31 research outputs found

    Hybrid Focal Stereo Networks for Pattern Analysis in Homogeneous Scenes

    Full text link
    In this paper we address the problem of multiple camera calibration in the presence of a homogeneous scene, and without the possibility of employing calibration object based methods. The proposed solution exploits salient features present in a larger field of view, but instead of employing active vision we replace the cameras with stereo rigs featuring a long focal analysis camera, as well as a short focal registration camera. Thus, we are able to propose an accurate solution which does not require intrinsic variation models as in the case of zooming cameras. Moreover, the availability of the two views simultaneously in each rig allows for pose re-estimation between rigs as often as necessary. The algorithm has been successfully validated in an indoor setting, as well as on a difficult scene featuring a highly dense pilgrim crowd in Makkah.Comment: 13 pages, 6 figures, submitted to Machine Vision and Application

    Camera re-calibration after zooming based on sets of conics

    Get PDF
    We describe a method to compute the internal parameters (focal and principal points) of a camera with known position and orientation, based on the observation of two or more conics on a known plane. The conics can even be degenerate (e.g. pairs of lines). The proposed method can be used to re-estimate the internal parameters of a fully calibrated camera after zooming to a new, unknown, focal length. It also allows estimating the internal parameters when a second, fully calibrated camera observes the same conics. The parameters estimated through the proposed method are coherent with the output of more traditional procedures that require a higher number of calibration images. A deep analysis of the geometrical configurations that influence the proposed method is also reported

    Automatic extrinsic calibration of camera networks based on pedestrians

    Get PDF
    Extrinsic camera calibration is essential for any computer vision tasks in a camera network. Usually, researchers place calibration objects in the scene to calibrate the cameras. However, when installing cameras in the field, this approach can be costly and impractical, especially when recalibration is needed. This paper proposes a novel accurate and fully automatic extrinsic calibration framework for camera networks with partially overlapping views. It is based on the analysis of pedestrian tracks without other calibration objects. Compared to the state of the art, the new method is fully automatic and robust. Our method detects human poses in the camera images and then models walking persons as vertical sticks. We propose a brute-force method to determine the pedestrian correspondences in multiple camera images. This information along with 3D estimated locations of the head and feet of the pedestrians are then used to compute the camera extrinsic matrices. We verified the robustness of the method in different camera setups and for both single pedestrian and multiple walking people. The results show that the proposed method can obtain the triangulation error of a few centimeters. Typically, it requires 40 seconds of collecting data from walking people to reach this accuracy in controlled environments and a few minutes for uncontrolled environments. As well as compute relative extrinsic parameters connecting the coordinate systems of cameras in a pairwise fashion automatically. Our proposed method could perform well in various situations such as multi-person, occlusions, or even at real intersections on the street

    Real-Time, Multiple Pan/Tilt/Zoom Computer Vision Tracking and 3D Positioning System for Unmanned Aerial System Metrology

    Get PDF
    The study of structural characteristics of Unmanned Aerial Systems (UASs) continues to be an important field of research for developing state of the art nano/micro systems. Development of a metrology system using computer vision (CV) tracking and 3D point extraction would provide an avenue for making these theoretical developments. This work provides a portable, scalable system capable of real-time tracking, zooming, and 3D position estimation of a UAS using multiple cameras. Current state-of-the-art photogrammetry systems use retro-reflective markers or single point lasers to obtain object poses and/or positions over time. Using a CV pan/tilt/zoom (PTZ) system has the potential to circumvent their limitations. The system developed in this paper exploits parallel-processing and the GPU for CV-tracking, using optical flow and known camera motion, in order to capture a moving object using two PTU cameras. The parallel-processing technique developed in this work is versatile, allowing the ability to test other CV methods with a PTZ system using known camera motion. Utilizing known camera poses, the object\u27s 3D position is estimated and focal lengths are estimated for filling the image to a desired amount. This system is tested against truth data obtained using an industrial system

    Activity Monitoring Made Easier by Smart 360-degree Cameras

    Get PDF
    This paper proposes the use of smart 360-degree cameras for activity monitoring. By exploiting the geometric properties of these cameras and adopting off-the-shelf tracking algorithms adapted to equirectangular images, this paper shows how simple it becomes deploying a camera network, and detecting the presence of pedestrians in predefined regions of interest with minimal information on the camera, namely its height. The paper further shows that smart 360-degree cameras can enhance motion understanding in the environment and proposes a simple method to estimate the heatmap of the scene to highlight regions where pedestrians are more often present. Quantitative and qualitative results demonstrate the effectiveness of the proposed approach

    Biometric fusion methods for adaptive face recognition in computer vision

    Get PDF
    PhD ThesisFace recognition is a biometric method that uses different techniques to identify the individuals based on the facial information received from digital image data. The system of face recognition is widely used for security purposes, which has challenging problems. The solutions to some of the most important challenges are proposed in this study. The aim of this thesis is to investigate face recognition across pose problem based on the image parameters of camera calibration. In this thesis, three novel methods have been derived to address the challenges of face recognition and offer solutions to infer the camera parameters from images using a geomtric approach based on perspective projection. The following techniques were used: camera calibration CMT and Face Quadtree Decomposition (FQD), in order to develop the face camera measurement technique (FCMT) for human facial recognition. Facial information from a feature extraction and identity-matching algorithm has been created. The success and efficacy of the proposed algorithm are analysed in terms of robustness to noise, the accuracy of distance measurement, and face recognition. To overcome the intrinsic and extrinsic parameters of camera calibration parameters, a novel technique has been developed based on perspective projection, which uses different geometrical shapes to calibrate the camera. The parameters used in novel measurement technique CMT that enables the system to infer the real distance for regular and irregular objects from the 2-D images. The proposed system of CMT feeds into FQD to measure the distance between the facial points. Quadtree decomposition enhances the representation of edges and other singularities along curves of the face, and thus improves directional features from face detection across face pose. The proposed FCMT system is the new combination of CMT and FQD to recognise the faces in the various pose. The theoretical foundation of the proposed solutions has been thoroughly developed and discussed in detail. The results show that the proposed algorithms outperform existing algorithms in face recognition, with a 2.5% improvement in main error recognition rate compared with recent studies

    Automatic multi-camera extrinsic parameter calibration based on pedestrian torsors

    Get PDF
    Extrinsic camera calibration is essential for any computer vision task in a camera network. Typically, researchers place a calibration object in the scene to calibrate all the cameras in a camera network. However, when installing cameras in the field, this approach can be costly and impractical, especially when recalibration is needed. This paper proposes a novel, accurate and fully automatic extrinsic calibration framework for camera networks with partially overlapping views. The proposed method considers the pedestrians in the observed scene as the calibration objects and analyzes the pedestrian tracks to obtain extrinsic parameters. Compared to the state of the art, the new method is fully automatic and robust in various environments. Our method detect human poses in the camera images and then models walking persons as vertical sticks. We apply a brute-force method to determines the correspondence between persons in multiple camera images. This information along with 3D estimated locations of the top and the bottom of the pedestrians are then used to compute the extrinsic calibration matrices. We also propose a novel method to calibrate the camera network by only using the top and centerline of the person when the bottom of the person is not available in heavily occluded scenes. We verified the robustness of the method in different camera setups and for both single and multiple walking people. The results show that the triangulation error of a few centimeters can be obtained. Typically, it requires less than one minute of observing the walking people to reach this accuracy in controlled environments. It also just takes a few minutes to collect enough data for the calibration in uncontrolled environments. Our proposed method can perform well in various situations such as multi-person, occlusions, or even at real intersections on the street

    Vision-based traffic monitoring system with hierarchical camera auto-calibration

    Get PDF
    Texto en inglés.En las últimas décadas, el tráfico, debido al aumento de su volumen y al consiguiente incremento en la demanda de infraestructuras de transporte, se ha convertido en un gran problema en ciudades de casi todo el mundo. Constituye un fenómeno social, económico y medioambiental en el que se encuentra inmersa toda la sociedad, por lo que resulta importante tomarlo como un aspecto clave a mejorar. En esta línea, y para garantizar una movilidad segura, fluida y sostenible, es importante analizar el comportamiento e interacción de los vehículos y peatones en diferentes escenarios. Hasta el momento, esta tarea se ha llevado a cabo de forma limitada por operarios en los centros de control de tráfico. Sin embargo, el avance de la tecnología, sugiere una evolución en la metodología hacia sistemas automáticos de monitorización y control. Este trabajo se inscribe en el marco de los Sistemas Inteligentes de Transporte (ITS), concretamente en el ámbito de la monitorización para la detección y predicción de incidencias (accidentes, maniobras peligrosas, colapsos, etc.) en zonas críticas de infraestructuras de tráfico, como rotondas o intersecciones. Para ello se propone el enfoque de la visión artificial, con el objetivo de diseñar un sistema sensor compuesto de una cámara, capaz de medir de forma robusta parámetros correspondientes a peatones y vehículos que proporcionen información a un futuro sistema de detección de incidencias, control de tráfico, etc.El problema general de la visión artificial en este tipo de aplicaciones, y que es donde se hace hincapié en la solución propuesta, es la adaptabilidad del algoritmo a cualquier condición externa. De esta forma, cambios en la iluminación o en la meteorología, inestabilidades debido a viento o vibraciones, oclusiones, etc. son compensadas. Además el funcionamiento es independiente de la posición de la cámara, con la posibilidad de utilizar modelos con pan-tilt-zoom variable para aumentar la versatilidad del sistema. Una de las aportaciones de esta tesis es la extracción y uso de puntos de fuga (a partir de elementos estructurados de la escena), para obtener una calibración de la cámara sin conocimiento previo. Esta calibración proporciona un tamaño aproximado de los objetos buscados, mejorando así el rendimiento de las siguientes etapas del algoritmo. Para segmentar la imagen se realiza una extracción de los objetos móviles a partir del modelado del fondo, basándose en mezcla de Gaussianas (GMM) y métodos de detección de sombras. En cuanto al seguimiento de los objetos segmentados, se desecha la idea tradicional de considerarlos un conjunto. Para ello se extraen características cuya evolución es analizada para conseguir finalmente una agrupación óptima que sea capaz de solventar oclusiones. El sistema ha sido probado en condiciones de tráfico real sin ningún conocimiento previo de la escena, con resultados bastante satisfactorios que muestran la viabilidad del método

    3D Modelling for Improved Visual Traffic Analytics

    Get PDF
    Advanced Traffic Management Systems utilize diverse types of sensor networks with the goal of improving mobility and safety of transportation systems. These systems require information about the state of the traffic configuration, including volume, vehicle speed, density, and incidents, which are useful in applications such as urban planning, collision avoidance systems, and emergency vehicle notification systems, to name a few. Sensing technologies are an important part of Advanced Traffic Management Systems that enable the estimation of the traffic state. Inductive Loop Detectors are often used to sense vehicles on highway roads. Although this technology has proven to be effective, it has limitations. Their installation and replacement cost is high and causes traffic disruptions, and their sensing modality provides very limited information about the vehicles being sensed. No vehicle appearance information is available. Traffic camera networks are also used in advanced traffic monitoring centers where the cameras are controlled by a remote operator. The amount of visual information provided by such cameras can be overwhelmingly large, which may cause the operators to miss important traffic events happening in the field. This dissertation focuses on visual traffic surveillance for Advanced Traffic Management Systems. The focus is on the research and development of computer vision algorithms that contribute to the automation of highway traffic analytics systems that require estimates of traffic volume and density. This dissertation makes three contributions: The first contribution is an integrated vision surveillance system called 3DTown, where cameras installed at a university campus together with algorithms are used to produce vehicle and pedestrian detections to augment a 3D model of the university with dynamic information from the scene. A second major contribution is a technique for extracting road lines from highway images that are used to estimate the tilt angle and the focal length of the camera. This technique is useful when the operator changes the camera pose. The third major contribution is a method to automatically extract the active road lanes and model the vehicles in 3D to improve the vehicle count estimation by individuating 2D segments of imaged vehicles that have been merged due to occlusions
    corecore