2,732 research outputs found

    Introducing autonomous aerial robots in industrial manufacturing

    Get PDF
    Although ground robots have been successfully used for many years in manufacturing, the capability of aerial robots to agilely navigate in the often sparse and static upper part of factories makes them suitable for performing tasks of interest in many industrial sectors. This paper presents the design, development, and validation of a fully autonomous aerial robotic system for manufacturing industries. It includes modules for accurate pose estimation without using a Global Navigation Satellite System (GNSS), autonomous navigation, radio-based localization, and obstacle avoidance, among others, providing a fully onboard solution capable of autonomously performing complex tasks in dynamic indoor environments in which all necessary sensors, electronics, and processing are on the robot. It was developed to fulfill two use cases relevant in many industries: light object logistics and missing tool search. The presented robotic system, functionalities, and use cases have been extensively validated with Technology Readiness Level 7 (TRL-7) in the Centro Bahía de C´ adiz (CBC) Airbus D&S factory in fully working conditions.Comisión Europea 60884Horizonte 2020 (Unión Europea) 871479Plan Nacional de I+D+I DPI2017-8979-

    UcoSLAM: Simultaneous Localization and Mapping by Fusion of KeyPoints and Squared Planar Markers

    Full text link
    This paper proposes a novel approach for Simultaneous Localization and Mapping by fusing natural and artificial landmarks. Most of the SLAM approaches use natural landmarks (such as keypoints). However, they are unstable over time, repetitive in many cases or insufficient for a robust tracking (e.g. in indoor buildings). On the other hand, other approaches have employed artificial landmarks (such as squared fiducial markers) placed in the environment to help tracking and relocalization. We propose a method that integrates both approaches in order to achieve long-term robust tracking in many scenarios. Our method has been compared to the start-of-the-art methods ORB-SLAM2 and LDSO in the public dataset Kitti, Euroc-MAV, TUM and SPM, obtaining better precision, robustness and speed. Our tests also show that the combination of markers and keypoints achieves better accuracy than each one of them independently.Comment: Paper submitted to Pattern Recognitio

    Indoor Mapping and Reconstruction with Mobile Augmented Reality Sensor Systems

    Get PDF
    Augmented Reality (AR) ermöglicht es, virtuelle, dreidimensionale Inhalte direkt innerhalb der realen Umgebung darzustellen. Anstatt jedoch beliebige virtuelle Objekte an einem willkürlichen Ort anzuzeigen, kann AR Technologie auch genutzt werden, um Geodaten in situ an jenem Ort darzustellen, auf den sich die Daten beziehen. Damit eröffnet AR die Möglichkeit, die reale Welt durch virtuelle, ortbezogene Informationen anzureichern. Im Rahmen der vorliegenen Arbeit wird diese Spielart von AR als "Fused Reality" definiert und eingehend diskutiert. Der praktische Mehrwert, den dieses Konzept der Fused Reality bietet, lässt sich gut am Beispiel seiner Anwendung im Zusammenhang mit digitalen Gebäudemodellen demonstrieren, wo sich gebäudespezifische Informationen - beispielsweise der Verlauf von Leitungen und Kabeln innerhalb der Wände - lagegerecht am realen Objekt darstellen lassen. Um das skizzierte Konzept einer Indoor Fused Reality Anwendung realisieren zu können, müssen einige grundlegende Bedingungen erfüllt sein. So kann ein bestimmtes Gebäude nur dann mit ortsbezogenen Informationen augmentiert werden, wenn von diesem Gebäude ein digitales Modell verfügbar ist. Zwar werden größere Bauprojekt heutzutage oft unter Zuhilfename von Building Information Modelling (BIM) geplant und durchgeführt, sodass ein digitales Modell direkt zusammen mit dem realen Gebäude ensteht, jedoch sind im Falle älterer Bestandsgebäude digitale Modelle meist nicht verfügbar. Ein digitales Modell eines bestehenden Gebäudes manuell zu erstellen, ist zwar möglich, jedoch mit großem Aufwand verbunden. Ist ein passendes Gebäudemodell vorhanden, muss ein AR Gerät außerdem in der Lage sein, die eigene Position und Orientierung im Gebäude relativ zu diesem Modell bestimmen zu können, um Augmentierungen lagegerecht anzeigen zu können. Im Rahmen dieser Arbeit werden diverse Aspekte der angesprochenen Problematik untersucht und diskutiert. Dabei werden zunächst verschiedene Möglichkeiten diskutiert, Indoor-Gebäudegeometrie mittels Sensorsystemen zu erfassen. Anschließend wird eine Untersuchung präsentiert, inwiefern moderne AR Geräte, die in der Regel ebenfalls über eine Vielzahl an Sensoren verfügen, ebenfalls geeignet sind, als Indoor-Mapping-Systeme eingesetzt zu werden. Die resultierenden Indoor Mapping Datensätze können daraufhin genutzt werden, um automatisiert Gebäudemodelle zu rekonstruieren. Zu diesem Zweck wird ein automatisiertes, voxel-basiertes Indoor-Rekonstruktionsverfahren vorgestellt. Dieses wird außerdem auf der Grundlage vierer zu diesem Zweck erfasster Datensätze mit zugehörigen Referenzdaten quantitativ evaluiert. Desweiteren werden verschiedene Möglichkeiten diskutiert, mobile AR Geräte innerhalb eines Gebäudes und des zugehörigen Gebäudemodells zu lokalisieren. In diesem Kontext wird außerdem auch die Evaluierung einer Marker-basierten Indoor-Lokalisierungsmethode präsentiert. Abschließend wird zudem ein neuer Ansatz, Indoor-Mapping Datensätze an den Achsen des Koordinatensystems auszurichten, vorgestellt

    Kimera: from SLAM to Spatial Perception with 3D Dynamic Scene Graphs

    Full text link
    Humans are able to form a complex mental model of the environment they move in. This mental model captures geometric and semantic aspects of the scene, describes the environment at multiple levels of abstractions (e.g., objects, rooms, buildings), includes static and dynamic entities and their relations (e.g., a person is in a room at a given time). In contrast, current robots' internal representations still provide a partial and fragmented understanding of the environment, either in the form of a sparse or dense set of geometric primitives (e.g., points, lines, planes, voxels) or as a collection of objects. This paper attempts to reduce the gap between robot and human perception by introducing a novel representation, a 3D Dynamic Scene Graph(DSG), that seamlessly captures metric and semantic aspects of a dynamic environment. A DSG is a layered graph where nodes represent spatial concepts at different levels of abstraction, and edges represent spatio-temporal relations among nodes. Our second contribution is Kimera, the first fully automatic method to build a DSG from visual-inertial data. Kimera includes state-of-the-art techniques for visual-inertial SLAM, metric-semantic 3D reconstruction, object localization, human pose and shape estimation, and scene parsing. Our third contribution is a comprehensive evaluation of Kimera in real-life datasets and photo-realistic simulations, including a newly released dataset, uHumans2, which simulates a collection of crowded indoor and outdoor scenes. Our evaluation shows that Kimera achieves state-of-the-art performance in visual-inertial SLAM, estimates an accurate 3D metric-semantic mesh model in real-time, and builds a DSG of a complex indoor environment with tens of objects and humans in minutes. Our final contribution shows how to use a DSG for real-time hierarchical semantic path-planning. The core modules in Kimera are open-source.Comment: 34 pages, 25 figures, 9 tables. arXiv admin note: text overlap with arXiv:2002.0628

    Intelligent strategies for mobile robotics in laboratory automation

    Get PDF
    In this thesis a new intelligent framework is presented for the mobile robots in laboratory automation, which includes: a new multi-floor indoor navigation method is presented and an intelligent multi-floor path planning is proposed; a new signal filtering method is presented for the robots to forecast their indoor coordinates; a new human feature based strategy is proposed for the robot-human smart collision avoidance; a new robot power forecasting method is proposed to decide a distributed transportation task; a new blind approach is presented for the arm manipulations for the robots

    Modeling the environment with egocentric vision systems

    Get PDF
    Cada vez más sistemas autónomos, ya sean robots o sistemas de asistencia, están presentes en nuestro día a día. Este tipo de sistemas interactúan y se relacionan con su entorno y para ello necesitan un modelo de dicho entorno. En función de las tareas que deben realizar, la información o el detalle necesario del modelo varía. Desde detallados modelos 3D para sistemas de navegación autónomos, a modelos semánticos que incluyen información importante para el usuario como el tipo de área o qué objetos están presentes. La creación de estos modelos se realiza a través de las lecturas de los distintos sensores disponibles en el sistema. Actualmente, gracias a su pequeño tamaño, bajo precio y la gran información que son capaces de capturar, las cámaras son sensores incluidos en todos los sistemas autónomos. El objetivo de esta tesis es el desarrollar y estudiar nuevos métodos para la creación de modelos del entorno a distintos niveles semánticos y con distintos niveles de precisión. Dos puntos importantes caracterizan el trabajo desarrollado en esta tesis: - El uso de cámaras con punto de vista egocéntrico o en primera persona ya sea en un robot o en un sistema portado por el usuario (wearable). En este tipo de sistemas, las cámaras son solidarias al sistema móvil sobre el que van montadas. En los últimos años han aparecido muchos sistemas de visión wearables, utilizados para multitud de aplicaciones, desde ocio hasta asistencia de personas. - El uso de sistemas de visión omnidireccional, que se distinguen por su gran campo de visión, incluyendo mucha más información en cada imagen que las cámara convencionales. Sin embargo plantean nuevas dificultades debido a distorsiones y modelos de proyección más complejos. Esta tesis estudia distintos tipos de modelos del entorno: - Modelos métricos: el objetivo de estos modelos es crear representaciones detalladas del entorno en las que localizar con precisión el sistema autónomo. Ésta tesis se centra en la adaptación de estos modelos al uso de visión omnidireccional, lo que permite capturar más información en cada imagen y mejorar los resultados en la localización. - Modelos topológicos: estos modelos estructuran el entorno en nodos conectados por arcos. Esta representación tiene menos precisión que la métrica, sin embargo, presenta un nivel de abstracción mayor y puede modelar el entorno con más riqueza. %, por ejemplo incluyendo el tipo de área de cada nodo, la localización de objetos importantes o el tipo de conexión entre los distintos nodos. Esta tesis se centra en la creación de modelos topológicos con información adicional sobre el tipo de área de cada nodo y conexión (pasillo, habitación, puertas, escaleras...). - Modelos semánticos: este trabajo también contribuye en la creación de nuevos modelos semánticos, más enfocados a la creación de modelos para aplicaciones en las que el sistema interactúa o asiste a una persona. Este tipo de modelos representan el entorno a través de conceptos cercanos a los usados por las personas. En particular, esta tesis desarrolla técnicas para obtener y propagar información semántica del entorno en secuencias de imágen

    Building an enhanced vocabulary of the robot environment with a ceiling pointing camera

    Get PDF
    Mobile robots are of great help for automatic monitoring tasks in different environments. One of the first tasks that needs to be addressed when creating these kinds of robotic systems is modeling the robot environment. This work proposes a pipeline to build an enhanced visual model of a robot environment indoors. Vision based recognition approaches frequently use quantized feature spaces, commonly known as Bag of Words (BoW) or vocabulary representations. A drawback using standard BoW approaches is that semantic information is not considered as a criteria to create the visual words. To solve this challenging task, this paper studies how to leverage the standard vocabulary construction process to obtain a more meaningful visual vocabulary of the robot work environment using image sequences. We take advantage of spatio-temporal constraints and prior knowledge about the position of the camera. The key contribution of our work is the definition of a new pipeline to create a model of the environment. This pipeline incorporates (1) tracking information to the process of vocabulary construction and (2) geometric cues to the appearance descriptors. Motivated by long term robotic applications, such as the aforementioned monitoring tasks, we focus on a configuration where the robot camera points to the ceiling, which captures more stable regions of the environment. The experimental validation shows how our vocabulary models the environment in more detail than standard vocabulary approaches, without loss of recognition performance. We show different robotic tasks that could benefit of the use of our visual vocabulary approach, such as place recognition or object discovery. For this validation, we use our publicly available data-set

    Multi-environment Georeferencing of RGB-D Panoramic Images from Portable Mobile Mapping – a Perspective for Infrastructure Management

    Get PDF
    Hochaufgelöste, genau georeferenzierte RGB-D-Bilder sind die Grundlage für 3D-Bildräume bzw. 3D Street-View-Webdienste, welche bereits kommerziell für das Infrastrukturmanagement eingesetzt werden. MMS ermöglichen eine schnelle und effiziente Datenerfassung von Infrastrukturen. Die meisten im Aussenraum eingesetzten MMS beruhen auf direkter Georeferenzierung. Diese ermöglicht in offenen Bereichen absolute Genauigkeiten im Zentimeterbereich. Bei GNSS-Abschattung fällt die Genauigkeit der direkten Georeferenzierung jedoch schnell in den Dezimeter- oder sogar in den Meterbereich. In Innenräumen eingesetzte MMS basieren hingegen meist auf SLAM. Die meisten SLAM-Algorithmen wurden jedoch für niedrige Latenzzeiten und für Echtzeitleistung optimiert und nehmen daher Abstriche bei der Genauigkeit, der Kartenqualität und der maximalen Ausdehnung in Kauf. Das Ziel dieser Arbeit ist, hochaufgelöste RGB-D-Bilder in verschiedenen Umgebungen zu erfassen und diese genau und zuverlässig zu georeferenzieren. Für die Datenerfassung wurde ein leistungsstarkes, bildfokussiertes und rucksackgetragenes MMS entwickelt. Dieses besteht aus einer Mehrkopf-Panoramakamera, zwei Multi-Beam LiDAR-Scannern und einer GNSS- und IMU-kombinierten Navigationseinheit der taktischen Leistungsklasse. Alle Sensoren sind präzise synchronisiert und ermöglichen Zugriff auf die Rohdaten. Das Gesamtsystem wurde in Testfeldern mit bündelblockbasierten sowie merkmalsbasierten Methoden kalibriert, was eine Voraussetzung für die Integration kinematischer Sensordaten darstellt. Für eine genaue und zuverlässige Georeferenzierung in verschiedenen Umgebungen wurde ein mehrstufiger Georeferenzierungsansatz entwickelt, welcher verschiedene Sensordaten und Georeferenzierungsmethoden vereint. Direkte und LiDAR SLAM-basierte Georeferenzierung liefern Initialposen für die nachträgliche bildbasierte Georeferenzierung mittels erweiterter SfM-Pipeline. Die bildbasierte Georeferenzierung führt zu einer präzisen aber spärlichen Trajektorie, welche sich für die Georeferenzierung von Bildern eignet. Um eine dichte Trajektorie zu erhalten, die sich auch für die Georeferenzierung von LiDAR-Daten eignet, wurde die direkte Georeferenzierung mit Posen der bildbasierten Georeferenzierung gestützt. Umfassende Leistungsuntersuchungen in drei weiträumigen anspruchsvollen Testgebieten zeigen die Möglichkeiten und Grenzen unseres Georeferenzierungsansatzes. Die drei Testgebiete im Stadtzentrum, im Wald und im Gebäude repräsentieren reale Bedingungen mit eingeschränktem GNSS-Empfang, schlechter Beleuchtung, sich bewegenden Objekten und sich wiederholenden geometrischen Mustern. Die bildbasierte Georeferenzierung erzielte die besten Genauigkeiten, wobei die mittlere Präzision im Bereich von 5 mm bis 7 mm lag. Die absolute Genauigkeit betrug 85 mm bis 131 mm, was einer Verbesserung um Faktor 2 bis 7 gegenüber der direkten und LiDAR SLAM-basierten Georeferenzierung entspricht. Die direkte Georeferenzierung mit CUPT-Stützung von Bildposen der bildbasierten Georeferenzierung, führte zu einer leicht verschlechterten mittleren Präzision im Bereich von 13 mm bis 16 mm, wobei sich die mittlere absolute Genauigkeit nicht signifikant von der bildbasierten Georeferenzierung unterschied. Die in herausfordernden Umgebungen erzielten Genauigkeiten bestätigen frühere Untersuchungen unter optimalen Bedingungen und liegen in derselben Grössenordnung wie die Resultate anderer Forschungsgruppen. Sie können für die Erstellung von Street-View-Services in herausfordernden Umgebungen für das Infrastrukturmanagement verwendet werden. Genau und zuverlässig georeferenzierte RGB-D-Bilder haben ein grosses Potenzial für zukünftige visuelle Lokalisierungs- und AR-Anwendungen

    Robust mobile robot localization based on security laser scanner

    Get PDF
    This paper addresses the development of a new localization system based on a security laser presented on most AGVs for safety reasons. An enhanced artificial beacons detection algorithm is applied with a combination of a Kalman filter and an outliers rejection method in order to increase the robustness and precision of the system. This new robust approach allows to implement such system in current AGVs. Real results in industrial environment validate the proposed methodology.The work presented in this paper, being part of the Project "NORTE-07-0124-FEDER-000060" is financed by the North Portugal Regional Operational Programme (ON.2 – O Novo Norte), under the National Strategic Reference Framework (NSRF), through the European Regional Development Fund (ERDF), and by national funds, through the Portuguese funding agency, Fundação para a Ciência e a Tecnologia (FCT).info:eu-repo/semantics/publishedVersio
    corecore