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Abstract

We present a self-correction approach to improving the
3D reconstruction of a multi-view 3D photogrammetry sys-
tem. The self-correction approach has been able to repair
the reconstructed 3D surface damaged by depth disconti-
nuities. Due to self-occlusion, multi-view range images
have to be acquired and integrated into a watertight non-
redundant mesh model in order to cover the extended sur-
face of an imaged object. The integrated surface often suf-
fers from “dent” artifacts produced by depth discontinuities
in the multi-view range images. In this paper we propose
a novel approach to correcting the 3D integrated surface
such that the dent artifacts can be repaired automatically.
We show examples of 3D reconstruction to demonstrate the
improvement that can be achieved by the self-correction
approach. This self-correction approach can be extended
to integrate range images obtained from alternative range
capture devices.

1. Introduction

In this paper we introduce a self-correction approach to
improving the reconstruction of 3D shape from multi-view
stereo images which automatically repairs damaged 3D sur-
faces integrated from multi-view range images.

Self-occlusion is always a source of deficiency in 3D
shape reconstruction, either by laser scanning or stereo pho-
togrammtry. Due to self-occlusion, a single stereo-pair of
images can only serve to reconstruct a range image that rep-
resents a partial surface of an object. Several range images
from different view angles are inevitably required to recover
the complete view-space of the object surface. The range
images acquired by means of multi-view stereo photogram-
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metry need to be registered and integrated. Here we assure
that the transformations between pairs of range images are
reliably estimated by calibration [14, 29, 34, 38, 39]. We
focus on range image integration issues in our multi-view
3D photogrammetry system [13].

Multi-view range image integration can be categorized
into four major approaches: point based methods [4, 10, 18,
23, 37, 40], direct surface merging [12, 15, 26, 31, 33, 35,
36, 41], volumetric approaches employing implicit surfaces
[1,2,7,8,9, 21, 22, 25, 27, 28] and model based methods
[24, 32]. Volumetric diffusion [3] and volumetric graph-
cuts [30] have been proposed to build watertight 3D mod-
els from multi-views and especially focus on filling holes
in the models. Dyer [5] presented a review of reconstruc-
tion methods based on multiple views. There are also ap-
proaches [15, 16, 17, 24, 32] which combine range images
and 2-D silhouette information [11] to assist the integration
process.

Point based methods [4, 10, 18, 23, 37, 40] have the merit
of constructing surfaces from points directly and efficiently,
but surfaces integrated from range data points tend to be of
poor quality due to range data noise and registration errors.
Soucy and Laurendeau [31] pointed out that computing a
surface model from only range data points would lead to
a model having the accuracy of the worst measured data
point. The point based methods may fail if sample noise
approaches sample density. In direct surface merging ap-
proaches [12, 15, 26, 31, 33, 35, 36] overlapping and non-
overlapping areas between range images need to be iden-
tified. The most accurate data is retained while inaccurate
data is removed from the overlapping zone, before the re-
maining range data is zipped [35] into a single surface. The
detection of overlapping areas is crucial for the success of
direct surface merging approaches. Wang and Oliveira [37]
proposed a Moving Least Squares algorithm for automati-



cally identifying and filling holes in point clouds in regions
associated with smooth surfaces. Zhou and Liu [41] used
k-means clustering to improve the accuracy of detection of
overlapping areas. Direct surface merging approaches can
fill holes in the model with a patch that has the topology of a
disc, but has difficulty in filling convoluted holes [3]. Volu-
metric approaches [1, 2, 3, 7, 8, 9, 21, 22, 25, 27, 28, 30]
are capable constructing watertight, non-redundant, sur-
faces with complex geometries. Unfortunately, volumetric
approaches are also sensitive to depth discontinuities that
lead to surface reconstructions which are less plausible than
those obtained by smoothly extending the observed surface
data. While we do believe that model based approaches
[24, 32] are capable of overcoming the depth discontinuity
problem, the ability to formulate a model of the object to be
reconstructed then becomes an unavoidable prerequisite.

Most of the integration approaches reported have been
designed to operate on 3D data obtained from active 3-D
scanners. Because of self occlusion, some parts of an im-
aged object surface are hidden and therefore a depth dis-
continuity appears in the corresponding range image. This
depth discontinuity can be detected by calculating the an-
gles between the local surface normals of the acquired ob-
ject and the optical axis of the camera (or projector, in the
case of active illumination systems), if the range signal to
noise ratio is high enough. Local surface patches whose
surface normal-optical axis angles exceed a certain thresh-
old are treated as regions corresponding to depth disconti-
nuities [26]. Alternative measures based on the same con-
cept have also been reported [7, 8, 9, 35]. Because of the
low level of noise in range data recovered by active scanners
during surface measurement, the above approaches are usu-
ally adequate to label correctly all of the data corrupted by
depth discontinuities. In the case of a stereo photogramme-
try based 3D vision system, the problem of detecting depth
discontinuities becomes more complicated. Firstly, in an
area-based image matching system, the search process can
incorrectly select correspondences biased toward depth dis-
continuities that produce high correlation scores, but unfor-
tunately incorrect matches. Secondly, the noise level of the
recovered range data is higher than that acquired by active
scanners. Hence, the surface normals calculated from range
images obtained via stereo photogrammetry are also corre-
spondingly noisier. Such compromised range data will tend
to cause classical volumetric integration approaches to fail.
The practical consequence of failed integration is the cor-
ruption of merged object surfaces.

Here we propose a self-correction approach to construct-
ing a watertight non-redundant surface from multi-view
range images. Using a space carving algorithm [2], a
watertight mesh is constructed from range images which
have possibly been contaminated by depth discontinuities.
Thereafter, non-contaminated range surface data is ex-

tracted from the range images and used to correct depth dis-
continuity induced damage to the integrated mesh by means
of an elastic deformation. Details of our self-correction ap-
proach are presented in the section 4. We introduce our
3D photogrammetry stereo imaging system in section 2 and
explain the discontinuity problem in section 3; and then
present the detailed 3D shape reconstruction process using
our self-correction approach in the section 4. Finally, ex-
amples of reconstructions based on our new approach are
presented in section 5.

2. The 3-D Stereo Imaging System

In the work reported here we have adopted the C3D
stereo imaging system to capture the 3D surfaces of hu-
mans and live animals [13, 14]. The system can be config-
ured with multi-view stereo-pairs of high resolution cam-
eras to meet the needs of a wide variety of applications.
By adopting commercially available, professional-quality,
high-resolution digital cameras, it is possible to obtain high-
resolution colour images of 4000x4000 pixels (or greater)
with current technology. In the 3D capture scenarios con-
sidered here, it is possible to acquire images that resolve
local details of linear densities exceeding 0.1 mm/pixel. At
such imaging resolutions there is enough local texture infor-
mation on the object surface to achieve reliable area-based
stereo matching [14, 38]. For example, we have config-
ured two stereo-pairs of cameras (i.e. 4 cameras total) for
human face measurement, three stereo-pairs for pig shape
capture and four stereo-pairs for breast shape reconstruc-
tion. We define a camera stereo-pair to comprise a left and
a right camera, and an image stereo-pair to comprise a left
and a right image, each of these images being captured by
the corresponding camera of the camera stereo-pair. The
multi-view stereo pairs are configured to cover a specific re-
gion of interest from different view angles. The calibration
facility within C3D requires that every camera, stereo-pair
of cameras and stereo-pair combination captures views of a
planar calibration target presented in varying poses within
the imaged working volume. Standard bundles adjustment
[29], initialized by means of the DLT (Direct Linear Trans-
form) serves to recover the intrinsic and extrinsic parame-
ters of each camera, thereby allowing the range maps ac-
quired by each stereo-pair to be transformed into a com-
mon coordinate system. In operation, this calibration pro-
cedure achieves approximately 1pixel RMS re-projection
error; and calibration is carried out before and after each
capture session.

Following capture of multi-view stereo-pair images de-
picting the object, the C3D matching algorithm (based on
normalized cross-correlation and multi-resolution search) is
applied to each stereo-pair to compute horizontal and ver-
tical image disparities. In addition, a confidence map is
computed that reflects the local match correlation scores,
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Figure 1. A stereo-pair of images acquired and processed

bounded to [0.0,1.0], at corresponding locations in the
stereo-pair images (Figure 1). The value of each element in
the confidence map is the correlation c(7, j) between each
local corresponding pixel centered patch Iy, (%, j) in the left
image and Ir(i — dg,j — dy) in the right image. Here,
dp(i,7) and dy (4, 7) are the horizontal and vertical dispar-
ities respectively:

c(i,j) = argmax(I;(i,7) o Ig(i — dg,j —dv)) (1)
dp,dv

Range images are calculated from the disparities by
means of triangulation and the camera calibration parame-
ters recovered by means of bundles adjustment [29]. In our
system, range images are implicitly registered, since they
are transformed into common world coordinates (X,Y, Z
maps), defined by system calibration. A range image is de-
fined in a generalized form:

r=r(i,j) 2

where (i, 7) is the coordinate pair specifying the location
of a range image element, r is the distance from the opti-
cal center of the left camera to the point P(x,y, z) on the
object surface. P is calculated from the disparities at (i, 7).
The next step is to integrate the range images into a water-
tight, non-redundant, surface model and our self-correction
approach is then applied at this stage.

3. The Effects of the Depth Discontinuity

The range images are integrated into a watertight mesh
via spacecarving [2]. The resolution of the generated
surface mesh can be adjusted by setting the size of the
marching cubes [19] employed in its reconstruction. Due
to self-occlusion, there can be dent artifacts in the range im-
ages. As we can see in Figure 1, the surface at the left of
the right breast is dented. More dents can be seen in Figure
4. Depth discontinuities have contaminated the range im-
ages to cause the integrated surface/mesh to dent (Figure 2,
shadowed region). Our self-correction approach is able to
repair such dents.

Suppose we have two range images A and B merged by
the space carving algorithm: in this example the range im-
age B contains contaminated data in the shadowed area in
Figure 2 and the range image A also contains contaminated
data in the grey area. The contaminated range data could
lead to incorrect classifications of the voxels on the surface
in the shadow region and grey regions shown in Figure 2).

Range data
of A

Range

i
Image A

IRange data
! of B
Element !

at (k, 1)
Puxy.2)

Range
Image B

Element
at (m, n)

Figure 2. [llustration of artifacts produced by depth discontinuities

One option is to select the furtherest surface as the valid
surface that will result in the range data B, in the shadow
region, being selected which would be wrong for the inte-
grated surface. The integrated surface would be dented by
the contaminated range data of B in the shadowed region.
Another option is to select the nearest surface as the valid
surface, such that the range data A in the shadowed region
is selected. While this would be correct, this option could
lead to the other parts of the surface being classified incor-
rectly, such as the grey region. Removing all depth discon-
tinuity regions from range images, and then applying the
space carving algorithm would leave holes and gaps in the
integrated surface (Figure 8) if the surface to be captured
could not be covered by all the range images. Hence, we
devised our self-correction approach to overcome the prob-
lems caused by the depth discontinuities in the volumetric
approach.



4. The Self-correction Approach

Our self-correction approach comprises three major
steps:

e Integrating range images using the space carving algo-
rithm: the results of this step can be seen in [2, 19], to
obtain a watertight mesh. The resolution of the mesh
can be adjusted by setting the size of the marching
cubes [19].

e Processing confidence map to create masks: the masks
are used to identify valid range data which represent
the valid object surface.

e Iteratively deforming the integrated mesh towards the
valid range data.

4.1. Create Masks from the Confidence Maps

Figure 3. Confidence maps generated by matching stereo-pairs of
images

S E2 .
Figure 4. Range images calculated from recovered disparities

By observing the confidence maps (Figure 3) and range
images (Figure 4) obtained though stereo matching, we
were able to find relations between them. The bright re-
gions in the confidence maps tended to correspond to valid
object surfaces, and the other grey or dark regions in the
confidence maps tended to correspond to either the discon-
tinuities or non-object surfaces, i.e. the background. Based

4 f\..;/’i
¥ ) ( )
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Figure 5. Masks labeling valid breast surfaces

on these observations, valid data selection masks (Figure 5)
can be generated from the confidence maps by selecting the
bright regions only. The confidence values are in the range
[0.0, 1.0]. Each confidence map is converted to a grey level
image with an intensity range [0, 255], prior to the magic
wand algorithm [20] being applied to provide a segmen-
tation (tolerance parameter set to 60). We assume that the
object always occupies the centre area of each image within
each stereo-pair captured; this is ensured due to the con-
figuration of our multi-view stereo system and by careful
presentation of the object of interest to the system. Accord-
ingly, the magic wand is initiated at the image centre. Nar-
row strips are observed along the edge of the object because
of the application of area matching along the edges; where
the confidence values are high but the correspondences are
incorrect. We apply further morphological erosion and di-
lation [6] to remove the narrow stripes shown in Figure 5.

4.2, Self-repairing

In order to repair the dented surface S of the integrated
mesh, an elastic deformable model is applied to deform the
S into a plausible mesh S under the influence of valid range
data . The deformation of the integrated mesh is con-
strained by minimising the global energy of the mesh:

E(Sas’ar):Eext(S’T)+€Eint(Sa§) (3)

where the parameter e controls the trade-off between attrac-
tions of similar geometry and physical constraints. The ex-
ternal energy term F..; attracts the vertices of the mesh to
their most similar valid range data on the range images. It
is defined as:

Bear(S,r) =Y wikie|# — ;) )
i=1

where n is the number of vertices on the mesh; k;. is
an external spring constant; x; is the ith vertex of S; x;
is its most similar valid point on the range images r; w;
is a weight related to the similarity between local surface



patches at «; and ;. The internal energy term constrains
the movement of the mesh and hence helps to maintain the
original topology:

Emi(S:8) =) > kill(mi — ;) — (& — &)

i=1 j=1&;j#i
(5)

where x; and x; are neighbouring vertices of S; &; and
& are their original positions in S, k;; is an internal spring
constant. Since the energy function is quadratic with re-
spect to x;, the optimization problem can be reduced to the
solution of a sparse system of linear equations. This linear
system can be efficiently solved using the conjugate gradi-
ent method. The positions of the vertices x; are updated
iteratively until the distances between x; and x; are less
than a specified threshold.

Prior to local optimization deformation, each vertex in
the mesh has to find its most plausible corresponding point
on the range images. If the vertex finds its point, the
vertex is labeled with TRUE; otherwise FALSE. The self-
correction algorithm is embedded into the deformation pro-
cess in the following steps:

1. Find the most plausible points on the range images for
all vertices x; of the mesh; label each vertex which has
found its point with TRUE and calculate its displace-
ment (£; — x;), otherwise label it with FALSE.

2. Update neighbouring points

a. Get one vertex labeled with FALSE.
b. Find the neighbours of the vertex.
c. If all its neighbours are labelled with FALSE, go

to “a” and get another vertex; otherwise translate
the vertex with the mean displacement of the dis-
placements of its neighbours labelled as TRUE;
and also label it as TRUE.

[73%1]
a

d. Repeat the steps to “c” until no vertex is la-

belled with FALSE.

3. After all vertices have updated their positions, calcu-
late their optimal positions by minimising the global
energy of equation (3). Update the values of x; for the
next iteration.

4. Repeat the steps 2 to 4 until the differences between
x; and its most similar valid point on the range images
x; are less than a threshold.

5. Case Study Results

The self-correction approach has been tested on breast
and pig shape reconstructions and both cases showed im-
provements in the quality of the integration of the range im-
ages.

Figure 6. The breast capture rig comprising four stereo-pairs of
cameras

Figure 7. Mesh representing the breast surface integrated from four
range images

For breast shape reconstruction, four stereo-pairs of im-
ages were configured to cover the region of the breasts (Fig-
ure 6), where the camera stereo-pairs captured stereo-pair
images from front, floor and left and right sides. The pa-
tients leaned over the rig in order to open the infra mam-
mary fold and thereby exposed the entire area of each breast
for image capture.

Four range images, with their corresponding confidence
maps, were calculated and then integrated through the vol-
umetric approach resulting in a single mesh of the breast
(Figure 7).

According to heuristics embedded within the volumetric
integration algorithms, the “best” range data from different



Figure 8. Mesh representing the breast surface integrated from four
range images with masking

Figure 9. The corrected mesh representing the breast surface in-
tegrated from four range images with masks identifying plausible
range data

views is selected to represent the surface of the breast. Un-
fortunately, if dented range data is selected to replace the
valid surface, dents would appear in the model. Masks are

calculated from the confidence maps by selecting the bright
(i.e. confident) regions with the magic wand algorithm fol-
lowed by morphological cleaning. The masks are used here
to define in the range images valid range surfaces which are
likely to represent the real shape of the breast captured. We
attempted to apply the masks within the space carving al-
gorithm to merge the range images as well. However, this
approach produced integrated surfaces with gaps and holes
(Figure 8). Of course, the gaps and holes could be filled by
the other direct surface merging or volumetric integration
algorithms, but here we propose an alternative approach
which generates a watertight mesh by smoothly extending
the observed surfaces. The volumetric approach has its lim-
its and we have only been able achieve an improvement by
applying our self-correction approach to the mesh obtained
by the integration process (Figure 7) and by then deforming
this mesh to the shape of the valid range data defined by the
masks. We captured the shape of the breasts (Figure 9) by
deforming the mesh elastically and iteratively. The dents in
Figure 7 have been repaired; no gaps and holes in the re-
gion of the breast remain and the breast surface has been
smoothed due to the elastic optimisation defined in equa-
tion (1). For this breast model, comprising 26887 triangular
polygons, the optimisation process took approximately 20
seconds to compute using a P4 3.2GHz CPU with 4Gb of
RAM. We believe that there is still room to improve the
computational efficiency of the algorithm.

Figure 10. Mesh representing the pig generated from three range
images

Figure 11. The corrected pig mesh with masks identifying plausi-
ble range data



The self-correction approach has also been applied to
pig shape reconstruction. Three stereo-pairs of cameras
were configured to cover the ham area of the pig from the
side, top and rear views. The C3D stereo matching pro-
cess was applied to recover three range images which were
then merged into a single mesh (Figure 10). The resulting
mesh of the pig had dents due to the shortcomings of the
volumetric integration approach. After applying our self-
correction approach to the mesh with masks, the dents in
the mesh were corrected and a mesh that better represented
the captured pig was produced (Figure 11). For this pig
model, comprising 39779 triangular polygons, the optimi-
sation process took apprximately 40 seconds to compute
using a P4 3.2GHz CPU with 4Gb of RAM.

6. Conclusions

Our contribution here is the development of a novel
range surface integration approach which is capable of re-
pairing dent artifacts in meshes integrated from multi-view
range images, which are evident in standard volumetric in-
tegration approaches. We first generate a watertight mesh
from the range images; then generate masks from the con-
fidence values produced by stereo matching to select viable
range data; the final watertight mesh is obtained by deform-
ing the mesh to the viable range data. Preliminary results
demonstrate that our self-correction approach has the poten-
tial to reconstruct 3D shape from multi-view range images.
We have succeeded in demonstrating the self-correction ap-
proach when applied to capturing the surface shape of com-
plex objects such as breasts and live pigs. Our next task is
to evaluate further the robustness, accuracy and reliability
of this process.
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