
SIAM J. CONTROL OPTIM. c© 2005 Society for Industrial and Applied Mathematics
Vol. 44, No. 2, pp. 515–530

H2 AND H∞ FILTERING DESIGN SUBJECT TO
IMPLEMENTATION UNCERTAINTY∗

MAURÍCIO C. DE OLIVEIRA† AND JOSÉ C. GEROMEL‡

Abstract. This paper presents new filtering design procedures for discrete-time linear systems.
It provides a solution to the problem of linear filtering design, assuming that the filter is subject to
parametric uncertainty. The problem is relevant, since the proposed filter design incorporates real
world implementation constraints that are always present in practice. The transfer function and
the state space realization of the filter are simultaneously computed. The design procedure can also
handle plant parametric uncertainty. In this case, the plant parameters are assumed not to be exactly
known but belonging to a given convex and closed polyhedron. Robust performance is measured by
the H2 and H∞ norms of the transfer function from the noisy input to the filtering error. The results
are based on the determination of an upper bound on the performance objectives. All optimization
problems are linear with constraint sets given in the form of LMI (linear matrix inequalities). Global
optimal solutions to these problems can be readily computed. Numerical examples illustrate the
theory.
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1. Introduction. In the 1980s, a great deal of effort was dedicated to the study
of implementation issues of filters and controllers [1, 2, 3, 4]. The motivation was
to devise design techniques that would lead to filters and controllers that could per-
form well when implemented on a digital computer. The main objectives were (a) to
minimize the degradation of performance caused by computation of signals in a finite
precision computational architecture, and (b) to minimize the impact of truncation
and rounding on the coefficients of the filter or controller. These objectives were
addressed using many different techniques (see [1] for details). Among these tech-
niques, a popular approach to dealing with degradation of the signals was to model
rounding and truncation as noise [5], whereas rounding and truncation of the filter or
controller coefficients was addressed by studying the sensitivity of these parameters to
variations [1]. The great development of the computer industry in the 1990s brought
to the signal processing and control practitioner processors with more and more bits
of precision at very low cost, which somewhat dimmed the importance of the topic.
The fact that every few years the computer industry provides processors with longer
wordlength is used by some to justify the design of filters and controllers with little
or no regard to finite precision perturbation effects. In fact, for many simple systems,
this increase in wordlength means that the quantization effects can be practically ig-
nored. However, faster and more precise computers also provide the opportunity to
increase the complexity of the systems, in terms of both more sophisticated algorithms
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516 MAURÍCIO C. DE OLIVEIRA AND JOSÉ C. GEROMEL

and number of devices. As observed in [6], this increased complexity will eventually
face limitations in bandwidth, that is, the speed at which the devices communicate,
reducing the sampling rates (relative to the available processor wordlength). In this
scenario, a careful analysis of perturbation effects on filters and controllers certainly
will be required. Also, in many consumer electronics products, inexpensive processors
(say, fixed point digital signal processors (DSPs)) are usually preferred. These proces-
sors often impose nontrivial wordlength limitations, and thus better design algorithms
are needed to deal with them. Some recent efforts along this line are reported in [7].

In fact, the importance of robustness to filter and control parametric perturba-
tions seems to have been rediscovered by the end of the 1990s with the paper [8]. This
work, despite the controversy it raised [9], showed that many robust control design
methods, which were targeted to deal with plant uncertainty, could be particularly
sensitive to parameter uncertainty on the controller. The authors use a series of nu-
merical examples to illustrate that a very small perturbation on the coefficients of
controllers could lead to a loss of stability of the closed-loop system [8]. Since then,
many authors have addressed the problem of robustness to parametric control or filter
perturbation under the label of fragility [10, 11, 12, 13, 14].

While many works on filter sensitivity are more concerned with the problem of
choosing an appropriate realization for a given filter transfer function [2, 3], many
works on fragility seem to focus more on the robustness of the filter transfer function
rather than its realization [12]. The approach developed in this paper blends these
two issues by simultaneously designing the optimal filter transfer function and its
realization. The strategy is to modify the filtering procedure introduced in [15] to take
into account robustness with respect to filter parametric variations. Variations of the
filter parameters are allowed inside a region specified by a quadratic matrix inequality.
The maximum allowed norm of the filter uncertainty is specified as a percentage of the
norm of the nominal filter parameters. The ability to specify the uncertainty in the
filter parameters relative to the size of the nominal filter is especially important when
the transfer function and the state space realization of the filter are to be designed
simultaneously. This model is also very appropriate to model perturbations on the
parameters coming from truncation on a floating-point computational architecture,
where rounding and truncation introduce errors relative to the size of the original
numbers.

In this paper, guaranteed cost functions are developed to provide upper bounds
on the maximum value of the H2 or H∞ norm of the uncertain transfer function from
an exogenous noise input to the filtering error on the filter uncertainty region. This
paper introduces and completely solves these H2 and H∞ guaranteed cost filtering
design problems. The design conditions are expressed as linear matrix inequalities
(LMIs), and hence numerical solutions can be readily computed [16]. In contrast to
[15, 17], the results specify not only the transfer function of the filter but also its
realization. Illustrative examples show the effectiveness of the proposed approach.
An interesting feature observed in the examples is that the filters designed by the
proposed technique have less round-off gain than the standard Kalman filter [2, 5],
although such a performance measure is not directly addressed in the optimization
process. The design procedures introduced in this paper admit straightforward ex-
tensions to simultaneously handle plant parameter uncertainty specified in terms of
convex bounded polyhedrons. These extensions can be derived to contemplate both
the quadratic stability [17] and the extended stability [18] approaches. In the for-
mer, a single quadratic Lyapunov function is used to evaluate the performance on the
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FILTERING WITH IMPLEMENTATION UNCERTAINTY 517

uncertainty region, while in the latter a parameter dependent Lyapunov function [19]
is built.

The notation is standard. Lowercase letters denote vectors while capital letters
represent matrices. The symbol (T ) is used to indicate the transpose of vectors and
matrices. If a symmetric matrix X is positive definite, this is indicated by X > 0.

2. Preliminary results on filtering. Consider the linear discrete-time time-
invariant system

x(k + 1) = Ax(k) + Bw(k),(1)

z(k) = Czx(k) + Dzw(k),(2)

y(k) = Cyx(k) + Dyw(k),(3)

where all matrices and vectors are assumed to have appropriate dimensions. The
optimal filtering problem consists of designing a linear filter

xf (k + 1) = Afxf (k) + Bfy(k),(4)

zf (k) = Cfxf (k) + Dfy(k),(5)

which makes use of the plant output y(k) to produce the filtered output zf (k), with
the objective of minimizing a norm of the transfer function from the noise input w(k)
to the filtering error e(k) := z(k) − zf (k). Collecting the filter parameters in the
matrix

F :=

[
Df Cf

Bf Af

]
,(6)

we can state the optimal filtering problem as the optimization problem

min
F

‖Hwe(z;F)‖p.(7)

The values of p = {2,∞} are the choices usually found in the literature. The next
lemmas revisit the solutions of the optimal filtering problems given in [17]. The
solution is given as LMI conditions formulated in terms of the transformed set of
filter parameters

K :=

[
R L
F Q

]
,(8)

defined with respect to the above partitioning.
Lemma 1 (H2 filtering). There exist a matrix K, partitioned as in (8), and

symmetric matrices Y , Z, W such that the LMI⎡
⎢⎢⎢⎢⎣

Z • • • •
Z Y • • •

ATZ ATY + CT
y F

T + QT Z • •
ATZ ATY + CT

y F
T Z Y •

BTZ BTY + DT
y F

T 0 0 I

⎤
⎥⎥⎥⎥⎦ > 0,(9)

⎡
⎢⎢⎣

W • • •
CT

z − CT
y R

T − LT Z • •
CT

z − CT
y R

T Z Y •
DT

z −DT
y R

T 0 0 I

⎤
⎥⎥⎦ > 0,(10)

trace(W ) < μ(11)
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518 MAURÍCIO C. DE OLIVEIRA AND JOSÉ C. GEROMEL

have a feasible solution if and only if the filter

F =

[
I 0
0 V −1

]
K
[
I 0
0 Z−1U−1

]
,(12)

where U and V are nonsingular otherwise arbitrary matrices chosen to satisfy Y +
V UZ = Z, is such that

‖Hwe(z;F)‖2
2 < μ.(13)

Lemma 2 (H∞ filtering). There exist a matrix K, partitioned as in (8), and
symmetric matrices Y , Z such that the LMI

⎡
⎢⎢⎢⎢⎢⎢⎣

Z • • • • •
Z Y • • • •

ATZ ATY + CT
y F

T + QT Z • • •
ATZ ATY + CT

y F
T Z Y • •

BTZ BTY + DT
y F

T 0 0 μI •
0 0 Cz −RCy − L Cz −RCy Dz −RDy μI

⎤
⎥⎥⎥⎥⎥⎥⎦
> 0

(14)

have a feasible solution if and and only if the filter F given in (12) is such that

‖Hwe(z;F)‖∞ < μ.(15)

The above lemmas are generalizations of the results obtained in [17]. Here, the
assumptions that the filter(4)–(5) is strictly proper and that the matrix Dz is null
have been removed. There is virtually no change from the proofs presented in [15, 17]
to the ones required to prove Lemmas 1 and 2. These proofs are omitted for brevity
and the interested reader is referred to [15, 17] for more details. The constraints stated
in Lemmas 1 and 2 are all LMI, and hence solutions to the optimization problem (7)
can be obtained by minimizing the scalar μ subject to the given inequalities. The
resulting problems are convex and their global optimal solutions can be obtained via
convex programming techniques [16].

Once a solution to the inequalities stated in Lemmas 1 or 2 has been found,
the user is asked to pick an arbitrary nonsingular matrix U and then solve for V to
satisfy Y + V UZ = Z (or choose V and solve for U). This will produce the optimal
filter parameters F through (12). Notice that this is done a posteriori, and that this
arbitrary choice does not affect the optimality of the solution. In fact, it is possible
to show that the transfer function of the filter associated with the parameters (12) is
not affected by the choice of U and V (see [17] for details). The main role of these
matrices is to parameterize a particular state space realization of the filter, a fact that
will be explored in the next sections.

3. Problem statement. The main purpose of this paper is to derive conditions
for the design of filters subject to parametric perturbations. More specifically, it is as-
sumed that the parameters of the filter(4)–(5) are subject to an additive perturbation
of the form

F = F0 + ΔF .(16)

The symbol F0 denotes nominal filter parameters, and the unknown perturbation ΔF
is assumed to be in the set

FR(F0) :=
{
ΔF : ΔT

FR−1ΔF ≤ γ2FT
0 R−1F0

}
.(17)
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FILTERING WITH IMPLEMENTATION UNCERTAINTY 519

In contrast to the conventional norm bounded uncertainty model, where the right-
hand side of the inequality given in (17) is usually constant, the uncertainty set FR(F0)
relates the size of the parametric perturbation ΔF to the size of the nominal filter
parameters F0. These factors are weighted by the inverse of an arbitrary positive
definite matrix R. In this way, by setting the scalar 0 ≤ γ ≤ 1, the size of the pertur-
bation ΔF can be specified relative to the size of the nominal filter parameters F0,
which are yet to be determined. The inequality (17) can also be translated as a more
standard norm bound relation of the kind

ΔF ∈ FR(F0) ⇒ ‖ΔF‖R−1 ≤ γ‖F0‖R−1 ,(18)

where ‖ · ‖R denotes a weighted Frobenius or two norm. This inequality is evidence
that the norm of ΔF ∈ FR(F0) is limited to being a fraction of the norm of the
nominal filter F0. Another interpretation is obtained in terms of a norm bound on
the amplitude of the noise signal

wΔF (k) =

(
wy(k)
wxf

(k)

)
:= ΔF

(
y(k)
xf (k)

)
,(19)

for which

ΔF ∈ FR(F0) ⇒ ‖wΔF (k)‖R−1 ≤ γ

∥∥∥∥F0

(
y(k)
xf (k)

)∥∥∥∥
R−1

.(20)

The above interpretation relates the uncertainty set FR(F0) to the uncertainty models
considered in the recent work [20].

The weighting factor R plays an interesting role in the definition of FR(F0) and
can have a major impact on the reduction of the conservatism of the design conditions
to be derived. Roughly speaking, the matrix R can play the same role as a scaling
matrix 1 in robust H∞ analysis [21]. Using the LMI conditions to be derived in the next
section, one can simultaneously perform the design of both the filter parameters F
and the scaling matrix R. If desired, one can also set R to a constant value without
destroying the linearity of the design conditions. However, notice that, if the objective
of fixing R is to establish a certain fixed weight on (17–18) and (20), say, R = R̄,
then one can still use a scaling matrix R = λR̄, where λ is a positive scalar to be
determined. Leaving the scalar λ as a variable can be of much help in reducing
conservatism (see the numerical example in section 6).

Throughout the rest of this paper, the norm minimization problem defined in (7)
is replaced with

min
F0

ρp (F0) ,(21)

where the function ρp is a guaranteed cost function, that is, it satisfies the inequality

‖Hwe(z;F0 + ΔF )‖p ≤ ρp(F0) ∀ΔF ∈ FR(F0).(22)

In other words, the function ρp is an upper bound to the Hp norm of the uncertain
transfer function Hwe(z;F0 + ΔF ) that holds for all ΔF ∈ FR(F0).

1Notice that when R is a scalar it can be canceled on both sides of (17) and (18).
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520 MAURÍCIO C. DE OLIVEIRA AND JOSÉ C. GEROMEL

4. Main result. We are not aware of any available design technique that can
effectively solve the filter design problems stated in the previous section, where the
filter parameter is subject to uncertainties ΔF ∈ FR(F0). In the following paragraphs
we will show that a much simpler design problem, that is, one that can be stated as
a set of LMI, can be obtained if uncertainties are introduced in the transformed set
of parameters K defined in (8). That is, we will consider the filter design problem,
where the transformed set of parameters K is perturbed as

K = K0 + ΔK, ΔK ∈ FW(K0),(23)

where the scaling W will be chosen to maintain equivalence between FR(F0) and
FW(K0). More specifically, W will be chosen to ensure that we can find the optimal
solution to problem (21)–(22) by solving an equivalent but simpler problem, where
the perturbations act on the transformed set of filter variables. This is made possible
due to the result in the following lemma.

Lemma 3. Let S and T be any square and nonsingular matrices of appropriate
dimensions. Then ΔF ∈ FR(F0) if and only if SΔFT ∈ FSRST (SF0T ).

Proof. The proof follows immediately from using the assumption that matrices S
and T are nonsingular and properly factorizing the variables and matrices appearing
in the definition of FR(F0).

Lemma 3 deserves two remarks. The first is that it makes explicit how the scal-
ing matrix W must be chosen to cope with the one to one change of variables in the
form K = SFT that will be used to parameterize the transformed set of filter pa-
rameters. Notice that the corresponding “transformed” scaling W = SRST depends
exclusively on S. Second, equivalence between FR(F0) and FW(K0) is achieved when
the change of variables is performed simultaneously on the nominal filter F0 and on
the parametric uncertainty ΔF . These properties enables us to determine a solution
to problem (21) by equivalently rewriting the inequality that defines the guaranteed
cost function (22) in the form

‖Hwe(z;K0 + ΔK)‖p ≤ ρp(K0) ∀ΔK ∈ FSRST (K0),(24)

which is expressed entirely in terms of the transformed variables (K0,ΔK) = (SF0T ,
SΔFT ). Notice that the assumption that S and T are nonsingular and square ma-
trices is naturally satisfied whenever the order of the filter is the same as the order of
the plant.

In the following lemma we develop an inequality associated with a perturbation
on the transformed set of parameters K. This inequality will be used to derive the
main result of this paper.

Lemma 4. If there exists a symmetric and positive definite matrix W such that[
Q + BK0C + CTKT

0 BT − BWBT γCTKT
0

γK0C W

]
> 0,(25)

then

Q + B (K0 + ΔK) C + CT (K0 + ΔK)
T BT > 0 ∀ΔK ∈ FW(K0).(26)

Proof. Applying the Schur complement on (25), one obtains that for all ΔK ∈
FW(K0),

Q + BK0C + CTKT
0 BT > BWBT + γ2CTKT

0 W−1K0C
> BWBT + CTΔT

KW−1ΔKC
> −BΔKC − CTΔT

KBT ,
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FILTERING WITH IMPLEMENTATION UNCERTAINTY 521

which recovers (26).
The condition stated in the above lemma is only sufficient. Yet it has been

extensively used in the filtering and control to characterize computable robustness
conditions as, for instance, in [12, 21]. However, notice that the scaling matrix W
enters the above condition linearly so that is can be freely optimized. This will help
reduce the conservatism of this condition.

The above two lemmas will be combined to show that the optimal solution to the
problem (21) subject to the transformed guaranteed cost function (24), for p = {2,∞},
can be formulated and solved in terms of LMI conditions. We first consider the case
when the multiplier R is a free optimization variable.

Theorem 1 (H2 filtering). If there exist matrices G and K0, partitioned as
in (8), and symmetric matrices Y , Z, W , E, H such that the LMI

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z • • • • • •
Z Y −H • • • • •

ATZ ATY + CT
y F

T + QT Z • • • •
ATZ ATY + CT

y F
T Z Y • • •

BTZ BTY + DT
y F

T 0 0 I • •
0 0 γRCy + γL γRCy γRDy E •
0 0 γFCy + γQ γFCy γFDy GT H

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
> 0,(27)

⎡
⎢⎢⎢⎢⎢⎢⎣

W − E • • • • •
CT

z − CT
y R

T − LT Z • • • •
CT

z − CT
y R

T Z Y • • •
DT

z −DT
y R

T 0 0 I • •
0 γRCy + γL γRCy γRDy E •
0 γFCy + γQ γFCy γFDy GT H

⎤
⎥⎥⎥⎥⎥⎥⎦
> 0,(28)

trace(W ) < μ(29)

have a feasible solution, then the nominal filter

F0 =

[
I 0
0 V −1

]
K0

[
I 0
0 Z−1U−1

]
,(30)

where U and V are nonsingular otherwise arbitrary matrices chosen to satisfy Y +
V UZ = Z, is such that

‖Hwe(z;F0 + ΔF )‖2
2 ≤ ρ2(F0) := μ ∀ΔF ∈ FR(F0),(31)

where FR(F0) is as defined in (17) with the scaling matrix

R :=

[
I 0
0 V −1

] [
E G
GT H

] [
I 0
0 V −T

]
.(32)

Proof. Defining

ΔK :=

[
ΔR ΔL

ΔF ΔQ

]
, S :=

[
I 0
0 V

]
, T :=

[
I 0
0 UZ

]
,

the nominal filter parameters (30) and their parametric perturbations can be recovered
from (K0, ΔK), for U , V , and Z nonsingular, by the formulas

F0 = S−1K0T −1, ΔF = S−1ΔKT −1.
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522 MAURÍCIO C. DE OLIVEIRA AND JOSÉ C. GEROMEL

Hence, it is possible to conclude from the result of Lemma 3 that the constraint
ΔF ∈ FR(F0) can be replaced without loss of generality by ΔK ∈ FSRST (K0), as
indicated in (24).

With that in mind, it suffices to show that (27)–(29) guarantee robustness with
respect to all ΔK ∈ FSRST (K0). This can be done with the help of Lemma 4. Notice
that a perturbed version of (9), where K is replaced with K0 + ΔK, can be written
as (26) with

Q :=

⎡
⎢⎢⎢⎢⎣

Z Z ZA ZA ZB
Z Y Y A Y A Y B

ATZT ATY T Z Z 0
ATZT ATY T Z Y 0
BTZ BTY 0 0 I

⎤
⎥⎥⎥⎥⎦, B :=

⎡
⎢⎢⎢⎢⎣

0 0
0 I
0 0
0 0
0 0

⎤
⎥⎥⎥⎥⎦, CT :=

⎡
⎢⎢⎢⎢⎣

0 0
0 0
CT

y I

CT
y 0

DT
y 0

⎤
⎥⎥⎥⎥⎦,

while a perturbed inequality (10) is in the form (26) with

Q :=

⎡
⎢⎢⎣
W Cz Cz Dz

CT
z Z Z 0

CT
z Z Y 0

DT
z 0 0 I

⎤
⎥⎥⎦, B :=

⎡
⎢⎢⎣
I 0
0 0
0 0
0 0

⎤
⎥⎥⎦, CT := −

⎡
⎢⎢⎣

0 0
CT

y I

CT
y 0

DT
y 0

⎤
⎥⎥⎦.

Therefore we can define the variables[
E G
GT H

]
:= SRST = W

to obtain both inequalities (27) and (28) directly from Lemma 4.
Theorem 2 (H∞ filtering). If there exist matrices G and K0, partitioned as

in (8), and symmetric matrices Y , Z, E, H such that the LMI

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z • • • • • • •
Z Y −H • • • • • •

ATZ ATY + CT
y FT + QT Z • • • • •

ATZ ATY + CT
y FT Z Y • • • •

BTZ BTY + DT
y FT 0 0 μI • • •

0 G Cz −RCy − L Cz −RCy Dz −RDy μI − E • •
0 0 γRCy + γL γRCy γRDy 0 E •
0 0 γFCy + γQ γFCy γFDy 0 GT H

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
> 0,

(33)

has a feasible solution, then the nominal filter F0 given in (30) is such that

‖Hwe(z;F0 + ΔF )‖∞ ≤ ρ∞(F0) := μ ∀ΔF ∈ FR(F0),(34)

where FR(F0) is defined with the scaling matrix R given by (32).
Proof. This proof follows the same pattern as the proof of Theorem 1 and is thus

omitted.
The constraints stated in Theorems 1 and 2 are all LMI. The scalar μ can be

used to define the guaranteed cost function (22). The global optimal solution to the
guaranteed cost problem (21) can be obtained by minimizing the scalar μ subject to
the given LMI.

It is interesting to observe that under the assumption that the scaling matrix
R is a free variable, the filter provided by Theorem 1 shares with the one proposed
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FILTERING WITH IMPLEMENTATION UNCERTAINTY 523

in [17] the property that its state space realization is irrelevant as far as the upper
bound of the estimation error is concerned. As in Lemmas 1 and 2, the state space
parameterization of the optimal filter obtained in Theorems 1 and 2 can be arbitrarily
chosen by changing the matrices U and V . However, notice that, from (32), the choice
of V does affect the multiplier R. For instance, for the particular choice V = I, the
sets FR(F0) ≡ FSRST (K0). Due to the coupling condition (32), this property does
not remain valid when the scaling matrix is fixed. This special case is treated in detail
in the following paragraphs.

When R is a given constant matrix, the variable V , which is associated with
the choice of filter realization, becomes part of the optimization variables by the
relation (32). In general, the introduction of (32) in the form of a constraint in the
optimization design problem destroys the desired convexity properties. However, in
the important case when R is a given matrix with the block diagonal structure

R̄ =

[
R̄1 0
0 R̄2

]
,(35)

one can show that convexity is preserved, still leading to an LMI design problem.
In this case, which is possibly the most meaningful for modeling implementation
uncertainty, the following corollaries to Theorems 1 and 2 apply.

Corollary 3. Let R̄ be partitioned as in (35). If there exist a positive scalar λ,
matrix K0, partitioned as in (8), and symmetric matrices Y , Z, W , E, H such that
the LMI (27)–(29) with the additional linear constraints

E = λR̄1, G = 0,(36)

have a feasible solution, then the nominal filter F0 given in (30) with

V = λ−1/2H 1/2R̄−1/2
2

is such that ‖Hwe(z;F0 + ΔF )‖2
2 ≤ ρ2(F0) := μ for all ΔF ∈ FR̄(F0).

Corollary 4. Let R̄ be partitioned as in (35). If there exist a positive scalar λ,
matrix K0, partitioned as in (8), and symmetric matrices Y , Z, E, H such that the
LMI (33) with the additional linear constraints (36) has a feasible solution, then the

nominal filter F0 given in (30) with V = λ−1/2H 1/2R̄−1/2
2 is such that ‖Hwe(z;F0 +

ΔF )‖∞ ≤ ρ∞(F0) := μ for all ΔF ∈ FR̄(F0).
Proof. Corollaries 3 and 4 can be proved in the same way. If R = λR̄, given

in (35), then from (32) and (36) we have that

V −1HV −T = λR̄2,

which is satisfied by the choice of V = λ−1/2H 1/2R̄−1/2
2 . Also notice that FR̄(F0) =

Fλ̄R(F0).
In Corollaries 3 and 4, the matrix V (and, consequently, matrix U) is automati-

cally chosen by the optimization problem and cannot be picked by the designer, as in
Theorems 1 and 2. This implies that the state space realization of the optimal filter
is obtained as a result of the optimization procedure. In this sense, Theorems 1 and 2
simultaneously design the optimal filter transfer function and its realization. This
result is in accordance with the well-known fact that some realizations of the same
filter transfer function can be better than others for implementation [1, 2].

Also notice that, as in [17, 15], all of the above results can be shown to reduce
to the standard Kalman filter and to the central H∞ filter when γ = 0. In fact, with
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524 MAURÍCIO C. DE OLIVEIRA AND JOSÉ C. GEROMEL

γ = 0 the scaling matrices E, G, and H can be set arbitrarily close to zero, reducing
these inequalities to the ones given in [17].

An interesting comment on the technical device used to prove Theorems 1 and 2
is that, to the authors’ knowledge, it is the first time that a filtering or control ro-
bustness property has been derived directly from the transformed inequalities given
in Lemmas 1 and 2. The robustness analysis was performed with respect to the trans-
formed set of filter parameters K instead of the actual filter parameters F . Working
with the transformed parameters K instead of F was the key that permitted us to
both incorporate and keep the scaling matrix R as an extra variable in the obtained
design inequalities.

5. Extension to plant parameter uncertainty. In this section the assump-
tion that the plant parameters are exactly known is relaxed. Following [17], the plant
parameters, collected in the matrix

M :=

⎡
⎣A B
Cz Dz

Cy Dy

⎤
⎦,(37)

are allowed to be unknown but to belong to the convex hull of N given extreme
matrices (see [22]). That is,

M ∈ M := co

⎧⎨
⎩Mi :=

⎡
⎣ Ai (B)i

(Cz)i (Dz)i
(Cy)i (Dy)i

⎤
⎦, i = 1, . . . , N

⎫⎬
⎭.(38)

The goal is to derive design procedures that enable one to take into account the
filter parameter uncertainty as well as the plant parameter uncertainty. This can be
done by defining guaranteed cost functions that satisfy the general inequality

‖Hwe(z;F0 + ΔF ,M)‖p ≤ ρp(F0) ∀ ΔF ∈ FR(F0) ∀ M ∈ M.(39)

In the case of plant parametric uncertainty, the uncertain transfer function Hwe(z;F0+
ΔF ,M) depends on both the filter perturbation ΔF and the uncertain plant pa-
rameters M. The guaranteed cost ρp provides an upper bound to the Hp norm of
Hwe(z;F0 + ΔF ,M), which holds for all ΔF ∈ FR(F0) and all M ∈ M. Follow-
ing [17, 22], a guaranteed cost function ρ2 can be built by generating N copies of
the LMI (27)–(29) whose plant parameters correspond to those of Mi, i = 1, . . . , N .
The same procedure can be applied to generate ρ∞ from appropriate versions of the
inequalities given in Theorem 2.

The rationale behind this procedure is that the LMI (27)–(29) and (33) are all
affine on the parameters of the uncertain matrix M. Therefore, a convex combination
of feasible inequalities (27)–(29) and (33) can be used to generate appropriate feasible
inequalities for each M ∈ M (see [17, 22]). It is also straightforward to generate
robust filtering conditions, which use a parameter dependent Lyapunov function to
test stability following the methods of [18, 19]. The derivation of these extensions and
the corresponding LMI conditions are left to the interested reader.

6. Numerical example. Consider the system in the form (1)–(3) with matrices

⎡
⎣ A B

Cz Dz

Cy Dy

⎤
⎦ =

⎡
⎢⎢⎣

0.8 0.9 1 0 0
0.3 −0.5 0 1 0
1 1 0 0 0
1 0 0 0 1

⎤
⎥⎥⎦.D
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Table 1

H2 filter transfer functions.

γ 0.01 0.05 0.1

Design I
0.63z(z + 0.91)

(z − 0.33)(z + 0.53)

0.86z(z + 0.74)

(z − 0.09)(z + 0.60)

0.62z(z + 0.70)

(z − 0.02)(z + 0.64)

Design II
0.73z(z + 0.85)

(z − 0.25)(z + 0.55)

1.01z(z + 0.68)

z(z + 0.68)

0.65z(z + 0.68)

z(z + 0.68)

Table 2

H2 filtering performance.

Nominal cost Guaranteed cost Round-off gain
γ 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

Kalman 1.36 1.36 1.36 — 13.74 13.74 13.74
Design I 1.36 1.75 3.26 1.56 3.61 5.63 10.88 1.14 0.07
Design II 1.39 1.94 3.29 1.68 3.67 5.65 7.00 0.00 0.00

In the next sections we will design filters F0 to minimize an upper bound to the
Hp norm, p = {2,∞}, of Hwe(z;F0 + ΔF ), where ΔF ∈ FR(F0) for the values of
γ = {0.01, 0.05, 0.1}.

6.1. H2 filtering. A standard stationary Kalman filter has been designed to
serve as a template for the H2 filtering design. The transfer function FK(z) of the
Kalman filter is given by

FK(z) =
0.58z(z + 0.96)

(z − 0.38)(z + 0.52)
.

The following two H2 filter design methods have been tried:
Design I: Minimize μ subject to the LMI (27)–(29) with a full variable scaling
R (Theorem 1).
Design II: Minimize μ subject to the LMI (27)–(29) and the linear con-
straint (36) with a fixed scaling R̄ = I (Corollary 3).

The transfer functions of Designs I and II are given in Table 1. These filters are
associated with the performance measures given in Table 2. In this table the “Nominal
cost” is the H2 norm of Hwe(z;F0), and the “Guaranteed cost” is the square root of
the value of μ obtained by solving the problems in Theorem 1 and Corollary 3. The
“Round-off gain” shown in the third column of Table 2 is a measure that has not been
directly optimized by solving the design problems of this paper. It was computed after
determining the minimal round-off gain realizations for the designed filters according
to [2, 5].

It is important to notice that the solution of the problems in Theorem 1 and
Corollary 3 implies the simultaneous design of a filter realization. Moreover, if one
is to use these results to compare performance with a given filter realization F , it is
necessary to impose an additional constraint relating F and K. As noted before, such a
relationship is nonlinear and destroys the convexity of the problem. For these reasons,
and to be able to compare our results with other techniques, we have arbitrarily chosen
V = I, in which case the relationship between F and K becomes linear. This is, in
a certain sense, equivalent to fixing the admissible filter realizations. Additionally,
it also implies FR(F0) ≡ FSRST (K0), which seems to be an appropriate choice for
comparing a given realization to one obtained by the methods proposed in this paper.
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526 MAURÍCIO C. DE OLIVEIRA AND JOSÉ C. GEROMEL

Table 3

H∞ filter transfer functions.

γ 0.01 0.05 0.1

Design III
0.72(z + 1.09)

z + 0.24

1.16(z + 0.57)

z + 0.51

1.20(z + 0.13)

z + 0.13

Design IV
0.85(z + 0.93)

z + 0.36

1.11(z + 0.73)

z + 0.60

1.17(z + 0.70)

z + 0.65

Using this idea, we have computed guaranteed cost for the standard Kalman filter.
However, no results are shown in the table since the LMI in Theorem 1 and Corollary 3
become infeasible for γ = 3.3×10−4 and γ = 1.2×10−4, respectively. This is evidence
of the importance of allowing the optimization to freely tune the filter realization.

Also notice that the optimal round-off gain realizations of the filters produced
by Designs I and II have lower round-off gains than the optimal coordinates of the
Kalman filter, although this measure of performance has not been directly optimized.
This asserts the effectiveness of the uncertainty domain FR(F0) in producing non-
fragile filters.

It is interesting to try to interpret the effect of the parameter perturbation on
the performance measures and in the filter transfer functions. From Table 1, one
can notice that, as the parameter uncertainty increases, the filter transfer function
tends to a constant, with no dynamics. This trend can help explain why the round-
off gains have decreased accordingly in Table 2. This effect is even accentuated in
Design II, where the filter optimization has fewer parameters with which to play. It
seems interesting that, to maximize the performance in the presence of an increasing
implementation uncertainty, the designed filter has been made simpler by the design
procedure.

6.2. H∞ filtering. This time we have designed a standard H∞ filter to serve as
a template for the H∞ filtering design. The transfer function FH(z) of the standard
H∞ filter is given by

FH(z) =
0.76(z + 1.02)

(z + 0.29)
.

It is interesting to notice that the standard optimal H∞ filter design already presents
a pole-zero cancellation. In fact, this feature will be present in all designed filters. As
before, two H∞ filter design methods have been tried as follows:

Design III: Minimize μ subject to the LMI (33) with a full variable scaling
R (Theorem 2).
Design IV: Minimize μ subject to the LMI (33) and the linear constraint (36)
with a fixed scaling R̄ = I (Corollary 4).

The transfer functions of Designs III and IV are given in Table 3 and their performance
measures in Table 4. The guaranteed costs for the standard H∞ filter have been
computed by setting V = I and solving the design LMI for the given realization. The
costs in the first line corresponds to the case when the scaling R has been optimized,
whereas the costs in the second line have been obtained with R̄ = I.

The same trends observed in the H2 filter design appear in the H∞ design. Notice
especially the tendency to simplify the filter by reducing it to a constant scaling.
Interestingly enough, this tendency now appears more accentuated in Design III,
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Table 4

H∞ filtering performance.

Nominal cost Guaranteed cost Round-off gain
γ 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

1.96 5.19 11.64
H∞ 1.44 1.44 1.44 13.67 178.8 593.5 6.98 6.98 6.98

Design III 1.56 3.61 5.63 1.66 3.93 7.28 10.88 1.14 0.07
Design IV 1.68 3.67 5.65 1.75 4.89 7.82 7.00 0.00 0.00

Table 5

Actual H2 filtering performance for the example in section 6.1.

σ̄
γ 0.01 0.05 0.1

Kalman 1.36 1.55 2.13
Design II 1.42 2.05 3.59

where the scaling R has been allowed to be optimized. Notice again a significant
reduction in the round-off gain.

6.3. Estimating conservativeness. In the previous section, the performances
of the designed filters have been evaluated with respect to guaranteed cost functions,
which are upper bounds to the norm of the filtering error system. In this section
we attempt to access the filter performance by directly evaluating an estimate of the
actual error system norms. The idea is to estimate the conservativeness of the method
and to evaluate its practical usefulness. We restrict our attention to the case of H2

filtering design with R = I.
For each filter design F0, we randomly generate a number of perturbation matrices

ΔFj , j = 1, . . . ,M , in FR(F0). The following procedure was used in this generation:
1. Generate a square matrix Δj , with the same number of rows as in F0, where

all entries are normally distributed random real numbers with zero mean and
unitary variance.

2. Compute ΔF j = γ
‖Δj‖ΔjF0 and Fj = F0 + ΔF j .

3. If Fj is asymptotically stable, set σj = ‖Hwe(z;Fj)‖2; otherwise set σj = ∞.
All filter perturbations generated by the above procedure are guaranteed to be in
the boundary of the set FR(F0), and an estimate of the error system norm can be
computed as

σ̄ := max
j=1,... ,M

σj ≈ sup
ΔF∈FR(F0)

‖Hwe(z;F0 + ΔF )‖2.

Strictly speaking, σ̄ provides a lower bound to the error system norm, which serves as a
good approximation for the worst case norm as M becomes large. In our experiments
we have set M = 1000.

We start by evaluating the problem described in section 6.1. The results of the
above numerical experiment applied to the filters previously labelled Kalman and
Design II are shown in Table 5 for several values of γ. Note that the performance of
Design II is, as expected, always below the designed guaranteed cost but, surprisingly,
above the performance of the nominal Kalman filter design. We credit this apparently
surprising behavior to a relative insensitivity of this particular example to variations
on the filter parameters, rather than to an overconservativeness of our approach. We
try to support this claim in the following paragraphs.
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Table 6

Actual H2 filtering performance for the second example in section 6.3.

σ̄
γ 0.01 0.05 0.1

Kalman 1.30 ∞ ∞
Corollary 3 1.28 1.35 1.43

The previous example might leave the impression that the proposed design proce-
dure produces robust filters at the expense of sacrificing performance; this impression
is possibly due to the implicit conservativeness in the design inequalities. In order
to show that the proposed procedure can indeed lead to efficient robust designs, we
consider another simple example with

⎡
⎣ A B

Cz Dz

Cy Dy

⎤
⎦ =

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
0 0 1 0 0

−0.5 0.5 0.1 1 0
1 0 0 0 0

−0.5 0.25 0.5 0 1

⎤
⎥⎥⎥⎥⎦.

For the above example, the Kalman filter has a nominal performance of ‖Hwe(z;F0)‖2 =
1.28. The results of the above numerical experiment applied to the Kalman filter for
several values of γ are shown in the first row of Table 6. These results show that the
Kalman filter is extremely sensitive to parameter variations: a relative perturbation of
size γ = 0.01 already implies some loss of performance but, more important, for higher
values of γ, the Kalman filter becomes unstable (indicated as an infinite cost). This
highly sensitive system seems to provide a better benchmark for our design method-
ology. After computing the robust filters using Corollary 3, we run the numerical
experiment and obtain the performance estimate shown in the second row of Table 6.
In this example, the design procedure not only produced a filter, which performs as
efficiently as the nominal Kalman filter for γ = 0.01, but also produced robust filters
for γ = 0.05 and γ = 0.1, which were able to withstand large parameter perturbations
without becoming unstable and without sacrificing too much performance.

In the above example, an aspect that might have contributed to the sensitivity of
the Kalman filter to parameter variations is the increased order of the filter. Generally
speaking, it seems natural to expect that state space realizations of filters become
more sensitive to parameter variations as the order of the filter (and the associated
matrix dimensions) increases. In order to verify this trend we modify the system used
in section 6.1 to augment its order. More specifically, we introduce a delay on the
measurement signal y(k). This produces the third order system

⎡
⎣ A B

Cz Dz

Cy Dy

⎤
⎦ =

⎡
⎢⎢⎢⎢⎣

0.8 0.9 0 1 0 0
0.3 −0.5 0 0 1 0
1 0 0 0 0 0
1 1 0 0 0 0
0 0 1 0 0 1

⎤
⎥⎥⎥⎥⎦.

Due to the introduction of the delay on the measurement, the Kalman filter now has
a nominal performance of ‖Hwe(z;F0)‖2 = 1.72.

Table 7 shows the results of the numerical experiment performed on both the
nominal Kalman filter design and the filters produced by Corollary 3. Note that now
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Table 7

Actual H2 filtering performance for the example in section 6.1 with a measurement delay.

σ̄
γ 0.01 0.05 0.1

Kalman 1.74 2.16 3.70
Corollary 3 1.75 2.15 3.62

the performances of the Kalman filter and the robust filter designed for γ = 0.01
are practically the same, whereas Corollary 3 produces filters that perform better
than the Kalman filter for values of γ greater than 0.05. These results agree with
the statement that we should expect the Kalman filter to become more sensitive to
parameter variations as the order of the filter increases, in which case the procedure
we have proposed provides an effective way to design robust filters.

Finally, note that the main source of conservatism in this design comes from
the fact that the guaranteed cost functions we have used evaluate performance with
respect to parameter perturbations ΔF ∈ FR(F0), which are allowed to vary with
time. Indeed, this explains the gap between the (time-varying) guaranteed cost values
in Table 2 and the (time-invariant) values of σ̄ in Table 5.

7. Conclusions. A new procedure has been proposed for designing filters which
are robust in the presence of perturbations on the filter parameters. The filters are
obtained by minimizing guaranteed H2 and H∞ cost functions developed by confining
the filter parametric uncertainty in a region defined by a quadratic inequality. The
size of this uncertainty region depends on the size of the filter parameters, and the
maximum allowed parametric perturbation is specified as a percentage of the size of
the filter gains. Both the transfer function and the realization of the robust filter are
simultaneously designed. The optimization problems to be solved have constraints
specified in terms of LMI, whose global optimal solutions can be determined using
convex programming. The numerical examples suggest that the proposed technique
may produce filters with reduced round-off noise gain, although this performance
measure is not directly optimized in the design process.
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