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Kurzfassung

Multikamerasysteme werden heute bereits in einer Vielzahl von Fahrzeugen und
mobilen Robotern eingesetzt. Die Anwendungen reichen dabei von einfachen
Assistenzfunktionen wie der Erzeugung einer virtuellen Rundumsicht bis hin zur
Umfelderfassung, wie sie für teil- und vollautomatisches Fahren benötigt wird.
Damit aus den Kamerabildern metrische Größen wie Distanzen und Winkel
abgeleitet werden können und ein konsistentes Umfeldmodell aufgebaut werden
kann, muss das Abbildungsverhalten der einzelnen Kameras sowie deren rela-
tive Lage zueinander bekannt sein.
Insbesondere die Bestimmung der relativen Lage der Kameras zueinander, die
durch die extrinsische Kalibrierung beschrieben wird, ist aufwendig, da sie nur
im Gesamtverbund erfolgen kann. Darüber hinaus ist zu erwarten, dass es über
die Lebensdauer des Fahrzeugs hinweg zu nicht vernachlässigbaren Verände-
rungen durch äußere Einflüsse kommt. Um den hohen Zeit- und Kostenaufwand
einer regelmäßigen Wartung zu vermeiden, ist ein Selbstkalibrierungsverfahren
erforderlich, das die extrinsischen Kalibrierparameter fortlaufend nachschätzt.
Für die Selbstkalibrierung wird typischerweise das Vorhandensein überlappen-
der Sichtbereiche ausgenutzt, um die extrinsische Kalibrierung auf der Basis
von Bildkorrespondenzen zu schätzen. Falls die Sichtbereiche mehrerer Kam-
eras jedoch nicht überlappen, lassen sich die Kalibrierparameter auch aus den
relativen Bewegungen ableiten, die die einzelnen Kameras beobachten. Die Be-
wegung typischer Straßenfahrzeuge lässt dabei jedoch nicht die Bestimmung
aller Kalibrierparameter zu. Um die vollständige Schätzung der Parameter zu
ermöglichen, lassen sich weitere Bedingungsgleichungen, die sich z.B. aus der
Beobachtung der Bodenebene ergeben, einbinden. In dieser Arbeit wird dazu in
einer theoretischen Analyse gezeigt, welche Parameter sich aus der Kombina-
tion verschiedener Bedingungsgleichungen eindeutig bestimmen lassen.
Um das Umfeld eines Fahrzeugs vollständig erfassen zu können, werden typi-
scherweise Objektive, wie zum Beispiel Fischaugenobjektive, eingesetzt, die
einen sehr großen Bildwinkel ermöglichen. In dieser Arbeit wird ein Ver-
fahren zur Bestimmung von Bildkorrespondenzen vorgeschlagen, das die ge-
ometrischen Verzerrungen, die sich durch die Verwendung von Fischaugenob-
jektiven und sich stark ändernden Ansichten ergeben, berücksichtigt. Darauf

iii



Kurzfassung

aufbauend stellen wir ein robustes Verfahren zur Nachführung der Parameter
der Bodenebene vor.
Basierend auf der theoretischen Analyse der Beobachtbarkeit und den vorge-
stellten Verfahren stellen wir ein robustes, rekursives Kalibrierverfahren vor,
das auf einem erweiterten Kalman-Filter aufbaut. Das vorgestellte Kalibri-
erverfahren zeichnet sich insbesondere durch die geringe Anzahl von internen
Parametern, sowie durch die hohe Flexibilität hinsichtlich der einbezogenen
Bedingungsgleichungen aus und basiert einzig auf den Bilddaten des Multikam-
erasystems.
In einer umfangreichen experimentellen Auswertung mit realen Daten vergle-
ichen wir die Ergebnisse der auf unterschiedlichen Bedingungsgleichungen und
Bewegungsmodellen basierenden Verfahren mit den aus einer Referenzkalib-
rierung bestimmten Parametern. Die besten Ergebnisse wurden dabei durch
die Kombination aller vorgestellten Bedingungsgleichungen erzielt. Anhand
mehrerer Beispiele zeigen wir, dass die erreichte Genauigkeit ausreichend für
eine Vielzahl von Anwendungen ist.

Schlagworte: Selbstkalibrierung, Extrinsische Kalibrierung, Multikamerasys-
tem, Umfelderfassung
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Abstract

Multi-camera systems are being deployed in a variety of vehicles and mobile
robots today. Applications of such systems range from driver assistance func-
tions such as rendering a virtual panoramic view to surround sensing, which
is a prerequisite for partially and fully automated driving. In order to derive
metric quantities such as angles and distances from camera images and to estab-
lish a consistent representation of the vehicle environment, both, the geometric
imaging characteristics of the individual cameras and the relative positions and
orientations have to be known.
In particular the estimation of the relative positions and orientations, which are
described by the extrinsic calibration, is troublesome since it can only be per-
formed with the system being fully set up and since non-negligible changes
of the parameters have to be expected over the life cycle of the vehicle due
environmental influences. To eliminate the need for cost and labor intensive
maintenance, continuous self-calibration is highly desirable.
Self-calibration typically builds upon overlapping field of views of cameras,
which enables estimating the extrinsic calibration parameters using image cor-
respondences. Motion-based calibration on the other hand does not impose
constraints on the fields of view. However, the almost planar motion of typical
road vehicles constitutes a special case in which only a subset of the calibration
parameters can be inferred. To circumvent this problem additional constraints
can be imposed, e.g. by using the ground plane as a natural reference object. In
a theoretical analysis we determine the sets of parameters that can be inferred
from different vehicle motion classes and camera configurations.
For visual surround sensing typically cameras with ultra-wide angle lenses, such
as fisheye lenses, are employed. In order to establish image correspondences in
the presence of strong geometrical distortions introduced by the lens and large
viewpoint variations we propose an image warping method that exploits the
knowledge about the geometric imaging process and performs a coarse scene
approximation. In addition, we present a method for tracking the ground plane
in the presence of structural outliers such as other planes in the scene.
Building upon the observability analysis and proposed methods we present an
extended Kalman filter-based algorithm for continuous extrinsic camera self-
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Abstract

calibration. The filter exhibits high flexibility with regard to incorporating dif-
ferent measurement constraints, has a particularly low number of internal pa-
rameters, and relies solely on image data.
In an extensive evaluation we assess our algorithm quantitatively using real-
world data. We compare results based on different motion models and combi-
nations of measurement constraints against a reference calibration. It is found
that the best results are obtained by combining all of the proposed measurement
constraints. Using several examples we demonstrate that the achieved accuracy
is sufficient for most applications.

Keywords: Self-calibration, Extrinsic Calibration, Multi-Camera System, Sur-
round Sensing
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Notation and Symbols

Acronyms

2D/3D 2/3-Dimensional
ASIFT Affine Scale Invariant Feature Transform
BRIEF Binary Robust Independent

Elementary Features
RANSAC Random Sample Consensus
SIFT Scale Invariant Feature Transform
FAST Features from Accelerated Segment Test

General Notation

Scalars Regular, lower case: a, b, c, . . .
Vectors Bold: a, b, X, . . .
Matrices Bold, upper case: A, B, Σ, . . .
Estimates Hat operator: â, Â, Σ̂, . . .
Correspondences Prime: x ↔ x′, u ↔ u′, X ↔ X′. . .

Geometric Entities and Transformations

C , I Camera and image
XC , YC , ZC Camera coordinate frame axes
X = (X,Y, Z)

T World point
x = (x, y, z)

T Ray
u = (u, v)

T Image point
l = (l1, l2, l3)

T Line in image coordinates
C Camera calibration matrix
κ (·) Projection into the image, u = κ (X) = κ (x)
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Notation and Symbols

z0,u0 = (u0, v0)
T Focal length and Principal point

H, E Homography and Essential matrix
h (·) Plane induced image to image projection
T, R, t Motion induced transformation, rotation, and

translation
ΔT, ΔR, Δt Rigid transformation, orientation, and

displacement
r Radius
α, θ Off-axis angle and rotation angle
r Rotation axis direction (unit length)
s Instantaneous center of rotation
n Plane normal vector
c = (0, 0, cz)

T Shift of the projection center
λ,λ Scale factor and vector and vector of

scale factors
ω, τ Unobservable angle and scale factor
Ψ (·) ,J Image to image mapping and Jacobian
d 2D parallax vector
A,B Matrices
a,v 3-vectors
p 2-vector
ε Scalar residual

Probabilistics and Kalman Filtering

ξ,P State vector and covariance matrix

ξ̂
−
, ξ̂

+
A priori and a posteriori state vector

z, z Vector of measurements and
error free measurements

m (·) ,m (·) ,M Scalar and vector-valued measurement
constraint function and Jacobian

f (·) ,F State transition function and Jacobian
q,Q Process noise vector and covariance matrix
w,W Measurement noise and covariance matrix

xii



Notation and Symbols

K Kalman gain
N (·, ·) Normal distribution
σ Standard deviation
p(; ) Probability density function
f(·; ·) Probability density function of the noncentral

χ2 distribution
F(·; ·) Cumulative noncentral χ2 distribution
γ Noncentrality coefficient of

noncentral χ2 distribution
ν, η False positive and true positive rate
ρ Threshold

Indexing

C Number of cameras
c, d = {0, . . . , C − 1} Camera indeces
r Index of the reference camera Cr

N Number of 2D/3D points
i = {0, . . . , N − 1} Point index
t, k Continuous time and discrete time index
hc
k, rck, nc

k Camera height, radius, and plane normal vector
in the coordinate frame of camera Cc at time k

ΔTc, ΔRc, Δtc Relative transformation, orientation, and
displacement between cameras Cc and Cr

ΔTc→d, ΔRc→d, Δtc→d Relative transformation, orientation, and
displacement between cameras Cc and Cd

Rn,r Orthonormal matrix constructed from two
vectors n, and r

Rr,θ Rotation matrix with rotation axis direction r
and angle θ

ε‖, ε⊥ Parallel and perpendicular part
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Further Symbols

G = (V, E) Undirected simple graph with vertices V and
edges E

03×1 Zero vector of dimension three
diag (·) Diagonal matrix
I3×3 Identity matrix of dimension three
[·]× Skew-symmetric matrix related to the cross

product
(·)T Transpose
|·| Determinant
‖ · ‖2 Euclidean norm
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1 Introduction

Surround sensing is a key prerequisite for automated vehicles and mobile robots
to operate in unconfined environments. Accurate information about the relevant
static and dynamic environment is required at all times and in all situations in or-
der to allow for safe operation. To achieve this goal, information from different,
complementary sensors is usually combined [7, 28]. Advanced driver assistance
systems for instance, which can be found in many automobiles today, typically
combine a radar and a camera system [8, 89]. While radar sensors provide ac-
curate range and relative velocity measurements, the camera system performs
various detection and classification tasks. The role of vision systems becomes
increasingly important as currently no other sensor offers the same versatility
[77]. For example, by changing the lens we can trade angular resolution for
field of view, which qualifies cameras as a short and mid-range sensor [92, 89].
Typically, cameras on mobile robots and cars have no moving parts, making
them durable and inexpensive to manufacsture. However, the major advantage
of cameras lies in the various kinds of information that captured images provide.
Extracting the information is one of the major challenges on the way towards
automated driving. Yet, since the early deployment of camera-based advanced
driver assistance systems for lane departure warning, more functions have been
introduced successively [37, 22], allowing to extract a richer set of information
about the surrounding scene. To capture the complete environment of a vehicle,
either a single omnidirectional camera, i.e. a camera with a 360◦ field of view
in the horizontal plane, or a distributed multi-camera setup can be employed.
While omnidirectional cameras seem appealing due to the single camera body
and viewpoint it is often difficult or undesirable to mount them in a position
with an unobstructed field of view (e.g. on top of a mobile robot) in practical
applications. For this reason, multi-camera systems are usually preferred. Fur-
thermore, the offsets between the cameras can be advantageous, for example to
estimate the absolute scale of the velocity [41]. An omnidirectional panorama
image can be constructed from just two cameras equipped with fisheye (ultra
wide-angle) lenses. An example is shown in Figure 1.1. Despite the seamless
appearance, objects on the two meter wide stripe in front and behind the vehicle
do not appear in the image. For this reason, typically four cameras are employed
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1 Introduction

in practice. To fuse the information from multiple cameras and to relate geo-
metric quantities in the image and the world, the mapping from the 3D world
into a 2D image has to be known. The mapping comprises information about
the pose (orientation and displacement) of the camera as well as the projection
from the camera coordinate frame into the image. Camera calibration is the pro-
cess (and the result) of estimating the underlying model parameters. We refer to
the parameters as extrinsic and intrinsic parameters, respectively1. Calibration
is generally a complex and time consuming process. While intrinsic calibration
can be performed for each camera individually prior to its deployment, extrinsic
calibration requires the cameras to be mounted to the respective vehicle or robot.
In order to reduce the effort of calibration and to compensate for external fac-
tors such as temperature variations and mechanical stress which may cause the
extrinsic calibration to become inaccurate over time, self-calibration is highly
desirable. Self-calibration is the process of inferring the model parameters di-
rectly from observations without the need for special calibration procedures or
equipment.
In this thesis we build the theoretic foundation for extrinsic camera self-calibra-
tion and present and evaluate a Kalman filter-based approach which relies solely
on image data. To this end, we identify and combine different cues that provide
information about the calibration parameters. Motion-based calibration is car-
ried out by estimating the frame-to-frame camera motion using corresponding
features in successive images. Planar motions are common among mobile robots
and road vehicles and represent a degenerate case for motion-based calibration.
We overcome this problem by leveraging scene constraints. In particular, we
make use of the ground plane as a natural reference object. A novel algorithm
for ground plane estimation is presented that is robust with respect to sparse as
well as structural outliers and can be integrated seamlessly into Kalman filters.
Large baselines and strong geometric distortions hinder establishing feature cor-
respondences between the images of cameras with overlapping fields of view to
a degree where they are not used for calibration [82, 36]. We compensate these
distortions using prior knowledge about the scene and camera configuration. As
a result, low complexity feature detectors and matchers can be employed.
In contrast to existing approaches (e.g. [75]) we employ a single extended
Kalman filter with low state vector dimensionality which reduces the overall
complexity. We evaluate the approach qualitatively as well as quantitatively us-
ing real-world data.

1 Photometric camera calibration is not considered here.
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1 Introduction

Figure 1.1: An omnidirectional panorama image is generated from images captured by a
calibrated, vehicle-mounted two-camera setup. Despite the large camera offset of almost
two meters, the panorama image appears seamless (except for image regions obstructed
by parts of the vehicle). This is due to the the distant scene and homogeneity of the
asphalt texture. The area marked in red in the top image is not visible in the image. The
axes of the camera coordinate frames are colored red and blue, respectively.

3



1 Introduction

1.1 Problem Statement

In this thesis we address the problem of continuous extrinsic self-calibration of
vehicle-mounted multi-camera systems. Since any calibration will deteriorate
over time, self-calibration is the only way to ensure reliable long-term operation.
A self-calibration algorithm should be able to run in the background continu-
ously and process incoming data as it arrives. It has to perform this task during
regular operation and should hence leverage all available information sources.
These include in particular motion, epipolar, and scene constraints.
Typical applications include experimental setups, end-of-line calibration, and
recalibration during long-term operation. Therefore, an initial guess of the cali-
bration parameters which can be obtained through simple external measurements
should be sufficient for the algorithm to converge under normal circumstances.
In addition, a versatile solution should work with different numbers of cameras
and independently of other sensor modalities. Camera systems for surround
sensing typically employ ultra-wide angle (e.g. fisheye) lenses. The calibration
algorithm should thus be able to cope with strong geometric distortions.

1.2 Contribution

The contributions of this thesis are the following:

• We present a comprehensive analysis of several classes of motion, sensors,
and algorithms with respect to degenerate cases. A combination of a class
of motion, sensor, and algorithm is degenerated if the calibration yields
ambiguous solutions. For these cases we present algorithms to determine
the parameter values of the subset of unambiguous parameters. Addition-
ally, we derive a criterion to identify degenerate camera configurations
which cannot be calibrated using overlapping fields of view.

• To compensate for large viewpoint variations as well as geometrical dis-
tortions caused by fisheye lenses we introduce an image preprocessing
step that uses prior knowledge about the camera configuration and scene
geometry. Images are warped prior to extracting feature point correspon-
dences in order to establish image similarity. In turn, low complexity
feature detectors and matching algorithms can be employed.

• A novel ground plane estimation algorithm for fisheye cameras is pre-
sented which is designed to be robust with respect to sparse outliers among
putative image correspondences as well as to structural outliers such as

4



1.3 Thesis overview

other planes in the scene. The algorithm can be integrated seamlessly and
efficiently into Kalman filters.

• A new algorithm for extrinsic camera self-calibration is presented and
evaluated. The algorithm is based on Kalman filtering which provides
flexibility with respect to additional information sources and renders real-
time processing possible.

• In an extensive evaluation we assess the new extrinsic self-calibration al-
gorithm quantitatively using real-world data. We compare different mo-
tion models, varying frame rates, and evaluate the influence of overlapping
fields of view.

1.3 Thesis overview

The thesis is structured as follows. In Chapter 2 we review related work. The
chapter is partitioned with respect to the constraints that are imposed to estimate
the calibration parameters. The constraints are fundamental to the calibration
process and specific to the application, camera configuration, and environment.
Numerous approaches, including the one presented in this thesis, impose mul-
tiple constraints. Here, we focus on the ones which most fundamental to each
approach.
In Chapter 3 we introduce the fundamentals of perspective (standard) cameras
and highlight the differences to cameras equipped with fisheye lenses. We fo-
cus in particular on the geometric and photometric characteristics. The chapter
closes with a brief introduction to two-view geometry.
Chapter 4 provides the theoretic foundation for extrinsic camera calibration.
The methods and approaches to calibrate a multi-camera systems are diverse,
but rely only on a small number of constraints. In this chapter, we introduce the
concepts of motion-based calibration, the ground plane, and calibration using
overlapping fields of view (Figure 1.2). The identification of degenerate cases
is an important aspect of calibration. The detection of such cases is difficult in
practice since measurement noise makes any system appear observable. A theo-
retical analysis of specific scenarios enables detecting degenerate cases prior to
a practical or simulated evaluation.
The estimation of camera motion, the ground plane, and the relative pose be-
tween rigidly coupled cameras proposed in this thesis relies on image point cor-
respondences. To compensate for the large extent of multi-camera setups and
resulting viewpoint variations, as well as geometrical distortions caused by fish-
eye lenses, we propose an image warping step in Chapter 5. Captured images
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1 Introduction

Figure 1.2: Left: Multi-camera setup with overlapping fields of view. To illustrate the
fields of view of fisheye cameras image data is projected onto spherical sectors. The
boundaries of the overlapping fields of view are indicated by blue patches on the ground
plane and grey planes elsewhere. Right: Virtual camera rotation. To simplify establishing
image point correspondences one of the cameras is virtually rotated. As a result, the
position of infinitely distant objects coincides in both images. Throughout this thesis the
reference cameras is colored orange, other cameras are colored blue.

are warped into virtual camera views such that corresponding image regions co-
incide. To this end, the scene geometry is approximated by the ground plane in
close proximity and by infinitely distant objects elsewhere. In the latter case, the
warped image corresponds to that of a virtually rotated camera (see Figure 1.2).
As a result, low complexity feature detection and matching algorithms can be
employed.
In Chapter 6 we present an algorithm for robust ground plane estimation. The
proposed method is designed to be robust with respect to sparse gross outliers
but also to other structures in the scene with similar parameters. So called struc-
tural outliers such as sidewalks are hard to identify due to their inner coherence
and may introduce significant bias. Given an estimate of the camera motion
and ground plane we sample image point correspondences between successive
images, starting with correspondences that exhibit the highest probability to be
associated correctly and update the motion and ground plane estimate sequen-
tially. The presented sequential testing and updating scheme is designed to be
seamlessly integrable into Kalman filters. Figure 1.3 shows a comparison be-
tween a standard and the proposed approach.
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1.3 Thesis overview

Figure 1.3: Side-by-side comparison between the output of a standard approach for
ground plane estimation (left) and the proposed method (right) for an image captured
with a side-facing, vehicle-mounted fisheye camera. In the left image two planes are de-
tected. Image point correspondences associated with either plane are marked orange and
green. While one of the estimated planes can be associated with the sidewalk the other
one does not correspond to any real plane in the scene. In the right image the output of
our method is shown. Most of the shown image point correspondences (blue) are located
on the road, as desired.

In Chapter 7 we combine the findings and methods introduced in the previ-
ous chapters and present an algorithm for extrinsic camera self-calibration. The
algorithm is based on an extended Kalman filter which has been applied suc-
cessfully in similar scenarios. The state vector of the Kalman filter comprises
the extrinsic calibration parameters as well as the ground plane parameters and
the parameters of the applied motion model. A planar and a general one are con-
sidered. By applying a stratified update scheme, a partially updated state vector
is made available for robust ground plane estimation.
In Chapter 8 we evaluate the proposed extrinsic self-calibration algorithm us-
ing real-world data from a vehicle-mounted multi-camera system. The results
are assessed quantitatively using acquired ground truth. Ground truth facilitates
the comparison between the different motion models, algorithm settings, and
information sources. During evaluation the algorithm is initialized using a set
of 20 calibration parameter vectors that have been generated through random
sampling (Figure 1.4a). Quantitative results are obtained for all permutations
of the 20 initial parameter sets and 20 evaluation sequences. In addition, we
present qualitative results using three typical applications for multi-camera sys-
tems, namely visual odometry, generation of a virtual top view of the vehicle
surrounding, and stereo rectification. An example is shown in Figure 1.4b.
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(a) Ground truth camera poses and samples for initialization.

(b) Corresponding epipolar curves.

Figure 1.4: Ground truth camera poses and a subset of drawn samples for Kalman fil-
ter initialization (top). Large coordinate axes indicate the ground truth camera poses.
Smaller coordinate axes visualize a subset of the initialization samples which are offset
by 0.5 meters (transparent spheres) and rotated by up to 15◦ with respect to the ground
truth. For reference vehicle tires and the rear axle are superimposed. In the bottom figure
simultaneously captured images from the front (left) and right-facing (right) cameras are
shown, respectively. Corresponding epipolar curves are superimposed. Matching curves
have the same color.

Finally, in Chapter 9 we summarize our work, highlight important findings, and
discuss potential directions of future research.
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2 Fundamentals

Multi-camera systems are employed in increasing numbers and more areas of
everyday life. The methods and approaches used to calibrate these systems are
as diverse as their respective fields of application. In this chapter we review rel-
evant approaches from the literature and state-of-the-art solutions. We focus in
particular on mobile robots and road vehicles.
We structured the related work presented in this chapter predominantly with re-
spect to the underlying constraints that are imposed to estimate the calibration
parameters. These constraints are fundamental to the calibration process and
specific to the application, camera configuration, and environment (although
other criteria for categorization could be applied as well). Figure 2.1 shows a
taxonomy of extrinsic multi-camera calibration, without claiming thoroughness
or completeness.
The fundamental assumption upon which all presented approaches build is the
rigidity of the camera setup. The relative displacements and orientations be-
tween the cameras are assumed to be either fixed permanently, or within specific
time frames1. From this, further constraints can be derived. Work focusing
on simultaneously observed scene points is presented in Section 2.1, and work
focusing on motion-based calibration and exploiting the scene structure is pre-
sented in Section 2.2 and Section 2.3, respectively.
Given an existing multi-camera setup, the constraints that can be applied are
mostly predetermined by the physical arrangement of the cameras, the fields of
view, the area of application, and the environment, leaving few design choices.
However, one remaining aspect is the algorithm. In Section 2.4 we review the
related work from the perspective of the underlying algorithm.

2.1 Overlapping Fields of View

The literature offers a plethora of works on the calibration of cameras in stereo
configurations, i.e. with large overlapping fields of view. The standard approach

1 Continuous parameter drifts are usually modeled by assuming changes to only occur between
discrete points in time.
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Planar
Arbitrary

Image correspondences

Figure 2.1: A taxonomy of extrinsic multi-camera calibration. The classification of the
approach presented in this thesis is highlighted. The approaches often cannot be assigned
uniquely to one class since multiple constraints or configurations might be exploited si-
multaneously.

to this problem is to establish (multi-camera) image correspondences. From
these an initial estimate of the relative orientation and displacement can then be
determined by means of relative pose estimators (e.g. [72]). Typically, the initial
result is refined using bundle adjustment (e.g. [98, 31]). Bundle adjustment is a
technique to simultaneously optimize the 3D scene structure and camera poses.
The constraint underlying the relative pose estimation is the epipolar constraint
(see Chapter 3) while bundle adjustment is based on the collinearity equations
[57] which state that the camera projection center, image point, and 3D scene
point were aligned at the time of recording.
A limitation of approaches employed in unconstrained environments is that the
overall scale of the system cannot be determined without additional extraneous
information and therefore remains ambiguous. To overcome this limitation and
to simplify the process of establishing image correspondences customized cal-
ibration objects with known dimensions are commonly used. The description
and discussion of algorithms working in unconstrained environments as well as
with calibration objects can be found in standard literature such as [31] and are
not discussed here for brevity.
Nonetheless, we want to highlight the work of Dang et al. [18] who presented
a framework based on Kalman filtering for continuous stereo self-calibration of
an active stereo system. It is shown that the combination of different constraints
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2.1 Overlapping Fields of View

(two-view epipolar and multi-view collinearity) yields both accurate and robust
results. In the work presented herein we follow this idea and combine different
constraints to improve the overall robustness and accuracy.
In general, calibration methods that exploit overlapping fields of view achieve
the highest accuracy. To enable applying the same methods and constraints to
multi-camera setups with non-overlapping fields of view, Kumar et al. [48] and
Lébraly et al. [50] propose to create overlapping fields of view temporarily dur-
ing calibration using mirrors. Kumar et al. [48] propose to install planar mirrors
to allow all cameras to observe a single calibration object. By varying the po-
sition and orientation of the mirrors different virtual view points of the calibra-
tion object are generated. The extrinsic calibration parameters can be estimated
uniquely from the virtual camera poses. Later, Lébraly et al. [50] present a mod-
ified approach that uses markers which are attached to the mirror to estimate the
pose of the mirror directly.

Asynchronous Image Correspondences

From the perspective of calibration, image correspondences between
synchronously captured images are most preferable since the underlying epipo-
lar geometry comprises the desired calibration information. However, such cor-
respondences can only be established between cameras with overlapping fields
of view. Asynchronous image correspondences, on the other hand, can be es-
tablished if the cameras observe the same part of the scene, but not necessarily
at the same time. Prerequisites for the calibration based on asynchronous image
correspondences are that the motion of the camera setup is known or can be es-
timated, and the scene remains static during data acquisition.
An early approach adopting this concept for road vehicles is the work of Lam-
precht et al. [49]. To calibrate a multi-camera setup with non-overlapping fields
of view, first, the 3D positions of traffic signs with respect to the vehicle are
estimated. Once the traffic signs leave the field of view of the camera their po-
sition is predicted using known vehicle motion. As the traffic signs enter the
field of view of another camera the relative orientation and displacement be-
tween the cameras is estimated by minimizing the error between the predicted
and observed traffic sign positions.
The work of Carrera et al. [14] generalizes this concept. While a robot per-
forms a set of preprogrammed motions the attached cameras separately estimate
their motion and reconstruct the 3D scene. The reconstructions are then reg-
istered and jointly optimized providing the relative pose between the cameras.
Due to the scale ambiguity of the monocular scene reconstruction, the displace-

11
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ment between the cameras can be estimated only up to scale. Heng et al. [36]
present a further extension to this approach. The trajectories estimated by each
vehicle-mounted camera individually are registered with respect to the vehicle-
supplied trajectory in order to obtain an initial calibration and scale estimate.
Image point correspondences between asynchronously captured images are then
used to refine the initial extrinsic calibration estimate along with the camera in-
trinsics using bundle adjustment. The scene, which was reconstructed during the
calibration can itself be used as a calibration object. Heng et al. [34, 35] follow
this idea to calibrate vehicle-mounted multi-camera setup with non-overlapping
fields of view. Similarly, Li et al. [53] use a large calibration object that can
be observed partly by multiple cameras at the same time. Strauss et al. [93]
propose combining multiple planar calibration targets into a rigid, three dimen-
sional calibration object. The calibration parameters and relative poses between
the calibration objects are estimated jointly using bundle adjustment. Due to the
known scale of the calibration objects these methods yield a Euclidean calibra-
tion2.

2.2 Motion-Based Calibration

Motion-based extrinsic multi-camera calibration builds on the rigid coupling be-
tween the cameras and in particular on the different types of motions observed
when the setup is moved. Due to the resemblance of the underlying mathemati-
cal formulation of the problem to a calibration problem in the robotic community
between a robot gripper and a gripper mounted camera, this problem is often re-
ferred to as hand-eye calibration [100, 87]. An early work in the context of
motion-based camera to camera calibration is that of Luong and Faugeras [58],
who estimate the extrinsic calibration of a stereo camera without using overlap-
ping fields of view. While the camera setup is moved, each camera estimates
its motion. The extrinsic calibration between the cameras is then estimated up
to scale from only two incremental motions by solving the hand-eye calibration
problem explicitly.
Esquivel et al. [19] propose a similar approach but aim at processing complete
sequences. In addition, critical motions such as translation only or planar mo-
tion are examined and the authors recommend switching the motion model if
degenerated cases are detected.

2 We use the term Euclidean, i.e. with known scale, to distinguish from metric calibration, i.e. with
respect to a similarity transformation.
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2.2 Motion-Based Calibration

Muhle et al. [70] approach the problem of critical motions by incorporating a
priori knowledge. The a priori knowledge ensures that the underlying optimiza-
tion problem is well-conditioned. The authors further introduce a metric which
quantifies the influence of the a priori knowledge on the final estimate and a
transformation to remove the bias introduced by the a priori estimate.
Lébraly et al. [51] focus explicitly on planar motion and present a dedicated so-
lution to the problem. Instead of using incremental motion estimates the camera
motions and scene structure are estimated jointly. After determining an initial
solution the relative orientation and in-plane translation are estimated using bun-
dle adjustment.
We exemplarily mention the work of Brookshire and Teller [9, 10] who pre-
sented a modified solution to the hand-eye calibration problem for arbitrary sen-
sors that provide Euclidean incremental motion estimates. To detect singular
motions a statistical measure is used which provides a lower bound on the cali-
bration accuracy. This concept is applied to both in-plane motions [9] and gen-
eral motions [10]. In addition, they also propose a solution for sensor systems
that provide data asynchronously.
Caspi and Irani [15] relax the requirement of known temporal alignment. By
finding the maximum correlation between rotation amplitudes the temporal off-
set between two image sequences is found. After aligning the video sequences
temporarily the relative orientation between the cameras is estimated.
Pagel et al. consider a similar setup to the one we examine herein. In a se-
ries of works [76, 74, 73, 75] they present a hierarchical approach based on
repeated parameter estimation, propagation between camera modules, and fu-
sion. After applying a method similar to that of Lébraly et al. [51] to obtain and
register motion estimates a Kalman filter derivative is used to simultaneously
refine extrinsic calibration parameters, sparse scene structure, camera motion,
and ground plane estimates. The final estimate is obtained by fusing the indi-
vidual estimates from each camera module. It is implicitly assumed that the
camera translation directions are parallel and the relative camera velocity ratios
remain constant within short time periods. In this thesis, we follow the idea of a
filtering-based approach but reduce the algorithm complexity by employing only
a single extended Kalman filter with low state vector dimensionality and relax
the requirements on the vehicle motion.
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2.3 Scene Constraints

The scenes in which multi-camera systems are deployed commonly contain cues
that can be exploited for calibration. Road and parking spot markings have been
used extensively hitherto (e.g. [54]). Many approaches, including the one pre-
sented herein, assume the surface the vehicle is driving on to be sufficiently flat
to be approximated to be a plane in the vicinity of the vehicle. A single scene
plane such as the ground plane constrains three out of the six degrees of freedom
of the relative pose transformation (two angles and one distance), and does not
necessitate overlapping fields of view.
Miksch et al. [66] propose to estimate the ground plane during straight driving
by first estimating the vehicle translation direction. After an image rectification
step that aligns image rows with the translation direction, only two correspond-
ing points on the ground plane have to be identified in two successive images
to find the ground plane parameters. The relative orientation between multiple
cameras can be computed by aligning the observed ground plane normal, height,
and translation directions.
Ruland et al. [82] estimate the in-plane position of a camera with respect to a
vehicle frame by exploiting the non-holonomic motion of typical automobiles
and estimating the ground plane induced homography.
The problem of estimating the orientation of camera with respect to a vehicle
frame is closely related to homography estimation. For example, Miksch et al.
[67] and Ruland et al. [81] present approaches in this regard using known vehicle
odometry. An overview of several approaches, without focusing on calibration,
is given in Chapter 6.

2.4 Bayesian Filtering and Optimization

In the remainder of this chapter we elaborate on the algorithms used to estimate
the calibration parameters from image measurements and imposed constraints.
We can classify these algorithms into general optimization and filtering tech-
niques.
General optimization techniques such as bundle adjustment perform batch op-
timization using either all available measurements (global optimization) or spe-
cific subsets such as a fixed number of recent measurements (local optimiza-
tion). In contrast, (Bayesian) filtering techniques fuse image measurements se-
quentially by updating the estimate and the associated probability distribution
accordingly.

14



2.4 Bayesian Filtering and Optimization

Bundle adjustment is considered the gold standard ([31]) and is known to better
cope with nonlinearities and outliers than filtering-based approaches. For this
reason, it is frequently used in offline calibration methods with mild resource
and time constraints (e.g. [51, 14, 36, 93, 103]).
Self- and online-calibration problems are naturally incremental and are therefore
traditionally approached using filtering techniques (e.g. [18, 30, 85, 75, 69]).
However, the development of efficient and incrementally working optimization
frameworks (e.g. [40, 46]) renders their application possible even for this type
of application. The problem of increasing number of measurements can either
be tackled by continuously summarizing measurements and results, as in fil-
tering approaches, or by keeping only a subset of measurements and discard
the remainder. The subset typically consists of a limited number of most re-
cent observations. In contrast, Maye et al. [63] present a framework for self-
supervised data aggregation that selects a subset of data based on an information
theoretic measure. Despite the advantages of information-based measures these
approaches tend to be particularly susceptible to outliers which spuriously indi-
cate a high gain in information.
In this work we present a filtering-based approach that avoids structure compu-
tation entirely (except for the ground plane), and thus significantly reduces the
overall complexity. The state vector of the employed extended Kalman filter
comprises only the extrinsic calibration, ground plane, and motion parameters.
Special attention is paid to the problem of outliers (Chapter 5 and Chapter 6) as
well as the problem of nonlinearities (Chapter 7).
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3 Camera Model and

Two-View Geometry

A camera maps the 3D world into a 2D image. The mapping comprises infor-
mation about the pose (orientation and displacement) of the camera coordinate
frame with respect to a reference coordinate frame (e.g. a world frame) as well
as the projection from the camera coordinate frame into the image. The goal
of this thesis is to recover the former, the location and orientation of a camera
coordinate frame with respect to a reference frame while considering the proper-
ties of fisheye cameras. Compared to cameras with standard lenses, the imaging
properties of fisheye cameras differ in both their geometric and their photometric
characteristics. This chapter gives an overview of these fundamental differences.
First, a standard camera model is introduced in Section 3.1 which is then used
to elaborate on fisheye cameras in Section 3.2. Parameters associated with the
camera model are referred to as intrinsic calibration parameters. In contrast, the
extrinsic calibration parameters describe the external geometric relation between
the camera coordinate frame and the reference frame.
In the second part of this chapter, two fundamental (extrinsic) geometric rela-
tions of two-view geometry are reviewed, namely the plane induced homography
and the essential matrix. Both will be used frequently throughout this thesis. In
the following only rotationally symmetric camera models are considered. More
literature on camera models can be found in, e.g., [31, 23, 94].

3.1 The Perspective Camera Model

The mapping from the camera coordinate frame into the image is described
by the camera model. A model of particular interest is the perspective cam-
era model1 [31]. On the one hand, many real cameras can be described by this
model directly or by adding correction terms. On the other hand, its mathe-
matical formulation is particularly simple due to its linearity in homogeneous
coordinates.

1 Sometimes referred to as finite projective model.
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Figure 3.1: Projection of a 3D point X to the image point u under the central projection.
The ray x, originating from the optical center of camera C contains u and X. The image
point u and the principal point u0 lie in the image plane, depicted in blue. The origin
of the image coordinate system is located in the top left corner and the image coordinate
axes u and v are aligned with the axes of camera coordinate frame. The angle between
the principal axis and x is the off-axis angle α. The axes of the camera coordinate frame
are given in red, green, and blue, respectively. This color convention is kept throughout
this thesis.

For this reason it is used extensively as a standard model in theoretical consider-
ations. The camera model will be explained in more detail in the following. We
consider the central projection, i.e. the projection from a point onto a plane,
depicted in Figure 3.1. The projection center of a camera C coincides with
the origin of the Cartesian camera coordinate frame. Within the image plane,
ZC = z0, where z0 > 0, we define a 2D Cartesian image coordinate frame
with coordinates u and v. The u and v-axes are parallel to the XC and YC -axes
of the camera coordinate frame, respectively. The principal axis intersects the
image plane in the principal point u0 = (u0, v0)

T . The three intrinsic calibra-
tion parameters u0, v0, and z0 are sufficient to define the mapping of a 3D point
X = (X,Y, Z)

T in the camera coordinate frame to the point u = (u, v)
T in the

image.
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3.1 The Perspective Camera Model

Using homogeneous coordinates [31] the mapping can be written as a linear
mapping ⎛⎜⎜⎝

λu

λv

λ

⎞⎟⎟⎠ =

⎡⎢⎢⎣
z0 0 u0

0 z0 v0

0 0 1

⎤⎥⎥⎦
︸ ︷︷ ︸

=:C

⎛⎜⎜⎝
X

Y

Z

⎞⎟⎟⎠ , (3.1)

where C is the camera calibration matrix, and λ ∈ R \ {0} is a scale factor.
The 3-vector (λu, λv, λ)T represents the point u in homogeneous coordinates.
The non-homogeneous 2-vector can be obtained by dividing by λ and discarding
the last row. Due to the homogeneous representation, equation (3.1) holds for
any nonzero multiplicative scaling of C as well as X. In Euclidean space, the
scaling of X can be interpreted as the shift along the line through the origin and
X. Every point on the line, except for the origin, is projected to u. This also
means that a point with negative Z value is projected to real image coordinates.
This does not generally pose a problem for perspective cameras since we know
that a point being visible in the image has to be in front of the camera. However,
if camera lenses exhibit an angle of view of more than 180◦, as it is the case
for the cameras used during our experiments, disambiguating in this way is no
longer possible. To resolve this issue we restrict the scale factors to positive val-
ues only. In consequence, only points on the ray x = (x, y, z)

T , are projected
to u (cf. Figure 3.1). The restriction of the sign of the scale factor to positive
values allows discriminating between points on either side of the plane ZC = 0,
but requires to keep track of the sign during computation.
The presented ideal camera model is linear in homogeneous coordinates. How-
ever, real lenses and especially wide-angle lenses do not exhibit these linear
characteristic. Typically, an image compression can be observed with increas-
ing distance from the principal point for wide-angle lenses. The effect is most
obvious for straight lines in the world appearing curved in the image. These ra-
dial distortions can be modeled by augmenting the linear model by a correcting
term. The correction is applied after projecting the 3D point into the image. Let
uu = (uu, vu)

T be the coordinates of the undistorted point in the image plane.
The coordinates of the point in the radially distorted image are given by

ud = uu (1 + Δ (r)) , (3.2)

where Δ(·) is typically chosen to be an even polynomial [31, 38, 23], and r =
‖uu − u0‖2 is the radius, i.e. the distance from the principal point.
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Correction terms Δ(·) are used multiple times throughout this chapter to model
deviations from a design model.

3.2 The Fisheye Lens

Fisheye lenses are ultra wide-angle lenses that are often capable of capturing a
whole hemisphere. The large field of view comes at the price that many desir-
able properties of the perspective camera cannot be obtained, most prominently
linearity is lost. Straight lines in the world are not imaged as straight lines.
This section gives an overview of fisheye lens characteristics, starting with the
geometric camera model.

3.2.1 Geometric Camera Model

Due to the large field of view it is not possible to model the nonlinear prop-
erties of cameras with fisheye lenses as deviations from the linear model, i.e.
lens distortions. To demonstrate this, we consider the projection of a point
X = (X,Y, 0)

T into the image using equation (3.1). After multiplying the
point with the calibration matrix, the last component of the point remains zero.
It is not possible to convert the point to finite coordinates and thus to Euclidean
2-space. In consequence, equation (3.2) cannot be applied. For fisheye lenses
it is common to describe the mapping from the world into the image in terms
of spherical coordinates, i.e. by the off-axis angle α between the ray x and the
principal axis (cf. Figure 3.1), and the azimuth angle in the image plane.
In case of rotational symmetry, there is a direct relationship between the radius
r and the off-axis angle α. For example, the standard camera model follows
r ∼ tan (α). For fisheye lenses there exist various classical design models that
exhibit specific properties [94]. Three prominent models are the

• stereographic model

• equidistant model

• and equisolid angle model

r ∼ tan
(
α
2

)
,

r ∼ α,

r ∼ sin
(
α
2

)
.

The functions are shown in Figure 3.2. The stereographic mapping is locally dis-
tortion free, i.e. within a sufficiently small region objects are imaged as being
captured by a perspective camera with a narrow field of view. Furthermore, the
intersection angle of imaged lines is only affected by perspective distortions, but
not by lens distortions. Hence, the mapping preserves angles locally.
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Figure 3.2: Radius r as a function of the off-axis angle α for four different projection
models. The projection models are (from top to bottom), perspective model (black),
stereographic model (blue), equidistant model (green), and equisolid angle model (or-
ange). In case of the perspective mode, the radius approaches infinity as the off-axis
angle approaches π/2.

The equidistant mapping function is linear in the off-axis angle, and the eq-
uisolid angle model maintains a constant ratio between image area and corre-
sponding solid angle. Figure 3.3 shows an image captured with a fisheye lens
with equidistant projection function and a corresponding image which has been
generated using a perspective camera model. Note that the white marking on
the ground is straight in the perspective camera image but not in the image of a
fisheye camera. Furthermore, significant magnification near the image boundary
can be observed.
Mapping functions of real fisheye lenses may deviate from the ideal models. To
compensate for this behavior polynomial correction terms as in equation (3.2)
can be applied. Throughout the rest of the thesis, we abstract from the used
model and intrinsic calibration parameters and write

u = κ (X) = κ (x) , (3.3)

to describe the projection of a 3D point or corresponding ray into the image,
where κ (·) is the projection function. The back-projection of a point to a ray is
given by

x = κ−1 (u) . (3.4)

To render the back-projection to a ray unique, one typically requires z = 1 or
‖x‖2 = 1. We further require the mapping to be well-defined within the image
region and to be continuously differentiable.
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Figure 3.3: Image captured using a fisheye lens with equidistant projection (left), and
corresponding image generated using a perspective camera model. The projection of the
image border of the perspective image mapped into the fisheye image is shown in orange.
The horizontal angle of view is 170◦ and 100◦, respectively.

3.2.2 Noncentrality

The fundamental assumption for the derivation of the ideal perspective cam-
era model in Section 3.1 was the existence of a unique projection center. This
property is highly desirable, as it allows separating intrinsic and extrinsic cam-
era properties. However, for real lenses the position of the projection center may
deviate with increasing off-axis angle. For lenses with a narrow field of view, the
effect is usually small and thus often disregarded. However, for fisheye lenses,
the deviation can be within the same order of the size as the lens [23]. In the
following we introduce a mathematical model for the deviation of the projection
center and show how the noncentral camera model can be approximated by a
central camera model with minimal error.
For rotationally symmetric lenses, the deviation of the projection center can
be modeled by a displacement along the principal axis [23]. An illustration
is shown on the left-hand side of Figure 3.4 for rays with increasing off-axis
angles. The point c0 is the convergence point for decreasing off-axis angles.
For increasing off-axis angles, the projection center moves forward along the
principal axis.
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Figure 3.4: Illustrations of the displacement of the projection center along the principal
axis in the XC -ZC -plane of the camera coordinate frame for rays with small (blue) and
large (orange) off-axis angles (solid lines). The point c0 is the convergence point for de-
creasing off-axis angles. Left: A ray xi originates from a displaced projection center ci.
Right: The noncentral camera model is approximated by a central camera with projection
center capp.. Corresponding rays originating from the capp. are shown as dashed lines.
Note that corresponding rays are parallel.

Gennery [23] proposes modeling the displacement as c (α) = (0, 0, cz(α))
T ,

where

cz (α) =

(
α

sin (α)
− 1

)
(Δ0 +Δ(α)) , (3.5)

Δ(·) is an even polynomial, and Δ0 is a constant. The first factor ensures that
the displacement vanishes for small angles but increases to infinity as the off-
axis angle approaches 180◦. The second factor determines the displacement
magnitude. If the distance to the observed scene is sufficiently large, the er-
ror introduced by disregarding the deviation of the projection center becomes
insignificant. For the calibration of large field of view cameras, however, it is
common to use small calibration targets which are placed closely to the camera
to achieve considerable coverage in the image (e.g. [64]). For this reason, using
a central camera model during calibration will result in an incorrect mapping
between the radius r in the image and the off-axis angle. This can be avoided
by using a noncentral camera model during calibration and approximating the
result by a central camera model. To this end, Schönbein et al. [86] propose
to choose the projection center of the approximated central camera such that it
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3 Camera Model and Two-View Geometry

minimizes the Euclidean distance to the rays corresponding to the image points
of a uniformly sampled image. The process is illustrated on the right-hand side
of Figure 3.4. In contrast to using a central camera model during calibration, the
angular error of the approximated model decreases the farther an object is lo-
cated from the camera. Throughout the rest of the thesis, we assume the camera
model to be central and apply equations (3.3) and (3.4).

3.2.3 Light Falloff and Vignetting

Examining the image on the left-hand side of Figure 3.3 we notice a gradual
reduction in image intensity towards the image boundary as well as a sudden
transition to black in the image corners. These effects are caused by light falloff
and vignetting and can be partially compensated. Light falloff is inherent to
optical systems and is, for this reason, also referred to as natural vignetting. It
is caused by light entering and exiting the optical system at oblique angles, less
light entering the optical system, as well as the light being distributed over a
larger area on the sensor. Under certain assumptions, the falloff is proportional
to cos4(α) [38, 57]. In practice however, the assumptions were found to rarely
apply, even for standard lenses, and in particular for fisheye lenses [3, 38]. The
characteristic of the light falloff depends strongly on the lens design and should
be determined though calibration.
Vignetting refers to the physical obstruction (which is not caused by the aperture
stop). One commonly differentiates between three classes of vignetting [24]:

• Mechanical vignetting is caused by obstructing elements blocking inci-
dental light before it can enter the lens. In the image on the left-hand side
of Figure 3.3 the lens mount limits the diagonal angle of view and causes
a sudden transition to black in the image corners.

• Optical vignetting refers to light being blocked by elements within the lens
body such as edges or mechanical stops. Despite the downside, optical
vignetting can also be used to improve the overall lens performance, e.g.
by blocking misguided rays.

• Pixel vignetting is not caused by the lens but by the image sensor. Only a
part of the total area of a pixel on the sensor is light sensitive. At oblique
angles, it is more likely that light is blocked by obstructing elements on
the sensor, yielding an angle dependent characteristic. To compensate for
the insensitive area, micro lenses are commonly used to direct the inci-
dent light onto light sensitive area, thus effectively enlarging it. However,
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3.2 The Fisheye Lens

Figure 3.5: Side-by-side comparison between the original image (left) before and after
applying vignetting and light falloff compensation (right). Note the severe intensity re-
duction towards the image boundary in the original image, and the almost even intensity
across the ground in the compensated image. In the compensated image reduced bright-
ness around the clouds in sky can be observed. This is due to overexposure in the original
image.

micro lenses may even reduce the angle range at which light is accepted
[38]. Pixel vignetting is particularly prominent for wide-angle lenses [57].
This effect is increased if non-matching lenses and image sensors are com-
bined.

The intensity reduction seen in Figure 3.3 is caused by a superposition of vi-
gnetting and light falloff. For image processing, the gradual reduction in image
intensity can be disadvantageous. This is for example the case when the inten-
sity gradient caused by light falloff and vignetting within a typically sized image
patch becomes significant, or when comparing image patches from two images
with opposing gradients. In general, it is possible to compensate for vignetting
and light falloff due to the linearity of the effects [38]. Assuming an image sen-
sor with linear response, i.e. a proportional relationship between irradiance and
image intensity, the compensation can be carried out by pixel wise multiplica-
tion with a compensation factor. The compensation factor can be determined
experimentally by measuring the pixel intensity in the image with respect to a
constant illumination source. An exemplary result is shown in Figure 3.5. After
compensation we observe an almost even intensity profile on the ground. Me-
chanical vignetting, however, cannot be compensated as no image information
is available.
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3 Camera Model and Two-View Geometry

3.3 Two-View Geometry

In the remainder of this chapter we consider the extrinsic relations between two
camera views. The fundamental relation between two perspective views of a
scene is the epipolar geometry. It is independent of the scene content and de-
pends only on the relative camera orientations and displacements as well as the
camera intrinsic calibration parameters. It can be described concisely by the es-
sential matrix. A second relation arises for 3D points being located on a plane
in the scene. The plane induces a homography between perspective views, a
one-to-one relation between image points. For the two relations to be meaning-
ful, we assume the two views to be either acquired simultaneously or restrict the
scene to be rigid in case that the views are acquired with a temporal offset. Both
scenarios are geometrically equivalent [31]. Before elaborating on the two geo-
metric relations we introduce the transformations between coordinate frames in
3-space.

3.3.1 Camera Pose and Pose Transformation

The pose of a camera encompasses the orientation and displacement of the cam-
era coordinate frame with respect to a reference coordinate frame. Given the
coordinates of a 3D point X in the camera coordinate frame, the coordinates of
the same point in the reference coordinate frame X′ = (X ′, Y ′, Z ′)T are given
by

X′ = ΔRX +Δt, (3.6)

where ΔR is the 3 × 3 orientation matrix and Δt is the 3 × 1 displacement
vector. Using homogeneous coordinates, the transformation can be written more
concisely using matrix notation⎛⎜⎜⎜⎜⎜⎝

X ′

Y ′

Z ′

1

⎞⎟⎟⎟⎟⎟⎠ =

⎡⎣ΔR Δt

0T
3×1 1

⎤⎦
︸ ︷︷ ︸

=:ΔT

⎛⎜⎜⎜⎜⎜⎝
X

Y

Z

1

⎞⎟⎟⎟⎟⎟⎠ . (3.7)

The transformations between coordinate frames can either be constant over time
or time dependent. To emphasize the difference we use different notation and ex-
pressions. The time independent pose transformation between coordinate frames
is given by equations (3.6) and (3.7) and will be called orientation and displace-
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3.3 Two-View Geometry

ment. Similarly, the transformation between a coordinate frame at time k and
k + 1 is given by Tk and will be called rotation and translation. The rotation
matrix and translation vector are Rk and tk, respectively. When necessary, a
camera index c is used to differentiate between multiple cameras.

3.3.2 Epipolar Geometry and the Essential Matrix

Epipolar geometry is the inherent relation of two views. It is determined by the
relative pose of the cameras and their intrinsic calibration parameters only, and
independent of the scene. For a perspective camera the relation is encapsulated
in concise form in the fundamental matrix. The fundamental matrix describes
the relationship between an image point in one view and a corresponding epipo-
lar line in the other view. However, for fisheye cameras, or other cameras with
nonlinear projection function, the fundamental matrix cannot be applied and the
relation becomes more complicated, typically resulting in a point to curve rela-
tionship in the image. A specialization of the fundamental matrix that separates
intrinsic and extrinsic calibration parameters is the essential matrix. It formu-
lates the two-view relationship for rays instead of image points and is thus ap-
plicable to arbitrary cameras with known intrinsic parameters. In the following
we elaborate on epipolar geometry and derive the essential matrix.
Suppose a moving camera C that acquires image at time k and k + 1. The two
camera centers at time k and k + 1 and a 3D point X define a plane which is
called the epipolar plane. The rays back-projected from the image points of X
are x and x′, respectively. This is depicted in Figure 3.6. Using the rays and the
transformation between the camera poses the epipolar plane in the second view
can be constructed by computing the cross product between the ray x′ and the
translation vector

l′ = x′ × tk. (3.8)

The epipolar plane is then given by ((l′)T , 0)T , where l′ corresponds to the (non-
unit) plane normal. Note that l′ represents a line in 2D projective geometry and
thus a homogeneous vector. The inner product of a point with l′ is zero if the
point lies on the plane, and by definition

0 = (l′)T Rkx. (3.9)
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Ck Ck+1
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Figure 3.6: Epipolar geometry of a moving perspective camera. The epipolar plane con-
tains the two camera centers as well as the 3D point X. The intersections of the epipolar
plane and the image planes form the epipolar lines.

Replacing l′ in equation (3.9) by equation (3.8) yields

0 = (x′ × tk)
T
Rkx = (x′)T [tk]× Rk︸ ︷︷ ︸

=:Ek

x, (3.10)

where Ek is the essential matrix, and [·]× is a mapping of a 3-vector to a skew-
symmetric matrix

[x]× =

⎡⎢⎢⎣
0 −z y

z 0 −x

−y x 0

⎤⎥⎥⎦ . (3.11)

The essential matrix is of rank two and has five degrees of freedom, namely the
three parameters describing the rotation and two parameters describing the di-
rection of the translation. Note that equation (3.10) holds for any nonzero scaling
of Ek and hence of tk. The essential matrix can be estimated from five corre-
sponding rays [72], however, yielding multiple solutions. For disambiguation
additional correspondences are required. Furthermore, the decomposition of the
essential matrix into a rotation and translation direction is also ambiguous [31].
However, throughout the rest of the thesis, we assume the correct decomposition
to be known.
Equation (3.10) imposes only a single constraint on the rays x and x′, i.e. the
epipolar constraint. In the image of a perspective camera, the epipolar plane is
imaged as a line called the epipolar line, intersecting the image of X and the
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3.3 Two-View Geometry

camera center (cf. Figure 3.6). The image of the camera center is the called the
epipole. In cameras with fisheye lenses the epipolar lines appear in general as
curves.

3.3.3 Plane Induced Homography

If points in the scene are located on a plane, the corresponding rays of two views
are related by a homography, x′ = Hx. The homography matrix H is a non-
singular 3×3 matrix and comprises information about the relative camera poses
and the scene plane. It can be interpreted as the projection of a point onto the
plane followed by the projection into the second view. In the following we derive
the homography matrix.
A plane in Euclidean 3-space can be defined by the unit normal vector n and the
distance to the plane h. Without loss of generality, we define h ≥ 0. A 3D point
X located on the plane satisfies

nTX + h = 0. (3.12)

Given the ray x corresponding to the point X located the plane the correct scale
λ can be found by substituting λx for X in equation (3.12) and solving for λ,

λ = − h

nTx
. (3.13)

After determining the scale, the 3D point can be transferred from one coordinate
frame to the other by applying the relative pose transformation (equation (3.6)).
We assume, again, a moving camera C that acquires images at time k and k + 1
(see Figure 3.7). By dividing both sides of the relative pose transformation X′ =
RkX + tk by a scale factor and substituting for λ on the right-hand side, we
obtain

x′ = Rkx − tk (nk)
T
x

hk

=

(
Rk − tk (nk)

T

hk

)
︸ ︷︷ ︸

=:Hk

x. (3.14)

The homography matrix H has eight degrees of freedom and can be estimated
from four corresponding image points [31]. The decomposition of the homog-
raphy matrix into the rotation, translation and plane is ambiguous, yielding four
possible solutions [59]. Besides two different solutions for the rotation ma-
trix, the translation and the plane, one ambiguity is caused by the simultaneous
change in the signs of tk and nk yielding the same homography matrix. Fur-
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Ck
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Ck+1

X

hk x x′

n

Figure 3.7: A moving camera acquires images at time k and k + 1. The rays x and x′,
corresponding to the 3D point X on the scene plane, are related by a homography.

thermore, only the ratios tk/hk can be determined. The ambiguity is caused by
a faster moving camera and a more distant plane resulting in the same homogra-
phy as a slower moving camera and a closer plane. In the following chapters we
assume the correct decomposition to be known in the following.
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4 Extrinsic Camera Calibration

To estimate the extrinsic camera calibration several constraints can be used.
Common are the epipolar constraint for simultaneously observed 3D points (cf.
Chapter 3.3.2) and the rigid coupling between multiple cameras mounted on
a rig. For self-calibration we combine several constraints to increase the ro-
bustness and to avoid degenerate cases. Pure translation, for example, renders
motion-based calibration degenerate. Detecting degenerate cases is difficult in
practice as measurement noise and errors in feature matching render classical
tests such as rank analysis ineffective. Statistical measures [9, 10, 62] provide a
means to detect degenerate cases if the underlying statistical assumptions hold.
A theoretical analysis of specific scenarios based on error-free data allows de-
tecting degenerate cases prior to a practical or simulated evaluation.
In this chapter, we present a comprehensive analysis of several classes of motion,
sensors, and algorithms for motion estimation with respect to degenerate cases.
The problem of detecting such cases is closely related to observability analysis
in control theory. A system is called observable if its state can be recovered
uniquely in finite time from its outputs and known inputs [6]. In the following
we (informally) adopt the term to denote parameters whose values can be in-
ferred. Our contribution with respect to motion-based calibration is twofold. We
identify degenerate cases among the combinations of classes of motion, sensors
and employed algorithms and, in addition, determine the observable parameters
for degenerate configurations. Besides the rigidity constraint between cameras
we incorporate the ground plane as a natural reference object into the analysis.
As input we assume error free observations of the motion and ground plane pa-
rameters. The results are summarized concisely in Table 4.1.
In addition, we consider the extrinsic calibration of a multi-camera system from
pairwise overlapping fields of view. Jointly observed 3D points allow estimating
the essential matrix, and hence to recover the relative orientation and displace-
ment direction. For a multi-camera setup a unique solution (up to an unknown
scale factor) can only be determined if enough overlapping fields of view be-
tween different cameras exist and if the cameras are not in a critical configu-
ration. To detect whether a unique solution (up to scale) can be derived, we
employ a matrix rank test. Before presenting our analysis on motion-based ex-
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trinsic multi-camera calibration we introduce necessary definitions. Parts of the
work presented in this chapter have been published in [43].

4.1 Definition of the Reference Frame

The goal of this thesis is metric calibration of a multi-camera system. The term
metric denotes that the calibration is unique up to a similarity transformation,
i.e. a pose transformation and a scale. For the calibration process, the parame-
ters corresponding to the seven degrees of freedom of a similarity transformation
have to be defined by means of a datum definition1. The datum definition en-
ables the mapping of relative observations onto absolute parameter values and is
required to avoid singularities. The datum definition corresponds to defining an
Euclidean (reference) coordinate frame as well as a scale. This can be carried
out by defining one camera coordinate frame in a multi-camera setup as the ref-
erence coordinate frame (located at 03×1 and with identity orientation matrix)
and keeping one baseline, i.e. the distance between two cameras, fixed. Minimal
datum definitions, as in this example, which constrain exactly seven degrees of
freedom are favorable as they avoid possible inconsistencies in the datum defi-
nition which could be misinterpreted as errors in the observations [57].
A disadvantage of the fixed datum is that the covariance matrix associated with
the estimated calibration parameters of each camera does not reflect the inner
accuracy of the camera system, i.e. the accuracy independent of the choice of
reference coordinate frame [26, 97]. The position and orientation of the refer-
ence camera coordinate frame are assumed to be error-free, whereas other cam-
era coordinate frames are subject to inaccuracies. For this reason, other datum
definitions such as the free net adjustment are favored [57, 98]. In free net ad-
justment seven linear independent constraints are introduced that prevent pertur-
bations of the centroid of camera centers, orientation, and scale with respect to
initial (provided) estimates. However, gradual drifts caused by, e.g., numerical
inaccuracies are not corrected. Typically, Lagrangian multipliers are used as a
means to impose these constraints. The free net adjustment provides optimal
inner accuracy [57].
It is possible to switch between different datum definitions without introduc-
ing errors if the corresponding parameter transformations are linear [98]. For
this reason, Triggs et al. [98] propose applying a simple and convenient datum
definition during estimation and apply an optimal datum definition afterwards,

1 In the literature often the term gauge fixing is used instead of the geodesic term datum definition.
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Cr

Cc

CC−1

Cc+1

ΔTc ΔTc+1

ΔTC−1

Figure 4.1: Schematic representation of the multi-camera system. Several camera coor-
dinate frames are related to the reference coordinate frame via relative pose transforma-
tions. The image plane of the reference camera is shown in orange. This color convention
is kept throughout the thesis.

thus, reducing the number of parameters and the computational cost. We adopt
this approach and apply the minimal datum definition as presented in the exam-
ple. To this end, a dedicated reference camera coordinate frame, denoted Cr, is
selected. All cameras c = 0, ..., C − 1 are related to the reference camera co-
ordinate frame via relative pose transformations ΔTc (cf. Section 3.3.1). This
means in particular that a point Xc given in the coordinate system of camera
Cc and a point Xr given in the coordinate system of the reference camera are
related by ⎛⎝Xr

1

⎞⎠ = ΔTc

⎛⎝Xc

1

⎞⎠ . (4.1)

The relation between the cameras is depicted in Figure 4.1. Without loss of gen-
erality, we define r = 0, such that ΔTr = I4×4. Furthermore, the reference
coordinate frame is associated with the current pose of the reference camera,
thus moving with the vehicle. The transformation between two cameras can be
computed by concatenating and inverting pose transformations. For example,
the transformation from camera C1 to C2 is given by (ΔT2)−1ΔT1.
Different definitions of the scale are used in this thesis to allow for simple deriva-
tions. For example, for a vehicle moving in the plane parallel to the ground
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plane the distance of the reference camera center to the ground is used to define
the scale. Alternatively, the traveled distance of a camera center between two
time steps could also be used. Some sensors, such as calibrated stereo cameras
already provide a scale. In this case only the six degrees of freedom of the ref-
erence coordinate frame have to be constrained.
It should be noted that a comparison between calibration results is only possible
if the same datum definition is applied. Gradual drifts, as in the case of the free
net adjustment, have to be compensated [98].

4.2 Motion-based Calibration

In the following we examine the estimation of the extrinsic calibration parame-
ters on the basis of the rigidity constraint between cameras for different classes
of motion and, optionally, the ground plane. Four different classes of motion
are analyzed, namely linear motion, circular motion, planar motion, and general
(unconstrained) motion. The classes resemble the typical driving maneuvers
straight driving, turning, and driving on planar ground. General motion takes
further effects such as pitching, rolling, as well as nonplanar translation into
account. For each class of motion, we present an algorithm to compute the ob-
servable parameters. This is done for both a multi-camera system of monocular
cameras without overlapping fields of view, as well as a system of multiple cam-
eras that provide instantaneous depth measurements (e.g. stereo cameras).
As input we assume error free observations of the rotations and translations, and
optionally the ground plane normal and distance of the ground plane to the cam-
era center (camera height). Monocular camera systems suffer from the problem
of scale ambiguity, i.e. the scale of the translation cannot be recovered. For
this reason we further distinguish between pairwise evaluation of consecutive
frames, in which case we use the ground plane as a reference object, and using
image triplets. By using the ground plane, the translation velocity with respect to
the camera height can be recovered, which allows propagating information about
relative velocities. This concept will be explained in more detail in this chapter.
Image triplets allow propagating scale information by means of triangulating and
reprojecting 3D points as in classical structure from motion approaches [31].

34



4.2 Motion-based Calibration

Cr
k+1

Tc
k

Cr
k

Cc
k+1

Tr
k

ΔTc

Cc
k

ΔTc

Figure 4.2: Hand-eye calibration. The transformations between the poses of a moving
system of two rigidly coupled cameras form the characteristic circle of spatial and tem-
poral relations.

4.2.1 Hand-Eye Calibration

Originally, hand-eye calibration referred to the estimation of the rigid relative
pose between the coordinate frame of a camera mounted on the gripper of a robot
and the coordinate frame of the gripper itself [100, 87]. To estimate the trans-
formation, the gripper performs a known motion while the camera captures a
known calibration object. The gripper motion, camera motion, and the unknown
pose transformation form a circle of temporal and spatial transformations. Ap-
plied to a setup of two rigidly coupled cameras (instead of one camera and the
gripper) we can write the concatenation of transformations in the characteristic
form

Tr
kΔTc = ΔTcTc

k. (4.2)

The circle of transformations is depicted in Figure 4.2. Due to the rigid coupling
of the cameras ΔTc is constant over time. Equation (4.2) plays a fundamental
role in motion-based extrinsic calibration and will be used extensively through-
out this thesis. In contrast to the original problem, the motions of the cameras
are not known and have to be estimated from observations.
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Equation (4.2) can be decomposed into one equation relating rotations and ori-
entations

Rr
kΔRc = ΔRcRc

k, (4.3)

and one equation relating the displacement and translation vectors

(Rr
k − I3×3)Δtc + trk −ΔRctck = 0. (4.4)

In the following we discuss some properties of equations (4.3) and (4.4) in
the context of motion-based camera calibration. For pure translational motion
(Rr

k = I3×3 and due to the rigid coupling Rc
k = I3×3) equation (4.3) holds

for any ΔRc. For Rr
k �= I3×3, equation (4.3) imposes only two constraints on

the orientation matrix. The angle about the rotation axis cannot be recovered.
Furthermore, the matrix Rr

k − I3×3 is singular and has rank two if Rr
k �= I3×3

[99]. Hence, for a known orientation matrix ΔRc equation (4.4) imposes up to
two constraints on Δtc and leaves one degree of freedom. The displacement
along the rotation axis cannot be recovered. We further note that for pure trans-
lational motion the first term in equation (4.4) vanishes and the equation holds
for any displacements. However, two constraints are imposed on ΔRc due to
the alignment of the translation vectors.

4.2.2 The Ground Plane

In this thesis, the ground plane serves as a reference object for calibration. If
the ground plane is observed by one or multiple cameras, additional constraints
can be imposed on the parameters of the relative orientations and displacements
between cameras as well as the parameters of the camera motion. In the follow-
ing we introduce the mathematical relations between ground plane normals in
multiple images as well as the relations between camera heights induced by the
ground plane.
The relation between the observed ground plane normal in consecutive frames
is given by

nc
k+1 = Rc

kn
c
k. (4.5)

Likewise, the relation between the normal in the coordinate frame of a camera
Cc and the reference camera is given by

nr
k = ΔRcnc

k. (4.6)
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The relation between the camera heights in consecutive frames is given by

hc
k+1 = hc

k − (nc
k+1)

T tck. (4.7)

Correspondingly, the relation between the height of the reference camera and
the height of a camera Cc is given by

hc
k = hr

k + (nr
k)

TΔtc. (4.8)

Notice that we can compute the height ratio of the camera centers in consecutive
frames, hc

k+1/h
c
k, using the results of the homography matrix decomposition,

Rc
k, nc

k, and tck/h
c
k. To this end, we divide equation (4.7) by hc

k and propagate
the ground plane normal using equation (4.5). In a similar manner the height
ratio of the reference camera center and the camera center of Cc, hc

k/h
r
k, can be

computed from equation (4.8).
Consequently, equations (4.5) to (4.8) enable propagating information about the
height of camera centers over time and can be used to relate the height of all
camera centers to the height of the reference camera.

4.2.3 Classes of Motion

In the following we define the different classes of motion that serve as the basis
for our analysis. The motions resemble the typical driving maneuvers straight
driving, turning, and driving on planar ground with and without rolling, pitching,
and deflections. For the definition of planar and circular motion, i.e. turning, we
make use of the instantaneous center of rotation as a means of motion param-
eterization. The definition of the instantaneous center of rotation can be found
in the Appendix A.3. The definitions of the four classes of motion listed in the
following are illustrated in Figure 4.3.

• Linear motion is the translation along a straight line without rotation,
Rc

k = I3×3, tck+1 × tck = 03×1, and ‖trk‖2 = ‖tck‖2. The translation
direction vectors of each camera are aligned and in consequence, all cam-
eras move at the same velocity. We further assume the translation to be
parallel to the ground plane (nc)

T
tck = 0. Linear motion resembles a

straight driving maneuver and has only one degree of freedom, the veloc-
ity (non-uniform linear motion).

• Circular motion resembles a turning maneuver. It is the motion along
the circumference of a circle, thus the instantaneous center of rotation
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is constant over time for each camera, respectively, sck = sc. Further-
more, the rotation axis direction coincides with the normal of the ground
plane rck = rc = nc, and the translation is parallel to the ground plane
(nc)T tck = 0. Circular motion has also only one degree of freedom, the
angular velocity (non-uniform circular motion).

• Planar motion is the translation in the plane parallel to the ground plane
and the rotation about the ground plane normal (nc)T tck = 0, and rck =
rc = nc. In contrast to circular motion sck is not constant over time. Planar
motion has three degrees of freedom, namely the two parameters of the
instantaneous center of rotation in the plane and the angular velocity.

• General motion is unconstrained and has the full six degrees of freedom.

In this thesis we do not make use of the constraints imposed by the non-
holonomic motion of vehicles that adhere to the Ackermann steering princi-
ple. This type of motion would allow to describe planar motion using only two
parameters but requires estimating the center and orientation of the rear axle.

4.2.4 Computation of Extrinsic Calibration Parameters

In the following we present the derivation of the observable parameters for
each class of motion defined in Section 4.2.3. The derivations are based on the
rigidity constraint between cameras (Section 4.2.1) and optionally the ground
plane (Section 4.2.2). In addition, we distinguish between two different sensor
outputs, a system of monocular cameras and a system of cameras that provide
instantaneous depth measurements, e.g. stereo cameras.
Monocular systems suffer in general from the problem of scale ambiguity.
Herein we tackle this problem by using either the ground plane as a reference
object, an approach that uses at least image triplets, e.g. [72], or both. Next, we
elaborate on the sensors and employed approaches and define the scale for da-
tum definition for each of the three cases. Without loss of generality, we assume
consecutive poses to be used starting at time index k.

• Pairwise evaluation of consecutive images in monocular sequences ren-
ders the propagation of velocity information impossible. Although it is in
general possible to infer some information about the extrinsic calibration
parameters, we restrict our analysis to the case of simultaneous observa-
tion of the ground plane. In this case the decomposition of the homog-
raphy matrix (equation (3.14)) yields the scaled translation tck/h

c
k which
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Figure 4.3: Schematic illustration of the four classes of motion that serve as the basis
for our analysis. The classes are linear motion (translation along a straight line), circular
motion (along the circumference of a circle), planar motion (motion in a plane), and
unconstrained, general, motion.
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4 Extrinsic Camera Calibration

serves as inputs. It was shown in Section 4.2.2 how relative velocity and
camera height information can be propagated over time and between cam-
eras by using the constraints imposed by the ground plane. Thus, for da-
tum definition we define the scale by the camera height of the first camera
pose of the reference camera hr

k.

• If image triplets are used, 3D points can be triangulated from the first two
cameras and then be used in the third camera to estimate the relative pose,
a process called resectioning. This is depicted on the left hand side of
Figure 4.4. Since we assume error free inputs we make no distinction
between visual odometry approaches [84, 71] and classical bundle adjust-
ment [98]. It is common to define the scale for each camera such that the
distance between first two camera poses is equal to one, tc0/λ

c = 1, where
λc is a camera dependent scale factor. For datum definition we define the
scale by the translation distance between the first two camera poses of
the reference camera λr. Notice the resemblance in the datum definition
between image triplets and pairwise evaluation of images. If the ground
plane is observed, we adopt the datum definition of pairwise evaluation of
consecutive frames.

• When using sensors that provide instantaneous depth measurements it is
possible to directly recover the translation tck and the correct height hc

k. In
this case no scale has to be defined for datum definition as it is provided
by the measurements. This is depicted on the right hand side of Figure
4.4. Note that we treat a stereo camera as a single camera. The coordinate
frame of the camera is associated with either of the stereo cameras.

Depending on the class of motion, sensor, and employed motion estimation ap-
proach, not all parameters can be observed. To express ambiguities we use the
parameters τ and ω. The parameter τ denotes an unobservable scale factor and
ω denotes an unobservable angle.
In the following, only two-camera systems (C = 2) are considered. The exten-
sion to multiple cameras is straightforward. For example, a three-camera sys-
tem can be treated as two separate two-camera systems that share the reference
camera. Furthermore, while incorporating multiple cameras might improve the
robustness of the estimation in case of noisy observation, there is no difference
in the cases examined here. In addition to the observability of parameters, the
number of required consecutive poses is also of particular interest [100, 19]. In
general, a low number of required consecutive poses is favorable. The results of

40



4.2 Motion-based Calibration
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Figure 4.4: A 3D point reconstructed from image triplets (left) and a moving stereo
camera with a triangulated 3D point (right). The translation distance between the first
two frames is λc. The point triangulated from the corresponding cameras is used to
propagate the scale information to the third camera pose by, e.g., resectioning. The stereo
camera provides instantaneous depth measurements. Triangulated 3D points are used for
motion estimation.

the derivations alongside with the minimum number of required poses are pre-
sented concisely in Table 4.1. Next we present the derivations ordered by classes
of motion.

Linear Motion

Linear motion is the motion along a straight line. As there is no rotation, equa-
tion (4.3) holds for any choice of ΔRc, and equation (4.4) simplifies to

trk = ΔRctck, (4.9)

which imposes two constraints on the relative orientation. The rotation angle
about the translation direction, however, cannot be observed. Thus, equation
(4.9) holds for any relative camera orientation of the form Rtrk,ω

ΔRc, where
Rtrk,ω

is a rotation about the (non-unit) rotation axis trk with angle ω. The rela-
tive displacement cannot be recovered.
If the ground plane is observed, equation (4.6) can be employed. Due to the
translational motion the observations of the plane normals are time independent

nr = ΔRcnc. (4.10)

By definition, the plane normal nc is orthogonal to the translation vectors tck.
Combined, equations (4.9) and (4.10) provide enough constraints to determine

41



4 Extrinsic Camera Calibration

the relative orientation. To this end, we compose two auxiliary rotation matrices
by constructing orthonormal right handed bases from the translation vectors and
observed plane normals, Rtrk,n

r and Rtck,n
c . To construct the matrices we use

Gram-Schmidt orthonormalization. This is explained in more detail in Appendix
A.1. The two rotation matrices Rtrk,n

r and Rtck,n
c represent the transformations

from a translation vector and normal vector aligned coordinate frame into the
camera coordinate frames. The relative orientation is then given by

ΔRc = Rtrk,n
rRT

tck,n
c . (4.11)

Note that only the translation direction is of interest here. In addition to the
relative orientation, the relative height ratio hc/hr can be determined from the
observations of the scaled translations tck/h

c by enforcing ‖trk‖2 = ‖tck‖2. The
correct camera heights can be measured directly if the sensor provides instan-
taneous depth measurements. To recover the observable parameters, only two
consecutive poses are required.

Circular Motion

Circular motion is the motion along the circumference of a circle. The rotation
axis directions of all cameras are aligned in the world and are time independent,
yielding

rr = ΔRcrc. (4.12)

Equation (4.12) holds for any relative orientation Rrr,ωΔRc, thus the orienta-
tion about rr remains ambiguous. In the case of circular motion, the observa-
tions of the ground plane normals do not provide additional information as they
are aligned with the rotation axis directions.
If the translation velocities ‖tck‖2 are known, one can determine the circle radii

rc =
‖tck‖2

2 sin
(
θk
2

) , (4.13)

where θk is the (camera independent) angular velocity. If only scaled transla-
tions are observed, one can determine the radius to height, rc/hc, or radius to
scale factor rc/λc ratio. As in the case of linear motion, the observable parame-
ters can be recovered from only two consecutive poses.
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4.2 Motion-based Calibration

Planar Motion

Planar motion differs from circular motion in that the instantaneous center of
rotation is time dependent. We make use of the property to compute the rel-
ative orientation between cameras by exploiting that the direction of the vec-
tors sck+1 − sck are aligned (cf. Figure 4.3). Using the displacements Δsck =
sck+1 − sck, we construct auxiliary rotations matrices from Δsck and rc using
Gram-Schmidt orthonormalization, RΔsck,r

c . The relative orientations are then
given by

ΔRc = RΔsrk,r
r RT

Δsck,r
c . (4.14)

Note that Δsck and the rotation axis are orthogonal and only the directions of
Δsck are of interest. If at least image triplets or the ground plane are used one
obtains Δsck/λ

c or Δsck/h
c, respectively. Next, we derive the camera displace-

ments. We divide equation (4.4) by λrwhich leads to

(Rr
k − I3×3)

Δtc

λr
−ΔRc t

c
k

λc

λc

λr
+

trk
λr

= 0, (4.15)

such that all translations appear normalized. We stack the equations of two con-
secutive motions and rewrite the result in form of a linear system of equations⎡⎣ Rr

k − I3×3 −ΔRctck/λ
c

Rr
k+1 − I3×3 −ΔRctck+1/λ

c

⎤⎦
︸ ︷︷ ︸

=:Ac
k

⎛⎝Δtc/λr

λc/λr

⎞⎠ = −
⎛⎝ trk/λ

r

trk+1/λ
r

⎞⎠ . (4.16)

For planar motion the matrices Ac
k are rank-deficient and do not constrain the

nonplanar parts of the displacement vectors. In other words, the linear equation
systems (4.16) hold for any scaled displacement vectors of the form Δtc/λr +
τ crr, with τ c ∈ R. Without using the ground plane we cannot determine the
nonplanar part of the displacements, Δtc⊥. The planar part Δtc‖ can be com-
puted by augmenting equation (4.16) by

0 = (rr)
T
Δtc = (rr)

T
(Δtc‖ +Δtc⊥), (4.17)

thus enforcing Δtc⊥ = 0.
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If the ground plane is used we can substitute hc and hr for λc and λr. The
nonplanar part of the camera displacements can then be computed directly from

Δtc⊥/h
r = nr (hc/hr − 1) (4.18)

(cf. equation (4.8)), where hc/hr is obtained from the linear equation system
(4.16).
In case of planar motion all parameters can be recovered if the ground plane is
observed. At least three consecutive poses or correspondingly two consecutive
motions are required, respectively. This comes at no surprise as using only one
motion is equivalent to the case of circular motion. The special case of combin-
ing linear and circular motion is not covered.

General Motion

General motion has six degrees of freedom and is unconstrained. Metric cali-
bration is possible in all considered cases. The relative orientations can be de-
termined by constructing auxiliary rotation matrices from the time dependent
rotation axis directions

ΔRc = Rrrk+1,r
r
k
RT

rck+1,r
c
k
. (4.19)

The camera displacement can be determined by solving the linear equation sys-
tem (4.16). The matrix Ac

k is not rank-deficient in the case of general motion.
This approach requires two motions or correspondingly three consecutive poses,
respectively. However, if the ground plane is observed only two consecutive
poses or one motion is required, respectively.
The relative camera orientations can be determined from the ground plane nor-
mals and rotation axis directions as

ΔRc = Rrrk,n
r
k
RT

rck,n
c
k
. (4.20)

For the derivation of the camera displacements we substitute hc
k and hr

k for λc

and λr in equation (4.15), respectively, rendering the equation time dependent.
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We then use equation (4.8) to substitute hc
k/h

r
k by 1 + (nr

k)
TΔtc/hc

k, which
yields, after rearranging[

Rr
k − I3×3 −ΔRc tck

hc
k
(nr

k)
T
]

︸ ︷︷ ︸
=:Bc

k

Δtc

hr
k

= ΔRc t
c
k

hc
k

− trk
hr
k

. (4.21)

The matrix Bc
k has in general full rank. Hence, Δtc/λr can be computed by

solving the linear equation system.

4.2.5 Summary

We have derived algorithms to determine the observable extrinsic calibration pa-
rameters for each of four different classes of motion and different sensor outputs
as well as different approaches for motion estimation. The results are presented
concisely in Table 4.1. We observe that neither pure translation nor pure circular
motion provide enough information to recover the extrinsic calibration, indepen-
dent of the algorithm input. For planar motion, the ground plane is required as a
reference object to enable metric calibration. For general motion, metric calibra-
tion is always possible in general. Interestingly, by using the ground plane, only
two consecutive poses are required. When using the ground plane, image triplets
do not provide additional information. However, when using noisy observations,
this approach is likely to outperform pairwise evaluation of images.
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Linear motion Circular motion

Image triplets
Rtrk,ω

cΔRc

(2)
Rrr,ωcΔRc

(2)
- -

Instantaneous depth
Rtrk,ω

cΔRc

(2)
Rrr,ωcΔRc

(2)
- rc

Pairwise evaluation/
image triplets

with ground plane

ΔRc

(2)
Rrr,ωcΔRc

(2)
hc/hr rc/hc

Instantaneous depth
with ground plane

ΔRc

(2)
Rrr,ωcΔRc

(2)
hc hc, rc

Planar motion General motion

Image triplets
ΔRc

(3)
ΔRc

(3)
Δtc/λr + τ crr λrΔtc

Instantaneous depth
ΔRc

(3)
ΔRc

(3)
Δtc + τ crc Δtc

Pairwise evaluation/
image triplets

with ground plane

ΔRc

(3)
ΔRc

(2)
Δtc/hr Δtc/hr

k

Instantaneous depth
with ground plane

ΔRc

(3)
ΔRc

(2)
Δtc Δtc

Table 4.1: Observable relative orientations and displacements for different classes of
motion and sensor outputs as well as algorithms. The results for the relative orientations
are shown on the top, the results for the camera displacements are shown on the bottom,
respectively. The scalars τ and ω denote an unobservable scale and an unboservable
angle, respectively. The minimum number of required consecutive poses is shown in
parentheses in blue, respectively.
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4.3 Calibration from Overlapping Fields of View

4.3 Calibration from Overlapping Fields of View

In the remainder of this chapter we elaborate on the extrinsic calibration of a
multi-camera system using pairwise overlapping fields of view.
If the fields of view of two cameras overlap and corresponding image points can
be established the relative orientation and displacement direction, comprised by
the essential matrix (cf. Section 3.3.2), can be estimated. However, the scale of
the displacement, i.e. the baseline, cannot be recovered. In a multi-camera sys-
tem several overlapping fields of view may exist. If certain conditions are met,
metric calibration based on the epipolar constraint is possible. In the following
these conditions are elucidated. To this end, the multi-camera system and the
relative pose transformations are represented as a graph. We make use of estab-
lished definitions of graph theory to formulate two necessary conditions which,
if met, allow to apply a matrix rank test which yields a binary measure of the
observability of the (metric) extrinsic calibration.
Graphs are commonly used in computer vision as a means to model mathemati-
cal problems (e.g. [97]) and in particular in mutli-camera calibration (e.g. [5]).
We represent the mutli-camera system as an undirected simple graph G = (V, E)
[78], where a camera is represented by a vertex c ∈ V , where V is the set of ver-
tices. The set of edges is E . If two cameras have overlapping fields of view and
the relative orientation and displacement direction can be estimated we call the
cameras adjacent and they are joined by an edge. In the following only multi-
camera systems with more than two cameras are considered (C > 2). A two
camera system, as stated above, can be calibrated metrically if the essential ma-
trix can be estimated. This case can be regarded as a special, trivial case.
A multi-camera system can be calibrated metrically from pairwise overlapping
fields of view only if the two following necessary conditions hold.

• The graph has to be connected, i.e. any two cameras are linked by a
sequence of pairwise adjacent cameras.

• All edges have to be contained in at least one simple cycle, i.e. a sequence
of adjacent vertices starting and ending at the same vertex without repeti-
tions of vertices and edges (except for the first and last vertex).

The first condition ensures that the relative orientation between all cameras can
be derived. If the graph is connected, the relative orientation between any two
cameras c and d can be computed by following the path2 from camera Cc to

2 We define a path as the ordered sequence of edges.
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1

2

3

r

G

Figure 4.5: Four-camera system with overlapping fields of view (left) and corresponding
graph representation G (right). To illustrate the fields of view of fisheye cameras image
data is projected onto spherical sectors. The boundaries of the overlapping fields of view
are indicated by blue patches on the ground plane and grey planes elsewhere. The cor-
responding graph representation is shown on the right. The orange circle represents the
reference camera (r = 0) and blue circles represent the remaining cameras. The edges
indicate overlapping fields of view from which the relative orientation and displacement
direction can be estimated, respectively.

Cd and concatenating the relative orientation matrices corresponding to the tra-
versed edges. In particular, the relative orientation with respect to the reference
camera, ΔRc, c ∈ {0, ..., C − 1}, can be computed.
The concatenation of relative poses along a circular path in the graph has to
yield an identity matrix. The second conditions ensures that this constraint can
be imposed on all edges. Figure 4.5 illustrates the overlapping fields of view
and the corresponding graph representation of the four-camera system used for
experimental evaluation. The graph shown in the figure is a cycle graph and
therefore meets both conditions. However, if all cameras centers were aligned
the baselines could not be recovered3. To identify such configurations we apply
a matrix rank test.

3 Only pairwise camera constraints are considered.
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To this end, first the relative displacement directions are computed and trans-
formed into the reference coordinate frame. For example, the relative displace-
ment direction from camera C1 to camera C2 in the reference coordinate frame
is given by

(
Δt2 −Δt1

)
/‖Δt2 −Δt1‖2. The individual displacements Δtc

with respect to the reference camera are unknown, but the relative displacement
directions can be computed directly using the (known) relative orientation and
decomposition of the essential matrix.
Next, for each simple cycle in the graph, a matrix is constructed by appending
the displacement direction vectors corresponding to the edges in the cycle. With-
out loss of generality, the signs of the displacement directions vectors are chosen
such that they are always pointing at the (camera) vertex with the higher index.
The matrices are then stacked together such that each column corresponds to one
edge. Direction vectors of edges not contained in simple cycle are set to zero.
The multi-camera system can be calibrated metrically if and only if the rank of
the matrix is equal to the number of edges minus one. For the example in Figure
4.5, we form the homogeneous system of equations[

Δt1

‖Δt1‖2
, Δt2−Δt1

‖Δt2−Δt1‖2
, Δt3−Δt2

‖Δt3−Δt2‖2
, Δt3

‖Δt3‖2

]
λ = 03×1. (4.22)

The matrix is of size 3 × 4 and contains only one simple cycle. Recall that
Δtr = 03×1. The four-camera system can thus be calibrated metrically if the
rank of the matrix is three. By enforcing λTλ = 1 we obtain the non-trivial
solution of the equation system which yields the vector of baselines λ. Instead
of using all simple cycles in a graph it is sufficient to only consider the elements
of a cycle basis.
The matrix rank test can only be applied to error free data and is thus of little
relevance in practice. However, it can be used as a means to identify singular
configurations. E.g. the matrix is of rank two if the four camera centers are
coplanar and of rank one if the camera centers are collinear. Furthermore, a
cycle graph of length five cannot be calibrated metrically since the corresponding
matrix can have rank three at most.
The camera centers of the system used in the experimental evaluation are not
coplanar. An offline extrinsic calibration approach based on overlapping fields
of view using a similar system for evaluation is presented in our previous work
[43].
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Establishing image point correspondences is fundamental to our calibration ap-
proach. The correspondences are used to estimate the relative pose between
adjacent cameras, camera motion, and the ground plane.
Large spatial camera displacements accompanied by severe lens distortions ren-
der the detection of putative correspondences difficult. This holds in particular
in close proximity, e.g. within the order of magnitude of the baseline. Corre-
spondences in this range are of particular interest to calibration as they allow for
a more accurate estimation of the camera displacement.
Therefore, we propose warping the images prior to extracting feature correspon-
dences to establish image similarity. To this end, we approximate the scene by
the ground plane in close proximity and infinitely distant objects elsewhere. This
approach is applied to both, cameras that are either offset spatially as in a stereo
setup or both spatially and temporarily as it is the case for a moving monocular
camera. This allows treating both cases uniformly.
Earlier versions of the work presented in this chapter have been published in
[43] and [45].

5.1 Wide Baseline Matching

The literature offers a large variety of different methods to establish image point
correspondences. In the following we give a brief overview and highlight work
relevant to the problem of wide baseline matching. Typically, the task of es-
tablishing image correspondences is divided into three steps. First, distinctive
points or regions are detected in the image, e.g. corners or blobs. A descrip-
tor is then used to capture local image properties and the information is stored
in a feature vector. Finally, the feature vectors are matched across images to
establish putative correspondences. The methods are commonly classified by
their invariance with respect to different image transformations, such as spatial
or range transformations, and their computational complexity [33, 65].
Invariance against certain spatial transformations can be achieved by normal-
izing image regions prior to extracting the feature vector. The transformation
normalizing the image region can, e.g., be derived from an analysis of the sec-
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ond moment matrix of intensity gradients from the dominant gradient direction
[65, 56]. Invariance of the feature descriptor is not required.
A different approach was presented by Morel and Yu [68]. Instead of normal-
izing image regions, multiple different viewpoints are simulated by distorting
the images accordingly. All distorted image regions are then compared using
the scale invariant feature transform (SIFT) [56]. The distortion caused by the
simulated viewpoints is approximated by an affine transformation. The method
is thus termed affine SIFT (ASIFT). Through various techniques it is possible
to achieve invariance to shifts (e.g. [79]), Euclidean transformations (e.g. [80]),
similarity transformations (e.g. [56, 52]), affine transformations (e.g. [68]), and
projective transformations [11] to some extent.
In addition, feature detectors and descriptors have been proposed that account for
the geometric image distortions introduced by wide-angle lenses (e.g. [102]).
However, these algorithms do consider the perspective distortions caused by
large viewpoint variations. Figure 5.1 exemplary shows two images captured
simultaneously from a right and rear-facing camera mounted on our test vehicle.
Three magnified corresponding image patches are shown. While the treetop is
similar in appearance, the ground in front of the parked automobile is skewed
and the parking spot markings are significantly distorted.
To quantify the image distortion, we employ the metric proposed by Morel and
Yu [68]. The geometric image distortions are approximated by an affine trans-
formation. The transition tilt corresponds to the ratio of eigenvalues of the upper
left two by two affine transformation matrix. Geometrically, it corresponds to
change of the aspect ratio of a rotated window. In the example shown in Figure
5.1 the transition tile is approximately 2.4 below the parked vehicle and 7 on the
parking spot marking1.
ASIFT has been shown to work under severe distortions. Applying it to this ex-
ample, we were able to establish some correspondences in the most distinctive
regions such as on the line markings, but the method failed in case of their ab-
sence. For this reason, and due to the high complexity of ASIFT we approach
the problem differently.
We use estimates of the current camera configuration and ground plane to warp
images in order to compensate image distortions between two views. To this
end, we apply a coarse approximation of the scene. This allows using feature
detectors and descriptors which are not invariant to geometric distortions but
have a significantly lower computational complexity. The employed algorithms

1 Ground plane and camera poses are known from a reference calibration.
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Configuration

Treetop

Automobile

Marking

Right camera

Rear camera

Figure 5.1: Two images captured simultaneously from a right and rear-facing camera
mounted on our test vehicle are shown (right). The three orange and blue squares in-
dicate the position of the magnified corresponding patches (treetop, car, marking). The
configuration of the cameras is shown in the top left.

are the features from accelerated segment test (FAST) feature detector by Ros-
ten and Drummond [79] and the binary robust independent elementary features
(BRIEF) feature descriptor by Calonder et al. [13].
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5.2 Scene Geometry Approximation

To compensate for the strong distortions between corresponding image regions
our goal is to find an image mapping that allows warping one image into the
other such that these regions coincide. Warping is applied prior to the feature
detection and extraction.
In unobstructed image regions the mapping relating both images is defined by
the camera configuration, the geometric imaging characteristics of the camera,
and the 3D scene geometry. The scene geometry is not known a-priori and
its estimation is not within the scope of this thesis. Hence, we approximate the
scene by geometric primitives. This approach was proposed for the ground plane
in the context of stereo vision by Burt et al. [12], where equi-disparity on the
road is obtained by applying a linear transformation to a stereo rectified image
pair [31].We adopt this concept and apply it to spatially as well as spatially and
temporarily offset cameras. Objects above the ground plane are assumed to be
infinitely far away. Thus, the scene is approximated by the ground plane in
close proximity and infinitely distant objects elsewhere. Stereo rectification is
not applied.
In the following we derive the mappings for image warping. The notation differs
slightly from the previous chapters as spatially and temporarily offset cameras
are treated in a unified way. For this reason, time indices were omitted. However,
the mappings are time dependent in general.
Let the relative pose transformation ΔT between two cameras, the ground plane
normal n in the coordinate system of the first camera, and the corresponding
height h be given. The transformation of a 3D point X from the first into the
second camera coordinate system is then given by X′ = ΔRX + Δt (cf.
Chapter 3). If the point is located on the ground plane the relation between the
corresponding rays x ↔ x′

g is given by the homography

x′
g =

(
ΔR − ΔtnT

h

)
x = Hx. (5.1)

The mapping relating the image points also has to take the nonlinear projection
onto the image plane into account. We write the image to image mapping as
u′
g = κ

(
H κ−1 (u)

)
= Ψg (u).
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Ψg Ψ∞

Figure 5.2: Illustration of the mappings Ψg and Ψ∞. The original camera setup is shown
in the upper left corner. The image captured by the first camera (orange) is warped into the
image captured by the second camera (blue). When applying the ground plane induced
mapping, the warped image appears as being captured from the viewpoint of the second
camera. The mapping via the infinite homography corresponds to a rotation of the camera
accompanied by image distortions due to the different intrinsic parameters of the cameras
(right).

For infinitely distant objects we apply an infinite homography [31], i.e. for h →
∞ the second term in equation (5.1) vanishes. The transformation simplifies to
a rotation

x′
∞ = ΔRx, (5.2)

and the corresponding mapping between the image points is given by u′
∞ =

κ
(
ΔR κ−1 (u)

)
= Ψ∞ (u). Figure 5.2 illustrates the two mappings.
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5.3 Image Resampling and Smoothing

Image resampling is applied to warp the image I captured by the first camera
into the image I ′ captured by the second camera. Without loss of generality,
we define the first image to be the source image and the second image to be
the target image. Image resampling requires filtering and subsequent sampling.
Ideally, filtering and sampling would not introduce aliasing or blur. However,
magnified image regions are inevitably missing higher spatial frequency con-
tent. For this reason, we propose applying an appropriate smoothing filter to
the target image so that both images exhibit the same local smoothness. In the
remainder of this section, we will present the resampling filter and appropriate
smoothing filter.
To resample the image, we apply the method published by Heckbert [32] which
is summarized briefly in the following. Ideal resampling consists of the follow-
ing four stages [88]:

1. The continuous image is reconstructed using image interpolation.

2. The result is (forward) warped according to the mapping.

3. Pre-filtering is applied to band-limit the signal.

4. The output is sampled at integer positions.

It was shown in [32] that these four stages can be rearranged and combined into
a single filter that works on sampled positions only. To this end, the sampling
grid of the target image is warped backwards into the source domain, yielding
the resampling grid. The resampling grid does not coincide with the sampling
grid of the source image in general, thus interpolation is required. Instead of
applying the pre-filter to the warped image, the filter is also warped backwards
into the source domain. The interpolation filter and warped pre-filter are then
combined into a single filter. This step works for linear filters such as Gaussian
filters which are closed under convolution. The resulting filter is space variant
in general due to the space variant mapping.
In many applications, Gaussian filters are unpopular as they introduce significant
blur [95]. Greisen et al. [27] present an approach based on the work of Heckbert
that reduces the blurring by careful adjustment of the filter parameters. However,
it was shown by Calonder et al. [13] that smoothing prior to feature extraction
yields better results. Furthermore, the rapidly diminishing tails of the Gaussian
function allow for truncation without introducing significant aliasing. For these
reasons, we employ Gaussian filters for reconstruction and pre-filtering.
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The reconstruction and pre-filter have identical covariance matrices Σ [32]. A
point u′ on the sampling grid in the target image and the corresponding point
ur on the resampling grid in the source image are related by u′ = Ψ (ur) (cf.
section 5.2). The mapping is then linearized around ur, Ψ (ur0 +Δur) ≈
JΔur +Ψ (ur0), where J is the Jacobian matrix evaluated at ur0. The covari-
ance matrix of the Gaussian filter applied to the source image is then

ΣI = Σ + J−1ΣJ−T, (5.3)

i.e. the convolution of the reconstruction filter and inversely transformed pre-
filter. We transform the covariance matrix into the target domain

ΣI′ = JΣIJ
T = JΣJT +Σ, (5.4)

to obtain the corresponding smoothing filter applied to image I ′. Since both
filters are applied before feature extraction and matching this processing step
is termed pre-warping and smoothing. Figure 5.3 shows the pre-warped and
smoothed image regions corresponding to Figure 5.1. Since the two mappings
only coincide for points at infinity, a distinctive image discontinuity can be ob-
served at the boundary between the pre-warped regions. Therefore, the parame-
ters are chosen such that the regions overlap during processing. Figure 5.4 shows
a close-up of another scene. Note that both images are significantly blurred but
appear similar in regions where the ground plane assumption holds.

57



5 Establishing Point Correspondences

Ψg

Ψ∞

Figure 5.3: An exemplary result of the pre-warping and smoothing step is shown. The
smoothed image is shown on blue and the pre-warped image is shown in orange. The
applied mapping is the infinite homography in the upper, and the ground plane induced
homography in the lower image part, respectively. The data was captured during a turning
maneuver. Due to the rolling of the vehicle, image regions on the ground plane do not
coincide perfectly. Distant features (e.g. clouds) coincide.

Figure 5.4: Another exemplary result of the image pre-warping and smoothing step is
shown. The left two images show the corresponding cut-outs of a crosswalk captured by
a front and right-facing camera. The right two images show the smoothed and pre-warped
image, respectively. Note that structures off the ground plane like the curbstones do not
appear similar due to the violation of the ground plane assumption.
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6 Robust Homography Estimation

In this chapter, we present a robust method for estimating the frame-to-frame
homography induced by the ground plane. The ground plane plays a fundamen-
tal role for the calibration approach presented in this thesis. On the one hand,
it is used to recover the scale in successive frames and to constrain the motion
model, on the other hand it serves as a reference object observed by all cam-
eras simultaneously (Chapter 4.2). Furthermore, we employ the ground plane
induced homography to establish image correspondences in successive frames
and between cameras (Chapter 5). The homography matrix comprises motion as
well as ground plane information. Still, homography estimation is challenging,
as measurements are often not only corrupted by sparse gross outliers, but might
also contain other structures, which are inconsistent with the ground plane, such
as curbstones and sidewalks. Several well studied algorithms regarding the iden-
tification of sparse gross outliers have been proposed in the past, with random
sample consensus (RANSAC) [21, 31] being the most prominent one. However,
identifying structural outliers remains a challenging problem due the outliers’
inner coherence which can cause strong systematic errors [91]. In homogra-
phy and plane estimation structural outliers often cause plane fits that do not
correspond to any physical plane in the scene. This becomes particularly chal-
lenging in the presence of planes with similar parameters, e.g. the road plane
and a slightly elevated sidewalk plane in a street. To circumvent this problem,
approaches estimating multiple structures simultaneously can be employed (e.g.
[16, 96]). The high complexity of these algorithms, attributed to the fact that
the number of structures, structure parameters, and noise levels have to be esti-
mated and adjusted concurrently, makes them impractical for applications in the
context of real-time applications. Under the assumption that information about
the structure of interest is provided initially, the task can be simplified to robust
tracking. Several approaches adopting this concept have been proposed hitherto
[42, 90, 4, 104, 55]. Yet, none of them has been designed to work in scenarios
where the observed scene is dominated by structural outliers, a situation typi-
cally encountered when attaching cameras to the side of a vehicle.
The method presented in this chapter relies on an initial estimate of the motion
and ground plane parameters. From a statistical analysis on feature point corre-
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spondences local adaptive thresholds are derived that comply with a predefined
expected false positive rate criterion. To this end, the positions of feature points
in successive view are predicted and compared to hypothetical positions of the
feature points induced by planes parallel to the ground plane. The false positive
rate refers to the probability of incorrectly identifying the hypothetical feature
point on the virtual plane as an inlier.
In the following the planar parallax decomposition which will be used through-
out this chapter is introduced. Then, the derivation of the threshold values and
the acceptance region is presented. Finally, we show how the risk of rejecting
inliers can be mitigated by employing a sequential processing scheme, and how
this scheme can be embedded into a Kalman filter. Results are shown for a se-
quence captured in the inner city, and compared to a RANSAC-based approach.
The method presented here differs from the preliminary work [43] by incorporat-
ing the uncertainty of the motion and ground plane prediction and by considering
non-isotropic Gaussian noise.

6.1 Planar Parallax Decomposition

We can interpret the displacement of positions of corresponding features points
in successive camera views as a motion field in the image. For a static scene
and moving camera, the motion field can be decomposed into the motion field
of an arbitrary physical or virtual plane and a residual parallax field [47, 83].
The motion field induced by a plane can be described by a homography. The
residual (planar) parallax field is an epipolar field, i.e. all vectors point towards
the epipole1. In the following this is explained in more detail.
We consider the situation depicted in Figure 6.1. A ray x originating from the
first camera center intersects an object in Xo, and the ground plane in Xg . The
corresponding rays in the second view are x′

o and x′
g , respectively. If the refer-

ence plane coincides with the ground plane, a pair of corresponding rays x ↔ x′
g

is related by the ground plane induced homography (cf. Chapter 3)

x′
g = Hkx =

(
Rk − tknk

T

hk

)
x, (6.1)

1 Or from the epipole outwards depending on the direction of the camera motion.
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whereas the relation x ↔ x′
o is given by

x′
o = H̃kx =

(
Rk − tknk

T

hk +Δh

)
x, (6.2)

with Δh = nT
k (Xo −Xg) being the height difference with respect to the

ground plane. It follows that every static 3D point X can be considered as being
transformed into the coordinate system of the successive view by a homography
using a virtual plane containing X, which is parallel to the ground plane. The
transformation between x′

g and x′
o is given by

x′
o = H̃kH

−1
k x′

g =

(
I3×3 +

tkn
T
k+1

hk+1

(
Δh

hk +Δh

))
x′
g. (6.3)

The complete derivation is given in Appendix A.4. It can easily be verified from
equation (6.3) that the planar parallax is an epipolar field, as x′

o is a linear combi-
nation of x′

g and tk, and the image of tk is the epipole [31]. The planar parallax
vector in the image is given by d = κ (x′

o) − κ
(
x′
g

)
= u′

o − u′
g , where κ (·)

is the projection onto the image plane. Figure 6.2 exemplarily shows a sparse
parallax field superimposed on an image of a backward-facing camera. While
planar parallax vectors on the road surface are small and mainly caused by noise
corruption, planar parallax vectors on the sidewalk (left) show a predominant
direction and length.

6.2 Local Adaptive Thresholds

Planar parallax gives strong cues towards the identification of points to the
ground plane. However, this only holds in close proximity to the camera. In
the distance planar parallax vanishes (e.g. see center region in Figure 6.2).
Moreover, obtained parallax vectors are subject to noise and a reliable ground
plane and motion prediction might not always be given. For this reason, accep-
tance regions and associated thresholds for inlier identification should adapt over
time with respect to the prediction uncertainty and be local to account for the
expected parallax in the respective image region. In the following we present
a statistical analysis of the expected position of corresponding features in the
image and the expected parallax for corresponding features not located on the
ground plane. From this we derive local adaptive thresholds that are based on a
false positive criterion.
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dx
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x′
g

n

Figure 6.1: Schematic illustration of the considered example. A point in the first view is
associated with two points in the second view, on an object, and on the ground plane.

We assume a given prediction of the current motion and ground plane parameters
ξ̂ along with the associated covariance matrix P, a pair of corresponding image
points in successive images u ↔ u′, and the associated position covariance
matrix Σ. The predicted image position in the successive view is then given by

û′
g = h

(
u, ξ̂

)
, (6.4)

assuming the corresponding 3D point to be located on the ground plane. The
associated uncertainty is a superposition of the feature position uncertainty and
the propagated prediction uncertainty2. We linearize the ground plane induced
projection at the current estimate and apply linear error propagation [31]

Σ̂g = Σ +

⎛⎝∂h (u, ξ)

∂ξ

∣∣∣∣∣∣ξ=̂ξ

⎞⎠P

⎛⎝∂h (u, ξ)

∂ξ

∣∣∣∣∣∣ξ=̂ξ

⎞⎠T

. (6.5)

Similarly, the predicted position û′
o and associated covariance matrix Σ̂o of a

point with height difference Δh compared to the ground can be computed using

2 We assume that the errors in feature matching only corrupt the position of the corresponding feature
in the successive image.
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Figure 6.2: Planar parallax vectors superimposed on an image of a backward-facing cam-
era. Feature points are shown in blue. The planar parallax with respect to the estimated
ground plane is shown in orange. Notice the non-vanishing parallax on the left sidewalk.
For better visualization, some feature mismatches have been removed. To visualize the
epipolar field property, epipolar lines have been superimposed in red. Predicted feature
positions above the horizon are caused by plane-ray intersections corresponding to an-
tipodal rays.

equation (6.2). The predicted positions and uncertainties are illustrated in Figure
6.3. The most challenging structural outliers occurring in automotive applica-
tions are planes with similar parameters as the ground plane such as sidewalks.
Thus, we assume that û′

o is located on a slightly elevated virtual parallel plane (a
virtual sidewalk). A pair of image correspondences is then identified as an inlier
if it complies with the prediction û′

g on the one hand, and is unlikely to corre-
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u

v

d̂

û′
g

û′
o

Figure 6.3: Prediction of single feature position under ground plane hypothesis, û′
g

(blue), and object hypothesis, û′
o (orange, cf. Figure 6.1). The parallax vector is given by

d. Ellipsoids indicate isocontours of the corresponding probability density functions.

spond to a 3D point on the virtual parallel plane, on the other hand. A feature
point u′ in the successive image is then accepted as inlier if it is in the set

Mρ =
{
u′ | (u′ − û′

g

)T
Σ̂

−1

g

(
u′ − û′

g

) ≤ ρ
}
, (6.6)

i.e. the set of points for which the squared Mahalanobis distance between u′

and û′
g is smaller than or equal to a threshold ρ. The expected false positive

rate ν with regard to û′
o on the virtual parallel plane is given by the integral of

the Gaussian density function p (p; û′
o, Σ̂o) over the set of accepted correspon-

dences (positives)

ν :=

∫
Mρ

p (p; û′
o, Σ̂o) dp. (6.7)

Here, p (p; û′
o, Σ̂o) is the probability density at p. Note that the expected false

positive rate defined here only refers to the specific case where samples drawn
from the distribution corresponding to u′ fall inside the acceptance region. Equa-
tion (6.7) yields an implicit definition of ρ.
In order to derive an explicit expression we make simplifying assumptions. For
small parallax vectors it is reasonable to assume that the covariance matrices
Σ̂g and Σ̂o do not differ significantly. Thus we can replace Σ̂g and Σ̂o by
Σ̂. The implicit definition of ρ in equation (6.7) can then be transformed into
an explicit one. To this end, we apply an affine transformation which maps
p (p; û′

g, Σ̂) �→ p (p;0, I2×2) and û′
o �→ (γ, 0)T , i.e. a point on the u-axis. The

corresponding transformed random process is given by the two-vector (U, V )T

of independent standard normal distributed random variables with mean (γ, 0)T .

64



6.2 Local Adaptive Thresholds

ρ

ν

γ

γ

ρ

f(ρ; 2, γ)

Figure 6.4: Graph of the probability density function of the noncentral χ2 distribution
(left) and inverse cumulative noncentral χ2 distribution (right) for increasing noncentral-
ity coefficients.

The sum of squares is distributed according to the noncentral χ2 distribution with
two degrees of freedom [2]

U2 + V 2 ∼ f(ρ; 2, γ), (6.8)

and noncentrality coefficient

γ = d̂T Σ̂
−1

d̂. (6.9)

Note that the noncentrality coefficient coincides with the u-value of the trans-
formation of û′

o. The graph of the corresponding probability density function
f(ρ; 2, γ) is shown on the left side of Figure 6.4 for different noncentrality coef-
ficients. The threshold is then computed from the inverse cumulative noncentral
χ2 distribution

ρ = F−1(ν; 2, γ). (6.10)

The graph of the inverse cumulative noncentral χ2 distribution for different non-
centrality coefficients is shown on the right side of Figure 6.4. In summary, to
determine the threshold for an image point u, the positions and uncertainties in
the successive view for a corresponding 3D point on the ground plane and on
the virtual plane are predicted. From this, the noncentrality coefficient (equation
(6.9)) is computed and finally the inverse cumulative noncentral χ2 distribution
is evaluated. Figure 6.5 shows a threshold image for two cameras mounted on
a vehicle facing to the right and backward, respectively. Motion and ground
plane estimates are provided by a Kalman filter. It can be seen that high and
low thresholds form regions with smooth transitions between them. Around the
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6 Robust Homography Estimation

Figure 6.5: Two example images and corresponding threshold images for a camera facing
to the right (top) and backward (bottom). Blue color intensity indicates threshold values.
The horizon and epipole are depicted by an orange line and point, respectively. See text
for details on the color scheme.

epipoles and the horizon the thresholds are small. Non-vanishing thresholds
above the horizon are caused by plane-ray intersections of antipodal rays and
can be disregarded. A major drawback of the approach presented so far is that
it yields non-vanishing thresholds for vanishing parallax. In case that the pre-
dicted parallax is zero, d̂ = 0, the predicted image positions û′

g and û′
o as well

as the associated probability density distributions coincide (cf. Figure 6.3). For
any non-zero false positive rate, ν �= 0, equation (6.10) then yields a non-zero
threshold value. This implies the probability of accepting an outlier is equal to
the probability of accepting an inlier in the special case of zero parallax. This
undesired property can be avoided by neglecting feature correspondences with
small predicted parallax.
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6.3 Sequential Testing and Updating

In the previous section local adaptive thresholds have been derived. In the fol-
lowing we show how presorting feature point correspondences by their associ-
ated threshold values in combination with a sequential processing scheme im-
prove the robustness of our approach.
The predicted true positive rate η, i.e. the probability of correctly identifying an
inlier, can be computed from the threshold ρ as

η = F(ρ; 2, 0), (6.11)

i.e. the noncentral χ2 distribution with γ = 0 (centered χ2 distribution). As
F (·) is monotonically increasing, feature point correspondences with associated
high threshold are more likely to be correctly identified as inliers. This prop-
erty can be exploited by first testing point correspondences with high thresholds
and, if these are identified as inliers, incorporate them into the state estimation
prior to testing correspondences with lower thresholds. Correspondences with
lower threshold are then tested based on consolidated estimates. This approach
can easily be embedded into a Kalman filter by applying the sequential updating
scheme [6]. The sequential processing steps are then as follows.
First, we compute threshold values for the whole set of N feature point corre-
spondences based on the a priori state estimate, yielding 3-tuples (ui,u

′
i, ρi),

with i = 1, ..., N . The tuples are then ordered by their threshold values and the
one with highest threshold is taken from the set and tested. If an inlier is found,
it is used to update the state. A consolidated state estimate is available once an
inlier is found. Therefore, threshold values are recomputed prior to testing. This
approach mitigates the risk of rejecting inliers, as more sensitive data is tested
based on consolidated estimates.
To evaluate the robustness of our approach, we have recorded a sequence in
the inner city that contains typical structural outliers, such as sidewalks. The
camera was attached to the right side of the vehicle. While driving, the vehicle
laterally approaches a sidewalk. Feature point correspondences between suc-
cessive views were established and used as input to an Extended Kalman Filter
with local adaptive thresholds and sequential processing scheme. The Kalman
filter was initialized using rough estimates of the motion and ground plane, and
the false positive rate ν and height difference Δh were set to 5% and −75mm,
respectively. Inliers detected by our approach are shown in blue superimposed
on the images in the right column in Figure 6.6. The number of identified inliers
is given in the top right side, respectively.
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For comparison, we applied a RANSAC-based approach [31] for homography
estimation to the same set of feature correspondences. The global threshold of
the RANSAC-based approach was chosen such that the number of incorrectly
identified inliers on the sidewalk in frame 633 is about the same as for our ap-
proach. As RANSAC is designed to find the largest consensus set, the ground
plane can only be detected if it is the dominant structure in the scene. The largest
consensus set found by RANSAC is shown in orange superimposed on the im-
ages in the right column in Figure 6.6. It can be seen that most inliers are found
on the sidewalk in frame 648, and on a virtual plane in frame 765. After re-
moving the largest consensus set RANSAC has been reapplied to the remaining
feature points. The second largest consensus set is shown in green for frame
648, and the third largest consensus set is shown in green for frame 765. The
second largest consensus set in frame 765 corresponded to a virtual plane and
is not shown here. From the inlier count we can see that the RANSAC-based
approach with global threshold detects significantly less inliers and fails in the
complex scenario in frame 765. Note that the robust sequential processing ap-
proach with local adaptive threshold performs significantly better than the basic
RANSAC-based approach in the considered scenario.

68



6.3 Sequential Testing and Updating

Figure 6.6: Results of RANSAC-based homography estimation approach (left col-
umn) and the robust sequential processing approach (right column). The threshold for
RANSAC is chosen such that the number of incorrectly identified inliers on the sidewalk
in frame 633 is about the same in both cases. See text for color scheme. This figure
includes images taken from [45].
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7 Continuous Self-Calibration Based

on Kalman Filtering

In the previous chapters we have built the theoretic foundation for extrinsic cam-
era calibration and presented required key elements. In this chapter we com-
bine these results and present a novel algorithm for continuous extrinsic self-
calibration. We seek to estimate the extrinsic calibration parameters by combin-
ing the constraints arising from relative camera motions, the epipolar geometry
of rigidly coupled cameras, and the observation of the ground plane in multiple
views. This problem can be approached in different ways. A short overview with
regard to filtering and general optimization techniques was given in Section 2.4.
A further distinction can be made with respect to the problem formulation. Es-
quivel et al. [19] and Pagel et al. [76, 75], for instance, first estimate the mo-
tion of each individual camera explicitly and then apply hand-eye calibration to
obtain estimates of the extrinsic calibration. These estimates are treated as mea-
surements in subsequent processing. Other approaches ([18, 70, 30, 103, 69])
use an implicit formulation, i.e. the parameters and observations are subject to
implicit measurement constraints. The implicit formulation has several advan-
tages. Measurement constraints arising from other sensors can be incorporated
easily. The implicit formulation does not require each camera to be able to esti-
mate its motion, and problem of scale drift, inherent to monocular systems, can
typically be mitigated. The latter two properties make this formulation typically
more robust. However, a disadvantage of the the implicit formulation is that it
requires an initial estimate. Because of the aforementioned advantages we use
an implicit formulation.
Kalman filters are well-suited for this type of problem and have been used suc-
cessfully for similar calibration problems in the past [18, 30, 75, 69]. The filter-
ing property allows processing new data as it arrives, thus enabling continuous
(online) processing.
In contrast to other approaches we do not track feature correspondences over
multiple frames. Instead we only use frame-to-frame image point correspon-
dences and avoid computation of respective 3D structure. As a result, the size of
the state vector is small compared to classical structure from motion methods.
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A motion model is required for the temporal update of the Kalman filter. In
Chapter 4 we have seen that the extrinsic calibration parameters can neither be
estimated from straight motions nor from circular motions. Typically, the mo-
tion of road vehicle is mostly planar, rendering the estimation of all extrinsic
calibration parameters difficult if we do not incorporate the constraints imposed
by the ground plane. For this reason, we restrict ourselves to the case where all
cameras are able to observe the ground plane. In this case, both, planar motion
and general motion allow estimating all parameters.
We first give a brief overview of the proposed algorithm before going into more
detail. An extensive evaluation of the self-calibration algorithm is presented in
Chapter 8. A preliminary work of the extrinsic self-calibration algorithm pre-
sented here has been published in [44].

7.1 Recursive Filtering

In this section we introduce the extended Kalman filter equations and give a brief
overview of our recursive filtering approach. We apply a single extended Kalman
filter [6]. The motion and ground plane parameters, as well as the extrinsic
calibration parameters are associated with a state vector ξ of a dynamic system
which evolves, corresponding to a discrete time nonlinear stochastic system

ξk = f
(
ξk−1

)
+ qk, (7.1)

where qk denotes the process noise, which we assume to be zero mean and
Gaussian qk ∼ N (0,Qk). In addition, we assume the measurements to be
perturbed by additive zero mean Gaussian noise,

zk = zk +wk, (7.2)

where zk is the error free measurement vector and wk ∼ N (0,Wk). We fur-
ther assume qk and wk to be mutually uncorrelated. We use the more general,
implicit formulation of the measurement functions.
The error free observations satisfy

m (ξk, zk) = 0, (7.3)

where m (·, ·) are nonlinear measurement constraint equations which will be
introduced in Section 7.3. Since both, the state transition function (equation
(7.1)) and the measurement constraints (equation (7.3)) are nonlinear, an ex-
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tended Kalman filter instead of a (linear) Kalman filter is applied. The a priori
and a posteriori state estimates are given by ξ̂

−
k and ξ̂

+

k , respectively, and the asso-
ciated covariance matrices are given by P−

k and P+
k , respectively. The complete

set of extended Kalman filter equations can be found in Appendix A.5.
In the following we give an overview of the extended Kalman filter self-calibra-
tion algorithm. To this end, we consider the flowchart in Figure 7.1. The figure
illustrates one cycle of the extended Kalman filter. In the center column the evo-
lution of the state vector and associated covariance matrix is shown. In the left
and right column the processing steps for overlapping fields of view and motion
and ground plane estimation are shown, respectively.
At the beginning of each cycle the state prediction and associated covariance
matrix are computed. The state vector elements corresponding to the extrinsic
calibration remain unchanged during this step. The a priori state estimate ξ̂

−
k

is then used to warp captured images with the objective to make corresponding
image regions coincide (cf. Chapter 5). It should be noted that leveraging the a
priori estimate for image prewarping is only reasonable if the estimate is closer
to the true state than the assumption of identical camera coordinate frames, the
latter being typically followed when conducting feature extraction and matching.
Putative image correspondences are established using the FAST corner detector
and the BRIEF feature descriptor. To detect inliers to the epipolar geometry we
employ a classic Random Sample Consensus (RANSAC) algorithm [20]. An
essential matrix is computed from five randomly drawn pairs of putative corre-
spondences using the algorithm of Nistér [72]. The algorithm provides up to
ten solutions which are tested against the whole set of putative correspondences.
Inliers are selected based on a Sampson error criterion [31]. The largest set of
inliers among the ten solution and multiple repetitions is then selected for further
processing.
The independence of the inlier detection from the current filter state has proven
to be advantageous, especially in the beginning when the error of the state esti-
mate is still large. During the update stage we make intensive use of the sequen-
tial processing scheme [6]. Instead of updating the state vector using all mea-
surements simultaneously, the measurements are processed sequentially. This
allows to first incorporate the measurements from overlapping fields of view
and motion estimation based on epipolar geometry before using the intermediate
state estimate for robust homography estimation (cf. Chapter 6). Opposed to the
approach presented in Chapter 6 we apply a decomposition of the measurement
residual. We decompose the residual into two orthogonal parts, perpendicular to
the epipolar line (epipolar distance) and along the epipolar line.
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This step is required in order to obtain a partially updated state vector without
incorporating the same measurement twice. We elaborate on the decomposition
and the extension to epipolar curves in Section 7.3.

7.2 Parameterization and Motion Models

The findings of Chapter 4 indicate that planar as well as general motion com-
bined with the ground plane as a reference object enable the estimation of all
extrinsic calibration parameters. General motion is preferable in this case as it
allows observing all parameters using only two consecutive poses of the multi-
camera system. However, typically motion of road vehicles is mostly planar. An
experimental comparison of both models is presented in Chapter 8.
The parameterization of the extended Kalman filter plays a fundamental role.
It should be locally continuous and differentiable. Furthermore, the extended
Kalman filter can become unstable if the assumption of local linearity is vio-
lated. In this context, the parameterization of rotation matrices and unit vectors
constitutes a particular, but well-studied problem. A minimal parameterization
of rotation matrices and unit vectors is desirable for two reasons, the first be-
ing the reduction of the state vector dimensionality, and the second being the
avoidance of constraints in the state space that require special and careful treat-
ment [39]. Unfortunately, all 3-vector parameterizations of rotation matrices and
2-vector parameterizations of a point on a three dimensional sphere contain sin-
gularities (e.g. the gimbal lock for rotation matrices). However, in the vicinity
of the origin these parameterizations behave well and adhere to the above re-
quirements.
In this thesis we assume that an initial state estimate is provided. We use the
estimate to apply a normalization transform on the state vector. In consequence,
the state vector only contains the deviations from the initial estimate. For ex-
ample, to compute the relative orientation between a camera and the reference
camera the orientation matrix corresponding to the current state vector is multi-
plied with the respective denormalizing orientation matrix. After computing the
normalization transform from the initial state estimate the respective elements in
the state vector are set to zero. If the initial state estimate is sufficiently close to
the ground truth, singular configurations are avoided. To represent rotation and
orientation matrices we apply a minimal 3-vector parameterization. Without loss
of generality, we use the Cayley transform [25]. The Cayley transform is closely

74



7.2 Parameterization and Motion Models

related to quaternions1 and has a singularity rotations through 180◦. To represent
3D unit vectors we use spherical coordinates and apply either rotation matrices
or Householder reflections [25] for normalization. A generalization of this ap-
proach is the multiplicative extended Kalman filter (MEKF) [60]. The MEKF
updates the normalization transform at the end of each filter cycle. This is a stan-
dard procedure in current optimization frameworks (see e.g. [46]). However, we
found the normalization with respect to the initial estimate to be sufficient. In
the following we elaborate on the parameterization of relative camera poses and
ground plane. Thereafter, we present the motion model specific parameteriza-
tions.
As presented in Chapter 4.1 we describe the extrinsic calibration via relative
pose transformations between the cameras and the reference camera. The mo-
tion of the camera system is expressed in the coordinate frame of the refer-
ence camera. The relative orientation between the cameras are parameterized
using the Cayley transform. The displacements are parameterized directly by
3-vectors. A normalization is not required in this case. To fix the scale of the
multi-camera system the baseline between the reference camera and a dedicated
second camera is kept constant. This baseline is not part of the state vector. The
displacement direction of the dedicated camera is parameterized using spherical
coordinates. The ground plane normal is parameterized in the same way and the
camera height is represented by a scalar.
We employ a constant velocity model [6], i.e. any changes in the velocity are
modeled by process noise. Since the system has no means to determine its po-
sition or orientation with respect to a world frame we do not track these param-
eters. Discrete planar motion can be described using three parameters, one for
the translation direction and two for the rotational and translational velocity. We
construct a ground plane coordinate frame by projecting the principal axis onto
the ground plane (see Figure 7.2). The translation direction is then defined by
the azimuth angle. During the state prediction the parameters of the planar mo-
tion model remain unchanged.
General motion has six degrees of freedom. Similar to the planar motion model,
we make use of a ground plane aligned coordinate frame in which the transla-
tion and rotation are described. In contrast to the planar motion model the height
and ground plane normal are adjusted according to the out-of-plane translation
and rotation during the state prediction. Table 7.1 summarizes the distribution
of parameters for both models.

1 The real element is set to one.
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Number of parameters

General motion Planar motion

Rotation 3 1

Translation 3 2

Ground plane 3 3

Relative pose transformations 6 (C-1) 6 (C-1)

Scale fixing -1 -1

State dimension for C = 4 26 23

Table 7.1: Distribution of the state vector elements for both motion models with respect
to the number of cameras C.
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Figure 7.1: Flowchart illustrating one cycle of the extended Kalman filter. The evolution
of the state estimate and associated covariance matrix is shown in the center column.
To the left and right the flow chart for overlapping fields of view and motion and ground
plane estimation are shown, respectively. Initialization and recovery (highlighted in gray)
are executed only when necessary.
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Figure 7.2: Definition of the ground plane coordinate frame. The x-axis of the ground
plane coordinate frame is aligned with the current estimate of the ground plane normal,
and the z-axis aligned with the projection of the principal axis onto the ground plane.

Set of putative correspondences

Correspondences that comply
with epipolar geometry

Correspondences assigned
to the ground plane

Figure 7.3: Exemplary output of interest points for which a putative correspondence was
found in the next image (left). The set of all putative correspondences can be divided into
correspondences that comply with epipolar geometry (blue, green) and outliers which
do not (red). Correspondences that comply with the estimated epipolar geometry can
further be assigned to the set of correspondences that are associated with the ground
plane (green).
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7.3 Extended Kalman Filter Update Stage

During the update stage of the extended Kalman filter a sequential updating
scheme is employed, i.e. assuming the measurement noise to be uncorrelated
(i.e. the covariance matrix has block diagonal structure), an update can be per-
formed for each measurement individually [6]. One advantage of this approach
is that the inversion of large matrices can be avoided. More importantly, this
allows applying a stratified approach in which the information of a partially up-
dated state vector is used during inlier detection in a subsequent algorithm stage.
The sequential processing algorithm is presented in Appendix A.6.
The set of all putative image correspondences consists of those that comply with
the epipolar geometry, with the ground plane homography, or are treated as out-
liers. All correspondences that are associated with the ground plane also satisfy
the epipolar constraints. This is illustrated in Figure 7.3. We first update the
state estimate and covariance matrix using correspondences that comply with
the epipolar geometry. Since correspondences have been selected using a ro-
bust method that is independent of the current state estimate this stage does not
benefit from a partially updated state vector. However, robust homography esti-
mation does. In a second step, the partially updated state vector and preselected
correspondences are used to update the ground plane estimate (cf. Figure 7.1)
which also adopts the sequential updating scheme.
The algorithm presented in Chapter 6 estimates the camera motion as well as the
ground plane and imposes two constraints on the feature point positions. Since
estimating the epipolar geometry already imposes one constraint on the feature
point positions we have to modify the algorithm presented in Chapter 6 in order
to avoid incorporating the same measurement twice. To this end, we apply a
decomposition of the measurement residual.
Let the point correspondence u ↔ u′ with associated covariance matrix Σ and
an estimate of the epipolar geometry and the ground plane be given. We apply a
linear approximation of the epipolar curve at a support point

u′
s = κ

(
−Êx ×

(
Êx × x′

))
, (7.4)

i.e. the image of the ray x′ projected onto the epipolar plane defined by the
corresponding ray x in the first view and the estimated essential matrix. Recall
that the rays corresponding to u and u′ are x and x′, respectively. The line
l̂′ is the tangent of the epipolar curve in u′

s. This is depicted in Figure 7.4.
In general u′

s is not the closest point on the epipolar curve (this is emphasized
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p(u′
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Σ
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curve
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Figure 7.4: Decomposition of the measurement residual. The epipolar curve is linearized
at a support point u′

s yielding ̂l′. The approximated geometric image distance ε⊥ is
the distance between u′ and ̂l′. The point û′

g is the ground plane induced prediction.
The approximated error along the epipolar curve is given by ε‖. The marginalization of
the covariance matrix Σ is carried out with respect to ̂l′ and its normal. The marginal
distributions are p(u′

‖;σ‖) and p(u′
⊥;σ⊥).

in Figure 7.4). Using the direction of l̂′ and its normal, we marginalize the
covariance matrix, yielding p(u′

⊥;σ⊥) and p(u′
‖;σ‖). If the associated 3D point

is located on the ground plane we compute the prediction u′
g which is located

on the estimated epipolar curve.
We define the measurement constraints functions (7.3) as

m⊥
(
ξ̂,u′

)
=

l̂′1u
′ + l̂′2v

′ + l̂′3√
(l̂′1)2 + (l̂′2)2

= ε⊥ (7.5)

and

m‖
(
ξ̂,u′

)
=

l̂′2(u
′ − û′

g)− l̂′1(v
′ − v̂′g)√

(l̂′1)2 + (l̂′2)2
= ε‖, (7.6)
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respectively, where l̂′ = (l̂′1, l̂
′
2, l̂

′
3)

T . Equation (7.5) approximates the epipolar
distance and equation (7.6) approximates the error along the epipolar curve (cf.
Figure 7.1).

7.4 Initialization and Recovery of Vehicle Velocity

The ratio of vehicle velocity and height has direct influence on the distance of
the feature point displacement in the image. Since the initially provided camera
height and vehicle velocity may deviate significantly from the actual values (e.g.
by up to one order of magnitude), the robust homography estimation algorithm
presented in Chapter 6 may not be able to detect and track the ground plane,
causing the calibration algorithm to diverge.
In the following we present a method for initialization and recovering the vehicle
velocity to height ratio. We assume the translation direction, camera rotation,
and the ground plane to be known sufficiently well. These conditions are usually
fulfilled as long as at least one camera is able to track the ground plane. The
output of the method is an estimate of the velocity to height ratio which can be
used to detect ground plane inliers.
Let the rotation matrix R, the translation direction t/‖t‖2, and the ground plane
normal n be known. We are searching for the velocity to height ratio τ =
‖t‖2/h. We formulate the search as a least square problem

τ̂ = arg min
τ

{(
X′ −RX + nTX

t

‖t‖2
τ︸ ︷︷ ︸

v(τ)

)2
}
, (7.7)

where X and X′ are corresponding 3D measurements of the same point on the
ground plane of a moving camera. The estimate τ̂ minimizes the squared Eu-
clidean distance between the 3D points.
Since the 3D points X′ and X are in general not known but assumed to be lo-
cated on the ground plane, we intersect the corresponding rays and ground plane
using equation (3.13). The plane normal in the second view can be computed
using equation (4.5). Finally, we make use of equation (4.7) to determine the
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1.000

1.097

1.123

τ̂h/‖t‖2
Figure 7.5: Estimation of velocity to height ratio τ . Each pair of corresponding feature
points contributes to one estimate. The histogram of estimates is shown on the left.
For better readability the x-axis has been scaled such that estimates of the correct ratio
accumulate around one. Using a mean shift algorithm, three modes have been detected
and the corresponding values are shown. The corresponding image with colored interest
points is shown on the right hand side. The same color coding has been applied. A
clear distinction between the ground plane and the sidewalk can be made, in both, the
histogram and the image.

height ratio of the cameras center in successive frames. After substitution and
reorganization we obtain

vn(τ) =
x′

nTRTx′ −R
x

nTx︸ ︷︷ ︸
v0

+

(
I3×3 − x′

nTRTx′n
TRT

)
t

‖t‖2︸ ︷︷ ︸
vτ

τ, (7.8)

where vn(τ) = −v/h is normalized by the height. Note that v(τ) (equation
(7.7)) and vn(τ) (equation (7.8)) yield the same estimate τ̂ . The complete
derivation of equation (7.8) can be found in Appendix A.7. The least squares
solution is then given by

τ̂ = −vT
0 vτ/v

T
τ vτ . (7.9)

An estimate τ̂i can be computed for each pair of corresponding image points
ui ↔ u′

i, where i = 1...N . We interpret the estimates as samples of a proba-
bility distribution and apply a mean shift algorithm [17] to detect the mode. An
example for a well calibrated multi-camera system is shown in Figure 7.5. We
execute this algorithm if the number of correspondences that comply with the
current estimate the ground plane induced homography is below a heuristically
chosen threshold. The most common reason for this is that the estimate of the
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camera height is not consistent with the other cameras in the setup. We use a
heuristic to decide whether a dominant mode was found. If this is the case we
apply robust variance estimation by means of median absolute deviation to esti-
mate the variance. The estimate and variance are then used as the basis for our
robust homography estimation algorithm.
During initialization a modified version of this algorithm is executed. To ad-
just the initially provided velocity, the velocity to height ratio estimates from all
cameras are normalized with respect to the corresponding camera heights and
then combined to one set. The initial velocity is then set to the median value of
the set. In the next chapter we show that this approach works well, even if the
initial estimate of the ground plane normal is inaccurate.
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8 Experimental Evaluation

In this chapter we present an extensive experimental evaluation of our extrinsic
self-calibration algorithm. The evaluation is based on real-world data that was
captured using a vehicle-mounted multi-camera system. Ground truth calibra-
tion parameters have been acquired by means of an offline calibration method.
The ground truth serves as a reference to assess the self-calibration results quan-
titatively and to allow the comparison between different motion models, algo-
rithm settings, and information sources.
In the following sections we introduce the evaluation dataset in detail and explain
how ground truth was acquired, how the best parameter settings were found,
and how the algorithm initialization was carried out. Thereafter, we present the
quantitative evaluation and discuss approaches to assess the accuracy of the cal-
ibration at runtime. Finally, we show some qualitative results using three typical
applications for multi-camera systems, namely visual odometry, generation of a
virtual top view of the vehicle surrounding, and stereo rectification.

8.1 Evaluation Dataset

Our dataset consists of 24 sequences that have been recorded using four cameras
that were mounted on a standard station wagon. The cameras were facing for-
ward, to the left, backwards, and to the right. All cameras were equipped with
identical fisheye lenses. Figure 8.1 illustrates the camera setup and respective
fields of view. We employed standard industrial cameras with global shutter and
1.25 megapixels (1292×964 pixels). The cameras were synchronized to capture
images simultaneously at 30Hz. The high recording frame rate allows to evalu-
ate the performance of our algorithm at different frame rates by subsampling the
image sequences. The horizontal angle of view of the camera-lens combination
is approximately 185◦, resulting in large overlapping fields of view (see Figure
8.1). Similar setups have been used in [82, 36].
Figure 8.2 depicts the camera mounting positions and shows camera heights
and relative distances. The smallest baseline between adjacent cameras is 2.3m
(front to side), and the largest is 2.85m (rear to side). In contrast, the average
camera height is less than half of the baselines. The mounting positions were
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Figure 8.1: Illustration of the camera setup. The four simultaneously captured images are
warped onto image spheres (center). The reference camera is marked orange. Adjacent
cameras have overlapping fields of view. For example, the reflector post can be seen the
upper two images despite being close to the vehicle.

chosen to resemble those of commercially available vehicles with multi-camera
systems.
The 24 sequences of the dataset were recorded on one day during daytime in
different parking areas. Parking areas were chosen as they represent a typical
environment in which self-calibration function would be active. For example,
the multi-camera system should be recalibrated after the vehicle is picked up or
parked after production. Additionally, many of today’s driver assistance systems
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h4 = 1.18m

h3 = 1.26m
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h1 = 0.80m

Figure 8.2: Illustration of camera mounting positions on the test vehicle, a standard sta-
tion wagon. The reference camera is mounted in front. The left and right facing cameras
(C2 and C4) are mounted close to the side mirrors. The distance between these cameras is
approximately 1.8m and the distance between the front and rear-mounted camera is ap-
proximately 4.78m. The specified heights, h1 to h4, were determined during the (offline)
reference calibration.

are designed to assist during the parking maneuver or to perform the task auto-
matically. The driven trajectories resemble typical parking area maneuvers by
containing e.g. low velocities, tight turns and nearby as well as distant objects.
Figure 8.3 shows a subset of the driven trajectories. From the 24 sequences a
subset of four was used for parameter tuning (shown in orange). The remainder
was used for evaluation. The sequences contain between 723 and 2586 images
per camera, corresponding to 24 to 86 seconds of recording-time. The short-
est and longest track lengths are 112m and 568m, respectively. The total track
length is around 5.8km and the average velocity is 19.4km/h, corresponding to
an average of 0.18m per frame (at 30Hz).
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0 m 50 m 100 m

Figure 8.3: Estimated vehicle trajectories of recorded sequences. Visual odometry (cf.
Section 8.5.1) was used to estimate the vehicle motion. A subset of the 24 sequences is
shown here. The set of sequences is divided into a subset of four manually sequences for
parameter tuning (orange) and the remainder of 20 sequences for evaluation (blue). The
checkered flags mark the start of each recording and were passed at least twice during
each recording.
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8.2 Ground Truth and Error Metric

To evaluate the calibration results quantitatively a proper error metric and ground
truth are required. In Section 4.1 we introduced the datum definition applied
throughout this thesis. The camera coordinate frame of the front camera is cho-
sen as the reference coordinate frame and the distance between the front and
backward-facing cameras is chosen for scale fixing. To make the error metric
independent of the choice of the reference coordinate frame and parameteriza-
tion, we consider the estimated relative pose transformations between all cam-
eras instead of considering only the transformations which have been estimated
explicitly by the extended Kalman Filter.
Given the ground truth and estimated relative pose transformations between two
cameras c and d,

ΔTd→c
gt =

⎡⎣ΔRd→c
gt Δtd→c

gt

0T
3×1 1

⎤⎦ ,ΔT̂c→d =

⎡⎣ΔR̂c→d Δt̂c→d

0T
3×1 1

⎤⎦ , (8.1)

we compute the residual orientation angle

εΔR(c, d) = cos−1

(
tr
(
ΔRd→c

gt ΔR̂c→d
)
− 1

2

)
(8.2)

and residual displacement length

εΔt(c, d) = ‖ΔRd→c
gt Δt̂c→d +Δtd→c

gt ‖
2

(8.3)

from the residual pose transformation ΔTd→c
gt ΔT̂c→d, where tr(·) denotes the

sum of elements on the main diagonal. Note that the residual orientation angle
is symmetric, εΔR(c, d) = εΔR(d, c), while the residual displacement length
is in general not, εΔt(c, d) �= εΔt(d, c). This is because the computation of
Δt̂c→d depends on ΔR̂d, while the computation of Δt̂d→c depends on ΔR̂c.

89



8 Experimental Evaluation

The mean residual orientation angle and displacement length across all cameras
are then given by

εΔR =
1

C2 − C

∑
c,d=1...C

εΔR(c, d), and (8.4)

εΔt =
1

C2 − C

∑
c,d=1...C

εΔt(c, d), (8.5)

respectively, where C is the number of cameras1. While εΔR and εΔt are in-
dependent of the chosen reference coordinate frame and parameterization, only
εΔR is also independent of the choice of scale fixing. In the remainder of this
thesis we refer to the mean residual orientation angle and displacement length
as orientation and displacement error, respectively.
Ground truth intrinsic and extrinsic calibration parameters were acquired in an
extensive offline calibration procedure. First, all cameras were calibrated in-
trinsically. To this end, the calibration toolbox of Mei and Rives [64] was used
to acquire an initial set of intrinsic calibration parameters. We augmented this
method by estimating the displacement of the projection centers and finally ap-
proximated the noncentral camera by a central camera as proposed by Schönbein
et al. [86] (cf. Section 3.2.2). Then the cameras were mounted on the test vehicle
and the setup was calibrated extrinsically. Coded calibration targets were placed
around the vehicle and on the floor, covering large regions of the fields of view.
The poses of the calibration targets and cameras were then computed using the
camera images, a professional photogrammetry software, and additional images
from a hand-held camera.
To detect putative alterations of the setup during data recording the offline cal-
ibration procedure was performed twice, before and after recording the dataset.
The mean residual orientation angle and displacement length between both cal-
ibrations are 0.073◦ and 2.5mm, respectively. We combined both calibrations
into a single ground truth calibration using pose interpolation.

8.3 Initialization and Parameter Tuning

To generate quantitative results we ran our extrinsic self-calibration algorithm
offline using perturbed samples of the ground truth calibration parameters for

1 Note that εΔR (c, c) = 0 and εΔt (c, c) = 0 for c = 1...C.
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initialization. A total of 20 samples was drawn prior to the evaluation. To gen-
erate the samples each camera was offset 0.5m in a random direction and then
rotated through a random angle between 0◦ and 15◦ about a random rotation
vector. Figure 8.4 illustrates a subset of the drawn samples. The median ini-
tial orientation and displacement errors across the 20 samples are 10.3◦ and
700.9mm, respectively. Since the parameters of each camera were perturbed in-
dividually, the relative orientation error between adjacent cameras may exceed
15◦. Furthermore, due to the influence of the orientation error on the displace-
ment error, the median initial displacement error exceeds 0.5m. The dynamic
parameters were initialized assuming the vehicle to drive in a straight direction
parallel to the ground plane. However, due to perturbation of the orientation of
the reference camera parameters, the translation direction which is defined in the
coordinate frame of the reference camera is not necessarily parallel to the ground
plane. The initial velocity was set to 20 kilometers per hour. The initial a priori
covariance matrix and the process noise were manually tuned on the subset of
4 out of the 24 sequences (shown in orange in Figure 8.3). We were aiming at
accurate results while ensuring convergence.

8.4 Quantitative Evaluation

In the following we present the quantitative evaluation of our continuous ex-
trinsic self-calibration algorithm. We present results for the two motion models
as well as for a combined calibration incorporating image correspondences be-
tween overlapping fields of view.
The evaluation is divided into two parts. First, we compare the results of our
algorithm directly with the reference calibration by applying the error metric de-
scribed in Section 8.2. To this end, we initialized the algorithm as described in
the previous section. This experiment was repeated 400 times for each configu-
ration. This first experiment provides an application-independent and thus gen-
eral assessment of the calibration results. In a second experiment, we compare
the calibration results against the reference calibration in a typical application,
visual odometry. Throughout this section we use box plots to illustrate results.
A detailed explanation can be found in Appendix A.8.

8.4.1 Motion-Based Calibration

Motion-based calibrations builds on the rigid coupling between the cameras
and in particular on the different apparent motions observed by each camera
when the setup is moved. Figure 8.5 shows the evolution of orientation and
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(a) Side view of ground truth camera poses and subset of initialization samples.

(b) Top view of ground truth camera poses and subset of initialization samples.

Figure 8.4: Ground truth camera poses and a subset of drawn samples for initialization
are shown in a side view (a) and in top view (b). Large coordinate axes indicate the
ground truth camera poses. Smaller coordinate axes visualize a subset of the initialization
samples which are offset by 0.5m and rotated through an angle of up to 15◦ with respect
to the ground. For reference, transparent spheres with 0.5m radius along with vehicle
tires and the rear axle are shown.
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displacement residuals and various other parameters over time for one exem-
plary calibration run. During calibration the errors are reduced from initially
11.82◦ and 839.5mm to 0.24◦ and 30.8mm, respectively. While the orientation
error decreases monotonically to a low value, the displacement error first settles
at approximately 670mm and then decreases to approximately 100mm within
50 frames. The reason for this behavior is the first of four turns. In Chapter
4 we have shown that observability of the parameters depends on the type of
motion. Since the vehicle was driving straight in the beginning some parameters
remained unobservable during this time.
Furthermore, the displacement error fluctuates strongly within the first 100
frames. This typical behavior is caused by the concurrent update of several
parameters. A behavior similar to that of the displacement residual can be ob-
served for the estimated height.
For the quantitative evaluation, the calibration algorithm was tested on all com-
binations of the 20 evaluations sequences and 20 initial parameter samples,
yielding 400 runs per configuration. We define the calibration result as the
current parameter estimate at the end of each sequence. Figure 8.6 shows the re-
sults for the planar and general motion model. The results for the general motion
model show higher variance but a lower orientation error and a similar median
displacement error. The median values of the initial errors at start-up are 10.3◦

and 700.9mm. After calibration, the median values are 0.22◦ and 36.5mm for
the planar motion model, and 0.17◦ and 35.6mm for the general motion model.
Hence, the self-calibration algorithm was able to reduce the median orientation
error by a factor of 50 and the median displacement error by a factor of roughly
20. However, the algorithm does not always converge to the correct solution.
The number of data points not shown in the box plots are given in Appendix
A.9. We conclude that the performance of both models is similar, with general
motion model having a lower median orientation error but higher displacement
error variance.
Due to the different error metrics, we cannot compare our results directly with
those of Pagel et al. [73, 75] and Heng et al. [36, 35].
For evaluation, Pagel et al. [73, 75] use a setup consisting of three cameras
which are assumed to be coplanar, thus estimating only a subset of the extrinsic
calibration parameters. Unfortunately, numeric extrinsic calibration results are
not provided. Pagel et al. report an average orientation error of 0.8◦ and an av-
erage displacement error of 10.8%. The average baseline of our setup is around
2.8m. Hence, a 10.8% error corresponds to approximately 30cm.
Heng et al. [36, 35] provide numeric results on the residual orientation and
displacement angle between the front, reference camera (r = 0) and the other
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Approach Orientation error Displ. angle error

[36] 0.87◦ 1.99◦

[35] 0.43◦ 1.47◦

(two vehicles) 0.41◦ 1.57◦

Planar model 0.15◦ 0.43◦0.43◦0.43◦

General model 0.11◦0.11◦0.11◦ 0.46◦

Table 8.1: Comparison of the results of our motion-based calibration approach (planar
and general) with the results of Heng et al. [36, 35]. Note that the results of our approach
are median values of 400 runs, respectively, while the results of Heng et al. are single run
results.

cameras c ∈ {1, 2, 3}. We can compare our results against those of Heng et
al. by computing the mean orientation error and mean displacement angle error
(angle between Δtc and Δt̂c) for a given setup. The results are shown in Table
8.1. Note that this error metric is not independent of choice of reference camera
and both approaches of Heng et al. are offline calibration methods. However,
the authors found the results obtained with respect to a reference calibration
to be inconclusive, since the proposed methods yielded better results than the
reference method in qualitative validation experiments.

Varying the Frame Rate

The data in our dataset was recorded at 30Hz. By subsampling the image stream
we can simulate lower frame rates. Figure 8.7 shows the results of the motion-
based calibration algorithm at reduced frame rates. We can see that reducing
the frame to 10Hz has only minor impact on the calibration results. In fact,
the median orientation error remains within a range of 0.06◦ for all shown re-
sults. However, the displacement error increases dramatically at lower frame
rates. This applies in particular to the general motion model. Results for the
general motion model at 5Hz are not shown here since an appropriate presenta-
tion was not possible without rescaling the axes. At lower frame rates (or higher
velocities), using a planar motion model is therefore advisable.
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8.4.2 Overlapping Fields of View

In the following we present the results of the extrinsic self-calibration algorithm
using additionally overlapping fields of view. Figure 8.8 shows the results for
the combined calibration. The median orientation error is 0.1◦ for both mo-
tion models, and the median displacement error is 16.2mm and 10.8mm for the
planar and general motion model, respectively. These results are substantially
better then those obtained from motion based calibration.
In [43] it was shown that the same experimental setup can be calibrated solely
based using overlapping fields of view, without the need for motion-based cali-
bration. For this reason, we performed an additional experiment using only the
overlapping fields of view between the left and backward-facing camera. The
results are shown in Figure 8.9. The median orientation and displacement error
in this case are 0.16◦ and 30.2mm for the planar motion model, and 0.13◦ and
31.9mm for the general motion model, respectively. In both cases we observe
an improvement over motion-only calibration.
Applying the same metric that was used to compare our results with those of
Heng et al. [36, 35] (cf. Section 8.4.1), we achieve an orientation error and
displacement angle error of 0.09◦ and 0.09◦, respectively, using the combined
calibration with the planar motion model, and 0.08◦ and 0.10◦, respectively,
using the general motion model.

8.4.3 Visual Odometry Loop Closure Error

The sensitivity of an application output with respect to errors in the individual
calibration parameters is in general application dependent. In a virtual top view
application, for example, in-plane displacement errors result in a shift in the top
view image of the same amount. However, the shift caused by an error in height
depends on the angle of incidence and becomes much larger at shallow angles.
Here, we use visual odometry to assess the calibration results in the context of
an exemplary application.
Visual odometry is the process of estimating camera motion from images only.
Due to errors in the calibration, measurement noise, and violations of the mo-
tion model and Kalman filter assumptions, odometry errors will accumulate over
time. We use the accumulated error, i.e. the drift, as a measure to assess the cal-
ibration results. Since the test vehicle is not equipped with sensors that allow
to determine its pose directly with high precision, we used manually selected
image correspondences to compute the relative pose of the multi-camera system
between different time instances. To this end, we selected image pairs which
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have been captured from a similar place and with a similar vehicle pose, e.g. at
the start and end of each sequence (cf. Figure 8.3). This process is illustrated
in Figure 8.10). First, 3D points are triangulated using image correspondences
from the same time instance (bottom right). An initial relative pose estimate is
then computed by aligning the triangulated 3D point positions. The final esti-
mate is obtained by refining the initial estimate using all correspondences. This
estimate is then treated as ground truth during the evaluation. We used the visual
odometry algorithm which is described in the next section to estimate the vehi-
cle trajectory. The residual rotation and translation are shown in Figure 8.11.
We ran the visual odometry algorithm 40 times on each of the 20 evaluation se-
quences using one randomly drawn calibration result out of the 400 previously
computed results each time. In total, 800 runs were conducted for the motion-
based and combined calibration, respectively, and 20 runs were conducted using
the ground truth calibration. As some sequence contain multiple loop-closures
the number of data points in Figure 8.11 exceeds the number of algorithm runs.
To account for the different track lengths, the residuals are normalized with re-
spect to the driven distance. We observe that the combined calibration yields
substantially better results compared to the motion-based calibration. Further-
more, the results of the combined calibration are close to the results of the ground
truth calibration.

8.4.4 Assessing Calibration Results at Runtime

So far we compared the calibration results against ground truth obtained using
offline methods. In a typical application, however, this data is not available and
we have to rely on the estimates and observations themselves to assess the cal-
ibration results. This is necessary since subsequent applications (presumably)
rely on a calibrated system. In the following we discuss several approaches to
assessing the calibration results at runtime.
Offline calibration methods commonly analyze the measurement residual (af-
ter calibration/optimization) [105, 53, 93]. Large residuals may indicate that
the current estimate is far from the optimum but could also be caused by viola-
tions of the underlying assumptions such as rigidity of the cameras setup. In a
calibrated system the remaining measurement residual should be influenced pre-
dominantly by the inaccuracy of the feature detection and matching algorithm.
Given a calibrated system, we can thus determine typical values which can later
be used for comparison. However, low measurement residuals do not necessar-
ily indicate that the system is well calibrated. For example, if the vehicle is only
driving straight or not moving at all motion-based calibration is not possible,
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yet the measurement residuals may be small. This problem is directly related to
observability analysis which we discuss next. We conclude that a low measure-
ment residual is a necessary condition for a calibrated system.
To determine whether the calibration parameters can estimated unambiguously
from the observations offline calibration methods typically analyze the covari-
ance matrix of the estimated parameters. Given the measurement covariance
matrix and assuming the estimation problem not to be over-determined, an ap-
proximation of the covariance matrix can be computed through backward prop-
agation [31]. Before elaborating observability analysis we present one way to
visualize the uncertainty associated with the current estimate.
In Section 4.1 we discussed system parameterizations and argued that a minimal
parameterization is advantageous during optimization, yet other parameteriza-
tions such as the free net adjustment might be favorable for analysis. Herein, we
use free net adjustment to visualize the uncertainty in the relative displacements
between cameras. The camera positions are parameterized by 3-vectors. To
compensate for the over-parameterization seven linear constraints are introduced
that fix the datum. The constraints correspond to the first order approximation of
a similarity transformation that minimizes the mean Euclidean distance between
the current camera position estimates and initial camera position estimates2. To
obtain the covariance matrix of the camera positions we apply forward propaga-
tion of the a posteriori covariance matrix. This is illustrated in Figure 8.12. We
observe that the relative camera heights can be estimated with higher accuracy
than the in-plane displacements. A drawback of this representation is that the
correlation between orientations cannot be visualized.
If the vehicle was driving only straight ahead, the in-plane camera displacement
cannot be observed by means of motion-based calibration (cf. Section 4.2). In
this case we expect the corresponding entries in the covariance matrix to be very
large3. Depending on the parameterization it might not be easy to determine if
covariance values are uncommonly high (due to different units and ranges) and
understand the physical implications (due to correlations). For example, while
we describe the relative displacement between the forward and side-facing cam-
eras using 3-vectors we use two angles and a fixed distance for the backward-
facing camera. A common way to account for the different units and ranges is
to normalize (whiten) the covariance matrix with respect to initial estimate or

2 In the following example we used the ground truth position instead of initial the estimates
for visualization.

3 Due to measurement noise, nonlinearities, and other error sources the values will not be infinite.
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system noise covariance matrix [29]. The resulting covariance matrix is dimen-
sionless and normalized. Then we compute the eigenvectors and eigenvalues of
the matrix. The eigenvector corresponding to the highest eigenvalue indicates
the direction in parameter space with the highest uncertainty. The correspond-
ing eigenvalue corresponds to the variance in this direction. For the case of
the straight driving vehicle in the above example we expect two similarly large
eigenvalues.
This method is promising in case where the a priori and process noise covariance
matrices are physically motivated, e.g. by long term drift analysis of similar sys-
tems, and the system is linear. However, here we use pseudo-noise ([6]) for both
covariance matrices to control the behavior of the extended Kalman filter.
Figure 8.13 shows the evolution of the displacement error and the estimated un-
certainty over time. As expected the variance decreases after the first turn and
increases while driving straight (magnified view). However, we observe that the
extended Kalman filter severely underestimates the covariance (the decrease in
the displacement error and standard deviation differ by a factor of more than
five). This property of the extended Kalman filter is a well-known ([61]) and
caused by nonlinearities and model violations.
Finally, heuristic indicators can be used to evaluate whether the algorithm is
working as intended. For example, the number of ground plane inliers reflects
the ability to track the ground plane and thus to estimate the relative orientation
parameters. Furthermore, we can analyze the estimated trajectory with respect
to straight driving and turning maneuvers. A well-established approach is to
conduct a control experiment. For example, we could detect single distinct fea-
tures and test whether they can be observed again (at the same or at a later time)
at the expected position in the field of view of another camera. We can also take
advantage of the continuous stream of observations and analyze the a posteriori
measurement residual during short periods in which the calibration parameters
are fixed, estimating only the dynamic parameters. Maye et al. [63] propose
accumulating a small representative set of observations, e.g. several consecutive
pairs of frames, which can be used to test the current estimate.
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Figure 8.5: Evolution of residuals, ground plane inliers, and estimated quantities over
time for one exemplary calibration run. The top plot shows the mean orientation (blue)
and displacement residuals. Below, the evolution of the detected ground plane inlier
correspondences is shown for the front (red), left (green), rear (blue), and right-facing
camera (black), respectively. Next, the estimated rotation angle (blue) and translation
length (orange) per frame are shown. The bottom plot shows the estimated height of the
front camera. The dashed line depicts the camera height during offline calibration.
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Figure 8.6: Results for motion-based extrinsic self-calibration. The mean residual orien-
tation angles (blue) and displacement lengths (orange) are shown for the planar motion
model (filled boxes) on the left and for the general model on the right. Each column rep-
resents the results of 400 algorithm runs (20 sequences, 20 initializations). The median
values are 0.22◦ and 36.5mm and 0.17◦ and 35.6mm, respectively. For a discussion refer
to Section 8.4.1.
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(a) Results for the planar motion model at different frame rates.
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(b) Results for the general motion model at different frame rates.

Figure 8.7: Results of motion-based extrinsic self-calibration at reduced frame rates for
the planar motion model (top) and general motion model (bottom). Box plots for equal
frame rates are aligned. For reference, the results shown in Figure 8.6 are shown here
again. However, note that the axes are scaled differently. Results for the general motion
model at 5Hz are not shown since an appropriate presentation was not possible without
rescaling the axes. The median values for all box plots are given in Appendix A.9.
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Figure 8.8: Results for the combined calibration, using additionally overlapping fields of
view. The median values are 0.1◦ and 16.2mm and 0.1◦ and 10.8mm, respectively.
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Figure 8.9: Comparison of calibration results between motion-based calibration (cf. Fig-
ure 8.6), calibration incorporating all overlapping fields of view (cf. Figure 8.8, and
incorporating only the overlapping fields of view of a single camera pair.
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T

Figure 8.10: Estimating the relative vehicle pose T between start and end. The relative
pose is estimated using manually selected image correspondences. A subset is shown
as line segments. To mark the start and end and to simplify the process of determining
image correspondences, traffic cones have been placed around the vehicle at the start.
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Figure 8.11: Residual rotation and translation per meter traveled for our visual odometry
algorithm using calibration results from motion-based calibration, combined calibration
using overlapping fields of view and ground truth calibration. Note that the number of
data points varies significantly (see text). Median values and number of not shown data
points are given in Appendix A.9.
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Figure 8.12: Exemplary camera center covariance ellipsoids (gray, rescaled) for one re-
sult of motion-based calibration, in a top view (left) and perspective view (right). Free
net adjustment is used to propagate the state covariance matrix (see text). The mean Eu-
clidean distance between the cameras position of the current estimate and ground truth
are minimized.
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Figure 8.13: Evolution of the displacement error and corresponding (scaled) estimated
variance over time. The state covariance was propagated assuming the current estimate
to coincide with the ground truth. For reference, the data is offset using the real displace-
ment error (cf. Figure 8.5). The magnified view shows a section of straight driving during
which the variance increases.
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8.5 Qualitative Results

In the remainder of this chapter we show three typical applications of vehicle-
mounted multi-camera systems. Estimated extrinsic calibration parameters were
used in all three cases.

8.5.1 Visual Odometry

Visual odometry is the process of estimating the motion of a camera system
from images only. The estimated trajectory can be used for vehicle navigation
or 3D reconstruction tasks. Several different approaches for visual odometry
using monocular and stereo cameras (e.g. [71]), as well as multiple cameras
without overlapping fields of view (e.g. [41]) have been proposed. Herein, we
present results which are based on the motion estimates of the extended Kalman
Filter used for extrinsic calibration. At each time step, the filter provides an in-
cremental motion estimate, T̂r

k, that relates the current and preceding pose of the
reference camera. From this, the trajectory of the reference camera is obtained
through concatenation. To visualize the results we reconstruct the ground plane
texture using estimates of the camera motion and ground plane. Locations that
are passed multiple times by the vehicle such as start and end are reconstructed
multiple times. Hence, errors in the motion estimates will cause ghosting ar-
tifacts, i.e. the same texture will appears multiple times with offsets. These
artifacts can be used as a simple way to assess the estimation results.
For the reconstruction, we initialize the extended Kalman filter with an earlier
calibration result. During the reconstruction the extrinsic calibration is then kept
constant by adjusting the initial state covariance and process noise. The ground
plane texture is reconstructed incrementally using only the motion and ground
plane estimates T̂r

k, n̂r
k, and ĥr

k, that are available up to the current point in time,
thus enabling online processing.
In general, the ground plane and motion estimates are not consistent over time,
i.e.

n̂r
k+1 �= R̂r

kn̂
r
k. (8.6)

To achieve consistency we favor the current ground plane estimates over results
obtained through concatenation. Figure 8.14 shows the reconstructed ground
plane texture for one of our test sequences. For motion and ground plane esti-
mation every second frame was skipped to minimize drift. All visual odometry
approaches suffer from the fact that introduced errors cannot be corrected later
on, inevitably causing the trajectory to drift (cf. Figure 8.14).
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220 m0 m

Driven distance

Figure 8.14: Ground plane texture reconstruction for one of the test sequences captured
in a parking area. The image was generated incrementally from 720 images of the the
backward-facing camera by reconstructing and blending semicircular ground plane tex-
ture patches. The estimated vehicle trajectory is shown as the colored curve. The color
indicates the estimated traveled distance. At locations which were passed twice ghosting
artifacts can be observed. A magnified view of a ghosting artifact at sequence end is
shown. The offset is roughly 0.85 meters corresponding to 0.4 percent of the traveled
distance. Note the reconstruction of the parked vehicle in the bottom right corner.

Additionally, special motions such as linear or circular motions cause further
drift since camera velocity and height cannot be observed.
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8.5.2 Virtual Top View

A classic application of vehicle-mounted multi-camera systems is the generation
of a virtual top view. To this end, the images of the four cameras are projected
onto the ground plane and blended into a composite image. Either static or dy-
namic ground plane parameters can be used for this purpose. Similar to the
visual odometry approach in the previous section we used the extended Kalman
filter to estimate the ground plane parameters dynamically. The extrinsic cali-
bration parameters were initialized using an earlier calibration result and then
kept constant by adjusting the initial state covariance and process noise. Figure
8.15 shows two examples of generated virtual top view images. Dynamically
adjusting the ground plane parameters allows to compensate for nonplanar ve-
hicle motions such as rolling and pitching. Even during a tight turn the system
does not create visible ghosting artifacts (see Figure 8.15b).
The low camera height and large extent of the virtual top view image (cf. Figure
8.16) cause inhomogeneity in spatial resolution. Furthermore, the assumption
of the vehicle surrounding being planar causes all nonplanar objects to appear
significantly distorted, e.g. the vehicles in Figure 8.15a. This effect could be
mitigated by mounting the cameras in a higher position or by applying a more
sophisticated surface model.

8.5.3 Stereo Rectification

If the intrinsic and extrinsic calibration parameters of a pair of cameras are
known and the cameras share a common field of view it is possible to recon-
struct 3D points in the scene from image correspondences. The two-dimensional
search for image correspondences can be reduced to one dimension by applying
stereo rectification. In Section 3.3.1 it was shown that the ray corresponding
to an image point and the displacement vector between the cameras define the
epipolar plane (see Figure 8.17a). The intersections of the epipolar plane with
the image planes define the epipolar lines. The corresponding image points have
to be located on the epipolar lines. In general, the epipolar plane will be imaged
as a curve due to nonlinearities in the imaging process. The goal of stereo recti-
fication is to simplify the correspondence search by warping the images of both
cameras such that epipolar curves are mapped to parallel lines. It is common
to apply a mapping that cause the epipolar lines to be parallel to the u-axis and
match across images.
In this case, given a point u = (u, v)T in the rectified image of the first camera
the corresponding point in the rectified image of the second camera has coor-

107



8 Experimental Evaluation

(a) Virtual top view image of the vehicle driving straight.

(b) Virtual top view image of the vehicle turning.

Figure 8.15: Two virtual top view images. The images were generated by projecting the
image of the four cameras onto the ground plane and apply image blending. The masks
used for blending and the dimensions of the virtual top view images are shown in Figure
8.16. By adjusting the ground plane normal dynamically ghosting artifacts introduced by
rolling and pitching of the vehicle can be compensated. The vehicle was driving to the
left in the first image and making a tight turn in the second image.
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Figure 8.16: Blending mask for the front and backward-facing camera, respectively, and
dimensions of the reconstructed ground plane region. The images from the four cameras
are blended into a composite image by applying a blending mask with fixed weights.
The weights of the forward and backward-facing camera are shown here exemplary. The
texture beneath the vehicle cannot be reconstructed and is shown in black.

dinates u′ = (u′, v)T . Hence, the stereo rectification simplifies the correspon-
dence search along a parametric or nonparametric curve to a search along a hor-
izontal line. In general, the search space can be further reduced by taking into
account that the 3D point has to be located between the image of the projection
center of the first camera and infinity.
Stereo rectification consists implicitly of two steps. In the first step the cameras
are virtually rotated around their respective camera centers such that the princi-
pal axes are parallel to each other and perpendicular to the displacement vector.
Typically, another rotation is applied to align XC -axes of the camera coordinate
frames4. This process is illustrated in Figure 8.17b. In the second step, a new
camera projection model is applied. The new model has to satisfy the above con-
straint of projecting the epipolar planes onto parallel (and matched) lines. The
pinhole model satisfies this constraint. If the same model parameters are chosen
for both cameras and the epipolar lines are matched across the images, the dis-
parity u − u′ is proportional to the inverse of the depth of the 3D point. Here
we define depth as the distance along the principal axis of the virtually rotated
camera.

4 Note that there is one degree of freedom corresponding to the rotation about the
displacement vector.
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x
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Figure 8.17: Epipolar geometry (a) and camera alignment for stereo rectification (b).
The displacement vector between the two cameras Cr and Cc and an arbitrary 3D point
X define an epipolar plane (several planes shown here). For stereo rectification, the
cameras are virtually rotated such that the principal axes are parallel and the x-axes are
collinear with the displacement vector (b).

For fisheye cameras different projection models for stereo rectifications are pre-
ferred due to the large field of view (cf. Section 3.2.1). For example, Abraham
and Förstner [1] propose two models, a stereographic rectification model and an
equidistant rectification model. Here we present results for the latter.
Figure 8.18 shows one image from the front-facing camera and a simultaneously
captured image from the right-facing camera. Matching epipolar curves are su-
perimposed. In contrast to a perspective camera, here the image disparity is
proportional to the intersection angle between the rays in case of the equidistant
rectification model. One easily verifies that the topmost epipolar curves both
intersect the top of the lamp post. Figure 8.19 shows a corresponding rectified
image pair.
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Figure 8.18: Simultaneously captured images from the front (left) and right-facing (right)
cameras, respectively. Epipolar curves are superimposed. Matching curves have the same
color. The curves are truncated to valid ranges. The relative pose between the cameras
was estimated using our extrinsic self-algorithm algorithm. The configuration is the same
as the one shown in Figure 8.17.

Figure 8.19: Stereo rectified image pair corresponding to Figure 8.18. For rectification
the equidistant model [1] was used. One can observe that, e.g. the same tiles of the
calibration target are intersected by the epipolar line. The wide baseline causes the cali-
bration target to obstruct parts of the lamp post in the left image while being considerably
offset in the right image.
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Research Directions

In this thesis we built the theoretic foundation for continuous extrinsic multi-
camera self-calibration. In addition, we proposed and evaluated a Kalman filter-
based approach which relies solely on image data. The fields of application are
mobile robots and road vehicles equipped with multi-camera systems.
Generally, the extrinsic calibration accuracy of any multi-sensor system deterio-
rates over time due to external influences such as mechanical stress, vibrations,
individual sensors being mounted on moving parts, or because it has been inac-
curate from the start. Typically, subsequent functions can cope with an inaccu-
rate calibration to some extent but eventually recalibration becomes inevitable.
The calibration of multi-camera systems commonly requires expert knowledge
and artificial calibration objects and is thus both time consuming and costly.
Furthermore, once a system is deployed it might not be accessible anymore.
Continuous self-calibration is the process of estimating the calibration param-
eters from observations made during regular operation. It is the only way to
guarantee reliable long-term operation.
We approached the problem of extrinsic self-calibration by analyzing different
combinations of vehicle motion types, sensor configurations, motion estimation
algorithms, and scene properties with respect to the constraints they impose
on the calibration problem. Fundamental to all calibration constraints is the
rigidity assumption of the multi-camera setup over time. In fact, rigidity along
with overlapping fields of view is sufficient to enable metric calibration in case
of two-camera systems. For more than two cameras, however, these condi-
tions are insufficient. We introduced a matrix rank criterion along with two
additional necessary conditions that provide a binary observability measure for
multi-camera setups with pairwise overlapping fields of view. Furthermore, for
motion-based calibration we presented a set of algorithms to recover the subset
of non-ambiguous extrinsic calibration parameters, assuming error free mea-
surements. We concluded that general motion provides a sufficient set of con-
straints for extrinsic calibration. In case of planar motion additional constraints
such as those provided by a jointly observed scene plane or overlapping fields of
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view are required. With regards to future extensions, it remains a challenging re-
search topic to formulate a general framework that given a sensor configuration,
type of class of vehicle motion, and scene, provides an observability measure
which enables the comparison and improvement of sensor configurations and
compositions.
Relative pose estimation is the essence of extrinsic calibration. To facilitate
image-based relative pose estimation in wide-baseline scenarios we proposed an
image preprocessing step that compensates geometrical distortions introduced
by lens distortions and viewpoint changes. To this end, we utilize prior knowl-
edge of the relative cameras poses and make simplifying assumptions about the
scene. In particular, we assume the scene to be composed of a ground plane
and distant objects only. Following this approach, we were able to successfully
match point features in scenarios where more sophisticated and complex meth-
ods previously failed. In addition, we were able to skip several frames during
processing with only minor influence on the calibration results.
To track the ground plane over time, we introduced a novel ground plane estima-
tion algorithm for fisheye cameras which is designed to be robust with respect to
sparse outliers among putative image correspondences as well as structural out-
liers such as other planes in the scene. It relies on a sequential updating scheme
that favors correspondences that exhibit a high probability of being classified
correctly. Correspondences which are found to be induced by a ground plane
homography are used to update the estimate, thus facilitating subsequent classi-
fication.
The algorithm was integrated into an extended Kalman filter for continuous ex-
trinsic self-calibration. The state vector of the Kalman filters comprises only the
calibration parameters, the vehicle dynamics, and ground plane and has thus a
low dimensionality compared to approaches that perform structure computation,
e.g. [75]. The parameter update is carried out sequentially. First, putative image
correspondences are computed using standard feature detection and matching al-
gorithms as well as image prewarping. Inliers among putative correspondences
are identified using random sampling consensus. The inliers are then used to
update the state vector and covariance matrix. The result is then further pro-
cessed by the ground plane tracking algorithm which identified ground plane
induced correspondences on the basis of the partially updated state vector and
an updating scheme that favors high-confidence inliers.
We evaluated the proposed extrinsic self-calibration algorithm using a vehicle-
mounted multi-camera setup consisting of four fisheye cameras. In a quantitative
evaluation we compared results based on a planar and general motion model and
optionally overlapping fields of view directly against a reference calibration. In
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an additional experiment, we compared the calibration results against the refer-
ence calibration using visual odometry, which represents a typical application.
Initial parameters were generated by adding a random displacements of 0.5m
and rotating each camera by up to 15◦ about random rotation axes. Applying
our motion-based extrinsic calibration algorithm, we were able to reduce the
median initial displacement and orientation errors by a factor of 20 and 50,
respectively, from 700.9mm and 10.3◦ to 36.5mm and 0.22◦ using the planar
motion model, and 35.6mm 0.17◦ using the general motion model. When incor-
porating overlapping fields of view, we were able to further reduce the errors by
a factor of 2 to 3, down to 16.2mm and 0.1◦ using the planar motion model, and
10.8mm and 0.1◦ using the general motion model.
Visual odometry performed similarly on the reference calibration and calibration
based on overlapping fields of view. Throughout the evaluation we observed that
the general motion model provides slightly better results than the planar motion
model. However, the planar motion model seemed to be more robust as it pro-
vided much better results at low frame rates. The remaining median errors are
in the order of 0.1◦ to 0.25◦ and 10mm to 40mm, with the latter corresponding
to less than one percent of the largest baseline in the test setup. Finally, we pre-
sented some qualitative results using three typical applications for multi-camera
systems, namely visual odometry, a virtual top view, and stereo rectification.
During our experiments the algorithm diverged in around 1% of cases. We dis-
cussed various approaches to detect such cases as well as degenerate motions
but did not conduct any further experiments on this topic.
We also want to mention the runtime of the algorithm. Currently, the algo-
rithm does not run in real-time which is mainly due to the implementation of
the prewarping algorithm. A significant speed-up could be obtained by utiliz-
ing more suitable hardware for this task such as a graphics processing unit or
by computing corresponding image points on dedicated hardware. In addition,
using an information filter instead of a Kalman filter would allow for distributed
computing. In this work we avoided computation of the scene structure for the
most part, mainly for complexity and robustness reasons. However, it is to be
expected that approaches estimating camera motion along with scene structure
are likely to outperform our approach in most scenarios. Such approaches are
typically realized using a decentralized solution in which the motion of each
camera is estimated independently to ensure the consistency between estimated
camera motion and structure [73, 75]. It is thus required that motion and ground
plane estimation can be performed robustly for each camera individually. Cen-
tralized approaches (such as ours) avoid this drawback.
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An interesting direction of future research is the simultaneous estimation of cam-
era extrinsics and intrinsics. While there exists extensive work on the calibration
of standard cameras in the computer vision field, we found few approaches for
continuous intrinsic self-calibration of wide-angle cameras. This field is partic-
ularly challenging, since it introduces a new class of degenerate cases. However,
it is also of great significance since we rely on accurate intrinsic parameters for
extrinsic calibration.
Another interesting direction is the integration of other sensor modalities such as
an inertial measurement unit which could simplify the estimation substantially.
The Kalman filter provides an excellent basis for this type of application.
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A Appendix

A.1 Constructing Orthonormal Matrices

from Two Vectors

Given two 3-vectors a0 and a1, with a1 �= 03×1, a2 �= 03×1, and a0 × a1 �=
03×1, we define a third (orthogonal) vector a2 = a0 × a1. Using the three
vectors a rotation matrix Ra0,a1

is constructed by applying Gram-Schmidt or-
thonormalization on the vectors and concatenating the resulting vectors to a 3×3
matrix. The three unit vectors v0, v1 and v2 are computed as

v0 =
a0

‖a0‖2
v1 =

a1 − v0v
T
0 a1

‖a1 − v0vT
0 a1‖2

v2 =
a2

‖a2‖2
,

(A.1)

where [·]× was defined in equation (3.11). The computation of the second vector
v1 can be geometrically interpreted as a projection of a1 onto the plane defined
by the normal vector v0. Since a2 is already orthogonal to v0 and v1, only a
normalization has to be applied. The rotation matrix is then given by Ra0,a1

=
[v0,v1,v2]. The simplification in equations (A.1) with respect to the classical
Gram-Schmid orthonormalization only applies in this specific scenario.

A.2 Rodrigues Formula for Rotation Matrices

Let a be a 3-vector and θ a rotation angle, we define Ra,θ using the Rodrigues
formula for a rotation matrix [31]

Ra,θ = I3×3 −
sin(θ) [a]×

‖a‖2
+

(1− cos(θ)) [a]
2
×

‖a‖22
. (A.2)
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A.3 Instantaneous Center of Rotation

For planar motion, i.e. rTk tk = 0, and non-zero angular velocity there exists a
point sk for which sk = Rksk + tk and rT sk = 0, i.e. the point sk is fixed
under the transformation and is located in the plane defined by the rotation axis
direction and the origin. This point is called the instantaneous center of rotation.
It can be found by solving the equation system⎡⎣I3×3 −Rk

(rk)
T

⎤⎦ sk =

⎛⎝tk

0

⎞⎠ , (A.3)

which is, due to the rank deficiency of I3×3 −Rk of rank three and, thus, yields
a unique solution. The instantaneous center of rotation offers an alternative way
to represent planar motions.

A.4 Derivation of Equation (6.3)

In the following we derive equation (6.3). The inverse of the homography matrix
Hk is given by

H−1
k =

(
RT

k − tkn
T
k

hk

)−1

=

(
RT

k +
RT

k tkn
T
k+1

hk+1

)
(A.4)

=

(
RT

k +
RT

k tkn
T
kR

T
k

hk − nT
kR

T
k tk

)
, (A.5)

where equation (A.4) follows from

T−1
k =

⎡⎣ R t

0T
3×1 1

⎤⎦−1

=

⎡⎣ RT −RT t

0T
3×1 1

⎤⎦ , (A.6)

118



A.5 Extended Kalman Filter

and equation (A.5) follows from equation (4.5) and equation (4.7). With this
given, we can derive equation 6.3,

H̃kH
−1
k =

(
Rk − tknk

T

hk +Δh

)(
Rk − tkn

T
k

hk

)−1

(A.7)

=

(
Rk − tknk

T

hk +Δh

)(
RT

k +
RT

k tkn
T
k+1

hk − nT
k+1tk

)
(A.8)

=

(
I3×3 −

tkn
T
k+1

hk +Δh

)(
I3×3 +

tkn
T
k+1

hk − nT
k+1tk

)
(A.9)

= I3×3 +
tkn

T
k+1

hk+1

(
Δh

hk +Δh

)
, (A.10)

where we make use the identity tkn
T
k+1tkn

T
k+1 = tkn

T
k+1n

T
k+1tk. To obtain

equation (A.9) we use the identity RT
kRk.

A.5 Extended Kalman Filter

The motion and ground plane parameters, as well as the relative pose parameters
are associated with a single state vector of a dynamic system which evolves,
corresponding to a discrete time nonlinear stochastic system [6]

ξk = f
(
ξk−1

)
+ qk. (A.11)

The measurements are perturbed by additive zero mean Gaussian noise

zk = zk +wk, (A.12)

where zk is the error free measurement vector. The terms qk and wk de-
note process and measurement noise, respectively. They are assumed to be
zero mean, white, mutually uncorrelated, and Gaussian qk ∼ N (0,Qk), and
wk ∼ N (0,Wk). The error free observations obey constraints

0 = m (ξk, zk) . (A.13)

The state prediction covariance is given by

P−
k = FkP

+
k−1F

T
k +Qk, (A.14)
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where

Fk =
∂f (ξ)

∂ξ

∣∣∣∣∣∣ξ=̂ξ
+

k−1

(A.15)

is the derivative of the state transition function at the updated state estimate at
time k − 1. Similarly, the derivative of the measuement prediction with respect
to the a priori state estimate is

Mk =
m (ξ, z)

∂ξ

∣∣∣∣∣∣ξ=̂ξ
−
k , z=zk

. (A.16)

The Kalman gain is

Kk = P−
k M

T
k

(
MkP

−
k M

T
k +Wk

)−1
, (A.17)

and the update equations for the state and its covariance are given by

ξ̂
+

k = ξ̂
−
k −Kk m

(
ξ̂
−
k , zk

)
(A.18)

and
P+

k = (I−KkMk)P
−
k , (A.19)

respectively.

A.6 Sequential Processing Algorithm

In the following we present the extension of the sequential processing algorithm
[6] for extended Kalman filters with implicit measurements constraints. The
sequential processing algorithm replaced equations (A.17) to (A.19) of the ex-
tended Kalman filter.
If the measurement noise covariance matrix has block diagonal structure we can
write it as

Wk = diag
(
W0

k, ...,W
i
k, ...,W

N−1
k

)
, (A.20)
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where Wi
k is a square matrix on the main diagonal. Similarly, the measure-

ment vector and derivative of the measurement constraints have the following
structure

m
(
ξ̂
−
k , zk

)
=

⎡⎢⎢⎢⎣
m0

k

...

mN−1
k

⎤⎥⎥⎥⎦ , Mk =

⎡⎢⎢⎢⎣
M0

k

...

MN−1
k

⎤⎥⎥⎥⎦ . (A.21)

Initially, the state state and covariance estimate are associated with the a priori
estimate and covariance matrix

ξ̂
−1

k = ξ̂
−
k , P

−1
k = P−

k . (A.22)

Then, for each i = 0 · · ·N − 1 sequential updates are performed. The Kalman
gain is given by

Ki
k = Pi

k

(
Mi

k

)T (
Mi

kP
i
k

(
Mi

k

)T
+Wi

k

)−1

. (A.23)

The updated state is given by

ξ̂
i

k = ξ̂
i−1

k −Ki
k

(
mi

k +Mi
k

(
ξ̂
i−1

k − ξ̂
−
k

))
, (A.24)

where the right expression is the linearization of the constraint function evalu-

ated at ξ̂
i−1

k and linearized at ξ̂
−
k . The associated covariance matrix update is

given by
Pi

k =
(
I−Ki

kM
i
k

)
Pi−1

k . (A.25)

After N updates, the a posteriori state estimate and associated covariance matrix
are

ξ̂
+

k = ξ̂
N−1

k , P+
k = PN−1

k . (A.26)

Note that the algorithm only requires the inversion of matrices of the size of Wi
k,

which oftentimes are scalars. Furthermore, if the measurement noise covariance
matrix does not have block-diagonal structure, the processing steps are identical
to the original extended Kalman filter in Section A.6.
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A.7 Derivation of Equation (7.8)

Here, we derive equations (7.8) from equation (7.7). The vector v in equation
(7.7) is

v = X′ −RX + nTX
t

‖t‖2
τ.

Next, we substitute

X =
−hx

nTx
, (A.27)

using equation (3.13) and

X′ =
−x′

nTRTx′
(
h − nTRT t

)
(A.28)

=
−hx′

nTRTx′

(
1− nTRT t

‖t‖2
τ

)
, (A.29)

using additionally equations (4.5) and (4.7). Dividing by −h yields

−v

h
=

x′

nTRTx′

(
1− nTRT t

‖t‖2
τ

)
−R

x

nTx
+ nT x

nTx

t

‖t‖2
τ. (A.30)

After canceling and and reorganisation we obtain equations (7.8)

−v

h
=

x′

nTRTx′ −R
x

nTx
+

(
I3×3 − x′

nTRTx′n
TRT

)
t

‖t‖2
τ. (A.31)

Note that x/nTx and x′/nTRTx′ correspond to the 3D points X and X′ nor-
malized by their negative camera height, respectively.
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Figure A.1: Example of two parallel box plots. Two vertical axes are used to depict
corresponding mean orientation and displacement errors within the same diagram.

A.8 Box Plots

Box plots, or box-and-whisker plots are a simple way to depict data points graph-
ically through their quantiles. An example of two parallel box plots is shown in
Figure A.1. In the following, we refer specifically to Tukey box plots [101]. The
box plot consists of the following elements:

• a box, where the bottom and top are the first and third quartiles

• a red line indicating the second quartile, i.e. the median

• whiskers extending to the maximum and minimum

• red crosses indicating outliers.

The maximum is defined as the data point with the highest value still within 1.5
times the inter quartile range (i.e. the third quartile minus first quartile) of the
third quartile. The minimum is defined accordingly. Data points are interpreted
as outliers if located outside of the extent of the whiskers.
In Section 8.4 we use diagrams with two (color indicated) vertical axes to depict
corresponding mean orientation and displacement errors. Filled boxes are used
for results based on the planar motion model, whereas as empty boxes are used
for results based on the general motion model.
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Figure number Number of data points out of bounds

Figure 8.6 (4,8), (6,7)

Figure 8.7a (4,8), (3,9), (0,1), (0,13), (5,28), (22,53)

Figure 8.7b (6,7), (1,3), (2,13), (12,33), (29,77)

Figure 8.8 (0,0), (2,5)

Figure 8.9 (4,8), (6,7), (1,1), (4,6), (0,0), (2,5)

Figure 8.11 (5,17), (6,8), (0,0)

Table A.1: Number of data points not shown in the box plots in Chapter 8.

Figure number Median values (◦, millimeters)

Figure 8.6 (0.22, 36.5), (0.17, 35.4),

Figure 8.7a (0.22, 36.5), (0.23, 37.5), (0.21, 40.1), (0.23, 43.6),
(0.25, 52.6), (0.26, 62.7)

Figure 8.7b (0.17, 35.4), (0.19, 33.4), (0.21, 38.5), (0.21, 48.9),
(0.23, 55.6)

Figure 8.8 (0.10, 16.2), (0.10, 10.8)

Figure 8.9 (0.22, 36.5), (0.17, 35.4), (0.16, 30.2), (0.13, 31.9),
(0.10, 16.2), (0.10, 10.8)

Figure 8.11 (0.028, 6.72), (0.009, 4.93), (0.008, 4.00)

Table A.2: Median values for box plots shown in Chapter 8.

A.9 Additional Information on Quantitative Results

For completeness, tables A.1 and A.2 provide additional information with re-
spect to the box plots shown in Chapter 8. Table A.1 shows the number of data
points not displayed in the box plots, and Table A.2 provides the median values.
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Multi-camera systems are being deployed in a variety of vehicles and 
mobile robots today. In this work we build the theoretic foundation for 
extrinsic camera self-calibration and present and evaluate a Kalman fi l-
ter-based approach which relies solely on image data.

To this end, we identify and combine different cues that provide infor-
mation about the calibration parameters. Motion-based calibration is 
carried out by estimating the frame-to-frame camera motion using cor-
responding features in successive images. Planar motions are common 
among mobile robots and road vehicles and represent a degenerate case 
for motion-based calibration. We overcome this problem by leveraging 
scene constraints. In particular, we make use of the ground plane as a 
natural reference object. A novel algorithm for ground plane estimation 
is presented that is robust with respect to sparse as well as structural out-
liers and can be integrated seamlessly into Kalman fi lters. Large baselines 
and strong geometric distortions hinder establishing feature correspond-
ences between the images of cameras with overlapping fi elds of view to 
a degree where they are not used for calibration. We compensate these 
distortions using prior knowledge about the scene and camera confi gu-
ration. As a result, low complexity feature detectors and matchers can 
be employed.  

We evaluate the approach qualitatively as well as quantitatively using 
real-world data.
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