351,654 research outputs found

    JOINT ESTIMATION OF STATES AND PARAMETERS OF LINEAR SYSTEMS WITH PARAMETER FAULTS UNDER NON-GAUSSIAN NOISES

    Get PDF
    Joint estimation of states and time-varying parameters of linear state space models is of practical importance for the fault diagnosis and fault tolerant control. Previous works on this topic consider the joint estimation in the Gaussian noise environment, but not in the presence of outliers. The known fact is that the measurements have inconsistent observations with the largest part of the observation population (outliers). They can significantly make worse the properties of linearly recursive algorithms which are designed to work in the presence of Gaussian noises. This paper proposes the strategy of the joint parameter-state robust estimation of linear state space models in the presence of non-Gaussian noises. The case of parameter-dependent matrices is considered. Because of its good features in robust filtering, the extended Masreliez-Martin filter represents a cornerstone for realization of the robust algorithms for joint state-parameter estimation of linear time-varying stochastic systems in the presence of non-Gaussian noises. The good features of the proposed robust algorithm for joint estimation of linear time-varying stochastic systems are illustrated by intensive simulations

    Robusna identifikacija linearnih modela u prostoru stanja u prisustvu otkaza komponenti i senzora

    Get PDF
    Joint estimation of states and time-varying parameters of linear state space models is of practical importance for fault diagnosis and fault tolerant control. This paper considers robust identification of linear state-space models with component and sensor faults. On the other side, previous works on this topic have not considered joint estimation of linear systems in presence of outliers. They can significantly make worse the properties of linearly recursive algorithms, which are designed to work in the presence of Gaussian noises. Because of their good features in robust filtering, the modified Masreliez-Martin filter represents a cornerstone for realization of the robust algorithm for joint state-parameter estimation of linear time-varying stochastic systems in presence of non-Gaussian noises. The good features of the proposed robust algorithm for joint estimation of linear time-varying stochastic systems is illustrated by simulations.Publishe

    Particle approximations of the score and observed information matrix for parameter estimation in state space models with linear computational cost

    Full text link
    Poyiadjis et al. (2011) show how particle methods can be used to estimate both the score and the observed information matrix for state space models. These methods either suffer from a computational cost that is quadratic in the number of particles, or produce estimates whose variance increases quadratically with the amount of data. This paper introduces an alternative approach for estimating these terms at a computational cost that is linear in the number of particles. The method is derived using a combination of kernel density estimation, to avoid the particle degeneracy that causes the quadratically increasing variance, and Rao-Blackwellisation. Crucially, we show the method is robust to the choice of bandwidth within the kernel density estimation, as it has good asymptotic properties regardless of this choice. Our estimates of the score and observed information matrix can be used within both online and batch procedures for estimating parameters for state space models. Empirical results show improved parameter estimates compared to existing methods at a significantly reduced computational cost. Supplementary materials including code are available.Comment: Accepted to Journal of Computational and Graphical Statistic

    Particle Approximations of the Score and Observed Information Matrix for Parameter Estimation in State Space Models With Linear Computational Cost

    Get PDF
    Poyiadjis et al. (2011) show how particle methods can be used to estimate both the score and the observed information matrix for state space models. These methods either suffer from a computational cost that is quadratic in the number of particles, or produce estimates whose variance increases quadratically with the amount of data. This paper introduces an alternative approach for estimating these terms at a computational cost that is linear in the number of particles. The method is derived using a combination of kernel density estimation, to avoid the particle degeneracy that causes the quadratically increasing variance, and Rao-Blackwellisation. Crucially, we show the method is robust to the choice of bandwidth within the kernel density estimation, as it has good asymptotic properties regardless of this choice. Our estimates of the score and observed information matrix can be used within both online and batch procedures for estimating parameters for state space models. Empirical results show improved parameter estimates compared to existing methods at a significantly reduced computational cost. Supplementary materials including code are available

    Maximum likelihood estimation in hidden Markov models with inhomogeneous noise

    Full text link
    We consider parameter estimation in finite hidden state space Markov models with time-dependent inhomogeneous noise, where the inhomogeneity vanishes sufficiently fast. Based on the concept of asymptotic mean stationary processes we prove that the maximum likelihood and a quasi-maximum likelihood estimator (QMLE) are strongly consistent. The computation of the QMLE ignores the inhomogeneity, hence, is much simpler and robust. The theory is motivated by an example from biophysics and applied to a Poisson- and linear Gaussian model.Comment: 31 pages, 6 figures, Accepted for publication in ESAIM Probab. Sta

    Measuring Marginal q

    Get PDF
    Using asset prices I estimate the marginal value of capital in a dynamic stochastic economy under general assumptions about technology and preferences. The state-space measure of marginal q relies on the joint measurability of the value function, i.e. firm market value, and its underlying firm state variables. Unlike existing methodologies, the state-space marginal q requires only general restrictions on the stochastic discount factor and the firm investment technology, and it uses simple linear estimation methods. Consistently with a large class of neoclassical investment models, I construct the state-space marginal q using the firm capital stock and profitability shocks. I show that this new measure of real investment opportunities is substantially different from the conventional Tobin\u27s Q, it yields more plausible and robust estimates of capital adjustment costs, it increases the correlation with investment and the sensitivity of investment to fundamentals

    H 2 And H ∞ Filtering Design Subject To Implementation Uncertainty

    Get PDF
    This paper presents new filtering design procedures for discrete-time linear systems. It provides a solution to the problem of linear filtering design, assuming that the filter is subject to parametric uncertainty. The problem is relevant, since the proposed filter design incorporates real world implementation constraints that are always present in practice. The transfer function and the state space realization of the filter are simultaneously computed. The design procedure can also handle plant parametric uncertainty. In this case, the plant parameters are assumed not to be exactly known but belonging to a given convex and closed polyhedron. Robust performance is measured by the H 2 and H ∞ norms of the transfer function from the noisy input to the filtering error. The results are based on the determination of an upper bound on the performance objectives. All optimization problems are linear with constraint sets given in the form of LMI (linear matrix inequalities). Global optimal solutions to these problems can be readily computed. Numerical examples illustrate the theory. © 2005 Society for Industrial and Applied Mathematics.442515530Gevers, M., Li, G., (1993) Parametrizations in Control, Estimation and Filtering Problems, , Springer-Verlag, LondonWilliamson, D., Finite wordlength design of digital Kalman filters for state estimation (1985) IEEE Trans. Automat. Control, 30, pp. 930-939Williamson, D., Kadiman, K., Optimal finite wordlength linear quadratic regulators (1989) IEEE Trans. Automat. Control, 34, pp. 1218-1228Liu, K., Skelton, R.E., Grigoriadis, K., Optimal controllers for finite wordlength implementation (1992) IEEE Trans. Automat. Control, 37, pp. 1294-1304Hwang, S.Y., Minimum uncorrelated unit noise in state-space digital filtering (1977) IEEE Trans. Acoustics Speech Signal Process, 25, pp. 273-281Amit, G., Shaked, U., Minimization of roundoff errors in digital realizations of Kalman filters (1989) IEEE Trans. Acoustics Speech Signal Process, 37, pp. 1980-1982De Oliveira, M.C., Skelton, R.E., Synthesis of controllers with finite precision considerations (2001) Digital Controller Implementation and Fragility: A Modern Perspective, pp. 229-251. , R. S. H. Istepanian and J. F. Whidborne eds., Springer-Verlag, New YorkKeel, L.H., Bhattacharyya, S.P., Robust, fragile or optimal (1997) IEEE Trans. Automat. Control, 42, pp. 1098-1105Keel, L.H., Bhattacharyya, S.P., Authors' reply to: "Comments on 'Robust, fragile or optimal' " by P. M. Mäkilä (1998) IEEE Trans. Automat. Control, 43, p. 1268Dorato, P., Non-fragile controller design: An overview (1998) Proceedings of the 1998 American Control Conference, 5, pp. 2829-2831. , Philadelphia, IEEE, Piscataway, NJFamularo, D., Dorato, P., Abdallah, C.T., Haddad, W.H., Jadbabaie, A., Robust non-fragile LQ controllers: The static state feedback case (2000) Internat. J. Control, 73, pp. 159-165Yang, G.H., Wang, J.L., Robust nonfragile Kalman filtering for uncertain linear systems with estimator gain uncertainty (2001) IEEE Trans. Automat. Control, 46, pp. 343-348Haddad, W.M., Corrado, J.R., Robust resilient dynamic controllers for systems with parametric uncertainty and controller gain variations (2000) Internat. J. Control, 73, pp. 1405-1423Keel, L.H., Bhattacharyya, S.P., Stability margins and digital implementation of controllers (1998) Proceedings of the 1998 American Control Conference, 5, pp. 2852-2856. , (Philadelphia), IEEE, Piscataway, NJGeromel, J.C., Optimal linear filtering under parameter uncertainty (1999) IEEE Trans. Signal Process, 47, pp. 168-175Nesterov, Y., Nemirovskii, A., (1994) Interior-Point Polynomial Algorithms in Convex Programming, , SIAM, PhiladelphiaGeromel, J.C., Bernussou, J., Garcia, G., De Oliveira, M.C., H 2 and H ∞ robust filtering for discrete-time linear systems (2000) SIAM J. Control Optim., 38, pp. 1353-1368Geromel, J.C., De Oliveira, M.C., Bernussou, J., Robust filtering of discrete-time linear systems with parameter dependent Lyapunov functions (2002) SIAM J. Control Optim., 41, pp. 700-711De Oliveira, M.C., Bernussou, J., Geromel, J.C., A new discrete-time robust stability condition (1999) Systems Control Lett., 37, pp. 261-265Sayed, A.H., A framework for state-space estimation with uncertain models (2001) IEEE Trans. Automat. Control, 46, pp. 998-1013Balakrishnan, V., Huang, Y., Packard, A., Doyle, J.C., Linear matrix inequalities in analysis with multipliers (1994) Proceedings of the 1994 American Control Conference, 2, pp. 1228-1232. , Baltimore, MD, IEEE, Piscataway, NJGeromel, J.C., Peres, P.L.D., Bernussou, J., On a convex parameter space method for linear control design of uncertain systems (1991) SIAM J. Control Optim., 29, pp. 381-40
    corecore