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Northern peatlands cover ~3–4 million km2 (~10% of the land north of 45°N) 
and contain ~200–400 Pg carbon (~10–20% of total global soil carbon), almost 
entirely as peat (organic soil). Recent developments in global climate models have 
included incorporation of the terrestrial carbon cycle and representation of several 
terrestrial ecosystem types and processes in their land surface modules. Peatlands 
share many general properties with upland, mineral-soil ecosystems, and general 
ecosystem carbon, water, and energy cycle functions (productivity, decomposition, 
water infiltration, evapotranspiration, runoff, latent, sensible, and ground heat 
fluxes). However, northern peatlands also have several unique characteristics that  
will require some rethinking or revising of land surface algorithms in global climate 
models. Here we review some of these characteristics, deep organic soils, a significant 
fraction of bryophyte vegetation, shallow water tables, spatial heterogeneity, anaer
obic biogeochemistry, and disturbance regimes, in the context of incorporating them 
into global climate models. With the incorporation of peatlands, global climate 
models will be able to simulate the fate of northern peatland carbon under climate 
change, and estimate the magnitude and strength of any climate system feedbacks 
associated with the dynamics of this large carbon pool.

1. INTRODUCTION

A substantial amount of carbon has accumulated as peat 
(partially decomposed organic matter) in northern peatlands 
or mires through the Holocene [Gorham, 1991]. This carbon 
is situated on what we can think of as two thermodynamic 
state boundaries that are strongly controlled by the both the 
climate system and the peatlands themselves. Both of these 
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state boundaries have a very strong influence on the fate of 
peatland carbon; will it remain as peat or be transformed into 
dissolved or particulate organic matter or into gaseous CO2 
or CH4, and if transformed, how rapidly will this occur?

For carbon in many northern peatlands, one of these state 
boundaries is the solid/liquid phase boundary of water at 
0°C. A significant fraction of northern peatlands are under-
lain or embedded in permafrost (perennially frozen ground 
which lies below a surface active layer that seasonally thaws 
and is generally less than 1 m thick). In Canada, more than 
one third of peatlands have permafrost [Tarnocai, 2006]. 
Smith et al. [2007] estimated that about one third of northern 
peatlands are in zones of continuous permafrost, with an-
other 40% of northern peatlands in discontinuous, sporadic, 
and isolated permafrost zones. Organic carbon in permafrost 
is relatively inert both physically and biogeochemically 
while frozen, although laboratory incubations have shown 
that microbial metabolism and methane production can 
occur, albeit at very low rates, at temperatures well below 
0°C [Brouchkov and Fukuda, 2002; Rivkina et al., 2004]. 
However, any gas produced by this slow metabolic activity 
will remain within the permafrost because diffusive gas loss 
from permafrost is negligible [Rivkina et al., 2004, 2007]. A 
number of studies have established that the old organic mat-
ter frozen into permafrost readily decomposes if thawed and 
that microbial populations that can decompose the organic 
matter are present and viable in the permafrost [Rivkina et 
al., 1998, 2004, 2007; Zimov et al., 2006].

Warming in recent decades has been stronger at high 
northern latitudes than in the rest of the world [Serreze and 
Francis, 2006], a trend that is projected to continue [Meehl 
et al., 2007], and this will affect permafrost. Zhang et al. 
[2006] used a soil physics model to estimate that the area 
underlain by permafrost in Canada decreased by ~5% from 
1850 to 1990. Yi et al. [2006, 2007] used the land module of 
a general circulation model (GCM) to simulate permafrost 
dynamics under warming for discontinuous and continuous 
permafrost sites and a range of soil properties. Their results 
were sensitive to surface cover and soil properties, with sur-
face peat substantially slowing the rate of thaw. Lawrence 
et al. [2008] also included organic soils in their land sur-
face model; they found that organic soils slowed the rate of 
permafrost thawing but, nonetheless, projected a significant 
decline in near-surface permafrost during the 21st century, 
using a GCM forced by a strong warming scenario (+7.5° 
over Arctic land during 1900–2100). If frozen peat thaws, it 
will become more readily decomposable, and both it and any 
decomposition products will become much more susceptible 
to loss to the atmosphere, leaching or thermokarst erosion. 
On the other hand, if permafrost develops or expands in a 
northern peatland (perhaps due to a drying-induced change 

in peat thermal properties), the peat that freezes will become 
less susceptible to decomposition or transport.

The second state boundary is biogeochemical, the bound-
ary between oxia and anoxia. Peatland water table depth is 
the first-order control of the partitioning of the peat profile 
into aerobic and anaerobic zones. A peatland’s water table 
is generally within 0.5 m of the peat surface, and this rela-
tively stable, high water table is a result of both the climate 
and topographic setting and the hydrological properties of 
the peat itself. Above the water table, the peat is generally 
oxic, while below the water table, it is generally anoxic. This 
anoxia affects the decomposition pathways of organic mat-
ter, both by slowing its overall rate relative to aerobic de-
composition and generating reduced carbon compounds as 
intermediate- and end-products, including methane (CH4), 
a strong greenhouse gas. The relative proportion of CO2 
and CH4 in carbon gas losses from peatlands has important 
climate consequences due to their different radiative im-
pacts [e.g., Laine et al., 1996; Whiting and Chanton, 2001; 
Minkkinen et al., 2002; Frolking et al., 2006]. Water table 
depth is a direct expression of peatland hydrology and is 
strongly influenced by precipitation, peat hydraulic prop-
erties, and a peatland’s hydrologic setting within a larger  
watershed.

A third factor affecting the fate of peat in northern peat-
lands is locational; almost all peatland carbon is within sev-
eral meters of the atmosphere, some peat (i.e., that in fens) 
is also well-integrated into regional hydrological flow paths, 
and little of the peat is physically isolated in mineral soil 
aggregates or adsorbed onto mineral surfaces, which can 
shelter the organic matter from decomposing organisms and 
reduce its sensitivity to climate change [Davidson and Jans-
sens, 2006; Trumbore and Czimczik, 2008]. In this way peat, 
though technically soil carbon, is more similar to a vegeta-
tion carbon pool. If the peat carbon is mobilized through 
decomposition or erosion/dissolution, gaseous forms will 
likely enter the atmosphere, and in some peatland systems, 
dissolved or particulate organic matter or dissolved inor-
ganic carbon will likely flow out of the peatland and further 
down the drainage network [e.g., Moore, this volume].

All biogeochemical cycling in vegetation/soil systems 
is sensitive to climate change through temperature, soil 
moisture, and other climatic controls on cycling rates and 
metabolic activity. These direct sensitivities are generally 
considered to be nonlinear but smoothly varying responses 
that are relatively small for small changes in climate. The 
nature of the physical and biogeochemical state boundaries 
on which much northern peat is poised means that the fate of 
the large northern peatland carbon pool may be very sensi-
tive to relatively small changes in climate. Northern peatland 
geographic location ensures that it will experience climate 
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change earlier and more rapidly than many other biomes 
[Christensen et al., 2007], and peat’s position at the soil sur-
face means that any response in terms of carbon mobiliza-
tion and greenhouse gas emissions will rapidly influence the 
climate system.

Global climate models are needed to provide the best avail-
able representations of future climate for assessing the fate 
of the large pool of carbon in northern peatlands, and those 
representations will improve if climate feedback effects that 
can be generated by the dynamics of northern peatlands 
are included explicitly and if the local climate temperature 
and moisture conditions of northern peatlands are modeled  
directly. In other words, climate change projections should 
be more accurate if the next generation of coupled climate- 
carbon Earth system models [e.g., Friedlingstein et al., 
2006] include northern peatlands as a specific terrestrial bi-
ome with some unique properties.

2. DEVELOPMENTS OF COUPLED CARBON- 
CLIMATE MODELS, WITH REPRESENTATION  

OF ECOSYSTEMS

Over the past several decades, as atmosphere-ocean GCMs  
have developed in complexity, and as computational power 
has increased, the land surface representation in these mod-
els has gone from a simple bulk surface representation of 
albedo, aerodynamic roughness, and soil moisture availabil-
ity to more explicit modeling of the hydrological cycle and 
to partitioning energy, and water fluxes between the ground 
and vegetation [Sellers et al., 1997]. Further developments 
have included layered soils and plant physiological control 
over canopy stomatal conductance [Sellers et al., 1997; Le 
Treut et al., 2007; Bonan, 2008].

In the last several years, explicit treatment of the carbon 
cycle and vegetation dynamics has been incorporated into 
some GCMs; in these models, the biosphere and atmosphere 
operate as a coupled system [Cox et al., 2000; Friedlingstein 
et al., 2006; Le Treut et al., 2007; Randall et al., 2007; Bonan, 
2008]. This coupling of the carbon and climate cycles into 
a single dynamic model has demonstrated the importance of 
modeling the inherent feedbacks between the climate system 
and the carbon cycle because they can substantially change 
the climate response to anthropogenic forcing of greenhouse 
gas concentrations [e.g., Cox et al., 2000]. The carbon cy-
cle component of these coupled models typically considers 
a few to about 20 different plant functional types and several 
plant and soil carbon pools. The plant functional types can 
be dynamic (i.e., redistribute geographically due to quasi-
competitive responses to climate change) or static. Soil car-
bon pools are spun up to be in approximate equilibrium with 
the climate forcing (without explicit consideration of peat-

lands), and their dynamics during the simulation are con-
trolled by inputs (vegetation productivity and litterfall) and 
output (decomposition losses), both responding to changing 
temperature and moisture conditions.

In an early work, Cox et al. [2000] found that carbon cy-
cle feedbacks on the climate system had a positive feedback 
on warming because climate warming/drying led to the col-
lapse of wet neotropical forest ecosystems and a large net 
flux of carbon from the land surface to the atmosphere. More 
recently, an intercomparison was conducted with 11 coupled 
carbon-climate models (both GCMs and Earth system mod-
els of intermediate complexity (EMICs)) using historical an-
thropogenic greenhouse gas emissions and a future emissions 
scenario (A2) developed by the Intergovernmental Panel on 
Climate Change (IPCC) Special Report on Emissions Sce-
narios (SRES). All model results indicated that increasing 
CO2 concentrations alone would enhance the rate at which 
CO2 was taken up by both the land and ocean (a negative 
feedback), but that the climate change reduced the rate at 
which CO2 is removed from the atmosphere [Friedlingstein 
et al., 2006]. However, the model results exhibited substan-
tial variability in their quantification of the strengths of these 
feedbacks, and in the relative importance of the land and 
ocean [Friedlingstein et al., 2006]. The models had a range 
of representations of the terrestrial carbon cycle, some with 
dynamic vegetation models and some without, but none in-
cluded peatlands as a possible land cover type. In the recent 
coupled carbon-climate cycle modeling study of Yoshikawa 
et al. [2008], the two northern regions identified as having 
strong system feedbacks, Siberia and western boreal North 
America, are also regions where a substantial fraction of the 
landscape is peatlands [e.g., Wieder et al., 2006]. The terres-
trial ecosystem component of this coupled carbon-climate 
system model [Ito and Oikawa, 2002] has general represen-
tations of plant and soil functioning, but no specific repre-
sentation of unique characteristics of peatlands (see section 
4 below).

Incorporating peatlands and their carbon cycling into cou-
pled carbon-climate models poses a number of challenges 
(see section 4 below). Any representation of peatland carbon 
cycling will have to comply with strict water, energy, and 
carbon conservation constraints that are imposed by global 
climate models for climate change integrations. Another 
requirement is global applicability (e.g., regionally specific 
solutions should be avoided). There is an additional, more 
philosophical modeling goal; limit the amount of informa-
tion, such as surface data sets (e.g., a wetland map) that are 
prespecified and not permitted to evolve with the rest of the 
Earth system.

GCMs are computationally demanding, and typical simu-
lations are for periods of hundreds of years or less. This 
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is long enough to simulate many issues relevant to peat-
lands as part of the coupled carbon-climate system (e.g., 
weather-driven interannual variability in C balances; im-
pacts on the peatland C cycle of drought, fire, pollution, 
harvest or climate change). However, radiocarbon dating 
of peat cores shows that most sites have been accumulat-
ing peat (carbon) persistently for millennia [e.g., Turunen 
et al., 2002; Yu et al., 2003; Smith et al., 2004]. During 
this time, the peatlands have not been static; for any peat-
land, there may have been variations or changes in veg-
etation cover, hydrological status, peat depth, and peat 
(C) accumulation rate [e.g., Yu et al., 2003]. At this time, 
GCM groups are not running continuous simulations for 
several millennia, though they may be within another 
decade or less, though probably not as a regular prac-
tice. However, several EMICS have been developed that  
include many GCM processes in simplified or parameterized 
forms that substantially reduce computation time [Claussen 
et al., 2002]. These models have been designed for a number 
of applications, including paleoclimatic reconstructions of 
the Holocene. Both the CLIMBER-2 model [Brovkin et al., 
2002, 2008] and the McGill paleoclimate model [Wang et 
al., 2005] have done Holocene climate-carbon cycle simu-
lations. Neither explicitly included peatlands.

Spatial resolution of GCM simulations has decreased to-
ward ~100-km grid cells [Le Treut et al., 2007], and repre-
sentation of subgrid heterogeneity, characterized as a mosaic 
of tiles, each with a different land cover, is now common 
though not universal [Pitman, 2003]. Surface energy, water, 
and carbon fluxes are calculated on each tile before being 
aggregated and passed to an atmospheric submodel. EMICS 
have variable spatial resolutions for their representations 
of the atmosphere, oceans, and land, generally coarser than 
GCMs. The land representation in CLIMBER-2 was ~10° 
latitude × 50° longitude, or ~1000 km × 5000 km [Brovkin 
et al., 2002], and for the McGill paleoclimate model, it was 
~5° × 5° [Wang et al., 2005]. Both GCM and EMIC spatial 
resolutions present a challenge for representing land surface 
heterogeneity in vegetation cover, soils, topography, biogeo-
chemical processes, and human management, which occur 
at scales from <1 m to >106 m.

Although the steady growth in computational resources 
has permitted global models to keep advancing to finer 
spatial resolution, the resolution is still not fine enough to 
address fine-scale variability evident in northern peatlands 
(i.e., variability over scales of 1–10,000 m) [Baird et al., this 
volume]. For even the highest resolution GCMs, the degree 
of subgrid surface heterogeneity remains large, especially in 
the northern high latitudes. To a certain degree, heterogene-
ity in surface cover has been accounted for by grid cell tiling 
of vegetation cover. By comparison, soils are treated much 

more homogeneously. Typically, all vegetation types within 
a grid cell [for example, up to four plant functional types in 
a standard configuration for the National Center for Atmos-
pheric Research Community Land Model (CLM)] share the 
same nonheterogeneous soil column. Wetland distribution 
is typically either prescribed, based on satellite or other glo-
bal wetland distribution estimates, or is defined as the frac-
tion of the water table that intersects the surface which is 
a function of mean grid cell water table depth and surface 
topography [Gedney et al., 2004; Niu et al., 2005]. Peatlands 
are typically ignored, or as in Lawrence and Slater [2008] 
represented without regard to spatial heterogeneity across a 
grid cell. In global carbon cycle models used in GCMs, there 
is sometimes no relationship between soil carbon, which is a 
grid cell level quantity, and wetlands, which is a diagnostic 
quantity that is a function of the grid cell water balance and 
surface topography.

3. NORTHERN PEATLANDS IN THE COUPLED  
CLIMATE-CARBON SYSTEM

Northern peatlands, like other terrestrial ecosystems, in-
fluence the Earth’s climate system through their impact on 
the land-surface energy balance. Land-surface albedo and 
roughness are direct functions of vegetation community 
composition and landscape heterogeneity (e.g., fraction that 
is open water). The surface energy balance partitioning of 
the net radiation energy inputs into sensible and latent heat 
fluxes also depends on the nature of the surface and vegeta-
tion cover and on the availability of evaporable water on the 
vegetation and in the soil.

Northern peatlands, again like other terrestrial systems, 
also influence the Earth’s climate through their impact on the 
composition of the atmosphere, particularly the greenhouse 
gases CO2 and CH4. Northern peatlands have been a persist-
ent atmospheric CO2 sink for millennia (0.02–0.03 kg C m–2 
a–1 over the long term [Gorham, 1995; Tolonen et al., 1992; 
Smith et al., 2004]). About 250–400 Pg C is sequestered in 
~3–4 million km2 of northern peatlands [Gorham, 1991; 
Turunen et al., 2002]. It is not known if, overall, northern 
peatlands still sequester C at that rate; multiyear site mea
surements show a variable annual C balance and generally a 
net uptake [Lafleur et al., 2003; Aurela et al., 2002; Roulet 
et al., 2007; Nilsson et al., 2008].

Northern peatlands are currently also a source of ~10–40 
Tg CH4 a–1 [Prather et al., 2001] and, along with tropical  
wetlands, likely emitted a large fraction of global total meth-
ane flux through the Holocene, when the anthropogenic 
sources that dominate current budgets were small to neg-
ligible. Peatland methane emissions are strongly related to 
hydrology [Bubier et al., 1995; Waddington et al., 1996; 
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MacDonald et al., 1998], net primary productivity [Whiting 
and Chanton, 1993; Waddington et al., 1996], and vegeta-
tion composition [Bubier, 1995; King et al., 1998; Joabsson 
et al., 1999]. All of these factors are interrelated, and they 
interact to control methane fluxes [e.g., Treat et al., 2007], 
so predictions based on any one factor inevitably have a lim-
ited range of application.

Frolking and Roulet [2007] have shown that the net 
fluxes of CO2 and CH4 from northern peatlands through the 
Holocene were large enough to influence the global climate 
system. They estimated a contemporary radiative forcing 
impact of about –0.4 W m–2 (a net cooling) as a result of 
the effect that peatland development through the Holocene 
has on the current atmospheric burdens of CO2 and CH4. 
Current peatland carbon content, accumulated over the 
past ~10,000 years, is roughly equivalent to 100–200 ppmv 
CO2 in the atmosphere (~25–50%), so simulations of Holo
cene climate dynamics should include a representation of  
peatlands as a significant component of the global carbon  
cycle.

Peatlands are generally viewed as sluggish, slowly evolv-
ing, self-stabilizing ecosystems [e.g., Charman, 2002] and, 
under relatively stable climatic conditions, their large carbon 
pool as relatively inert [e.g., Clymo, 1984]. However, rela-
tively rapid changes in peatland vegetation and net carbon 
fluxes are possible; these changes include fire burning for 
hours to months [Turetsky et al., 2004], industrial harvest 
occurring over weeks to years [e.g., Tuittila et al., 2003; 
Petrone et al., 2001], permafrost thaw/collapse occurring 
over years to decades [e.g., Camill et al., 2001; Malmer et 
al., 2005; Johansson et al., 2006; Wickland et al., 2006], 
decadal changes in vegetation composition—including tree 
encroachment attributed to gradual drying and N-deposition 
as well as internal or autogenic processes [e.g., Gunnarsson 
et al., 2000], drainage/drought impacts occurring over years 
to decades [e.g., Laine et al., 1995; Minkkinen et al., 1999, 
2002], and pollution inputs and related vegetation changes 
over years to decades [e.g., Bobbink et al., 1998]. All of these 
factors are likely to change over the coming century with 
changes in climate, atmospheric chemistry, and human activ-
ity. Through destabilization, disturbance, or other changes in 
ecosystem structure or physiology, the carbon in peatlands 
can be released to the atmosphere as CO2, CO, and/or CH4 
or can transfer as dissolved organic carbon (DOC) and/or 
particulate organic carbon downstream. Even without dis-
turbance/destabilization, the net carbon balance of northern 
peatlands is expected to change with climate change, but  
the nature, magnitude, and even the sign of that change is 
uncertain [Moore et al., 1998; Gorham, 1991]. Since chang-
ing fluxes of CO2 and CH4 from northern peatlands will 
affect the climate system, the best way to model these feed-

back loops is to incorporate peatlands directly into a climate  
model.

4. NORTHERN PEATLAND ECOSYSTEM  
PROPERTIES THAT WILL REQUIRE NEW  

CLIMATE MODEL DEVELOPMENTS

Wetlands differ from other terrestrial landscapes due to 
the presence of water at or near the soil surface for most 
or all of the year, soils that frequently have limited oxygen 
content, and specialized plants that are able to grow in these 
conditions. Peatlands (or mires, in Europe) are a subclass of 
wetlands that have substantial accumulations of partially de-
composed plant detritus at the soil surface [Charman, 2002; 
Rydin and Jeglum, 2006; Wieder and Vitt, 2006; Mitsch and 
Gosselink, 2007]. Modeling peatland carbon cycling, as a 
stand-alone model or within a regional ecosystem/biogeo-
chemistry model or GCM, requires special attention to sev-
eral unique peatland properties related to soil physics and 
hydrology, landscape spatial heterogeneity, vegetation phys-
iology, and ecosystem biogeochemistry (Table 1).

4.1. Soil

To be classified as a peatland, there must be a surface 
layer of organic soil or peat that is at least 0.3 m (United 
States) or 0.4 m (Canada) thick; typically, peat depths are 
one to several meters but may exceed 10 m. This peat is pre-
dominantly organic matter, with a small mineral component 
(<30%, and often only a few percent), and thus peat physical 
properties, e.g., pore size distribution, bulk density, thermal 
and hydraulic conductivities, differ significantly from those 
of mineral soils [e.g., Boelter, 1964, 1969; Walmsey, 1977; 
Hillel, 1980]. Peat ash-free bulk densities are typically 0.02 
to 0.35 g cm–3 [e.g., Walmsey, 1977]; based on extensive 
sampling in western Canada [Zoltai et al., 2000], shrubby 
and treed fens generally have a median of bulk density of 
0.1–0.15 g cm–3, while bogs and open fens have a median 
of bulk density of 0.06–0.1 g cm–3 [Zicheng Yu, personal 
communication]. Peat porosities are >0.8 cm3 cm–3 [Verry 
and Boelter, 1978]. Mineral soil bulk densities are typically 
1.1–1.6 g cm–3, and porosities are typically 0.3–0.6 cm3 cm–3  
[e.g., Hillel, 1980].

The low bulk density and high porosity of peat give it 
significantly different thermal properties than mineral soils 
[Hillel, 1980], a factor that can be important in permafrost 
development and decay [Zoltai, 1993]. Peat heat capacity 
and thermal conductivity are highly dependent on moisture 
content [Farouki, 1981]. Kettridge and Baird [2007] devel-
oped peat-specific predictive relationships of vertical varia-
tions in heat capacity through the unsaturated zone of poorly 
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decomposed Sphagnum peat and between peat thermal con-
ductivity and heat capacity.

Most land surface models in GCMs use some variant of 
Richards’ equation for modeling soil water dynamics [e.g., 
Cox et al., 1999], and the required hydraulic parameters (sat-
urated hydraulic conductivity, porosity, specific yield) and 
functions relating soil water content to matric potential and 
unsaturated hydraulic conductivity come from parameteriza-
tions developed as functions of soil texture [e.g., Clapp and 
Hornberger, 1978]. Peatland soils require new parameteri-
zations, and some work has been done on this [e.g., Letts et 
al., 2000]. One particular challenge is that peats often have 
a very steep decline in hydraulic conductivity (often more 
than two orders of magnitude) in the top tens of centimeters 
of peat [e.g., Paavilainen and Päivänen, 1995]; this can 
pose numerical problems in solving Richard’s equation for 
the relatively coarse vertical representation of soils common 
in GCMs. Pauwels and Wood [1999a, 1999b] incorporated 
a moss (organic) soil layer into a land-surface energy bal-
ance model, the type of model that would be a land-surface 
modeling scheme in a GCM. The addition of a moss layer 
improved model simulations of soil temperature and mois-
ture in boreal forest stands with thick organic horizons; the 
model was not tested against peatland data. Beringer et al. 
[2001] incorporated a moss and lichen layer into the soil rep-
resentation of a GCM land surface model. This surface layer 
enhanced soil infiltration and insulated the soil, making it 
cooler in summer and warmer in winter. Moss and lichen 

metabolism and carbon cycling were not modeled. In their 
work on incorporating the thermal and hydrologic influences 
of organic soils into a global climate model, Lawrence and 
Slater [2008] used data on soil C content of the upper 1.5 m 
of soil from the Global Soil Data Task [2000], available at 
1° ´ 1° resolution, to derive a gridded soil carbon data set. 
The soil C was distributed over seven soil layers represent-
ing the top 1.38 m of the soil, with a prescribed soil carbon 
density profile. The original field data for this database come 
from ~21,000 soil profiles [Tempel et al., 1996], or about 
1 profile per 6000 km2 of the earth’s ice-free land surface. 
The approach of Lawrence et al. [2008] is acknowledged to 
be a first attempt at representing the physical influence of 
organic-rich soil (of which peatlands are a particular class) 
in the climate system. The coarse resolution of the source, 
and regridding of the data, meant that the organic matter was 
effectively spread over the grid cell and that the depth of the 
“peatlands,” which typically would occupy only a fraction 
of a grid cell, was shallower than many observed peat pro-
files. More importantly, this approach did not fully address 
peatland carbon cycling because bryophytes were not rep-
resented (see section 4.3 below), and the soil carbon pools 
were fixed in time and space.

GCMs that include ecosystems and a carbon cycle require 
initialization of the vegetation cover and vegetation and soil 
carbon stocks; this is typically done by “spinning up” the 
model, that is, by running the model with a fixed or regularly  
repeating climate pattern until the soil and vegetation carbon 

Table 1. Peatland Characteristics That Will Require Model Development for Inclusion in GCMsa

Peatland Characteristic Modeling Issues

Thick organic soils (section 4.1) Thermal and hydraulic properties differ from mineral soils, and can be more variable 
both vertically and horizontally, e.g., saturated hydraulic conductivity can vary by 
orders of magnitude in a single vertical peat profile.

Appropriate soil depth and layering may differ from current formulations appropriate 
for mineral soils. 

Soil profile is inherently dynamic over moderate timescales (decades or longer), with-
out disturbance or erosion, including changes in soil thickness and soil hydraulic 
properties as a function of net peat accumulation, changes in vegetation composi-
tion, and peat decomposition

Peat properties are partially determined by overlying vegetation, creating stronger link 
between vegetation and soils than is typical for GCMs.

Fine-scale spatial heterogeneity (section 4.2) Northern peatlands have significant variability in microtopography, vegetation, and 
water table depth over scales of meters to kilometers.

Abundant nonvascular plant cover (section 4.3) Nonvascular plants have different physiology and phenology than vascular plants 
currently modeled.

Anaerobic biogeochemistry (section 4.4) Carbon and nitrogen cycle in ways and at rates not characteristic of drained mineral 
soils.

Unique disturbance characteristics (section 4.5) Peatlands burn, but little is known about peatland recovery after fire.
Thermokarst dynamics and erosion in permafrost/peat soils generates major changes 

in surface characteristics; this is not currently modeled in GCMs.
aSee discussion in section 4.
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pools reach quasi-steady state [e.g., Thornton and Rosen-
bloom, 2005]. This steady state is determined over the long-
est time period of the initialization climate data, so seasonal 
and interannual variability might still occur with a 20-year 
climate file, but variability on time-scales longer than 20 
years would be minimal [Thornton and Rosenbloom, 2005]. 
However, it seems that northern peatlands can be still ac-
cumulating carbon as peat ~5000 to 10,000 years after initial 
formation [e.g., Roulet et al., 2007; Nilsson et al., 2008], and 
many may not have reached steady state. This ongoing ac-
cumulation is slow, 0.03 kg C m–2 a–1 corresponds to 0.3 mm 
a–1 of peat with a bulk density of 100 kg m–3, assuming 0.5 kg 
C per kg peat. This timescale is longer, but not unreasonably 
longer, than the approximately 3000-year spin up timescale 
of the Biome-BGC carbon-nitrogen cycle model [Thornton 
and Rosenbloom, 2005]. Thornton and Rosenbloom [2005] 
show that the approximately 3000-year spin-up to equilib-
rium can be reduced by up to 73% by implementing an accel-
erated spin-up algorithm. If such an algorithm can be adapted 
so that it is applicable to peat accumulation, and also consid-
ering the ongoing increases in computing capacity, the long  
peat accumulation timescale would no longer be so daunting.

In the meantime, this slow approach to steady state may 
not compromise a GCM initialization algorithm. In a simple 
peat accumulation model, the surface or acrotelm peat (the 
top 0.3–0.5 m), which is the portion of the peat that has the 
most dynamic seasonal water and carbon cycling, reaches 
equilibrium much more rapidly, and the slow long-term ac-
cumulation happens in the deeper, less dynamic anaerobic 
zone or catotelm [Clymo, 1984]. Belyea and Baird [2006] 
argue that peatlands are complex adaptive systems and that 
the acrotelm is probably never really in steady state; how-
ever, from the practical point of view of initializing a peat-
land for a GCM, it may approach steady state if forced for 
millennia by a steady climate. The catotelm has only mini-
mal direct interaction with the atmosphere and short-term 
climate system. This would change only in the case of a 
major disturbance (e.g., fire, or anthropogenic activity like 
harvest or draining) that exposed the catotelm to the atmos-
phere. Long-term peat accumulation will also be relevant in 
applications of EMICS to Holocene climate dynamics, but 
is not yet considered in those models [e.g., Brovkin et al., 
2002, 2008; Wang et al., 2005].

4.2. Hydrology and Landscape Spatial Heterogeneity

As with all other ecosystems, soil temperature and mois-
ture play an important role in peatland C cycling. However, 
in peatlands, the role of water is a dominant one. The excess 
amount of water stored in peatlands controls the predomi-
nantly anoxic conditions that reduce decomposition, so that 

net ecosystem production is persistently positive (i.e., a CO2 
sink). Methane, an end-product of anoxic decomposition, is 
an important greenhouse gas. Hydrology plays a key role 
in the relative strength of peatlands as a CO2 sink and as a 
CH4 source and thus on peatland net climate impact. Hence, 
it is necessary to understand and simulate the hydrology of 
peatlands to be able to explain and simulate their carbon ex-
changes.

Peatlands are unique ecosystems in the degree to which 
they influence their own hydrology. Because the accumu-
lation of meters of peat occurs over millennia, it becomes 
the substrate that controls the position of the water table and 
the moisture condition for plants. Due to the near-surface 
decomposition and collapse of the original plant material, a 
peat profile develops a stratification with less decomposed fi-
bric peat, with large pores and low density, near the surface, 
and more decomposed, relatively high-density peat with 
finer pores deeper in the profile. This transition from less to 
more decomposed peat, with accompanying large changes 
in hydraulic properties, occurs over several tens of centim-
eters around the long-term average water table position. This 
characteristic, along with the balance and source of inputs 
and outputs of water, ultimately control structure and func-
tion of peatlands. The tight coupling of peat structure and 
function and peatland hydrology has led Belyea and Baird 
[2006] to suggest peatlands be considered complex adap-
tive systems, with important internal dynamic feedbacks 
governing their development and behavior. The significance 
of the very steep changes in properties and the existence of 
a near surface, hydrologically “active” layer, or acrotelm, 
and a deeper, hydrologically much less active layer, the ca-
totelm [Ingram, 1978] has been recognized for a long time 
[Clymo, 1984; Charman, 2002; Rydin and Jeglum, 2006]. 
In ombrotrophic peatlands the peat surface accumulates 
to an elevation above the local topography, and the water 
supply is only by atmospheric inputs, while minerotrophic 
peatlands receive small to large quantities of water that has 
been in contact with the mineral sediments either beneath or 
adjacent to a peatland. Peatlands span a gradient along this 
water/nutrient supply axis [Vitt, 2006], but for the purposes 
of simulation, the functional structure of peatlands and the 
biogeochemistry of carbon cycling the division between the 
ombrotrophic “bog”-like systems and minerotrophic “fen”-
like systems may be sufficient as a first approximation [e.g., 
Frolking et al., 2001].

Simulating the hydrology of a peatland to determine the 
position of the water table and the distribution of moisture 
above the water table represents a challenge even in the case 
of individual peatlands. There have been models of peatland 
hydrology, but these have been primarily for estimating the 
discharge from peatlands and have been based on relatively 
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simple empirical functions [e.g., Guertin et al., 1987; Verry 
et al., 1988]. There has also been a very long tradition of 
modeling peatland drainage for forestry and agricultural 
practices [e.g., Konyha et al., 1988]. However, there have 
been few modeling attempts to simulate peatland hydrology 
that are appropriate for climate and carbon simulations. One 
example is the recent work of Borren and Bleuten [2006], 
who combined the MODFLOW groundwater model with a 
dynamic digital elevation model (driven by peat accumu-
lation) and a paleoclimate time series to simulate the cou-
pled carbon and water cycles through the Holocene of an 
800-km2 peatland complex in the West Siberian Lowlands. 
Peat hydraulic properties were constant unless the simulated 
peatland switched from fen to bog, which depended on wa-
ter fluxes and assumed nutrient availability, so the primary 
feedback between peatland development and hydraulic prop-
erties was through the digital elevation model. They found 
that long-term peat accumulation and lateral expansion were 
limited by hydrology and that model sensitivity to hydro-
logical parameters was high.

Comer et al. [2000] and Letts et al. [2000] modified the 
Canadian Land Surface Scheme (CLASS) for the inclusion 
of peat and the simulation of the position of the water table. 
The revised CLASS was quite successful at simulating the 
moisture dynamics in fens and was able to reproduce the 
evapotranspiration losses for fens and bogs reasonably well 
[Comer et al., 2000], but failed to reproduce the runoff from 
bogs. CLASS does not include subsurface lateral flow, and 
this is the most important runoff pathway in bogs [e.g., Verry 
et al., 1988; Evans et al., 1999]. Yurova et al. [2007] and 
Yurova and Lankreijera [2007] have combined a soil organic 
matter model (ROMUL) and a surface climate-ecosystem  
model (GUESS) to simulate the coupling of hydrology and 
carbon dynamics in a Swedish northern fen. Others have de-
veloped one-dimensional surface hydrological models that 
would be suitable for climate simulations but few have been 
evaluated for multiple years [e.g., Weiss et al., 2006].

However, the problem becomes significantly more diffi-
cult when a peatland has either significant internal redistri-
bution of water (i.e., spatial heterogeneity within a peatland) 
or when it receives a meaningful proportion of the water re-
quired to maintain a high water table from beyond its bound-
aries (e.g., groundwater inputs). Spatial heterogeneity within 
northern peatlands is extremely common [e.g., Couwenberg 
and Joosten, 2005] and may play an important role in the 
peatland water and carbon balance. Sonnentag et al. [2008] 
modified the Boreal Ecosystem Productivity Simulator for 
peatland hydrology, and ran it in a version of the Terrain-
Lab model to simulate the effect of the mesoscale spatial 
variability (on the order of 1 km) on the hydrology and net 
ecosystem productivity of a peatland. They found a strong 

correlation between the spatial variability of simulated eva-
potranspiration (ET) and gross primary productivity (GPP), 
and that ignoring the effect of spatial variability systemati-
cally underestimated ET and GPP by ~10%. If external wa-
ter inputs to a peatland are significant, the peatland needs to 
be simulated in the context of its hydrological setting within 
the surrounding watershed. If the input of water from out-
side the peatland is a function of the surface topography, 
then lateral inputs could potentially be simulated by some 
topography-based flow modeling [e.g., Gedney and Cox, 
2003]. However, in many regions where annual potential 
evapotranspiration minus precipitation is very small or even 
negative, e.g., boreal western Canada, it has been shown that 
external inputs of water are essential for peatlands and that 
the external input is not related to surface topography but 
rather to the complex structure of the underlying geology 
and surface deposits [Devito et al., 2005]. This situation 
is going to present a serious challenge for climate simula-
tions given the current hydrology in climate models and the 
state of global data sets of underlying geology and surface 
deposits. Baird et al. [this volume] present a detailed dis-
cussion of spatial heterogeneity issues related to northern 
peatlands and outline a multiscale scheme for addressing  
them.

At the global scale, there have been a number of attempts 
to estimate and map the distribution of peatlands and wet-
lands [e.g., Matthews and Fung, 1987; Lehner and Döll, 
2004]. These distributions are based on a combination of 
large-scale topographic modeling and globally mapped 
surface characteristics such as indices of inundation, soil 
properties, and vegetation. There have been attempts to 
simulate the distribution of wetlands using topographic wet-
ness indexes. Kirkby et al. [1995] mapped the distribution of 
northern European wetlands using the topographic wetness 
index first proposed by Beven and Kirkby [1979]. Recently, 
Gedney and Cox [2003] used the same topographic index to 
simulate grid-scale runoff in a GCM and found improved 
estimates of global runoff (bias reduction from 37 to 25%), 
improved estimates of precipitation (though not statistically 
significant improvements), and resulting patterns of saturated 
areas given by the topographic index (a new model result) 
that were consistent with major wetlands areas identified in 
the wetland distribution maps developed by Aselmann and 
Crutzen [1989]. Gedney and Cox [2003] concluded that any 
improvement in subgrid scale representation of soil moisture 
heterogeneity is an important step toward improving GCM 
projections of climate and hydrological changes.

The final aspect of hydrology in peatlands necessary to 
simulating the carbon balance is the transport/export of 
DOC. Multiyear observations of carbon balances on several 
peatlands have shown that the export of DOC is between 
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10 and 20 g C m–2 a–1, and this is the same order of magni-
tude as the long-term accumulation of organic matter in the 
peatlands [Roulet et al., 2007; Nilsson et al., 2008]. The pro-
duction of DOC is a function of decomposition, but only a 
small fraction of the DOC produced is exported; the controls 
on DOC export are both hydrological and biogeochemical 
[Kalbitz et al., 2000]. Simulation of DOC export in peat-
land models has used a fixed DOC concentration and water 
export [Frolking et al., 2002], but this simply means DOC 
export tracks runoff, which is clearly not always the case  
[Fraser et al., 2001]. Yurova et al. [2007] developed a model 
based on convection and dispersion equations to simulate 
DOC concentration within a peatland and in peatland dis-
charge. A simplified parameterization of export, based on 
this approach, might be found for coarse scale climate, car-
bon simulations. Moore [this volume] reviews DOC export 
from northern peatlands.

4.3. Nonvascular Vegetation

Plant functional types in peatlands are generally similar 
to those found in other terrestrial ecosystems, e.g., woody 
plants (deciduous and evergreen trees and shrubs), grami-
noids (sedges, rushes, grasses), forbs (other herbaceous 
plants), and bryophytes (nonvascular plants such as mosses 
and lichens). The primary differences between peatland 
and nonpeatland systems are that in peatlands (1) in some 
cases, bryophytes can account for a majority of total vegeta-
tion biomass and productivity [Moore et al., 2002], and (2) 
a fraction of the typical soil 0.5 m “root zone” [Jackson et 
al., 1996] is often saturated, so plant rooting strategies and 
vertical root distributions may be different. The physiology 
of nonvascular plants is typically not represented in global 
carbon-climate models.

Bryophytes have no roots nor vascular system [Proctor, 
2000], so land surface model developments related to soil 
moisture, root distributions, and leaf stomatal control on 
water and carbon exchanges [e.g., Sellers et al., 1997] are 
not directly relevant. Bryophyte metabolic rates are strongly 
related to their leaf water content [Proctor, 1982, 2000]; 
this presents a significant challenge to the vertical resolv-
ing power of climate model soil hydrology because bryo-
phyte metabolism is sensitive to the water content of only 
the top few centimeters of the soil (peat and moss), rather 
than a thicker root zone. Bryophytes are also able to respond 
very quickly to changing environmental conditions, e.g., 
the seasonal temperature cycle and the subseasonal wet-
ting and drying associated with weather patterns [Proctor, 
1982, 2000], requiring new functions or algorithms for veg-
etation seasonal phenology. Bryophytes may be responsible 
for a significant fraction of the net ecosystem productivity 

in the “shoulder seasons,” in early spring before vascular 
plants have emerged from their winter dormancy [Moore 
et al., 2006] and perhaps also in the autumn when vascular 
plants, particularly deciduous plants, have senesced. Lack-
ing roots, algorithms for carbon allocation in bryophytes 
can be simpler than for vascular plants [e.g., Frolking et al.,  
2002].

Many peatlands are ombrotrophic, receiving the bulk of 
their nutrient inputs from wet and dry deposition. Mosses, 
which often develop a fairly complete ground cover under 
any emergent vascular vegetation, intercept and efficiently 
absorb much of wet nutrient deposition before it can per-
colate to the vascular root zone [e.g., Aerts et al., 1992; 
Malmer et al., 1994; Nordbakken et al., 2003]. Thus, the 
nutrients only become available to the vascular plants after 
they have cycled through the mosses and are re-mineralized  
during decomposition of moss litter. Limpens et al. [2003] 
found that nitrogen additions favored vascular plants and 
suppressed Sphagnum growth in greenhouse mesocosm 
studies. In the competition for light, vascular plants have the 
advantage because they can grow above the moss layer, al-
though rapidly growing moss can engulf vascular seedlings 
[Limpens et al., 2003]. In a nutrient addition manipulation 
study on an ombrotrophic bog, Bubier et al. [2007] found 
that enhanced shrub growth shaded the underlying Sphag-
num through increased leaf area and increased leaf litter fall; 
Sphagnum cover diminished substantially, but Polytrichum 
cover increased, and overall moss biomass diminished by 
about 50% over a 5-year treatment period. They could not 
determine whether Polytrichum growth was due to nutri-
ent enrichment or diminished competition from declining 
Sphagnum species. Shading and cooler moss temperature 
may also have had an impact [Bubier et al., 2007]. Pastor 
et al. [2002] presented a simple model of vegetation dynam-
ics, simulating competition between a single vascular plant 
type and a single moss type. The model centers around ac-
cess to different nutrient sources, wet deposition for mosses 
and mineralized nutrients for vascular plants. Moss and vas-
cular plants also compete for other resources (e.g., light), 
simulated as a reduction in growth rate proportional to the 
biomass of the other plant type. This simple model gener-
ated nonlinear, dynamic behavior, and several different 
stable states can emerge that influence the capacity of the 
system to store and release carbon and nutrients. Frolking 
et al. [2001] used a simple model of peat accumulation to 
show that accumulation rates were sensitive to the fraction 
of total productivity generated by mosses and by vascular 
plants. Finally, bryophytes, and particularly Sphagnum spe-
cies, play an important role in peat accumulation and peat-
land development, through their effects on the chemistry 
of peatland waters, their interactions with vascular plants, 
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and their production of decay-resistant litter [Rydin et al.,  
2006].

Published data on above- and belowground vascular plant 
biomass and productivity for wetlands (peatlands, wet tun-
dra, freshwater marsh, and salt marsh) show that wetlands, 
overall, have root biomass values and above- to belowground 
biomass ratios similar to those of nonforested systems (e.g., 
grasslands) [Jackson et al., 1996; Mokany et al., 2006; T. R.  
Moore, personal communication, 2008]. Wetlands generally 
have shallower root distributions than other terrestrial sys-
tems, and the below- to aboveground vascular plant biomass 
ratio for peatlands of ~0.8 (T. R. Moore, personal commu-
nication, 2008) is substantially higher than the root:shoot 
biomass ratios reported in Mokany et al. [2006] for boreal 
forests, i.e., ~0.4 for shoot biomass >75 Mg ha–1 and ~0.25 
for shoot biomass <75 Mg ha–1). There is no indication 
whether or not the boreal forest data summarized in Mokany 
et al. [2006] included nonvascular biomass.

4.4. Biogeochemistry

Complete modeling of the peatland carbon cycle, and its 
impact on the global atmospheric burdens of CO2 and CH4, 
cannot be done without explicit or implicit representation of 
anaerobic decomposition of organic matter, and its impact 
on organic carbon accumulation rates, nutrient mineraliza-
tion rates, nutrient availability, and methane emissions. A 
key challenge is to develop a comprehensive representation 
of the impacts of anaerobic conditions in the soil on all of 
these processes, along with a robust algorithm for the soil 
physics and hydrology that reliably simulates both the posi-
tion of the water table, the peat water content above the wa-
ter table, and the moss water content. This is not done at this 
time in any global coupled carbon-climate model.

Peatland methane emissions are the net of methane pro-
duction and oxidation, and are influenced by transport 
mechanisms from peat to the atmosphere (diffusion, bub-
bling, plant-mediated transport). Peatland methane emis-
sions have been modeled for the past decade or two, and 
insights from this work should be useful as climate mod-
els address these biogeochemical issues. Frolking and Crill 
[1994] modeled peat temperature and moisture profiles and 
correlated this to net methane flux. Granberg et al. [2001] 
and Kettunen [2003] extended this to modeling of plant pro-
ductivity, methane production, oxidation, transport, and net 
flux. There are similarly constructed global-scale models of 
methane emissions from wetlands [e.g., Walter et al., 2001; 
Cao et al., 1996]. There have been studies with GCMS of 
climate change impacts on wetland methane emissions [e.g., 
Gedney and Cox, 2003; Shindell et al., 2004]; however, these 
studies have not directly incorporated the wetlands into the 

climate model, but have instead used GCM climate change 
projections to drive a model of wetland extent and meth-
ane emissions, again without a full simulation of the carbon 
cycle. There are peatland carbon cycle models that include 
anaerobic suppression of decomposition and vegetation pro-
ductivity, but do not simulate methane production, oxida-
tion, and transport [e.g., Frolking et al., 2002; Yurova et al., 
2007; St-Hilaire et al., 2009]. There are several terrestrial 
biogeochemical models that simulate wetland biogeochem-
istry, including explicit or implicit representation of aerobic 
and anaerobic processes in the soil at varying levels of de-
tail [e.g., DNDC, Zhang et al., 2002; Li et al., 2004; ecosys, 
Grant and Roulet, 2002; Biome-BGC, Bond-Lamberty et al., 
2007; NASA-CASA, Potter et al., 2001; TEM, Zhuang et 
al., 2004]. These models can also simulate upland systems, 
but to date, they have not been applied to wetlands/peatlands 
at global scales, and only the TEM model has been applied 
at regional scales for a landscape mosaic of peatlands and 
uplands [Zhuang et al., 2004].

Gedney et al. [2004] used a GCM-driven topographic  
index estimation of saturated area (discussed in section 4.2 
above) to simulate climate change impacts on CH4 emis-
sions from wetlands. In this exercise, they calibrated the CH4 
production rate and temperature sensitivity to match current 
global methane emissions and then estimated changes in wet-
land area and CH4 emissions over the period up to 2100. A 
limitation to this approach is that it is essentially an estimate 
of inundated area, while many wetlands have water tables 
slightly below the surface, and the slight variations in the 
location of this water table has a significant impact on meth-
ane fluxes. Bubier et al. [2005] estimated a 60% increase 
in methane flux at the landscape scale due to small changes 
in water table depth (2–5 cm) and slight warming (0.5°) of 
small wetlands in a wet and a dry year. This variability, at 
large scales, has been suggested as a cause for observed 
interannual variability in the atmospheric methane burden 
over the past decade or two [Dlugokencky et al., 2001; Bous-
quet et al., 2006]. A difference of water table elevation from 
the surface to only 0.3 m depth is the difference between a 
peatland emitting a large amount of CH4 and very little or 
none (i.e., all the CH4 the peatland produces being oxidized) 
[Granberg et al., 1997]. Topographic index hydrological 
modeling [e.g., Beven and Kirkby, 1978] may not be suffi-
cient to the task of simulating the subtle differences in water 
table depth in the relatively flat landscapes that are common 
in much of the domain of northern peatlands. However, the 
shallow groundwater modeling of Borren and Bleuten [2006] 
did simulate water table depth variability at relevant verti-
cal resolution over a large peatland complex. This will be 
further complicated by the effect of melting permafrost and 
the subsequent changes in landscape topography, peatland 
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hydrology, and ecosystem structure and function. At a site 
in northern Sweden, the melting of the permafrost has led 
to a several order of magnitude increase in CH4 emissions 
and significant changes in CO2 exchange and DOC export 
[Christensen et al., 2004; Malmer et al., 2005; Johansson et 
al., 2006], though the latter change was not as clear as that of 
CH4. How long this impact on carbon fluxes will persist is not  
known.

Another challenge for modeling peatlands is the range of 
soil pH that occurs across peatland types; peatland pH in-
teracts with vegetation species composition, nutrient avail-
ability, and productivity [e.g., Bubier, 1995]. Perhaps the 
first order effects can be captured in a simple peatland clas-
sification (e.g., bog and fen) with model parameterizations 
specific to the vegetation types that dominate these broad 
classes, in a similar way to how GCMs would disaggregate 
forests into a few classes (evergreen or deciduous, needle-
leaved, or broad-leaved).

4.5. Disturbance

For many natural landscapes, disturbance by wind or fire 
plays an important role in determining landscape character-
istics that are of central importance to the coupled climate-
carbon system [e.g., Foster et al., 1998]. Northern peatland 
disturbances include fire (both natural and human-caused); 
flooding/inundation due to beaver activity, reservoir con-
struction, or thermokarst activity associated with permafrost 
degradation; water table drawdown as peatlands are drained 
for forestry, agriculture, or peat extraction; pollution/nutrient 
deposition (e.g., nitrogen and sulfur deposition); and linear 
disturbances such as roads and seismic lines that can frag-
ment peatlands and alter their hydrology [Turetsky and St. 
Louis, 2006]. Only a few of these disturbances are unique to 
peatlands. Many that are common to all ecosystems (fire, for-
estry and agriculture, atmospheric deposition) are beginning 
to be incorporated into global climate models. For example, 
GCM simulations planned for the fifth IPCC Assessment 
will include, to a degree that will vary from model to model, 
the dominant human land use activities of agriculture and 
forestry [e.g., Washington et al., 2008], along with radiative 
forcing from anthropogenic greenhouse gases. Simulation 
of their impacts on peatlands may follow after inclusion of 
peatlands in the models. Linear disturbances, beaver activ-
ity, peatland draining, and peat extraction are not likely to be 
included in climate models in the near future.

Fire is a dominant form of disturbance in boreal forest 
ecosystems [e.g., Stocks et al., 2002], and boreal fire recur-
rence intervals range from <100 to ~1000 years [Balshi et 
al., 2007]. In forests, severe fires have a significant impact 
on forest structure and age distribution [e.g., Oliver and 

Larson, 1996] and thus on the forest’s direct interactions 
with the climate system through surface albedo and rough-
ness. Peatlands also can burn, and their fire regimes may be 
similar to upland boreal forests, at least in Central Canada 
[Turetsky et al., 2004]. This has not been well documented 
across the pan-boreal domain of northern peatlands, how-
ever, and little is known about the statistics of peatland burn 
severity [Turetsky et al., 2004]. Fire algorithms are depend-
ent on fuel availability and near-surface soil moisture with 
different combustion efficiencies assumed for vegetation, 
litter, and root biomass [Thonicke et al., 2001; Thornton et 
al., 2007]. Parameterizations will need to be developed for 
peatland fires.

Thermokarst landscapes arise in regions where melting 
permafrost and draining water cause the ground to settle un-
evenly. There is evidence that the surface water conditions 
can change quickly as permafrost thaws and hydrological 
flow paths are modified [e.g., Jorgenson et al., 2006]. There 
is more evidence of thermokarst impacts on lakes because 
they are more easily detected in spaceborne remote sens-
ing than peatlands, but the hydrological impacts on lakes 
will also apply to wetlands. Thermokarst (or thaw) lakes can 
form in permafrost regions when massive ground-ice wedges 
melt, causing the ground surface to subside and lakes to 
form. Further ground melting can eventually lead to drain-
age and disappearance of thermokarst lakes [Smith et al., 
2005]. Riordan et al. [2006] found that the area and number 
of small water bodies in non-arctic Alaska decreased from 
1950 to 2002, and attributed this change to increased drain-
age and or an increase in evapotranspiration. Soil thermal 
regimes and ground thaw are very dependent on soil ther-
mal properties and water content, so a net drying (or wet-
ting) of soils, particularly organic soils [e.g., Lawrence et 
al., 2008] will have an impact on permafrost formation and 
degradation rates. Modeling this dynamic nature of the land 
surface [e.g., West and Plug, 2008; Plug and West, 2009] 
may prove to be difficult in a GCM. In principal, a model 
could be structured to permit the fractional area of wetland 
and upland zones to evolve over time, although in practice, 
this may be technically challenging when it comes to main-
taining water, energy, and carbon conservation as soil char-
acteristics evolve.

5. CONCLUDING COMMENTS

Peatland carbon cycling is affected by weather and cli-
mate, and the Earth’s climate system is affected by peatland 
carbon cycling. This inherent feedback suggests that peat-
lands should be incorporated into global climate models. 
However, northern peatlands have several unique character-
istics that will make it difficult to represent their behavior 
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in the Earth system within the vegetation classes of current 
global climate model land surface schemes. These charac-
teristics include deep organic soils [a topic being addressed 
in current GCM model development; Lawrence and Slater, 
2008], bryophyte vegetation, shallow water tables, and an-
oxic soil profiles, a high degree of spatial heterogeneity in 
vegetation and hydrology, and some unique disturbance/re-
covery characteristics. A primary requirement for a success-
ful representation is for peatland distribution to correspond 
to wetland distribution, i.e., the peatlands form and persist 
where the land is wet. GCMs will need to be able to inter-
relate soil moisture heterogeneity with soil carbon hetero-
geneity. One potential solution is to split each grid cell into 
static wetland (peatland) and upland zones as is done in the 
TEM model [Zhuang et al., 2004]. Under this configuration, 
in wetland zones, carbon will accumulate, and peatlands can 
accumulate due to anoxic conditions that limit decomposi-
tion. A limitation to this approach is the inherent assumption 
of stationarity, e.g., that wetland distribution is fixed in time 
and does not respond to changes in the surface water balance 
(though changes in the surface water balance would alter 
water table depth within wetland zones). A more dynamic 
representation of peatlands would include peatland initiation 
(probably as paludification) and growth and development, 
where hydrology and peatland vegetation would interact, 
rather than being prescribed as coincident.

Global climate models have a global domain, and peat-
lands do not only occur in the north, though a large major-
ity of peatland research to date has been in the boreal and 
temperate zones. Incorporating peatlands into global cli-
mate models will need to account for all peatlands, not just 
northern peatlands. Tropical peatlands occupy ~0.3–0.6 
million km2, about 10% of the total global peatland area, 
and may contain ~20% of global peat carbon [Charman, 
2002; Page et al., 2002, 2004]. These tropical peatlands 
also have accumulated peat over millennia, often to depths 
~10 m [Page et al., 2004]. Many of the same issues will 
arise in representing tropical peatlands in global climate 
models (deep organic soils, shallow water tables and an-
oxia, potentially unique disturbance regimes, spatial het-
erogeneity); bryophytes probably play a less important role 
in most tropical peatlands than they do in northern peat-
lands [Page et al., 2006]. Before we can know how well a 
peatland land surface scheme successfully developed for 
northern peatlands will work for tropical peatlands, there 
is a need for more basic observational data from tropical 
peatlands, vegetation ecology, hydrology, biogeochemical 
cycling, and palynology.
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