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Abstract

In the absence of signals from Global Navigation Satellite Systems (GNSS), Inertial
Navigation Systems (INS) are usually used to position vehicles. However, INS sensors are
commonly plagued by noises, which grow exponentially over time during the multiple
integration computation, leading to a poor navigation result. More so, the error drift is
characterised by a time dependent pattern. This thesis proposes several efficient deep learning -
based solutions to learn the position and orientation error drifts of the vehicle using Recurrent
Neural Networks, such as the simple Recurrent Neural Network (sRNN), Long Short-Term
Memory (LSTM), Gated Recurrent Unit (GRU) and the Input Delay Neural Network (IDNN).

The thesis also investigates the use of the wheel encoder as an alternative to the
accelerometer of the INS for vehicular positioning, and for the first time explores the potential of
deep learning using the simple recurrent neural network to learn the uncertainty present in
the wheel encoder’s output. These uncertainties could be manifested as wheel slips
because of wet/muddy road drive or worn out tyres; or changes in the tyre size or pressure.
The proposed solution has less integration steps in its computation, and as such, has the
potential to provide a more accurate estimation of the vehicles position.

In contrast to previous papers published in literature, which focused on travel routes that
do not consider complex driving scenarios, this thesis investigates the performance of the
proposed deep learning-based models to accurately estimate the position of the vehicle in
challenging scenarios. These scenarios include, roundabouts, hard brake, sharp cornering, quick
changes in vehicular acceleration, successive left and right turns.

The performance of the deep learning models are then further evaluated extensively on
longer-term GNSS outages of 30s, 60s, 120s and 180s duration respectively, over a total distance
of 493 km. The experimental results obtained show that the proposed deep learning model
using wheel odometry data is able to accurately position the vehicle with up to 93%
reduction in the positioning error of its original (physics model) counterpart after any 180s of

travel.
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Introduction

1.1 Importance of Autonomous Vehicles

It is estimated that the UK’s Autonomous Vehicle (AV) market will be
worth an approximate value of £28 billion by 2035 (Dowd 2019). A major motivation
towards the development of these vehicles is the need to improve road safety. As
human driving errors account for 75% of traffic-related road accidents in the UK, and
94% in the USA (Liu et al. 2019), AVs have the potential to reduce such road accidents
(Papadoulis et al. 2019). Although AVs could introduce new kinds of accidents, there
is the drive to ensure they are as safe as possible.
AVs acquire an understanding of their environment through the use of sensory
systems (Babak et al. 2017). Ultrasonic systems, LIDARs and cameras are examples
of such sensors that can be found on the outside of the vehicle. Several systems for data
processing and analysis can also be found inside the vehicle, which use the sensor
data to make decisions a human driver would normally make. Cameras and
LIDARs are imaging systems used to identify objects, potential collision hazards,
structures and pedestrians in the vehicle’s trajectory (Onda et al. 2018). Cameras are
furthermore essential to the identification of road markings and signs on structured
roads. A good number of sophisticated versions of such systems are already employed,
which proves the crucial role imaging systems play in the operation of AVs
(Ahmed et al. 2019). Nevertheless, although the vehicle’s environment can be assessed
by imaging systems which can also determine markings or the position of objects

relative to the vehicle, there is the need to continuously and robustly localise a vehicle
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with reference to a defined coordinate system. Information on how the vehicle
navigates through its environment is also needed such that real-time follow up decisions

can be made.

1.2 GNSS (Global Navigation Satellite System) Issues

A GNSS receiver performs complex analysis on the signals received from at least 3
of the many satellites orbiting the earth and is known to be one of the best when it
comes to position estimation, as it has no competition in terms of coverage or cost (Yao
et al. 2017). Although GNSS is widely accepted, it is far from being a perfect
localisation system. As there has to be a direct line of sight between the satellites
and the GNSS antennae, there can be instances of GNSS failures in outdoor
environments. GNSS can prove difficult to use in metropolitan cities and similar
environments characterised by bridges, tall buildings, tunnels or dense tree canopies, as
its line of sight may be blocked during signal transmission (Yao et al. 2017). More so,
GNSS signal can be jammed; leaving the vehicle with no information about its
position (Gerard O’'Dwyer 2018). As such, a GNSS cannot act as a standalone

navigation system.

The GNSS is used to localise the AV to a road. To achieve lane localisation,
GNSS is combined with cameras, high accuracy LIDARs, High Definition (HD) maps
and RADAR. However, there are cases when the camera and LIDAR could be
uninformative or unavailable for use. The accuracy of low-cost LIDARs and cameras
could be compromised during extreme weather conditions such as when there is heavy
snow, fog, rain or sleet (Templeton 2017). This issue is well-recognised in the field. The
cost of high accuracy LIDAR also makes them a theft attractive item as they are worth
several thousands of pounds. Hence, the use of LIDARs on AVs would increase its
cost. Camera-based positioning systems could also face low accuracies depending
on the external light intensity of the vehicle’s environment and the objects in the
camera’s scene. In level 4 self-driving applications, as tested by Waymo LLC and
Cruise LLC (Lee Teschler 2018), the LIDAR scan is matched onto an HD map in real-
time. Based on this, the system is able to precisely position the vehicle within
its environment (Lee Teschler 2018). However, this method is computationally

intensive.
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Furthermore, changes to the driving environment and infrastructure could make an HD

map temporarily obsolete and as such not useful for navigation.

Tesla which is well known for its no LIDAR and HD map policy handles GNSS signal
outages by relying on its cameras and road markings until the GNSS signal become
available. But the question is what happens if a decision is needed to be made on
navigating to a new road during the signal loss or what happens when the GNSS signal
is lost and the camera is uninformative? Also, Failure Mode and Effect Analysis (FMEA),
which is an analysis performed to identify all the ways a system can fail and identify
ways to mitigate them, would need to be performed on all the above failure scenarios to

ensure the safe operation of AVs.

1.3 Navigation using Inertial Measurement Sensors

An Inertial Navigation Sensor (INS) however, unlike other sensors found in an
AV, does not need to interact with its external environment to perform localisation,
making it unique to the other sensors employed on the vehicle. This
independence makes it vital for both sensor-fusion and safety. An Inertial Measuring
Unit (IMU) measures a vehicle’s linear acceleration and rotational rate components in
the x, y and z-axis and computes positioning, velocity and orientation by
continuously. It functions to provide localisation data; needed by the vehicle to
position itself within its environment. As production vehicles are already equipped with
anywhere from one-third to a full INS (OXTS 2016), the IMU can be used to localise the
vehicle temporarily in the absence of the GNSS signals. The IMUs can also be used to
compare positions and estimate in order to introduce certainty to the final localisation
output. In the absence of an IMU, it would be difficult to know when the localisation

accuracy of the LIDAR may have deteriorated (Lee Teschler 2018).

LIDAR scans are matched onto an HD map in real time in self driving
applications tested by Google, Waymo and Cruise (Christoph Domke 2020). Based
on this, the system is able to precisely position the vehicle within its environment.
However, this method is computationally intensive. More so, IMU reduces the potential
of the algorithm getting stuck in local minimum (Lee Teschler 2018). The wuse of
high accuracy IMU has been proven to be a way to overcome the GNSS

reliability issue. The significant cost of such IMU sensors has however hindered their ado-
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ption on AVs. Even more, low cost IMU have accuracies too low to be used

independently on AVs as they are plagued by noise and biases (Chen et al. 2018).

Through a complex mathematical analysis (see section 2.2 and 3.2.1), the position of
the vehicle can be computed using the INS during the GNSS outage. However, the
sensors are plagued by exponential error drifts manifested by the double
integration of the acceleration to displacement. These errors are unboundedly
cascaded over time, leading to a very poor positioning estimation. Commonly, the
GNSS in what could be described as a mutually symbiotic relationship, calibrates the
INS periodically during signal coverage in order to improve the positioning estimation
accuracy. Traditionally, Kalman filters are used to model the error between the GNSS
position and the INS position solution. These Kalman filters have shown limitations
when modelling highly non-linear dependencies, non-Gaussian noise measurements

and stochastic relationships.

Several researchers (Chiang et al. 2008; Dai et al. 2020; Fang et al. 2020; Noureldin et al.
2011) have recently studied the use of artificial neural networks techniques in place
of Kalman filters to model the errors, as they are capable of learning non-
linear relationships within the sensor's measurement. Machine learning
techniques have proven to perform better in longer GNSS signal losses than Kalman

filters (Noureldin et al. 2011).

Nevertheless, we observe that despite the number of machine learning based techniques
investigated on the INS/GNSS error drift modelling, there lacks an investigation into the
performances of the techniques on complex driving scenarios and environments
experienced in everyday driving. Such scenarios range from hard brakes on regular,

muddy or wet roads to heavy traffic, sharp cornering scenarios, roundabouts, etc.

We thus set out to investigate the performances of machine learning-based approaches
on such complex driving environments and show that these scenarios prove rather

more challenging for vehicular positioning.
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1.4 Inertial Positioning using Wheel Encoder Sensors

Modern vehicles embed a good number of sensors, lending support to several
advanced driver assistance systems. The anti-lock braking system (ABS) wheel speed
sensor is an ego-motion sensor which has been investigated as an alternative to the INS
for vehicular positioning (Merriaux et al. 2014). A wheel speed sensor (wheel encoder),
which operates by measuring the speed of the vehicle’s axle or wheel, can provide a
better positioning solution compared to the accelerometer sensor of the INS. Indeed, the
wheel speed sensor’s measurements resolving involves less integration steps in the
determination of the vehicles position, thus minimising the error propagated during the
integration process. Nevertheless, the wheel speed sensor is not a perfect solution either.
The accuracy of the sensor’s measurement is affected by several factors such as wheel
slippage and changes in the tyre size. A larger tyre diameter due to a tyre replacement,
or an increase in tyre pressure, leads to an overestimation of the vehicle’s displacement.
Meanwhile, a smaller tyre diameter leads to the displacement of the vehicle being
underestimated. There has been no study on the use of machine learning techniques to
learn these uncertainties (characterised as epistemic due to lack of knowledge) in the
wheel speed-based position estimation directly from the wheel encoder data. We thus
for the first time, investigate the potential of deep neural networks to learn the
uncertainty in the wheel speed measurement to improve the position estimation

of AVs compared to the accelerometer-based approach.

1.5 Research challenges

There are a number of high-level challenges associated with this
vehicular localisation research. Even though existing approaches have attempted to
address the localisation problem with machine learning or analytical models, the
robustness and accuracy of these methods have not been evaluated to the sufficient
level of deployment in real life scenarios. This thesis aims to address issues faced in
real world environments to attain a ubiquitous and dependable localisation of AVs

in GNSS-deprived environments. These high-level challenges consist of:

1.5.1. Lack of a Publicly Available Dataset for Ego-motion Odometry
Low-cost inertial navigation sensors (INS) can be utilised for a dependable

solution for tracking AVs in the absence of GNSS signals. Nevertheless, position errors
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grow significantly over time due to noises in the sensor measurements.
Although several researchers have proposed several techniques to learn the
noise in the sensor’s measurement, the absence of a robust and public
standard dataset has obstructed the development in the research, adoption
and evaluation of recent machine learning techniques such as deep learning
process to learn the error in the INS for a more precise positioning of the
vehicle. There is therefore the need for publicly accessible information rich
dataset to expedite the benchmarking, estimation and fast development of
positioning algorithms. In this thesis, we define ego-motion sensors as sensors
that do not require interaction with the external environment to perform

odometry.
1.5.2. Accuracy and Robustness

In real world navigation scenarios, usable localisation techniques need
to demonstrate robustness and accuracy. Robust localisation method refers to its
ability to accommodate disturbances and produce accurate estimations reliably and
consistently across a wide variety of dynamic scenarios. Most existing techniques
have used visual observations to proffer spectacular results in specific scenarios.
However, vision-based models are faced with a number of real factors that reduce
their efficiency for example, changing dynamics of the environment, occlusions of
cameras and low light conditions. Contrastingly, the use of another sensor modality
that is more rigid to environmental dynamics is far less investigated in vehicular
localisation. An inertial sensor, which is totally egocentric and unperturbed by
environmental disturbances is a good choice. For a complete robustness evaluation
of position techniques for real world driving using inertial sensor data, their
performance needs to be examined on all driving scenarios as can be found in
everyday driving. The robustness of positioning techniques is an important issue
for system reliability and safety. The metrics employed in measuring the
robustness and accuracy of the positioning techniques in this thesis are defined in

Section 3.2.3.1.

1.5.3. Adaptation to Vehicles with Different Domain Characteristics

A common cause for concern for data driven approaches is usually the ability
to generalise models to a new vehicle. In scenarios where machine learning models
are trained in a specific domain but deployed in another domain, the performance
of the model degrades. In real life scenarios, quite a number of factors are

influential to this degradation, from changes to the dynamics of the vehicle to new
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pattern distribution of the sensor’s noise and bias, will make the test sensor data vary
from training data. Therefore, the challenge is to explore techniques that allow the

trained machine learning models to spontaneously adjust into new vehicle domains.

1.6 Research Questions
In this research work, we examine how best to design and utilise machine learning
approach for localisation to address the above challenges. The main research questions

that we consider are as follows:

1.6.1. Question 1: How can deep learning improve vehicular localisation using

inertial sensor data in complex driving environments?

Many studies on vehicular localisation using inertial sensor data focus more on
non-complex driving conditions which are not consistent with everyday
driving. However, the everyday drive of AVs, involves navigation in complex driving
environments. These complex driving environments include hard brake,
roundabout, sharp cornering, etc. It is not known if machine learning is able to
improve inertial localisation in such challenging scenarios. Moreover, there is no
publicly available dataset with such complex driving scenarios from noisy ego-motion
sensors to train and evaluate the inertial tracking model. Deep learning has proven to
be effective at learning high level abstractions from ego-motion sensor modalities. This
research will therefore gather noisy ego-motion sensor data and investigate the

potential of deep learning to improve inertial localisation in such driving scenarios.

1.6.2. Question 2: How can deep learning be used to improve on localisation with

wheel encoder data comparatively to inertial sensor data in challenging

environments?

Inertial navigation sensors are plagued with noises which grow exponentially
through time during the double integration from acceleration to position. Wheel
encoders provide the information on the speed of the wheels and require one less
integration step compared to the accelerometer of the INS to estimate the vehicle’s
position. There are no studies on the use of machine learning to improve localisation
using wheel encoder data. We therefore investigate the potential of deep learning to
improve localisation using wheel encoder data. We also comparatively analyse the

performance of machine learning based wheel encoder localisation to machine learning
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based accelerometer localisation to determine which approach provides a robust and

accurate positioning estimation.

1.6.3. Question 3: How can deep learning be used to improve localisation in longer

term GNSS outages?

GNSS outages are typical in environments characterised by dense tree canopies,
tunnels, bridges, valleys, etc. These outages could last as long as 180s and could be more
in longer tunnels. Very few works have considered the use of deep learning to improve
localisation in such long-term outage scenarios. As the sensor noise grows exponentially
over time, we set out to investigate the potential of deep learning to capture this
exponential error growth to provide a more dependable and accurate positioning

solution.

1.6.4. Question 4: How can deep learning localisation models be adapted to vehicles

with different error feature characteristics and vehicular state and dynamics?

The training of a deep learning model on a particular domain commonly leads to an
over-fit on that specific data distribution and is likely to generalise poorly to a new
domain. Ego-motion sensor datasets are usually specific to the vehicle used in collecting
the data. However, vehicular characteristics such as vehicular dynamics and vehicular
state (tyre pressure, worn out state of the tyres, vehicular size, etc.) vary from vehicle to
vehicle, the period of use, etc. As such, a model trained on a specific vehicle will not
generalise to accurately learn the position estimation uncertainties present in other
vehicles. We therefore investigate the potential of transfer learning to adapt the position
estimation model to the new vehicle domains in which the deep learning model is

deployed.

1.7 Contributions

The contributions of this thesis are summarised below.

Contribution 1: Chapter 4 addresses question 1 by formulating the structure of the
deep learning model analogously to the operation of the feedback control system and
we propose the AccNet (Accelerometer-based position estimation neural Network) to
feed positioning information from the previous time stamps of the vehicle’s position to
provide a better controlled and improved estimation in challenging driving scenarios.

We also propose the GyroNet (Gyroscope-based orientation rate estimation neural
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Network model), to learn noises in the gyroscope sensor of the INS to provide an
improved estimation of the orientation rate of the vehicle. We show that the scenarios
such as roundabouts, hard brakes and successive left and right turns etc., are challenging
for the accelerometer and gyroscope physics models and that deep learning-based
models are able to improve the position and orientation rate of the inertial sensors to
provide a robust and accurate localisation output. We also released the first of its kind
large scale and information rich ego-motion dataset for vehicular localisation called
Inertial Odometry Vehicle Navigation Benchmark Dataset (IO-VNBD) for training and

evaluating learning-based ego-motion odometry. These contributions are published in:

Onyekpe, U., Kanarachos, S., Palade, V., & Christopoulos, S.-R. G. (2020). 'Vehicular
Localisation at High and Low Estimation Rates during GNSS Outages: A Deep

Learning Approach'. in Deep Learning Applications, Volume 2, Arif Wani, Taghi

Khoshgoftaar, Vasile Palade, Ed. Advances in Intelligent Systems and Computing, vol
1232. (pp. 229-248). Springer Singapore. https://doi.org/10.1007/978-981-15-6759-9 10

Onyekpe, U, Palade, V., Kanarachos, S., & Szkolnik, A. (2021). 'IO-VNBD: Inertial and
odometry benchmark dataset for ground vehicle positioning'. Data in Brief, 35, 106885. https://
doi.org/10.1016/j.dib.2021.106885

Onyekpe, U., Palade, V., & Kanarachos, S. (2021). 'Learning to Localise Automated
Vehicles in Challenging Environments Using Inertial Navigation Systems (INS)'. Applied
Sciences 2021, Vol. 11, Page 1270, 11(3), 1270. https://
doi.org/10.3390/app11031270

Contribution 2: Question 2 is addressed by the formulation of Wheel Odometry
neural Network (WhONet) in Chapter 4, however the WhONet model is described
in Chapter 3. WhONet is evaluated on several challenging scenarios showing
impressive performances and then analysed comparatively to the AccNet, showing
that it can provide a more robust and accurate position estimation compared to
AccNet, an accelerometer based neural network. These contributions are

described in the publications below:

Onyekpe, U., Kanarachos, S., Palade, V., & Christopoulos, S.-R. G. (2020b). 'Learning

Uncertainties in Wheel Odometry for Vehicular Localisation in GNSS Deprived Environ-


https://doi.org/10.1007/978-981-15-6759-9_10
https://doi.org/10.1016/j.dib.2021.106885
https://doi.org/10.3390/app11031270
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ments'. International Conference on Machine Learning Applications (ICMLA), 741-746.
https://doi.org/10.1109/ICMLA51294.2020.00121

Onyekpe, U., Palade, V., Herath, A., Kanarachos, S., Fitzpatrick, M. E. (2021) 'WhONet :
Wheel Odometry Neural Network for Vehicular Localisation in GNSS-Deprived
Environments'. Engineering Applications of Artificial Intelligence, Vol. 105, https://
doi.org/10.1016/j.engappai.2021.104421.

Contribution 3: Question 3 is addressed by evaluating the WhONet Model on
several test sequences over 490 km. The test sequences are broken down into different
scenarios of 30s, 60s, 120s, and 180s. We show that the WhONet is able to capture
the noise within the wheel encoder sensor to limit the exponential error growth over
time to provide a more robust and accurate position estimation. These

contributions are described in the publications below:

Onyekpe, U., Palade, V., Herath, A., Kanarachos, S., Fitzpatrick, M. E. (2021) 'WhONet :
Wheel Odometry Neural Network for Vehicular Localisation in GNSS-Deprived
Environments’. Engineering Applications of Artificial Intelligence, Vol. 105, https://
doi.org/10.1016/j.engappai.2021.104421.

Contribution 4: Question 4 is addressed in chapter 6 by proposing a recalibration
model based on transfer learning that adapts the WhONet model from its source
domain to the task domain of a new vehicle. Our framework improves the
generalization of WhONet to other vehicle domains. These contributions are described

in the publications below:

Onyekpe, U., Szkolnik, A., Palade, V., Kanarachos, S. & Fitzpatrick, M. E., (2021). 'R-
WhONet: Recalibrated Wheel Odometry Neural Network for New Vehicle Domain Adaptation
of Vehicular Position Model using transfer learning'. International Journal of Robotics

Research (Submitted).

During my PhD study, I also contributed to some other research publications as
shown below. As these were contributions to similar research fields but not at the core

of my PhD research, they will not be discussed further in this thesis.

Onyekpe, U., Kanarachos, S., & Fitzpatrick, M. E. (2019). 'Spontaneous Fruit Fly

Optimisation for truss weight minimisation: Performance evaluation based on the no free lunch
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theorem'. International Conference on Sustainable Material and Energy Technologies
(ICSMET), 2019.

Onyekpe, U., Palade, V. Kanarachos, S.,, & Christopoulos, S.-R. G. (2021). 'A
Quaternion Gated Recurrent Unit Neural Network for Sensor Fusion. Information', 12(3), 117.

https://doi.org/10.3390/info12030117

Mahmoud, A., Ahmad, Z., Onyekpe, U., Almadani, Y., ljaz, M., Haas, O., Rajbhandari,
S. 'Autonomous Vehicle Positioning with Visible Light Communication using Artificial

Neural Networks.' Journal of Electronics (under review, second round).

1.8 Thesis outline

This thesis is structured as follows:

Chapter 2 provides an overview of the background for this research. The
chapter discusses conventional solutions used in vehicular localisation, coordinate
systems used in positioning as well as existing learning based localisation methods.

Chapter 3 introduces the Inertial Odometry Vehicular Navigation Benchmark
Dataset (IO-VNBD) and proposes several deep learning and physics-based localisation
models for vehicular positioning.

Chapter 4 analyses the performance of the deep learning and physics-based
odometry models for position and orientation rate estimation in challenging driving
environments. The chapter analysis the potential of the deep learning models to learn
the noise in the accelerometer, gyroscope and wheel encoder to provide an accurate
localisation information in complex scenarios such as roundabout, wet road, successive
left and right turns and sharp cornering, motorway, quick changes in acceleration and
hard brake.

Chapter 5 investigates the performance of the WhONet model comparatively to
its corresponding physics model for continuous positioning in longer term GNSS
outages.

Chapter 6 presents a recalibration model which uses transfer learning to adapt
the WhONet’s model to vehicles with different dynamics and states.

Finally, Chapter 7 summarises the overall conclusions and suggests directions

for future works.
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Table 1. Publications from this thesis

No

Publications from this thesis

1

Onyekpe, U., Kanarachos, S., Palade, V., & Christopoulos, S.-R. G. (2020).
‘Vehicular Localisation at High and Low Estimation Rates during GNSS
Outages: A Deep Learning Approach'. in Deep Learning Applications, Volume 2,
Arif Wani, Taghi Khoshgoftaar, Vasile Palade, Ed. Advances in Intelligent
Systems and Computing, vol 1232. (pp. 229-248). Springer Singapore.
https://doi.org/10.1007/978-981-15-6759-9 10

Onyekpe, U., Palade, V., Kanarachos, S., & Szkolnik, A. (2021). 'IO-VNBD:
Inertial and odometry benchmark dataset for ground wvehicle positioning'. Data in
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Chapter 2
Background and Literature Review on

Positioning Techniques

This chapter provides an overview of conventional localisation solutions, basic
concepts related to this research and recent advances in machine learning with respect

to vehicle positioning using INS and wheel odometry.

2.1. Land Vehicular Positioning techniques
2.1.1. Global Navigation Satellite Systems (GNSS)

GNSS has been successfully used in position and navigation applications for over
two decades. The TRANSIT developed by the United States which used the doppler
effect to localise a vehicle was the first GNSS created. The most sophisticated systems in
place at the moment are the American GPS (Global Positioning System), Russian
GLONASS (Global Navigation Satellite System), Chinese BEIDOU and European
GALILEO. The GPS is the main positioning system used in vehicles. It uses signals from
at least 3 satellites with known positions to compute positioning. Nevertheless, signal
blockage in urban canyons, under dense tree canopies, under bridges and in
tunnels affects its accuracy (K. Chiang 2004; Dai et al. 2020; Fang et al. 2020;
Noureldin et al. 2011). The errors associated with the use of the GPS signal include:

ephemeric error, satellite clock error, multipath error and signal jamming.
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2.1.2. Dead Reckoning (DR) Systems

The Dead Reckoning (DR) System operates on the principle of relative position fixing
using information on the vehicle’s starting point, subsequent direction and speed to de-
termine its present position. A DR system could consist of a wheel odometer that pro-
vides information on the vehicle’s speed or an accelerometer that provides information
on the vehicle’s acceleration and a compass or a single-axis gyroscope providing infor-
mation on the vehicles pitch or heading. DR systems are less expensive but due to their
incremental update nature, errors in the estimation increase with every distance trav-
elled. Two main dead reckoning systems are the Inertial Navigation System (INS) and

wheel odometry-based system.
2.1.2.1. Inertial Navigation System (INS)

An Inertial Measuring Unit (IMU) usually consists of a three orthogonal axis

accelerometer and a three orthogonal axis gyroscope.

Accelerometer - The accelerometer measures the vehicles acceleration in the x, y and
z-axis. It measures the specific force f on the sensor in the body frame b (K. Chiang, 2004).
This can be expressed as f? = RP™(a™ — g™), where RP™ is the rotation matrix from the
navigation frame to the body frame, g" represents the gravity vector and a”™ denotes the
linear acceleration of the sensor expressed in the navigation frame (Kok et al., 2017).
The vehicle’s linear acceleration in the navigation frame can be broken down as shown
in Equation (2.1).
a™ = ab + 2wj, + W' + wiptwie +p" (2.1)
Where ab is the acceleration of interest, 2wj, + V' is the Coriolis acceleration and

wi,+wl, + p" is the centrifugal acceleration.

Gyroscope — The gyroscope measures the attitude change in roll, yaw and pitch.
It measures the angular velocity of the body frame (vehicle’s frame) with respect to the

inertial frame as expressed in the body frame. Represented by w},, the attitude rate can

be expressed as shown in Equation (2.2).

wh, = R (Wl +wl)+wp, (2.2)
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Where o, is the angular velocity of the earth’s frame with respect to the inertial frame
and estimated to be approximately 7.29 - 10-° rad/s (Kok et al. 2017). The navigation

frame is defined stationary with respect to the earth, thus wj,, = 0 andthe angular velo-

city of interest w2, representing the orientation of the vehicle in the navigation frame.

If initial conditions are known, w2, may be integrated over time to determine the
vehicle’s orientation. The steps involved in determining the position of the vehicle from

the INS is as shown in Figure 2.1, more details can be found in Section 3.2.2.1a.

Thisitem hasbeenremoveddueto 3rd PartyCopyright. Theunabridgedsersionof the
thesiscanbefoundin the LanchestetLibrary, CoventryUniversity.

Figure 2.1 Dead-reckoning; showing the integration of the INS’s measurement to position (Kok et al., 2017).

INS errors - Some of the errors associated with the use of the inertial navigation system

are highlighted below:

* Input Range — This refers to the maximum acceleration or angular rate the IMU can
meaningfully measure. Any motion outside this range would either produce a bad
measurement or no measurement at all. More so, when vibrations occur, it is very
hard to isolate the true signals from the vibration thus leading to poor
measurements.

e Bias-Bias can be said to be an offset to the sensor output given a certain physical
input. Generally, it could exist in two ways as described below.

e Bias Repeatability (turn-on to turn-off bias) — It is observed that for every power
up of the IMU the initial bias is different due to changes in the initial conditions

of signal processing and physical properties of the IMU.
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* Bias Stability (in-run bias) — Bias Stability error occurs after the IMU is powered on.
The initial bias changes over time due to temperature, time and mechanical stress on
the system

* Scale Factor — Scale Factor error occurs due to the relationship between the input and
the output. When the actual output is as a result of a linear effect, an error in the

input would result in an output proportional to the input but scaled.

* Random Walk - There is always a random noise present when a constant signal is
measured by the sensor. The random noise is a stochastic process which is minimised
using statistical techniques. The presence of the random walk error in the sensor

output leads to a random walk its application.

* Sensor Non-Orthogonality — Sensor Non-Orthogonality refers to the mounting errors
of the accelerometers and the gyroscope. The three accelerometers and three
gyroscopes are mounted orthogonally in all three axis. However, if the axis are not

mounted perfectly at 90 degrees, errors exists.

* Timing errors — This refers to the time difference of measurement between the GNSS
and the IMU.

Other positioning techniques used in time past include: Magnetic Compass, Electronic
Navigation System and Radio-based navigation System.

2.1.2.2. Wheel Odometer (WO)

Embedded in modern vehicles are a good number of sensors supporting advanced
driverless systems such as the wheel encoder for anti-lock braking systems. The wheel
encoder operates by measuring the speed of the vehicle’s axle or wheel. However, wheel
odometry is better in position estimation compared to the accelerometer of the INS. It
requires lesser number of integration steps to determine the position of a vehicle, thus
minimising the error propagation and making it a desirable and simpler approach.
Figure 2.2 shows the operating principles of the WO/INS system (which refers to a
system comprising of a gyroscope and a wheel odometer as a replacement to
the accelerometer of the INS). More, details about the operation of the WO/INS

system can be found in Section 3.2.2.1c.

The wheel speed measurement can be broken down as shown in Equation 2.3, where
Wk, is the speed of the wheel in the body frame, w2, is the noise free wheel speed

measurement and 2, is the uncertainty in the wheel encoder’s measurement.
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Figure 2.2. Dead reckoning; showing the integration of the WO/INS’s measurement to position.

e  Wheel Odometry Errors

However, wheel odometry can also accumulate errors due to internal systematic
factors and non-systematic factors (Borenstein & Feng 1996; Huang et al. 2015).
Borenstein et.al. in (Borenstein & Feng 1996) based his experiments on systematic errors
using differential drive robots and came to the conclusion that “unequal wheel

aws

diameters,” “uncertainty about the wheelbase,” and the “difference between the actual
and the nominal wheel diameters” are the most common and important systematic error
sources. But according to (Borenstein & Feng 1996), these parameters do not cause errors
in all driving scenarios. For instance, unequal wheel diameter causes error in straight
line motion and wheelbase uncertainty causes error only when turning. Borenstein et.al.
further reveal that non-systemic errors such as travel on uneven road surfaces and wheel
slippage due to wet and slippery roads, over-acceleration, fast turning (skidding), etc.
can also cause uncertainties in wheel odometry. While addressing wheel odometry
errors from differences in actual and nominal tyre sizes, in (Onyekpe et al. 2020b), we
show that the use of a different tyre pressure than the recommended pressure or
replacing tyres with a slightly different tyre diameter can lead to errors in vehicle

displacements in odometry. A larger tyre diameter will overestimate the vehicle’s

displacement while a smaller tyre diameter can underestimate it.
2.1.3. Multi-sensor Augmented Positioning Systems

It is quite common for a stand-alone navigation system to fall short of the

accuracy requirement needed for positioning. In such situations, an augmentation of
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several sensors to address the limitations of each stand-alone system is preferred. The
augmented system can exist as a single high-precision system with characteristics as

presented on Table 2.1.

Table 2.1. The requirements of a positioning system

Positioning system requirement Description

Cost Effective The sensors must have the best balance

between performance and cost.

Continuous Positioning The system must be able to provide
positioning information at all times no matter

the environment.

Robust The ability of the positioning system to be
reliable all the time.

Global function The ability of the system to work anywhere in
the world

2.1.3.1. WO/INS and GPS Integration

Modern vehicular navigation systems mostly depend on information provided by
the GNSS receiver for positioning. The GNSS can provide positioning information to an
unlimited number of users worldwide and as such is widely used in applications which
track people, phones, cars, ships, planes, etc. However, the GNSS can only provide
precise positioning information under ideal conditions and requires an open
environment for unhindered signal transmission. As such, the GNSS doesn’t function
well around tall buildings, under dense tree canopies, under bridges, in tunnels, etc. This
creates the need for GNSS to be integrated with other relevant sensors to cover the
periods in which the GNSS signal is unreliable, thus ensuring the provision of

continuous position information for navigation.

The INS is a stand-alone system that measures the vehicle’s acceleration and angular
rates continuously to determine its position and orientation (Jekeli 2012). The wheel
odometer on the other hand measures the speed of the vehicles wheels to continuously
estimate the vehicles position. The advantage to the use of the WO/INS is that it is able
to provide rich information on the vehicle’s dynamics due to its high update rate.
However, a disadvantage to the use of the INS or WO is in the error accumulation over

time due to the double integration of the accelerometer’s measurements, single
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integration of the gyroscope’s measurement or single integration of the wheel speed
measurement. Furthermore, misalignment errors project the impact of gravity onto the
horizontal plane. The errors grow exponentially as a function of time which makes these
systems only able to provide accurate information for a limited time without an external
aid.

The use of an integrated system enhances the performance of the navigation
system compared to the stand-alone WO/INS or GPS in a way that attempts to overcome
each individual system’s limitations. An integrated system provides an enhanced
navigation system that has superior performance in comparison to either a stand-alone
GPS or WO/INS as it can overcome each of their individual limitations. For example, the
position and velocity information derived from the GNSS can act as an external aid to
update the INS for long-term accuracy improvement. The WO/INS on the other hand,
can provide precise positioning information to cover the gap created by the GNSS
outage. A performance comparison between the INS, GNSS and the integrated system
is provided in Table 2.2. Table 2.3 gives more information on the accuracy requirement

for land vehicles.

Table 2.2. Comparison of the WO/ INS, GPS and the integrated WO/INS/GPS system

WO/INS GPS WO/INS/GPS
Advantages High  short-term High long-term High position
positional accuracy  position accuracy. accuracy at all times

No signal outage Not influenced by (including during

High data output gravity. GNSS outages).

rate. Positional accuracy =~ High data output rate.
is independent of Resistant to jamming.
time.

Disadvantages Deteriorating Low data output rate Deteriorating

accuracy with time. Signal outages. accuracy with time.

Affected by the Deteriorating Needs initial and

influence of gravity. accuracy in certain inflight  calibration

Needs initial and environments. and alignment (for the

inflight calibration gyroscope).

and alignment.
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Table 2.3. Requirement for land positioning systems in urban areas (Krakiwsky 1994 and Hofmann-

Wellenhof et al. 2003), (K. Chiang 2004).

Vehicle Type Accuracy (m) 2D-95% confidence interval
Autonomous cars 2-5

Taxi car 10-200

Urban Transit buses 20-50

Inter city buses 50-200

Ambulances 10-20

Police cars 10-20

Utility truck 20-50

2.2. Coordinate Systems

Several coordinate systems are used in navigation, with the positioning result
expressed relative to a reference. Each navigation sensor also has its measurements
resolved with respect to a certain co-ordinate frame. Usually, the sensor’s
coordinate system would need to be converted to the navigation frame (Kok et al.

2017). Some of the co-ordinate systems are discussed below:

2.2.1. Inertial Frame

The inertial frame has its origin coincident with the centre of mass of the earth. As
such, its axis does not rotate with respect to fixed celestial bodies. Its x-axis is directed
towards the mean vernal equinox, its z-axis is parallel to the earth’s rotational axis and

its y-axis completes the orthogonal frame as shown in Figure 2.3 (K. Chiang 2004).

Thisitem hasbeenremoveddueto 3rd PartyCopyright.The
unabridgedrersionof thethesiscanbefoundin the
Lanchestet.ibrary, CoventryUniversity.

Figure 2.3 Inertial frame (K. Chiang 2004).
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2.2.2. Earth Fixed Frame

Similar to the inertial frame, the earth’s fixed frame has its origin coincident with the
earth’s centre of mass. Its x-axis however points towards the mean Greenwich meridian
as shown on Figure 2.4. The earth’s frame mainly differs from the inertial frame by a
mean constant angular rotation of the earth. Equation (2.4) expresses the direction

cosine matrix from the earth frame to the inertial frame (K. Chiang 2004).

. cosw,t —sinw,t 0 (2.4)
R*=| sinw,t cosw,t 0
0 0 1

Where R¥ is the direction cosine matrix or rotation matrix, transforming
measurements from the earth frame to the inertial frame, w, is the constant angular
velocity of the earth about the z-axis.

Thisitem hasbeenremoveddueto 3rd PartyCopyright.The

unabridgedrersionof thethesiscanbefoundin the
Lanchestet.ibrary, CoventryUniversity.

Figure 2.4 Earth fixed frame (K. Chiang, 2004).

2.2.3. Body (Sensor) Frame

The body frame has its axis coincident with the sensors input axis. The direction
matrix cosine from the body frame to the navigation frame is expressed in Equations
(2.5 and 2.6) (K. Chiang 2004). The IMU’s outputs are the components of the
acceleration and the rotation rate, the sensor block experiences along the body axes.

Figure 2.5 shows the axes on the body frame.

cosW —sin¥ 0
sin¥ cos¥ O coscp —smgb
0 0 1 —sm9 0 cos6 singg  cos¢

[ cosfcos¥  —cosO sin¥ + sing sinf cos¥  sing sin¥ + cos¢ sinf cos¥ ] (2.6)
Rnb —

Rnb —

cos@ 0 smH” ] (2.5)

cosO sin¥  cos¢p cos¥ + sing sinf sin¥  —sing cos¥ + cos¢ sinf sin¥
—sin6 singcosb cosgpcosf
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Where RP™ is the rotation matrix transforming the measurements from the body frame

to the navigation frame, ¢ is the roll, 8 is the pitch and ¥ is the yaw.

This item hasbeenremoveddueto 3rd PartyCopyright. Theunabridged/ersion
of thethesiscanbefoundin the Lanchestet.ibrary, CoventryUniversity.

Figure 2.5. Body frame axis.

2.2.4. Navigation Frame

The navigation frame also known as the local frame has its origin in the sensor frames
origin. Its x-axis points towards the geodetic north, the z-axis orthogonal to

the ellipsoidal plane and the y-axis completing the orthogonal frame (K. Chiang 2004).

2.3. Machine Learning Based Localisation Models. Review, Limitations and
Challenges
2.3.1. Kalman Filters

Traditionally, Kalman filters (considered a machine learning technique
according to (Russell and Norvig 2010)) are used to perform WO/INS/GPS
integration. The Kalman filter is used to estimate a linear system’s instantaneous
state affected by Gaussian white noise. It has become a standard technique for
use in WO/INS/GPS applications (K. Chiang 2004). Despite the wide popularity of the
Kalman filter, it does possess some drawbacks. For an WO/INS/GPS integrated
application, the Kalman filter requires stochastic models to represent the INS errors,
but this stochastic models are difficult to determine for most gyroscope and

accelerometers (Kai-Wei Chiang & El-Sheimy 2002.
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Additionally, there is the need for an accurate a priori information of the covariant
matrices of the noises associated with the WO/INS. More so, the WO/INS/GPS
problem is one of a non-linear nature. As a result, other types of filters have been

studied (K. Chiang 2004).
The limitations of the Kalman filter are discussed in subsequent paragraphs.
2.3.1.1. Model Dependency

The design of a Kalman filter model begins with the creation of a “true
error model” which has its order reduced based on prior knowledge of the properties
of the system, covariance analysis and knowledge of the physics of the problem

(Salychev et al. 2000).

The motion model is usually dependent on the error models of the position
error, velocity error and attitude error. These errors are supported by error states such
as the accelerometer bias and the gyroscope drift which can be modelled
stochastically using the first Gauss Markov or random walk (Rogers 2003). Indeed,
there are several errors associated with the INS such as white noise, bias instability,
correlated random noise, etc (NovAtel 2014). The variety of these errors makes it
difficult to create a single stochastic model that works for all INS’s in all
environments whilst taking into consideration the long-term behaviour of the

sensors. Unfortunately, the Kalman filter model is unable to provide this.

2.3.1.2. Prior Knowledge Dependency

As discussed in previous paragraphs, the Kalman filter requires
initial knowledge such as the measurement design matrix, measurement
noise covariant matrix (R), state transition matrix, the system noise covariance
matrix (Q) and the noise coefficient matrix. The quality of the Kalman filter
estimations in the INS/GPS system is majorly dependent on the Q and R matrices.
These matrices are however not easy to determine, require tuning for optimal
performance (as such require the services of an expert on the systems) and are
time consuming. This challenge thus makes the Kalman filter an undesirable

tool for use in INS/GPS systems. A dynamic model capable of learning with little
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intervention to adapt itself to several environments will be desirable.
2.3.1.3. Linearisation Dependency

The errors characterising the WO/INS/GPS systems are nonlinear in nature. The
Kalman filter on the other hand estimates the linear dynamical model using stochastic
data and a recursive algorithm. As such the dynamic model of the GPS and INS are
usually linearised (G. Chen 1992). The linearisation process involves the use of a first
order approximation process that leads to deviations between the real error model and
the assumed error model. The use of a technique that accounts for the non-linearity of

the error is therefore preferrable.
2.3.2. Machine Learning Techniques for Vehicle Positioning

The use of other machine learning techniques in place of Kalman filters to model
the errors has been recently explored by some researchers, as they are capable of
learning non-linear relationships within the sensor’s measurements. Compared to
Kalman filters, deep learning techniques have proven to perform better in longer GPS
signal outage scenarios. The use of the sigma pi neural network on the positioning
problem was explored by Malleswaran et al. in (Malleswaran et al. 2013). Noureldin
et al. investigated the use of the Input Delay Neural Network (IDNN) to model
the INS/GPS positional error (Noureldin et al. 2011). A Multi-Layer Feed-Forward
Neural Network (MFNN) was applied in (K-W. Chiang 2003) on a single point
positioning INS/GPS integrated architecture. In (Sharaf et al. 2005), they employed
the MFNN on an integrated tactical grade INS and a Differential GPS architecture for a
better position estimation solution. More so, Recurrent Neural Networks, which are
distinguishable from other neural networks due to their ability to make nodal
connections in temporal sequences, have been proven to model the time-
dependent error drift of the INS more accurately compared to other neural
network techniques (Dai et al. 2019). In (Fang et al. 2020), they compared the
performance of the Long Short-Term Memory (LSTM) algorithm to the Multi-Layer
Perceptron (MLP) and showed the superiority of the LSTM over the MLP. Similarly, in
(Onyekpe et al. 2020a), we investigated the performance of the LSTM algorithm

for high data rate positioning and compared it to other techniques, such as the IDNN,
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MLP and Kalman filter. The performance of the techniques as demonstrated in
published literatures, highlights the potential of intelligent algorithms in autonomous
vehicle navigation. More so, a direct comparison of the performances of these techniques
is not possible as information of the vehicle’s dynamics studied are not publicly

available.
2.3.3. Machine Learning Techniques used in this Thesis

The machine learning algorithms used in this thesis are discussed in this section.

2.3.3.1. MLNN - Multi Layer Neural Network

An MLNN consists of an interconnected system of neurons with the ability to
map non-linear relationships between the input and output vector. This capability is
particularly of interest as the dynamics of vehicles are non-linear in nature. The neurons
are connected by weights, with the output defined by a function of the sum of the
neuron’s input and transformed non-linearly through an activation function. The
neuron’s input is computed from the product of a randomly initialised weight factor
matrix and the input matrix, and a randomly initialised bias. The output from a neuron
layer becomes the input to the neuron in the next layer. Through the continuous
backpropagation of error signals, the weights are adjusted in what is referred to as the
training phase of the MLNN. An adjustable learning rate and momentum can be used to
prevent the MLNN from getting trapped in a local minimum while back-

propagating the errors (Gardner & Dorling 1998).

The feed-forward operation is governed by:

Ye=o((ZxW+ b) (2.7)

Where y; is the output vector at time t; x¢is the input vector at time t; Wis the weight

matrix b is the bias vector and o is the sigmoid activation (non-linearity) function.

2.3.3.2. RNN - Recurrent Neural Networks

The success of Recurrent Neural Networks (RNNs) on sequentially based
problems has been emphasised in applications such as natural language processing,
financial analysis and signal processing problems (El-Moneim et al. 2020; Mao et al.
2019; Purohit et al. 2019; Senturk et al. 2018; Tsang et al. 2018). Other researchers have

demonstrated the excellent performance of RNNs on various time series problems such
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as on electronic health records (Rajkomar et al. 2018), classifications of acoustic scenes
(Nwe et al. 2018), cyber-security (Susto et al. 2018), human activity recognition (Nweke
et al. 2018; Wang et al. 2019), and vehicular localisation (Brossard et al. 2020; C. Chen
et al. 2018; Dai et al. 2019; Fang et al. 2020). RNNs mainly differ from other neural
networks by their ability to take time-based or sequential relationships into
account. They are characterised by feedback loops connecting relationships learnt in
the past, these connections are sometimes referred to as memory. The sequential
information learnt is stored within the RNNs hidden state which extends to as many
timesteps whilst it cascades forward in mapping relationships in each
observation. The equations governing the operation of the RNN are presented in

Equations (2.8 and 2.9).
h, = tanh(Uphe_1 + Wyexs + by,) (2.8)

Y= 0dWohe+ b,) (2.9)
where h,_; is the previous state, Uy, W, and W, are the hidden; input and output
weight matrix respectively; b, and b, are the bias vector of the hidden and output

layer respectively; y, is the output vector of the network. Figure 2.6 shows the RNN’s

@

unrolled architecture.
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Figure 2.6 Unrolled RNN architecture
2.3.3.3. LSTM - Long Short-Term Neural Networks

Long Short-Term Memory (LSTM) are a variant of RNN created to tackle its shortfall
(Hochreiter & Schmidhuber 1997). They are specifically created to solve the long-term
dependency problem, hence enabling them to recall information for long periods of time
(Gers et al. 2000; Graves & Schmidhuber 2005). Due to the accumulative and patterned

nature of the INS positional errors, the LSTM can be used to learn error patterns from
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previous sequences to provide a better position estimation. The operation of the LSTM

is regulated by gates; the forget, input and output gates, and it operates as shown below:

2= 0(Wyxq + Uph,_y + by) (2.10)

iy =0fWpxt+ Uihi—1+ b)) (2.11)
¢e=tanh(W.4+ U h,_1+ b,) (2.12)
Ct=fr*C1+i* G, (2.13)
o,=oWx,+Uh._1+b,) (2.14)
h¢=o;: * tanh (ct) (2.15)

Where * is the Hadamard product, f; is the forget gate; I; is the input gate; o, is the
output gate; c;is the cell state and h¢ ; is the previous state . Wg W;, W and W, are
the weight matrices of the forget gate; input gate; current memory state respectively
and the output gate; Us U, U; and U, are the hidden weight matrices of the forget
gate, input gate; current memory state respectively and output gate; bg b; bc and b,
are the bias of the forget gate, input gate; current memory state respectively and

output gate. Figure 2.7 shows the LSTM’s cell structure.
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Figure 2.7. Cell structure of the LSTM

2.3.3.4. GRU - Gated Recurrent Unit Neural Network
The GRU which was introduced by Cho et al. in (Cho et al. 2014) addresses the
vanishing gradient problem of the RNN giving it the opportunity to learn long term

dependencies. The cellular operation is characterised by the combination of the input
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gate and the update gate into a single “update gate”. The hidden state and the cell state
are also merged to provide a more computationally efficient model compared to the
LSTM. The update and reset gate in the GRU operate to solve the vanishing gradient
problem by deciding what information should be passed to the output thus removing
information which is not relevant to the prediction.

The update gate functions to determine the amount of the previous information
to be passed along to the future while the reset gates controls how much of the previous
information on the vehicle’s dynamics to forget. A memory content is introduced to store
relevant information from the past using the reset gate. The operation of the gates of the

GRU are governed by Equations (2.16-2.19).

update gate: z, = o¢(W,x4 + U,h,_1) + b,) (2.16)

reset gate: 1, = af(W,. %4+ Uh,_1) + b,) (2.17)

current memory state: h= tanh(Wy x4 + 1.« Uyh_1) + by, (2.18)
final memory: h;=2z;*h,_1+ (1 — z;) i]t (2.19)

Where * is the Hadamard product; W, W, and W} are the weight matrices of the
update gate, reset gate and current memory state respectively; U, U, and Uj are the
hidden weight matrices of the update gate, reset gate and current memory
state respectively; b, by and bp are the bias of the update gate, reset gate and

current memory state respectively. Figure 2.8 shows the GRU’s cell structure.
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X

Figure 2.8 Cell Structure of the GRU
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2.3.3.5. IDNN - Input Delay Neural Network

The position errors of INS are cumulative and follow a certain pattern (C. Chen
et al. 2018). Therefore, previous positional sequences are required for the model to
capture the error trend. It is however difficult to utilise a static neural network to model
this pattern. A dynamic model can be employed by using an architecture that presents
the previous “t” values of the signal as inputs to the network thus capturing the error
trend present in the previous t timesteps (Noureldin et al. 2011). The model can also be
trained to learn time-varying or sequential trends through the introduction of a memory
and associator units to the input layer. The memory unit of the dynamic model can store
previous INS samples and forecast using the associator unit. The use of such a dynamic
model has a significant influence on the accuracy of the INS position prediction in the
absence of GPS (Noureldin et al. 2011). Figure 2.9 illustrates an IDNN’s general
architecture with p being the tapped delay line memory length, U; the neurons, W the

weights, G the activation function, y; the target vector and D the delay operator.

Thisitem hasbeenremoveddueto 3rd PartyCopyright. The unabridgedrersionof the
thesiscanbefoundin theLanchestet.ibrary, CoventryUniversity.

Figure 2.9 Illustration of an IDNN's general architecture (Noureldin et al., 2011)
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2.4. Summary

In this chapter, we provided an overview of the GNSS; types and errors associated
with their use. We also justified the use of Inertial sensors such as accelerometers, wheel
encoders and gyroscopes. Their composition, theory of operation, associated errors and
limitations, and coordinate frames employed during navigation are also discussed.
Furthermore, the limitations to the use of the Kalman filter are highlighted following
which the recent advances in the use of machine learning with respect to
vehicle positioning and existing learning-based localisation methods were explored.

We finally discuss the machine learning techniques used in this thesis .

In the next chapter, datasets characterised by the information gotten from the
GNSS and inertial sensors are described. Using the machine learning approaches
described in this chapter, several deep learning models for vehicular localisation are

also proposed and described.



Chapter 3

Dataset and Methodology for Inertial and

Odometry Vehicular Localisation

The previous chapter provided, an overview of common vehicular road-positioning
techniques and coordinate systems. The chapter discussed recent advances in the use of
machine learning techniques for positioning and justified its use over the Kalman filter.
The chapter also described the machine learning techniques used in this thesis. These
machine learning techniques are used to design the deep learning models described in
the present chapter for position and orientation rate estimation.

This chapter introduces the datasets and experiments used to investigate the
vehicular localisation techniques. This work proposes for the first time a labelled inertial
odometry dataset with several complex scenarios using a multitude of sensors. The two
experiments investigated in this thesis; navigation in challenging scenarios and
navigation in longer-term GNSS outages are introduced along with the training datasets
and evaluation datasets. We also define the metrics used in evaluating the performance
of the localisation models trained. Finally, in this chapter, we define the mathematical
approach (physics model) used in obtaining baselines for performance comparison as
well as techniques used to determine the ground truth measurement for the position

estimation models and orientation rate estimation models.

3.1 Datasets
Several public datasets dedicated to navigation and localisation on specific

platforms and environments have been proposed as shown in detail (with references)
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in Table A3-1 in the appendix. Such platforms include commercial Vehicles (Veh),
Mobile robot (Mob), Unmanned Aerial Vehicles (UAV), Autonomous Underwater
Vehicles (AUV), Unmanned Surface Vehicles (USV) and Hand-held devices (Hand)
and environments as detailed in Table 3.1. Nevertheless, in this thesis, the focus is on
the navigation of autonomous vehicles (commercial vehicles) in urban environment.
We thus provide a summarisation of all datasets created for this purpose in Table
3.2. However, these datasets are not usually adopted for inertial and/or wheel
odometry localisation in GNSS deprived environments by researchers as
reviewed in Section 2.3.2. The datasets are all vision-based odometry datasets and
are either characterised by simple driving scenarios, have a very high signal to noise
ratio, are too small for robust evaluation, are lacking in information from other
relevant sensors or are not labelled for specific investigations into the performance
of positioning techniques. The proposed Inertial and Odometry Vehicle Navigation
Benchmark Dataset (IO-VNBD) addresses this gap as can be shown in Table 3.2. The
IO-VNBD is the largest of all the datasets compared. It is made up of 5700 km of

odometry data and information from at least 27 sensors.

Table 3.1. Dataset collection platforms

Environment Description

Urban Town, City, Campus and infrastructures
Indoor Indoor Environment

Underwater Cave, Underwater floor

Terrain Underground, farm, rough terrain and lake

Table 3.2. Several datasets for vehicular localisation

Complex Sensor Information
Scenarios
Shortname Pose IMU GPS Labels Lidar Camera Other
I0-VNBD o o (0] o o Wheel Encoder,
(Ours) Smartphone,
Temperature sensor,
Steering Angle,
Brake pressure,
Accelerometer Pedal
position, etc.
KAIST Day/Night (@) (@] (@) O O (@] Thermal Camera
Complex Urban (@) @) (@) (@) Encoder
Multi Vech Event (@) @) O (@) o
Cityscape (@) (@) O o
Oxford-robotcar O O (@)
MPO-Japan (@) (0] FARO 3D
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CCSAD (e} O (e}

MRPT-Malaga O O (@) O

KITTI O O O (@) (@) (@)

SeqSLAM (@) O

Ford Campus (@) (0] (@) O (0]

San Francisco O O O o o O DMI

Annotated Laser O (@) (@) (e}

MIT-DARPA- O O O (@) (@) (@)

Urban

St Lucia Stereo O O O

St Lucia Multiple O O

CUPAC O O O O (@) O Wheel Encoder,
Smartphone,
Temperature sensor,
Steering Angle, Brake
pressure,
Accelerometer Pedal
position, etc.

FABMAP O O

3.1.1. Inertial and Odometry Vehicle Navigation Benchmark Dataset (I0-VNBD)

This subsection introduces the Inertial and Odometry Vehicle Benchmark Dataset
(IO-VNBD), a collection of data on the motion dynamics of several four wheeled vehicles
for training and evaluation techniques for vehicular localisation. We argue that despite
the numerous methods proposed as well as studies on vehicular positioning, each
research team has employed the use of several datasets not made available to the public.
This has created a challenge for the advancement in the research, comparison and
adoption of machine learning based techniques for vehicular positioning in GNSS-
deprived environments. In order to facilitate the benchmarking, fast development and
evaluation of positioning techniques, we proposed the first of its kind complex, large-
scale and information-rich inertial and odometry-focused public dataset called 1O-
VNBD. The vehicle tracking dataset was recorded using a research vehicle equipped
with ego-motion sensors on public roads in the United Kingdom, Nigeria, and France.
These sensors include a GPS receiver, inertial navigation sensors, wheel-speed sensors
amongst other sensors found on the car as well as the inertial navigation sensors and
GPS receiver in an Android smartphone sampling at 10Hz. The dataset consists of a total
driving time of about 40 hours over 1,300km for the vehicle-extracted data and about 58

hours over 4,400 km for the smartphone recorded data. A diverse number of driving
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scenarios such as traffic congestion, roundabouts, hard-braking, etc. were captured
on different road types (e.g., country roads, motorways etc.) and with varying

driving patterns. These complex scenarios are the drivers for this research and the
data collection.

3.1.1.1. IO-VNBD Experiment Equipment

The equipment used in the collection of IO-VNBD are detailed below.
e Racelogic VBOX Video HD2 CAN - Bus Data Logger (10Hz) (VBOX Video HD2

2019)
e Racelogic VBOX Video HD2 GPS Antenna (10Hz)(VBOX Video HD2 2019)
e Smartphones (Huawei P20 pro, Motorola moto G7 power and Blackberry Priv) using
AndroSensor Application (10Hz) (AndroSensor 2019).
The Racelogic VBOX data logger was used to log data from the ECU of the vehicle and
the Racelogic GPS antenna for the vehicle extracted data. For the smartphone extracted
data, the Androsensor application was used to log the data from the sensors already

present within the phone.

3.1.1.2. IO-VNBD Experiment Setup
a) I0-VNBD Vehicle Experiment Setup

The vehicle used for the data collection exercise was a front-wheel drive Ford Fiesta
Titanium as shown in Figure 3.1. The Racelogic VBOX Video HD2 was used to record
the data from the vehicle CAN bus as well as the corresponding GPS coordinates at each
sampling instance. As shown in Figures 3.1 and 3.2, the GPS antenna was placed cen-
trally at the top of the vehicle to ensure optimal signal reception. The Racelogic VBOX
Video HD2 CAN - Bus data logger (10Hz) was used to record the data shown in Table
3.5 directly from the CAN bus of the vehicle with a sampling and update frequency of

10Hz.
Thisitem hasbeenremoveddueto 3rd PartyCopyright. The unabridgec

versionof thethesiscanbefoundin the Lanchestet.ibrary, Coventry
University.

Figure 3.1 Sensor locations and dimension of vehicle (Ouzz 2019)
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Figure 3.2 Smartphone and GPS antennae setup
b) IO-VNBD Smartphone Experiment Setup

A Ford Fiesta Titanium, Volvo XC70, Renault Mégane and Toyota Corolla Verso
were used to collect the smartphone datasets. The smartphone was held with a phone
holder attached to the vehicle as shown in Figure 3.2. Using the Androsensor app, the
data was sampled every 0.1s with a GPS (smartphone) update rate of 1Hz. Figure 3.1
shows the axis alignment of the smartphone sensors. The smartphone sensors employed
were a 3-axis accelerometer, a 3-axis gyroscope, a 3-axis magnetometer and heading, as
well as the GPS latitude and longitude coordinates all present within the phone. Other
information such as the vehicle’s velocity and acceleration were recorded from the
smartphone’s GPS. Table 3.7 highlights the data recorded from the smartphone. The
datasets described in Tables A2-1 to A7 in the appendix were collected using the Huawei
P20 pro smartphone.
3.1.1.3. IO-VNBD Data Description

The total dataset consists of about 100 hours of recorded driving data on public roads
by 8 different drivers with different driving styles as defined in Table 3.3, where defen-
sive driving refers to situations where the vehicle is turned at less than 0.3g, swerved at
less than 3.3 km/hr or decelerated at less than 0.3g, whilst aggressive driving refers to
respective situations above these thresholds (U.S. Department of Transportation 2009).
The data is divided into sets based on cities and towns driven via, road conditions,
weather conditions, driving length and time, driving style and driving features (see Ta-
bles A2-1 to A8 in the appendix). The dataset also contains more than 20 minutes of data
recorded from the stationary vehicle to aid the estimation of the sensors” bias. To add to
the diversity of the data consisting of a number of complex driving scenarios as shown
on Table 3.6, the data was recorded with different tyre pressures. Datasets with each
unique tyre pressures are indicated in Tables A2-1 to A8 in the appendix using Table 3.4

as a guide. Tables A2-1 to A8 in the appendix reveal more detailed information on each
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set of the data. The data logged from the vehicle’s CAN bus are denoted with the prefix
“V-"and the smartphone data denoted with the prefix “S-“. The “S- “datasets are ac-
quired from the sensors in a smartphone attached to the vehicle mimicking its motion".
While all the “V- “datasets were collected uniquely in England, the “S- “datasets were
collected in England, France and Nigeria.

Table 3.3. Driving pattern of each driver

o
-
=5
<
[¢]
-

Driving Style

Aggressive and Defensive
Aggressive

Aggressive and Defensive
Aggressive and Defensive
Aggressive and Defensive
Defensive

Defensive

T QT mEgn® e

Defensive

Over the course of the data collection, communication difficulties between the
GPS receiver and satellites were encountered. Information on data indexes recorded
during these periods were provided in a file titled “GPS outages”. Where possible, the
“S-* and “V-“ datasets which were collected simultaneously!, were manually
synchronised and stored in the folder named “Synchronised V and S datasets”.

Importantly, despite the effort lent towards an accurate alignment of the
smartphone’s sensor axis with that of the vehicle, the precision of the measurements
were interfered by vehicular vibrations averagely estimated to be about 0.15 g of
acceleration and 0.08 rad/s of yaw rate particularly in peculiar scenarios such as hard
brakes or over bumps. Information on the amount of gravitational acceleration
measured by each of the three axes are provided in the “S-“datasets to help in the
correction of the measured acceleration. The data is stored in csv format in

https://github.com/onyekpeu/IO-VNBD.

“Itis difficult to truly determine the centre of gravity of the car under different dynamic conditions, hence the smartphone
recording approximates the true motion of the car.
! Not all “V-” and “S-“ dataset were collected simultaneously. All the “V-* datasets without a corresponding “S-“ dataset

and vice-versa are not placed in the “Synchronised V and S datasets” folder.


https://github.com/onyekpeu/IO-VNBD
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Table 3.4. Various tyre pressures experimented on

Table 3.5. Information recorded from the Ford Fiesta’s ECU

Notation Tyre Pressure (psi) No  Column Heading Unit
A Front right - 16 1 No of GPS N/A
Front left - 15 satellites available
Rear right - 14 2 Time since start of  seconds
Rear left - 14 day
B Front right - 31 3 Latitude degrees
Front left - 31 4 Longitude degrees
Rear right - 25 5 Velocity km/hr
Rear left - 25 6 Heading degrees
C Front right - 33 7 Height km
Front left - 33 8 Vertical velocity km/hr
Rear right - 31 9 Sampleperiod seconds
Rear left - 27 10 Steering angle degrees
D Front right - 33 11 Wheel speed front rad/sec
Front left - 33 left
Rear right - 26 12 Wheel speed front rad/sec
Rear left - 26 right
E Front right — N/A 13 Wheel speed rear ~ rad/sec
Front left - N/A left
Rear right - N/A 14 Wheel speed rear  rad/sec
Rear left - N/A right
15 Yaw rate deg/sec
16 Indicated vehicle = km/hr
speed
17 Indicated g
longitudinal
acceleration
18 Indicated lateral g
acceleration
19 Handbrake activated or not (0
or1)
20 Gear requested number of gear
employed (1-5)
21 Gear number of gear
employed (1-5)
22 Engine speed rev/min
23 Coolant degree celcius
temperature
24 Clutch position activated or not (0

or1)
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Table 3.6. Environmental and driving scenarios investigated.

Table 3.7. Information recorded from the smartphone sensors.

No Scenarios No Column Heading Unit
1 | Hard brake 1 | GPSlatitude degrees
2 | Sharp turn left and right 2 | GPSlongitude degrees
3 | Swift maneuvers > Gl aliiicls m
4 | Roundabout 4 CPS speed km/hr

5 | GPS accuracy m
9 | i 6 | GPS orientation degrees
6 | Night and day 7 | GPS satellites In N/A
7 | Skid range
8 | Mountain/hills 8 | Time since start ms
9 | Dirt roads/ Gravel Roads 9 | Date YYYY-MO-
10 | Country roads DD HH-MI-
11 | Motorway e
10 | Accelerometer X m/s?
12 | Town-centre driving 11 | Accelerometer Y m/s?
13 | Traffic congestion 12 | Accelerometer Z m/s?
14 | Successive left and right turns 13 | Gravity X m/s?
15 | Varying accelerations within a 14 | Gravity Y m/s?
short duration 15 | Gravity Z m/s?
16 | A -roads 16 | Gyroscope (Y:aw) rad/s
e E—— 17 | Gyroscope (Pitch)  rad/s
18 | Gyroscope (Roll) rad/s
18 | Wet roads 19 | Magnetic field X uT
19 | U-turns / Reverse drives 20 | Magnetic field Y uT
20 | Mud road 21 | Magnetic field Z uT
21 | Varying tyre pressure 22 | Orientation (Yaw)  degrees
22 | Drifts 23 | Orientation (Pitch)  degrees
23 | Bumps 24 | Orientation (Roll) degrees
24 | Inner city driving
25 | Winding roads
26 | Zig-Zag drives
27 | Approximate straight-line
motion
28 | Parking
29 | Potholes
30 | Residential roads
31 | Stationary (No Motion)
32 | Valleys
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3.1.2. Coventry University Public road dataset for Automated Cars (CUPAC) Dataset

The CUPAC dataset is similar to the [O-VNBD in terms of the diversity in the number
of sensors used in collecting the data. However, the CUPAC dataset offers fewer number
of driving scenarios needed to robustly evaluate the performance of the positioning
models. The CUPAC dataset was used to validate the performance of the positioning
models in Chapter 5 and 6.

This CUPAC dataset was collected on public streets in Coventry, United Kingdom
under different weather, traffic and road conditions. A LIDAR unit, a GPS receiver,
smartphone sensors, vehicle CAN bus data logger and monocular, infrared are used in
capturing the dataset. Although the dataset is focused on vision-based navigation, the
wheel speed information from the CAN bus of the vehicle as well as the vehicle’s GPS
positional coordinates were used in this study. The CUPAC dataset was also collected
using a Ford Fiesta at a sample rate of 10Hz. More details of the CUPAC dataset can be

found in (Weber and Kanarachos 2020).

3.2 Methodology

In this section, the methodologies used in this thesis are described. This section
describes the ground truth formulations used to train the deep learning models. The
physics models used as baselines to compare the performance of the deep learning

models are also described alongside the deep learning model training parameters.

3.21 Ground Truth Formulation - Positioning and Orientation Rate Formulation
Using GNSS
The formulation of the ground truths used as the targets for the training of the ma-
chine learning models and also for the comparison of the performance of both the phys-
ics and machine learning models are described. The positional ground truth and orien-

tation rate ground truth are discussed.

3.2.1.1 Transformation (Rotation) Matrix

Tracking the position of a vehicle is usually done relative to a point of reference. The
INS’s measurements, usually provided in the body (sensors) frame, would need to be
transformed into the navigation frame for tracking purposes (Kok, Hol, and Schén 2017).
In this thesis, we adopt the North-East-Down (NED) convention in defining the
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navigation frame. The transformation matrix R™ from the body frame to navigation
& y &

frame for a vehicle is as shown in Equation. (3.1 and 3.2).

cos¥ —sin¥? 0 [cos@ 0 sm@” 0 ] (3.1)

sin¥ cos¥ O 0 cos¢ —sing
0 0 11 1l—sind 0 cosf sing  cos¢
cosOcos¥Y  —cosO sin¥ + sing sinf cos¥  sing sin¥ + cos¢ sinf cos¥ (3.2)

Rnb —

cosl sin¥  cos¢p cos¥ + sing sinf sin¥  —sing cos¥ + cos¢ sinf sin¥
—sin6 singcosf cosgpcosf

Where ¢ is the roll, 8 is the pitch and ¥ is the yaw. However, as our study is limited to
the two-dimensional tracking of vehicles, ¢ and 8 are thus considered to be zero, thus

the rotation matrix R™ becomes:

cos¥ —sin¥ 0
sin¥ cos O
0 0 1

R = (3.3)

3.2.1.1 Orientation Rate Estimation

The orientation angles or attitude of the vehicle are used to populate the rotation
matrix as shown in Equation (3.3). The populated rotation matrix is in turn used to
transform the position of the vehicle from the body frame to the navigation frame as
shown later in Equation (3.36 - 3.38). However, as expressed in the previous section, we
make use of yaw angle to populate the reduced rotational matrix in Equation (3.3). The
yaw angle (heading) information is obtained from the GNSS signal and processed as
shown in Equation (3.4) to get the yaw rate (ground truth for the machine learning
orientation rate estimation model training). We selected the yaw rate instead of the yaw
angle as we observed from experimentation, that the machine learning models produce

better estimates when trained to learn the yaw rates.

b —
WGnNsst = l/)GNSS,t - lpGNSS,t—l

(3.4)

3.2.1.2 Position Estimation (Vehicles true displacement estimation x2y )

The trajectory of the vehicle lies on the surface of the earth. To determine the position
of the vehicle, the displacement of the vehicle needs to be traced along the surface of the
earth. However, the shape of the earth is neither a perfect sphere nor ellipse but rather
an oblate ellipsoid. Due to the unique shape of the earth, complications exist as there is

no geometric shape it can be categorised under for analysis. The Haversine formula
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applies perfectly to the calculations of distances on spherical shapes while the Vincenty’s
formula applies to elliptical shapes (Mahmoud and Akkari 2016).

a) Haversine’s Formula

The Haversine’s formula is used to calculate the distance between two points on the
earth’s surface specified in longitude and latitude. It assumes a spherical earth (Thomas

and Featherstone 2005).

o (3.5)
t t—l)

O — O
%25 = 2rsin~t \/sinz (%) + cos(@B;_1)cos(D,)sin? ( 5
Where £? is the distance travelled within ¢ — 1, t with longitude and latitude (¢, @) as

obtained from the GPS and r is the radius of the earth.
b) Vincenty’s Inverse Formula

The Vincenty’s formula is used to calculate the distance between two points on the
earth’s surface specified in longitude and latitude. It assumes an ellipsoidal earth
(Vincenty 1975). It calculates the distance between two points as well as its azimuth as

shown in Equations (3.6 - 3.24).

. 1
Given: f = 298.257223563 (3.6)
b=(1-Pa (3.7)
Ul = arctan(1 — f) tang, (3.8)
P=@02— Y1 (3.9)
Ul = arctan(1 — f) tang, (3.10)
sino'= \/(cos U, sin )2 + (cos Uy sinU, — sinU;cosU,cosA)? (3.11)
coso'= sinU; sinU, + cos Uy cos U, cos A (3.12)
o = arctan2(sinad, cos a) (3.13)
) cos U, cos U, sin A (3.14)
sina = -
sinag
2sinU; sinU.
cos(2a},) = cos o' — # (3.15)
cos?a
C= %cos2 a4+ f(4—3cos’a)] (3.16)
A=¢+ (1 —C)fsinalo+ Csino[cos(20,) + C cosa'(—1 + 2 cos?(2a, )]} (3.17)
a? — b? (3.18)
2 _ o2
u® = cos“a < 2

Vi+u?-1 (3.19)

hy = — —
RV gy Y



Chapter 3: Dataset and Methodology for Inertial and Odometry Vehicular Localisation 42

LIt T2 (3.20)

T 1-k

3
B =k, (1 — §k§> (3.21)
Ac'= Bsino' {cosz(ZJ;n) (3.22)

1 B ,
+ ZB (cos o[—1+ 2 cos?(2d,,)] — gCOS[ZO‘m][—B

+4sin®c][-3+4 cosz(Za'm)])}
a, = arctan2(cos U, sin A, cos Uy sinU, — sinU; cos U, cos 1) (3.23)

a, = arctan2(cos Uy sin A, sinU; cos U, — cos U, sinU, cos 1) (3.24)
Where JActb is the distance travelled within t — 1 and t with longitude and latitude (¢, ),
where a is the radius of the earth at the equator, fis the flattening at the ellipsoid, b-is
the length of the ellipsoid semi-minor axis, U; and U, is the reduced latitude at t and t —
1 respectively, 4 is the change in longitude along the auxiliary spheres is the ellipsoidal
distance between the position at t — 1 and t, ¢} angle between the position at t — 1 and
t, o angle between the position at t — 1 and ¢, and Onis the angle between the equator
and midpoint of the line.
The Vincenty’s formula is used in this thesis as it provides a more accurate

solution compared to Haversine and other great circle formulas (Mahmoud and Akkari

2016). The python implementation of Vincenty’s Inverse Formula is used (Pietrzak 2016).

3.2.2 Physics Model And Machine Learning Schemes For Vehicular Position And
Orientation Estimation
The physics models and machine learning models used in this thesis for the

localisation of autonomous vehicles problem are discussed in this section.
3.2.2.1 Physics Model

Three physics models are considered, one for the accelerometer-based position
estimation, another for orientation rate estimation using the gyroscope and the last for

position estimation using the wheel encoder.

a) Accelerometer-based Position Estimation Physics Model (APM)
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The accelerometer measures the specific force?, 2 on the sensor in the body frame
and is as expressed in Equation (3.25); where g" represents gravity, R’" is the rotation
matrix from the navigation frame to the body frame and a™ denotes the linear

acceleration of the sensor expressed in the navigation frame.

However, the accelerometer measurements at each time t are usually corrupted by a

bias §}ys and noise €2, and are thus represented by Ffy s, as shown in Equation (3.26).
fb=Rbn (g — g™ (3.25)
FIZ;VS = fI?VS + 51sz +&§ (3.26)

More so, the accelerometer’s bias varies slowly with time and as such can be
modelled as a constant parameter; whilst the accelerometer’s noise is somewhat
characterised by a Gaussian distribution and modelled as €2~N(0,Z,). Therefore, the
specific measurement equation as expressed in Equation (3.25) can be expanded as
shown below, where a? is the linear acceleration in the body frame and gb is the
acceleration due to gravity in the body frame.

from Equation (3.25), a®? = fP+g4?, (3.27)
from Equation (3.26), Fhig = abys + 51b1vs,a S (3.28)

a’ =F IlIJVS - 51bN5,a — €& lZz (3.29)

ab +ef = Fiys - 51sz,a (3.30)

However, abys = Fhs — 6}’,\,5,‘1 (3.31)
abys = aP + &b (3.32)

Where afy is the bias and gravity compensated acceleration measurement. The vehicle’s
velocity in the body frame can be estimated through the integration of Equation (3.32)

as shown below:

t
vhs = f ab + &2 (3.33)
t

-1

2 In the vehicle tracking application, the centrifugal acceleration is considered absorbed in the
local gravity sector and the centrifugal acceleration considered negligible due to its small

magnitude
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Through the double integration of Equation (3.32), the displacement of the vehicle
in the body frame at time t from t — 1, x/ys, can also be determined as shown in
Equation (3.34).

t
xhys = .U- al + &% (3.34)
t-1

Where €2 and &b are the noise characterising the INS’s displacement and velocity
information formulation derived from &5, 8fys , is the sensor’s bias in the body frame
calculated as a constant parameter from the average reading of a stationary
accelerometer ran for 20 min, Fjs is the corrupted measurement of the accelerometer
sensor at time t (sampling time), g is the acceleration due to gravity and || f ab

and a? are the uncorrupted (true) displacement, velocity and acceleration, respectlvely,
of the vehicle.

Thus, the vehicle’s true displacement is expressed as x2yss ~ ] f

b

Furthermore, £} can be obtained by:

) b
Elajc ® XGNss — XINs (3.35)

Using the North-East-Down (NED) system, the noise €2, displacement x}y, velocity
vlys and acceleration a’ys of the vehicle in the body frame within the window t — 1 to ¢
can be transformed into the navigation frame using R as shown in Equations 3.36-3.40.
However, the down axis is not considered in this study. More so, the window size in this

study is defined as 1 s.

b b ;

R .alys - allys > abys.cosW,ablys .sin¥, (3.36)
R, vhio = vike = vhg.cosWys, viys . sin® (3.37)
INS - VINS INS INS - INS» VINs - SINY, .
RMYe xbyo = xPs = xDys.cosW, xbys . sin® (3.38)
INS - XINS INS INS - COSTY, X[yg . SINY, .

cosWiys —sin¥ys O
Where: R} = |sin®W,ys  cosWys 0, (3.39)
0 0 1
r _n,North- _ _
aiNs abys . cosWys
n,North b .
INS arys - sin¥iys
n,North b
VINs Vins - c0sWns
n,North | = b ;
UINS UINS.SlnLIJINS . (340)
,North b
XIfs Xins - €0SWins
n,East xDys . sin®.
XN INS INS
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b) Gyroscope-based orientation rate estimation Physics Model (GPM)

The gyroscope measures the rate of change of attitude (angular velocity) in yaw, roll
and pitch with respect to the inertial frame as expressed in the body frame (Kok, Hol,
and Schon 2017). Giving initial orientation information Wy, the attitude rate from the
gyroscope w’ys can be integrated to provide continuous orientation Wiys information in
the absence of the GNSS signal.

t
Wins =W + f wbys (3.41)

t—-1

c¢) Wheel encoder-based position estimation Physics Model (WPM)

The angular velocity of the wheels at a given time (t) is measured by the wheel
speed sensors. But there can be uncertainties in the tyre’s diameter due to the condition
of the tyre (such as tyre wearing), tyre pressure, and wheel slip. These uncertainties
affect the accuracy of displacement estimation from the wheel speed measurement w.

Equations (3.42) - (3.45) consider the errors which can affect the vehicle speed

calculations.
Buyhrt = Oonrt + Emn (3.42)
Boynrr = Ofner + Epprr (3.43)
Dons1 = OOnst + Empgy (3.44)
Dwnfr = Ownpr + Ewngr (3.45)

Where @2, @2, &)\ﬁ,hﬂ and &)“lj,hfr are the noisy wheel speed measurements of the
rear left, rear right, front left and front right wheels, whereas 2,1, €2, €25, s1and gb, r
are the corresponding errors (uncertainties), and w2, ©2 .., w‘l,’vhﬂ and a)ﬁ,hfr are the
respective error-free wheel speed measurements.

Equations (3.46) and (3.47) show the calculation of the angular velocity (wheel speed) of

the rear axle.

b b b b
~b _ WDwhrr + WDwhnrt | Ewhrr + Ewnrl (3-46)
wWhT - 2 2

b b b b
expressing S‘”h”TJrSW’”’ as e, and —ww"";wwm as Wypy

&)\\lz/hr = wﬁ/hr + 5\l/?/hr (3.47)

From v = wr, the linear velocity of the vehicle in the body frame can be found, with r as
a constant which maps the wheel speed of the rear axle to the linear velocity of the

vehicle:
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b _ b b
Vwh = Qwpr? + EyprT (3-48)
b b
Take e, p, 7 as epy
b _ b b
vwhr - (‘)whrr + gwhr,v (3-49)

The displacement of the vehicle in the body frame can be found through the integration
of the vehicle’s velocity from Equation (3.49) and incrementally updated for continuous

tracking. e,ﬂ’,hr'x in Equation (3.50) is the integral of evlf,hr,,, from Equation (3.49).

t
b _ b b (3.50)
Xwhr = (wwhrr) + gwhr,x
t—1

The uncertainty in the position estimation can be found through Equation (3.51) during
the presence of the GNSS signal. The task thus becomes that of estimating €5, , during

GNSS outages needed to correct the vehicles displacement x2,,..

Emnrx X Xpnr — XCnss (3.51)
x2yss is the vehicle’s true displacement measured according to (Vincenty 1975) using
Vincenty’s formula for geodesics on an ellipsoid based on the longitudinal and
latitudinal positional information of the vehicle as in (Pietrzak 2016). The accuracy of
xZyss is however limited to the accuracy of the GNSS which is defined as +3m according

to (VBOX Video HD2 2019).

3.2.1.2 Deep Learning - based Models.

Three machine learning models are discussed in this section. The first predicts
position using the sensor data from the accelerometer as well as inputs from the previous
known position of the vehicle as input into the machine learning model. The second
model uses the data from the gyroscope as an input to the machine learning model with
the aim of learning the noise within the gyroscope’s measurement in order to predict the
orientation rate of the vehicle. The last machine learning model uses the sensor data from
the wheel encoder to learn the uncertainty present within the measurements of the wheel

encoder needed for continuous positioning correction.
a) Accelerometer-based position estimation neural Network (AccNet)

A position estimation model called AccNet is proposed to minimise the effect of the
noise in the accelerometer, as illustrated in Figure 3.3. The proposed model, which is

analogous to the functioning of a closed-loop or feedback control system, operates in
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prediction mode by feeding back the output of the neural network at t — 1/t — 2 and the
vehicle’s acceleration at time window t/t —1 into the neural network in order to
estimate the distance covered by the vehicle within the current window t/t —1, as
shown in Figure 3.3. NED refers to the North-East-Down coordinates defining the

navigation frame.

xb xl
GNSS GNSSt-1|t-2» XGNSS t|t-1
resolving 1 } NN training | P
b i ) B | Xgnsste—1
Xensst-1je-2 +N | i b ot :
I : {XGNSS t]t-1 target
al 3 i NN i
INS tjt—1 3 ) ) prediction |
b nNorth .nEast
INS Xpredicted t|t—1 NED x » X
-
resolving L AccNet resolving
NN input xb 4
predicted t—1|t-2 GNSS signal outage -~
GNSS signal presence
Figure 3.3. Prediction setup of the proposed AccNet displacement estimation model.
xb xb
GNSS GNSS t—1|t—2) *GNSS t|t—1
resolving NN trainin b
b g
x +N _— XGNSS t]t-1
GNSS t—1|t-2 b
l XGNsSt]t-1 tareet
NN input L—- a’ NN
1R INSt]t-1 P prediction
b n.North ,nEast
INS Xpredicted t]t-1 NED x el
T
resolving | || AccNet resolving
b :
Xpredicted t-1]t-2 GNSS signal outage ==~~~

GNSS signal presence

Figure 3.4. Training setup of the proposed AccNet displacement estimation model.

However, as presented in Figure 3.3, during the training phase, the Neural Network
(NN) is fed with the GNSS estimated displacement rather than the output of the NN.
Both models (training and prediction) are structured this way due to the availability of
the GNSS signal during the training phase and its absence in the prediction phase. The
NN'’s output is thus setup to mimic the functionality of the GNSS resolved displacement

at window t — 1/t — 2 during the prediction operation.

Howbeit, as the NN’s output never matches the GNSS displacement, the challenge
becomes one of minimising the effect of the inexactness of the previous NN’s estimation
on the performance of the prediction model. We set about to address this by
introducing a controlled random white Gaussian noise N with a normal distribution
N~ N (y, 0%) to one of the inputs of the NN: the GNSS resolved displacement within
the previous time window, during the training phase. Where the mean p, and the
variance 02, are determined experimentally from a sample displacement resolving of
the GNSS and INS signals. This approach attempts to aid the NN to account for the
impreciseness
in the prediction output. Figures 3.3 and 3.4 show the prediction and training set-up of

the displacement model, respectively. Figure 3.5 shows the learning rate of the AccNet
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where during training, x4 refers to the information from the accelerometer at time t,
and the vehicle's displacement from the GNSS resolving at time t-1; and y; is is the
vehicle's estimated displacement at time t. During the prediction step (which is
methodologically implemented after the training step), x¢ refers to the information
from the accelerometer at time f, and the vehicle's estimated displacement from

AccNet at time ¢-1; and ¢, is is the vehicle's estimated displacement at time ¢.

X — AccNet [——= Wi

Figure 3.5. AccNet's learning scheme

b) Gyroscope-based orientation rate estimation neural Network (GyroNet)

We adopt a much simpler approach towards the estimation of the vehicle’s
orientation rate as we found no performance benefit in utilising the feedback approach
presented in Section 3.2.1.2.a. On the orientation rate estimation, GyroNet (an Input

Delay Neural Network as justified in Section 3.2.3.2) is made to learn the relationship
between the yaw rate w}ys as provided by the gyroscope and the ground truth (yaw rate)

w2yss calculated from the information provided by the GNSS. The GyroNets learning

scheme is illustrated in Figure 3.6 and 3.7, where x; is the yaw rate w! input to the

model from the gyroscope at time t andy, is the error free yaw rate information of
the vehicle at time .

X ——— GyroNet —— W

Figure 3.6. GyroNet's learning scheme

b
GNSS WGNsst

resolving GyroNet
/ Target b
i WENSS ¢ b
b
: X, = (from AccNet or
| Consst predicted,t y oner mode)
i (Position components in the
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INS WINs,¢
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prediction Unavailable information -

Available information R

Figure 3.7. GyroNet's orientation rate prediction block during GNSS outages
¢) Wheel Odometry position estimation neural Network (WhONet)

The learning scheme for the WhONet is as presented in Figure 3.8. WhONet uses
a simple Recurrent Neural Network as justified in Section 3.2.3.2. For every time t, the
input to the Neural Network (NN), %4/_¢., is made up of the wheel speed information of

all four wheels of the vehicle from every tenth of a second within the previous second;
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X, R e and x4_go. The NN is tasked with predicting 4, which is the error

el between the wheel-speed-derived displacement x5, and the GNSS-derived

displacement x2y .
X

Xo1 —

Xi02 WhONet —— ¥:

Xto9 —
Figure 3.8. WhONet's learning scheme

The proposed prediction block for the positioning of vehicles in the absence

of GNSS signals using the wheel speed information is presented in Figure 3.9.

b
GNSS XGNSS ¢

resolving b ;

Ewnrx b
; i XGNSS ¢
WhONet :

xwhrE prediction

b ! o y
i ooenpari
r::z:ler =09 Twhr | o L NEDI_ s /
resolving ﬂ—ﬂ.') o X orrected resolving xnNorth
/ Xwhr xMEast
NN input

Unavailable information ----------
Available information

«  ~h ~D ~b ~b
where X418 wwhfl' l’”whfrf Wyhrl and WOwhrr

Figure 3.9. WhONet's position prediction block during GNSS outages
3.2.3 Model Selection, Training and Evaluation

This subsection describes the metrics used to evaluate the performance of both the
deep learning models and physics models. Furthermore, we justify the selection of the
NN algorithm for each deep learning model, and discuss the training process, datasets
and parameters. Finally, we describe how both the physics models and deep learning
models are evaluated and describe the two scenarios used in evaluating the performance

of the models in this thesis.
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3.2.3.1 Performance Evaluation Metrics

The performances of all models investigated are evaluated using the metrics defined
below:
Cumulative Root Square Error (CRSE): The CRSE describes the cumulative root mean
squared of the prediction error for every one second of the total duration of the GNSS
outage. This method ignores the negative sign of the estimated errors thus providing a
better understanding of the performance of the positioning techniques being analysed.

The CRSE is defined mathematically in Equation (12).

N¢
CRSE = Z ’epredz (3.52)
t=1

Where N; is GNSS outage length of 10s in the challenging scenarios and 30s, 60s, 120s
and 180s in the longer-term GNSS outage scenario, t is the sampling period and ep;.¢q is

the prediction error.

Cumulative True Error (CTE): The CTE measures the summation of the prediction error
from every one second time interval of the total GNSS outage duration. Since no root
squared value is taken in this method, the positive and negative signs of the error
estimations are considered in the calculation. Over estimations and under estimations of
the position errors during the GNSS outage can be better understood with this metric.
The CTE is less realistic in comparing the performances of positioning techniques

compared to the CRSE. Equation (13) describes the CTE method.

N

CTE = z epred (3.53)

t=1

Mean (pn): Mean refers to the statistical mean of the CRSE and CTE across all test

sequences in each scenario investigated.
1 N 1 N
MUcRSE = N—SZi=1 CRSE, pcrg = N—52i=1 CTE (3.54)

Where Nj is the total number of test sequences in each scenario.

Standard deviation (0): Standard deviation provides information on the variations of
the CRSE and CTE of all test sequences in each scenario investigated. The standard

deviation is used in this thesis to measure the robustness of the models investigated.

_ [E(CRSEi—pcrsE)? _ [E(CTEi—pcre)? (3.55)
OCRSE — - N, OcTE = N,
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Minimum: This refers to the minimum of CRSE and CTE of all test sequences in each
scenario investigated.

Maximum: This refers to the maximum of CRSE and CTE of all test sequences in each
scenario investigated. The max metric holds more significance compared to the u and
min in the challenging driving scenarios experiment, as it captures the performance of
the vehicle in each challenging scenario explored and further informs on the accuracy of

the investigated techniques in each scenario.

3.2.3.2 NN Model Selection (Experiments)

The proliferation of Deep Learning and the internet of things on low memory
devices, increasing sensing and computing applications and capabilities promise to
transform the performance of such devices on complex sensing tasks. The key
impediment to the wider adoption and deployment of neural network-based sensing
application is their high computation cost. Therefore, there is the need to have a more
compact parameterisation of the neural network models. To this end, we evaluate the
performance of the MLP, IDNN, simple RNN (sRNN), GRU and LSTM on the

roundabout scenario across different parameterisation for model efficiency.

From our study, as reported on Tables 3.9 and 3.10, we observe that the IDNN, sRNN
and GRU achieves a max CRSE orientation rate of 0.34, followed by the LSTM
recording a max CRSE of 0.35 rad/s, whilst the MLP provided the worst performance
of them all with a max CRSE of 0.97 rad/s. In an almost similar fashion, the IDNN,
sRNN, LSTM and GRU obtain a max CRSE displacement of 17.96 m, whilst the MLP
obtains a max CRSE of 156.23 m. However, as the IDNN is characterised by a
significantly lower number of parameters compared to the GRU, LSTM and sRNN
whilst providing similar CRSE scores across all NN studied and weight connections
explored, we adopt it for use in learning the sensor noise in the accelerometer and
gyroscope in this study. Table 3.8 shows the number of parameters characterising each

NN across the various weights investigated; 8, 16, 32, 64, 96, 128, 192, 256 and 320.

Table 3.8. Number of trainable parameters in each Neural Network (NN) across various weighted connections.
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Number of Weighted
Connections

Number of Trainable Parameters

MLNN sRNN GRU LSTM IDNN

(2-Layer) (2-Layer) (2-Layer) (2-Layer) (2-Layer)

8 33 65 185 245 65
16 97 225 657 873 161
32 321 833 2465 3281 449
64 1153 3201 9537 2705 1409

128 4353 12,545 37,505 49,985 4865

192 9601 28,033 83,905 111,841 10,369
256 16,897 49,665 148,737 198,273 17,921
320 26,241 77,441 232,001 309,281 27,521

Furthermore, we observe that the number of weighted parameters has little
influence on the performance of the displacement and orientation rate estimation model.
However, we notice that the number of time steps in the recurrent NN models (recurrent
in both layer architecture and input structure such as the IDNN) significantly influences
the accuracy of the model’s prediction in both AccNet and GyroNet, but the change in
the number of time steps had no impact on the WhONet model. The performance of the

IDNN across several time steps ranging from 2-14 are presented in Tables 3.9 and 3.10.

Table 3.9. The performance evaluation based on the Cumulative Root Squared Error (CRSE) metric of the Input Delay

Neural Network (IDNN) in each investigated scenario across several time steps on the orientation rate estimation

(GyroNet model).
Quick Changes in
) Sharp
Number of Motorway Roundabout Vehicle Hard Brake c .
ornerin
Time Steps (Rad/s) (Rad/s) Acceleration (Rad/s) &
(Rad/s)
(Rad/s)
2 0.05 0.41 0.38 0.28 0.52
3 0.06 0.62 0.33 0.33 0.56
4 0.06 0.59 0.34 0.35 0.51
5 0.06 0.60 0.38 0.34 0.41
6 0.05 0.61 0.39 0.35 0.43




Chapter 3: Dataset and Methodology for Inertial and Odometry Vehicular Localisation

53

0.05 0.63 0.37 0.32 0.47
0.05 0.60 0.37 0.32 0.46
0.05 0.60 0.35 0.34 0.45
10 0.06 0.61 0.35 0.28 0.51
11 0.06 0.58 0.36 0.25 0.50
12 0.05 0.38 0.38 0.28 0.51
13 0.06 0.62 0.33 0.32 0.51
14 0.06 0.59 0.34 0.35 0.49

Table 3.10. Performance evaluation based on the CRSE metric of the IDNN in each investigated scenario across several

time steps on the AccNet model.

Quick Changes

NunTber Motorway Roundabout in Vehicle Hard Sharl.)
NN of Time . Brake Cornering
(m) (m) Acceleration
Steps (m) (m)
(m)
2 651.41 702.17 571.99 648.57  425.56
4 616.60 655.22 546.76 580.01  373.03
6 610.61 599.22 524.41 57719  346.92
IDNN 8 592.27 595.09 474.55 557.50  292.78
10 3.60 17.96 8.71 15.80 14.55
12 3.23 19.52 8.62 19.36 14.43
14 3.63 20.53 9.58 20.45 12.71
2 17.11 55.58 33.30 64.09 42.64
4 7.87 47.92 22.45 51.81 25.95
6 7.28 29.10 16.56 25.28 22.58
sRNN 8 3.83 21.08 10.27 16.39 14.02
10 3.60 17.96 8.71 15.80 14.55
12 3.23 19.52 8.62 19.36 14.43
14 3.63 20.53 9.58 20.45 12.71
2 21.19 51.54 36.66 62.04 45.82
4 25.01 42.62 30.11 45.05 26.19
GRU
6 20.24 33.72 24.64 23.87 22.20
8 11.33 24.14 15.16 17.59 15.47
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10 3.60 17.96 8.71 15.80 14.55
12 3.23 19.52 8.62 19.36 14.43
14 3.63 20.53 9.58 20.45 12.71
2 32.97 54.21 34.74 60.78 37.53
4 18.20 41.62 26.73 51.94 28.21
6 6.19 33.82 16.48 34.68 20.39
LSTM 8 4.12 21.75 11.49 16.18 13.8227
10 3.60 17.96 8.71 15.80 14.55
12 3.23 19.52 8.62 19.36 14.43
14 3.63 20.53 9.58 20.45 12.71

We also comparatively analyse the performance of the IDNN, GRU, sRNN and
LSTM on compact parameterisation for use in the proposed WhONet for accurate
positional tracking. A detailed comparison of the IDNN, GRU, sRNN and LSTM is
presented on Table 3.11. With an analysis performed on the 180s longer GNSS outage
using the CTE and CRSE metric, the result so obtained shows that the sRNN is able to
provide the most accurate estimations of the NNs compared while using a lower number
of weighted parameters as presented on Table 3.8. Although the IDNN has fewer
weighted parameters compared to the sSRNN, the SRNN offers the best balance between
accuracy and computational complexity. The performance of the sSRNN on the wheel-
speed-based position tracking reveals that the dynamic information from the short-term
memory of the vehicle’s motion is more important than long-term memory and, as such,
is less affected by the vanishing gradient issue of the sSRNN. As such, the sRNN is

selected for use in WhONet.

Table 3.11. Performance comparison of the IDNN, LSTM, GRU and sRNN using the CTE and CRSE metric on the

WhONet model.
Performance CTE (m) CRSE (m)
Dataset Metrics IDNN LSTM GRU sRNN IDNN LSTM GRU sRNN
Max 1.15 1.13 1.12 1.06 5.42 6.20 5.23 5.29
Min 0.00 0.00 0.00 0.00 2.99 4.02 2.90 3.06
V_Vitb3
U 0.44 0.63 0.53 0.55 4.20 497 4.23 4.22
(@‘) 0.19 0.17 0.22 0.17 0.24 0.51 0.26 0.19

V_Vib0lc Max 7.66 6.20 5.52 4.99 10.19 10.41 9.53 9.16
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Min 0.01 0.01  0.03 001 4.89 6.37 488 474
u 3.68 3.02 322 3.0 7.06 803 706  6.64
(B) 2.19 129 068  0.29 1.62 142 139 133
Max 9.05 945 843 580 1474 1529 1415 1341
Min 0.00 0.00  0.00 0.0 4.36 414 459 377

V_Vfb02a
u 3.99 330 365  2.80 7.79 790 801 719
@) 2.33 250 212 145 2.02 248 194 182
Max 5.86 6.13 463 428 1384 1499 13.66 13.68
Min 0.00 0.00  0.00 0.0 5.19 6.02 509 544

V_Vtala
n 3.07 324 210 207 8.18 995 811 771
(@) 1.04 144 107 094 1.99 227 206  2.08
Max 1.65 294 154  1.34 9.87 1499 1033  9.70
Min 0.00 0.00 001 001 4.63 7.61 474 455

V_Vfb02b
n 0.87 153 095  0.76 762 1105 750 729
(@) 0.41 082 045 042 1.53 223 139 128
Max 744 1062 768 694 1009 1425 1039  9.57
Min 0.05 0.0l  0.00  0.00 5.60 6.80 549 5.3

V_Vfb02g
n 5.31 474 498  3.76 8.21 931 815 7.4
(@) 1.97 158 216  1.84 1.21 173 103 111
Max 9.72 503 921 912 1111 1095 1211 10.78
v St Min 0.00 0.00  0.00  0.00 3.49 391 325 346
- n 2.72 213 293 278 6.40 613 654 629
(®) 2.29 117 265 232 1.62 144 197  1.69
Max 4.30 447 401 415 9.60 1098  9.65  9.70
v st Min 0.00 0.00  0.00 0.0 2.85 345 292 271
- n 1.85 1.69 160 161 5.74 6.96 558 570
(@) 0.81 132 08 078 1.49 228 172 161
Max 5.38 454 542 514 1186 1230 1224 12.00
V S3a Min 0.00 0.00 000 001 4.79 565 476  4.61
- n 2.20 267 208  2.06 7.93 935 767 785
() 1.34 137 123 120 1.60 1.60 1.60  1.56

3.2.3.3 Model Training

The machine learning models are trained using the Keras-Tensorflow platform on
the IO-VNB data subsets presented in Table 3.13. The IO-VNB datasets used to train the
WhONet Model are characterised by about 1590 mins of drive time over a total distance
of 1,165 km, whilst the CUPAC trainset is characterised by about 104 mins of drive over
54.9 km. The trained model on the IO-VNB dataset is used to evaluate the challenging
driving scenarios in Chapter 4 and the IO-VNBD longer-term GNSS outage scenarios
discussed in Chapter 5. The model trained on the CUPAC trainsets are used to evaluate

the CUPAC longer-term GNSS outages also discussed in chapter 5. The CUPAC dataset
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is used only in the longer term GNSS outage experiment as the dataset doesn’t provide

any information or label to suggest it contain features on complex driving scenarios. The

models were optimised using the adamax optimiser with initial learning rates as shown

in Table 3.12 and trained using the mean absolute error loss function and a dropout rate

indicated in Table 3.12. Furthermore, the input features to the models were normalised

between 0 and 1 to reduce learning bias. Table 3.12 highlights the parameters

characterising the training of the WhONet model.

Table 3.12. Training parameters of models used in this thesis.

Parameters AccNet GyroNet WhONet
Learning rate 0.004 0.001 0.0007
Dropout rate 10% 10% 5%

Time step See Table 3 See Table 2 1
Hidden layers 2 2 2
Hidden neurons 32 per layer 32 per layer 72 per layer
Batch size 256 256 128

Table 3.13: IO-VNB data subsets used in training the models.

IO-VNB
Dataset Features
V-51 B-road (B4101), roundabout (x9), reverse (x5), hilly road, A4053 (ring-
road), hard-brake, tyre pressure E
B-road (B4112, B4065), roundabout (x18), reverse drive (x8), motorway,
V-S2 dirt road, u-turn (x5), country road, successive left-right turns, hard-brake,
A-roads (A4600), tyre pressure E
V-S3c Roundabout(x4), A-road (A428), country roads, tyre pressure E
Roundabout (x14), u-turn, A-road, successive left-right turns, swift
V-S4 maneuvers, change in speed, night-time, A-road (A429, A45, A46), ring-
road (A4053), tyre pressure E
VoSt Roundabout (x9), A-road (A452), B-road, car park navigation, tyre
pressure E
Roundabout (x30), successive left-right turns, hard-brake (x21), swift
V-M maneuvers(x5), country roads, sharp turn left/right, daytime, u-turn (x1),
u-turn reverse (x7), tyre pressure E
VY2 Roundabout(x9), u-turn/reverse(x1), A-road, B-road, country road, tyre
pressure E
V-Vita2 Round About (x2), A Road (A511, A5121, A444), Country Road, Hard

Brake, Tyre Pressure A
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V-Vta8 Town Roads (Build-up), A-Roads (A511), Tyre Pressure A

V-Vta9 Hard-brakes, A-road (A50), tyre pressure A

V-Vtal0 Round About (x1), A—Road (A50), Tyre Pressure A

V-Vtal3 A-road (A515), country road, hard-brakes, tyre pressure A

V-Vialé Round-About (x3), Hilly Road, Country Road, A-Road (A515), Tyre
Pressure A

V-Vtal7 Hilly Road, Hard-Brake, Stationary (No Motion), Tyre Pressure A

V-Vta20 Hilly Road, Approximate Straight-line travel, Tyre Pressure A

V-Vta2l Hilly Road, Tyre Pressure A

V-Vta22 Hilly Road, Hard Brake, Tyre Pressure A

Gravel Road, Several Hilly Road, Potholes, Country Road, A-Road (A515),
Tyre Pressure A

V-Vta27

V-Vta28 Country Road, Hard Brake, Valley, A-Road (A515)

Hard Brake, Country Road, Hilly Road, Windy Road, Dirt Road, Wet
V-Vta29  Road, Reverse (x2), Bumps, Rain, B-Road (B5053), Country Road, U-Turn
(x3), Windy Road, Valley, Tyre Pressure A

Rain, Wet Road, U-Turn (x2), A-Road (A53, A515), Inner Town Driving, B-
Road (B5053), Tyre Pressure A

V-Vta30

Valley, rain, Wet-Road, Country Road, U-T urn (x2), Hard-Brake, Swift-
V-Vitbl Manoeuvre, A—Road (A6, A6020, A623, A515), B-Road (B6405), Round
About (x3), day Time, Tyre Pressure A

V-Vtb2 Country Road, Wet Road, Dirt Road, Tyre Pressure A

Dirt Road, Country Road, Gravel Road, Hard Brake, Wet Road, B Road
(B6405, B6012, B5056), Inner Town Driving, A-Road, Motorway (M42, M1),

V-Vitb5
Rush hour (Traffic) Round-About (x6), A-Road (A5, A42, A38, A615, A6),
Tyre Pressure A
V-Vibo Approximate straight-line motion, night-time, wet road, hard-brakes, A-

road (AD), tyre pressure A

Round-About (x77), Swift-Manoeuvres, Hard-Brake, Inner City Driving,
V-Vw4 Reverse, A-Road, Motorway (M5, M40, M42), Country Road, Successive
Left-Right Turns, Daytime, U-Turn (x3), Tyre Pressure D

VoV Successive Left-Right Turns, Daytime, Sharp Turn Left/Right, Tyre
-Vw

Pressure D
V-Vwl4b Motorway (M42), Night-time, Tyre Pressure D
VoVwlde Motorway (M42), Round About (x2), A-Road (A446), Night-time, Hard
Brake, Tyre Pressure D
VoVa0l A-Road (A444), Round About (x1), B-Road (B4116) Day Time, Hard Brake,

Tyre Pressure A
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B-Road (B4116), Round About (x5), A Road (A42, A641), Motorway (M1,

V-Vfa02 ] ] o
M62) High Rise Buildings, Hard Brake, Tyre Pressure C
VoVIbOL City Centre Driving, Round-About (x1), Wet Road, Ring Road, Night, Tyre
- a
Pressure C
Motorway (M606), Round-About (x1), City Roads Traffic, Wet Road,
V-Vfb01b

Changes in Acceleration in Short Periods of Time, Night, Tyre Pressure C

Table 3.14. CUPAC data subsets used in training the models.

CUPAC Total Time Driven, Distance Covered,
Features ] .
Dataset Velocity and Acceleration
Aloha 1 Inner-city, Parking lot, High 6.37 mins, 2.31 km, 0.518 to 39.35 km/hr, -0.25
a
P traffic t00.16 g
Aloha 2 Parking lot, Country road, 8.33 mins, 4.46 km, 0.004 to 64.577 km/hr, -0.22
pha Low t00.27 g
Aloha 2 Inner-city, Country road, 8.33 mins, 3.93 km, 0.0 to 55.174 km/hr, -0.21 to
a
P High traffic 021g
) ) ] 8.33 mins, 3.99 km, 0.007 to 70.376 km/hr, -0.36
Alpha 2 Inner-city, High traffic
to0.24 g
) ) ~ 5.89 mins, 1.57 km, 0.0 to 40.374 km/hr, -0.27 to
Bravol Inner-city, Medium traffic
0.16 g
B 5 Residential area, Road 16.92mins 7.46 km, 0.004 to 65.405 km/hr, -0.44
ravo
bumps, Low traffic to033 g

Residential area, Road )
) ] 25.38 mins, 12.51m, 0.0 to 69.48 km/hr, -0.68 to
Bravo3 bumps, Inner-city, Medium

0.31
traffic &
Charlie 1 Country road, Parking lot, 4.86 mins,3.03 km, 0.004 to 62.68 km/hr, -0.26
arlie
Medium traffic to021g
. Inner-city, Country road, 11.23 mins, 5.85 km, 0.004 to 58.104 km/hr, -
Charlie 2 )
Low traffic 038t00.27 g
Delta 1 Highway, Residential area, 8.33 mins, 3.79 km, 0.004 to 53.654 km/hr, -0.19
elta
Low traffic to025¢g

3.2.3.4 Model Evaluation

In this research work, the models are evaluated on two scenarios; challenging sce-
narios as analysed in Chapter 4 and Longer-term GNSS outage scenarios as analysed in

Chapter 5 and 6.
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a) Challenging Scenarios

The data subsets used to investigate the performance of the localisation models on
the challenging scenarios are presented in Tables 3.15 and 3.16. Although then evaluated
on complex scenarios such as quick changes in acceleration, successive left and right
turns, wet road, hard brake, sharp cornering or roundabouts, the performance of the
models are first examined on the V-Vw12 dataset of the IO-VNBD, which presents a
relatively easy scenario; i.e., an approximate straight-line travel on the motorway. The
evaluation of the latter scenario aims at gauging the performance of the technique in a
relatively simple driving situation. Nonetheless, the Motorway scenario could be

challenging to track due to the large distance covered per second.

Before the evaluation of the datasets from each challenging scenario, the datasets are
down sampled from 10 Hz to 1 Hz and broken down into test sequences of 10 seconds
length. For the purpose of investigating the robustness of the positioning models, GNSS
outages are assumed on the datasets in Table 3.15 and 3.16. The maximum, minimum,
average and standard deviation, of the CRSE’s and CTE'’s of all the test sequences
evaluated within each dataset are recorded in each scenario and used in evaluating the

performance of each model.

Table 3.15. IO-VNB data test subset used in the motorway scenario.

I0-VNB ) ) ) )
) Total Time Driven, Distance covered, Velocity and
Scenario Data .
Acceleration
Subset

Motorway V-Vw12  1.75 min, 2.64 km, 82.6 to 97.4 km/hr, -0.06 to +0.07 g

Table 3.16. IO-VNB data test subset used in the challenging scenarios.

. I0-VNB . . . .
Challenging Dat Total Time Driven, Distance Covered, Velocity and
ata
Scenarios Acceleration
Subset
V-Vtall 1.0 min, 0.92 km, 26.8 to 97.7 km/hr, -0.45 to +0.15 g
Roundabout

V-Vib02d 1.5 min, 0.84 km, 0.0 to 57.3 km/hr, —0.33 to +0.31 g
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Changes in V-V{b02e 1.6 min, 1.52 km, 37.4 to 73.9 km/hr, -0.24 to +0.19 g

acceleration  y_yia12 1.0 mins, 1.27 km, 4.7 to 85.3 km/hr, 0.44 to +0.13 g

V-Vwléb 2.0 mins, 1.99 km, 1.3 to 86.3 km/hr, -0.75t0 +0.29 g

Hard Brake V-Vw17 0.5 min, 0.54 km, 31.5 to 72.7 km/hr, -0.8 to +0.19 g

V-Vta9 0.4 min, 0.43 km, 48.9 to 87.7 km/hr, -0.6 to +0.14 g

] V-Vwé6 2.1 mins, 1.08 km, 3.3 to 40.7 km/hr, -0.34 to +0.26 g
Sharp Cornering

and Successive Left V-Vw7 2.8 mins, 1.23 km, 0.4 to 42.2 km/hr, —0.37 to +0.37 g
and Right Turns

V-Vw8 2.7 mins, 1.12 km, 0.0 to 46.4 km/hr, —0.37 to +0.27 g

V-Vtb8 1.2 mins, 1.35 km, 60.9 to 76.5 km/hr, -0.35 t0 0.08 g

Wet Road V-Vtb1l 0.7 min, 0.84 km, 65.1 to 75.3 km/hr, -0.05t0 0.12 g

V-Vtb13 2.1 mins, 0.99 km, 7.5 to 43.3 km/hr, -0.31 t0o 0.22 g

b) Long-Term Outages

The data subsets used in investigating the performance of the WhONet models and
the physical model in the longer-term outage scenarios are presented in Tables 3.17 and
3.18. The models are evaluated on longer GNSS scenarios of 30s, 60s, 120s and 180s. In
the longer term GNSS outage scenarios, each dataset is broken down into test sequences
of 30s, 60s, 120s or 180s depending on the outage scenario being evaluated. The
maximum, minimum, average and standard deviation, of the CRSE’s and CTE’s of all
the test sequences evaluated within each dataset are recorded in each scenario and used

in evaluating the performance of each model.

GPS outages are assumed on the test scenarios, for the purpose of the investigation

with a prediction frequency of 1s just as in the challenging scenario.

Table 3.17. 10-VNB data subsets used for the longer GNSS outage scenario performance evaluation

I0-VNB Features Total Time Driven, Distance
Dataset Covered, Velocity and Acceleration
V-Vtb3 Reverse, Wet Road, Dirt Road, 13.8 mins, 0.71 km, 0.0 to 37.5 km/hr, -
Gravel Road, Night-time, Tyre 0.23t00.33 g
Pressure A
V_Vib0lc Motorway (M62), wet-road, heavy 10.5 mins, 10.66 km, 0.2 to 104.5
traffic, nighttime, tyre pressure C km/hr, -0.36 t0 0.38 g
V_Vib02a Motorway (M1), roundabout (x2), 59.9 mins, 96.5 km, 0.0 to 122.3 km/hr,
A-road (A650), nighttime, hard- -05t0037 g

brakes, tyre pressure D
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V_Vtala Wetroad, gravel road, country 43.0 mins, 40.74 km, 0.0 to 103.4

road, sloppy roads, roundabout km/hr, -0.54t00.35 g
(x3), hard-brake on wet road, tyre
pressure A
V_Vib02b Roundabout (x1), bumps, 18.3 mins, 7.69 km, 0.0 to 84.3 km/hr, -
successive left-right turns, hard- 05t0035¢g

brakes (x7), swift-maneuvers,
nighttime, tyre pressure D
V_Vib02g Motorway (M1), A-road (A42, 45.3 mins, 63.56 km, 0.0 to 119.4
A444, A5), country road, km/hr, -0.51t00.35 g
roundabout (x2), hard-brakes,
nighttime, tyre pressure D
V-St6 Motorway(M40), daytime, tyre 85.6 mins, 113.63 km, 0.0 to 122.1

pressure E km/hr, -0.32t0 0.35 g
V_St7 Motorway (M40), residential 74.0 mins, 90.06 km, 0.0 to 117.9
roads, A-road (A46), tyre pressure km/hr, -0.3t00.3 g
E
V-S3a  Round-about (x15), u-turn/reverse 41.1 mins, 26.0 km, 0.0 to 98.0 km/hr, -
drive (x4), motorway (M6), A-road 057to0.4¢g

(A4600, A426), hard-brake, swift
maneuvers, country roads, change
in speed, night-time, sharp turn

left/right, tyre pressure E

Table 3.18. CUPAC data subsets used for the longer GNSS outage scenario performance evaluation

Total Time Driven, Distance Covered, Velocity and
CUPAC Dataset

Acceleration
Charlie3 13.8 mins, 0.71 km, 0.004 to 77.252 km/hr, -0.42t0 0.25 g
Charlie 4 10.5 mins, 10.66 km, 0.007 to 58.694 km/hr, -0.34 t0 0.31 g
Delta 2 59.9 mins, 96.5 km, 0.004 to 37.224 km/hr, -0.26 t0 0.25 g
Delta 3 43.0 mins, 40.74 km, 0.004 to 60.75 km/hr, -0.36 to 0.25 g

3.3 Summary

This chapter defined the datasets and methodology used in designing the deep
learning and physics models for vehicular localisation. Firstly, the chapter introduced
the IO-VNB dataset and CUPAC dataset which were used to train the deep learning

models and used for the performance analysis in the rest of the thesis. The chapter then
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discussed the methodology used in this thesis. The ground-truth formulations needed
as targets for training the deep learning models and needed as baselines for comparing
during the model evaluation were described. Furthermore, we defined the physics
models and deep learning models for position estimation using the accelerometer and
wheel encoder as well as orientation rate estimation using the gyroscope. We defined
the metric used to evaluate the performance of each model and the training procedure
for each of the deep learning models. Finally, we justified the selection of the IDNN for
AccNet and GyroNet as well as sSRNN for the WhONet and described the datasets
used in evaluating the performance of each model in the remainder of this thesis. The
choice of the IDNN and the sSRNN highlights the vehicular positioning problem as one
characterised by short memory (a characteristics not previously known prior to this

research).

In the next chapter, the results from the performance analysis of the deep
learning models and physics models are evaluated on the challenging scenarios

discussed in Section 3.2.3.4.a.



Chapter 4
Results and Analysis on Position and
Orientation Estimation in Challenging

(Complex) GNSS Environments.

In the previous chapter, we described the datasets, trained deep learning models
and physics models, in this chapter, we will now apply the trained deep learning
models and physics models to estimate the position and orientation of the vehicle in
challenging or complex Scenarios. The deep learning models; AccNet, WhONet and
GyroNet, are compared to their corresponding physics derivations: APM, WPM and
GPM using several performance metrics, all defined in Chapter 3. The superiority of
the deep learning models over the physics models are demonstrated over six
scenarios we consider challenging; Motorway, Roundabout, Quick change in accelera-

tion, Successive left and right turns and sharp cornering, Hard brake and Wet road.
4.1. Challenging Localisation Environments

Previous research on vehicle positioning does not take into consideration complex
scenarios such as hard brake, sharp cornering or roundabouts. Hence, the evaluation of
the performance of positioning algorithms present in most published works may not
accurately reflect real-life vehicular driving experience. Moreover, as those complex
scenarios present strong challenges for vehicle tracking, it seems essential for the

reliability of the algorithms that they are assessed under such scenarios:
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41.1 Roundabout

Roundabouts present a particular struggle due to their shape. The circular and
unidirectional traffic flow makes it a challenge to track the vehicle’s orientation and
displacement particularly due to the continuous change in the vehicle's direction whilst

navigating the roundabout. Different roundabout sizes were considered in this study.
4.1.2 Quick Changes in Acceleration

The accuracy of the displacement estimation of the inertial sensors are affected by
quick and varied changes to the acceleration of the vehicle within a short period of
time. This is particularly a challenge as the inertial sensors struggle to capture the

quick change in the vehicle’s displacement thereafter.
41.3 Hard Brake

According to (Simons-Morton et al. 2009), hard brakes are characterised by a
longitudinal deceleration of <-0.45 g. They occur when the brake pad of the vehicle has
a large force applied to it. The sudden halt to the motion of the vehicle leads to a steep
decline in the velocity of the vehicle, thus making it difficult to predict the vehicle
coming to a stop and to track the motion of the vehicle thereafter. This scenario poses a

major challenge to the displacement estimation of the vehicle.
414 Successive Left and Right Turns and Sharp Cornering.

The sudden and consecutive change in the direction of the vehicle also poses a
challenge to the orientation estimation of the vehicle. The inertial sensors struggle to
accurately capture the sudden sharp changes to the orientation of the vehicle as well as

continuous consecutive changes to the vehicle in relatively short periods of time.
415 WetRoad

When a vehicle is driven over a wet/muddy road, the wheels tend to slip whilst
driving. This introduces uncertainties to the wheel speed estimation, leading to errors

in the displacement calculation of the vehicle.
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4.2. Results and Discussion

The performance of the dead reckoned APM, WPM and GPM as well as the
proposed deep learning approaches (WhONet, AccNet and GyroNet) are analysed
comparatively across several GPS outage simulated sequences, each of 10s length. The
positioning techniques are first analysed on a less challenging scenario involving
vehicle travel on an approximate straight line on the motorway to gauge their
performance on a relatively easy driving situation. Further analysis is then done on
more challenging scenarios such as hard brake, roundabouts, quick changes in
acceleration and sharp cornering and successive left and right turns using the
performance metrics defined in Chapter 3. Nonetheless, the motorway scenario could
be considered challenging due to the large distance covered per second. GPS outages
are assumed on the test scenarios with a prediction frequency of 1s. Each test set used
in the challenging (complex) scenario is divided into several test sequences of 10
seconds length each. The maximum, minimum, average and standard deviation, of the
CRSE’s and CTE’s of all the test sequences evaluated within each dataset are recorded

in each scenario and used in evaluating the performance of each model.
4.21. Motorway Scenario

In evaluating the performance of the physics models and the deep learning
approaches on vehicular motion tracking, both techniques are investigated on a less
challenging trajectory characterised by an approximate straight-line drive on the
motorway. The results, as shown on Table 4.1-4.3, shows that across all 10 test
sequences evaluated on the motorway scenario, the deep learning model significantly
outperforms the physics model across all metrics considered. The APM, WPM and
GPM records its best CRSE of 1.21 m, 0.36 m and 0.07 rad/s respectively compared to
0.84 m, 0.13 m and 0.02 rad/s respectively of the AccNet, WhONet and GyroNet.
Essentially, this shows that WhONet is able to reduce the positional CRSE of the WPM
by up to 83% after about 268 m of travel. Furthermore, the AccNet offers up to an 89%
improvement on the displacement max CRSE metric of the APM and the GyroNet
offers an improvement of 69% over the GPM’s CRSE. Even more, it can be seen that the

WhONet provides better position estimations compared to the AccNet as is shown on
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Figures 4.1-4.4. Achieving a CTE best of 0.0001 m Northwards and 0.0002 m Eastwards,
the results also indicate that it is possible to localise the vehicle with lane-level
accuracy using WhONet and GyroNet within 10 s of travel. Being the lowest errors
across all scenarios evaluated as shown in Figures 4.5 and 4.6 we can infer that the
motorway scenario was the least challenging scenario due to minimal accelerations
and directional changes. Furthermore, the reliability of WhONet in consistently
tracking the vehicles” motion with such accuracy is highlighted by its low standard

deviation of 0.04. Figure 4.11b shows the trajectory of the vehicle along the motorway.

Table 4.1. The experimental results of AccNet and APM on the motorway scenario.

0 Position Estimation Error (m) Total Number
Performance Distance of Test
VNB . CTE CRSE
Metrics Travelled Sequences
Dataset
AccNet APM  AccNet APM (m) evaluated
Max 2.56 30.30 3.23 30.30 268
Min 0.19 0.28 0.84 1.21 235
V_wl2 10
(W 0.96 14.41 1.93 14.80 250
(o) 0.84 10.00 0.84 9.50 11

Table 4.2. The experimental results of WhONet and WPM on the motorway scenario.

0 Position Estimation Error (m) Total Number
Performance Distance of Test
VNB . CTE CRSE
Metrics Travelled Sequences
Dataset
WhONet WPM WhONet WPM (m) evaluated
Max 0.23 1.34 0.33 1.96 268
Min 0.00 0.04 0.13 0.36 235
V_wl2 10
(L) 0.10 0.52 0.26 1.07 250
(0) 0.08 0.46 0.04 0.45 11

Table 4.3. The experimental results of GyroNet and GPM on the motorway scenario.

I0-VNB Performance Orientation Rate Estimation Error Total
Dataset Metrics (rad/s)

Number
Distance of Test




Chapter 4: Position and Orientation Estimation in Challenging (Complex) GNSS Environment. 67

CTE CRSE Travelled Sequences
(m) evaluated
GyroNet GPM GyroNet GPM
Max 0.06 0.15 0.06 0.19 268
Min 0.00 0.03 0.02 0.07 235
V_w12 10
(L) 0.03 0.10 0.04 0.13 250
(0) 0.02 0.04 0.01 0.04 11
Position CRSE for the Motorway Scenario
16 4= AccNet —
APM d
1% 1 — whoNet 7
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Figure 4.1. Sample evolution of the estimation error over time in the motorway scenario based on the position CRSE
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Figure 4.2. Sample evolution of the estimation error over time in the motorway scenario based on the position CTE
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Figure 4.3. Sample evolution of the estimation error over time in the motorway scenario based on the orientation rate
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Figure 4.4. Sample evolution of the estimation error over time in the motorway scenario based on the orientation rate
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Figure 4.5. The comparison of the CRSE and CTE performance of the WhONet, WPM, AccNet and APM across all

investigated challenging scenarios on the displacement estimation.
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Figure 4.6. The comparison of the CRSE and CTE performance of the GyroNet and GPM across all investigated

challenging scenarios on the orientation rate estimation.

4.2.2. Roundabout Scenario

The roundabout scenario is one of the most challenging for both the estimation
of vehicular position and orientation rate. The difficulty encountered by the physics
models and deep learning models in accurately tracking the vehicle’s motion is
graphically shown in Figure 4.7-4.10 with a comparative illustration to other
investigated scenarios presented in Figures 4.5 and 4.6. The results so obtained as
presented on Table 4.4-4.6 show that the deep learning models recorded a lower
position estimation (maximum CRSE and CTE of 17.96 m and 16.80 m respectively for
AccNet, and 7.35 m and 1.66 m respectively for WhONet) than the physics models
(maximum CRSE and CTE displacement of 171.92 m for APM and 8.61 and 7.32
respectively for the WPM) as well as a lower orientation rate (maximum CRSE and
CTE of 0.38 rad/s and 0.04 rad/s, respectively) than the GPM (maximum CRSE and CTE
of 5.71 rad/s and 2.14 rad/s, respectively). The relatively lower standard deviation
across all analysed metrics is evidence that the deep learning models are able to more
consistently track the vehicle’s position and orientation on the roundabout scenario but
less consistently on other investigated scenarios. As expected, the WhONet provides an
improvement of up to 99% over the AccNet position estimations across the two
datasets investigated and numerous test sequences evaluated. The roundabout

scenario study was carried out across 13 test sequences over a maximum travel
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distance of approximately 262 m. Figure 4.11a shows a sample trajectory of the vehicle

on the roundabout scenario analysis.

Table 4.4. The experimental results of AccNet and APM on the roundabout scenario.

Position Estimation Error (m) Total Number
IO-VNB Performance Distance of Test
. CTE CRSE
Dataset Metrics Travelled Sequences

AccNet APM AccNet APM (m) evaluated

Max 1680 17192 1796 17192 262
Min 201 2934 461 3544 85
V_Vtall 5
(L) 761 12395 1209 12547 159
(o) 563 5612 576 5355 67
Max 1501 9823 1501 9823 151
Min 050 1943 236 1943 14
V_Vfb02d 8
(L) 424 4856  6.66  51.37 96
(o) 477 2737 424 2584 52

Table 4.5. The experimental results of WhONet and WPM on the roundabout scenario.

Position Estimation Error (m) Total Number
IO-VNB Performance Distance of Test
. CTE CTE
Dataset Metrics Travelled Sequences

WhONet WPM WhONet WPM (m) evaluated

Max 166 731 735 861 262
Min 000 000 0.1 0.78 85

V_Vtall 5
(W) 056 230 175 395 159
(0) 048 244 266 285 67
Max 022 2091 049 937 151
Min 000 080 014 511 14

V_Vfb02d 8
(W) 0.11 194 030 670 96

(0) 0.07 0.87 0.09 1.90 52
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Table 4.6. The experimental results of GyroNet and GPM on the roundabout scenario.

Orientation Rate Estimation Error
Total Number

(rad/s) )
IO-VNB  Performance Distance  of Test
Dataset Metrics CTE CRSE Travelled Sequences
(m) evaluated
GyroNet GPM GyroNet GPM

Max 0.06 6.71 0.61 6.71 262

Min 0.00 0.62 0.08 0.62 85
V_Vtall 5

(W 0.03 2.61 0.21 3.26 159

(o) 0.02 2.15 0.19 2.23 67

Max 0.09 2.43 0.35 2.44 151

Min 0.00 0.05 0.03 0.17 14
V_Vib02d 8

(W 0.04 0.49 0.15 0.66 96

(o) 0.03 0.77 0.12 0.72 52

Position CRSE for the Roundabout Scenario
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Figure 4.7. Sample evolution of the estimation error over time in the roundabout scenario based on the position

CRSE
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Figure 4.8. Sample evolution of the estimation error over time in the roundabout scenario based on the position CTE
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Figure 4.10. Sample evolution of the estimation error over time in the roundabout scenario based on the Orientation
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(a) (b)

Figure 4.11. Sample trajectory of the (a) V-Vtall roundabout data subset of the Inertia and Odometry Vehicle

Navigation Dataset (I0-VNBD) and (b) V-Vw12 motorway data subset of the IOVNBD.
4.2.3. Quick Changes in Vehicle Acceleration Scenario

The results presented in Table 4.7-4.9 illustrate the performance of the deep
learning-based models over the physics models in the quick changes in acceleration
scenario. From observation, it can be seen that the deep learning models significantly
outperform the physics models across all metrics employed, with a maximum CRSE of
2.82 m, 7.45 m, 0.34 rad/s for the WhONet, AccNet and GyroNet against 4.64 m, 79.41
m and 0.41 rad/s for the WPM, APM and GPM over a maximum distance of
approximately 192 m covered on the V_Vtall dataset. However, on the V_Vfb02d
dataset, over a maximum distance of 218 m, the WhONet, AccNet and GyroNet
obtained a maximum CRSE of 2.27 m, 8.62 m, 0.20 rad/s respectively, while the WPM,
APM and GPM obtained a maximum CRSE of 5.39 m, 40.26 m, 0.53 rad/s respectively.
This shows, as expected, that the physics models and deep learning models found it
more challenging to estimate the position of the vehicle compared to the orientation

rate.

Furthermore, considering both datasets, the WhONet, AccNet and GyroNet
obtain a maximum CTE of 1.62 m, 6.99 m and 0.05rad/s compared to that of the WPM,
APM and GPM recorded as 38.92 m, 26.23 m and 3.72 rad/s across all 15 test sequences

evaluated. By comparison, the WhONet offers up to a 99% error reduction on the
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AccNet. Figure 4.12-4.15 graphically illustrates the evolution of the error across sample
sequences on the CRSE and CTE metrics. A comparison of the performance of both

approaches across all scenarios investigated is further presented in Figures 4.5 and 4.6.

Table 4.7. The performance of AccNet and APM on the quick changes in acceleration scenario.

Position Estimation Error (m) Total Number
IO-VNB Performance Distance of Test
. CTE CRSE
Dataset Metrics Travelled Sequences

AccNet APM AccNet APM (m) evaluated

Max 424 7941 745 7941 192
Min 010 23.60 238 2360 123
V_Vtall 9
(L) 165 4578 468 4578 156
(o) 151 1720 194 1720 19
Max 699 4026 8.62 4026 218
Min 023 201 293 1662 145
V_Vfb02d 6
(L) 320 2241 630 2679 178
(o) 219 1457 218 994 24

Table 4.8. The performance of WhONet and WPM on the quick changes in acceleration scenario.

Position Estimation Error (m) Total Number
IO-VNB Performance Distance of Test
. CTE CRSE
Dataset Metrics Travelled Sequences

WhONet WPM WhONet WPM (m) evaluated

Max 1.20 3.35 2.82 4.64 192
Min 0.00 0.08 0.17 1.49 123
V_Vtall 9
(L) 0.53 1.65 1.14 2.94 156
(o) 0.39 117 081 1.01 19
Max 1.62 3.72 227 539 218
V_Vfbo2d Min 0.00 0.20 0.14 2.16 145 6

(%) 0.63 1.83 0.89 3.76 178




Chapter 4: Position and Orientation Estimation in Challenging (Complex) GNSS Environment. 75
(o) 0.38 1.03 049 113 24
Table 4.9. The performance of GyroNet and GPM on the quick changes in acceleration scenario.
Orientation Rate Estimation Error
Total Number
(rad/s) .
IO-VNB Performance Distance of Test
Dataset Metrics CTE CRSE Travelled Sequences
(m) evaluated
GyroNet GPM GyroNet GPM
Max 0.05 0.39 0.34 0.41 192
Min 0.00 0.04 0.04 0.14 123
V_Vtall 9
(%) 0.02 0.15 0.16 0.27 156
(0) 0.02 0.12 0.10 0.08 19
Max 0.03 0.53 0.20 0.53 218
Min 0.00 0.11 0.04 0.18 145
V_Vib02d 6
(%) 0.02 0.27 0.11 0.32 178
(0) 0.01 0.15 0.05 0.12 24
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Figure 4.12. Sample evolution of the estimation error over time in the quick changes in acceleration scenario based on

the position CRSE
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Figure 4.15. Sample evolution of the estimation error over time in the quick changes in acceleration scenario based

on the Orientation rate CTE.
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4.2.4. Hard Brake Scenario

The performance of the deep learning models over the physics models in the
hard-brake scenario is evaluated over 14 test sequences averaging 170 m of travel with
a 234 m maximum journey length. From Table 4.10-4.12, we observe that much to our
expectations, the hard brake scenario proves to be more of a challenge for the
accelerometer than the wheel encoder or the gyroscope, as the APM struggles to
accurately estimate the vehicle’s position within the simulated GNSS outage period. As
further emphasized on Figures 4.16 - 4.19, the deep learning models significantly
outperform the physics models across all performance metrics employed. The WhONet
model offers up to a 91% reduction of the WPM’s CRSE, AccNet offers an 89%
improvement compared to the APM’s estimation, and the GyroNet offers up to 83%
improvement on the GPM’s estimations. The reliability of the WhONet, AccNet and
GyroNet in consistently correcting their corresponding physics model estimations to
such accuracy is further established by their o value of 0.01, 4.23 and 0.48 respectively.
The WhONet outperforms the AccNet in the vehicle’s position estimation with a
maximum CRSE of 0.88 m compared to 15.80 m of the of the AccNet.

Table 4.10. The performance of AccNet and APM on the hard brake scenario.

Position Estimation Error (m) Total Number
IO-VNB Performance Distance of Test
. CTE CRSE
Dataset Metrics Travelled Sequences

AccNet APM AccNet APM (m) evaluated

Max 1475 133.12 15.80 133.12 234
Min 0.39 12.01 1.53 14.09 87
V_Vwléb 11
(%) 4.82 57.13 7.44 57.34 170
(0) 4.84 38.99 4.99 38.75 50
Max 3.59 41.56 12.03  41.56 175
Min 2.78 22.95 9.37 23.03 157
V_Vw17 3
(%) 3.19 32.26 10.70  32.30 169

(0) 040 931 133 927 8
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Table 4.11. The performance of WhONet and WPM on the hard brake scenario.

Position Estimation Error (m) Total Number
IO-VNB Performance Distance of Test
CTE CRSE
Dataset Metrics Travelled Sequences

WhONet WPM WhONet WPM (m) evaluated

Max 0.81 7.31 088 9.9 234
Min 000 000 010  0.80 87
V_Vwl6b 11
(1) 020 230 036  4.04 170
(0) 023 244 022  3.04 50
Max 037 291 087  8.07 175
Min 020 080 0.6l 5.52 157
V_Vwl7 3
(1) 0.26 194 078 640 169
(0) 0.01 087  0.01 1.19 8

Table 4.12. The performance of GyroNet and GPM on the hard brake scenario.

Orientation Rate Estimation Error

Total Number
(rad/s) )
IO-VNB Performance Distance of Test
Dataset Metrics CTE CRSE Travelled Sequences
(m) evaluated
GyroNet GPM GyroNet GPM
Max 0.02 0.60 0.36 2.08 234
Min 0.00 0.01 0.03 0.08 87
V_Vwléb 11
(W) 0.01 0.12 0.10 0.35 170
(0) 0.01 0.19 0.09 0.57 50
Max 0.02 0.05 0.05 0.13 175
Min 0.00 0.01 0.05 0.09 157
V_Vwl7 3
(W) 0.02 0.03 0.05 0.11 169

(o) 0.00 0.02 0.00 0.02 8
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Figure 4.19. Sample evolution of the estimation error over time in the hard brake scenario based on the Orientation

rate CTE.
4.2.5. Sharp Cornering and Successive Left-Right Turns Scenario

The sharp cornering and successive right-left turn scenario appears to be one of
the most challenging for the inertial physics models on the CTE and CRSE metric (see
Figures 4.22-4.25). This scenario investigation involves analysis on 43 test sequences
over a maximum travel distance of approximately 115m. Reporting on the results
presented in Table 4.13-4.15, across all three datasets, it can be observed that the APM
obtained a maximum positional CRSE and CTE of 92.06m and 92.06m respectively,
comparatively, the CRSE of the AccNet is 12.71m and the CTE is 8.49m. The WPM also
obtained a CRSE and CTE of 5.08m and 8.19m respectively, compared to the WhONet
which obtained a CRSE and CTE of 0.50m and 0.61m respectively. On the orientation
rate, the GyroNet performs significantly better than the GPM with a maximum CRSE
and CTE of 0.41rad/s and 0.13rad/s against the GPM’s performance of 4.29rad/s and
3.47rad/s. These results further highlight the capability of the deep learning models to
significantly improve vehicular localisation during GPS outages with their reliability
assured by their relatively low standard division. Like in other scenarios analysed, the
WhONet outperforms the AccNet by up to 99% and continuously proves to be a
robust, accurate and reliable option compared to the AccNet. An example trajectory of
the vehicle during the sharp cornering and successive left and right turn is shown in

Figure 4.11b.
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Table 4.13. The performance of AccNet and APM on the sharp cornering and successive left and right turns

scenario.

10 Position Estimation Error (m) Total Number
Performance Distance of Test
VNB . CTE CRSE
Metrics Travelled Sequences
Dataset
AccNet APM AccNet APM (m) evaluated
Max 294 9206 984  92.06 107
Min 013 5442 143 5442 60
V_Vwbé6 12
(W) 123 7561 505 75.61 86
(0) 098 1061 246 10.61 12
Max 762 6054 1271 60.54 115
Min 0.10 2.02 2.72 5.20 16
V_Vw7 15
(W) 286 1887 742 2215 70
(0) 206 17.77 285 16.01 25
Max 849 5883 11.06 58.83 109
Min 1.21 6.51 2.77 7.41 36
V_Vw8§ 16
(W) 424 2655 741  29.28 73
(0) 238 17.79 248 1597 20

Table 4.14. The performance of WhONet and WPM on the sharp cornering and successive left and right turns

scenario.

10 Position Estimation Error (m) Total Number
Performance Distance of Test
VNB . CTE CRSE
Metrics Travelled Sequences
Dataset
WhONet WPM WhONet WPM (m) evaluated
Max 0.35 3.68 0.57 5.00 107
Min 0.00 0.09 0.11 0.73 60
V_Vwbé6 12
(W 0.14 0.97 0.36 2.75 86
(0) 0.11 1.15 0.09 1.42 12

V_Vw7 Max 0.50 5.08 0.61 6.90 115 15
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Min 0.00 0.03 0.08 1.50 16
(W) 0.21 2.06 0.36 3.87 70
(0) 0.14 1.40 0.13 1.33 25
Max 0.46 4.05 0.57 8.19 109
Min 0.00 0.05 0.11 1.13 36
V_Vw8 16
(L) 0.17 1.36 0.37 4.09 73
(o) 0.12 1.30 0.12 2.04 20

Table 4.15. The performance of GyroNet and GPM on the sharp cornering and successive left and right turns

scenario.

Orientation Rate Estimation Error

Total Number
10- (rad/s)

VNB Performance Distance of Test
Metrics CTE CRSE Travelled Sequences
Dataset
(m) evaluated
GyroNet GPM GyroNet GPM
Max 0.13 3.08 0.27 4.64 107
Min 0.00 0.02 0.08 0.32 60
V_Vwb 12
(W 0.05 1.02 0.16 1.59 86
(0) 0.04 0.97 0.05 1.37 12
Max 0.09 3.99 0.53 4.10 115
Min 0.00 0.03 0.07 0.41 16
V_Vw7 15
(W 0.03 1.63 0.23 2.18 70
(0) 0.03 1.24 0.12 1.18 25
Max 0.08 3.80 0.36 4.02 109
Min 0.00 0.04 0.04 0.51 36
V_Vw8 16
(W) 0.03 1.62 0.18 1.97 73

(0) 0.02 1.46 0.09 1.25 20
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Figure 4.24. Trajectory of V-Vw8 sharp cornering and successive left and right turns data subset of the IO-VNBD.

4.2.6. Wet Road

Wet road conditions are one of the most critical driving scenarios that

challenges an accurate tracking of wheeled vehicles due to wheel drifts, particularly on

wet and muddy roads. However, the results presented on Table 4.16-4.18 show that the

WhONet is able to capture the uncertainties caused by the wheel slippage. As reported

on Table 4.16-4.18, it can be observed that the standard deviations of the error

estimations of WhONet on datasets V_Vtb8 and V_Vtbl1 are in the range of 0.01- 0.02

on both the CTE and CRSE metrics, making the WhONet a reliable method for tracking

in such scenarios. On the max CRSE and CTE metricc the WhONet achieves a

percentage error reduction of up to 94% and 97%, respectively, compared to that



Chapter 4: Position and Orientation Estimation in Challenging (Complex) GNSS Environment. 85

obtained from the WPM. The WhONet also offers up to a 99% improvement on its
position estimation counterpart, AccNet. On the orientation rate estimation, the
GyroNet outperforms the GPM with a maximum CRSE of 0.25 rad/s compared to 2.59
rad/s. The wet road scenario was analysed over 22 test sequences, with a sample

evolution of the error over time shown on Figures 4.25-4.28

Table 4.16. The performance of AccNet and APM on the wet road scenario.

Position Estimation Error (m) Total Number
IO-VNB Performance Distance of Test
. CTE CRSE
Dataset Metrics Travelled Sequences

AccNet APM AccNet APM (m) evaluated

Max 231 1842 347 1842  202.8
Min 006 343 162 420 1804
V_Vtb8 6
(L) 121 1081 227 1126 1927
(o) 081 609 066 582 8.4
Max 087 866 368 866  199.7
Min 030 272 196 442 1913
V_Vibl1 4
() 059 569 282 654 1945
(o) 028 297 086 212 34
Max 544 4100 937 4100 1149
Min 017 411 318 1042 463
V_Vitb13 12
(L) 168 2349 609 2528  79.2
(o) 145 1386 222 1180  24.2

Table 4.17. The performance of WhONet and WPM on the wet road scenario.

Position Estimation Error (m) Total Number
IO-VNB Performance Distance of Test
. CTE CRSE
Dataset Metrics Travelled Sequences

WhONet WPM WhONet WPM (m) evaluated

Max 0.07 2.21 0.19 2.21 202.8
V_Vtb8 6
Min 0.00 0.02 0.08 1.28 180.4
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(1) 0.03 117 014 166 1927
(o) 002 069 002 039 8.4
Max 0.06 1.81 014 228 1997
Min 000 055  0.05 1.03 1913
V_Vitbl1 4
(1) 0.04 107 011 163 1945
(o) 0.01 046 002 049 3.4
Max 182 401 233 536 1149
Min 000 003  0.06 1.85 46.3
V_Vitb13 12
(1) 0.59 128 075 353 79.2
(o) 0.39 122 049 117 242

Table 4.18. The performance of GyroNet and GPM on the wet road scenario.

Orientation Rate Estimation Error
Total Number

I10- (rad/s) .
VNGB Performance Distance of Test
Metrics CTE CRSE Travelled Sequences
Dataset
(m) evaluated
GyroNet GPM GyroNet GPM
Max 0.02 0.04 0.09 0.12 202.8
Min 0.00 0.00 0.02 0.05 180.4
V_Vwé6 6
(W) 0.01 0.02 0.04 0.09 192.7
(0) 0.00 0.01 0.02 0.03 8.4
Max 0.03 0.08 0.05 0.15 199.7
Min 0.01 0.03 0.03 0.12 191.3
V_Vw7 4
(W) 0.02 0.06 0.04 0.14 194.5
(0) 0.01 0.03 0.00 0.01 3.4
Max 0.03 2.59 0.25 2.59 114.9
Min 0.00 0.00 0.05 0.09 46.3
V_Vws8 12
(W 0.01 0.74 0.12 1.00 79.2

(0) 0.01 0.81 0.06 0.81 24.2
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4.3. Summary

In this chapter, the deep learning models (WhONet, AccNet and GyroNet) and
physics models (WPM, APM and GPM) described in Chapter 3, were evaluated on
several complex scenarios; motorway, roundabout, hard brake, quick changes in
acceleration, sharp cornering and successive left and right turns and wet road
scenarios. Through a comparison using the performance metrics defined in chapter 3,
we showed that the wheel encoder is a better sensor for position estimation in
challenging driving scenarios. We further showed that the WhONet error estimation
model is able to provide a more robust and accurate vehicle positioning compa-
red to its counterpart AccNet. A comparison of the performance of the deep learn-

ing models compared to the physics model can be found in Figures 4.5 and 4.6.

Having established the superiority of the WhONet model for vehicular positioning
in specific complex driving environments during short-term GNSS outages, we set
out to investigate the performance of the WhONet in longer GNSS outages in the
next chapter. The orientation estimation is not further analysed in the next chapter as
orientation estimation in longer term GNSS outages is already an established field.

For more details on this, readers can see (Brossard et al. 2020).



Chapter 5
Result and Analysis on Position Estimation in

Longer Term GNSS Outages

Having established the superiority of the WhONet and wheel encoder based
measurement for position estimation in the previous chapter, the robustness, accuracy
and reliability of WhONet (a NN model) is for the first time evaluated over longer term
GNSS outages (defined as up to 180 s) in this chapter. We however, focus on position
estimation only as orientation estimation in longer term outages is a well-established

research area with state-of-the-art performances such as found in (Brossard et al., 2020).

The problem of vehicular localisation in longer term GNSS outages (defined as
outages up to 180 seconds) is particularly important for navigation in tunnels and
valleys but also finds relevance in other GNSS outage scenarios such as navigation
under bridges, through dense tree canopies, urban canyons, etc. The longer term
GNSS outage scenarios studied are characterised by a mixture of complex scenarios as
discussed in the previous chapter, and more scenarios as can be found in everyday
driving. To assess the relevance of WhONet for vehicular positioning in everyday
navigation in longer term GNSS absence, its performance is evaluated over a total
distance of 493 km in assumed GNSS outages of 30s, 60 s, 120 s and 180 s using the 1O-
VNBD and CUPAC datasets as described in Chapter 3.




Chapter 5: Position Estimation in Longer Term GNSS Outages 90

5.1 Performance Evaluation on the Longer term GNSS outages
5.1.1 30s GNSS Outage Scenario

In this section, the result from the 30s GNSS outage experiment using the 10-
VNBD and CUPAC datasets are discussed.

5.1.1.1 IO-VNB Dataset

In the 30 seconds GNSS outage scenario, WhONet provides an error reduction on
the WPM’s estimation by up to 92%. As presented on Tables 5.1, the WhONet achieves
the best average CTE and CRSE of 0.23 m and 0.67 m compared to 0.84 m and 2.31 m of
the WPM over a max distance per test sequence of 987 m of all 688 sequences evaluated
on the IO-VNB dataset (see Table 3.17). Moreover, on the maximum metric, the
WhONet achieves the best CTE and CRSE of 0.72 m and 1.35 m respectively while the
WPM achieves the best CTE and CRSE of 5.75 m and 8.37 m respectively.

The robustness of the WhONet is further emphasised by the low standard
deviation of 0.18 obtained compared to 1.14 of the WPM as reported by Table 5.1. The
result so obtained shows that the WhONet is able to significantly improve the accuracy
of wheel odometry in the 30s outage scenario as shown in Figures 5.1 and 5.2. The
evolution of the WhONet and WPM error estimations over time on both the CTE and

CRSE metric is illustrated on Figures 5.3.
5.1.1.2 CUPAC Dataset

On the CUPAC dataset (see Table 3.18), the WhONet also obtains the best average
CTE and CRSE of 0.34 m and 0.94 m compared to 1.88 m and 7.13 m of the WPM over a
max distance per test sequence of 629 m of all 121 sequences evaluated, as shown on
Table 5.2. As well, on the maximum metric, the WhONet obtains the best CTE and
CRSE of 0.84 m and 1.42 m respectively in comparison to 5.45 m and 11.08 m of the
WPM as clearly seen on Table 5.2.

The robustness of the WhONet is further accentuated by the low standard deviation of
0.24 obtained compared to 1.48 of the WPM as seen on Table 5.2. The result obtained
shows that the WhONet is able to greatly enhance the accuracy of WPM in the 30s

outage scenario as shown in Figures 5.1 and 5.2.
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Table 5.1 The 30 seconds GNSS outage experiment results on the IO-VNB dataset
IO-VNB Position Estimation Error (m) Number

Dataset

Performance CTE

CRSE Total of Test
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Metrics Distance Sequences
WPM WhONet WPM WhONet
Travelled evaluated

Max 5.75 0.72 8.37 1.35 222
Min 0.03 0.00 0.44 0.11 0
V_Vitb3 27
(L) 0.84 0.23 2.31 0.67 24
(o) 1.14 0.18 1.63 0.20 46
Max 9.62 1.38 17.73 241 830
Min 0.20 0.00 2.19 0.22 50
V_Vib0lc 21
(%) 3.30 0.55 6.27 0.90 507
(o) 2.46 0.40 3.36 0.43 259
Max 8.89 2.71 18.25 8.57 9261
Min 0.02 0.00 1.72 0.28 11
V_Vib02a 119
(%) 1.04 0.43 3.73 1.01 807
(o) 1.18 0.43 2.13 0.83 156
Max 14.29 2.00 19.22 3.66 768
Min 0.12 0.00 1.87 0.43 9
V_Vtala 86
(%) 3.66 0.42 8.24 1.15 473
(o) 2.76 0.47 3.72 0.63 144
Max 11.60 0.88 17.04 1.70 570
Min 0.12 0.00 4.46 0.37 47
V_Vib02b 36
(%) 2.68 0.33 10.54 1.04 207
(o) 2.73 0.23 2.94 0.30 109
Max 11.69 1.87 12.84 3.94 947
Min 0.08 0.00 2.17 0.34 206
V_Vib02g 90
(L) 1.78 0.38 4.97 0.94 706
(o) 1.81 0.38 2.03 0.47 174
Max 11.67 1.92 14.14 2.46 987
Min 0.00 0.00 0.82 0.21 7
V_St6 171
(L) 2.40 0.52 3.89 0.93 664
(o) 1.81 0.44 2.24 0.42 269
Max 8.71 1.09 12.85 1.90 713
Min 0.01 0.00 0.54 0.24 1
V_St7 56
(L) 2.56 0.31 5.28 0.80 337
(o) 2.11 0.26 2.87 0.43 218
Max 9.37 3.03 18.89 4.19 770
Min 0.03 0.00 0.98 0.22 1
V_S3a 82
(L) 3.14 0.55 7.44 1.22 316

(o) 2.00 0.62 3.69 0.65 166
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Table 5.2. The 30 seconds GNSS outage experiment results on the CUPAC dataset

Position Estimation Error (m) Total Number
ota
CUPAC CTE CRSE . of Test
Performance Distance
Dataset ] Sequences
Metrics WPM WhONet WPM WhONet Travelled
evaluated
Max 10.50 2.34 14.52 5.36 629
Charlie Min 0.02 0.00 2.44 0.37 113 45
3 (L) 2.83 0.40 7.39 1.14 309
(o) 2.56 0.48 2.75 0.73 151
Max 7.68 5.16 17.47 8.53 441
Charlie Min 0.41 0.00 2.77 0.41 30 22
4 (L 3.15 0.72 7.52 1.62 218
(o) 1.93 1.02 3.11 1.69 97
Max 5.45 0.84 11.08 1.42 246
Min 0.34 0.00 4.35 0.51 19
Delta 2 16
(L) 2.24 0.34 7.35 0.94 188
(o) 1.55 0.24 2.08 0.24 64
Max 6.81 1.29 13.26 5.07 358
Min 0.00 0.00 2.54 0.43 6
Delta 3 38
(L) 1.88 0.36 7.13 1.18 130
(o) 1.48 0.31 2.29 0.72 90

5.1.2 60s GNSS Outage Scenario

In this section, the result from the 60s GNSS outage experiment using the IO-

VNBD and CUPAC datasets are discussed.

5.1.2.1 IO-VNB Dataset

Table 5.3 reports the result from the 60 seconds GNSS outage experiment on the IO-

VNBD. On the CTE and CRSE metric, the WhONet provides the best average of 0.30 m

and 1.31 m compared to 1.02 m and 4.56 m of the WPM over a max test sequence

distance covered of 1960 m across all 342 sequences evaluated on the IO-VNBD (see

Table 3.17). Also, on the maximum metric, the WhONet obtains the best CTE of 0.62 m

and CRSE of 2.29 m in contrast to the WPM best CTE and CRSE of 2.53 m and 14.51 m.

The consistency of the WhONet is highlighted by the low standard deviation of

0.16 obtained compared to 0.68 of the WPM as reported by Table 5.3. The result so
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obtained shows that the WhONet is able to enhance the accuracy of WPM in the 60s
outage scenario as shown in Figures 5.4 and 5.5. The evolution of the WhONet and
WPM error estimations over time on both the CTE and CRSE metric is illustrated on

Figures 5.6.

5.1.2.2 CUPAC Dataset

The performance evaluation on the CUPAC dataset, as presented on Table 5.4,
reveals the best average of 0.49 m and 1.88 m compared to 2.53 m and 14.25 m of the
WPM over 57 test sequences evaluated with a max displacement of 1238 m per
sequence. Overall, the results show the WhONet is able to provide an error reduction
of up to 91% on the WPM'’s estimation in the 60s outage scenario as illustrated in
Figures 5.4 and 5.5. Moreover, for the maximum metric, the WhONet achieves the best
CTE and CRSE of 0.96 m and 2.48 m respectively while for the WPM, we have the best
CTE of 6.13 m and CRSE of 19.22 m.

The dependability of the WhONet is further proven by the low standard deviation
of 0.21 obtained in comparison to 1.63 of the WPM as reported by both Table 5.4. The
result so obtained shows that the WhONet is able to significantly improve the accuracy
of WPM in the 60s outage scenario as shown in Figures 5.4 and 5.5. The evolution of
the WhONet and WPM error estimations over time on both the CTE and CRSE metric

is illustrated on Figures 5.6.
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Figure 5.4. Comparison of the average positional CRSE on the IO-VNB and CUPAC dataset during the 60s GNSS

signal outage experiment
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Figure 5.6. Sample evolution of the estimation error over time in the 60s GNSS outage scenario
based on the position CRSE and CTE
Table 5.3. The 60 seconds GNSS outage experiment results on the IO-VNB dataset
Position Estimation Error (m) Number
IO-VNB CTE CRSE Total of Test
Performance .
Dataset ) Distance Sequences
Metrics WPM WhONet WPM WhONet
Travelled evaluated
Max 2.53 0.62 15.04 2.29 358
Min 0.03 0.00 0.95 0.29 1
V_Vitb3 13
(W) 1.02 0.30 456 1.31 50
(0) 0.68 0.16 3.22 0.25 90
Max 9.95 2.38 14.51 3.73 1557
Min 0.15 0.00 5.97 0.58 149
V_Vib0lc 10
(%) 5.79 0.98 11.40 1.77 1042
(0) 3.59 0.69 253 0.73 500
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Max 8.68 2.43 31.34 9.62 1883
Min 0.01 0.00 4.56 0.87 45
V_Vib02a 59
(%) 1.42 0.66 7.48 2.02 1615
(o) 1.63 0.56 3.81 1.11 310
Max 17.45 3.02 30.94 6.27 1446
Min 0.47 0.00 7.69 1.06 217
V_Vtala 43
(%) 6.23 0.67 16.47 2.29 947
(o) 3.66 0.73 5.83 1.07 250
Max 7.73 0.96 30.67 2.94 1052
Min 0.01 0.00 11.94 1.10 213
V_Vib02b 18
(1) 2.38 0.39 21.08 2.08 415
(o) 2.18 0.24 491 0.48 187
Max 7.94 2.16 22.41 4.42 1864
Min 0.05 0.00 5.04 0.77 730
V_Vib02g 45
(%) 2.49 0.62 9.95 1.88 1411
(o) 2.22 0.54 3.72 0.65 334
Max 11.88 3.30 26.03 4.32 1960
Min 0.13 0.00 2.78 0.76 81
V_St6 85
(%) 3.88 0.90 7.77 1.86 1336
(o) 2.24 0.73 4.05 0.71 522
Max 12.44 1.31 21.99 3.57 1393
Min 0.15 0.00 1.57 0.59 2
V_St7 28
(%) 4.08 0.50 10.56 1.61 674
(o) 3.13 0.32 5.04 0.75 420
Max 12.73 4.44 30.88 5.63 1514
Min 0.08 0.00 3.37 0.83 8
V_S3a 41
(%) 4.50 0.88 14.89 243 632
(o) 2.76 0.96 6.33 0.90 304
Table 5.4. The 60 seconds GNSS outage experiment results on the CUPAC dataset
Position Estimation Error (m) Total Number
ota
CUPAC CTE CRSE ) of Test
Performance Distance
Dataset ] Sequences
Maetrics WPM WhONet WPM WhONet Travelled
evaluated
Max 10.04 2.10 22.81 6.42 1238
Charlie Min 0.29 0.00 5.88 1.06 280 ”
3 (L) 3.58 0.64 14.90 2.28 622
(o) 2.46 0.57 4.74 1.01 295
Charlie Max 8.52 3.87 23.03 9.59 669 11
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4 Min 0.13 0.00 10.28 1.01 169
(L) 3.88 1.17 15.04 3.23 435
(o) 2.71 1.02 3.42 2.64 145
Max 6.24 0.96 19.22 2.48 481
Min 0.37 0.00 10.51 1.25 153
Delta 2 8
(L) 2.53 0.56 14.70 1.88 376
(o) 1.63 0.21 3.07 0.39 100
Max 6.13 1.53 20.40 5.99 625
Min 0.12 0.00 8.75 1.51 23
Delta 3 16
(L) 2.56 0.49 14.25 2.36 261
(0) 1.77 0.45 2.84 0.97 165

5.1.3 120s GNSS Outage Scenario

In this section, the result from the 120s GNSS outage experiment using the 10-
VNBD and CUPAC datasets are discussed.

5.1.3.1 I0-VNB Dataset

The WhONet outperforms the WPM providing up to a 91% error reduction on the
120 seconds GNSS outage scenario as illustrated in Figures 5.7 and 5.8. When
evaluated on the IO-VNBD, as shown on Table 5.5, the WhONet achieves the best
average CTE and CRSE of 0.34 m and 2.62 m compared to 1.78 m and 9.11 m
respectively of the WPM over a max distance per test sequence of 3.9 km of all 168
sequences. In addition, on the maximum metric, the WhONet has the best CTE and
CRSE of 0.63 m and 4.01 m while WPM has 2.67 m and 15.99 m CTE and CRSE

respectively.

The robustness of the WhONet is further emphasised by the low standard
deviation of 0.19 obtained in comparison to 0.66 of the WPM as reported on Tables 5.5.
The result so obtained shows that the WhONet is able to improve the accuracy of WPM

in the 120s outage scenario.
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5.1.3.2 CUPAC Dataset

On the CUPAC dataset (see table 3.18), the WhONet also obtains the best average
CTE and CRSE of 0.46 m and 3.75 m compared to 3.73 m and 28.49 m of the WPM over
a max distance per test sequence of 2.3 km out of all 29 sequences evaluated as shown
on Table 5.6. As well, on the maximum metric, the WhONet achieves the best CTE and
CRSE of 0.85 m and 4.68 m respectively, on the other hand WPM achieves the best CTE
AND CRSE of 7.93 m and 36.18 m.

The validity of the WhONet is again obvious as we obtained a low standard
deviation of 0.06 compared to 2.07 of the WPM as reported in Table 5.6. The result so
obtained shows that the WhONet is able to significantly improve the accuracy of wheel
odometry in the 120s outage scenario as shown in Figures 5.7 and 5.8. The evolution of
the WhONet and WPM error estimations over time on both the CTE and CRSE metric

is illustrated on Figures 5.9.
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Figure 5.8. Comparison of the average positional CTE on the IO-VNB and CUPAC dataset during the 120s GNSS

signal outage experiment
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based on the position CRSE and CTE

Table 5.5. The 120 seconds GNSS outage experiment results on the IO-VNB dataset

Position Estimation Error (m) Number
I0-VNB CTE CRSE Total of Test
Performance )
Dataset Distance Sequences

Metrics WPM WhONet WPM WhONet
Travelled evaluated

Max 2.67 0.63 15.99 4.01 359
Min 0.61 0.01 6.74 1.75 25
V_Vitb3 6
(%) 1.78 0.30 9.11 2.62 102
(o) 0.66 0.21 3.21 0.19 117
Max 19.55 3.18 27.18 5.05 3058
Min 3.54 0.01 19.23 1.95 543
V_Vib0lc 5
(%) 11.26 141 22.80 3.54 2083
(o) 5.13 0.90 3.42 0.67 888
Max 9.79 2.24 46.50 11.75 3671
Min 0.10 0.00 9.91 2.05 683
V_Vib02a 29
(%) 1.90 0.89 15.04 4.07 3234
(o) 2.13 0.63 6.66 141 577
Max 19.61 1.99 51.34 10.35 2579
Min 1.26 0.00 20.26 2.64 785
V_Vtala 21
(L) 11.46 0.79 33.06 4.62 1893
(o) 4.59 0.56 9.53 1.81 430
Max 7.42 1.26 56.24 5.76 1489
V_Vib02b 9

Min 0.44 0.00 27.49 2.52 514
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(L) 2.59 0.68 42.17 4.15 830
(o) 2.33 0.34 8.66 0.88 288
Max 8.55 2.53 34.39 5.66 3716
Min 0.00 0.00 11.34 2.13 1707
V_Vib02g 22
(L) 3.79 1.11 19.48 3.79 2852
(o) 2.64 0.73 5.66 0.83 581
Max 14.95 5.13 35.61 6.39 3870
Min 0.75 0.00 7.49 1.63 256
V_5t6 42
(%) 6.97 1.52 15.44 3.69 2700
(o) 3.52 1.31 7.01 1.07 977
Max 18.22 1.73 36.17 6.49 2435
Min 0.57 0.00 11.75 1.43 216
V_St7 14
(%) 7.35 0.68 21.13 3.21 1348
(o) 4.69 0.45 7.34 1.23 784
Max 15.22 4.81 51.50 8.07 2623
Min 0.94 0.00 13.18 2.37 422
V_S3a 20
(1) 7.84 1.43 29.89 4.82 1269
(o) 3.97 1.31 10.24 1.26 558
Table 5.6. The 120 seconds GNSS outage experiment results on the CUPAC dataset
Position Estimation Error (m) Total Number
ota
CUPAC CTE CRSE . of Test
Performance Distance
Dataset ] Sequences
Metrics WPM WhONet WPM WhONet Travelled
evaluated
Max 17.82 2.27 36.18 9.40 2339
Charlie Min 2.05 0.00 14.78 227 681 1
3 (%) 6.95 0.92 29.80 4.57 1245
(o) 4.34 0.58 5.94 1.61 510
Max 9.18 291 37.42 12.10 1229
Charlie Min 3.50 0.00 25.21 2.60 612 5
4 (L) 7.56 1.83 31.02 6.65 923
(o) 2.07 0.52 4.13 3.71 214
Max 8.54 0.85 37.15 4.68 850
Min 1.95 0.00 26.23 2.70 634
Delta 2 4
(%) 5.06 0.46 29.41 3.75 752
(o) 247 0.06 4.49 0.45 78
Max 7.93 2.10 37.73 5.74 990
Delta 3 Min 0.29 0.00 22.02 3.15 173 9
(%) 3.73 0.77 28.49 4.30 481
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(0) 2.27 049 456  0.66 263

5.1.4 180s GNSS Outage Scenario

In this section, the result from the 180s GNSS outage experiment using the 10-
VNBD and CUPAC datasets are discussed.

5.1.4.1 I0-VNB Dataset

In the 180 seconds GNSS outage scenario, WhONet provides an error reduction on
the WPM’s estimation by up to 90%. As presented on Table 5.7, the WhONet achieves
the best average CTE and CRSE of 0.26 m and 3.93 m compared to 2.28 m and 13.67 m
of WPM over a max distance per test sequence of 5.6 km of all 111 sequences evaluated
on the IO-VNB dataset (see Table 3.17). Furthermore, on the maximum metric, the
WhONet achieves the best CTE and CRSE of 0.38 m and 4.97 m and comparing that to
the WPM’s best CTE and CRSE of 4.26 m and 18.29 m.

The reliability of the WhONet is better accentuated by the low standard deviation
of 0.01 obtained, compared to 1.25 of the WPM as reported by Table 5.7. The result so
obtained shows that the WhONet is able to significantly improve the accuracy of wheel
odometry in the 180s outage scenario as seen in Figures 5.10 and 5.11. The evolution of
the WhONet and WPM error estimations over time on both the CTE and CRSE metric

is illustrated on Figure 5.12.
5.1.4.2 CUPAC Dataset

On the CUPAC dataset (see Table 3.18), the WhONet also obtains the best average
CTE and CRSE of 0.51 m and 5.13 m compared to 4.59 m and 42.74 m of the WPM over
a max distance per test sequence of 3.4 km of all 18 sequences evaluated as shown on
Table 5.8. Moreover, on the maximum metric, the WhONet achieves the best CTE and
CRSE of 0.57 m and 5.15 m respectively in comparison to WPM’s CTE of 10.17 m and
CRSE of 50.38 m.

The robustness of the WhONet is further emphasised by the low standard
deviation of 0 on the Delta 2 dataset obtained compared to 2.69 of the WPM as
reported in Tables 5.8. The result obtained shows that the proposed model is able to

significantly improve the performance of wheel odometry in the 180s outage scenario.
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The WhONet's improvement over the WPM on each dataset evaluated on the average
CTE and CRSE is presented on Figures 5.10, 5.11 and 5.12 Figure 5.13 shows a sample

trajectory of the vehicle during the longer-term outage scenario.
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Figure 5.13. The vehicle trajectory on the V-Vfb02g dataset (left) and V-Vfbo2b dataset (right) used in evaluating

WhONet's performance during the 30s, 60s, 120s and 180s GNSS outage experiment.

Table 5.7. The results from the 180 seconds GNSS outage experiment results on the IO-VNB dataset

Position Estimation Error (m) Total Number of
ota
I0-VNB CRSE . Test
Performance Distance
Dataset . Sequences
Metrics WPM WhONet WPM WhONet Travelled
evaluated
Max 4.26 1.02 18.29 497 369
Min 0.85 0.01 10.32 2.81 46
V_Vitb3 4
(W 2.30 0.49 13.67 3.93 153
(0) 1.25 0.18 2.89 0.21 127
Max 21.97 0.38 36.12 7.42 4407
Min 3.39 0.00 31.92 3.97 1835
V_Vib0lc 3
(W 15.53 0.26 33.57 5.43 3340
(0) 8.59 0.01 1.82 0.66 1095
Max 12.63 3.02 52.18 13.02 5447
Min 0.03 0.00 15.67 3.67 1102
V_Vib02a 19
(W 2.28 1.17 22.72 6.08 4858
(0) 3.02 0.85 8.21 1.55 915
Max 27.18 1.68 73.89 14.19 3692
Min 10.71 0.00 31.29 4.20 1173
V_Vtala 14
(W 17.19 0.79 49.59 6.93 2840
(o) 441 0.48 10.84 2.42 661
Max 5.63 1.10 75.46 8.09 1910
V_Vib02b 6
in 0.90 0.00 55.23 4.04 890
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(L) 3.17 0.56 63.25 6.23 1244
(o) 1.81 0.38 8.01 0.77 361
Max 9.28 2.53 53.40 8.33 5251
Min 0.09 0.00 18.65 3.48 2474
V_Vib02g 15
(L) 3.55 1.27 29.84 5.65 4234
(o) 2.57 0.76 9.48 0.89 916
Max 21.86 6.67 41.30 8.62 5626
Min 0.62 0.00 11.42 2.61 513
V_5t6 28
(%) 10.37 2.14 23.16 5.53 4050
(o) 5.25 1.64 9.46 1.24 1412
Max 19.09 1.67 54.62 9.47 3570
Min 0.23 0.00 19.00 2.54 610
V_St7 9
(%) 11.10 0.84 31.82 4.89 2000
(o) 6.31 0.40 11.06 1.62 1083
Max 26.28 4.62 64.02 11.14 3345
Min 0.20 0.00 20.07 4.32 1086
V_S3a 13
(1) 11.59 1.65 44.75 7.23 1906
(o) 6.34 1.08 12.72 1.37 775
Table 5.8. The 180 seconds GNSS outage experiment results on the CUPAC dataset
Position Estimation Error (m) Total Number of
ota
CUPAC CTE CRSE ] Test
Performance Distance
Dataset ] Sequences
Metrics WPM WhONet WPM WhONet Travelled
evaluated
Max 17.10 1.50 52.56 11.04 3416
Charlie Min 3.55 0.00 23.04 3.89 1134 .
3 (L) 10.33 1.03 44.08 6.91 1899
(o) 4.54 0.28 10.46 1.77 788
Max 15.11 4.34 55.23 20.79 1603
Charlie Min 8.03 0.00 40.66 3.70 1171 3
4 (W) 11.72 2.89 46.80 10.28 1422
(o) 2.90 0.20 6.17 7.00 183
Max 10.93 0.57 53.53 5.15 1214
Min 5.56 0.00 37.87 5.06 1162
Delta 2 2
(L) 8.24 0.51 45.70 5.13 1188
(o) 2.69 0.01 7.83 0.00 26
Max 10.17 2.10 50.38 7.55 1244
Delta 3 Min 0.41 0.00 30.77 5.42 301 6
(L) 4.59 1.18 42.74 6.45 721
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(o) 342 016 722 054 346

5.2 Summary

In this chapter, the robustness and accuracy of the WhONet in consistently
improving the Wheel encoder Physics Model (WPM) position estimation was
demonstrated with up to a 93% reduction in the position error after 180 seconds of travel.
With several analyses over four different GNSS outage scenarios using two different
datasets, we have shown that the WhONet is able to provide an average accuracy of 8.62
m after 5.6 km of travel. As such, the WhONet, can be used to process the wheel encoder
measurements to provide a more accurate and robust position estimation for autonomous
vehicles in the long-term absence of GNSS signals.

As this chapter focuses on a model trained on a certain vehicle to be deployed on the same
vehicle, the next chapter looks at the use of transfer learning to aid the generalization of

the WhONet model to other vehicles or motion characteristics.



Chapter 6
New Vehicle Domain Adaptation of Vehicular

Position Model using Transfer Learning.

Having established the performance of the WhONet model for position
estimation in longer term GNSS outage, this chapter provides a novel framework
called R-WhONet (Recalibrated Wheel Odometry neural Network) for the adaptation
of the WhONet model to vehicles with different feature characteristics such as tyre
pressures, worn out tyre state, driving behavior, size, etc. We for the first time study
the ability of the R-WhONet model to accurately and robustly adapt the WhONet
model to new vehicles and scenarios using transfer learning, by evaluating its
performance on longer term GNSS outage scenarios using the CUPAC dataset (as it is
characterised by a different vehicle dynamics). As such in this chapter, we discuss the
motivations for model adaptations, mathematical definitions of transfer learning and
other associated terms, R-WhONet’'s framework, as well as the results from R-

WhONet’s evaluation.

6.1. Motivation

Traditional deep learning techniques have so far been designed to work in isolation
(Krizhevsky et al. 2012; Redmon et al. 2015). The WhONet has been trained to learn the
positional errors associated with a particular car size, sensor error pattern as well as
limited worn tyre states and tyre pressure variation. There is however a limit to the

positional error the WhONet model can learn, as the sizes in which vehicles come are
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numerous and the wearing of tyres and changes in tyre pressures are somewhat un-
controllable. An approach to addressing this problem could be to train a model to fit
the dynamics of each vehicle type on the road. However, this method is too expensive
and impractical particularly due to the different tyre states of each vehicle at different
times of use. This paradigm can however be overcome through he use of transfer learn-

ing to recalibrate a pre-trained model to adapt to the dynamics and tyre state of the

vehicles to which it is to be used.

Transfer learning within the context of deep learning, has mostly found motivations
in complex problems requiring a large amount of data for accurate performance (Cheng
et al. 2017). The difficulty in getting large amounts of labelled data and the high cost of
labelling the data has made it a challenge to sufficiently train accurate deep learning
models for different domains applications (Pan & Yang 2009). Through the use of pre-
trained models such as on the ImageNet with millions of images relating to different
categories, it has been shown that transfer learning can be used to transfer features and
parameters of the pre-trained model to a new domain application (Shi et al. 2008;
Wenchen Zheng et al. 2008; Zhuo et al. 2008). Transfer learning transcends specific tasks
and domain applications to leverage knowledge learnt from a pre-trained model to solve
problems in different application domains (Jialin Pan et al. 2007; Kuhlmann & Stone
2007; Ling et al. 2008; Pan et al. 2008; Yang et al. 2008; Yin et al. 2005; Zheng et al. 2008).

It is with such inspiration that we propose in this chapter the recalibrated Wheel
Odometry neural Network (R-WhONet). R-WhONet leverages the knowledge transfer
capabilities of transfer learning to recalibrate the WhONet model to adapt to different
vehicle dynamics and tyre states. We show that R-WhONet is able to consistently adapt
a generic pre-trained WhONet model (which we refer to as G-WhONet for simplicity) to
provide better uncertainty estimations whilst providing accuracies similar to a WhONet

model trained specifically for the new vehicle.

6.2. Transfer Learning

6.2.1. Definition of representations

We define a Domain D as a two-element tuple made up of a feature space X, (which

is characterised by a specific tyre pressure, worn out state and vehicle dynamics), and a
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marginal probability P(X) such that Xis a sample data. Mathematically, the domain, D can
be defined as D X, P(X)}

Where X = {1, ... , iy} 1€ X
Here, x4 refers to a specific vector describing each sample data point at each time
t. The specific vector X describes the wheel speed measurement of the four wheels of the

vehicle.

Task T is also defined as a two-element tuple with an objective function n and a label space
. The objective function can thus be expressed probabilistically as P(Y|X).
Mathematically, the task, T can be defined as T = { v/, P(Y|X)}={ i, n}.

Where Y = {y4, ...,V b Vi€ X
here, y, refers to a specific vector describing each label of a sample data point at each time

t. The specific vector % describes the position uncertainty measurement of the vehicle.

We also define the following necessary representations:

Source Domain D¢ — In this thesis, the source domain is defined as the vehicle whose
dynamics and states are used to train the WhONet model.

Source task Tg — The source task is defined as the uncertainty measurement of the vehicle’s
position due to the dynamics and states of the source vehicle.

Target Domain Dy — We define the task domain as a new vehicle whose dynamics and
states are different from the source domain.

Target Task Ty — The target task is defined as the uncertainty measurement of the vehicle’s

position due to the dynamics and states of the new vehicle.

6.2.2.  Definition of Transfer Learning

Given a source task Ty, a reciprocal source domain Dg, a target task Ty and a target
domain Dr, the aim of transfer learning is to enable the discovery of the target probability
distribution P(Y;|X7) in Dy with the statistics obtained from Dg and Tg where Dg # Dy or Tg
# Tr. Usually, a limited number of labeled target examples which are significantly smaller

than the number of labeled source examples are presumed to be available.

Where Y7 refers to the position uncertainty estimation and X; refers to the wheel speed

measurements of the four wheels.

The following conditions need to be satisfied for transfer learning;:
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1.X ¢ #X 1, the feature spaces of the target and source domain are not the same.

2.P(X;) # P(Xr), the marginal probability distributions of the target and source domain
are different.

3.Ys#¥ r, the label space between the source and target tasks vary.

4.P(Ys|X;) # P(Yr|Xr), the conditional probability distributions of the target and source

tasks differ.

6.2.3. Model Definitions

S-WhONet (specific - Wheel Odometry neural Network) — This refers to the WhONet
model which is pre-trained only on the vehicle in which it is to be deployed i.e., the target
domain becomes the source domain. For every new vehicle, change in vehicle state and/or
dynamics, a new S-WhONet model is trained to predict the position estimation of the new

vehicle at every time t.

As such, S-WhONet is characterised by the following definitions:
1. X = X7, the feature spaces of the target and source domain are the same.
2. P(X;) = P(Xr), the marginal probability distributions of the target and source domain are
similar.
3. ¥ = Yr, the label space between the source and target tasks are the same.
4. P(Yr|X7)= 0, the conditional probability distributions of the target domain is not found,
rather, the conditional probability distributions of the source domain is used directly in the

target domain.

G-WhONet (Generic Wheel Odometry neural Network) — This describes the
WhONet model trained on the source vehicle but does not undergo any form of adaptation
before deployment on the target vehicle.

G-WhONet is characterised by the following:

1.X ¢ #X 1, the feature spaces of the target and source domain are different.

2.P(X;) # P(Xr), the marginal probability distributions of the target and source domain are
similar.

3.Ys#Y r, the label space between the source and target tasks are the same.
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4. P(Yr|Xr) =0 the conditional probability distributions of the target is not found, rather,
the conditional probability distribution of the source domain P (¥;|X;) is used in the target

domain.

R-WhONet (recalibrated Wheel Odometry neural Network) — This describes the
WhONet model which has its conditional probability distribution P(Y7|X7) in the target
domain (new vehicle), adapted from the source domain P(¥;|X;). The conditional
probability distribution is formulated from the source vehicle and then adapted to
P(Yr|Xr) in the target domain for deployment on the new target vehicle.

As such, R-WhONet is characterised by the following:

1. X # X7, the feature spaces of the target and source domain are not the same.

2. P(X;) # P(Xr), the marginal probability distributions of the target and source domain are
different.

3. ¥ # Yr, the label space between the source and target tasks vary.

4. P(Y;|Xs) # P(Yr|X7), the conditional probability distributions of the target and source

tasks differ.

6.3. Model Training and Evaluation
This section details how the G-WhONet, S-WhONet and R-WhONet models are trained

using the Keras-Tensorflow platform.

6.3.1. G-WhONet’s Training

G-WhONet is trained on the IO-VNB data subsets presented in Table 3.13 and as
described in Section 3.2.3.3, thus establishing the conditional distribution P (¥;|X;). The 10-
VNB datasets used to train the G-WhONet Model are characterised by about 1590 mins of
drive time over a total distance of 1,165 km. The G-WhONet model was optimised using
the adamax optimiser with an initial learning rate of 0.0007 and trained using the mean
absolute error loss function and a dropout rate of 0.05 of the weighted connections in the
hidden layers. Furthermore, the input features to the G-WhONet were normalised between
0 and 1 to reduce learning bias. Table 6.1 highlights the parameters characterising the
training of the G-WhONet model.
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6.3.2. S-WhONet’s Training

S-WhONet was trained on the CUPAC data subsets presented in Table 3.14, as also
described in Section 3.2.3.3 in order to determine the conditional probability distribution
P(Yr|Xr). The CUPAC datasets used to train the S-WhONet model are characterised by
about 104 mins of drive over 54.9 km. The S-WhONet model was optimised using the
adamax optimiser with an initial learning rate of 0.0007 and trained using the mean
absolute error loss function and a dropout rate of 0.05 of the weighted connections in the
hidden layers. Just as with the G-WhONet model, the input features to the S-WhONet were
normalised between 0 and 1 to reduce learning bias. Table 6.1 highlights the parameters

characterising the training of the S-WhONet model.

6.3.3. R-WhONet’s Training

The G-WhONet model of the source domain with conditional probability distribution
P(Y;|X,) is adapted to create the R-WhONet model which learns the target probability
distribution P(Y7|X7) of the new vehicle to which it is to be deployed on. The R-WhONet
model is trained on the first m seconds of the CUPAC datasets highlighted on Table 3.18
and as justified in Section 3.2.3.4. The input features to the R-WhONet model were
normalised between 0 and 1 to reduce learning bias. Table 6.1 highlights the parameters

characterising the training of the WhONet model. Figure 6.1 describes the learning relatio-
nship between the R-WhOnet and WhONet as well as the RWhONet's learning scheme.

WhONet N
Xt-0.9 (Source Model) ~ Ve
Source Dataset Source Output

Knowledge
Transfer

| R-whoNet .
Xt0.9 | (Target Model) - Ve

Target Dataset Target Output

Figure 6.1. Learning scheme of the R-WhONet model
Table 6.1. Training parameters of the G-WhONet, S-WhONet and R-WhONet models

G-WhONet/ S-WhONet/ R-WhONet

Parameters
Learning rate 0.0007
Dropout rate 0.05
Time step 1
Hidden layers 1
Hidden neurons 72 per layer

Batch size 128
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6.3.4. R-WhONet Training Time Selection Experiment

The R-WhONet model is trained on the first m seconds of the CUPAC datasets

presented on Table 6.1. In order to determine the value of m that consistently gives the

least position uncertainty estimation ¥z in the target domain, we experimented over a

range of values form (10, 20s, 30s,...., and 120 s). The results from this experimentation
are presented on Table 6.1. From observation, it can be seen that when m is defined as
50 seconds, R-WhONet provides the least position error estimation. This shows that the
R-WhONet needs 50 seconds of data before it is able to most accurately adapt to its target
domain. At an m value of 40 seconds, slightly worse results were obtained compared to
an m value of 50 seconds, however at all other values of m, very poor results were
obtained. This could be possibly attributed to the R-WhONet underfitting or overfitting

the data in the target domain.

Table 6.2. Results from the experimentation of various values of m to determine the adaptation time for the R-
WhONet model.

CUPAC Positional CRSE (m)

Dataset m 10s 20s 30s 40s 50s 60s 70s 80s 90s 100s
Max 14.8 243.8 682 11.2 10.6 1245 75,5 69.7 1485 337

Charlie Min 56 72 67 45 35 63 63 65 638 6.5
3 (v) 101 66.0 216 90 78 300 23.0 229 485 188
(o) 20 811 202 10 14 390 219 200 514 9.7

Max 215 298 21.8 215 21.1 216 228 234 235 239

Charlie Min 55 51 55 55 56 57 64 68 82 7.3
4 (v 115 150 11.8 116 115 121 125 134 159 134

(o) 38 51 59 41 40 52 51 51 5.0 6.1

Max 7.0 7.1 80 77 73 68 68 7.1 7.2 74

Min 68 64 74 70 66 64 67 68 65 6.7

Delta 2
(w70 6.9 77 75 7.1 6.6 6.7 7.0 6.9 7.1
(o) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0
Max 119 87 109 87 102 11.8 121 125 7.8 8.1
Min 73 6.9 74 6.7 64 6.6 6.0 5.8 5.9 6.2
Delta 3

(wm) 94 79 89 75 81 83 80 77 67 7.0
(o) 09 04 07 06 08 12 08 11 0.6 0.5
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6.3.5. Model Evaluation

The R-WhONet, G-WhONet and S-WhONet and the physics model (WPM) are
evaluated on the CUPAC datasets presented on Table 3.18. The CUPAC dataset used for
evaluation has vehicular dynamics and state properties such as tyre pressure, worn out
tyre state, driving behavior, etc. different from the IO-VNBD dataset which was used for
training the G-WhONet model. The models are evaluated on the longer-term GNSS
outage scenarios of 30s, 60s, 120s and 180s just as in Chapter 5.

Each test set used in the longer term GNSS outage scenarios are broken down into
test sequences of 30s, 60s, 120s or 180s depending on the outage scenario being
evaluated. The maximum, minimum, average and standard deviation, of the CRSE’s and
CTE’s of all the test sequences evaluated within each dataset are recorded in each
scenario and used in evaluating the performance of each model. GPS outages are
assumed on the test scenarios, for the purpose of the investigation with a prediction

frequency of 1s.
6.4. Results and Discussion

In this section, the performance of the R-WhONet in comparison to the G-WhONet
model, S-WhONet model and WPM are evaluated on the 30 s, 60 s, 120 s and 180 seconds
using the CUPAC datasets presented on Table 3.18.

6.4.1. 30 s GNSS Outage

In the 30 seconds GNSS outage scenario, R-WhONet provides an CRSE reduction of
up to 36% on the G-WhONet’s estimation. As presented on Table 6.3 and 6.4, the R-
WhONet achieves the best average CTE and CRSE of 0.31 m and 1.22 m compared to
1.11 m and 1.46 m of the G-WhONet over a max distance per test sequence of 618 m of
all 121 sequences evaluated on the CUPAC dataset (see Table 3.18). Moreover, on the
maximum metric, the R-WhONet achieves the best CTE and CRSE of 0.92 m and 1.60 m
respectively while G-WhONet achieves the best CTE and CRSE of 1.96 m and 2.02 m
respectively as well.

The robustness of the R-WhONet is further emphasized by the low standard
deviation of 0.27 obtained compared to 0.20 of G-WhONet. The result so obtained shows
that R-WhONet is able to adapt the G-WhONet model to the new vehicle with
performances relatively closer to a model (5S-WhONet) trained specifically for the new

vehicle as further illustrated in Figures 6.2-6.4.
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Table 6.3. CRSE performance comparison of the R-WhONet, G-WhONet, S-WhONet and WPM on the 30 seconds

GNSS outage scenario.
Perfor- Positional Estimation Error (m) Total Number
CUPAC CRSE Distance of Test
Dataset ;/In::;::s R-WhO- G-WhO-  S-WhO- Travelled Sequences
WPM Net Net Net (m) evaluated

Max 13.71 4.14 5.68 5.36 618

Charlie Min 2.25 0.50 0.56 0.37 18

3 (%) 7.43 1.34 1.61 1.14 313 45

(o) 2.81 0.71 0.90 0.73 154
Max 16.02 6.25 9.70 8.53 407

Charlie Min 2.95 0.62 0.80 0.41 12

4 (%) 7.42 1.89 2.05 1.62 217 >

(o) 2.79 1.35 2.00 1.69 95
Max 23.26 1.60 2.02 1.42 261
Min 3.19 0.83 0.69 0.51 55

Delta 2 16
(L) 8.85 1.22 1.46 0.94 193
(o) 4.72 0.20 0.32 0.24 65
Max 12.45 3.74 5.22 5.07 346
Min 4.05 0.84 0.90 0.43 8

Delta 3 38
(") 7.22 1.53 1.77 1.18 131
(o) 247 0.57 0.70 0.72 97

Table 6.4. CTE performance comparison of the R-WhONet, G-WhONet, S-WhONet and WPM on the 30 seconds

GNSS outage scenario.
Perfor- Positional Estimation Error (m) Total Number
CUPAC CTE Distance of Test
Dataset ;/[n::;:s R-WhO- G-WhO-  S-WhO- Travelled Sequences
WPM Net Net Net (m) evaluated
Max 10.26 2.90 3.90 2.05 618
Charlie Min 0.18 0.00 0.03 0.00 18
3 (L) 2.96 0.60 1.13 0.46 313 »
(o) 2.15 0.61 0.93 0.47 154
Max 5.95 3.30 6.42 3.87 407
Charlie Min 0.61 0.00 0.34 0.00 12
4 (%) 2.82 0.84 1.46 0.81 217 2
(o) 1.70 0.83 1.37 0.86 95
Delta2 Max 4.24 0.92 1.96 0.78 261 16
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Min 0.83 0.00 0.16 0.01 55
(L) 2.61 0.31 1.11 0.30 193
(o) 1.21 0.27 0.42 0.20 65
Max 7.58 1.88 2.47 1.36 346
Min 0.19 0.00 0.09 0.00 8
Delta 3 38
(L) 2.08 0.55 1.33 0.37 131
(o) 1.85 0.45 0.52 0.33 97

Figure 6.2. Sample CRSE evolution of the models on the Delta 2 CUPAC dataset during the 30 s GNSS outage

Position CRSE for the 30 s GNSS Outage (Delta2)

= SWhONet
5 WEM

—— R-WhONet
P R GWhONet
3

[N]

Position Error {m)

0 5 b 5
Time {s)

scenario after recalibration.

Figure 6.3. Sample CTE evolution of the models on the Delta 2 CUPAC dataset during the 30 s GNSS outage

Pasition Errer (m)
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Position CTE for the 30 s GNSS Qutage (Delta2)
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-25
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3.0 WPM
—— R-WhONet
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Time {s)

scenario after recalibration.
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Average CRSE comparison on the CUPAC 30s GNSS outages

B R-WhONet

. G-WhONet
g mm 5WhONet
mm WPM

Average Positional CRSE {m)

{3:_,;9 c;\‘u

Performance Metric

Figure 6.4. CRSE and CTE comparison of the models on the Charlie 4 CUPAC dataset during the 30 s GNSS

outage scenario after recalibration.

6.4.2. 60 s GNSS Outage

Tables 6.5 and 6.6. reports the result from the 60 seconds GNSS outage experiment
on CUPAC On the CTE and CRSE metric, the R-WhONet provides the best average of
0.50 m and 2.45 m compared to 2.15 m and 2.89 m of the G-WhONet over a max test
sequence distance covered of 1234 m of all 60 sequences evaluated on the CUPAC dataset
(see Table 3.18.). Also, on the maximum metric, the R-WhONet obtains the best CTE and
CRSE of 0.83 m and 2.72 m in contrast to the G-WhONet best CTE and CRSE of 3.02 m
and 3.65 m.

The consistency of the R-WhONet is further highlighted by the low standard
deviation of 0.18 obtained compared to 0.42 of G-WhONet as reported in Table 6.5. The
evolution of the R-WhONet, G-WhONet, S-WhONet and WPM error estimations over
time on both the CTE and CRSE metric as well as the error comparisons are illustrated

on Figures 6.5-6.7.

Table 6.5. CRSE performance comparison of the R-WhONet, G-WhONet, S-WhONet and WPM on the 60 seconds

GNSS outage scenario.
Perfor- Positional Estimation Error (m) Total Number
CUPAC CRSE Distance of Test
Dataset ;:::;::S R-WhO- G-WhO-  S-WhO- Travelled Sequences
WPM Net Net Net (m) evaluated
Max 21.48 5.56 6.62 4.94 1234
Charlie Min 6.08 1.13 1.43 1.03 281
3 (%) 14.86 2.75 3.25 2.54 627 2

(o) 4.14 0.94 1.32 0.90 284
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Max 19.40 11.26 12.46 11.41 643
Charlie Min 7.91 1.63 2.21 1.50 250
11
4 (%) 15.06 3.76 4.18 3.70 445
(o) 3.51 1.87 3.13 2.34 149
Max 32.17 2.72 3.65 2.60 490
Min 8.41 2.02 2.15 1.66 149
Delta 2 8
(%) 17.69 2.45 2.89 2.22 385
(o) 7.01 0.18 0.47 0.27 104
Max 18.19 5.00 431 4.23 661
Min 10.17 2.00 2.76 1.56 24
Delta 3 19
(%) 14.45 2.76 3.36 2.46 253
(o) 2.74 0.63 0.42 0.45 168

Table 6.6. CTE performance comparison of the R-WhONet, G-WhONet, S-WhONet and WPM on the 60 seconds

GNSS outage scenario.

Perfor- Positional Estimation Error (m) Total Number
CUPAC CTE Distance of Test
Dataset ;/[n::;;:s R-WhO- G-WhO-  S-WhO- Travelled Sequences
WPM Net Net Net (m) evaluated
Max 9.17 2.90 6.59 2.61 1234
Charlie Min 0.10 0.00 0.11 0.00 281
3 (") 3.85 1.03 2.15 0.81 627 22
(o) 2.56 0.81 1.53 0.73 284
Max 8.44 3.45 6.87 3.96 643
Charlie Min 1.35 0.00 0.00 0.00 250
4 ) 3.94 1.37 2.71 1.41 445 1
(o) 2.04 0.68 2.06 0.84 149
Max 6.14 0.83 3.02 0.75 490
Min 0.67 0.00 1.30 0.01 149
Delta 2 8
(L) 3.32 0.50 2.21 0.50 385
(o) 1.95 0.25 0.63 0.14 104
Max 9.89 2.92 4.22 1.49 661
Min 0.01 0.02 0.21 0.00 24
Delta 3 19
(L) 2.45 0.80 2.59 0.52 253
(o) 2.36 0.69 0.82 0.40 168
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Position CRSE for the 60 s GNSS Outage (Charlie3)
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Figure 6.5. Sample CRSE evolution of the models on the Delta 2 CUPAC dataset during the 60 s GNSS outage

scenario after recalibration.
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Figure 6.6. Sample CTE evolution of the models on the Delta 2 CUPAC dataset during the 60 s GNSS outage

scenario after recalibration.
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6.4.3. 120 s GNSS Outage

The R-WhONet outperforms the G-WhONet on the CRSE metric by up to 31% on
the 120 seconds GNSS outage scenario as illustrated in Figures 6.8 and 6.9. When
evaluated on the CUPAC, as shown on Table A12,., the R-WhONet achieves the best
average CTE and CRSE of 0.68 m and 4.67 m compared to 4.09 m and 5.54 m of the G-
WhONet over a max distance per test sequence of 2262 m of all 29 sequences evaluated
on the CUPAC dataset (see Table 6.7 and 6.8). In addition, on the maximum metric,
the R-WhONet has the best CTE and CRSE of 0.99 m and 4.75 m while G-WhONet has
CTE and CRSE of 5.62 m and 6.26 m CTE and CRSE respectively.

The consistency of the R-WhONet is further emphasized by the low standard
deviation of 0.02 obtained in comparison to 0.52 of G-WhONet as reported in Table 6.7.
The result so obtained shows that R-WhONet is able to adapt the G-WhONet model to
the new vehicle with performances relatively closer to a model (S-WhONet)

trained specifically for the new vehicle as further illustrated in Figure 6.10.

Table 6.7. CRSE performance comparison of the R-WhONet, G-WhONet, S-WhONet and WPM on the 120 seconds

GNSS outage scenario.
Perfor- Positional Estimation Error (m) Total Number
CUPAC CRSE Distance of Test
Dataset ;:;::S R-WhO- G-WhO-  S-WhO- Travelled Sequences
WPM Net Net Net (m) evaluated
Max 38.45 10.32 9.44 9.40 2262
Charlie Min 15.64 3.45 4.07 2.27 637
3 (L) 29.71 5.69 6.49 4.57 1254 H
(o) 7.53 1.46 1.71 1.61 539
Max 38.54 18.25 19.82 12.10 1140
Charlie Min 25.10 3.53 4.44 2.60 558
4 (L) 30.12 7.86 8.36 6.65 890 >
(o) 4.77 3.54 5.79 3.71 204
Max 47.53 4.75 6.26 4.68 887
Min 20.76 4.45 5.02 2.70 540
Delta 2 4
(L) 35.90 4.67 5.54 3.75 735
(o) 11.21 0.02 0.52 0.45 145
Max 33.37 5.93 7.64 5.74 1165
Min 24.09 3.90 5.65 3.15 204
Delta 3 9
(L) 29.34 5.17 6.73 4.30 505

(o) 3.88 0.39 0.62 0.66 310
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Table 6.8. CTE performance comparison of the R-WhONet, G-WhONet, S-WhONet and WPM on the 120 seconds

GNSS outage scenario.
Pert Positional Estimation Error (m) Total Number
erfor-
CUPAC CTE Distance of Test
mance
Dataset Metri R-WhO- G-WhO-  S-WhO- Travelled Sequences
etrics
WPM Net Net Net (m) evaluated
Max 14.78 2.86 8.50 2.34 2262
Charlie Min 0.14 0.00 1.09 0.00 637
11
3 (%) 6.39 1.40 4.09 1.06 1254
(o) 443 0.94 2.23 0.72 539
Max 12.93 5.40 12.89 5.48 1140
Charlie Min 0.29 0.00 1.50 0.01 558
5
4 (L) 5.32 2.46 541 2.64 890
(o) 4.53 0.55 3.94 0.82 204
Max 7.63 0.99 5.62 1.08 887
Min 1.51 0.07 3.08 0.01 540
Delta 2 4
(L) 4.37 0.68 4.15 0.79 735
(o) 2.52 0.35 1.08 0.08 145
Max 9.82 2.71 6.84 1.49 1165
Min 0.65 0.00 3.01 0.02 204
Delta 3 9
(L) 3.84 1.34 5.19 0.83 505
(o) 3.15 0.83 1.20 0.40 310
Position CRSE for the 120 s GN5SS Qutage (Charlie3)
17.5 { — SWhoONet
WEM
15.0 { — R-WhONet
— GWhONet
=125
g o
;:
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Figure 6.8. Sample CRSE evolution of the models on the Delta 2 CUPAC dataset during the 120 s GNSS

outage scenario after recalibration.
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Figure 6.9. Sample CTE evolution of the models on the Delta 2 CUPAC dataset during the 120 s GNSS outage

scenario after recalibration.

Average CRSE comparison on the CUPAC 120s GNSS outages

0 m R-WhONet
= GWhONet
75 A = S\WhONet
. WPM

20 1

Average Positional CRSE {m)
&

& %
& &
Performance Metric

Figure 6.10. CRSE and CTE comparison of the models on the Charlie 4 CUPAC dataset during the 120 s GNSS

outage scenario after recalibration.

6.4.4. 180 s GNSS Outage
In the 180 seconds GNSS outage scenario, R-WhONet provides a CRSE reduction of
up to 32% on the G-WhONet's estimation. As presented on Tables 6.9 and 6.10, the R-
WhONet achieves the best average CTE and CRSE of 0.26 m and 6.84 m compared to
5.50 m and 8.31 m of the G-WhONet over a max distance per test sequence of 3496 m of
all 18 sequences evaluated on the CUPAC dataset (see Table 3.18.). Furthermore, on the
maximum metric, the R-WhONet achieves the best CTE and CRSE of 0.49 m and 7.30 m
compared to the G-WhONet's best CTE and CRSE of 6.46 m and 8.43 m.
The consistency of the R-WhONet is better accentuated by the low standard

deviation of 0 obtained, compared to 0.12 of G-WhONet as reported in Tables 6.9 and
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6.10. The result so obtained shows that R-WhONet is able to adapt the G-WhONet model

to the new vehicle domain, with performances relatively closer to a model (5-WhONet)

trained specifically for the new vehicle, as further illustrated in Figures 6.11-6.13.

Table 6.9. CRSE performance comparison of the R-WhONet, G-WhONet, S-WhONet and WPM on the 180 seconds

GNSS outage scenario.
Perfor- Positional Estimation Error (m) Total Number
CUPAC CRSE Distance of Test
Dataset ;:::;::S R-WhO- G-WhO- S-WhO- Travelled Sequences
WPM Net Net Net (m) evaluated
Max 55.25 10.34 15.31 9.94 3496
Charlie Min 23.99 4.62 5.49 3.74 1012
3 (L) 44.42 7.87 9.86 7.69 1916 7
(o) 9.19 1.38 2.90 1.31 772
Max 54.72 21.23 22.44 21.14 1716
Charlie Min 41.51 5.50 7.36 5.22 1220
4 (L) 46.94 11.45 12.52 11.28 1400 >
(o) 5.64 4.24 7.01 527 224
Max 68.59 7.30 8.43 6.58 1278
Min 39.12 6.22 8.19 6.15 928
Delta 2 2
(L) 53.86 6.84 8.31 6.39 1103
(o) 14.74 0.04 0.12 0.00 175
Max 48.63 10.18 10.52 9.20 1624
Min 39.39 6.35 9.06 6.10 323
Delta 3 6
(") 44.01 7.73 10.09 7.38 758
(o) 4.62 0.94 0.51 0.50 470

Table 6.10. CTE performance comparison of the R-WhONet, G-WhONet, S-WhONet and WPM on the 180

seconds GNSS outage scenario.

Perfor- Positional Estimation Error (m) Total Number
CUPAC CTE Distance of Test
Dataset ;;::;::S R-WhO- G-WhO- S-WhO- Travelled Sequences
WPM Net Net Net (m) evaluated
Max 20.66 4.84 15.09 3.35 3496
Charlie Min 0.48 0.05 0.98 0.03 1012
3 (%) 10.12 1.66 5.50 1.57 1916 7
(o) 6.00 1.61 4.54 0.73 772
Max 11.94 5.10 14.59 5.21 1716 3
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Min 8.13 0.04 3.26 0.14 1220
Charlie
4 (L) 10.14 3.60 7.78 3.68 1400
(o) 1.56 0.31 4.90 0.18 224
Max 9.81 0.49 6.46 0.25 1278
Min 3.30 0.02 5.99 0.07 928
Delta 2
(L) 6.56 0.26 6.22 0.16 1103
(o) 3.26 0.00 0.23 0.01 175
Max 8.73 3.17 9.54 1.10 1624
Min 0.46 0.03 5.43 0.00 323
Delta 3
(%) 4.90 1.29 7.78 0.53 131
(o) 3.17 0.65 1.29 0.33 97
Position CRSE for the 180 s GNSS Outage (Delta3)
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Figure 6.11. Sample CRSE evolution of the models on the Delta 2 CUPAC dataset during the 180 s GNSS

outage scenario after recalibration.
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Figure 6.12. Sample CTE evolution of the models on the Delta 2 CUPAC dataset during the 180 s GNSS

outage scenario after recalibration.
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Average CRSE comparison on the CUPAC 180s GMSS outages
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Figure 6.13. CRSE and CTE comparison of the models on the Charlie 4 CUPAC dataset during the 180 s

GNSS outage scenario after recalibration.

6.5. Summary

In this chapter, R-WhONet (Recalibration Wheel Odometry neural Network) was
proposed for the adaptation of the WhONet model to vehicles with different dynamics
and states such as tyre pressures, worn out tyre state, driving behavior, size, etc. Due to
the difference in the feature space of different vehicles as affected by varying vehicle
dynamics and state properties, a model trained to learn the correlation between the
wheel speed and the position uncertainty on a vehicle A, will not fit a vehicle B with
different motion characteristics. As it is expensive and impractical to train a specific
WhONet (5-WhONet) model for every vehicle’s dynamics and different worn-out tyre
states as well as tyre pressure, we leveraged transfer learning to recalibrate a generic
WhONet (G-WhONet) model trained on a source Vehicle A, for an on the fly adaptation
to a new target vehicle B. This provides an improved estimation of the vehicles position
uncertainty estimation needed for continuous positioning correction. We showed that a
G-WhONet model does not fit a target vehicle as accurately as a S-WhONet trained for
that vehicle. We also further showed that the R-WhONet is able to improve the
performance of the G-WhONet model to provide better uncertainty estimation

accuracies closer to the S-WhONet model.

It is however worth noting that one of the major reasons why the R-WhONet model
does not give estimations that exactly match that of the S-WhONet model is due to the
limitation of the features of the new target vehicles used in the transfer learning training

process. The first 50 seconds of the training data which is used for transfer learning might
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not have features which the model will encounter after adaptation. The continuous
adaptation of the model might provide the opportunity to address this limitation. The
use of systems that are able to inform on the change in the states of the vehicle, through
techniques that inform on the worn-out state of the tyres or through information on the
change in tyre pressures, the WhONet model can be continuously triggered into
recalibration mode for adaptation to the vehicle’s new state. As the datasets used in this
thesis do not provide information on exactly when the vehicular dynamics properties
have changed, it has been challenging to implement such a system. However, this will

be the subject of future research.



Chapter 7

Conclusions and Future Work

7.1. Summary of Contributions

The use of deep learning for robust and accurate localisation of autonomous
vehicles in GNSS deprived environments using ego-motion sensors were

investigated in this thesis.

Inertial navigation sensors have unique properties which are important for ego-
motion localisation of autonomous vehicles. However, low-cost ego-motion sensors are
plagued by noises which are cascaded exponentially over time leading to poor
navigation results. Many studies on the use of deep learning to learn the noise in these
sensors have been successful, however, their investigations have mostly been focused
on vehicular tracking on simple straight line and low-speed drive trajectories. As this is
not realistic of everyday driving experience, the first challenge becomes how to
consistently and accurately learn the noise in the inertial data for navigation in
challenging driving environments. Features characterizing these complex scenarios are
sometimes indistinguishable from the noises inherent in the data making it a challenge
for the deep learning model to accurately track the vehicle. More so, the dataset used by

other researchers for their investigations are either not publicly available or
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characterised by a high signal to noise ratio and as such too expensive to be found on
present day vehicles. Chapter 3 describes a publicly released large- scale dataset on noisy ego-
motion data called IO-VNBD (Inertial Odometry Vehicular Navigation Benchmark
Dataset)  characterised by 5700km over 98hrs (publicly available

at https://github.com/onyekpeu/IO-VNBD). The dataset captures information such as

the vehicle’s longitudinal acceleration, yaw rate, heading, GPS co-ordinates
(latitude, longitude) amongst others at each time instance from the Electric Control Unit
(ECU) of from four vehicles and three smart phones with a sampling interval of 10
Hz. Furthermore, we described the physics model used to estimate the vehicles
orientation rate from the gyroscope, which we «called GPM (Gyroscope
orientation estimation Physics Model), the physics model used to estimate the
vehicles position from the accelerometer which we called APM (Accelerometer position
estimation Physics Model) and the physics model used to estimate the vehicles position
from the wheel encoder which we called WPM (Wheel encoder position estimation
Physics Model), these defined physics models are used as baselines for comparison in
this thesis. The deep learning models are also described in chapter 3. We described
the deep learning model used to estimate the vehicles orientation rate which we
called GyroNet (Gyroscope-based orientation rate estimation neural Network model),
the deep learning model used to estimate the vehicle’s position from the accelerometer’s
measurement which we called AccNet (Accelerometer-based position estimation
neural Network) and the deep learning model used to estimate the vehicles
position from the wheel encoder’s measurement which we called WhONet (Wheel
Odometry neural Network). In addition, we also introduced the metrics to evaluate the
performance of the deep learning and the physics model in Chapter 3 as well as the
ground truth position formulation using Vincenty’s ‘s inverse formula on the GPS

coordinates and the orientation rate formulation from the GPS heading.

In Chapter 4, extensive experiment were conducted on the IO-VNB dataset to
investigate the performance of WhONet, AccNet, and GyroNet in comparison to WPM,
APM and GPM respectively on several challenging driving scenarios such as hand
brake, motorway, sharp cornering and successive left and right turns, wet road, quick
changes acceleration, and roundabout. The results obtained over several test sequences each
of 10s length, showed that the scenarios explored were indeed complex for the deep learning

and physics models however the deep learning models provided significant estimation
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improvement in comparison to the corresponding physics model. The WhONet offered up
to 91% error reduction over the WPM’s estimation, the AccNet improved on the APM'’s
position estimation by up to 89% and the GyroNet improved on the orientation rate

estimation on the GPM by 83%.

We also compared the performance of WhONet to AccNet and discovered
that the WhONet is able to provide up to a 99% reduction on the position error
comparatively, thus establishing it as a suitable model for robust and accurate
vehicular position tracking in complex driving environments. Of all the complex driving
scenarios studied, the roundabout scenario proved to be the most challenging for all models
investigated. Chapter 4 thus answers the 1st research question "How can deep learning
improve localisation using inertial sensor data in complex driving environments?" by
showing the capability of the AccNet and GyroNet model to provide better position
estimates relative to other compared models whilst using inertial sensor data. The 2nd
research question "How can deep learning be used to improve on localisation with
wheel encoder data comparatively to inertial sensor data in challenging environments?"
is also answered in this chapter through the establishment of the superiority of the

WhONet model over the AccNet model in AV position estimation.

Having established the superiority of the Wheel encoder-based position
estimation deep learning (WhONet) model compared to the accelerometer-
based position estimation deep learning (AccNet) model, in Chapter 5 we
further extend the analysis to evaluate the performance of the WhONet model over
longer term GNSS outages (defined as up to 180s). The performance of the
proposed WhONet was extensively evaluated on longer GNSS outage scenarios
comprising of 129 test sequences of 30 s simulated GNSS outage, 197 sequences
of 60s simulated GNSS outages, 399 sequences of 120s simulated GNSS outages
and 809 sequences of 180s simulated GNSS outages. The total trajectory covered
across all sequences investigated in each GNSS scenario is 493 km. We
demonstrate that the WhONet is able to provide up to 93 % improvement over
the directly integrated positioning information from the WPM. The WhONet is able
to provide an average accuracy of 8.62 m after 5.6 km of travel. Chapter 5 thus answers
the 3rd research question "How can deep learning be wused to improve
localisation in longer term GNSS outages?" by showing its superiority over the

compared models in longer GNSS outages of up to 180s.
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Chapter 6 explores the challenge of WhONet’s generalization to new vehicle with
different dynamics and states. Vehicular features such as the physical state of the vehicle
(worn out state of the tyres, pressure of the tyre, passenger weight distribution, size of
the vehicle, etc.) vary from vehicle to vehicle but ego-motion sensor datasets are always
specific to the vehicle used in collecting the data. As such models specifically trained
with data from a vehicle with limited feature characteristics affecting the motion of the
vehicle! do not adapt to give correct position estimation in other vehicles. With the
inspiration from transfer learning, we proposed the Recalibrated Wheel Odometry
neural Network (R-WhONet) which leverages the knowledge transfer capabilities
of transfer learning to recalibrate the WhONet model to vehicles with different
dynamics and tyre states. We showed that the R-WhONet is capable of consistently
adapting to a pre-trained generic WhONet model to provide better uncertainty
estimations (with up to 36% error reductions) whilst providing accuracies similar to a
WhONet model trained specifically for the new vehicle. We thus answer the 4th research
question "How can deep learning localisation models be adapted to vehicles with

different error feature characteristics and vehicular state and dynamics?" in this chapter.

7.2.Limitations

We however do stress that despite the performance of the deep learning models,
the accuracy and robustness of their estimations are limited by the quality of the data
obtained from the GNSS receiver which is used in training the models and also as
baselines in comparing the performance of the models. The information provided by
the (VBOX HD2, 2019) documentation suggests that the errors from the GNSS receiver
data are within the range of +3 m. The use of quality GNSS data for the model
training and analysis has the potential to improve the performance of the deep learning

models.

In order to provide continuous positioning information for vehicular localisation,
the deep learning models need to provide estimates of the vehicles position
and orientation in real time. Although, minimal parameterisations of the neural
networks were considered during the selection of the deep learning models,
real time implementation of these models was not the focus of this thesis and as such

will be the subject of future research.

I not all scenarios that can influence the position estimation of the vehicle can be captured in any

dataset
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7.3.Future Work

There is still room for a lot of improvement on vehicular localisation in GNSS
deprived environments. With a broader vision towards improving the reliability,
robustness, generalisation and accuracy of deep learning models especially in longer
term GNSS outages, the following represents prospective research directions that are

worthy of explorations:
7.3.1. Map Matching

Map matching is useful for so many purposes; it is used when a navigation
system displays the vehicle’s location on a map. Map matching indicates a process of
assigning geographical objects to locations on a digital map. Most common geographical
objects are point positions obtained from a positioning system, which are most times
GPS receivers. In many applications of map matching, information such as speed limits
are assigned to the representations of roads on a map. The objective of map matching is

to put the GPS positions at their “accurate” locations on the polylines in the map.

Due to unreliability, the GPS positions do not intersect with polylines generally. The use
of map matching can be extended towards the estimates from the deep learning models
as a means to explore the potential for improved localisation of the vehicles in GNSS

deprived environments through polylines repositioning on the map.
7.3.2. [Explainable, Reliable and Accurate Localisation

In today’s society, the presence of automated decision-making is constantly
increasing. From shaping our consumption of goods (via e-marketing) to translating our
thoughts and speech, to deciding on how much we pay for insurance machine learning
plays an important role. Machine learning are also present in sciences, they have found
promising use in applications such as finding spatial trends or temporal patterns in data,
or improved parameterisation in climate simulations. Most machine learning
applications however focus on optimising performance metrics, such as accuracy, which
are not always good trust indicators. Although the increase in model complexity and
data size may improve the accuracy of machine learning predictions, these models may

be forced to rely on illusory correlations, draw conclusions that are not considering the
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underlying principles defining the systems dynamics or encode and magnify bias within
the system. Because of these, the relations between outputs and inputs become difficult
to interpret and the predictions uncertainty as well as the confidence in the model

become harder to estimate.

Instead of trying to fix the fundamental problems later on, it is better and more
practical to implement eXplainable Artificial Intelligence (XAI) procedures at the very
start of the machine and deep learning adoption. The XAI procedures consist of
ensemble runs, random sampling and Monte-Carlo simulations, which are quite
common methods in engineering. XAl comprises of a systematic perturbation of some
components of the model, which enables it to observe how it affects the model’s
estimates mostly using sensitivity analyses. Due to the safety critical nature of the
autonomous vehicle navigation systems, interpretability of the vehicular navigation
models are necessary and provide sufficient arguments for the suitability of a model for
use on the road as well as sufficient argument when communicating anomaly
behaviours to insurance stakeholders, Original Equipment Manufacturers (OEM) and
other relevant stakeholders, and as such presents an interesting research direction to be

explored.
7.3.3. Sensor Fusion

Deep learning approaches for vehicular localisation have provided good
performances despite how they rarely consider robust and information-rich fusion
strategies for handling imperfect sensor data. We suggest the exploration of sensor
fusion frameworks to enhance the model’s robust adaptation to real life scenarios with
characteristics such as bad sensor synchronization, corrupt or missing data, etc. Other
sensor information on the vehicle such as surrounding air temperature, brake pressure,
steering angle amongst others may offer further insights on improving the accuracy,
robustness and generalisation of the vehicular localisation deep learning models in a

wide range of scenarios.
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Table A1. Existing odometry datasets

Configuration Sensor Information
Shortname and References Platform, IMU GPS Labels Other
Environment

I0-VNBD Veh Wheel Encoder, Smartphone,

(Onyekpe, Palade, Kanarachos, & Szkolnik, 2021) Temperature sensor,
Steering Angle, Brake pressure, Accelerometer Pedal
position, etc.

FMDataset Hand

(Shan, Li, & Schwertfeger, 2019)

UZH-FPV Drone Racing UAV Indoor, Outdoor

(Delmerico, Cieslewski, Rebecq, Faessler, &

Scaramuzza, 2019)

ADVIO Dataset Hand iPhone, Tango, Pixel

(Saraee, Jalal, & Betke, 2018)

DeeplO Dataset Hand

(C. Chen et al., 2018)

Aqualoc Dataset ROV Pressure Sensor

(Ferrera, Moras, Trouvé-Peloux, Creuze, & Dégez,
2018)
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Rosario Dataset Mob Terrain O O O O Encoder

(Pire, Mujica, Civera, & Kofman, 2018)

InteriorNet Hand Indoor O O O O Texture, Lighting, Context, Optical Flow
(Li et al., 2018)

SPO Dataset Hand Urban @) @) @) Plenoptic Camera
(Zeller, Quint, & Stilla, 2018)

KAIST Day/Night Veh Urban (0] o (@) (0] O (0] Thermal Camera
(Y. Choi et al., 2018)

TUM-Visual-Inertial Hand Indoor,Urban O O O

(Schubert et al., 2018)

Complex Urban Veh Urban @) @) (@) (@) Encoder

(Jeong, Cho, Shin, Roh, & Kim, 2018)

Multi Vech Event Veh Urban (e] O O (©) O

(Zhu et al., 2018)

VI Canoe Uusv Terrain o O O O

(Miller, Chung, & Hutchinson, 2018)

RPG-event UAV/Hand Indoor O O O

(Mueggler, Rebecq, Gallego, Delbruck, &

Scaramuzza, 2017)

Underwater Cave AUV Underwater (e} O O Profiling Sonar
(Mallios, Vidal, Campos, & Carreras, 2017)

Zurich Urban MAV UAV Urban (@) (@) (@) (@) Streetview images
(Majdik, Till, & Scaramuzza, 2017)

Chilean Underground Mob Terrain(Underground) O (@) (e} Encoder

(Leung, Halpern, Barfoot, & Liu, 2011)

SceneNet RGB-D Hand Indoor (e] (e] (e

(Mccormac, Handa, Leutenegger, & Davison,

2017)

Symphony Lake usv Terrain (Lake) O O ©) O PTZ camera, Longterm
(Griffith, Chahine, & Pradalier, 2017)

Agricultural Robot Mob Terrain @) (@) @) (@] @) Multispectral camera

(Chebrolu et al., 2017)
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Beach Rover

(Hewitt et al., 2017)

Mob

Terrain

Encoder

EuRoc

(Burri et al., 2016)

UAV

Indoor

TUM-MONO

(Engel, Usenko, & Cremers, 2016)

Hand

Indoor, Urban

Photometric Calibration

Cityscape

(Cordts et al., 2016)

Veh

Urban

Solar-UAV

(Oettershagen et al., 2016)

UAV

Terrain

CoRBS

(Wasenmuller, Meyer, & Stricker, 2016)

Hand

Indoor

Oxford-robotcar
(Maddern, Pascoe, Linegar, & Newman, 2016)

Veh

Urban

NCLT

(Carlevaris-Bianco, Ushani, & Eustice, 2016)

Mob

Urban

FOG

MPO-Japan

(Jung, Oto, Mozos, Iwashita, & Kurazume, 2016)

Veh

Urban, Terrain

FARO 3D

Cartographer

(Hess, Kohler, Rapp, & Andor, 2016)

Hand

Indoor

CCSAD

(Guzman, Hayet, & Klette, 2015)

Veh

Urban

TUM-Omni

(Caruso, Engel, & Cremers, 2015)

Hand

Indoor, Urban

Augmented ICL-NUIM
(S. Choi, Zhou, & Koltun, 2015)

Hand

Indoor

ICL-NUIM

(Handa, Whelan, Mcdonald, & Davison, 2014)

Hand

Indoor

MRPT-Malaga

(Blanco-Claraco, Moreno-Duenas, & Gonzalez-

Jiménez, 2013)

Veh

Urban

KITTI

(Geiger, Lenz, Stiller, & Urtasun, 2013)

Veh

Urban
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Canadian Planetary Mob Terrain

(Tong, Gingras, Larose, Barfoot, & Dupuis, 2013)

Microsoft 7 Scenes Hand Indoor
(Shotton et al., 2013)

SeqSLAM Veh Urban
(Milford & Wyeth, 2012)

ETH-challenging Hand Urban, Terrain
(Pomerleau, Liu, Colas, & Siegwart, 2012)

TUM-RGBD Hand/Mob  Indoor

(Sturm, Engelhard, Endres, Burgard, & Cremers,

2012)

ASRL-Kagara-Airborn UAV Terrain
(Michael Warren et al., 2014)

Devon Island Rover Mob Terrain Sunsensor, Inclinometer
(Furgale, Carle, Enright, & Barfoot, 2012)

ACFR Marine AUV Underwater
(ACEFR, 2016)

UTIAS Multi-Robot Mob Urban

(Leung et al., 2011)

Ford Campus Veh Urban
(Pandey, Mcbride, & Eustice, 2011)

San Francisco Veh Urban DMI
(D. M. Chen et al., 2011)

Annotated-Laser Veh Urban

(Yang, Wang, & Thorpe, 2011)

MIT-DARPA-Urban Veh Urban

(Huang et al., 2010)

St Lucia Stereo Veh Urban

(M Warren, McKinnon, He, & Upcroft, 2010)

St Lucia Multiple Times Veh Urban
(Glover, Maddern, Milford, & Wyeth, 2010)

Marulan Mob Terrain Infrared

(Peynot, Scheding, & Terho, 2010)
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COLD
(Pronobis & Caputo, 2009)

Hand

Indoor

NewCollege
(Smith, Baldwin, Churchill, Paul, & Newman,
2009)

Mob

Urban

Rawseeds-Indoor
(Bonarini, Burgard, & Fontana, 2006)

Mob

Indoor

Rawseeds-Outdoor
(Bonarini et al., 2006)

Mob

Urban

FABMAP

(Cummins, Newman, & Newman, 2008)

Veh

Urban
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Table A2-1. Dataset description from Driver A, B and C.
Driver Dataset  Features Citiesand  Weather conditions  Collection  Velocity and Total time Total Corresponding
name towns date acceleration driven and number of smartphone
covered range distance covered data points  dataset
A V-S1 B-road (B4101), roundabout (x9), reverse (x5), Coventry 15/4 °C, Sunny, 08/09/2019 0.0 to 93.8 km/hr,  86.3 mins, 51790 S-S1
hilly road, A4053 (ring-road), hard-brake, tyre Humidity:73%, -0.59t00.34 g 38.16 km
pressure E Wind:2.486 mph N
V-S2 B-road (B4112, B4065), roundabout (x18), Coventry, 17 /15 °C Passing 08/09/2019 0.0 to 105.2 156.5 mins, 93900 S-S2
reverse drive (x8), motorway, dirt road, u-turn ~ Nuneaton clouds. km/hr, 75.64 km
(x5), country road, successive left-right turns, Humidity:47% -0.56t0043 g
hard-brake, A-roads (A4600), tyre pressure E Wind:3.728 mph N
V-S3a Round-about (x15), u-turn/reverse drive (x4), Coventry, 17 /12 °C, Passing 04/09/2019 0.0 - 98.0 km/hr, 41.1 mins, 24660 S-S3a
motorway (M6), A-road (A4600, A426), hard- Rugby clouds. -057t004¢g 26.0 km
brake, swift maneuvers, country roads, change Humidity:65%
in speed, night-time, sharp turn left/right, tyre Wind:6.836 mph W
pressure E
V-S3b Successive left-right turns (x21), reverse/u- Rugby 04/09/2019 0.0 to 44.8 km/hr,  11.4 mins, 6840 S-S3b
turns (x1), tyre pressure — E -037t003 g 3.8 km
V-S3¢ Roundabout(x4), A-road (A428), country Rugby, 04/09/2019 0.0 to 117.1 62.0 mins, 37220 S-S3¢
roads, tyre pressure E Coventry km/hr, 44.28 km
-0.36t00.35¢g
V-S4 Roundabout (x14), u-turn, A-road, successive Coventry 13 /12 °C, Passing 06/09/2019 0.0 to 109.6 163.0 mins, 97824 S-S54
left-right turns, swift maneuvers, change in clouds. km/hr, 93.9 km
speed, night-time, A-road (A429, A45, A46), Humidity:83% -0.48t00.41¢g
ring-road (A4053), tyre pressure E Wind:8.078 mph
WNW
B V-M Roundabout (x30), successive left-right turns, Coventry 15/12 °C, Partly 07/09/2019 0.0 to 100.7 176.7 mins, 105995 S-M
hard-brake (x21), swift maneuvers (x5), sunny. km/hr, 105.44 km
country roads, sharp turn left/right, daytime, Humidity:80% -1.01to 044 g
u-turn (x1), u-turn reverse (x7), tyre pressure E Wind:8.078 mph
NW
C V-St1 Roundabout (x9), A-road (A452), B-road, car Coventry, 13 /10 °C, Passing 01/04/2019 0.0 to 73.3 km/hr,  95.4 mins, 57213 N/A
park navigation, tyre pressure E Kenilwort  clouds. -0.39t0045 g 47.05 km
h Humidity:56%
Wind:7.457 mph

ESE
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Table A2-2. Dataset description from Driver C and D.

Driver Dataset  Features Citiesand  Weather conditions  Collection  Velocity and Total time Total Corresponding
name towns date acceleration driven and number of smartphone
covered range distance covered data points  dataset
C V-St4 Roundabout (x1), A-road (A4114, Ad44, A46), Coventry, 9/4°C 04/03/2019 0.0 to 101.4 22.7 mins, 13591 N/A
motorway (M40), tyre pressure E Warwick, Scattered clouds. km/hr, 28.48 km
Chesterton ~ Humidity:72% -027t00.13 g
Barometer:991 mbar
Wind:12.428 mph W
V-St6 Motorway (M40), daytime, tyre pressure E Stokenchu  11/9 °C, Passing 05/03/2019 0.0 to 122.1 85.6 mins, 51360 N/A
rch, clouds. km/hr, 113.63 km
Headingto = Humidity:62% -0.32t0035 g
n Wind:10.564 mph
Oxford SSW
V-St7 Motorway (M40), residential roads, A-road Stokenchu 7/6°C 07/03/2019 0.0to 117.9 74.0 mins, 44427 N/A
(A46), tyre pressure E rch, Light rain. Partly km/hr, 90.06 km
Headingto  sunny. -03t003¢g
n Humidity:85%
Oxford, Wind:14.914 mph W
Coventry,
Kenilwort
h,
Warwick
D V-Y1 Roundabout (x20), successive left-right turns, Coventry 22 /16 °C, Passing 30/08/2019 0.0 to 87.5km/hr, 117.2 mins, 70341 S-Y1
hard-brake, swift maneuvers, sharp turn clouds. -0.85t00.36¢g 60.86 km
left/right, reverse/u-turn (x8), tyre pressure E Humidity:74%
Wind:6.836 mph
SSW
V-Y2 Roundabout (x9), u-turn/reverse (x1), A-road, Coventry, 7/6°C 08/03/2019 0.0 to 73.3 km/hr,  95.4 mins, 57213 N/A
B-road, country road, tyre pressure E Keniltwort  Light rain. Partly -0.39t0045 g 47.05 km
h sunny.
Humidity:85%

Wind:14.914 mph W
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Table A3-1. Description of datasets V-Vtala to V-Vtal7 from Driver E.

Driver Dataset  Features Cities and towns  Weather Collection Velocity and Total time Total no Corresponding
name covered conditions date acceleration range & distance of data smartphone
covered points dataset
E V-Vtala Wet road, gravel road, country road, sloppy Nuneaton, 4-10/3-6 °C 14/112019 0.0 to 103.4 km/hr, 43.0 mins, 25821 S-Vtala
roads, roundabout (x3), hard-brake on wet road, Walton on Trent Passing -0.54t00.35¢g 40.74 km
tyre pressure A clouds,
V-Vtalb Hard-brake on muddy road, wet road, country Coton in the Elms  Broken 0.1 to 77.7 km/hr, 1.6 mins, 956 S-Vtalb
road, tyre pressure A Clouds, -049t00.28 g 1.26 km
V-Vta2 Roundabout (x2), A-road (A511, A5121, A444), Walton on Trent Scattered 0.0 to 81.6 km/hr, 18.3 mins, 10995 S-Vta2
country road, hard-brakes, tyre pressure A Clouds. -0.59t00.38 g 11.07 km
V-Vta3 Roundabout (x1), swift maneuvers, tyre pressure Burton on Trent Humidity:75- 0.0 to 45.8 km/hr, 1.5 mins, 875 S-Vta3
A 93% 03110027 g 0.38 km
V-Vta4 A-road (A511), tyre pressure A Burton on Trent Wind:4.971 5.9 to 51.7 km/hr, 3.0 mins, 1809 S-Vta4
mph SE 0370028 g 2,02 km
V-Vta5 Roundabout (x1), A-road (A511), tyre pressure A Burton on Trent 29.2 to 51.1 km/hr, 0.6 min, 357 S-Vta5
-0.26t00.09 g 0.42 km
V-Vta6 A-road (A511), tyre pressure A Burton on Trent 43.8 to 103.9 km/hr, 2.3 mins, 1393 S-Vta6
-024t00.13 g 2.62 km
V-Vta7 Roundabout (x2), A-road (A511), hard-brakes, Burton on Trent 22.4 to 113.1 km/hr, 1.4 mins, 857 S-Vta7
tyre pressure A -0.54t00.18 g 1.54 km
V-Vta8 Town roads, A-roads (A511), tyre pressure A Hatton Derby 0.0 to 77.6 km/hr, 6.2 mins, 3697 S-Vta8
-045t003 g 3.43 km
V-Vta9 Hard-brakes, A-road (A50), tyre pressure A Derby 48.9 to 87.7 km/hr, 0.4 min, 226 S-Vta9
-0.6t00.14 g 0.43 km
V-Vtal0  Roundabout (x1), A-road (A50), tyre pressure A Sudbury 38.8 to 118.0 km/hr, 2.6 mins, 1570 S-VtalO
Ashburne -0.28t00.13 g 3.95 km
V-Vtall Roundabout (x2), A-road (A50), tyre pressure A QOaks Green 26.8 t0 97.7 km/hr, 1.0 min, 589 S-Vtall
Ashburne -045t00.15¢g 0.92 km
V-Vtal2 changes in acceleration in a short period of time, Ashburne 44.7 to 85.3 km/hr, 1.1 mins, 690 S-Vtal2
A-road (A515), tyre pressure A -044t00.13 g 1.27 km
V-Vtal3d A-road (A515), country road, hard-brakes, tyre Ashburne 72.7 to 103.6 km/hr, 0.8 mins, 473 S-Vtal3
pressure A -0.38t00.12 g 1.14 km
V-Vtald Hard-brakes, changes in acceleration in a short Ashburne 52.8 t0 91.0 km/hr, 4.8 mins, 2893 S-Vtald
period of time, A-road (A515), tyre pressure A -0.32t00.13 g 5.45 km
V-Vtal5  A-road (A515), tyre pressure A Ashburne 60.1 to 78.8 km/hr, 1.4 mins, 869 S-Vtal5
-0.12t0 0.06 g 1.72 km
V-Vtal6 Roundabout (x3), hilly roads, country road, A- Thorpe Ashburne 0.0 to 93.9 km/hr, 18.9 mins, 11361 S-Vtal6
road (A515), tyre pressure A -049t0 042 g 13.72 km
V-Vtal7 Hilly roads, hard-brake, stationary (no motion), Ilam, Blore 0.0 to 56.2 km/hr, 7.7 mins, 4594 S-Vtal7
tyre pressure A -051t00.28 g 4.19 km
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Table A3-2. Description of datasets V-Vta19 to V-Vta30 from Driver E.
Driver Dataset  Features Cities and towns  Weather Collection Velocity and Total time Total Corresponding
name covered conditions date acceleration range driven and number smartphone
distance of data dataset
covered points
E V-Vtal9 Hilly road, tyre pressure A Ilam 4-10/3-6 °C 06/112019 0.0 to 55.2 km/hr, 0.5 min, 310 S-Vtal9
Passing -0.35t00.22 ¢ 0.26 km
V-Vta20  Hilly road, approximate straight-line travel, tyre Tlam clouds, 0.0 to 44.8 km/hr, 5.4 mins, 3223 S-Vta20
pressure A Broken -0.19t003 g 0.39 km
V-Vta2l  Hilly road, tyre pressure A llam Clouds, 0.0 to 74.8 km/hr, 3.5 mins, 2088 S-Vta21
Scattered -044t0024 g 2.76 km
V-Vta22  Hilly road, hard-brake, tyre pressure A Tlam Clouds. 14.8 to 55.8 km/hr, 2.6 mins, 1572 S-Vta22
Humidity:75- 053t00.16 g 1.67 km
V-Vta23  Hilly road, hard-brake, tyre pressure A Thorpe 93% 0.0 to 51.9 km/hr, 1.9 mins, 1119 S-Vta23
SE 05710042 g 1.1km
V-Vta24  Hilly road, tyre pressure A Thorpe Wind:4.971 0.0 to 56.4 km/hr, 2.0 mins, 1184 S-Vta24
mph -0.46 10036 g 0.71 km
V-Vta25  U-turn, tyre pressure A Thorpe 0.0 to 48.6 km/hr, 1.1 mins, 646 S-Vta25
-046t003¢g 0.16 km
V-Vta26 ~ Gravel road, dirt road, hilly road, tyre pressure A Thorpe 0.0 to 55.1 km/hr, 3.2 mins, 1947 S-Vta26
-0.27t0 044 g 1.02 km
V-Vta27 Gravel road, several hilly roads, potholes, country ~ Ashburne 0.0 to 65.0 km/hr, 4.8 mins, 2853 S-Vta27
road, A-road (A515), tyre pressure A -043t0029 g 3.16 km
V-Vta28 Country road, hard-brakes, valley, A-road (A515), Milldale 0.0 to 66.0 km/hr, 7.0 mins, 4219 S-Vta28
tyre pressure A -0.58t00.31 g 3.94 km
V-Vta29 Hard-brakes, country road, hilly road, windy Wetton, 0.0 to 102.0 km/hr, 39.6 mins, 23737 S-Vta29
road, dirt road, wet road, reverse drive (x2), Milldale -0.8-t00.38 g 26.12 km
bumps, rain, B-road (B5053), country road, u-turn
(x3), windy road, valley, tyre pressure A
V-Vta30 Rain, wet road, u-turn (x2), A-road (A53, A515), Buxton 0.0 to 100.0 km/hr, 28.6 mins, 17179 S-Vta30
inner town driving, B-road (B5053), tyre pressure -047t0 036 g 11.77 km
A
Table A4. Description of datasets V-Vtb1 to V-Vtb13 from Driver E.
Driver Dataset Features Citiesand  Weather Collection  Velocity and Total time Total Corresponding
name towns conditions date acceleration range drivenand  numberof  smartphone
covered data points  dataset
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distance
covered
V-Vitbl Valley, rain, wet road, country road, u-turn Bakewell, 06/11/2019 0.0 to 101.2 km/hr, 54.1 mins, 32459 S-Vibl
(x2), hard-brake, swift maneuver, A-road (A6, Tideswell, 4-8/4°C -0.63t00.36 g 41.94 km
A6020, A623, A515), B-road (B6405), round Ashford on  Rain, Passing
about (x3), daytime, tyre pressure A water, clouds, Broken
Buxton Clouds, Chilly.
V-Vtb2 Country road, wet road, dirt road, tyre Youlgreave  Humidity:94- 0.0 to 61.1 km/hr, 9.5 mins, 5712 S-Vtb2
pressure A 98% -0.36t00.39 g 4.35 km
V-Vtb3 Reverse, wet road, dirt road, gravel road, Youlgreave Barometer:1004 0.0 to 37.5 km/hr, 13.8 mins, 8289 S-Vitb3
night-time, tyre pressure A mbar -023t00.33 g 0.71 km
V-Vitb4 Dirt road, country road, gravel, wet road, tyre ~ Youlgreave N . 0.0 to 32.7 km/hr, 1.0 min, 625 S-Vtb4
pressure A Wind:10.564 -031t00.27 g 0.27 km
V-Vtb5 Dirt road, country road, gravel road, hard- Atherstone, mph 0.0 to 112.9 km/hr, 107.7 mins, 64610 S-Vtb5
brakes, Nuthall, -0.55t0042 g 111.66 km
Wet road, B-road (B6405, B6012, B5056), inner-  Hilcote,
town driving, A-road, motorway (M42, M1), Matlock,
rush hour(traffic), round-about (x6), a-road Rowsley,
(A5, A42, A38, A615, A6), tyre pressure A Youlgreave
V-Vtb6 A-road (AD), tyre pressure A Atherstone 52.7 to 73.0 km/hr, 0.8 min, 508 S-Vib6
-0.11to0.11 g 0.89 km
V-Vtb7 Approximate straight-line motion, night-time,  Atherstone 29.1 to 69.2 km/hr, 0.8 min, 461 S-Vtb7
A-road (A5), tyre pressure A -0.37t00.13 g 0.72 km
V-Vtb8 Approximate straight-line motion, nighttime, Atherstone 60.9 to 76.5 km/hr, 1.2 mins, 699 S-Vtb8
wet road, A-road (A5), tyre pressure A -0.35t00.08 g 1.35 km
V-Vitb9 Approximate straight-line motion, night-time, = Nuneaton 66.8 t0 92.0 km/hr, 0.8 min, 457 S-Vtb9
wet road, hard-brakes, A-road (A5), tyre -0.14t00.1g 0.98 km
pressure A
V-Vtb10 Round-about, wet road, night-time, A-road Nuneaton 26.1 to 58.5 km/hr, 0.3 min, 195 S-Vitb10
(A5), tyre pressure A -024t00.12 g 0.23 km
V-Vtbl1 Approximate straight-line motion, night-time, = Nuneaton 65.1 to 75.3 km/hr, 0.7 min, 433 S-Vitb11
wet road, A-road (A5), tyre pressure A -0.05t00.12 g 0.84 km
V-Vtb12 Roundabout (x1), wet road, night-time, tyre Nuneaton 22.2 to 71.6 km/hr, 0.8 min, 490 S-Vtb12
pressure A -0.38t00.17 g 0.61 km
V-Vtb13 Parking, wet road, tyre pressure A Nuneaton 7.5 to 43.3 km/hr, 2.1 mins, 1245 N/A
-0.31t0022¢g 0.99 km
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Table A5. Description of datasets V-Vw]1 to V-Vw12 from Driver E.

Driver Dataset Features Cities and Weather Collecti  Velocity and Total time driven  Total Corresponding
name towns covered conditions on date acceleration range  and distance number of  smartphone
covered data points  dataset
E V-Vwl Stationary (no motion, sensor bias Nuneaton 10 °C 08/01/20  0.00 to 0.00 km/hr,  34.1 mins, 20475 S-Vwl
estimation), daytime, tyre pressure C Smoke. 20 0.00t0-0.00 g 0.00 km
V-Vw2 A-road (A5, A421), motorway (M5), Nuneaton, Wind: 6 0.0 to 115.4 km/hr,  87.9 mins, 52712 S-Vw2
daytime, roundabout (x22), u-turn (x2), Hinckley mph N -0.62t00.45¢g 98.63 km
inner city driving, tyre pressure C Milton Keynes Humidity:
(o)
V-Vw3 Roundabout (x6), daytime, B-road, Milton Keynes 86% 0.0 to 77.4 km/hr, 6.6 mins, 3942 S-Vw3
inner-city driving, tyre pressure C -047t0041 g 5.05 km
V-Vw4d Roundabout (x77), swift-maneuvers, Milton Keynes, 0.0to 131.9 km/hr,  211.0 mins, 126573 S-Vw4
hard-brake, inner city driving, reverse, Buckingham, -0.66t00.45¢g 214.62 km
A-road, motorway (M5, M40, M42), Droitwich Spa,
country road, successive left-right turns, Kidderminster,
daytime, u-turn (x3), tyre pressure D Worcester
V-Vw5 Successive left-right turns, daytime, Worcester 10 °C 0.0 to 38.7 km/hr, 1.8 mins, 1050 S-Vwbh
sharp turn left/right, tyre pressure D Passing -04t0021g 0.7 km
V-Vwé Bumps, swift-maneuvers, daytime, Worcester ;122332 3.3 to 40.7 km/hr, 2.1 mins, 1288 S-Vwé
sharp turn left/right, pressure D mph N -0.34t00.26 g 1.08 km
V-Vw7 Successive left-right turns, daytime, Worcester Humidity: 0.4 to 42.2 km/hr, 2.8 mins, 1689 S-Vw7
sharp turn left/right, tyre pressure D 88% -0.37t00.37 g 1.23 km
V-Vw8 Successive left-right turns, daytime, Worcester 0.0 to 46.4 km/hr, 2.7 mins, 1599 S-Vw8
sharp turn left/right, tyre pressure D -0.37t00.27 g 1.12 km
V-Vw9 Swift-maneuvers, daytime, hard-brake, Worcester 3.8 t0 42.0 km/hr, 1.0 min, 601 S-Vw9
tyre pressure D -0.67to021 g 0.45 km
V-Vw10 Hilly road, daytime, pressure D Worcester 11.8 to 58.9 km/hr, 1.1 mins, S-Vw10
-042t00.11g 0.74 km 670
V-Vwi11l Motorway (M5), daytime, roundabout 0.0 to 98.4 km/hr, 8.2 mins, 4924 S-Vwil1l
(x5), tyre pressure D -037t00.33 g 5.85 km
V-Vwi2 Approximate straight-line motion, 7°C 82.6 t0 97.4 km/hr,  1.75 mins, 1050 S-Vwi2
daytime, Motorway (M5), tyre pressure Drizzle. -0.06t00.07 g 2.64 km
D Fog.
Wind: 5
mph N
Humidity:

93%
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Table A6. Description of datasets V-Vw13 to V -Vw17 from Driver E.

Driver Dataset Features Cities and Weather Collecti ~ Velocity and Total time driven  Total Corresponding
name towns covered conditions on date acceleration range  and distance number of  smartphone
covered data points  dataset
E V-Vw13 Approximate straight-line motion, 7 °C 08/01/20 94.0 to 115.0 0.5 min, 297 S-Vw13
daytime, motorway (M5), tyre pressure Drizzle. 20 km/hr, 0.82 km
D Fog. -0.07to0.06 g
V-Vwl4a  Motorway (M5), nighttime, tyre pressure Wind: 5 61.9 to 109.4 5.2 mins, 3140 S-Vwl4a
D mph N km/hr, 7.92 km
Humidity: -0.38t00.12 ¢
V -Vw14b Motorway (M42), nighttime, tyre 93% 12.6 to 120.1 32.7 mins, 19600 S-Vw14b
pressure D km/hr, 41.21 km
-028t00.28 g
V -Vwldc Motorway (M42), roundabout (x2), A- 0.0 to 100.5 km/hr,  26.4 mins, 15857 S-Vwl4c
road (A446), nighttime, hard-brakes, -053to041g 17.15 km
tyre pressure D
V -Vwi15 Stationary (no motion, sensor bias Dordon 8°C 0.0 to 0.0 km/hr, 2.3 mins, 1391 S-Vw15
estimation), nighttime, tyre pressure D Cool. 0.00to 0.0 g 0.00 km
Wind: 2
mph N
Humidity:
80%
V-Vwl6a  A-road (A5), roundabout (x2), tyre Atherstone 8°C 0.0 to 83.5 km/hr, 10.0 mins, 6000 S-Vwl6a
pressure D Rain -039to04¢g 8.49 km
V -Vwléb Hard-brakes, nighttime, A-road (A5), Nuneaton showers. 1.3 to 86.3 km/hr, 2.0 mins, 1171 S-Vw16b
approximate straight-line travel, tyre Overcast. -0.75t00.29 g 1.99 km
pressure D 2mph N
V -Vwl7 Hard-brakes, nighttime, A-road (A5), Calcedote 80% 31.5t072.7 km/hr, 0.5 min, 329 S-Vwl7
approximate straight-line travel, tyre -08t00.19g 0.54 km

pressure D
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Driver Dataset Features Cities and Weather Collection  Velocity and Total time driven  Total number of Corresponding
name towns conditions date acceleration and distance data points smartphone
covered range covered dataset
E V-Vfa0l A-road (A444), roundabout (x1), B- Nuneaton, 6 °C Quite cool. 08/11/2019 0.0 to 98.4 km/hr,  19.2 mins, 11535 S-Vfa01l
road (B4116), daytime, hard-brakes, Twycross, Wind: 8 mph N -0.56t0042 ¢g 18.8 km
tyre pressure A Measham Humidity: 97%
7 °C, Scattered
V-Vfa02 B-road (B4116), roundabout (x5), A- Bradford, clouds. 0.0to 117.9 112.9 mins, 163.38 67755 S-Vfa02
road (A42, A641), motorway (M1, Measham Wind: 8 mph N km/hr, km
M62), high rise buildings, hard- Humidity: 87% -0.67t0 048 g
brake, tyre pressure C 5 °C, Light rain.
V-Vfb0la City-centre driving, roundabout (x1), ~ Bradford Passing clouds. 0.0 to 68.9 km/hr,  28.3 mins, 17000 N/A
wet road, ring-road, nighttime, tyre Wind: 10 mph N -043t0042g 6.81 km
pressure C Humidity:87%
V-Vib01b Motorway (M606), round-about (x1), 0.0 to 83.0 km/hr, 6.5 mins, 3880 N/A
city roads, traffic, wet road, changes -0.38t00.23 g 4.07 km
in acceleration in short periods of
time, nighttime, tyre pressure C
V-Vib0lc Motorway (M62), wet-road, heavy 0.2 to 104.5 10.5 mins, 10.66 6320 N/A
traffic, nighttime, tyre pressure C km/hr, km
-0.36t00.38 g
V-Vfb0ld  Roundabout (x1), A-road (A650), 0.0 to 56.0 km/hr,  17.9 mins, 10713 N/A
nighttime, tyre pressure C -046t00.36 g 3.39 km
V-Vfb02a Motorway (M1), roundabout (x2), A-  East 7 °C, Rain 0.0 to 122.3 59.9 mins, 35960 N/A
road (A650), nighttime, hard-brakes, Ardsley, showers. km/hr, 96.5 km
tyre pressure D Overcast. -05t0037¢g
V-Vib02b Roundabout (x1), bumps, successive Nuthall Wind: 12 mph 0.0 to 84.3 km/hr, 18.3 mins, 11000 N/A
left-right turns, hard-brakes (x7), N -0.5t00.35g 7.69 km
swift-maneuvers, nighttime, tyre Humidity:86%
pressure D
V-V{b02c U-turn (x1), hard-brakes, nighttime, Nuthall 2.0to52.8 km/hr, 1.1 mins, 640 N/A
tyre pressure D -0.53t00.26 g 0.54 km
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Table A7-2. Description of datasets V-Vfb02d to V-Vfb02g from Driver E.

Driver Dataset Features Cities and Weather Collection  Velocity and Total time driven  Total number of Corresponding
name towns conditions date acceleration and distance data points smartphone
covered range covered dataset
E V-Vib02d Round-about (x1), nighttime, tyre Nuthall 7 °C, Rain 08/11/2019 0.0 to 57.3 km/hr, 1.5 mins, 880 N/A
pressure D showers. -0.33t00.31 g 0.84 km
Overcast.
Wind: 12 mph
V-Vfb02e  Changes in acceleration in short Nuthall N 374t0739 1.6 mins, 980 N/A
period of time, nighttime, tyre Humidity:86% km/hr, 1.52 km
pressure D -024t00.19¢g
V-Vib02f Roundabout (x1), nighttime, tyre Nuthall 1.6 to 49.5 km/hr, 1.1 mins, 660 N/A
pressure D -024t00.32¢g 0.47 km
V-Vib02g Motorway (M1), A-road (A42, A444, Nuneaton 0.0to 119.4 45.3 mins, 63.56 27159 N/A
Ab), country road, roundabout (x2), km/hr, km
hard-brakes, nighttime, tyre pressure -0.51t00.35g
D
Table A8. Information on other Smartphone Dataset captured independently from drivers F, G and H.
Driver Dataset name Location Comments Vehicle Phone Model  Total Time Total distance ~ Total number
model driven (mins)  covered (km) of data points
F S-T1, S-T2, S-T3, S-T4, S-T5, France Information on 3-axis Renault Motorola 1005.70 1508.39 603425
S-T6, S-T8, S-T9 orientation and Megane moto G7
magnetic field not power
available.
S-T10, S-T11 France - Renault Motorola 20.60 8.86 12389
Megane moto G7
power
G S-1 Nigeria - Toyota Huawei P20 9.70 0.06 5800
Corolla Verso  pro,
H S-Al, S-A2, S-A3, S-A4, S- England - Volvo XC70 Blackberry 638.30 1511.93 382956
A5, S-A6, S-A7, S-A8, S-A9, Priv

S-A10, S-A11, S-A12, S-A13
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