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Abstract: Mobile robots are of great help for automatic monitoring tasks in different environments.
One of the first tasks that needs to be addressed when creating these kinds of robotic systems is
modeling the robot environment. This work proposes a pipeline to build an enhanced visual model
of a robot environment indoors. Vision based recognition approaches frequently use quantized
feature spaces, commonly known as Bag of Words (BoW) or vocabulary representations. A drawback
using standard BoW approaches is that semantic information is not considered as a criteria to create
the visual words. To solve this challenging task, this paper studies how to leverage the standard
vocabulary construction process to obtain a more meaningful visual vocabulary of the robot work
environment using image sequences. We take advantage of spatio-temporal constraints and prior
knowledge about the position of the camera. The key contribution of our work is the definition
of a new pipeline to create a model of the environment. This pipeline incorporates (1) tracking
information to the process of vocabulary construction and (2) geometric cues to the appearance
descriptors. Motivated by long term robotic applications, such as the aforementioned monitoring
tasks, we focus on a configuration where the robot camera points to the ceiling, which captures more
stable regions of the environment. The experimental validation shows how our vocabulary models
the environment in more detail than standard vocabulary approaches, without loss of recognition
performance. We show different robotic tasks that could benefit of the use of our visual vocabulary
approach, such as place recognition or object discovery. For this validation, we use our publicly
available data-set.

Keywords: visual vocabulary; computer vision; bag of words; robotics; place recognition;
environment description

1. Introduction

Bag of Words (BoW) approaches are a common way to represent images based on a quantized
feature space. They are broadly used in visual recognition problems, such as object or place recognition
and image retrieval [1–6]. These techniques create a catalog of image features or words and describe
each image as a vector of occurrence counts of these words.

A typical drawback using standard BoW approaches is that semantic information is usually
neglected when grouping the visual features into the clusters or visual words. In a general setting,
including conceptual information is challenging since no assumption can be made about the type
and meaning of the visual features that may appear. However, many applications could benefit from
including semantic content in the vocabulary to achieve their goals. Our objective is to build an
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improved vocabulary that provides a more meaningful model for applications using BoW techniques.
We focus on mobile robotic applications which imply long term operations indoors, in environments
such as a warehouse [7] or a museum [8].

Our approach is built after two intuitive hypotheses. First, robotic platforms provide sequential
information (a sequence of images) including tracking information, while building the vocabulary
helps to cluster the different appearances of a scene element. Second, cameras in robotic platforms
have a fixed location to the robot, respectively. We can find spatial restrictions and make reasonable
assumptions about the location of elements of the environment (e.g., the lamps are on the ceiling, the
posters on the wall, ...). We use simple geometric information together with the image appearance to
cluster the environment elements.

As done previously in multiple robotics applications [9,10], we benefit from having a camera
pointing to the ceiling. Such camera configuration improves the operation over long periods of time,
something crucial to address indoor monitoring applications with autonomous systems. Upper parts
of indoor scenes are typically less dynamic than the rest of the scene and provide a more robust visual
model. In this setting, we expect the environment to include a small number of repeatable elements
(different kinds of lamps or windows) and a few elements which are rather unique (exit signs, posters
or labels), most of them with fixed locations within the scene. We assume that these elements present a
restricted set of appearances from a few points of view that are reachable by our robot.

Our approach consists of a novel hierarchical process (summarized in Figure 1). It creates a visual
vocabulary with richer information about the environment than standard BoW methods. Instead of
computing the visual words directly from the acquired data, we propose obtaining an initial grouping
into classes containing similar sets of tracked key-points. Then, standard vocabularies are computed
in each of those classes.

Figure 1. Diagram of our novel vocabulary construction method. During the acquisition, extracted
image key-points are tracked. All the image appearances and altitude angle values of these key-points
are stored and grouped together under the same set number. These sets of tracked key-points are later
clustered into classes, with the elements in each class representing the same element of the environment.
Finally, words are extracted running a clustering for each of the obtained classes.

The main differences and contributions of our approach with regard to prior work are
the following:

• We leverage the visual vocabulary for a more meaningful representation of a given
working environment;

• We propose a novel way to include spatio-temporal information in the vocabulary construction
process: thanks to feature tracking, our approach automatically groups the different appearances
of scene elements;

• Additionally, we propose including each key-point altitude value in the key-point descriptors to
encode the different viewpoints for the scene elements.
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Our experimental section demonstrates how the presented approach builds a visual model
that provides higher representativity of the environment. At the same time, the created vocabulary
maintains the same performance for place recognition as a standard vocabulary.

2. Related Work

How to acquire a representative visual model of the environment is a problem that has been
studied for a long time. In particular, acquiring models of the environment for long term operation
is a subject of great interest, since it provides intelligent systems with higher autonomy [11,12].
Additionally, enhancing those models with semantic information is a key element for human–computer
interaction [13–17].

Seeking for robust models across time, indoor vision based robotic tasks have taken advantage of
using visual ceiling features [9,10]. Elements on ceilings are usually more stable over time than those
in floors or walls, where dynamic scene elements often appear. Recent results revisited this idea for
indoor and industrial oriented robotic applications [18,19], where long term operation is required.

Robustness during long term operations is an issue of great importance when designing
autonomous systems for indoor environment monitoring and surveillance [20–22]. In such applications,
the robot needs to reliably localize itself in a known environment and have some semantic information
that allows the system to measure parameters of interest or discover certain events, such as the presence
or absence of common objects or changes in the environment infrastructure (potential changes may be
due to broken components, leaks, etc.).

One of the most popular approaches to build visual models is the Bag of Words (BoW)
representation. It is based on a quantization of the image feature descriptor space into several groups
(visual words) that compose the visual vocabulary. BoW based approaches are very popular in various
recognition tasks due to their good performance despite the simplified representation. Authors of [23]
perform a survey of current visual topological mapping methods concluding that BoW approaches
are better than global descriptor or local feature based approaches for large scale operation. We find
good results on recognition at large scale achieved partly thanks to BoW image representation, such
as appearance based localization and mapping in large scenarios [5]; object retrieval approaches [2],
or event detection methods [24].

In a seminal work from Sivic et al. [1], authors propose to use tracked features to build a visual
vocabulary because they are more likely to be stable features. Inspired by these ideas, we use key-point
tracking not only to find stable features but to discover the different appearances of the environment
elements from a different viewpoint. In [25], authors extract the different appearances of the elements
from a structure-from-motion point cloud of the environment. Given the different viewpoints, different
image descriptors, of a 3D point, the number of appearances is reduced using mean-shift clustering.
Using these set of appearances, authors localize new images of the environment in the created 3D
map. Work in [26] makes use of feature tracks that in this case are clusters of image patches of similar
appearance. Authors infer relationships between visual words given these feature tracks and learn a
new metric to compare image features. This metric estimates the probability of observing a word of
the vocabulary given an observed word in the query image. Probability will be high if multiple feature
tracks include features assigned to both words and low otherwise. Contrary to our proposal that
tracks the key-points of the scene to detect their appearance, these works group features by matching
their descriptors.

In parallel with the growing popularity of vocabulary based recognition approaches, we find
research results analyzing their drawbacks [27,28], such as the loss of discriminative information
or under-representation of descriptor space regions with low population. Therefore, we also find
approaches trying to overcome some of these issues, as well as augmenting the model semantic
information. For example, [29] presents a novel framework for object category recognition that
unifies visual codebook generation with classifier training. Traditional visual vocabulary learning
and weighting is performed independently, and authors of [30] present Joint-ViVo, a method where
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words and their weights are learned jointly. In [31], authors improve the BoW creation by selecting
informative words depending on a saliency value computed in the images. The approach described
in [32] proposes a supervised learning algorithm which generalizes the k-means algorithm by allowing
soft assignments and exploits supervised information to improve the discriminative power of the
vocabulary. Work in [33] studies the problem of large scale image retrieval by developing a new
class of bag-of-features to encode geometric information of objects within an image. Authors of [34]
present a framework to integrate semantic information from Flickr labels for supervised vocabulary
construction. The work in [14] propose a framework to solve the missing correspondences between
low-level multimedia data and high-level semantics. This framework can be used to link the elements
in a visual vocabulary with the elements of a semantic vocabulary.

One of our intuitions is that geometric and spatial restrictions on the scene are important cues to
improve our visual model. Therefore, we include spatial information in the form of the key-points
altitude as part of our key-points descriptor. Previous work has already proved the advantages of using
geometric cues in visual models. For example, the work in [35] presents the Geometric min-Hashing.
This method uses semi-local geometric information to create and increase the discriminative power
of the hash keys, improving their visual model. In [36], spatial pyramids are used to characterize
the spatial arrangement of words in the image. The methods in [37,38] include the relative spatial
configuration of the words to improve the vocabulary. The first work introduces a bag of spatio-visual
words representation (BoSVW) obtained by clustering of visual words correlogram. The second work
uses spatial arrangement of visual words (WSA) for image retrieval and classification outperforming
spatial pyramids in the retrieval scenario. In [39], angle and scale of image descriptors are used to
improve image matching. Authors weigh the matching score of a query and a database image by
verifying the consistency of angle and scale of all the matched words between the images.

Finally, there is another important group of related work regarding unsupervised learning
for object or feature discovery. Unsupervised learning has been used to discover the distinctive
architecture elements of certain areas [40], representative views of an object [41], object models [42]
or the appearance of objects and their image segmentation [43]. Closer to our approach, the work
in [44] finds a set of discriminative and representative image patches by using an iterative process
of clustering and training. In [45], authors construct a compact and discriminative semantic visual
vocabulary using diffusion maps and quantized mid-level features.

3. Enhanced Vocabulary Construction

This section details our approach to build an enhanced vocabulary of the environment traversed
by a mobile camera. Steps are summarized in Figure 1: (1) feature detection and tracking that groups
the features into sets of tracked key-points; (2) clustering sets of similar appearance into classes;
(3) obtaining the visual words from each class.

3.1. Key-Point Detection and Tracking

We detect key-points in the scene and track them using the Lucas–Kanade tracker. For each
frame, we compute an image descriptor around each key-point location. For both key-point detection
and image descriptor computation, we use SURF (Speed-Up Robust Features) [46]. Note that the
appearance of key-points is likely to change from frame to frame while they are tracked. We can
exploit the knowledge of these appearance variations being generated by the same entity thanks
to the tracking. Due to the camera configuration, pointing towards the ceiling, the altitude angle
encodes the point of view change that produces the appearance change of the scene point. The tracked
image descriptors are stored, together with the altitude θ of the corresponding location, as shown
in Equation (1).
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As a result of this step, our approach has identified m sets of tracked key-points, where each set,
set i, contains ni image descriptors and altitude angles corresponding to the same tracked scene point
from different points of view. Xji denotes the jth descriptor and altitude angle pair included in set i:

set i = {Xji = [descji , θji ]} (1)

with j in [1 . . . ni] and i in [1 . . . m].
Different sets could contain features that belong to the same scene element, e.g., scene points

tracked at different time while revisiting the same location or points corresponding to repeated objects
in the environment. The following step of our approach groups sets that are likely to have been
produced by the same object or element.

3.2. Clustering Sets of Tracked Key-Points

To cluster the sets of tracked key-points, we have evaluated two clustering methods: Hierarchical
Clustering and DBSCAN (Density-Based Spatial Clustering of Applications with Noise). Both methods
can work based on a similarity measure between sets.

3.2.1. Similarity Measure

The similarity measure described next estimates how likely two key-point sets are to correspond
to the same scene element. The altitude value encodes the relative position of the scene point with
respect to the camera. We assume that the appearance of a scene point from the same viewpoint is
the same, but different scene points can look similar from different positions. We use the altitude
difference to penalize these cases.

The distance between two features Xi = [desci, θi] and Xj = [descj, θj], is computed using:

d(Xi, Xj) = ||desci, descj|| f (||θi, θj||) (2)

where ||desci, descj|| is the Euclidean distance between the appearance descriptors and f (x) is the
penalization due to the altitude difference between both features obtained as follows:

f (x) = (1 + a exp(b exp(c x))) (3)

where a, b and c are the parameters that define the shape of the penalization.
The penalization function is shown in Figure 2. It grows rapidly and continuously after a small

difference of altitudes (0.1 rad), and the maximum penalization is used for values above 0.8 rad.
Parameters a, b and c have been selected to accomplish these requirements. Other functions with the
same properties are also valid. The selected function penalizes the matching of key-points observed
from different altitude angles but does not modifies the matching other rotations of the key-points.
In such cases, the rotation invariance of the chosen SURF descriptor allows for recognizing the
key-point.

To compare two sets of tracked key-points, we have to compare all the features of one set with
all the features from the other set. Each feature of set i is compared with all the features of set j, the
minimum distance value is selected, and the mean of all these minimum values is considered as the
distance between sets:

D(set i, set j) = mean
Xk∈set i

( min
Xl∈set j

(d(Xk, Xl))) (4)

where D(set i, set j) is the distance between two different sets, set i and set j, and Xk and Xl are features
included in these sets, respectively.
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Figure 2. Penalization Equation (3): a = 4, b = −7.5 and c = −10.

3.2.2. Clustering Approaches

We consider two common clustering approaches that build on a similarity measure between the
elements to be clustered.

• Hierarchical Clustering.
We have implemented a clustering method based on the agglomerative Hierarchical
Clustering [47], where each element starts as a cluster and each cluster is paired with its most
similar cluster as we move up in the hierarchy. Our hypothesis is that elements in the same
cluster are probably observations originated from the same object or scene point. We modify
the standard Hierarchical Clustering by defining threshold thS to avoid merging too dissimilar
clusters (clusters are not paired if their distance is above this threshold). As a result of this
modification of the standard Hierarchical Clustering, key-points sets far from any other set are
not paired and compose a singleton cluster. In this method, new clusters are created on every
iteration, so new distances have to be computed. We adopt the Unweighted Pair Group Method
with Arithmetic Mean [48] approach, where the distance between two clusters is the mean of the
distances between the sets of tracked key-points included in each cluster.

Hierarchical Clustering is conceptually simple, that means it is easy to implement and modify.
Additionally, it outputs a hierarchy of clusters, a structure more informative than flat clustering
technique results. The drawback is its complexity, O(n3) in the general case, what makes it too
slow for big data-sets.

• DBSCAN (Density-Based Spatial Clustering of Applications with Noise).
DBSCAN [49] is a density-based clustering algorithm that uses a estimated density distribution of
corresponding nodes to find clusters in the data. This algorithm is based in the notion of density
reachability: Two elements, q and p, are directly density reachable if their distance is not bigger
than ε. q is called density-reachable from p if there is a sequence of elements, p1 . . . pn with p1 = p
and pn = q, where each pi+1 is directly density-reachable from pi. With these definitions, a cluster
is a subset of elements mutually density-connected. To handle the noise, this method defines
the parameter minPts, the minimum number of elements required to create a cluster. Subsets of
density-connected elements with less than minPts elements are considered as noise.

DBSCAN is a widely used clustering technique. We use the DBSCAN implementation included
in ELKI open source data mining software [50]. The complexity of this method is lower than
for Hierarchical Clustering, O(n2) for the basic form of the algorithm, so it is faster and more
appropriate for big data-sets.

The results of this clustering step can be semantically understood as follows:

• The obtained clusters represent common scene points and include their possible appearances
according to the different viewpoints under which the scene elements were observed.
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• Non paired or noisy sets are unique scene points. These sets are dissimilar to the rest of sets
but may be highly representative of the locations where they appear. These unique sets are
clustered together after running the clustering step. The created cluster does not represent any
common scene points, but includes unique key-points representative of a location. Unique sets
are clusters with just one set of tracked key-points when using Hierarchical Clustering. When
running DBSCAN with minPts = 2, these unique sets are considered as noise.

3.3. Vocabulary Construction

Our last step to obtain the visual model consists of building a vocabulary for each class resulting
from previous step. The whole vocabulary is composed by a fixed number of words K. We assign a
number of words ki to each class i. ki is proportional to the number of features included in class i:

ki =

⌈
K

# f eatures ∈ class i
# total f eatures

⌉
(5)

K-means clustering algorithm is run with the elements within each class. Differently from previous
steps, k-means is run using only the appearance descriptors of the features in that class. Each word
gets a representative appearance descriptor from k-means. We add an altitude value computed as the
average altitude of all features assigned to that word.

In the resulting vocabulary, larger classes are represented by more words than small ones. The
class including non paired sets, which is usually big, will receive a large amount of words, which
guarantee that we account for these marginal and unique scene elements.

3.4. Assigning Words to a New Feature Using the Created BoW

To classify a new feature, Xnew, into the discovered classes, it is compared with the words included
in the vocabulary using the distance described in Equation (2). We assign the corresponding word i
according to the nearest neighbor, but only if that distance is below a matching threshold, thM.

i = arg min
i∈[1,k]

(d(Xnew, Xi)|d(Xnew, Xi) < thM) (6)

By using this threshold, we model the fact that a new feature could not belong to any of the
modeled classes.

4. Analysis of the Performance of the Hierarchical Vocabulary

We have evaluated all steps of our approach and the performance and properties of the obtained
visual vocabulary.

4.1. Experimental Settings

4.1.1. Data-Sets

We validate our method with a data-set acquired from a robotic platform at the AASS laboratories
and offices in Örebro University, Sweden. It includes two image sequences of two different trajectories
around the same environment: 158.5 m (1879 frames) and 164 m (2142 frames). They were acquired
at different days, in the same environment and follow different trajectories. The acquisition was
performed at 30 frames per second, and the images have a resolution of 768× 768 pixels. As explained
previously, the camera has been set pointing to the ceiling, therefore the objects that appear are mostly
light sources, windows and signs. Figure 3 shows some sample images of this data-set, which is
available online [51].

A second data-set is used for qualitative evaluation of the method. This sequence has been
acquired in a trajectory of about 10 m on a different indoor environment, traversing a corridor. The
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purpose of this sequence is to further analyze the correspondence between classes and real objects in a
different scenario than the main data-set used.

Figure 3. Examples of objects discovered in the data-set. Green circles mark correct assignments and
red crosses show incorrect ones. The colored shapes show the labeled areas: round Ceiling Lamps
(orange); Halogen lamps (blue); wall Lights (magenta); windows (white). Matching threshold is set to
0.15. For clarity, some conventional images of the objects in the environment are shown on the right of
the figure. (Best seen in color).

4.1.2. Performance Measurements

The proposed method is evaluated attending to three different criteria:

• Accuracy: it evaluates the accuracy of the vocabulary to classify new features into the discovered
classes. Total, ATotal , and average class accuracy, AAverage, of the classification are respectively
computed as:

ATotal = 100
# correct class
# test f eatures

(7)

AAverage = mean
∀i

(
100

# correct classi
# test f eaturesi

)
(8)

where the i index represents the classes.
• Normalized inverse pixel deviation: it evaluates the similarity of the key-points patches included in

each class. This quality measurement is based on the standard deviation of the image patches
of features that have been clustered together. Given class i, we define the class pixel deviation,
Si, as the mean of the standard deviation of the gray level of every pixel of the features patches
included in class i:

Si = mean
∀(x,y)

( std
∀j∈i

(Ij(x, y))) (9)

where j ∈ i represents all the patches of the features included in the class i, Ij(x, y) is the gray
level of pixel (x, y) from the patch of feature j, (x, y) values are limited to the size of the patches
(32× 32 pixels in our case) and std() is the standard deviation.

We define the normalized inverse pixel deviation for each class, S′i :

S′i = 1− Si
Smax

(10)

where Smax is the maximum pixel deviation. More meaningful classes will have higher S′i values.
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• Intra-class distance: it evaluates the similarity between all the sets of key-points included in each
class. Distance between all the sets of key-points is computed using Equation (4). The intra-class
distance is the mean of these distances. Lower values of this distance mean more compact clusters,
where the sets grouped are more similar.

Normalized inverse pixel deviation and intra-class distance both evaluate how similar are the
elements grouped under the same class label. However, the first one computes distances between
key-point patches, just the key-points appearance, while the latter computes distances between sets of
key-points using tracking and viewpoint information together with the SURF descriptors.

4.1.3. Comparison with k-Means Vocabulary

Next, experiments compare the properties of our proposed vocabulary with those of the standard
k-means vocabulary. We have chosen this technique as baseline for the visual vocabularies. Standard
k-means has shown good performance in plenty of computer vision applications, but one of its
drawbacks is that not semantic information is considered when building the words. In contrast, the
hierarchical vocabulary presented in this work groups in the same class key-points that are likely to
come from the same scene element. Figure 4 shows the basic differences between both approaches.

Figure 4. Differences between standard k-means vocabulary and our hierarchical vocabulary building
process. k-means clusters directly in the feature descriptor space. Our enhanced vocabulary first groups
by tracking, then clusters tracked key-point sets into classes, and finally clusters with a k-means within
each of the found classes to create the final visual words.

4.2. Analysis of the Clustering of Tracked Key-Points Sets

Figure 5 shows the evolution of the main parameters of the clustering results for different
configurations of the two evaluated clustering algorithms. We can observe how the intra-class distance
and the number of non paired sets have similar behavior for values of thS and ε between 0.05 and
0.35. However, DBSCAN creates less clusters than Hierarchical Clustering. In DBSCAN, two elements
can be clustered together if they are density reachable, even if their distance is high. In contrast, in
our modified Hierarchical Clustering, to pair two elements the distance between these elements must
be lower than thS. The requirement to cluster elements is more relaxed for DBSCAN, so more sets
are clustered together and less clusters are created than with Hierarchical Clustering. For ε higher
than 0.35, very few clusters are created with DBSCAN. This means that dissimilar sets are clustered
together affecting the quality of the results as can be seen in the evolution of S′ and the intra-class
distance. Figure 5d shows a peak on the number of non-paired sets when thS > 0.5. This is caused
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because there are no sets which similarity distance with other set is below that threshold. As a result of
this, all sets are grouped together in the non-paired cluster.

(a) (b) (c) (d)

Figure 5. Comparison of the clustering results for both studied methods: Hierarchical Clustering and
DBSCAN Clustering. Evaluation of the normalized inverse pixel deviation (a); intra-class distance (b);
number of created classes (c) and number of non paired classes (d) for both Hierarchical Clustering
(red) and DBSCAN (blue) clustering. thS and ε are equivalent parameters for both clustering methods
respectively. (Best seen in color).

4.3. Influence of thS, ε and K Parameters in the Performance of the Resulting Vocabulary

For this analysis, we randomly split the sequences and use 70% as training, and 30% as test data.
The clustering of sets of tracked key-points into classes is performed on the whole sequence to define
a ground truth class assignment for both train and test data. The vocabulary is built using only the
training data and the next results correspond to the classification of the test data into vocabulary
classes. Figure 6 shows the Total and Average accuracy of the classification and the Normalized inverse
pixel deviation.

Hierarchical Clustering DBSCAN

(a) (b) (c) (d)

Figure 6. Influence of parameters, thS, ε and K in the performance of the vocabulary. We show the
evolution of total (red) and average (blue) accuracy and normalized inverse pixel deviation (green) for
thS (a) and ε (c) with K = 3000 and for K; (b) and (d), for thS and ε equal to 0.1.

For Hierarchical Clustering, ATotal grows with thS, while AAverage remains constant. This means
that larger classes get even larger by clustering dissimilar sets of tracked key-points. ATotal increases
due to the good performance of these large classes, but AAverage remains constant due to the poor
performance of the small classes. As expected, the quality of the classes, represented by S′, decreases
when thS grows.

For DBSCAN clustering, we can observe how both, ATotal and AAverage, grow with ε while S′

decreases. The high values observed for ATotal , are effect of the low number of clusters created. The
chance of classifying correctly a key-point when most of the features are part of the same cluster is
very high. ATotal and AAverage remain almost constant when k grows. Those values are in all cases
higher than for Hierarchical Clustering because the first class created by DBSCAN clustering is too
big, as we show later in Section 4.5. Most of the test key-points are classified under that class, so the
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accuracy is high. However, this class is compounded by dissimilar sets of tracked key-points. High
values of K produce large vocabularies that better fit the feature space. However, one of the goals
of using vocabularies is to reduce the number of elements included in the model, so small K values
are preferred.

4.4. Influence of the Robot Motion in the Detection of Key-Point Classes

This experiment analyzes the suitability and correctness of our vocabulary to model the
environment. We classify key-points from a test sequence not used to build the vocabulary into
the classes discovered by our approach. Figure 7 shows examples of key-points classified along
different test sub-sequences. Each column of the figure shows key-points detected in those frames
together with the word and corresponding class assigned to that key-point. Note that as the key-point
appearance and position varies, it is assigned to different words but is still classified under the same
class. This validation demonstrates for a given scene element, i.e., one of our classes, how the different
words encode the element appearances and viewpoints.

Figure 7. Key-point classification into words and classes as the robot moves. The plots in the first row
represent the trajectories followed by the robot while acquiring the frames. The trajectories include
rotation, translation and combinations of both. Each column shows how the key-points of a set of
key-points are individually classified as being of the same class. All the key-points of a set correspond
to the same element of the scene that has been tracked. (Best seen in color).
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4.5. Analysis of the Object Information Included in the Vocabulary

One interesting property of our method is that the classes created by clustering sets of tracked
key-points are related to scene elements of the environment. We want to analyze if these discovered
classes actually correspond to objects or parts of the environment (note that every step of our method
is unsupervised, so we do not have any concept name associated with any of the classes).

For this experiment, we use both sequences, one for obtaining the vocabulary and the second
one for testing. In both sequences, we have labeled manually 10% of the images with bounding boxes
around the four most repeated objects in the environment: Halogen Lamp, Round Ceiling Lamp, Wall
Light and Window (see Figure 3). Since the camera is pointing to the ceiling, the objects that appear
are mainly different kinds of lamps and windows.

4.5.1. Relationship between Words and Classes with the Environment Objects

First, we analyze how our proposal creates a visual vocabulary where the classes (and words
subsequently) are related with the environment objects. A quantitative analysis of the relation between
scene objects and the classes created by our vocabulary can be seen in Table 1. It shows the normalized
entropy values for the classification of the objects into classes and words. Normalized entropy measures
the unpredictability of a random variable. In our case, the random variable is the classification of a
key-point generated by a scene element into words or classes. If the key-points of an object are always
classified in the same word, the entropy will be zero. However, if object key-points are assigned into a
lot of different words, the entropy value will be high. To compare the entropy of different vocabularies,
we use the Normalized Entropy:

Normalized Entropy =
(−∑n

i=1 fi log2( fi))

log2(n)
(11)

where, for each object, fi is the proportion of occurrences of that object in the class or word i, and n is
the number of classes or words.

Table 1. Normalized entropy of the object classification into classes or words.

Words

Object Our Approach Our Approach Standard k-MeansDBSCAN Hierarchical Clustering

Halogen Lamp 0.598 0.598 0.599
Round Ceiling Lamp 0.454 0.454 0.450

Wall Light 0.434 0.439 0.424
Window 0.441 0.450 0.441

Mean 0.482 0.485 0.479

Classes

Object Our Approach Our Approach Standard k-MeansDBSCAN Hierarchical Clustering

Halogen Lamp 0.460 0.524 −
Round Ceiling Lamp 0.356 0.497 −

Wall Light 0.840 0.266 −
Window 0.112 0.290 −

Mean 0.275 0.394 −

Analyzing the classification at word level, the three vocabularies have a similar normalized
entropy value (about 0.48). However, looking at the values for the classification into classes, the values
are much lower (0.275 and 0.394 for our approach with DBSCAN and with Hierarchical Clustering,
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respectively). Using a standard k-means vocabulary (c), there is no relation between words and scene
objects and words generated from the same objects are not related in any way.

4.5.2. Classes Representing Objects

The following experiments show how the relation between the classes created by our approach
and the objects of the environment can be used to detect the different object occurrences.

First, we define the concept of representative classes. A class is representative of an object if most
of the class key-points are also key-points of that object:

100
# classi key-points in objectj

# classi key-points
≥ thR (12)

where thR is the representativity threshold which models how unique a class needs to be to be
representative of an object.

Figure 8 shows the number of representative classes for each object and the number of
representative classes associated to more than one object for different values of thR. Even for high
values of thR, we find representative classes for all the objects. The number of representative classes
associated to more than one object is small for low values of thR, and null for thR higher than 35%

Figure 8. Representative classes for each object and representative classes associated to more than
one object (multi-object classes) for different values of thR. In the analyzed vocabulary, 342 classes
were created.

Next, we want to quantify how new occurrences of objects are recognized using the representative
classes. The representative classes of each annotated object are selected in the training data with
thR equal 50%. In the test data, key-points detected as being of a representative class of an object
are labeled as being generated by that object. Figure 9a shows precision and recall when classifying
features into object labels for different values of the similarity threshold, thM.

The highest recall, above 90%, was achieved for the detection of Round Ceiling Lamps, which
appear in almost all the rooms traversed during the sequence. However, the precision is low for this
class, below 50% for higher values of thM. For the rest of the objects, precision is above 90%. For
Halogen Lamps, recall reaches almost 80%, while for Wall Lights and Windows recall values are lower,
about 20% and 30%, respectively. Those objects have similar appearance and the areas of the image
where they appear are the same so they are really hard to distinguish.

Inclusion of the Altitude Values

Figure 9b shows the same plot that Figure 9a, but, in this case, the altitude has not been used in
the process. While the results are similar for Halogen Lamps and Windows, the accuracy for Wall
Lights decreases from around 20% to 2% when we do not use the altitude. Even more dramatic is the
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change in the detection of Round Ceiling Lamps: without the altitude value, no Round Lamps are
detected. In our case, the image descriptors of features around the Round Ceiling Lamps are similar
to the descriptors created by other entities of the environment, so the appearance descriptor is not
enough to distinguish this object.

(a) (b)

Figure 9. Precision (dashed line) and Recall (solid line) for the detection of real objects as the matching
threshold thM varies. We can see better performance when including altitude in the descriptor, together
with SURF appearance (a) that using only SURF (b).

4.5.3. Qualitative Object-Class Correspondence

Figure 10. Examples of classes created by our method that correspond to real scene elements. Most of
the classes are detected on various frames, and on different sides of the images. (Best seen in color).
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Figure 10 shows examples of the correspondence between the classes created by our vocabulary
and the elements of the environment. For this experiment, we have run our vocabulary creation method
in the second sequence presented. Again, most of the objects detected are lamps, halogen lamps
(on and off) and emergency lights. Ceiling tubes, posters and labels are also detected. Occurrences in
different frames are shown for most of the classes. Note that classes 33 and 17, which correspond to
wall signs, are detected in both sides of the corridor.

5. Applications Using the Proposed Vocabulary

This section describes two possible applications of the vocabulary presented in this work. Place
recognition and object detection are studied here.

5.1. Place Recognition

One of the applications where BoW representations have been widely used is place recognition.
The next experiment shows the performance using a vocabulary created with our proposal and
compares it with the performance using standard k-means vocabulary.

The trajectories of the two sequences included in our data-set are shown in Figure 11. The ground
truth of the sequences are aligned so the positions in both trajectories can be compared. We obtained
this aligned ground truth using the g2o optimization tool [52].

0.1

(a) (b)

Figure 11. Our vocabulary vs. standard k-means vocabulary for Place Recognition. (a) odometry of
the two sequences used: Test (blue) and Train (black). Correct localization results are shown as green
lines, and errors are shown with red points in the test trajectory; (b) precision-recall curves using our
enhanced vocabulary (red) and k-means vocabulary (blue). These curves have been obtained varying
thHistDist. (Best seen in color).

According to BoW representations, each image is represented by a histogram of the number
of occurrences of each word in the image. Each histogram is normalized with the total number of
words in the corresponding image, and the image similarity is obtained according to these histograms
distance. The localization of a test image is considered to be the same as the localization of the most
similar training image found. If the most similar training image found is within a similarity distance
larger than a threshold (thHistDist = 0.2 in our case), we consider that the location is unknown or
uncertain, therefore no answer is given. The localization will be considered correct if the match and
the test odometry positions are within 1.5 m. Figure 11 shows the results of the experiment, including
the visualization of the test and train trajectories and the precision-recall curve. We can observe how
our approach gives better results than those obtained using a standard k-means vocabulary.
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Finally, we show some examples of correct place localization when the robot orientation is very
different between train and test in Figure 12. In these cases, our model was robust enough to classify
those images as being the same location.

Figure 12. Examples of correct place recognition where the robot location is rotated significantly
between test and training images. The left image of each row shows the query test image, and the right
image show the correctly matched image from the training data.

5.2. Object Detection

Section 4.5 shows how the vocabulary represents some of the objects found in the environment.
Figure 3 shows the detection of objects in different frames. For this experiment, we have used the
representative classes of each object. Key-points detected as being of a representative class of an object
are labeled as being generated by that object. The position of the markers, green circles for correct
detections and red crosses for incorrect ones, correspond to the position where the key-points where
detected in the image. In those examples, we can see how most of the Round Ceiling Lamps are
correctly detected. In the first image of the bottom row, the red arrow shows points classified as Round
Ceiling Lamp that correspond to a different kind of lamp that newly appears in this room. We can
also see how the areas labelled as windows are very dissimilar due to the objects seen through these
windows and their different shapes.

6. Conclusions

This work presents a new method to create an enhanced visual vocabulary from an image sequence
that learns semantic relationships between visual words of the working environment. The key elements
of the method are the use of tracked scene points and the inclusion of information of the key-points
altitude when building the visual words. Our approach is focused on long term indoor robotics
monitoring applications. With this purpose, we consider systems where the camera points to the
ceiling, which facilitates the acquisition of more stable and repetitive scene elements. The experimental
validation, with indoor sequences acquired from a mobile robotic platform, shows the performance and
the enhanced semantic properties for different method parameters. Comparisons with the standard
k-means vocabulary present our method as a richer alternative for the usual BoW approach to build a
visual vocabulary. Our method provides more representative semantic information of the environment,
including relationships between visual words and environment objects or parts. At the same time, our
method has shown better results in a place recognition application than the usual BoW approach, and
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promising results for object discovery and semantic representation for long term place recognition in a
robot operating environment.
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