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A B S T R A C T   

Although ground robots have been successfully used for many years in manufacturing, the capability of aerial 
robots to agilely navigate in the often sparse and static upper part of factories makes them suitable for performing 
tasks of interest in many industrial sectors. This paper presents the design, development, and validation of a fully 
autonomous aerial robotic system for manufacturing industries. It includes modules for accurate pose estimation 
without using a Global Navigation Satellite System (GNSS), autonomous navigation, radio-based localization, 
and obstacle avoidance, among others, providing a fully onboard solution capable of autonomously performing 
complex tasks in dynamic indoor environments in which all necessary sensors, electronics, and processing are on 
the robot. It was developed to fulfill two use cases relevant in many industries: light object logistics and missing tool 
search. The presented robotic system, functionalities, and use cases have been extensively validated with 
Technology Readiness Level 7 (TRL-7) in the Centro Bahía de Cádiz (CBC) Airbus D&S factory in fully working 
conditions.   

1. Introduction 

The growing levels of flexibility and efficiency required by industries 
demand the massive introduction of robotic technologies into 
manufacturing tasks [1,2,3]. The majority of the robot co-workers in 
industrial sectors that have been reported refer mainly to manipulators 
collaborating with humans, ground robots used for transportation, or 
exoskeletons. Ground robots and Autonomously Guided Vehicles 
(AGVs) have been largely used in manufacturing centers for decades. 
Although ground robots are suitable tools for many tasks such as 
transportation of heavy components and dexterous manipulation, the 
ground of factories is a dynamic environment with a high density of 
objects, workers, and other ground robots, which constrain the robot’s 
motion and speed. Besides, ground robots can perturb workers who 
should be concentrated on their tasks. In contrast, the upper part of the 
factories is often sparse and static, and in general, they are more suitable 
for autonomous robot navigation, and some industrial tasks could 
greatly benefit from utilizing this unused space, for tasks such as the 
inspection of large areas or structures, or the search for missing items 
[4]. 

There is an increasing interest in the use of drones in warehousing 
and manufacturing operations. However, most systems are manually 
operated by skilled pilots, and the few autonomous aerial robots that 
have been reported are still at an early development stage [5]. Very few 
existing robotic systems with automated functionalities have been 
validated in the factory in fully operational conditions, and in these 
systems the autonomous functionalities are constrained to simple tasks, 
limiting their range of potential applications. 

This paper presents the design, development, and validation of a 
fully autonomous aerial robotic system performing complex tasks in 
manufacturing industries. The proposed robotic system adopts an effi
cient modular architecture in which all the required sensors, electronics, 
and processing are on board the aerial robot. It was adapted to two 
different use cases, namely light object logistics and missing tool search, 
that are relevant in a wide variety of manufacturing industries, and have 
been extensively validated in the Centro Bahía de Cádiz (CBC) Airbus 
D&S factory in fully working conditions, see Fig. 1. 

In this work, the University of Seville, FADA-CATEC and Airbus D&S 
joined complementary eff ;orts to develop and demonstrate how aerial 
robots can be introduced in industrial processes while keeping or even 
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improving manufacturing quality. To the best of the authors’ knowl
edge, it is one of the first times that a fully autonomous aerial robotic 
system performing complex tasks has been validated with Technology 
Readiness Level 7 (TRL-7) in a manufacturing plant in full working 
conditions. The presented system was selected as one of the two aerial 
robotics projects finalists (out of more than 50 participants) in the Eu
ropean Robotics Challenges (the EU-funded EuRoC project) and 
received the "Best Drone-based Solution" award in the 1st EU Drone 
Awards [6]. A video showing the operation of the proposed robotic 
system in the factory is available at https://youtu.be/7HVf5i1CY2M. 

The rest of the paper is structured as follows. Section 2 summarizes 
the main related work. The main objectives and requirements are briefly 
described in Section 3. Section 4 presents the robotic system and its main 
functional modules. Sections 5 and 6 describe respectively its imple
mentation and validation with TRL7 in the CBC Airbus D&S factory. The 
main lessons learnt are summarized in Section 7. The conclusions and 
future work are summarized in Section 8. 

2. Related work 

A very wide variety of approaches and techniques have been devel
oped to improve the degree of autonomy of aerial robots in complex 
scenarios. We first summarize the techniques more related to our 
approach focusing on robot pose estimation and robot navigation, and 
then, present the main existing works dealing with the use of aerial 
robots in factory and warehousing applications. 

Arguably, the most extended approaches for indoor autonomous 
navigation of aerial robots are based on visual cameras due to their low 
cost and weight. A wide variety of successful techniques for visual- 
inertial odometry and visual Simultaneous Localization And Mapping 
(SLAM) have been proposed using monocular systems [7,8], 
stereo-vision [9,10], or RGB-D sensors [11,12]. However, visual-based 
localization has limitations that are relevant in factory and warehouse 
environments. First, they are sensitive to lighting conditions, and fac
tories usually have high densities of objects that can cause strong local 
lighting changes. Solving complex illumination conditions is an active 
research topic especially for ground robots [13], but aerial robots pose 
additional limitations in terms of vibrations and motion blur. Also, 
factories can have large empty spaces, where the objects are seen at 
large distances, and visual-based techniques do not always behave well 
in cases where, under small robot displacements, there is little change in 

the gathered images. Besides, the range of stereo-vision is determined by 
its baseline, and aerial robots have strong size and payload limitations. 
Depth measurements from RGB-D and stereo sensors are usually limited 
to 8− 10 m, which could be insufficient for large indoor scenarios such as 
aircraft manufacturing plants. 

Other works have proposed the use of visual markers for robot global 
self-localization, see e.g. [14,15]. These methods are efficient and sim
ple but dependent on the image quality. Similar approaches using radio 
tags around the operating environment and on board the aerial robot 
have also been proposed, see e.g. [16]. However, in some environments, 
they can suffer from strong radio signal attenuation and high measure
ment outlier levels. Besides, both cases require the installation of spe
cific infrastructure in the environment, which hampers the solution 
scalability and incurs deployment and maintenance issues. 

LiDARs have been largely employed for obtaining robust and accu
rate measurements in large environments. Although they are usually 
heavier and more expensive than most cameras, their performance is not 
affected by lighting conditions, allowing for 24/7 operations and also in 
environments with fog or steam. LiDAR data is provided with high 
resolution and at sufficiently high sampling rates for pose estimation. A 
good number of LiDAR-based odometry and SLAM techniques have been 
proposed, see survey in [17]. Standard 3D LiDARs are generally big and 
heavy for moderately-sized aerial robots. 

Many localization techniques rely on a pre-built map to obtain higher 
levels of accuracy. This is well suited for factories since the aerial robot 
will be operating in the same area recurrently. One of the most 
commonly used approaches is Monte-Carlo Localization (MCL) [18], 
which makes use of a Particle Filter to estimate the robot pose analyzing 
the matching of the sensor measurements with the map. MCLs have been 
often proposed to obtain long-term aerial robot localization, see e.g. 
[19], which presented an MCL that combined ultra-wideband and 
RGB-D measurements, or [20], in which 3D LIDAR and visual mea
surements were fused using an MCL. Other approaches are based on pure 
registration of point clouds. The Iterative Closest Point (ICP) algorithm 
[21] is widely used to efficiently match between two consecutive geo
metric point clouds (local robot pose estimation) or between the 
received point cloud and a previously registered map to obtain global 
pose estimation or to reduce drift accumulation. 

Regarding robot navigation, many different approaches have been 
proposed for online and offline trajectory planning targeting aerial ro
bots, from relative or local navigation to global navigation based on 
predefined maps. The most efficient solutions usually combine both 
approaches, such as [22]. Sampling-based algorithms, such as 
Rapidly-exploring Random Trees (RRT) [23,24], have been employed to 
navigate autonomously through large spaces. For instance, different 
probabilistic methods are used in [25] to solve the motion planning 
problem in aerial robots. However, the trajectories planned by proba
bilistic methods can vary significantly from one execution to another, 
resulting in potentially inconsistent navigation. In contrast, graph-based 
algorithms, such as Lazy Theta* [26], provide deterministic paths and 
can reuse previous computations, such as in [27], even though this work 
was only validated in a laboratory environment. This brings important 
benefits for navigating inside a factory in everyday conditions since we 
are very interested in robustness and accuracy. Besides, other works 
focus not only on collision avoidance for safety, but also on maintaining 
the efficiency of manufacturing processes [28]; while focused on 
human-robot collaboration, a similar approach could be explored in case 
more than one aerial robot is used in a factory. The adopted approach 
should have a very low computational cost since all the modules of the 
proposed robotic architecture are executed onboard. In our problem, a 
navigation system based on pre-defined waypoints combined with 
reactive obstacle avoidance methods is a robust and efficient alternative. 
Of course, it requires selecting appropriate methods, along with robust 
and efficient algorithms, as well as exhaustive development and vali
dation methodologies. 

Over the past decade, aerial robot technologies have brought a 

Fig. 1. Aerial robot performing autonomous light object delivery in the Centro 
Bahía de Cádiz (CBC) Airbus D&S factory. 
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revolution in many fields, cost reductions and robustness improvements 
have made aerial robots an economically viable option for a broad range 
of industrial sectors. Aerial robots are currently making a real impact on 
applications that take advantage of their ability to fly quickly and safely 
at high altitudes or reach difficult or hazardous places, in a wide variety 
of sectors. Their interest is not limited to just using an aerial camera, but 
are also starting to involve more sophisticated procedures including 
physical interaction, such as [29], which presented a semi-autonomous 
aerial robotic manipulator for contact inspection in industrial settings. 
Most of the above applications take place outdoors, where Global Nav
igation Satellite Systems (GNSS) are available for localization or navi
gation. Manufacturing operations, on the contrary, are almost 
exclusively in populated indoor spaces, and this involves relevant 
challenges to provide the required accuracy and robustness to perform 
autonomous missions. Safety, noise, and privacy are common concerns, 
and the maneuverability of the aerial robots should be adapted to the 
specific scenario. On the other hand, indoor operations are not subject to 
Remotely Piloted Aircraft System (RPAS) regulations, and weather 
conditions are not an issue. 

There is an increasing interest in using drones in warehousing op
erations such as inventory checks, intra-logistics applications, or in
spection and surveillance, among others. For instance, work [5] presents 
a summary of the main reported drone-based systems for warehouse 
operations. These systems are still at an early prototype testing phase, 
and in most cases, the drones are manually operated within line of sight 
by skilled pilots [30]. Eyesee [31] is one of the first drone-based solu
tions for automated inventory in warehouses. It performs automated 
barcode reading and flight navigation using vision-based localization. In 
this system, the accuracy constraints of vision-based localization in 
factory settings are compensated by performing simple robot tasks and 
trajectories, which although sufficient for the envisioned inventory 
application, can constrain its use in other applications. 

Recently, the advantages of radio-based sensors in robotized ware
houses and industrial scenarios have motivated intense research and 
commercial eff ;ort. Available commercial solutions are mostly based on 
ground robots that are able to navigate and locate RFID tags in 2D, see e. 
g. [32,33]. To the best of our knowledge, there is not any commercial 
product based on an autonomous aerial robot yet. The potentialities of 
such robotic systems have motivated strong research interest in the last 
years. Work [34] presented a system to track the position of an aerial 
robot while it navigates through the environment by using static UWB 
anchors at previously known positions. Other works detect and/or 
locate radio tags assuming that the robot position is known or can be 
estimated. The work in [35] presents a blockchain-based architecture to 
manage a warehousing application based on RFID tags installed on the 
stored items. This work focuses on the communication architecture and 
only detects the tags, but does not estimate their position. The work in 
[36] fuses measurements from a LiDAR and a camera to generate a map 
of a warehouse and navigate through it, and uses RFID signals and visual 
markers to detect the presence of placed stock – each item has its own 
RFID tag–. However, they only validate presence detection and do not 
give tag localization errors. Besides, RFID transmissions can cover low 
distances since the size of receivers increases significantly with the 
transmission range. The work in [37] uses a large high-range static RFID 
system that emits signals at a distance of 50 m, which are responded to 
by the RFID tags. These responses are read by a small RFID receiver on 
board an aerial robot. It avoids the need for a long-range RFID emitter on 
board the robot, but requires the robot to fly near the RFID tags to 
receive their (weak) RFID responses. Our work uses UWB tags instead of 
RFID to alleviate these issues and be able to accurately locate tools in a 
complex industrial environment. 

The problem of searching for missing tools is of high importance to 
the aerospace industry. A few commercial solutions to keep track of 
them are starting to arise. One example is [38], which uses a combina
tion of RFID tags installed at the tools and UWB tags installed at the 
workers’ badges, belt-clips, or helmets. Each time a worker draws a tool 

from the cabinet, its UWB tag is paired with the tool, and its location is 
tracked using UWB anchors installed in the factory. If the tool is not 
returned, the tracking history of the worker is used to search for the 
missing tool. This approach presents three main drawbacks for our 
problem: first, an ad-hoc infrastructure is required to keep track of the 
worker’s position; second, the system provides a full tracking history 
instead of a specific 2D or 3D location to search at, which leads to longer 
search times; and third, if another worker (or robot coworker) displaces 
the tool, it separates from its assigned worker’s track. Our system uses 
UWB tags at the tools and a UWB system at the aerial robot to avoid 
these issues: it needs no UWB infrastructure, it provides the current 
location of the tool, and it is robust to manipulation by workers. 

3. Problem formulation and solution design 

Although ground robots have been largely used for decades [39], 
aerial robots provide interesting advantages to increase the level of 
automation in manufacturing industries. The upper part of factories is 
rather sparse and static, whereas the lower part is often very dense and 
dynamic, constraining the motion of ground robots. As shown in Fig. 2, 
this is the case in the CBC Airbus D&S factory. Also, safety constraints 
impose low-speed motions for ground robots, while this restriction is not 
present for aerial robots. Moreover, notice that RPAS regulations do not 
apply in indoor environments. 

The introduction of aerial robots would increase the useful factory 
production space, while at the same time could indirectly reduce the 
equipment needed on the floor. Introducing aerial robots in a 
manufacturing factory poses challenging issues. From a technical 
perspective, the system should include precise GNSS-denied long-term 
robot pose estimation, as well as efficient planning and navigation sys
tems suitable for dynamic and tight environments. From implementa
tion and operational perspectives, the system should ensure safe and 
robust aerial robot navigation in crowded environments. Safety and 
robustness for everyday operations in the factory were fundamental 
requirements that drove the design, development, and implementation 
of our system. 

3.1. Envisioned use cases 

Our objective is to increase the level of automation in industrial 
processes by integrating fully autonomous aerial robots collaborating 
with humans. Airbus D&S identified two potential use cases where aerial 
robots could improve productivity by reducing operation times and 
manufacturing costs: light object logistics and missing tool search. In 
both cases, the aerial robot velocity and flexibility are key issues to 
improve the currently implemented processes, and also, two main ad
vantageous features of aerial robots over other robotic solutions. 

The assembly of aerostructure parts requires many different mate
rials and small and light components (rivets, sealing materials, glues, 
among others). For instance, in the CBC factory, more than 500 different 

Fig. 2. Aerial view of the CBC Airbus D&S factory.  
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small components and materials are necessary for the assembly of every 
single fan cowl. The transportation of light components (lower than 
500 g) constitutes around 98 % of the internal logistics operations in this 
factory, which yields the importance of reducing costs in these opera
tions. Moreover, a number of these components such as sealants are kept 
refrigerated before use, and they must be heated just before using them 
and, once heated, have a very limited lifetime. These constraints, 
together with the high manufacturing quality requirements, and the 
wide variety of small components, make light object logistics very 
relevant in the assembly of aerostructure parts. All these light compo
nents are located at specific storage centers, at different places in the 
factory. In the current Airbus D&S operation, when a worker finds that 
he has run out of a component, he informs his supervisor, which starts a 
procedure to ask for it. This procedure ensures traceability and quality 
requirements, which are fundamental in the aeronautic industry. When 
the small component is ready, the supervisor brings the component to 
the worker. 

Our first goal is to use aerial robots for light object logistics. The 
aerial robot transports and provides light components to the workers 
that demand them. For transportation, the light components are inserted 
in capsules of a suitable size. The aerial robot is equipped with a cargo 
mechanism for the transportation and delivery of capsules. When a 
worker needs a specific component, he informs the system using a visual 
interface that is executed e.g. in a tablet. This request is sent to the 
storage center, where the component is prepared. Another worker at the 
storage center places the light object in the capsule, puts the capsule in 
the robot cargo mechanism, and commands the aerial robot to perform a 
transportation and delivery mission. Finally, when the component has 
been delivered, the worker who made the request acknowledges 
reception through the same interface. The proposed system also ensures 
Airbus D&S traceability and quality requirements. 

Many manufacturing processes require a high number of different 
and specialized tools that are used by workers. In the CBC Airbus D&S 
factory, more than 100 different tools are involved in the assembly of 
every fan cowl. Missing tools occur occasionally originating delays and 
reducing productivity. Moreover, missing items are particularly harmful 
in aeronautic industries since they may cause Foreign Object Damage 
(FOD) events. Most factories that require many different specialized 
tools are endowed with intelligent tool cabinets that can detect when a 
tool is missing, but cannot locate the missing tool. When a tool is 
considered missing, it is searched in the factory causing delays and 
requiring significant human labor. 

In the second use case, a missing tool search and localization func
tionality was implemented. The objective is to compute the location of 
the missing tools with sufficient accuracy such that they can be easily 
found by human workers. Missing tool search can be performed on- 
request (e.g. at the end of every work shift) or automatically (e.g. 
executed while the robot is navigating performing light object logistics 
tasks). Each tool is equipped with an Ultra-Wide Band (UWB) tag with a 
unique identifier. The robot is equipped with a UWB emitter that can 
send requests and measure the range to the UWB tags in its radio 
coverage. The gathered range measurements from each tag are pro
cessed to estimate the tool’s 3D location. 

3.2. Requirements for the industry 

RPAS regulations do not apply indoors. The main limitations for the 
operation of RPAS outdoors are not present inside the factory, such as 
the restriction to visual line of sight flights, operations at night, or even 
the presence of a licensed pilot. 

A safety analysis was carried out along with the Industrial Safety and 
Health Department at Airbus D&S, following the main industrial safety 
and health European directives:  

• Directive 89/391/EEC: Measures to Encourage Improvements in the 
Safety and Health of Workers at Work;  

• Directive 92/58/EEC: Minimum Provisions for Safety and/or Health 
Signs at Work; and  

• Directive 89/654/EEC: Minimum Health and Safety Provisions in 
Workplaces. 

This analysis led to the design of several required actions and mod
ifications in the factory prior to allowing the use of aerial robots during 
working hours with the main goal of reducing the risk of accidents with 
workers. These actions are compiled in Section 5. 

Another fundamental factor that was raised by Airbus D&S during 
the initial design stage is the envisioned use of this technology in larger 
areas, and/or different factories across Europe. Scalability and imple
mentation flexibility required a minimum set-up in the factory. To 
achieve this, we focused on providing a fully onboard solution, where all 
the sensors, electronics, and processing required for the full system 
operation are on board the aerial robot. 

Also, there were requirements in terms of productivity to be 
accomplished by the developed solution. In high added-value human- 
dependent tasks, such as aircraft assembly processes with highly 
demanding lead times, the reduction of person-hours and operation 
times is key for the success of this technology. Table 1 summarizes the 
main operational requirements for each use case. Each requirement in
cludes a minimum acceptable (soft) value and a highly desirable (hard) 
value. A final critical requirement was that the factory’s productive 
activities can never be stopped or disturbed. This involved a careful 
design of the implementation strategy, which is described in Section 5. 

4. The developed system 

The robust operation of autonomous aerial robots in indoor 
manufacturing industry in fully working conditions with the presence of 
workers and high density of metallic structures is a challenging task. Our 
aim is to develop a system that works reliably and safely in the factory 
with the minimum possible setup, discarding solutions that require the 
installation of infrastructure in the factory, and hence also avoiding the 
need for procedures for their calibration and maintenance. 

4.1. Hardware description 

The aerial platform, see Fig. 3, is based on the hexacopter DJI F550 
Flame Wheel. It provides a suitable trade-off ; between size, payload 
capacity, and flight autonomy while offering plenty of space for all the 
onboard subsystems. The landing gear is a modified version that offers 
more space underneath the main platform, which is devoted to the 
installation of a cargo hold for the transportation of light objects. The 
selected low-level control autopilot is the general-purpose flight 
controller Pixhawk 1 [40] with P X 4 [41], an open-source flight control 
software for aerial robots that provides a flexible set of tools. All the 
processing tasks are performed on board in a standard UP-board, 
configured as the companion computer connected to Pixhawk 1 using the 
MAVLink protocol [42] over a serial connection. The software was 
developed on ROS (Robot Operating System) [43] on top of Ubuntu 
Linux. 

The adopted main localization and navigation sensor is a LiDAR. We 

Table 1 
Summary of the main productivity-related operational requirements.  

Req. Description Soft 
value 

Hard 
value 

RL1 Weight of the cargo 300 g 500 g 
RL2 Light object delivery time 5 min 3 min 
RT1 Time to find all the missing tools 5 min 3 min 
RT2 Tool search accuracy: maximum radius of the 

elliptic confidence interval (3σ) 
3 m 0.5 m 

RT3 Number of missing tools that can be located 
simultaneously 

3 10  
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used a Hokuyo UTM-30LX 2D LiDAR, which has a range of 30 m and a 
scan rate of 40 Hz, sufficient for the type of scenarios considered. This 
sensor acquires scans lying only in the horizontal plane, but similarly to 
[44], we installed small mirrors to deflect a narrow portion of the laser 
beams to obtain range measurements in the vertical plane. With this 
configuration, we lose a fraction of the horizontal LiDAR field of view in 
exchange for having a precise altimeter with the same sensor, avoiding 
the need for a separate altimeter. Moreover, since manufacturing plants 
often have dense floors whereas their ceilings contain few static ele
ments, the adopted solution was to place the mirrors to deflect the laser 
beams upwards, not downwards. The LiDAR sensor was mounted on top 
of the aerial frame, and the mirrors were placed in a specifically 
designed 3D-printed mount. 

To deal with the light object logistics use case, the aerial robot is 
equipped with a cargo hold designed to accommodate the items to be 
transported. This small compartment is automatically opened to release 
its contents using two small Futaba servo motors, controlled by the on
board computer. For the missing tool search use case, a UWB emitter is 
also integrated on the aerial robot connected to the onboard computer 
via USB. The selected sensor is an In-Circuit Radino 32 DW1000 tag 
module. Based on the Decawave DW1000 chip, it encapsulates an an
tenna, a UWB processing chip, a USB interface, and a battery. It has a 

maximum detection range of 300 m (outdoors) and a range error stan
dard deviation of 10 cm (30 cm indoors). This module is also attached to 
the tools to be searched in the factory. 

Fig. 3 shows all the physical system components, describing where 
each one of them is located in the aerial platform. 

4.2. Architecture design 

Fig. 4 shows a scheme of the developed architecture. All the modules 
are executed in real-time on board the robot. The autopilot is in charge 
of controlling the aerial robot flight following the received references. It 
also participates in the robot pose estimation providing the readings 
from the Inertial Measurement Unit (IMU), and integrates such pose 
estimation to close the control loop. The 6DoF Pose Estimation modules 
provide estimations of the robot position and orientation integrating the 
measurements provided by the 2D LiDAR and the IMU as detailed in 
Section 4.3. Finally, the Autonomous Navigation system implements the 
robot navigation, and provides velocity commands as references to the 
autopilot, see Section 4.4. 

The architecture also includes the visual interface module GUI, that 
the human worker would use to select the desired mission: Light Object 
Logistics or Missing Tool Search, which are responsible for performing the 
considered use cases. Both send to Autonomous Navigation the waypoints 
for the accomplishing of each type of mission. Light Object Logistics also 
triggers the actuators to open and close the cargo hold compartment for 
dropping the payload. Missing Tool Search receives the robot pose and 
the range measurements from the UWB attached to the tools being 
searched and estimates their 3D position 

4.3. DOF pose estimation in the factory 

The scheme adopted for the aerial robot 6-DOF pose estimation is 
shown in Fig. 4. The involved modules are described in the following. 

4.3.1. Laser scan splitting 
This module splits the raw 2D LiDAR scan into its horizontal and 

vertical measurement segments. Each scan is composed of 1080 points 
(270◦ range at 0.25◦ angular resolution), arranged in a single array. The 
mirrors deflect the laser scan for 22.5◦ at each end of the sensor range, 
which corresponds to the first and the last 90 points from the raw LiDAR 
scan array. To avoid mirror imperfections at the mirror edges, 20 points 

Fig. 3. Closeup picture of the developed aerial system.  

Fig. 4. Functional architecture of the proposed system.  
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at the interface between the vertical and horizontal segments are 
removed. Therefore, the vertical scan segment is created with the 
measurements with indices [0–79] and [1000–1079], and the horizontal 
scan corresponds to those in the range [100–979]. 

4.3.2. Altitude estimation 
This module filters the vertical LiDAR scans to provide estimates of 

the robot’s altitude. There are several difficulties to be solved. First, not 
all factory ceilings feature a constant height. Height variations in 
different parts of the factory should be compensated. Also, many fac
tories have static structural elements, such as beams, or objects hanging 
from the ceiling, e.g. lamps. These objects may appear as sudden dis
continuities in the vertical LiDAR measurements that need to be filtered. 
In our case at the CBC factory, the ceiling height is locally uniform, but 
contains many lamps and beams, as can be seen in Figs. 2 and 6. These 
artifacts are filtered by exploiting the fact that the LiDAR measures 
actual ceiling points most of the time. Hence, the maximum measured 
distance from the incoming vertical scan segments is taken as the robot- 
ceiling measurement. A lamp or a beam could affect one of the mirrors, 
but it is very unlikely that all measurements of both separate mirrors are 
affected simultaneously, as can be observed in Fig. 5-right. 

Altitude Estimation operates in two main steps. First, the average of 
the N greatest measurements in the vertical segments received at time k 
is computed. Next, temporal discontinuities in the estimated altitude are 
identified: if the difference between average measurements at time k and 
k-1 is higher than a threshold, it is assigned as caused by a vertical 
discontinuity in the measurements. In this case, an off ;set is added to the 
average measurement to keep the aerial robot at the same estimated 
height, preventing that sudden changes in altitude estimation affect the 
robot control. The LiDAR high scan rate (40 Hz) helps to avoid this effect 
while the robot is deliberately ascending/descending, e.g. during take- 
off/landing. 

4.3.3. Horizontal localization 
High accuracy in horizontal localization is a strong requirement for 

safety and mission accomplishment. In the CBC Airbus D&S factory, the 
flight corridors for the aerial robot have a width of 3 m. Also, in the light 
object logistics use case, the top openings of each hopper at each de
livery point is an 80 × 80 cm square (see Fig. 6), which requires a 
maximum horizontal localization error of 40 cm, which should be ful
filled after the robot has traversed almost 40 m from take-off ;. 

The adopted approach differentiates between global and local pose 
estimation. The global pose estimation provides absolute estimates of 
the robot pose w.r.t. a coordinate system attached to the factory map, 
and is based on a map alignment and correction strategy. The robot 
waypoint locations are specified within this global map, thus global pose 
estimates are used to guide the aerial robot. In contrast, the local pose 
estimation provides estimates w.r.t. the robot pose where it started 
processing consecutive LiDAR scans, and operates at higher rates due to 

the lower amount of information to be processed. Local pose estimation 
is mainly based on laser-based odometry. Both methods are based on 
registration (measurement alignment), one of the most well-known 
approaches for pose estimation [45], which objective is to find the 
rigid transformation that best aligns data so that they can be placed in a 
common coordinate system. 

The local pose estimation method uses the ICP algorithm for aligning 
the laser scans received at consecutive times, providing LiDAR-based 
odometry. Aligning consecutive laser scans is prone to drift (error 
accumulation over time), hence our approach builds an overall map as 
the scans are being registered. Then, subsequent scans are compared 
back to this’ local’ map. This persistent comparison prevents error 
accumulation but increases memory usage as the map grows. To prevent 
this, downsampling configurations for this map are adopted conse
quently. ICP requires a good initial estimate of the transformation be
tween the compared scans to prevent being stuck at local minima. In our 
case, no initial transformation is needed because the scan rate is suffi
ciently high (40 Hz). Nevertheless, ICP convergence can fail occasion
ally. In these cases, the method first recognizes and then corrects such 
failures. Scan misalignment is detected by monitoring consecutive pose 
estimations. If the difference exceeds a given threshold (in both position 
and orientation), the new estimated pose is discarded, and the’ local’ 
map is reset using the current laser scan. This strategy does not affect 
flight performance, preventing undesired effects at the cost of intro
ducing some drift when this effect occurs. Although this method is 
suitable for flight stability, it requires an additional global matching for 
accurate pose estimation. 

The global pose estimation method makes use of the same ICP al
gorithm to align the current laser scan with a static map of the factory. 
This map is pre-computed during prior flights using the local pose 
estimation approach, but ensuring that the flight speed and overall 

Fig. 5. Layout of the split 2D LiDAR scan. The 
red points represent LiDAR measurements in 
the horizontal plane (caused by walls and 
beams), while the blue points correspond to 
LiDAR measurements in the vertical plane. Two 
cases are shown: left) the vertical segments of 
both mirrors measure robot-ceiling distances, 
and right) one vertical segment measures robot- 
ceiling distance while the other contains points 
partially reflected by a lamp. (For interpretation 
of the references to colour in this figure legend, 
the reader is referred to the web version of this 
article.)   

Fig. 6. Light object logistics delivery point, with the aerial robot positioned 
right before releasing the requested component. 
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motion are convenient for not inducing any map reset. This static factory 
map only requires to be computed once. The alignment of the current 
laser scan with the global static map helps to find out the global robot 
pose. By comparing this pose to the current local pose, we are able to 
correct the drift introduced by the local pose estimation method; hence, 
such adjustment allows the aerial robot to safely arrive at the correct 
destination with the required accuracy. 

Finally, module Localization Combination integrates the above esti
mations to assemble the full 6-DoF localization of the robot before 
feeding it to the autopilot control. The robot position is obtained by 
combining the X and Y coordinates provided by the local pose estimator 
(which has been corrected with the global pose estimation) with the Z 
coordinate provided by the altitude estimator. The orientation is ob
tained by combining the yaw angle estimated by the local pose estimator 
with the roll and pitch angles from the IMU. 

4.4. Autonomous navigation 

In the design of the autonomous navigation system, we preferred 
safety and robustness for everyday operation in the factory rather than 
efficiency. We adopted, see Fig. 4, a robust robot navigation scheme 
based on predefined waypoints that were selected considering aspects 
such as the expected trajectories for each use case, the geometry of the 
factory and established flight corridors, the safety of workers, and also 
practical considerations such as the positions of the air vents and large 
doors, which could create wind turbulence that might hamper the aerial 
robot control. Fig. 7 shows a layout of the factory with one example of 
the robot trajectories for each type of mission and the involved way
points. All the waypoints (eleven in total) were set at the same altitude: 
7.5 m above the ground level. Two types of autonomous missions were 
defined, one for each use case, both expressed as concatenations of 
elemental tasks such as take-off ;, go to a waypoint, or open the cargo 
hold to release the light object. 

Table 2 shows the tasks considered along with the accepted param
eters for each task. In light object logistics missions, the robot takes off ;, 
flies from the storage center to the delivery point of the worker that 
requested the object (delivery point A at waypoint WP5 in the example 
shown in Fig. 7-left), delivers the object by consecutively commanding 
the opening and closing of the cargo hold, returns to the storage center, 
and lands. In missing tool search missions, the robot takes off ;, describes 
the tool search mission trajectory defined to cover the required factory 
zone (the Fan Cowl Assembly Area in our case), returns to the storage 
center, and lands. 

The waypoints for each mission are provided by modules Light Object 

Logistics and Missing Tool Search, see Fig. 4. Trajectory Following ensures 
that the robot accurately follows the expected trajectory to accomplish 
the mission. The predefined safe trajectories are composed of a collision- 
free path between waypoints, each with an associated time reference 
defined according to the robot kinematics and scenario constraints. 
Waypoints are defined w.r.t. the reference frame of the static global 
factory map. However, the aerial robot autopilot accepts references 
expressed in its local reference frame. Trajectory Following receives both 
the global and the local pose estimations and calculates the current 
transformation matrix between them to provide the appropriate refer
ences to the autopilot control system. Trajectory Following is also in 
charge of transitioning between waypoints during the mission. When the 
aerial robot pose reaches a sphere of radius wpR around the last com
manded waypoint, Trajectory Following sends the autopilot the co
ordinates of the next waypoint. 

For additional safety, the autonomous navigation system includes 
one functionality for detecting and avoiding unexpected dynamic ob
stacles (e.g. other aerial robots) or static obstacles not included in the 
static global map. The Reactive Obstacle Avoidance module implements a 
basic reactive obstacle avoidance method. It receives the estimated 
robot pose, the 2D LiDAR scan, and the autopilot references calculated 
by Trajectory Following. It defines a safety spherical area with a radius of 
1.2 m around the aerial robot. If it detects an object within this area, it 
generates a reference to the autopilot in the opposite direction. The 
LiDAR high scan rate (40 Hz) ensures good performance with obstacles 
that are static or move with moderate velocities. If the presence of the 
obstacle persists for a given time compromising the mission accom
plishment, the mission is aborted for safety. This mechanism indirectly 
provides additional protection against potential robot localization drift. 

4.5. Tool UWB-based localization 

The objective of this module is to estimate the 3D location of missing 
tools. All tools are equipped with a UWB tag with a unique identifier 
(ID). While the robot flies, it periodically (every 2 s) emits UWB signals 
with those IDs. Every time a UWB tag attached to a tool receives a signal 
with its ID, it sends back a response message, from which the onboard 
UWB device extracts a range measurement. Robot motion is slow when 
compared to range measurement gathering, simplifying measurement 
synchronization. 

This module uses the robot location estimates and the range mea
surements gathered from the missing tools. Manufacturing plants often 
have multiple metallic structures that make UWB measurements highly 
prone to outliers (due mainly to multi-path propagation phenomena). 

After outlier filtering, a Bayesian method integrates the filtered UWB 
measurements using two sequential stages executed independently for 
each tool. First, a Particle Filter (PF) approximates the localization of the 
tool, which helps to deal with multi-modality that appears in range-only 
localization. Second, after the PF converges to a uni-modal solution, the 
PF is terminated and the resulting tool estimation is used to initialize an 
Extended Kalman Filter (EKF) that keeps refining the tool location 

Fig. 7. Layout of the factory with the selected navigation waypoints (in orange) 
and sample trajectories for the two missions: light object logistics (left) and 
missing tool search (right). 

Table 2 
Elemental tasks in the proposed system.  

Task Parameters Description 

Take-off ; altitude Commands a vertical take-off to a 
specific altitude 

Land altitude Commands a vertical land from a 
specific altitude 

GoToWP waypoint 3D coordinates, 
yaw angle, wait time, 
delivery flag 

Commands new waypoint, 
velocities are computed to fulfill 
the time constraints 

OpenCargoHold n/a Triggers actuators to open the 
cargo hold 

CloseCargoHold n/a Triggers actuators to close the 
cargo hold  
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estimation. It is known that EKFs are more computationally efficient 
than PFs and deliver similar results when the problem has already 
reached uni-modality [46]. Every tool has different radio IDs, which 
makes the association of measurements with their correspondent PF-EKF 
pair straightforward. Independent PF-EKF schemes for each tool were 
preferred to the more complex multi-tool filters for computational effi
ciency. The adopted approach enabled real-time onboard execution 
simultaneously with the rest of the modules. 

4.5.1. Outlier filtering 
Outlier rejection works as follows. Let zk be the range measurement 

received from a UWB tag at time k. Let Xr
k be the estimated position of 

the robot at time k. Assume that the robot will never get closer than 
3σUWB to any tool, where σUWB is the standard deviation (assumed 
constant) of the UWB range measurement error. σUWB is usually low for 
current UWB technology (0.2 m in our case), hence this assumption is 
not a constraint in practical terms. Let σr

k be the square root of the 
maximum eigenvalue of Σr

k (the robot location covariance matrix) so 
that the robot location uncertainty is represented by its most restrictive 
1-dimensional representation. With the above assumptions, if the robot 
moves between times k1 and k2 away from the tool, the resulting UWB 
measurements can be analyzed in Fig. 8. It can be seen in Fig. 8-left that 
the minimum feasible difference between the two inlier measurements 
zk1 and zk2 is: zmin

k2 − zmax
k1 . On the other hand, Fig. 8-right gives the 

maximum feasible difference: zmax
k2 − zmin

k1 . Equivalently, if the robot 
moves straight to the tool, the maximum and minimum differences 
remain the same but negated in sign. Since these are the boundary cases 
of all 3D movements of the robot, we can define the maximum and 
minimum feasible differences between two inlier measurements zk1 and 
zk2 as: 

‖zk2 − zk1‖ ≥ d
(
Xr

k2,Xr
k1

)
− 6σUWB − 3σr

k2 − 3σr
k1 (1)  

‖zk2 − zk1‖ ≤ d
(
Xr

k2,Xr
k1

)
+ 6σUWB + 3σr

k2 + 3σr
k1 (2) 

This expression serves as a check for outlier detection since it will be 
true (with high probability) if the measurement is not an outlier, i.e. if 
all the measurement and localization errors lie in their own ±3σ range, 
which occurs with probability 98.8 % = 0.9974 (notice that 99.7 % is the 
probability that one error lies in its ±3σ boundary assuming Gaussian 
distributions). Based on expressions (1) and (2), a median filter was 
adopted to deal with possible consecutive outliers. First, the filter dis
cards all the UWB measurements taken when the robot height in Xr

k is 
lower than 0.5, since the measurements near the floor have a high 
outlier probability. The filter maintains 3 vectors with the last N robot 
pose estimations, robot pose uncertainties, and UWB measurements for 

that tool. Each new measurement and robot pose (Xr
k, σr

k, zk) is verified to 
satisfy expressions (1) and (2), but comparing not with the previous 
measurement but against the median of the measurement vector and its 
corresponding robot pose. Hence, if the evaluation of (1) and (2) is true, 
the measurement zk is considered an inlier. If not, it is considered an 
outlier. This simple and efficient method provided satisfactory results. 
Fig. 9 shows that most of the outliers in one experiment were removed, 
except for a few remaining outliers that are caused by a tool that was 
confined between metallic structures, which resulted in a significantly 
higher σUWB than that used. 

4.5.2. The PF stage 
Once the UWB measurements have been filtered, they are introduced 

in the PF-EKF localization scheme. The first stage is the PF, a Bayesian 
recursive filter suitable for multi-modal estimation problems such as 
range-based localization. The adopted PF follows the structure described 
in [46]: each particle τ[j] of the PF represents a hypothesis of the position 
of the tool, and τ is the full probability distribution of the tool’s position, 
which is given by the set of all particles. The PF is initialized when the 
first measurement of a missing tool UWB tag, z0, is received. The initial 
particles are drawn from a 3D annular distribution with mean zk and 
width 6σUWB. This distribution takes into account all the possible 3D 
locations of the tool that may have led to the received measurement. All 
particles located higher than 3 m are rejected since tools are always at 
human reach altitudes. The particles with negative heights (located 
under the floor) are also removed. 

Once the PF has been initialized, its particles are recursively updated 
integrating each new measurement zk, making them condensate towards 
the tool’s real position over time. Notice that the tools are assumed 
static, i.e. the predicted position of the tool is the same as in the previous 
instant. Hence, the particle prediction model adopted was the static 
model τ[j] = τ[j− 1]. In the PF update stage, with each new measurement 
zk, the weight ωj of each particle (the probability that particle τ[j] reflects 
the actual position of the missing tool) is updated using the following 
Gaussian likelihood function: 

ωj = ωj
1

σUWB
̅̅̅̅̅
2π

√ exp

((
d
(
τ[j],Xr

k

)
− zk

)2

2(σUWB)
2

)

(3)  

where d
(
τ[j],Xr

k
)

is the distance between the particle τ[j] and the current 
robot’s position Xr

k. This distance is also the expected measurement at 
instant k for particle τ[j], and thus the likelihood function relates to the 
similarity of this expected measurement with the actual measurement 

Fig. 8. Robot moving straight away from the tool (from Xr
k1 to Xr

k2). The red 
circles represent the 3σr

k uncertainty of the robot’s positions (orange dots) and 
the radio range measurements (depicted as uncertainty around the real tool 
position Xt at the blue asterisk): left) case of minimum difference between inlier 
measurements; and right) case of maximum difference between inlier mea
surements. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 

Fig. 9. Histogram of UWB measurement errors in one experiment in the factory 
before (in blue) and after (in red) outlier filtering. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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zk. The weights ωj of all particles are initialized with the same value at 
the first initialization, and are normalized after each update. 

The particle importance resampling is performed to provide a faster 
PF convergence and account for possible errors in particle removal. 
When the new weights at time k are computed, a total of M particles are 
removed from the filter with a random probability that is inversely 
proportional to their weights (lower weight implies a higher removal 
probability). Each removed particle is substituted by a particle copy of a 
highly probable particle (higher weight implies a higher probability of 
being copied). The particles copied are moved randomly a few centi
meters to better analyze the area surrounding highly probable particles. 
In our case, 10 % of the total particles are removed at each resampling. 

PFs enable multi-modal estimation but require a significantly higher 
computational burden than uni-modal estimation tools such as EKFs. 
The PF convergence to a uni-modal solution is periodically checked. If 
στ, the square root of the maximum eigenvalue of Στ, is below a certain 
value (we used 3στ =3 m), the PF is considered as converged. Then, the 
estimated location of the tool (μτ) is given as the weighted mean of all 
particles. The covariance matrix of the PF particles is used, alongside μτ, 
to initialize the EKF of the next step. Finally, the PF is terminated. 

4.5.3. EKF-based refinement 
The EKF represents the tool position by a Gaussian with mean μτ and 

covariance Στ. It relies on the assumption that the tool is static, so: μ̂τ
=

μτ
k− 1, i.e. the predicted position of the tool is the same as in the previous 

instant. This is used as the prediction model adopted for the EKF. The 
observation model is the Euclidean distance between the robot position 
and the tool position, such that: ̂zk = d

(
μτ,Xr

k
)
. Given the prediction and 

observation models, and the initial values of μτ and Στ, the filter can be 
easily implemented as in [38]. This EKF was able to accurately localize 
the missing tools in the factory, without needing any complex modeling 
of signal reflections, as can be seen in the experiments in Section 6. 
Moreover, the adopted PF-EKF scheme has very low computational 
consumption and can be executed in real-time on board the robot 
together with the rest of the modules. For example, 4 PFs (e.g. localizing 
4 tools using PFs) running in parallel only use 10 % of one core in the 
UP-board processor. Also, running 4 EKFs use <1% of one core, 

involving a computational cost saving of >90 % w.r.t. PFs, which jus
tifies the adopted PF-EKF approach. 

5. From the lab to the factory 

5.1. Adaptation of the factory 

Fig. 10 summarizes the deployment of the proposed system in the 
CBC Airbus D&S factory. Following the safety analysis described in 
Section 3.2, the first decision was to determine the robot flight zone, 
which had to be at least 5 m above the ground to ensure enough physical 
separation with human workers. Imposed by the factory Industrial 
Safety and Health Department as an unavoidable requirement, a safety 
net was designed and installed below the flying level to prevent physical 
contact with workers or manufacturing elements. 

The safety net has a U-shaped design and surrounded the flight zone 
except for the upper part, to enable the safety pilot to react and recover 
the robot if necessary. Also, in the light object logistics use case, hoppers 
were designed to connect the flying zone to a tray at human reach where 
objects are delivered. Two hoppers were installed in the factory at de
livery points A and B. The location for the robot’s take-off ; and landing 
was chosen in such a way that it would not pose major worker mobility 
constraints in the factory working area. It was placed in free space 
within the logistics and storage center. The aerial robot takes off ; and 
lands from the ground, hence a safety vertical corridor –surrounded by 
the safety net– was installed from the ground to the flying altitude. To 
avoid constraining the mobility of workers while not in use, the bottom 
part of the netting is free to be rolled up. 

5.2. Safety and robustness validation 

Implementing an autonomous aerial robot in a factory in full work
ing conditions requires careful safety and robustness analyses and vali
dation procedures. A dual complementary approach was adopted. On 
one hand, we established safety analyses and procedures by collecting 
all possible risks and defining mitigation measures. On the other hand, 
we adopted an incremental robustness validation approach with 
increasing levels of presence of workers and complexity. 

Fig. 10. Layout of the CBC Airbus D&S factory showing the storage center at the logistics area with the take-off ;/landing location (in blue), the flying corridor (in 
orange) towards the fan cowl assembly working area (in light green), which includes hoppers A and B for light object delivery (in dark green). (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Table 3 summarizes the main risks and proposed mitigation mea
sures adopted. Most risks were addressed with several complementary 
passive and active mitigation measures. The safety net is the main 
mitigation means for many of the risks. The modular and robust design 
of the system functionalities is very relevant against software failures. 
Installing the safety net reduced the available flying area to the space 
covered by the net. This restriction suggested the adoption of a navi
gation approach based on predefined waypoints, which simplifies robot 
autonomous navigation and enhances robustness. We also implemented 
modules that supervise that hardware and software components are 
operating under nominal parameters and that safely finish the mission in 
case of unexpected behaviors. 

The 6DoF localization system was extensively tested in a mock-up 
scenario installed at the indoor flying arena of FADA-CATEC, as it can 
be seen at https://youtu.be/O9pD1dPnTn8. Missing tool search mod
ules were tested directly at the CBC factory. The final stage was to test 
the fully autonomous system in a factory that could not stop production 
for such experiments. This stage was divided into four steps with an 
incremental presence of workers:  

1 Experiments out of regular working time (>20:00 h). To reduce 
risks, there were very few workers in the factory. This step required 
around 3 months of experiments with one workday in the factory 
every one or two weeks. Experiments in the factory were interleaved 
with method refinement in the lab and indoor flying arena with the 
collected data.  

2 Experiments in the afternoon work shift without involving 
workers. Workers got used to the aerial robot flying in the factory 
but still did not interact with it. This step required 2 months of ex
periments with one or two workdays in the factory every week. All 
refinements were tested directly in the factory.  

3 Experiments in the afternoon work shift involving workers. The 
workers started interacting with the robot and asked for a specific 
small object using the light object logistics system. This step required 
around 1 month of experiments with one or two workdays in the 
factory every week. 

4 Experiments in the morning work shift in fully working condi
tions. The factory was in full working conditions, with tens of 
workers around and some of them interacting with the system. The 
system was safe and robust. This step required around 4 weeks of 
experiments with between two and four workdays in the factory 
every week. 

6. Validation in the factory 

This section summarizes the validation experiments of the robotic 
system operating fully autonomously in the CBC Airbus D&S factory 

(Cádiz, Spain), which were performed during the final months of 2017 
and the beginning of 2018. In these experiments, the robot traversed a 
total distance of ~19 km, with a total flight time of ~27 h. The 
description of the partial module and functionality experiments, mainly 
performed in the laboratory and the FADA-CATEC flying arena, has been 
omitted for brevity. A video of the experiments is available at https://y 
outu.be/7HVf5i1CY2M. 

6.1. Light object logistics 

First, an experiment of the light object logistics use case mission is 
presented. It starts when a component request reaches the logistic center 
from a worker located near one of the delivery points at the Fan Cowl 
Assembly Area (delivery point A in this experiment). Once the compo
nent is placed in the robot’s cargo hold, the mission starts. The robot 
takes off ; and performs a pure ascent up to waypoint WP1 (see Fig. 7), 
located at an altitude of 7.5 m. Next, it navigates to the following 
waypoints WP2 (see Fig. 11a) and WP3 through the horizontal corridor, 
until it reaches WP4 at the Fan Cowl Assembly Area (Fig. 11b). Then, it 
navigates to delivery point A, which is defined by waypoint WP5. 
Approximately 100 s after taking off ;, the robot reaches WP5 with the 
required accuracy during at least 5 s. At that time, the robot is ready for 
cargo delivery (it is represented in Fig. 11c by displaying the delivery 
waypoint marker with green color). At that time, the cargo hold is 
opened: the capsule with the requested component is dropped through 
the hopper. After delivery, the aerial robot starts navigating back 
following the same waypoints in reverse order, see Fig. 11d. Meanwhile, 
the worker retrieves the component from the capsule and acknowledges 
reception. The aerial robot finally lands at the logistics area after having 
traversed more than 70 m. The whole flight takes an average of 200 s. 

More than 150 light object logistics missions were performed in the 
factory in full working conditions. Unfortunately, there was no infra
structure to record any ground truth in the factory. For validation 
assessment, we considered that: robot navigation in each experiment is 
successful if it is capable of safely reaching all the mission waypoints; 

Table 3 
Main risks identified and implemented passive and active mitigation measures.  

Risk Passive Mitigation Active Mitigation 

Aerial robot hardware 
failure 

Safety net Pre-flight and in-flight hardware 
status supervision modules 

Software failure Modular software 
design; Safety net 

Pre-flight and in-flight software 
status supervision modules 

Robot localization / 
navigation error 

Safety net 6-DoF pose estimation 
supervision 

Physical contact with 
human workers 

Safety net; Robot 
flights above 7 m 

Reactive obstacle avoidance 

Presence of 
unexpected 
obstacles 

Safety net Reactive obstacle avoidance 

Inaccurate dropping of 
light objects 

Hopper to increase 
the dropping area 

Accurate robot positioning 
modules 

Inaccurate missing tool 
localization  

UWB outlier filter; Tool 
localization covariance 
monitoring  

Fig. 11. Light object delivery experiment: a) the robot takes off ; and navigates 
through the vertical and horizontal ducts following waypoints WP1 and WP2; 
b) the robot continues to waypoints WP3 and WP4; c) the robot reaches WP5 
(location of delivery point A) and opens the cargo hold to release the requested 
component, and; d) the robot returns following the same path towards the lo
gistics area. 
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object delivery is successful if the robot releases the cargo accurately in 
the delivery hopper; and the full mission is considered successful if the 
robot completes the mission autonomously without any external assis
tance fulfilling the delivery time requirements, from take-off ; to land
ing. Table 4 shows the obtained results considering all the experiments 
performed in the factory. 

The navigation success rate was 96 %. The 6DoF pose estimation in 
the factory was accurate enough to allow the aerial robot to traverse a 
distance of around 70 m per mission with a positioning error of 0.4 m. 
The system performed as expected except in only a low percentage of the 
cases in which the flight was interrupted due to pose estimation errors. 

The light objects were correctly delivered in 97.4 % of the tests. On 
some occasions, the navigation system failed while the robot returned to 
the logistics area after accomplishing object delivery: hence, a naviga
tion failure does not necessarily imply a delivery failure. It should be 
taken into account that the results shown in Table 4 correspond to all the 
experiments performed in the factory. The navigation failures occurred 
during Stage 1 and Stage 2 of the implementation in the factory, ac
cording to Section 5.2. In Stage 3, after adjusting in the factory, no 
navigation failure was registered, obtaining success rates of virtually 
100 % in the >65 missions that were performed in Stage 3. These ad
justments mainly applied to the 6DoF pose estimation modules, whose 
parameters were refined during the first experiments in the factory. 
Particularly important was the threshold for discontinuity detection in 
the altitude estimation (see Section 4.3.2), which needed to be increased 
according to the higher factory size compared to the laboratory testbed. 
Also, we increased the position and orientation thresholds for detecting 
failures in the local pose estimator (see Section 4.3.3), as well as the 
point cloud downsampling configuration for the map, due to the higher 
distances observed at the factory. 

Table 4 also includes the object delivery and mission accomplish
ment times; for both of them, the average and the worst-case times are 
shown. The delivery time, i.e. the time between the worker request and 
the delivery, is useful to assess the productivity improvement when 
compared to current manual-based procedures in the factory. The 
average delivery time was ⁓98 s with a maximum (worst-case) time of 
104 s. Both times largely fulfilled the hard (more restrictive) time 
requirement for this mission (RL2 in Table 1). 

6.2. Missing tool localization 

The tool localization system was validated by testing different places 
for hiding tools and analyzing the system performance in finding them. 
Several tools were searched for in every experiment. Below, one missing 
tool localization experiment is described, which was executed while the 
robot navigated performing light object logistics tasks. 

First, an intelligent tool cabinet reports three tools as missing: their 
IDs are given to the missing tool search module. The PF of each missing 
tool is initialized after the reception of the first range measurement from 
its UWB, which occurs when the robot gets closer to them. The PF 
particles start evolving as new range measurements are integrated. 
Fig. 12a shows that two PFs have been initialized, and the robot tra
jectory up to that time is shown in red. The third PF is initialized 

between Fig. 12a and b. Later, when the robot reaches WP4, the value 
3στ of one PF becomes lower than 3 m, hence it transitions to an EKF 
using its current mean and covariance matrix, see Fig. 12b. At t = 70 s, 
the other two PFs also converge to EKFs, and the first EKF already has a 
3στ lower than 0.5 m, see Fig. 12c. When the robot returns to the lo
gistics area, the delivery mission finishes and all the missing tools have 
been localized. The EKFs of the three tools have converged to a 3στ lower 
than 0.5 m, and their location and uncertainty regions are shown in the 
factory map so that workers can easily find them, see Fig. 12d. The 
resulting missing tool localization errors (Euclidean distance between 
the estimated and actual tool positions) in this specific mission were 
respectively 0.10 m, 0.05 m, and 0.23 m. 

More than 200 validation experiments of missing tool searches were 
conducted, most of them while also testing light object logistics mis
sions. The missing tools were randomly placed in the Fan Cowl Assembly 
Area at different spots where it was probable to forget a tool: on the 
floor, over the working tables, and near the fan cowls or the factory 
structures. Table 5 summarizes the results obtained. The table also ac
counts for the missions in which the robot navigation system failed. 
Notice that a navigation failure does not always preclude successful 
missing tool search accomplishment. In many cases, navigation failure 
due to high localization errors did not affect significantly the missing 
tool search and, in others, the tools were found before the mission was 
interrupted due to the navigation failure. The overall success rate with 
3 m accuracy was 97.5 %, and with 0.5 m accuracy was 94.1 %, meaning 
that almost all objects were successfully found. 

Table 5 shows the percentage of times that the tools were correctly 
localized inside the 3 στ <3 m confidence area and the 3 στ <0.5 m area 
for the different spots, with and without the outlier rejection filter. The 
table also shows the average and worst-case times for PF convergence, 
and for accomplishing missing tool search missions (tool correctly found 
inside the 3 στ <0.5 m area). Although these times depend on the spot 
where the missing tools were located, both tool search times were lower 
than the duration of light object logistics missions and also lower than 
the hard (more restrictive) time requirement for this mission (RT1 in 
Table 1). The worst performance was obtained with missing tools 

Table 4 
Success ratio of the light object logistics validation experiments in the CBC 
Airbus D&S factory.   

Hopper Hopper Total  
A B  

Navigation success rate 95.9 % 96.2 % 96.1 % 
Object delivery success rate 97.3 % 97.4 % 97.4 % 
Mission success rate 95.9 % 96.2 % 96.1 % 
Object delivery Mean time 97 s 99 s 98 s 
Object delivery Max time 100 s 104 s 104 s 
Mission Mean time 196 s 197 s 196 s 
Mission Max time 201 s 206 s 206 s  

Fig. 12. Missing tool search experiment while the robot performs light object 
logistics tasks. The tool ground-truth locations are depicted as blue spheres. The 
PFs particles are depicted as colored dots, scaled from blue (higher particle 
weights) to red (lower weights). The uncertainty regions with radii lower than 
3 m are shown as green ellipsoids. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of 
this article.) 
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located under the fan cowls: they become shielded by the metallic 
structure, hampering UWB reception, and increasing the outlier mea
surement levels. 

Table 5 summarizes all the experiments performed in the factory. 
After adjusting the navigation system in the factory in Stage 3, no 
navigation failure was registered, obtaining missing tool success rates of 
virtually 100 % except for tools under fan cowls. Tools near metallic 
structures caused outliers that were alleviated by integrating more 
measurements in the PF-EKF scheme and using the outlier filter. The 
method had similar performance for flights while performing logistics 
tasks and for on-request missing tool missions. 

7. Lessons learnt 

The safety of the personnel and the factory elements is crucial. Robot 
fall damages can be overcome by adding active security measurements 
(such as the reactive obstacle avoidance in Section 4.4) or passive se
curity measures (such as propeller guards). During all validation stages 
at the factory, the aerial robot fell on the safety net only on one occasion; 
this took place during Stage 1 one of the first days of testing the 6DoF 
pose estimation modules. The safety net is a cost-effective installation 
that successfully eliminates fall damages and does not alter the func
tioning of the factory. 

It is also of high interest to analyze the reaction of the workers to the 
presence of aerial robots. During the first days, workers were interested 
in the system and its validation, but after several successful experiments, 
they tend to ignore the robot and continue working without distraction. 
The noise generated by the robots’ propellers was one of our concerns. 
However, it was neglected by the noise emitted from other 
manufacturing machines. Moreover, the workers usually wear noise- 
canceling headphones during their full shift. The interaction of the 
workers with the robot was satisfactory and required almost no in
structions. To achieve that, it was important to design a graphical user 
interface (GUI) that allowed the workers to perceive the robot as another 
tool, and not as a complicated system with undefined functionalities. 

The upper parts of factories are suitable for aerial robot operations 
with almost no risk of collision. One particular issue to account for is that 
aerial robots can raise dust when flying. The take-off ;/landing locations 
(in the logistics area) should be clear of dust, but there is no need of 
eliminating the dust in all the areas since robots fly several meters above 
the ground. The air vents located at the ceiling can perturb the robot 
flight control and can alter the measurements of barometer-based alti
tude sensors. The first issue was solved by properly tuning the robot 
controller, and the second, by using the 2D LiDAR to measure altitude. 

CBC factory exhibits a slanted roof with beams and lamps, but the 
same altitude estimation module could be reused in other factory en
vironments (e.g. saw-tooth roof) since it already takes into account 
slants and discontinuities; nevertheless, specific parameter tuning and 
testing steps are recommended before implementing our system in other 
factory environments. 

UWB technology has proven to be a very cost-effective solution for 
missing tool search. Even though it is necessary to have outlier filtering 
mechanisms, the advancements in low power consumption and accuracy 
make UWB a very suitable technology. 

Although simulations and experiments with mock-ups are very good 
solutions for initial development, it has been crucial to gather as much 
real data as possible. These datasets allow for fine-tuning without con
ducting specific experiments and enable parallel development with 
copies of the robot’s software. 

The robot motors, ESCs and propellers were chosen for allowing a 
flight autonomy of 10− 12 min with the total estimated platform weight, 
which we considered adequate for the validated use cases. The energy 
consumption of all the sensors, computers and electronics on board the 
robot was 16 W. The current prototype is powered by a single battery, 
which implies a full system restart whenever a battery change is needed. 
Redesign efforts are currently taking place in order to improve the 
acceptance of the system. First, separate batteries for electronics and 
rotors will allow subsequent flights without powering off the onboard 
computer and sensors. Second, a system for automated battery change 
will minimize the need for system supervision by factory personnel. 

8. Conclusions 

This paper presents a fully autonomous aerial robotic system per
forming complex tasks in manufacturing industries. The system was 
designed, developed, and implemented with two fundamental re
quirements: safety to workers and robustness for everyday operation. It 
includes modules for accurate GNSS-denied self-localization, autono
mous navigation, radio-based localization, and obstacle avoidance, 
among others, providing a fully onboard solution where all involved 
sensors, electronics, and processing are embarked on the robot, enabling 
implementation flexibility and scalability. 

Two main use cases are considered: transportation and delivery of 
light objects in the factory and localization of missing tools, which are of 
interest in –and could be easily extended to– a wide variety of 
manufacturing industries. The system validation with TRL-7 in the 
Centro Bahía de Cádiz (CBC) Airbus D&S factory in fully working con
ditions provided satisfactory results that fulfilled all the system and use 
case functional requirements. To the best of our knowledge, it is one of 
the first times a fully autonomous aerial robotic system performing 
complex tasks has been validated in an indoor manufacturing plant in 
fully working conditions. 

We believe that the presented work represents a good example of the 
adoption of robots in industrial applications that will open indoor 
manufacturing applications for aerial robotics. Wide lines for future 
research, development, and innovation are opened after this work. The 
use of other robotic platforms more suitable than multi-rotors to densely 
populated environments is a natural extension. Soft aerial robots or 
coaxial platforms with a protective structure around the blades are 
promising, but in the current state of technology, their limited payload 
capacity is a critical issue that constrains their feasibility. Although the 
safety net does not perturb the system missions or the factory operation, 
removing it is very interesting for opening the solution to a wider range 
of applications and scenarios. In our case, the safety net was imposed as 
an unavoidable requirement by Industrial Safety and Health Department 
at Airbus D&S. Also, the full integration of the proposed system within 
the factory manufacturing procedures and the extension to other use 
cases or other manufacturing processes are object of current research. 

Table 5 
Success ratio of the missing tool localization system.  

Tool placement Tables Ground Fan cowls/Structures Under fan cowl Total 

Outlier Filter No Yes No Yes No Yes No Yes Yes 

Found with 3στ < 3m  97.1 % 99.0 % 96.3 % 98.1 % 96.3 % 97.1 % 71.8 % 88.4 % 97.5 % 
Found with 3στ < 0.5m  93.3 % 98.1 % 70.4 % 97.6 % 58.5 % 95.2 % 31.6 % 56.9 % 94.1 % 
PF convergence Mean time 61 s 54 s 60 s 53 s 78 s 65 s 105 s 89 s 61 s 
PF convergence Max time 69 s 60 s 72 s 59 s 96 s 82 s 125 s 113 s 72 s 
Tool search Mean time 97 s 81 s 101 s 84 s 121 s 98 s 160 s 121 s 91 s 
Tool search Max time 102 s 92 s 106 s 89 s 129 s 115 s 164 s 138 s 103 s  
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