1,018 research outputs found

    3D Visual Perception for Self-Driving Cars using a Multi-Camera System: Calibration, Mapping, Localization, and Obstacle Detection

    Full text link
    Cameras are a crucial exteroceptive sensor for self-driving cars as they are low-cost and small, provide appearance information about the environment, and work in various weather conditions. They can be used for multiple purposes such as visual navigation and obstacle detection. We can use a surround multi-camera system to cover the full 360-degree field-of-view around the car. In this way, we avoid blind spots which can otherwise lead to accidents. To minimize the number of cameras needed for surround perception, we utilize fisheye cameras. Consequently, standard vision pipelines for 3D mapping, visual localization, obstacle detection, etc. need to be adapted to take full advantage of the availability of multiple cameras rather than treat each camera individually. In addition, processing of fisheye images has to be supported. In this paper, we describe the camera calibration and subsequent processing pipeline for multi-fisheye-camera systems developed as part of the V-Charge project. This project seeks to enable automated valet parking for self-driving cars. Our pipeline is able to precisely calibrate multi-camera systems, build sparse 3D maps for visual navigation, visually localize the car with respect to these maps, generate accurate dense maps, as well as detect obstacles based on real-time depth map extraction

    Self-correction of 3D reconstruction from multi-view stereo images

    Get PDF
    We present a self-correction approach to improving the 3D reconstruction of a multi-view 3D photogrammetry system. The self-correction approach has been able to repair the reconstructed 3D surface damaged by depth discontinuities. Due to self-occlusion, multi-view range images have to be acquired and integrated into a watertight nonredundant mesh model in order to cover the extended surface of an imaged object. The integrated surface often suffers from “dent” artifacts produced by depth discontinuities in the multi-view range images. In this paper we propose a novel approach to correcting the 3D integrated surface such that the dent artifacts can be repaired automatically. We show examples of 3D reconstruction to demonstrate the improvement that can be achieved by the self-correction approach. This self-correction approach can be extended to integrate range images obtained from alternative range capture devices

    Doctor of Philosophy

    Get PDF
    dissertation3D reconstruction from image pairs relies on finding corresponding points between images and using the corresponding points to estimate a dense disparity map. Today's correspondence-finding algorithms primarily use image features or pixel intensities common between image pairs. Some 3D computer vision applications, however, don't produce the desired results using correspondences derived from image features or pixel intensities. Two examples are the multimodal camera rig and the center region of a coaxial camera rig. Additionally, traditional stereo correspondence-finding techniques which use image features or pixel intensities sometimes produce inaccurate results. This thesis presents a novel image correspondence-finding technique that aligns pairs of image sequences using the optical flow fields. The optical flow fields provide information about the structure and motion of the scene which is not available in still images, but which can be used to align images taken from different camera positions. The method applies to applications where there is inherent motion between the camera rig and the scene and where the scene has enough visual texture to produce optical flow. We apply the technique to a traditional binocular stereo rig consisting of an RGB/IR camera pair and to a coaxial camera rig. We present results for synthetic flow fields and for real images sequences with accuracy metrics and reconstructed depth maps

    Motorcycles that see: Multifocal stereo vision sensor for advanced safety systems in tilting vehicles

    Get PDF
    Advanced driver assistance systems, ADAS, have shown the possibility to anticipate crash accidents and effectively assist road users in critical traffic situations. This is not the case for motorcyclists, in fact ADAS for motorcycles are still barely developed. Our aim was to study a camera-based sensor for the application of preventive safety in tilting vehicles. We identified two road conflict situations for which automotive remote sensors installed in a tilting vehicle are likely to fail in the identification of critical obstacles. Accordingly, we set two experiments conducted in real traffic conditions to test our stereo vision sensor. Our promising results support the application of this type of sensors for advanced motorcycle safety applications

    E3CM: Epipolar-Constrained Cascade Correspondence Matching

    Full text link
    Accurate and robust correspondence matching is of utmost importance for various 3D computer vision tasks. However, traditional explicit programming-based methods often struggle to handle challenging scenarios, and deep learning-based methods require large well-labeled datasets for network training. In this article, we introduce Epipolar-Constrained Cascade Correspondence (E3CM), a novel approach that addresses these limitations. Unlike traditional methods, E3CM leverages pre-trained convolutional neural networks to match correspondence, without requiring annotated data for any network training or fine-tuning. Our method utilizes epipolar constraints to guide the matching process and incorporates a cascade structure for progressive refinement of matches. We extensively evaluate the performance of E3CM through comprehensive experiments and demonstrate its superiority over existing methods. To promote further research and facilitate reproducibility, we make our source code publicly available at https://mias.group/E3CM.Comment: accepted to Neurocomputin

    Self-Calibration of Multi-Camera Systems for Vehicle Surround Sensing

    Get PDF
    Multi-camera systems are being deployed in a variety of vehicles and mobile robots today. To eliminate the need for cost and labor intensive maintenance and calibration, continuous self-calibration is highly desirable. In this book we present such an approach for self-calibration of multi-Camera systems for vehicle surround sensing. In an extensive evaluation we assess our algorithm quantitatively using real-world data

    Self-Calibration of Multi-Camera Systems for Vehicle Surround Sensing

    Get PDF
    Multikamerasysteme werden heute bereits in einer Vielzahl von Fahrzeugen und mobilen Robotern eingesetzt. Die Anwendungen reichen dabei von einfachen Assistenzfunktionen wie der Erzeugung einer virtuellen Rundumsicht bis hin zur Umfelderfassung, wie sie fĂŒr teil- und vollautomatisches Fahren benötigt wird. Damit aus den Kamerabildern metrische GrĂ¶ĂŸen wie Distanzen und Winkel abgeleitet werden können und ein konsistentes Umfeldmodell aufgebaut werden kann, muss das Abbildungsverhalten der einzelnen Kameras sowie deren relative Lage zueinander bekannt sein. Insbesondere die Bestimmung der relativen Lage der Kameras zueinander, die durch die extrinsische Kalibrierung beschrieben wird, ist aufwendig, da sie nur im Gesamtverbund erfolgen kann. DarĂŒber hinaus ist zu erwarten, dass es ĂŒber die Lebensdauer des Fahrzeugs hinweg zu nicht vernachlĂ€ssigbaren VerĂ€nderungen durch Ă€ußere EinflĂŒsse kommt. Um den hohen Zeit- und Kostenaufwand einer regelmĂ€ĂŸigen Wartung zu vermeiden, ist ein Selbstkalibrierungsverfahren erforderlich, das die extrinsischen Kalibrierparameter fortlaufend nachschĂ€tzt. FĂŒr die Selbstkalibrierung wird typischerweise das Vorhandensein ĂŒberlappender Sichtbereiche ausgenutzt, um die extrinsische Kalibrierung auf der Basis von Bildkorrespondenzen zu schĂ€tzen. Falls die Sichtbereiche mehrerer Kameras jedoch nicht ĂŒberlappen, lassen sich die Kalibrierparameter auch aus den relativen Bewegungen ableiten, die die einzelnen Kameras beobachten. Die Bewegung typischer Straßenfahrzeuge lĂ€sst dabei jedoch nicht die Bestimmung aller Kalibrierparameter zu. Um die vollstĂ€ndige SchĂ€tzung der Parameter zu ermöglichen, lassen sich weitere Bedingungsgleichungen, die sich z.B. aus der Beobachtung der Bodenebene ergeben, einbinden. In dieser Arbeit wird dazu in einer theoretischen Analyse gezeigt, welche Parameter sich aus der Kombination verschiedener Bedingungsgleichungen eindeutig bestimmen lassen. Um das Umfeld eines Fahrzeugs vollstĂ€ndig erfassen zu können, werden typischerweise Objektive, wie zum Beispiel Fischaugenobjektive, eingesetzt, die einen sehr großen Bildwinkel ermöglichen. In dieser Arbeit wird ein Verfahren zur Bestimmung von Bildkorrespondenzen vorgeschlagen, das die geometrischen Verzerrungen, die sich durch die Verwendung von Fischaugenobjektiven und sich stark Ă€ndernden Ansichten ergeben, berĂŒcksichtigt. Darauf aufbauend stellen wir ein robustes Verfahren zur NachfĂŒhrung der Parameter der Bodenebene vor. Basierend auf der theoretischen Analyse der Beobachtbarkeit und den vorgestellten Verfahren stellen wir ein robustes, rekursives Kalibrierverfahren vor, das auf einem erweiterten Kalman-Filter aufbaut. Das vorgestellte Kalibrierverfahren zeichnet sich insbesondere durch die geringe Anzahl von internen Parametern, sowie durch die hohe FlexibilitĂ€t hinsichtlich der einbezogenen Bedingungsgleichungen aus und basiert einzig auf den Bilddaten des Multikamerasystems. In einer umfangreichen experimentellen Auswertung mit realen Daten vergleichen wir die Ergebnisse der auf unterschiedlichen Bedingungsgleichungen und Bewegungsmodellen basierenden Verfahren mit den aus einer Referenzkalibrierung bestimmten Parametern. Die besten Ergebnisse wurden dabei durch die Kombination aller vorgestellten Bedingungsgleichungen erzielt. Anhand mehrerer Beispiele zeigen wir, dass die erreichte Genauigkeit ausreichend fĂŒr eine Vielzahl von Anwendungen ist

    Survey of Visual and Force/Tactile Control of Robots for Physical Interaction in Spain

    Get PDF
    Sensors provide robotic systems with the information required to perceive the changes that happen in unstructured environments and modify their actions accordingly. The robotic controllers which process and analyze this sensory information are usually based on three types of sensors (visual, force/torque and tactile) which identify the most widespread robotic control strategies: visual servoing control, force control and tactile control. This paper presents a detailed review on the sensor architectures, algorithmic techniques and applications which have been developed by Spanish researchers in order to implement these mono-sensor and multi-sensor controllers which combine several sensors
    • 

    corecore