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ABSTRACT
Extrinsic camera calibration is essential for any computer
vision tasks in a camera network. Usually, researchers place
calibration objects in the scene to calibrate the cameras. How-
ever, when installing cameras in the field, this approach can
be costly and impractical, especially when recalibration is
needed. This paper proposes a novel accurate and fully auto-
matic extrinsic calibration framework for camera networks
with partially overlapping views. It is based on the analy-
sis of pedestrian tracks without other calibration objects.
Compared to the state of the art, the new method is fully
automatic and robust. Our method detects human poses in
the camera images and then models walking persons as ver-
tical sticks. We propose a brute-force method to determine
the pedestrian correspondences in multiple camera images.
This information along with 3D estimated locations of the
head and feet of the pedestrians are then used to compute
the camera extrinsic matrices. We verified the robustness of
the method in different camera setups and for both single
pedestrian and multiple walking people. The results show
that the proposed method can obtain the triangulation er-
ror of a few centimeters. Typically, it requires 40 seconds of
collecting data from walking people to reach this accuracy
in controlled environments and a few minutes for uncon-
trolled environments. As well as compute relative extrinsic
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parameters connecting the coordinate systems of cameras
in a pairwise fashion automatically. Our proposed method
could performwell in various situations such asmulti-person,
occlusions, or even at real intersections on the street.
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1 INTRODUCTION
Extrinsic camera calibration provides the coordinate system
transformations from 3D world coordinates to 3D camera
coordinates for all the cameras in the network. This informa-
tion is essential for many machine vision applications such
as tracking, augmented reality, free view image synthesis,
3D reconstruction [1, 4]. The classical methods [2, 16, 18]
require sufficient point correspondences of calibration ob-
jects to have accurate extrinsic parameters. Moreover, the
objects also have to be well observed from all cameras. Thus,
calibrating cameras without mistakes requires a certain level
of skill and sending skilled technicians onsite to recalibrate
cameras is costly. Their approaches also does not work for
historic multicamera video sequences in which no calibra-
tion objects were recorded. Hartley et al. [11] proposed an
auto-calibration method based on scene reconstruction from
arbitrary features. Due to the interactive fashion as well as a
large number of parameters to estimate, this method is slow
and not always able to achieve reliable results. Many auto-
calibration methods [3, 5, 7, 8, 14, 15] based on pedestrians
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(a) Case 1: Camera network 1 - a single person in an empty room

(b) Case 2: Camera network 2 - a single person in an kitchen room

(c) Case 3: EPFL-Terrace dataset [6]

(d) Case 4: Camera network 3 - intersection

Figure 1: Example for detected feet and head positions. Red color represents detected positions by human pose estimation
method. Green color represents the detected reprojected positions.

are proposed. However, they are sensitive to noise as well as
impractical for many circumstances.
The proposed method relies on finding humans in im-

ages and estimating their centerline. For this purpose, we
use OpenPose [9, 10], a human pose estimator. Human pose
estimation is also an important task for different machine

vision applications, such as action recognition, motion cap-
ture, sports, etc. Many real-time human estimation meth-
ods [9, 10, 17] have been proposed in recent years. Therefore,
it does not burden the performance of the system if we com-
bine the human pose estimation with extrinsic calibration
for a wide range of applications. The first contribution of our
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Figure 2: Architecture of the proposed calibration method.

paper is that we replace the ellipse based detection of heads
and feet of people by an approach based on modern human
pose estimators. This results in a more robust detection of
people and a more accurate estimate of their centerlines. We
also analyze the amount of time to collect data from walking
people to reach the desired accuracy.
A second contribution is that we propose an automatic

method to also handle the case of multiple pedestrians si-
multaneously in the scene. In [7], this case was handled by
manual annotation. In the paper, we propose a brute-force,
but still fast, method to effectively find the correspondences
and also eliminate correspondences which have poor esti-
mated human pose.We show that it produces accurate results
and more complicated methods are not needed. A third con-
tribution that we evaluate the proposed calibration method
in a wide range of usage scenarios, including indoor and
outdoor scenes. The experimental results show that the pro-
posed method could achieve very precise accuracy in both
cases.
The rest of the paper is organised as follows. We discuss

the related work in Section 1. In Section 2, we describe the
architecture of our calibration method for a pair of cameras
in detail. In Section 3, we explain the way to extend the
proposed method for a camera network. We present the
obtained results and the detailed analysis of our experiments
in Section 4. Finally, we discuss the conclusion and future
work in Section 5.

2 RELATEDWORK
Lv et al. [3] detect and select the walking human from video
sequences by analyzing the transition of foreground object
shapes. They represent the pedestrians as vertical “walking
sticks” of the same height in the 3D environment. Then, they
compute the vertical vanishing point and the horizon line
based on the vertical “walking sticks”. Li et al. [8] proposed
a single view camera calibration method that directly es-
timates the focal length, the tilting angle, and the camera
height by using a nonlinear regression model from the ob-
served head and feet points of a walking human. In [14],

Liu et al. proposed a fully automatic calibration method for
monocular stationary cameras. They leverage relative 3D
pedestrian height distribution to eliminate false pedestrian
detections in moderately crowded scenes. In [15], Liu et al.
extended their earlier work to camera network calibration.
Iteratively, they incorporate robust matching with a partial
direct linear transform. Due to the reliance on vanishing
point (intersection of near-parallel lines) estimation, a small
error of head (or feet) detection could lead to a big error of ex-
trinsic parameters. On the other hand, our method estimates
the extrinsic parameters based on estimated 3D positions of
the head and feet which is much less sensitive to noise.
Most methods [3, 14, 15] assume that moving pedestri-

ans walk on a planar, horizontal surface. Possegger et al. [5]
proposed an unsupervised extrinsic self-calibration method
for a network of static cameras and pan-tilt-zoom cameras
solely based on correspondences between tracks of a walking
human. Then, they eliminate the outliers of feet and head
detection by estimating pairwise homographies between the
camera views based on the detected locations of feet and
head. Finally, they compute the extrinsic parameters of the
cameras by solving a non-linear optimization problem on the
reprojection error minimize the reprojection error. Therefore,
it tends to get stuck in local optima without a good initial-
ization which was not presented in their work. In contrast,
our method could have a precise estimated 3D position of
the head and feet based on a robust human pose detector for
the extrinsic calibration. Our method also does not requires
the person walks on a plane surface. In [13], Lettry et al.
proposed a method to solve correspondences for camera cali-
bration based on multiple pedestrian. However, their method
could produce incorrect correspondences which degrade the
accuracy of the calibration.
Our paper is based on the work of Guan et al. [7]; their

method does not require that the pedestrian walks on a plane
surface (e.g., walking on steps and stairs), as long as the pos-
ture of the pedestrian remains the same while walking. The
correspondence of these points between camera views is
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assumed to be known. In practice, this method, therefore, re-
quires manual annotations to differentiate between multiple
people and is not fully automatic. In this method, head and
feet detection is based on change detection and is not very
robust w.r.t. noise and occlusion. In contrast, our propose a
method is fully automated and uses a more robust human
pose detector.

3 PROPOSED METHOD
Note that, we assume that the frame synchronization, as well
as the intrinsic calibration for all cameras in the network,
have been done before the extrinsic calibration. To obtain the
position of a walking person in the image, we apply human
pose estimation method [10]. This produces a skeleton model
of all major body joints. Because the locations of the head
joints are not stable enough in these skeletons, we use the
neck joint locations instead as reference positions. We use
the midpoint between the left ankle joint and the right ankle
joint as the feet position of a walking person.
To obtain the extrinsic parameters for all cameras in the

network, we calibrate the camera network in a pairwise
fashion. Thus, let us consider a camera system (which is
composed of two cameras) where a person moving between
N different locations while keeping a fixed posture (the feet
and the head of the person can be observed from both cam-
eras). Let ũ(k )f (t) and ũ(k )h (t) be the image positions of the
feet and head (neck) at the t-th locations in camera k (where
k ∈ {1, 2}). Let x̃(k )f (t), and x̃(k)h (t) the normalized image
coordinates (x ,y, 1) of the feet and the head, respectively.
We obtain the unknown Z coordinates of the feet Z (k )f (t)

and Z coordinates of the head Z (k)h (t) for camera k by ap-
plying the proposed method in [7]. Suppose that person
walks upright and has heigh h. Let r(k )h (t) = Z (k )h (t)x̃

(k)
h (t)

and r(k )f (t) = Z (k )f (t)x̃
(k )
f (t) be the 3D camera coordinates of

the head and feet. Thus, we have:

r(k)h (t) − r
k
f (t) = Z (k )h (t)x̃

(k )
h (t) − Z

(k )
f (t)x̃

(k)
f (t) = he

(k )
z (1)

where e(k )z is unit vector of the person within camera k .
As explained in [7], it is possible to obtain the 3D orientation
e(k )z of the vertical direction (which is the direction parallel
to the upright walking persons). From x̃(k )f (t) and x̃(k)h (t), it

is possible to compute a 3D vector x̃(k )f (t) × x̃
(k)
h (t) which is

perpendicular to the unique vertical plane containing the
origin of camerak , x̃(k )f (t), and x̃

(k)
h (t). At a given time instant,

the intersection of all of those planes is a line along the
vertical direction. Note that, the vectors x̃(k )f (t) × x̃

(k )
h (t) are

expressed in camera local coordinates, and are therefore

transformed with unknown rotation matrices R(k ). As shown
in [7], these rotation matrices can be recovered using the
SVD. Then, the unknown distances Z (k)f (t) and Z (k )h (t) by
solving a set of equations; from this the camera translation
matrices can be computed. A problem with any extrinsic
calibration technique not using calibration objects is that it
produces coordinate transforms which are defined up to an
unknown scale factor only. However, we can then scale all
results with a standard height to obtain extrinsic parameters
that match the world coordinate.

Algorithm 1: Compute matching rate of the extrin-
sic parameters between camera a and camera b
total number of pairs npairs ← 0 ;
total number of matched pairs nmatched ← 0 ;
forall time steps t do

H (a)(t) ← pairs of head and feet locations of
camera a at time step t ;

H (b)(t) ← pairs of head and feet locations of
camera b at time step t ;

C(ab)(t) ← combinations of H (a)(t) and H (b)(t) ;
forall combination c in C(ab)(t) do

matched(c) ← 0 ;
forall pair p of head and feet locations in c do

if reprojection error of p < threshold then
matched(c) increased by 1 ;

lenдtha ← number of pairs in H (a)(t) ;
lenдthb ← number of pairs in H (b)(t) ;
nmatched increased bymaxc (matched(c)) ;
npairs increased bymin(lenдtha , lenдthb );

return matching rate← nmatched/npairs ;

We use Openpose [10] to estimate 2D skeleton models
of humans in the images. In practice, the estimated loca-
tions of the necks and feet are inconsistent between views
(e.g., a different physical point is indicated for a foot in two
views). Thus, the calibration results would be poor if people
are observed in an insufficient number of locations (e.g., the
method will fail if only a single person, always in the same
position, is observed). In controlled environments, these con-
ditions can be easily enforced by providing instructions to
the walking people. In uncontrolled environments, many
people tend to pass the scene in a short amount of time
such as walking along a straight line (insufficient number
of locations). Hence, it is difficult to gather data in different
locations of the scene for a precise calibration.
To handle the case of multiple people being present si-

multaneously. We propose an easy and robust method to
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Table 1: Comparison between ourmethod, themethod of Guan et al. [7], and themethod ofHödlmoser et al. [12].We randomly
select 20 locations of the pedestrians in the scene to calibrate the CN1, CN2. For CN3 and EPFL-Terrace (CN4), we apply the
proposed method on the first half of the video. δr(w ), δu(p), δu(r ), and δu(r r ) denotes the triangulation error, projection error,
reprojection error, and relative reprojection error, respectively.

Proposed method Guan et al [7] Hödlmoser et al. [12]

CN1 CN2 CN3 CN4 CN1 CN2 CN3 CN4 CN1 CN2 CN3 CN4

δr(w ) (cm) 1.33 2.2 - - 1.30 3.16 - - 1.30 63.7 - -
δu(p) (pixel) 3.98 5.8 - - 4.14 6.72 - - 4.15 106.4 - -
δu(r ) (pixel) 3.76 5.0 - - 4.09 6.20 - - 4.09 104.3 - -
δu(r r ) - head (%) 1.8 1.7 12.6 2.1 1.9 7.0 - - 1.9 43 - -
δu(r r ) - feet (%) 2.8 2.0 17.2 2.3 3.0 4.1 - - 3.0 39 - -

solve the association problem (which pedestrian in one cam-
era corresponds to an observation in another camera). First,
we apply a simple object matching algorithm based on fea-
ture matching to track the pedestrians for each camera. Let
H (k )i = {(ũ(k )f (m), ũ

(k )
h (m)) · · · , (ũ

(k)
f (n), ũ

(k )
h (n))} be the set

of all locations of the head and feet of person i from frame
m to frame n in camera k with k ∈ {a,b}. Furthermore, let
H (k ) = {H (k )0 ,H

(k )
1 , · · · ,H

(k )
q } be a set of locations head and

feet of all pedestrians in the scene of camera k with q is the
number of pedestrians in this scene. We compute all possible
correspondences C(ab) between camera a and camera b by
generating all pairs of elements from H (a) and H (b). Then,
we calibrate the pair of cameras with each generated corre-
spondences. The matching rate of the extrinsic parameters is
defined in Algorithm 1. Finally, the top highest matching rate
correspondences are selected to calibrate the pair of cameras.
The proposed method not only find correct correspondences
but also remove correspondences which have poor human
pose estimation. Therefore, it also improves the robustness
of extrinsic calibration. To deal with the combination explo-
sion, the frames with too many pedestrians (where the pose
estimator also have a poor result) are removed. In practice,
we only need to calibrate the network once before process-
ing the data from the network. Hence, we could calibrate
the camera network from the scene which has low number
of pedestrians. Therefore, the number of combination for
each frame is always less than 120 which does not take too
much time to verify all possibilities. Thus, it does not limit
the scalability of the proposed method.

4 EXPERIMENTAL RESULTS
Performance Measures: In order to evaluate the perfor-
mance of our method with ground truth points, we compute
the triangulation error (δr(w )), projection error (δu(p)), and
reprojection error (δu(r )) [7]. In practice, the ground truth
points are not always available to measure the performance

of the calibration. Thus, we can only measure the calibra-
tion by computing reprojection error based on the head (or
feet) positions of detected pedestrians. However, different
cameras have different resolution. Moreover, the height of
the pedestrians at different locations in an image is differ-
ent. Hence, to deal with this problem, we define the relative
reprojection error as follows:

δu(r r ) =
1

MK

M∑
m=1

K∑
k=1

umk − û
(r r )
mk


2

hmk
(2)

where N be the number of ground truth 3D sample points,
K is the number of cameras in the network,M is the number
of pedestrians, hm is the height in the image of personm-th
in the camera k-th. umk is the observed pixel coordinates of
the head (or feet) of personm-th in the camera k-th. û(r r )mk is
the estimated location of head (or feet), which are obtained
through reprojection.

Calibrationwith single person:Weevaluate ourmethod
with a multi-camera tracking system composed of four side
view cameras. For simplicity, we call it Camera Network 1
(CN1). The cameras were mounted at a height of about 3m at
each corner of a room (8.6m by 4.8m). The resolution of the
videos are 780 by 580 pixel (Figure 1a).We obtain the intrinsic
parameters by [18]. In this paper, we compare our method to
the calibration method of Hödlmoser et al. [12] and Guan et
al. [7]. Figure 1 shows an example of the detected head and
feet positions of the person in a scene. Table 1 shows that our
method has more accurate results than the state-of-the-art
methods. We also show that the proposed method requires
the person to walk around the room for 2-3 times to achieve
a stable and accurate calibration. (Table 2). For single person
case, we apply the refinement method which proposed in [7]
to obtain the final extrinsic parameters (Table 1).

In order to show that our method work in a complex real-
life environments room setup, we also evaluate our method
on a three camera setup in a kitchen (Figure 1b). The cameras
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were mounted at a height of about 2 m at different corners
of a room. The resolution of the videos are 640 by 480 pixel.
We call it Camera Network 2 (CN2) for simplicity. Table 1
shows that our method outperforms the method proposed
by Guan et al. [7]. Note that, the person in this scene was
cleaning the kitchen floor which is a realistic circumstance.
It shows stability, robustness of our method to the occlusion.

Calibration with multiple pedestrians

Table 2: Success percentages (the triangulation error is below
15 cm) within 1000 experiments of the proposed method for
the CN1.

Moved distance (m) 6.5 10 20 25 40

Successful percentage (%) 35 83 97 99 100

We evaluate our calibration method on the [6], which is
a public multi-camera pedestrians video dataset (Figure 1c).
This dataset includes two sequences, whichwere shot outside
our building on a terrace with four DV cameras. To show that
our method can be applied to a real-life situation, we also
record several video sequences at an intersection in Ghent to
evaluate the proposed method (Figure 1a). The pedestrians
in this scene are quite small (about 60 pixels height). We call
it Camera Network 3 (CN3) for simplicity.

Table 1 shows ourmethod has reasonably low error among
different circumstances. However, in the intersection case,
the pedestrians appear in some regions are too small to de-
tect by the human pose estimation. In addition, when the
trajectories of the pedestrians are too short, the matching
rate of them are too small to be selected. Hence, the proposed
method also could not match the correspondence between
the cameras which leads to the higher relative reprojection
error at some regions of the scene. However, the errors in
these regions are still acceptable for the applications of this
type of scenes. It only takes approximately 270 seconds and
210 seconds on EPFL-Terrace dataset and CN3 to solve the
correspondences and obtain the extrinsic parameters, re-
spectively (we implemented the code to run on CPU with
Python).

5 CONCLUSION
In this paper, we present a simple and robust method to
leverage the human pose estimation for the 3D positions of
the head and feet computation. To handle the case where
multiple pedestrians are in the scene, we also developed a
brute-force method to select appropriate head and feet lo-
cations for the extrinsic camera calibration. The proposed
method could work well in various environments and is
robust against occlusion compared to state-of-the-art meth-
ods. More importantly, the proposed method could work

completely automatically without manually selecting proper
input data for the calibration method. In the future, we will
investigate a regional selection method to handle the case
where the walking trajectory is too short.
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