to a first estimate of an effect threshold. Importantly, ecosystems thought of as not N limited, such as tropical and subtropical systems, may be more vulnerable in the regeneration phase. in situations where heterogeneity in N availability is reduced by atmospheric N deposition, on sandy soils, or in montane areas. Critical loads are effect thresholds for N deposition. and the critical load concept has helped European governments make progress toward reducing N loads on sensitive ecosystems. More needs to be done in Europe and North America. especially for the more sensitive ecosystem types. including several ecosystems of high conservation importance. The results of this assessment Show that the Vulnerable regions outside Europe and North America which have not received enough attention are ecoregions in eastern and Southern Asia (China, India), an important part of the mediterranean ecoregion (California, southern Europe). and in the coming decades several subtropical and tropical parts of Latin America and Africa. Reductions in plant diversity by increased atmospheric N deposition may be more widespread than first thought, and more targeted Studies are required in low background areas, especially in the G200 ecoregions
    corecore