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Abstract: Extrinsic camera calibration is essential for any computer vision task in a camera network.
Typically, researchers place a calibration object in the scene to calibrate all the cameras in a camera
network. However, when installing cameras in the field, this approach can be costly and impractical,
especially when recalibration is needed. This paper proposes a novel, accurate and fully automatic
extrinsic calibration framework for camera networks with partially overlapping views. The proposed
method considers the pedestrians in the observed scene as the calibration objects and analyzes the
pedestrian tracks to obtain extrinsic parameters. Compared to the state of the art, the new method
is fully automatic and robust in various environments. Our method detect human poses in the
camera images and then models walking persons as vertical sticks. We apply a brute-force method to
determines the correspondence between persons in multiple camera images. This information along
with 3D estimated locations of the top and the bottom of the pedestrians are then used to compute
the extrinsic calibration matrices. We also propose a novel method to calibrate the camera network
by only using the top and centerline of the person when the bottom of the person is not available in
heavily occluded scenes. We verified the robustness of the method in different camera setups and
for both single and multiple walking people. The results show that the triangulation error of a few
centimeters can be obtained. Typically, it requires less than one minute of observing the walking
people to reach this accuracy in controlled environments. It also just takes a few minutes to collect
enough data for the calibration in uncontrolled environments. Our proposed method can perform
well in various situations such as multi-person, occlusions, or even at real intersections on the street.

Keywords: extrinsic calibration; camera network; pedestrians;

1. Introduction

Extrinsic camera calibration provides the coordinate system transformations from 3D world
coordinates to 3D camera coordinates for all the cameras in the network. This information is essential
for many machine vision applications such as tracking, augmented reality, free view image synthesis, 3D
reconstruction [1–3], or transferring the well-trained recognition models to different camera setups [4].
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The classical methods [5–7] require a sufficient number of point correspondences of calibration objects
to estimate the extrinsic parameters accurately. In addition, the calibration objects also have to be
well-observed among all cameras. Moreover, calibrating cameras without any mistakes by using
classical methods requires a certain level of skill while sending skilled technicians onsite to recalibrate
cameras is costly and time-consuming. It also would be even worse because the cameras also need to
be recalibrated after the cameras are adjusted or moved. Additionally, this traditional approach does
not work for historic multi-camera video sequences in which no calibration objects were recorded.

Hartley et al. [8] proposed an auto-calibration method based on scene reconstruction from arbitrary
features. Due to the interactive fashion as well as a large number of parameters has to be estimated,
this method is slow and not always be able to achieve reliable results. Analyzing human data in images
and video is the main concern of many machine vision applications. Thus, to leverage the information
which also is extracted to serve other high-level tasks, many autocalibration methods [9–14] based
on pedestrians are proposed. However, they are sensitive to noise as well as impractical for several
situations in practice.

The proposed method relies on finding humans in images and estimating their centerline. For
this purpose, we use OpenPose [15,16]. Human pose estimation is also an important task for various
machine vision applications, such as action recognition, motion capture, sports, etc. Many real-time
human estimation methods [15–21] have been proposed in recent years. Therefore, human pose
estimation is fast enough for use in extrinsic calibration. Moreover, pose estimation is useful in itself
for video analytics. Therefore, if an application already includes pose estimation, we can reuse this
“for free” in calibration. Note that, in this paper, we assume the intrinsic camera parameters have been
estimated before the extrinsic camera calibration.

The first contribution of our paper is that we replace the ellipse based detection of the top and the
bottom of pedestrians by an approach based on modern human pose estimators. Thus, it provides
more robust detection of people and a more accurate estimation of their centerlines. Then, we analyze
the amount of video of walking people it needs to reach the desired accuracy. We also combine the
proposed method calibration method with a random sampling strategy to deal with the noise and
outliers in the estimated human pose data. It shortens the required time of data collection, and also
makes our method robust to outliers and noise.

The second contribution is that we propose an automatic method to also handle the case of
multiple pedestrians simultaneously in the scene. In [14], this case was handled by manual annotation.
In the paper, we propose a brute-force, but still fast, method to effectively find the correspondences
and also eliminate correspondences that have poor estimated human pose. We show that it produces
accurate results and more complicated methods are not needed.

The third contribution, we proposed a novel extrinsic calibration method based on just the
information of the top and the centerlines of the pedestrian. Thus, it helps the proposed calibration
system can work well even without the information of the bottom of the pedestrians (which usually
happens in heavily occluded scenes). Therefore, the proposed method can be applied to a wide range
of usage scenarios, including indoor and outdoor scenes. The experimental results show that the
proposed method can achieve very precise accuracy in many challenging scenarios including real
intersection, heavily occluded, and multiple people scenes.

The rest of the paper is organized as follows. We discuss the related work in Section 1. In Section 2,
we describe the architecture of our calibration method for a pair of cameras in detail. In Section 3, we
explain the way to extend the proposed method for a camera network as well as the novel extrinsic
calibration based on just the top and centerline of the walking people. We present the obtained results
and the detailed analysis of our experiments in Section 4. Finally, we discuss the conclusion and future
work in Section 5.
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2. Related Work

Lv et al. [12,22] detect and select the walking human from video sequences by the transition of
foreground object shapes. They represent the pedestrians as vertical “walking sticks” of the same
height in the 3D environment. Then, they compute the vertical vanishing point and the horizon line
based on the vertical “walking sticks”. Li et al. [11] proposed a single view camera calibration method
that directly estimates the focal length, the tilting angle, and the camera height by using a nonlinear
regression model from the observed head and feet points of a walking human.

In [9], Liu et al. proposed a fully automatic calibration method for monocular stationary cameras.
They leverage relative 3D pedestrian height distribution to eliminate false pedestrian detections in
moderately crowded scenes. In [10], Liu et al. extended their earlier work to camera network calibration.
Iteratively, they incorporate robust matching with a partial direct linear transform. Due to the reliance
on vanishing point (intersection of near-parallel lines) estimation, a small error of head (or feet) detection
could lead to a big error of extrinsic parameters. On the other hand, our method estimates the extrinsic
parameters based on estimated 3D positions of the head and feet which is much less sensitive to noise.
Moreover, their methods cannot work if there is no feet information in the heavily occluded scene while
the proposed method still performs well in that situation. In [23], Lucas et al. proposed a method for
urban areas by combining the information from the pedestrians and structures that have parallel and
orthogonal lines, such as buildings and road lines. Method [23] addresses the information of pedestrians
in a similar manner as [10], and it is only applicable to single view applications.

Most methods [9,10,12] assume that moving pedestrians walk on a planar, horizontal surface.
Possegger et al. [13] proposed an unsupervised extrinsic self-calibration method for a network of
static cameras and pan-tilt-zoom cameras solely based on correspondences between tracks of a
walking human. Then, they eliminate the outliers of feet and head detection by estimating pairwise
homographies between the camera views based on the detected locations of feet and head. Finally,
they compute the extrinsic parameters of the cameras by solving a non-linear optimization problem
to minimize the reprojection error. Therefore, it tends to get stuck in local optima without a good
initialization which was not presented in their work. In contrast, our method can have a precise
estimated 3D position of the head and feet based on a robust human pose detector for the extrinsic
calibration. Our method also does not require the person to walk on a plane surface.

Hödlmoser et al. [24] proposed a novel method to estimate the essential matrix based on the
locations of the feet and head of the single pedestrian from the video sequences. After that, the extrinsic
parameters were extracted by essential matrix decomposition. To find out the unique and proper
solution for the rotation parameters and translation parameters, they needed to apply the chirality
check [25,26]. Therefore, their method is quite sensitive to erroneous of the estimated locations between
head (or foot) correspondences in different camera views. If the pedestrian walks along a straight
line which occurs quite often in practice, all head and foot positions lie in the same plane. This leads
to the degenerate case for the essential matrix estimation [27]. Therefore, they can only obtain the
homography matrix between two views. However, in this case, their method cannot obtain the unique
extrinsic parameters by decomposing the homography matrix [28,29]. Thus, it cannot find the extrinsic
parameters with reasonable accuracy in this case.

Our paper is based on the work of Guan et al. [14]; our method does not require that the pedestrian
walks on a plane surface (e.g., walking on steps and stairs), as long as the posture of the pedestrian
remains the same while walking. The method obtains the extrinsic parameters by computing the 3D
rigid body transformation that optimally aligns two sets of points corresponding to top and bottom of
the pedestrian. The correspondence of these points between camera views is assumed to be known.
In practice, this method, therefore, requires manual annotations to differentiate between multiple
people and is not fully automatic. In [14], the top and bottom detection was implemented based on
change detection and is not very robust w.r.t. noise and occlusion. In contrast, our propose a method is
fully automated and uses a more robust human pose detector. In [30], Lettry et al. proposed a method
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to solve correspondences for camera calibration based on multiple pedestrians. However, their method
produces incorrect correspondences which degrade the accuracy of the calibration.

3. Proposed Method

Figure 1 shows the block diagram of the proposed framework of multi-camera calibration based
on walking pedestrians. First, the proposed method calibrates all the cameras in the network in a
pairwise fashion. Then, if the ground truth measurements are available (at least 3 points), we can
apply the refinement and alignment to further optimize the extrinsic parameters. If the bottom of the
pedestrians cannot be observed, we apply the novel method to estimate the extrinsic parameters based
on just the top and the centerline of the walking person (Section 3.5). However, if the bottom of the
pedestrians can be observed properly, we apply the extrinsic calibration method based on the top and
the bottom that extracted from OpenPose [16] to have more accurate extrinsic parameters.

Input
(1st camera)

Top and bottom
detection and tracking

Input
(2nd camera)

Top and bottom
detection and tracking

Have bottom
positions

Find correspondences
with bottom
information

Find correspondences
without bot-

tom information

Top and bottom
3D position estimation

Pairwise calibration
without 3D positions

Pairwise calibration
with 3D positions

Alignment and Refinement
(if available)

Yes

No

Figure 1. Block scheme of the proposed calibration method.

3.1. Extract the Positions of the Top and the Bottom of the the Observed Pedestrian in Image Coordinates

First, we assume that the frame synchronization, as well as the intrinsic calibration for all cameras
in the network, have been done before the extrinsic calibration. To obtain the position of a walking
person in the image, we apply the human pose estimation method in [16]. This produces a skeleton
model of all major body joints. Because the locations of the head joints are not stable enough in these
skeletons, we use the neck joint locations instead as the top of the observed pedestrian.

In this work, we compute the bottom of the observed pedestrian in two different ways. The first
one is the midpoint of the left ankle joint and the right ankle joint as the bottom position of a walking
person. However, the ankle of the walking person does not always appear in the mildly occluded
scene. However, the hip’s joints of the walking person could be well observed in the mildly occluded
scene. Thus, we also investigate to extract the bottom part of the body by the middle point of the left
hip joint and the right hip joint.

In the case that the bottom of the pedestrians cannot be observed, to determine the image positions
of the top and the centerline of a walking person, we propose to detect the bounding boxes of the
walking person (are extracted by YOLO [31]) in the first step. We estimate the centerline of a pedestrian
by the line from the center of the top edge to the center bottom edge of the bounding box.
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3.2. Extrinsic Camera Calibration Based on a Pedestrian

Consider a camera network with K cameras C1, C2, ..., CK. Let r(w) = (Xw, Yw, Zw)
T be a point in

a 3D world coordinate system that is visible to the camera, where the superscript T denotes a matrix
transposition. In our work, each camera in the camera network has its own distinct camera coordinate

system. We denote a 3D point in the coordinate system of camera k as r(k) =
(

X(k), Y(k), Z(k)
)T

.
Without loss of generality, we choose the coordinate system of the camera C1 as the world coordinate
system as follows:

r(w) = r(1). (1)

Thus, we can present the transformation between the camera coordinates r(k) and the world
coordinates r(w) as follows:

r(k) = R(k)r(w) + c(k), (2)

where c(k) are the coordinates of the origin of the global world coordinate system with regards to the
local coordinate system of camera k. R(k) is the rotation matrix which is a 3× 3 matrix.

To obtain the extrinsic parameters for all cameras in the camera network, we first calibrate the
camera network in a pairwise fashion. Thus, let us consider a camera system (which is composed of
two cameras) where a person moving between N different locations while keeping a fixed posture (the
bottom and the top of the person can be observed from both cameras). Let ũ(k)

bottom(t) and ũ(k)
top(t) be

the image positions of the bottom (feet or hip) and top (neck) at the t-th locations in camera k (where
k ∈ {1, 2}). Let x̃(k)bottom(t), and x̃(k)top(t) be the normalized image coordinates (x, y, 1) of the bottom

and the top, respectively. We obtain the unknown Z coordinates of the bottom Z(k)
bottom(t) and Z

coordinates of the top Z(k)
top(t) for camera k by applying the proposed method in [14]. Suppose that

person walks upright and has heigh h where h is measured from the top of the pedestrian to the bottom
of the pedestrian. Let r(k)top (t) = Z(k)

top(t)x̃
(k)
top(t) and r(k)bottom(t) = Z(k)

bottom(t)x̃(k)bottom(t) be the 3D
camera coordinates of the top and bottom. Thus, we have:

r(k)top (t)− rk
bottom(t) = Z(k)

top(t)x̃
(k)
top(t)− Z(k)

bottom(t)x̃(k)bottom(t) = he(k)z , (3)

where e(k)z is unit vector of the person within camera k.
From x̃(k)bottom(t) and x̃(k)top(t), it is possible to compute a 3D vector m(k)(t) = x̃(k)bottom(t) ×

x̃(k)top(t) which is perpendicular to the unique vertical plane containing the origin of camera k,

x̃(k)bottom(t), and x̃(k)top(t). At a given time instant, the intersection of all of those planes is a line

along the vertical direction. We could also cancel h in
(

m(k)(t)
)T

he(k)z = 0 which leads to Equation (4)

because he(k)z is on the aforementioned plane.(
m(k)(t)

)T
e(k)z = 0. (4)

Therefore, e(k)z is determined by SVD of matrix M(k) =
(

m(k)(t)
)T

. As explained in [14], once e(k)z

is determined, we can compute the 3D locations of the of the bottom and top w.r.t. by the least-squares
solutions up to a constant factor h. Finally, we apply the orthogonal Procrustes analysis [32] to estimate
the rigid body transformation (relative camera pose in 3D space) between two sets of 3D points (top
and bottom).

3.3. Robust Extrinsic Calibration

The proposed calibration method can obtain the appropriate extrinsic parameters when the
number of inliers is large enough to compensate for the bad effect of the outliers. However, in practice,
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we do not always have enough samples to have a precise calibration, e.g., calibrate camera network
from videos that were recorded a long time ago. The accuracy of the calibration does not only depend
on the number of the samples but also the distribution of locations. For example, using more random
locations from different spots of the room helps the proposed method improve accuracy (Figure 2).
However, the result of calibration from 20 s (approximately 300 locations) in Table 1 is worse than
the result of the calibration from 20 random locations of the room (which is selected randomly from
different spots of the scene) in Table 2. It is easy to understand because the person just slowly walks in
the room, most of the locations collected in 20 s are so close to each other, and different cameras may see
different points of the top or the bottom of the pedestrians. This means many of those locations provide
similar information which is not so useful to improve the result of the calibration. Moreover, the
outliers of the detection make the information around some spots of the room become inconsistence.

Table 1. The calibration results on Camera Network 1 (CN1) within 1000 experiments of the proposed
method. δr(w), δu(p), δu(r), and δu(rr) denotes the triangulation error, projection error, reprojection
error, and relative reprojection error, respectively.

Collecting Data Time (s) 10 20 30 40 50

Using all Locations

δr(w) (cm) 5.203 2.443 1.655 1.540 1.533
δu(p) (pixel) 15.005 9.006 4.863 4.648 4.627
δu(r) (pixel) 52.804 7.544 4.581 4.341 4.316

Random Samples

δr(w) (cm) 2.465 1.742 1.582 1.585 1.544
δu(p) (pixel) 5.952 4.839 4.670 4.613 4.595
δu(r) (pixel) 5.435 4.496 4.355 4.300 4.280

Table 2. Comparison between our method, the method of Guan et al. [14], and the method of
Hödlmoser et al. [24] on Camera Network 1 (CN1), Camera Network 2 (CN2). We randomly select
20 locations of the pedestrians in the scene to calibrate the CN1, and CN2. δr(w), δu(p), δu(r), and
δu(rr) denotes the triangulation error, projection error, reprojection error, and relative reprojection error,
respectively. The bold numbers are the best results among the mentioned methods.

Proposed Method (Feet) Proposed Method (Hip) Guan et al. [14] Hödlmoser et al. [24]

CN1 CN2 CN1 CN2 CN1 CN2 CN1 CN2

δr(w) (cm) 1.33 2.2 1.45 2.2 1.30 3.16 1.30 63.7
δu(p) (pixel) 3.98 5.8 4.60 5.8 4.14 6.72 4.15 106.4
δu(r) (pixel) 3.76 5.0 4.33 5.0 4.09 6.20 4.09 104.3

δu(rr)—top (%) 1.8 1.7 1.8 1.7 1.9 7.0 1.9 43
δu(rr)—bottom (%) 2.8 2.0 2.8 2.0 3.0 4.1 3.0 39

In [14], Guan et al. proposed a method based on RANSAC [33] to obtain a subset of top (or
bottom) locations which are likely to be observed similarly in different views. However, the estimated
3D points which satisfy this criterion, do not always agree with the same unit vector e(k)z . Furthermore,
the pose of the walking people can slightly change during the video sequences which also makes the
unit vector of the centerlines slightly changed. So, including all locations that are likely to be observed
similarly cannot effectively improve the calibration results. It can also produce bad e(k)z estimation
which leads to a bad extrinsic calibration. Instead, we need to find an optimal sparse subset of collected
locations without the outliers to improve the performance of the proposed method on short video
sequences (short amount of time to collect data). Therefore, we propose a random sample scheme as
Algorithm 1 to obtain the sparse subset of collected locations which produces the most stable extrinsic
calibration (low reprojection error).
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Figure 2. The calibration results of the proposed method on Camera Network 1 (multiple people
walking in an empty room) by using different number of random locations. Each location yields two
calibration samples (top and bottom).
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Algorithm 1: The steps of random sample scheme to calibrate the extrinsic parameter of camera
a and camera b

Input: H(a) and H(b)—lists of pair locations of top and bottom of the pedestrian in the video
sequence, L(ab)—the list of frame indices of key locations (as in Algorithm 2), and the number
of repetition M.

Output: the extrinsic parameters.
Step 1. For each frame index i in L(ab), we randomly select a location at frame t that is neighbor
of it (t− i < εtime). In our experiment, we chose the εtime = 10. Then, we compute extrinsic
parameters using the method that we presented in Section 3.2.

Step 2. Count the number of pairs agreeing with the extrinsic parameters (inliers). A pair is
considered to agree with the extrinsic parameters if the reprojected error of that pair is smaller
than the threshold εerror:

Step 3. Repeat Steps 1 and 2 until the number of inliers reaches a certain threshold or the
number of repetitions is greater than M.

Step 4. Choose the extrinsic parameters that has the highest number of the inliers (the most
stable) based on the method that we presented in Section 3.2.

Algorithm 2: Determine the list of key pair locations

Input: H(a) and H(b)—lists of pair locations of top and bottom of a pedestrian i in the video
sequence of camera a and camera b, respectively.

Output: L(ab)—frame indices of the key locations in the video sequence of camera a and
camera b.

add 0 to L(ab).
assign the frame index of the last key location k = 0.
forall time steps t do

if
∥∥∥H(a)(t)− H(a)(k)

∥∥∥
2
> εdistance and

∥∥∥H(b)(t)− H(b)(k)
∥∥∥

2
> εdistance then

add t to L(ab).
assign the frame index of the last key location k = t

return frame indices of the key locations L(ab).

3.4. Automatically Estimates Extrinsic Parameters Based on Multiple Pedestrians

In [14], Guan et al. had to manually annotate the correspondences in the scene to calibrate the
camera network. However, it is not really convenient for the customers to annotate the data, especially,
if the number of cameras in the network is huge. Thus, we propose a simple and fast method to find
the correspondences between different cameras. We use Openpose [16] to estimate 2D skeleton models
of humans in the images. In practice, the estimated locations of the necks and feet (or hip) joints thus
obtained are sometimes inconsistent between views (e.g., a different physical point is indicated the
feet joints or hip joints in two views). The proposed calibration method is insensitive to this problem,
as long as the number of observed skeletons is large enough. Otherwise, the results will be poor if
people are observed in an insufficient number of locations (e.g., the method will fail if only a single
person, always in the same position, is observed).

In controlled environments, these conditions can be easily enforced by providing instructions to
the walking people. However, in uncontrolled environments with multiple pedestrians, we cannot
order the people to walk by our instruction. In addition, people tend to pass the scene in a short
amount of time such as walking along a straight line (insufficient number of locations). Hence, it is
difficult to gather data in different locations of the scene for precise calibration.

To handle this problem, we propose an easy and robust brute-force method to solve the association
problem (which pedestrian in one camera corresponds to an observation in another camera). First, we
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apply a simple object matching algorithm based on feature matching to track the pedestrians for each
camera. Let H(k)

i = {(ũ(k)
bottom(m), ũ(k)

top(m)) . . . , (ũ(k)
bottom(n), ũ(k)

top(n))} be the set of all locations of

the top and bottom (feet or hip) of person i from frame m to frame n in camera k with k ∈ {a, b}.
Furthermore, let H(k) = {H(k)

0 , H(k)
1 , . . . , H(k)

q } be a set of locations of the top and bottom of all
pedestrians in the scene of camera k with q is the number of pedestrians in this scene. We compute all
possible correspondences C(ab) between camera a and camera b by generating all pairs of elements
from H(a) and H(b). Then, we calibrate the pair of cameras with each generated correspondences
to estimate the matching rate as presented in the Algorithm 3. The matching rate represents the
percentage of good reprojected results of the top and bottom positions of pedestrians where a good
reprojected result means having the relative reprojection error less than threshold (equals 0.05 in our
experiments).

Algorithm 3: Compute matching rate of the extrinsic parameters between camera a and camera b

total number of pairs npairs ← 0 ;
total number of matched pairs nmatched ← 0 ;
forall time steps t do

H(a)(t)← pairs of top and bottom locations of camera a at time step t ;
H(b)(t)← pairs of top and bottom locations of camera b at time step t ;
C(ab)(t)← combinations of H(a)(t) and H(b)(t) ;
forall combination c in C(ab)(t) do

matched(c)← 0 ;
forall pair p of top and bottom locations in c do

if reprojection error of p < threshold then
matched(c) increased by 1 ;

lengtha ← number of pairs in H(a)(t) ;
lengthb ← number of pairs in H(b)(t) ;
nmatched increased by maxc(matched(c)) ;
npairs increased by min(lengtha, lengthb);

return matching rate← nmatched/npairs ;

Finally, the top highest matching rate correspondences are selected to calibrate the pair of cameras.
Thus, the difficulty of gathering data in uncontrolled environments also be solved by combining
the sample locations of the highest matching rate correspondences from different spots of the scene.
To avoid a combinatorial increase in the number of computations, the frames with too many pedestrians
are removed. Moreover, the frames with too many pedestrians also have much worse pose estimation
results as well as poor human tracking results. This makes it is not useful already to use these frames.
Also, using the frames that have a very high number of people does not improve the accuracy of
the calibration. Therefore, in practice, we can calibrate the camera network from the parts of video
sequences which has a low enough number of pedestrians. In our experiments, we choose 5 pedestrians
as the threshold, therefore the number of combination of correspondences for each frame is always
less than 5! which does not take too much time to verify all possibilities. The brute-force approach
can definitely be replaced by a random sampling scheme to make it runs faster. However, it may skip
many appropriate correspondences for the calibration. Therefore, we decide to keep the brute-force
approach to maintain the accuracy of the proposed method which is much more important for many
applications in practice.
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3.5. Extrinsic Calibration When Feet and Hip Joints Are Not Available

In Section 3.2 we proposed to estimate the normal vector using 2D image positions of the top and
bottom pedestrians. As the feet and hip positions are not known, we propose to use line positions
to do the estimation instead. Suppose a person moves to N different positions while keeping a fixed
posture. Suppose that all cameras see the top of the person. At each time t, we first calculate ũ(k)

top(t)
and the centerline using the technique described above for camera k. We denote the projection of the
centerline in the image as

y = ak(t)x + bk(t). (5)

Select two different points on that line and denote the normalized homogeneous image
coordinates as (x(k)1 , ax(k)1 , 1)T and (x(k)2 , ax(k)2 , 1)T . The cross product of these two vectors is

(ak(t)(x(k)1 − x(k)2 ), x(k)2 − x(k)1 , bk(t)(x(k)1 − x(k)2 ))T . By canceling out
(

x(k)1 − x(k)2

)
, we define m(k)(t) =(

−a(k)(t), 1,−b(k)(t)
)T

, which is the normal of the plane spanned by the camera center and the center

line of the pedestrian. It is obvious that e(k)z is on that plane, so that m(k)(t) and e(k)z are orthogonal as
Equation (4).

Therefore, e(k)z can be determined in the same fashion as presented in Section 3.2 by using SVD
decomposition of (m(k)(t))T : e(k)z is the singular vector which is corresponding to the lowest singular
value. e(k)z is also the normal of the plane composed by all the top positions when the person walks
upright on a flat horizontal surface. Since all top positions of a single pedestrian lie on a plane when
the person walks on a horizontal surface, there is the homography between any two views of the
plane. Various methods [28,29,34] have been proposed to estimate the homography between two views
given at least 4 non-collinear corresponding points and solve the structures from motion problem
by decomposing the homography matrix. Weng et al. [28] produces two solutions of the extrinsic
parameters by decomposing the homography matrix. However, the unique and proper solution cannot
be obtained without additional knowledge of the scene. Here we propose a method to obtain the
unique extrinsic parameters by decomposing the homography matrix with the estimated e(k)z .

Pairwise Planar Homography: as we select the coordinate frame of camera 1 as the world
coordinate frame, we have

r(k)top (t) = R(k)r(1)top (t) + c(k) (6)

In the coordinate system of camera 1, the top of the pedestrian lies on the plane(
n(1)

)T
r(1)top (t) = d(1) ⇔ 1

d(1)

(
n(1)

)T
r(1)top (t) = 1, (7)

with d(1) is the Euclidean distance between the center of camera 1 and the plane, and n(1) is the normal
vector of the plane w.r.t the camera coordinate system of camera C1. Substituting Equation (7) in
Equation (6) gives

r(k)top (t) = R(k)r(1)top (t) + c(k)
1

d(1)

(
n(1)

)T
r(1)top (t) (8)

=

(
R(k) + c(k)

1
d(1)

(
n(1)

)T
)

r(1)top (t) . (9)

Since r(k)top (t) = Z(k)
top(t)x̃

(k)
top(t), and r(1)top (t) = Z(1)

top(t)x̃
(1)
top(t), Equation (9) leads to

x̃(k)top(t) ∼ H(k)x̃(1)top(t), (10)
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where

H(k) =

(
R(k) + c(k)

1
d(1)

(
n(1)

)T
)

, (11)

which is the homography matrix. Since the vectors from both sides of Equation (11) are parallel, their
cross product is zero, which leads to

x̃(k)top(t)×
(

H(k)x̃(1)top(t)
)
= 0, (12)

with × representing the cross product.
Notice that H(k) depends only upon eight independent coefficients, i.e., the three rotation

coefficients, the three coordinates of the translation, and the two parameters representing the
orientation of the plane. Each point imposes two independent constraints on H(k), so we need
at least four corresponding points (top positions) to solve uniquely for H(k). The four points should
be in a general configuration in the plane (no three of them are collinear). Notice that H(k) can be
recovered up to a scale factor, so we get the homography matrix in the form of

H(k)
e = λ

(
R(k) + c(k)

1
d(1)

(
n(1)

)T
)

. (13)

Decomposition of the Homography Matrix: Once H(k)
e is obtained, we now discuss how

to get extrinsic parameters by decomposing the homography matrix. It has been proven in the
literature [28,29] that decomposing the homography matrix will give two candidate solutions for the
extrinsic parameters. We will give detail about how to get the unique extrinsic parameters by using
additional information.

Ma et al. [35] gave four solutions of the extrinsic parameters by SVD of the homography matrix,
only two of which satisfy the positive depth constraint (the Z coordinate of the normal vector of the
plane need to be positive, since the camera can see only points that are in front of it). Decomposition of
the homography matrix proceeds as follows:

1. Normalization of the homography matrix. The normalized homography matrix is computed as

H(k) = H(k)
e /σ2

(
H(k)

e

)
, (14)

where σ2

(
H(k)

e

)
is the second largest singular value of H(k)

e .

2. Compute the SVD of
(

H(k)
)T

H(k) as

(
H(k)

)T
H(k) =

(
V(k)

)T
S(k)V(k). (15)

Define v(k)
1 , v(k)

2 , v(k)
3 as the three column vectors of V(k), and σ

(k)
1 , σ

(k)
2 , σ

(k)
3 as the eigenvalues of

H(k). Compute two more unit vectors by

u(k)
1 =

√
1−

(
σ
(k)
3

)2
v(k)

1 +

√(
σ
(k)
1

)2
− 1v(k)

3√(
σ
(k)
1

)2
−
(

σ
(k)
3

)2
(16)

and

u(k)
2 =

√
1−

(
σ
(k)
3

)2
v(k)

1 −
√(

σ
(k)
1

)2
− 1v(k)

3√(
σ
(k)
1

)2
−
(

σ
(k)
3

)2
. (17)
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3. Define matrices
U(k)

1 =
[
v(k)

2 , u(k)
1 , v(k)

2 × u(k)
1

]
,

U(k)
2 =

[
v(k)

2 , u(k)
2 , v(k)

2 × u(k)
2

]
,

W(k)
1 =

[
Hv(k)

2 , Hu(k)
1 ,
(

Hv(k)
2

)
×
(

Hu(k)
1

)]
,

W(k)
2 =

[
Hv(k)

2 , Hu(k)
2 ,
(

Hv(k)
2

)
×
(

Hu(k)
2

)]
.

(18)

Finally the four possible solutions of extrinsic parameters and normal vector of the plane are
calculated as

R(k)
1 = W(k)

1

(
U(k)

1

)T
,

n(1)
1 = v(k)

2 × u(k)
1 ,

c(k)1
1

d(1)
=

(
H − R(k)

1

)
n(1)

1 , (19)

R(k)
2 = W(k)

2

(
U(k)

2

)T
,

n(1)
2 = v(k)

2 × u(k)
2 ,

c(k)2
1

d(1)
=

(
H − R(k)

2

)
n(1)

2 , (20)

R(k)
3 = R(k)

1 ,

n(1)
3 = −n(1)

1 ,

c(k)3
1

d(1)
= −c(k)1

1
d(1)

, (21)

R(k)
4 = R(k)

2 ,

n(1)
4 = −n(1)

2 ,

c(k)4
1

d(1)
= −c(k)2

1
d(1)

. (22)

Notice that only two solutions of the above four solutions satisfy the positive depth constraint
(i.e., the third coordinate of the normal vector for the plane should be positive since the camera can
only see points that are in front of it). So either Equation (19) or Equation (21) is the possible solution.
Similarly, either Equation (20) or Equation (22) is the possible solution. Once two possible solutions
are obtained, we obtain the correct one as follows. From Equation (4), we estimate e(1)z , which is the
normal of the plane composed by all the top positions of the pedestrian. e(1)z should be equal to the
estimated n(1) if there is no noise in the data. In practice, it rarely happens due to all kinds of noise.
Thus we propose to use the angle between e(1)z and n(1) as a criterion to get the correct n(1) and the
corresponding rotation and translation parameters. The correct solution should have a smaller angle
to e(1)z . Finally, to calibrate the camera network with the torsors of multiple pedestrians, we choose the
highest matching rate correspondence for the calibration. In this case, we use the detected bounding
boxes of the pedestrians which are extracted by YOLO [31] to determine the top and bottom of the
pedestrians. We choose the center of the top edge and the center bottom edge of the bounding boxes as
top and bottom of the pedestrians.
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3.6. Joint Extrinsic Refinement for All Cameras in the Network

In Sections 3.2–3.4, we present the extrinsic calibration for the camera network in pairwise
fashion. However, the extrinsic parameters of the cameras are obtained based on algebraic distance
minimization without taking the property of the projective geometry of the cameras into account.
Thus, it increases the triangulation error and projection error when we combine the information from
all available cameras. To solve this problem, we jointly refine the extrinsic parameters of all cameras by
minimizes the total reprojection error based on the method proposed in [14,36]). The objective function
defines by the mean-squared discrepancy between the observed image positions of bottom and top of
the pedestrian, and their reprojections. Finally, we optimize the extrinsic parameters by an iterative
gradient descent procedure.

4. Experimental Results

4.1. Performance Measures

In order to evaluate the performance of our method with ground truth points, we compute the
triangulation error (δr(w)), projection error (δu(p)), and reprojection error (δu(r)) [14]. In practice, the
ground truth points are not always available to measure the performance of the calibration. Thus, we
can only measure the calibration by computing reprojection error based on the top (or the bottom)
positions of detected pedestrians. However, different cameras have different resolutions. Moreover,
the height of the pedestrians at different locations in an image is different. Let N be the number of
ground truth 3D sample points and K is the number of cameras in the network. We define the relative
reprojection error as follows:

δu(rr) =
1

MK

M

∑
m=1

K

∑
k=1

∥∥∥umk − û(rr)
mk

∥∥∥
2

hmk
, (23)

where N be the number of ground truth 3D sample points, K is the number of cameras in the network,
M is the number of pedestrians, hm is the height in the image of person m-th in the camera k-th. umk is
the observed pixel coordinates of the top (or the bottom) of person m-th in the camera k-th. û(rr)

mk is the
estimated location of the top (or the bottom), which are obtained through reprojection.

4.2. Calibration with Controlled Environment

Calibration with single person. We evaluate our method with a multi-camera tracking system
composed of four side-view cameras. For simplicity, we call it Camera Network 1. The cameras were
mounted at a height of about 3 m at each corner of a room (8.6 m by 4.8 m). The resolutions of the
all videos are 780 by 580 pixel (Figure 3). We obtain the intrinsic parameters by [7]. We compare our
method to the calibration method of Hödlmoser et al. [24] and Guan et al. [14].

Figure 3 shows an example of the detected bottom and top positions of the pedestrians of the
person in a scene. For single person case, we apply the refinement method which proposed in [14]
to obtain the final extrinsic parameters (Table 2). Table 2 shows that our method has slightly more
accurate results than state-of-the-art methods. The differences in accuracy among different methods
are small because this case is the simplest situation. Therefore, most of the existing methods can
achieve very high accuracy on these video sequences.
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(a) Camera 1 (b) Camera 2

(c) Camera 3 (d) Camera 4

Figure 3. Example of detected the bottom and top positions of the pedestrians of Camera Network
1—single person walking in an empty room. Red color represents detected positions by the human
pose estimation method. Green color represents the detected reprojected positions.

In addition, the proposed method also requires a very short amount of time to collect the sample
data for the calibration. As shown in Table 3, to collect enough data for the calibration, the person
only needs to walk around the room with the total accumulated moving distance is around 20 m (by
normal walking speed). This is the distance of walking around the room 2–3 times. Thus, the proposed
method is fast and convenient for users to calibrate camera networks.

Table 3. Success percentages (the triangulation error is below 15 cm) within 1000 experiments of the
proposed method for the Camera Network 1.

Accumulated Moving Distance (cm) 650 1000 2000 2500 4000

Successful Percentage 0.35 0.83 0.97 0.99 1.0

Calibration based on a single person in a mildly occluded scene. In order to show that our
method works in a complex real-life environment room setup, we also evaluate our method on a
setup with three cameras in a kitchen (Figure 4). The cameras were mounted at a height of about
2 m at different corners of a room. The resolutions of the videos are 640 by 480 pixels. We call it
Camera Network 2 for simplicity. Table 2 shows that our method outperforms the method proposed
by Guan et al. [14]. Note that we also recorded a scene where the person was cleaning the kitchen floor.
Despite the movement and occlusions while cleaning the floor, the proposed method still produces a
reasonable accuracy (the triangulation error is less than 10 cm) as shown in Tables 4 and 5. It shows
the stability and robustness of our method to the occlusion.
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(a) Camera 1 (b) Camera 2

(c) Camera 3

Figure 4. Example of detected the bottom and top positions of the pedestrians of Camera Network
2—single person doing household work in an kitchen room. Red color represents detected positions by
the human pose estimation method. Green color represents the detected reprojected positions.

Table 4. The calibration results on Camera Network 2 (CN2) within 1000 experiments of the proposed
method. The table shows the results of our method on video sequence where the subject was cleaning
the room. δr(w), δu(p), δu(r), and δu(rr) denotes the triangulation error, projection error, reprojection
error, and relative reprojection error, respectively.

Collecting Data Time (s) 10 20 30 40 50

Using all Locations

δr(w) (cm) 17.979 14.245 11.940 10.448 11.198
δu(p) (pixel) 214.329 182.073 364.136 115.872 165.385
δu(r) (pixel) 196.218 129.085 289.050 104.330 90.784

Random Samples

δr(w) (cm) 5.320 4.511 3.041 3.243 2.912
δu(p) (pixel) 35.694 27.482 13.196 13.649 12.623
δu(r) (pixel) 37.039 36.265 12.655 12.592 12.099
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Table 5. The calibration results on Camera Network 2 (CN2) within 1000 experiments of the proposed
method. The table shows the results of our method on video sequence where the subject was walking
in the room. δr(w), δu(p), δu(r), and δu(rr) denotes the triangulation error, projection error, reprojection
error, and relative reprojection error, respectively.

Collecting Data Time (s) 10 20 30 40 50

Using All Locations

δr(w) (cm) 4.499 3.602 2.689 2.504 2.456
δu(p) (pixel) 37.253 22.162 15.705 10.922 9.818
δu(r) (pixel) 39.925 21.332 13.780 10.096 8.927

Random Samples

δr(w) (cm) 2.618 2.224 2.144 2.169 2.161
δu(p) (pixel) 14.634 11.331 9.198 7.933 7.156
δu(r) (pixel) 15.643 11.242 8.783 7.412 6.567

Robust extrinsic calibration. In Table 2, we present the calibration results based on different
locations in the scene to evaluate the performance of the proposed method in a general sense. However,
in practice, we have to collect the data consecutively rather than select arbitrary locations in space.

Thus, we also conduct another experiment of camera calibration based on a segment with regards
to the amount of time that we use to collect data. Table 6 shows the successful rate to have accurate
extrinsic parameters with the proposed method with all samples and a random-sample scheme.
We apply the refinement method which proposed in [14] to obtain the final extrinsic parameters
in Table 6. While cleaning the floor, we cannot keep one posture from the beginning until the end.
Typically, we have to lean forward or to kneel for cleaning different places in the room. Thus, the
result of our method by using all available locations on CN2—cleaning the floor sequences (Table 4)
are degraded dramatically. By applying the random sample scheme, the proposed method can
eliminate the locations produced from improper postures. Therefore, this improves both the successful
percentage and the accuracy of the calibration. Tables 1, 5 and 6 also show that the random sample
scheme improves the successful percentage of the calibration and the accuracy of the calibration in the
case that the pedestrian was walking with the same posture.

Table 6. Success percentages (the triangulation error is below 15 cm) within 1000 experiments of the
proposed method which is conducted with the Camera Network 1 (CN1), and Camera Network 2
(CN2).

Collecting Data Time (s) 10 20 30 40 50

All locations

CN1—Successful Percentage 0.896 0.972 0.995 1.0 1.0
CN2 (cleaning the Floor)—Successful Percentage 0.339 0.489 0.539 0.62 0.607
CN2 (walking)—Successful Percentage 0.836 0.929 0.980 1.0 1.0

Random Samples

CN1—Successful Percentage 0.975 0.998 1.0 1.0 1.0
CN2 (Cleaning the Floor)—Successful Percentage 0.590 0.736 0.786 0.807 0.868
CN2 (Walking)—Successful Percentage 0.910 0.978 0.999 1.0 1.0

Calibration with multiple walking people. We evaluate our calibration method on the
EPFL-Terrace sequences [37], which is a public multi-camera pedestrian video dataset (Figure 5).
This dataset includes two sequences and 7 subjects, which were shot outside our building on a terrace
with four DV cameras. In this paper, we call it Camera Network 3 for simplicity.
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(a) Camera 1 (b) Camera 2

(c) Camera 3 (d) Camera 4

Figure 5. Example of detected the bottom and top positions of the pedestrians of Camera Network
3—EPFL-Terrace dataset [37]. Red color represents detected positions by the human pose estimation
method. Green color represents the detected reprojected positions.

It only takes approximately 270 s and 210 s on EPFL-Terrace dataset and CN3 to solve the
correspondences and obtain the extrinsic parameters, respectively (we implemented the code to
run on Intel(R) Core(TM) i7-8086K CPU @ 4.00GHz with Python 3). Table 7 also shows very high
accuracy results for very challenging multiple people sequences. It proves the propsed scheme to
correspondences in the video sequences can deal with outliers and failed tracking results to provide
very appropriate pairs of correspondences.

Table 7. The calibration results on EPFL-Terrace (CN3) and Camera Network 5 (CN5). For EPFL-Terrace
(CN3) and Camera Network 5 (CN5), we apply the proposed method on the first half of the video
to obtain the extrinsic parameters. δr(w), δu(p), δu(r) are not available for these sequences. Thus, the
δu(rr) denotes relative reprojection error is the only one available for these sequences.

Proposed Method Proposed Method
(Feet) (Hip)

CN3 CN5 CN3 CN5

δu(rr)—top (%) 2.1 12.6 2.1 12.6
δu(rr)—bottom (%) 2.3 17.2 2.1 12.6
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Comparison between calibration based on single walking person and calibration based on
multiple walking. We evaluate the proposed camera calibration based on multiple pedestrians by
calibrating the Camera Network 1 with an extra sequence to compare with the result of the calibration
based on a single person. This sequence was shot with 3 subjects walking at the same time in the empty
room (Figure 6). We calibrated Camera Network 4—CN4 (Figures 7 and 8) to compare the performance
of the calibration in both single person and multiple people situations. This network has five cameras,
three of which are mounted at a height of about 3 m, and two cameras were mounted at a height of
around 2 m. The resolution of all cameras is 780 by 580 pixels. In the experiments, we also change the
orientation and locations of the cameras in the Camera Network 4 to verify the performance of the
proposed method from different viewpoints.

(a) Camera 1 (b) Camera 2

(c) Camera 3 (d) Camera 4

Figure 6. Example of detected the bottom and top positions of the pedestrians of Camera Network
1—multiple people walking in an empty room. Red color represents detected positions by the human
pose estimation method. Green color represents the detected reprojected positions.

(a) Camera 1 (b) Camera 2
Figure 7. Cont.
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(c) Camera 3 (d) Camera 4

(e) Camera 5

Figure 7. Example of detected the bottom and top positions of the pedestrians of Camera Network
4—single person in an empty room. Red color represents detected positions by the human pose
estimation method. Green color represents the detected reprojected positions.

(a) Camera 1 (b) Camera 2

(c) Camera 3 (d) Camera 4

Figure 8. Cont.
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(e) Camera 5

Figure 8. Example of detected the bottom and top positions of the pedestrians of Camera Network
4—single person in an empty room. Red color represents detected positions by the human pose
estimation method. Green color represents the detected reprojected positions.

Table 2 and Table 8 show the results of the proposed method in the case that there is only
one subject in the scene of Camera Network 1 and Camera Network 4, respectively. Table 9 shows
the results of the proposed method in multiple walking people case which is reasonably close to
the calibration results in the single person case. It shows that the proposed method works well in
both cases.

Table 8. Calibration results of camera calibration based on single person of the Camera Network 4.
δr(w), δu(p), δu(r), and δu(rr) denotes the triangulation error, projection error, reprojection error, and
relative reprojection error, respectively.

Proposed Method (Feet) Proposed Method (Hip)

S1 S2 S3 S4 S5 S1 S2 S3 S4 S5

δr(w) (cm) 5.14 3.88 5.22 4.92 8.52 5.60 6.71 6.99 7.66 8.09
δu(p) (pixel) 6.04 5.52 6.31 6.21 10.67 6.35 8.39 8.92 9.84 10.86
δu(r) (pixel) 2.21 3.40 2.09 2.27 4.74 2.10 3.71 3.96 3.53 5.55
δu(rr)—top (%) 2.3 2.2 2.4 2.7 3.1 2.8 2.2 2.6 2.7 2.7
δu(rr)—bottom (%) 1.7 2.8 1.9 2.3 2.5 2.2 2.5 2.1 3.1 3.3

Table 9. Calibration results of camera calibration based on multiple walking people of the Camera
Network 1 and the Camera Network 4. Note that, for Camera Network 1, we also apply the refinement
method which proposed in [14] to obtain the final extrinsic parameters. δr(w), δu(p), δu(r), and δu(rr)

denotes the triangulation error, projection error, reprojection error, and relative reprojection error,
respectively.

Proposed Method Proposed Method
(Feet) (Hip)

CN1 S1 S2 S3 S4 S5 CN1 S1 S2 S3 S4 S5

δr(w) (cm) 4.75 7.79 6.49 5.13 5.84 10.24 1.45 5.84 7.85 8.15 9.37 7.25
δu(p) (pixel) 5.23 10.52 7.53 6.22 6.55 11.58 4.61 7.09 9.20 10.03 10.66 8.71
δu(r) (pixel) 3.08 5.37 1.88 2.49 1.57 2.88 4.33 3.40 3.85 3.73 3.58 3.93
δu(rr)—top (%) 2.1 5.8 2.2 2.9 2.7 6.4 2.5 3.5 2.8 4.4 3.4 3.3
δu(rr)—bottom (%) 2.2 5.8 1.8 2.0 2.0 5.7 2.3 2.6 1.7 2.5 2.2 2.2

In general, using the feet to calibrate the camera network produce much better results in
single-person cases because the he(k)z vector is much longer which makes centerline vector estimation
becomes more consistent. In the single person case, we can collect the data of the walking person
continuously. Even in the case of occlusion, we can easily associate the data because they belong to only
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one person. However, in multiple pedestrian case, the data of one person normally are scattered and
labeled with different indices due to the occlusion and tracking failures. Thus, the number of useful
samples that we could extract in the same amount of time can be reduced. However, the proposed
extrinsic calibration method based on multiple walking people in Section 3.4 still obtains the accuracy
which is close to the single person case (Tables 8 and 9). Finally, using hip joints also improves the
calibration results where the bottom parts of the pedestrians are hard to observe (e.g., S1 and S5 in
Table 9).

4.3. Calibration with Uncontrolled Environment

Calibration at intersections. To show that our method can be applied to a real-life situation, we
also recorded several video sequences at an intersection in Ghent to evaluate the proposed method
(Figure 9). The pedestrians in this scene are quite small (about 60 pixels height). We call it Camera
Network 5 for simplicity.

(a) Camera 0 and Camera 1, respectively

(b) Camera 2 and Camera 3, respectively

(c) Camera 4 and Camera 5, respectively

Figure 9. Example of detected the bottom and top positions of the pedestrians of Camera network
5—multiple pedestrians at an intersection. Red color represents detected positions by the human pose
estimation method. Green color represents the detected reprojected positions.
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Table 2 shows our method has reasonably low error among different circumstances. However, in
the intersection case, the pedestrians appear in some regions that are too small to detect by the human
pose estimation. In addition, when the trajectories of the pedestrians are too short, the estimated
extrinsic parameters normally have high relative reprojection error. Thus, the matching rates of them
are too small to be selected by the proposed method in Section 3.4. Hence, the proposed method also
could not find the samples at some regions of the scene, which lead which leads to a higher relative
reprojection error for those regions. However, the errors in these regions are still small enough for
applications like multi-camera tracking for the intersection scenes.

4.4. Calibration with Crowded Scene

In this work, we also apply the proposed method on PETS2009-S2L1 dataset (CN6), which is a
crowded scene with multiple pedestrians [38]. Due to the small resolution of the pedestrians in the
scenes, the results of OpenPose [15,16] are not stable enough to calibrate the camera network. Thus, we
only use the detected bounding boxes of the pedestrians which are extracted by YOLO [31]. We choose
the center of the top edge and the center bottom edge of the bounding boxes as top and bottom of
the pedestrians. We select the coordinate system of the camera 001 as the world coordinate system.
To make the method work on this dataset, we also remove the limitation of the number of pedestrians
that appear in the scene. Because of the orientation of the camera view 004, the tracking algorithm
has a poor performance on this scene. Note that, the camera view 002 of the dataset is not available.
Therefore, the result of the proposed method is not available for this scene. Even though the proposed
method only works best for the scene that does not have so many pedestrians, the relative reprojection
errors showed in Table 10 are still reasonably low. Figure 10 shows the example of the detected top
and bottom of PETS2009-S2L1 dataset.

(a) Camera 001 (b) Camera 003

(c) Camera 005 (d) Camera 006

Figure 10. Cont.
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(e) Camera 007 (f) Camera 008

Figure 10. Example of detected the bottom and top positions of the pedestrians of Camera Network
6—PETS2009-S2L1 dataset. Red color represents detected positions by the human pose estimation
method. Green color represents the detected reprojected positions.

Table 10. Calibration results of camera calibration based on multiple walking people of the Camera
Network 6. δu(rr) denotes the relative reprojection error.

001-003 001-005 001-006 001-007 001-008

δu(rr)—Top (%) 2.5 5.1 8.6 7.4 6.0
δu(rr)—Bottom (%) 1.9 5.9 7.3 12.5 10.0

4.5. Calibration with without Feet and Hip Joints

We evaluated the propsed method in Section 3.5 with Camera Network 7—a heavily occluded
scene in an office (Figure 11). Since the scene is heavily occluded, the feet information is not enough
for the extrinsic calibration based on feet joints. The extrinsic calibration based on hip joints is also not
always available for all camera views. Table 11 shows that the proposed extrinsic calibration based
on just the position of the top and the centerline can still obtain the accuracy that is very close to the
extrinsic calibration based on hip joints. In the case of camera pair 003-004, the extrinsic calibration
based on hip joints cannot collect enough data to estimate extrinsic parameters on single person
sequences. On the other hand, the proposed method in Section 3.5 is still able to produce the extrinsic
parameters with low relative reprojection errors. Figure 11 shows the example of the detected top and
bottom of Camera Network 7.

(a) Camera 001 (b) Camera 002
Figure 11. Cont.
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(c) Camera 003 (d) Camera 004

Figure 11. Example of detected the bottom and top positions of the pedestrians of Camera Network 7.
Red color represents detected positions by the human pose estimation method. Green color represents
the detected reprojected positions.

Table 11. Calibration results of camera calibration based on multiple walking people of the Camera
Network 7. The extrinsic parameters was estimated based on the proposed method in Section 3.2 hip
joints and the proposed method in Section 3.5 without both hip and feet information. δu(rr) denotes
the relative reprojection error.

Single Person Multiple People

001-002 003-004 001-002 003-004
Without Hip Hip Without Hip Hip Without Hip Hip Without Hip Hip

δu(rr)—top (%) 2.8 1.2 7.7 N/A 2.7 1.4 1.3 1.2
δu(rr)—bottom (%) 6.7 6.4 8.4 N/A 7.5 8.5 7.6 10.6

5. Conclusions

In this paper, we present a simple and robust method to leverage the human pose estimation for
the computation of 3D positions of the top and bottom of the pedestrians. To handle the case where
multiple pedestrians are in the scene, we also developed a brute-force method to select appropriate
top and bottom locations for the extrinsic camera calibration. For indoor camera networks which are
intended for people surveillance, the feet of pedestrians are usually occluded by the furniture. This is
the degenerate for most of the current state-of-the-art calibration methods due to the coplanarity of
all the positions of the top of a single pedestrian. To the best of our knowledge, no work exists to
deal with camera network calibration for this specific scenario. We proposed the extrinsic calibration
by using a walking human as the calibration object, assuming only the top of the pedestrian and
centerline of the person are visible. Thus, the proposed method can be very useful for many of the
existing indoor multi-camera visual surveillance systems. The proposed method can work well in
various environments as well as robust against occlusion compared to state-of-the-art methods. More
importantly, the proposed method can work completely automatically without manually selecting
proper input data for the calibration method. In the future, we will investigate a regional selection
method to handle the case where the walking trajectory is too short.
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Abbreviations

The following abbreviations are used in this manuscript:

RANSAC Random sample consensus
2D Two-dimensional
3D Three-dimensional
SVD Singular Value Decomposition
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